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Abstract 
 
Consider a situation in which countries anticipate an international environmental agreement 
(IEA) to be in effect sometime in the future. What is the impact of the future IEA on current 
emissions after its announcement? We show that the answer to this question is ambiguous. We 
examine four types of IEAs that aim to reduce pollution stock in the environment. IEA type 1 
sets a level of emissions, IEA type 2 and IEA type 3 set a percentage and a uniform cut vis-à-vis 
the business-as-usual policy respectively. IEA type 4 sets the policy that maximizes future joint 
benefits of the signatories. We show that all of these agreements reach their goal in the long run, 
but the intended benefits of these IEAs can potentially be offset by the anticipatory non-
cooperative response of the signatories, leading to an environmental degradation in the short 
run. Which IEA is preferable depends on the targeted level emissions during the phase of 
cooperation. When this target is above a certain threshold, welfare under IEA type 1 is larger 
than under IEA type 2 which is larger than under IEA type 3. Moreover, the highest level of 
welfare that can be attained under IEA type 1 is above the highest level of welfare achieved by 
any one of the other three IEAs. 
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1 Introduction

Transboundary pollution problems give rise to prisoners’ dilemma type of situations that are particu-

larly difficult to resolve due to the absence of a supra-national authority that can impose an allocation of

pollution rights, or enforce agreed upon contracts. Any agreement between the parties involved needs to

be self-enforcing. The difficulty of reaching an agreement can in principle be overcome by an ad hoc sys-

tem of transfers and incentives to prevent free-riding.1 In practice, the number of international treaties

to protect the environment or resources has been steadily increasing since the second half of the twenti-

eth century. The International Environmental Agreements (IEA) Database Project lists environmental

agreements from 1800 to 2013.2 In the project, agreements are defined as environmental if “they seek, as

a primary purpose, to manage or prevent human impacts on natural resources; plant and animal species

(including in agriculture, since agriculture modifies both); the atmosphere; oceans; rivers; lakes; terres-

trial habitats; and other elements of the natural world that provide ecosystem services.”. The project

lists over 1200 multilateral environmental agreements, more than half of which were signed after 1990,

1500 bilateral environmental agreements, and 250 “other” environmental agreements. The “Other”

category includes environmental agreements between governments and international organizations or

non-state actors. The list includes conventions, treaties, protocols, amendments, modifications.

The process of defining precise commitments for each member of an agreement, the ratification

and the passing of domestic legislation to enforce the agreement’s commitments is often very tedious

and lengthy. An interesting feature of many such agreements is that there is a substantial period of

time that separates the date of adoption and the date of entry into force.3,4 For example, in the case

of climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was

signed by 154 countries in the Earth Summit in Rio de Janeiro in 1992 and entered into force in 1994.

However, binding limits on greenhouse gases emissions, in the case of developed countries, were only

defined in 1997 under the Kyoto Protocol; a protocol that entered into force in 2005.5,6 Even bilateral

1See e.g., Germain, Toint, Tulkens and de Zeeuw (2003) or Petrosyan and Zaccour (2003) for the case of stock pollution

game and Calvo and Rubio (2013) for a recent survey.
2http://iea.uoregon.edu/page.php?file=home.htm&query=static

Version 2013.2, July 2013.
3Barrett (1998) breaks down the process of treaty making into five stages: pre-negotiation, negotiation, ratification,

implementation and renegotiation. Congleton (2001) identifies four phases of IEAs. The first stage is the recognition

of the benefits from cooperation and gives rise to “Symbolic Treaties,”in the second stage parties sign a “Procedural

Treaty” defining procedures to evaluate alternative policy targets, in the third stage parties agree on specific targets and

sign a “Substantive” treaty and in the fourth “Domestic” stage each party passes legislation to conform with its treaty

obligations.
4Barrett (2003), in the appendix of Chapter 6, gives a list of multilateral environmental agreements and provides the

date of adoption and the date of ratification.
5Canada withdrew in 2011 and the U.S. did not ratify the treaty.
6Other examples of delayed entry into force of environmental treaties include The Convention for the Protection of

the Marine Environment of the North-East Atlantic which was opened for signature in 1992 and entered into force in

1998. The Convention on Long-Range Transboundary Air Pollution, CLRTAP, open for signature in 1979 and entered
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environmental treaties can take decades to be finalized. (See Congleton (2001) for examples)

In situations where the damage is caused by the accumulation of pollution, the anticipation of co-

operation in the future may influence countries’ emission levels over the pre-cooperation phase. In this

paper, we investigate two related issues on the anticipated IEAs: (i) “How are the pre-cooperation

emission levels affected by the announcement of an IEA?”, and (ii) “How do these anticipation effects

influence the design of IEAs that feature implementation lags?”. To this end, we consider a transbound-

ary stock pollution game in which countries will adopt an emission policy with the intention of reducing

pollution stock compared to business-as-usual (BAU) policy. For the sake of simplicity, we abstract

from modeling the political process by which a cooperative solution is reached. In this environment, a

number of countries produce homogeneous products, and pollution is emitted as a by-product. Emis-

sions of pollution accumulate, constituting a transboundary stock of pollution, damaging all countries

in the same way.

To provide a benchmark case, following the literature, we first determine the equilibrium under

the BAU scenario, where countries behave non-cooperatively over the two periods. This is contrasted

with the first-best cooperative equilibrium where countries follow a profile of emissions strategies for

each period that maximizes the aggregate welfare. It is well known that conditional on a given stock

of pollution, a Markov-Perfect Nash Equilibrium (MPNE) of the game results in larger emissions of

pollution than the socially efficient level, i.e. where each country adopts the pollution strategy that

maximizes the joint welfare of all countries.7 We prove this result within the context of our model, and

reveal the possibility that equilibrium level of emissions under cooperation can actually exceed those

under BAU in the future. Although this possibility arises rarely (with extreme parameter values), at

face value, it indicates that the goal of cutting emissions in the future and the goal of achieving a higher

welfare might be conflicting. On the other hand, we prove that first-best solution unambiguously leads

to smaller pollution stock both in the short run and in the long run vis-à-vis BAU. Given these findings,

and taking the first-best solution as an appealing benchmark, the comparison of pollution stocks in the

short run, i.e. the stock at the time the IEA enters into force, and the long run, i.e., the stock at the

end of the game, is more informative about the performance of an IEA compared to BAU.

Our first thought experiment considers a case in which countries adopt an IEA in period two that is

fully anticipated in period one. We examine the impact of four different types of IEAs on the emission

level over the pre-cooperation phase. Given that the first-best solution is more environmentally friendly

than the solution of the BAU scenario both in the short run, and in the long run, it is natural to seek

an IEA with the same qualities. We illustrate, within the confines of these four IEAs we chose for their

into force in 1983, Marpol 73/78 (“Marpol” is short for marine pollution and 73/78 short for the years 1973 and 1978) the

International Convention for the Prevention of Pollution From Ships was signed in 1973. The current convention entered

into force in 1983.

Even the Vienna Convention on the Law of Treaties (VCLT), a treaty on the international law on treaties between

states was adopted in 1969 and entered into force in 1980.
7See the surveys of dynamic pollutions games in Jorgensen, Martin-Herran and Zaccour (2010) or Long (2011).
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subjective appeal, that this is a very demanding property. We prove that all these IEAs reach their

goals in the long run, i.e. they ultimately lead to a pollution stock lower than that under BAU. However,

we illustrate, for each IEA, how the intended benefits can potentially be curtailed by the anticipatory

non-cooperative response of the signatories, leading to an environmental degradation in the short run,

relative to BAU.

In the first type of IEA, countries anticipate that the level of emissions in period 2 will be set at an

agreed upon target, independent of the pollution stock, assuming that the countries can commit to this

level. In the other three IEAs, countries cannot commit to an emission level, but rather commit to an

emission policy rule that depends on the level of the pollution stock. In the second and third types of

IEAs, the anticipated emission policy represents a percentage, and a constant cut of future emissions

vis-à-vis BAU respectively. The fourth type of IEA, which serves as a benchmark for our exercise,

represents the ex post first-best emission policy, i.e. the policy which maximizes the joint welfare of all

countries (in period 2).

In the first type of anticipated IEA, IEA type 1, where countries can commit to a target level

of emissions, we show that a cap in period 2, set exactly at the BAU emissions level, results in a

decrease of current emissions with respect to the BAU emissions level. However, emissions in period 1

is a decreasing function of the target level for period 2: A tighter target in period 2 results in larger

emissions in period 1. Therefore, the overall impact of a cap on period 2 emissions is ambiguous.

In the case of an anticipated IEA type 2, we show that a marginal cut in emissions leads to an

increase of current emissions if and only if the elasticity of marginal utility with respect to the emission

level is larger than one. We then illustrate that when the elasticity is large enough, a sufficiently large

cut in emissions leads to a decrease in emissions in period 1. A similar ambiguity result is illustrated

in the linear-quadratic framework: We show that the anticipation of an IEA results in a decrease of

current emissions if the damage from pollution is sufficiently large. Otherwise, the impact of an IEA is

ambiguous, and typically depends on the level of the stock of pollution.

We show that for IEA type 3, a small cut in period 2 emissions increases pre-cooperation emissions,

however a large enough cut will decrease them. For the fourth type of IEA, IEA type 4, where

countries adopt the ex post first-best emission policy, we give a necessary condition under which the

future IEA results in a decrease of current emissions with respect to their BAU level. We show that this

necessary condition is never satisfied in the linear-quadratic case, and in the case where utility function

is logarithmic.

It is widely recognized that, even if cooperation is expected in the future, the actual policies ratified

by domestic legislatures will diverge from policies prescribed under an ‘ideal’ scenario in period 2, (IEA

type 4 in our context), policies that maximize the joint welfare of all countries in period 2. The reality

of policy making is that the final legislation that will be implemented is the outcome of an interaction of

several interest groups.8 In this sense, we view IEAs of type 1, 2 and 3 to be potentially more relevant

8See Oates and Portney (2003) or Wangler, Altamirano-Cabrera and Weikard (2011).
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for policy considerations. The larger the extent of the departure from the BAU outcome, the larger the

resistance that the policy makers will meet. The influence of interest groups, whether environmental

groups or groups representing industrial interests, on environmental policy is well-established. (See e.g.,

Oates and Portney (2003) or Wangler et al. (2011) for a survey) The important difference between IEA

type 1 and IEAs type 2 and 3 is the level of the BAU outcome that is taken as a benchmark with respect

to which the abatements are made. IEAs of type 2 and 3 represent a scenario where lobbyist can still

influence the abatement pledge of their country in an IEA up to the moment the IEA enters into force.

In these cases, the IEA’s goal has to be conditioned on the prevailing stock of pollution at the time

the IEA enters into force in order for the agreement to be subgame perfect. By contrast, IEA type 1

captures a situation where lobbying occurs only in the negotiation phase and therefore countries have

the ability to commit to a future level of emissions even before the IEA enters into force. IEA type 4,

where countries are able to maximize their joint welfare in period 2 and do not cooperate in period 1,

represents a hybrid scenario between the scenario where countries cooperate over the two periods, and

the scenario, where non-cooperation prevails in both periods.

Following the analysis of the anticipation effects of various IEAs on emissions levels prior to the

cooperative phase, we examine, given a target level of emissions for period 2, which IEA yields the

highest level of welfare. When period 2’s emission target is above a certain threshold, we show that

IEA type 1 yields a higher welfare than IEA type 2 and IEA type 3 that yield the targetted period 2’s

emission level. If players cannot commit to an emission level for period 2, when period 2’s emission

target is above a certain threshold, an IEA type 2 is preferable to an IEA type 3. We also examine for

each type of IEA which level of period 2 emissions yields the largest welfare. Our analysis also reveals

that the highest level of welfare achieved under an IEA type 1 is above the highest level of welfare

achieved by any one of the other three IEAs. We also show that welfare under IEA type 4 (ex post

first-best announcement), is a lower bound for welfare for the other types. From an implementation

point of view, this implies that IEA type 4 is unambiguously dominated by IEAs type 1, 2 and 3.

Next, we step outside the boundaries of the four types of IEAs and focus on the case where the

planner is not constrained to be within a specific IEA class, aside from mild technical restrictions to

ensure tractability. We prove that even in this general environment, no IEA can implement first-best

level of emissions and welfare, however, suitable design of an IEA that takes into account the anticipation

effects can get arbitrarily close to them. Our proof is constructive and provides a guideline on the design

and implementation of IEAs with a time lag. This optimistic result is unfortunately overshadowed by

the increased complexity of such suitably designed IEAs, as the number of periods before the entry into

force of an agreement increases; a complexity that limits their policy relevance.

1.1 Literature Review

The possibility that an environmentally-friendly policy may end up having negative environmental

consequences, as is the case under all four types of IEAs considered, is by now well-established: see e.g.,
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Hoel (1991 and 1992) or Eichner and Pethig (2011) in the case where environmentally friendly policies

are unilaterally adopted by a sub-group of countries or Benchekroun and Ray Chaudhuri (2014) in the

case where countries adopt a cleaner technology.9

A related literature that highlights the role of fossil fuels in the climate change problem examines

the role of environmentally friendly policies on the intertemporal extraction of fossil fuels. Within

this framework, the unintended negative impact of environmentally-friendly policies (such as subsidy

to cleaner energies) on the environment was coined ‘the green paradox’ by Sinn (2008) who examines

the reaction of the supply side of fossil fuels to the implementation of “greening (demand-reducing)

policies” (such as a tax on fossil fuels) by importing countries. It is shown that fossil fuel exporters

may respond by accelerating the extraction of their stock, and thereby accelerating the accumulation of

pollution, worsening the damage caused by fossil fuels. Both in Sinn (2008) and the related literature

(see e.g., Sinn (2012), Van der Ploeg, and Withagen (2012), Grafton, Kompas and Long (2012) or for

surveys, Van der Werf and Di Maria (2012), Van der Ploeg and Withagen (2013) or Long (2014)) the

source of a green paradox is the reallocation of the supply of fossil fuels that result from a greening

policy.

Few papers explicitly examine the impact of announcement of a future environmental policy on

current emissions. Smulders, Tsur and Zemel (2012) study the impact of announcing a carbon tax

to be implemented in the future. They show that this announcement results in an increase of carbon

emissions in the period that precedes the implementation of the tax, compared to the BAU scenario. The

result is driven by an increase in savings and the accumulation of capital, which in turn translates into

more production and emissions. Di Maria, Smulders and Van der Werf (2012) examine the effectiveness

of environmental policy in the presence of an implementation lag within the confines of a non-renewable

resources model. They show that an implementation lag can result in an increase of emissions during

the period that precedes implementation. This result is driven by the scarcity of the available resources.

In our model, it is the countries’ strategic response to the anticipation of an IEA that potentially leads

the countries’ cutting back (or increasing) current emissions.

Countries’ strategic response to environmental policy is also at the root of the findings of Eichner

and Pethig (2011). In a two period framework, they consider a world made of three types of countries:

fossil fuel owners, fossil users that have an active environmental policy, and fossil fuel users that have no

environmental policy. They show that the tightening of the environmental policy of the abaters in period

1 can result in an increase of that period’s emissions of the non-abaters (carbon leakage) which may even

overcompensate the decrease of abaters’ emissions and result in an increase of total emissions during

that period (green paradox). These results are shown in a fairly general setup and within a general

equilibrium framework. Analogous results are shown in the case where the environmental policy takes

effect in period 2, as is the case of IEAs in our paper. In our paper, all countries are abaters in period

2 and the focus is on the intertemporal leakage only. A key difference with Eichner and Pethig (2011)

9See Benchekroun (2003) in the context of international fisheries.
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is that they consider a problem where the total level of emissions over period 1 and 2 is fixed, and an

environmental policy can only shift the allocation of emissions across the two periods. In our paper

the total level of emissions over the two periods is endogenous and an IEA would not only affect the

allocation of emissions across the two periods but also affect the amount of pollution emitted over the

two periods.10 Moreover, our paper also examines the role played by the type of IEA envisioned for

period 2 and offers insights into the design of a future IEA.

Harstad (2015) considers a model of formation of consecutive IEAs. Countries are assumed to be

able to contract over emissions; however the length of the contract is finite. Along with the choice

of emissions, each country chooses a level of investment in a technology that reduces its ‘need for

pollution’. When choosing its investment and emission levels, each country anticipates that there will

be future negotiations. It is shown that IEAs may result in a smaller welfare than under the BAU

scenario, where no IEA is signed. This is because when countries anticipate future negotiations, the

hold-up problem diminishes the incentives to invest in technology. This negative outcome is more likely

to arise, the weaker the intellectual property rights, the shorter the length of the agreement, and the

larger the number of countries. In contrast with Harstad (2015), where IEAs start at time zero, we

have an explicit pre-agreement period where emissions are decided non-cooperatively, and we focus on

emission decisions only. Moreover, in Harstad (2015) and Harstad (2012) the equilibrium in the BAU

case is not affected by the IEA that will prevail in the future. This feature is due to (i) the possibility

to invest in technology and (ii) the fact that the investment costs are linear.11

Our paper is closely related to that of Beccherle and Tirole (2011), who also examine the impact

of the announcement of a future environmental agreement within a two-period game between two

countries. In their framework, the damage from pollution is generated in period 2, and depends only

on the environmental policies adopted in period 2. However, in period 1, each country can adopt

an environmental policy that will impact its private utility in period 2. The paper examines the

impact of delaying an agreement on the bargaining outcome between the two countries, focusing on

the environmental policies adopted in period 2. While their public good framework is quite general, a

crucial assumption of their model is that a more lax environmental policy in period 1 results in a more

lax environmental policy in period 2. Such an assumption makes their analysis not applicable to the

case of a transboundary stock pollution game, where the emission policies in period 1 and period 2 are

typically negatively related. Indeed, in our model, an increase in emissions in period 1 increase the stock

10As recent developments in the fossil fuels markets have shown, the reserves of non-conventional oil and gas are virtually

limitless, much like the reserves of coal, and such fuels become increasingly economically exploitable as technolgy improves

and the energy price increases.
11Our result also contrasts with Harstad (2014) which shows in the case of a game between the owner of a fossil fuel

deposit and a player seeking to prevent the use of fossil fuels, that the prospect of future compensation for conservation

(in period 2) leads to more present conservation (in period 1). The contrast is due to the nature of the goods considered,

i.e., “conservation goods” defined as goods where the buyer does not consume the good but only seeks “to prevent the

seller from consuming it in the future.”
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of pollution in period 2, resulting in a decrease in period 2 emissions. Another contrast with Beccherle

and Tirole (2011) is that we do not explicitly model the bargaining taking place in period 2. Rather,

we assume that in period 2, the emission policy is fixed through an agreement and is independent of

emissions in period 1.12

In the following section, we present the model and analyze the BAU and first-best benchmarks. In

section 3, we examine the impact of four different types of anticipated future agreements on current

emissions. Section 4 includes a welfare comparison of the four IEAs, section 5 takes a mechanism design

approach and discusses the ex ante optimal choice of IEA. Section 6 offers concluding remarks.

2 Model

There are two periods t ∈ {1, 2}, and n identical countries i ∈ I ≡ {1, ..., n}. We assume that there is

a linear technology that results in emissions as a by-product of consumption goods production. Let Pt

denote the initial stock of pollution at time t.

The sequence of events in each period is as follows:

1. Given an initial stock of pollution Pt, countries choose their emissions (Et,1, .., Et,n) to produce

consumption goods. Countries derive utility from consumption, and due to linear technology, we

assume, without loss of generality, that utility takes the form u(Et,i).

2. The sum of the current emissions and the inherited stock cause damage D

(
Pt +

∑n
k=1Et,k

)
.

3. Natural decay of pollution (current emissions plus the initial stock of pollution) occurs. We have

P2 =

(
P1 +

n∑
k=1

E1,k

)
(1− δ)

where δ ∈ [0, 1] represents the natural rate of decay of the stock of pollution.

We assume that the discount factor, β ∈ [0, 1], is identical for all n countries. The utility and damage

functions are fixed over time, identical for all countries, and are of common knowledge. Relaxing these

assumptions would not qualitatively alter our results. We make the following technical assumptions on

the utility and damage functions:

Assumption 1. Utility and damage functions are twice continuously differentiable and satisfy

1. u′(E) > 0 for all E > 0, D′(0) = 0, and D′(P ) > 0 for all P > 0.

2. u′′(E) < 0 for all E > 0, and D′′(P ) > 0 for all P > 0.

12However, in the case of IEAs of type 2, 3 and 4 in our game, the outcome of the agreement in period 2 still depends

on decisions made in period 1 since those decisions impact the stock of pollution in period 2 and therefore impact the

outcome of the agreement.
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3. limE→∞ u(E)−D(P + E) = −∞ for all P ≥ 0.

The first two parts of assumption 1 are standard and ensure that optimization problem faced by

agents is smooth and convex. For most results, either one of the strict inequalities in part 2 can be

replaced with a weak one. The third part ensures that damage component overwhelms the benefit of

emissions asymptotically, and is used to establish existence of solutions when the choice set for emissions

is not compact. Note that this last assumption is in conformity with the view that there is a threshold

level of pollution concentration beyond which ecological catastrophic regime shifts occur, and habitats

are irreversibly destroyed. While there can be disagreements over the precise level of such threshold its

existence is widely accepted. We impose additive separability of utility and damage function for ease of

exposition. This feature is not essential for any of our results provided that we impose obvious cross-

derivative restrictions to preserve strict concavity of the objective functions. From this point onwards,

we will assume that assumption 1 holds for all of our results, unless we explicitly state otherwise.

For some of our results, we need to make the following additional technical assumption to ensure the

existence and uniqueness of a Nash equilibrium. This assumption is not very exclusive and covers most

functions considered in the literature. In particular, it is satisfied by linear-quadratic utility/damage

functions, constant-relative-risk-aversion (CRRA) and constant-absolute-risk-aversion (CARA) utility

functions.

Assumption 2. Utility and damage functions are thrice continuously differentiable and satisfy u′′′ ≥ 0

and D′′′ ≤ 0.

In the non-cooperative setup, each country i chooses an emission strategy, taking the profile of

emission strategies of the other countries as given. We seek a Markov-Perfect Nash Equilibrium of this

game and solve this problem backwards, starting from the strategies in period 2. After we characterize

the properties of the non-cooperative problem, we provide a comparison with the first-best solution,

where the planner chooses a vector of emissions in each period that maximizes the joint discounted sum

of welfare.

2.1 Period 2

Given a stock of pollution P2, under the non-cooperative scenario, country i takes E2,−i ≥ 0, the vector

of emissions of all the countries except country i as given, and chooses its emissions E2,i as a solution

to the following problem:

max
E≥0

u (E)−D
(
P2 + E +

∑
k∈I\{i}

E2,k

)
(1)

Since countries are identical, all equilibria are symmetric (to be proven below) and we drop the

country indices. The equilibrium strategy, E2,NC , is a function of the only state variable P2, the

pollution stock inherited from period 1. Next, we characterize its properties.
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Proposition 1. Under assumption 1, there exists a unique Nash equilibrium for period 2. The equilib-

rium is symmetric, and the strategy E2,NC : R+ → R+ solves

u′ (E2,NC(P2)) ≤ D′
(
P2 + nE2,NC(P2)

)
with equality if E2,NC(P2) > 0. (2)

In addition, E2,NC has the following properties:

1. It is continuously differentiable and E′2,NC(P2) ∈ [− 1
n , 0] for all P2 > 0, except at P̄2 ≡ limE↓0(D′−1

(
u′(E)

)
if this point is well-defined.

2. If, in addition, assumption 2 holds, equilibrium strategy E2,NC(P2) is convex, and the value of

following this strategy, V2(P2) ≡ u(E2,NC(P2)) −D(P2 + nE2,NC), is decreasing and concave in

P2.

Proof: See Appendix A.

Remark: We would like to point out that even though E2,NC(P2) is a decreasing function of

P2, the induced final pollution stock P3 ≡ P2 + nE2,NC(P2) is increasing in P2. This follows from

E′2,NC(P2) ∈ [− 1
n , 0].

For future reference we provide an expression for the derivative of the strategy at an interior solution.

Total differentiation of expression (2) with respect to P2 gives

u′′ (E2,NC (P2))E′2,NC (P2)−
(
1 + nE′2,NC (P2)

)
D′′ (P2 + nE2,NC (P2)) = 0 (3)

which implies

E′2,NC (P2) =
D′′ (P2 + nE2,NC (P2))

u′′ (E2,NC (P2))− nD′′ (P2 + nE2,NC (P2))
∈ [− 1

n
, 0]. (4)

2.2 Period 1

We now consider the problem of country i ∈ I in period 1 under the non-cooperative scenario. Given

an initial stock of pollution P1, country i ∈ I takes the Nash equilibrium policy in period 2, E2,NC (P2)

as well as the vector of emissions in period 1 of all the countries except for country i, E1,−i, as given

and solves the following problem

max
E≥0

u (E)−D
(
P1 + E +

∑
k∈I\{i}

E1,k

)
+ βV2(P2) (5)

where V2(P2) is the value for period 2 as defined in proposition 1 and

P2 =
(
P1 + E +

∑
k∈I\{i}

E1,k

)
(1− δ) .

Next, we characterize the properties of the Nash equilibrium strategy E1,NC(P1).
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Proposition 2. Suppose assumptions 1 and 2 hold. Then, there exists a unique Nash equilibrium for

period 1. The equilibrium is symmetric, and the strategy E1,NC : R+ → R+ satisfies

u′ (E1,NC (P1)) ≤ D′ (P1 + nE1,NC (P1)) + β (1− δ)
(
1 + (n− 1)E′2,NC

)
u′ (E2,NC (P2)) (6)

for all P1, with equality if E1,NC(P1) > 0.

Proof: The objective in problem (5), f(E), is strictly concave under assumption 1 and the properties

of V2(.) established in proposition 1. Moreover, −f(E) is coercive over the convex choice set E ≥ 0.13

Therefore there exists a unique solution E that satisfies the Kuhn-Tucker necessary condition

u′ (E) ≤ D′
(
P1 + E +

∑
k∈I\{i}

E1,k

)

− β dP2

dE

[
u′ (E2,NC (P2))E′2,NC (P2)−

((
1 + nE′2,NC (P2)

)]
D′
(
P2 + nE2,NC (P2)

) )
for all P1, with strict equality when E > 0. Using the facts that E2,NC satisfies equation (2) and

that dP2

dE = 1 − δ to simplify this expression further, it is straightforward to show that E1,NC (P1) is

a symmetric equilibrium if and only if condition (6) holds. Given the convexity of E2,NC(P2) already

established in proposition 1, proof of existence and uniqueness of a solution E1,NC(P1) to equation

(6) follows analogous steps to the ones used in the proof of proposition 1. We omit the details. Since

marginal damage is common for all countries (even if they were to emit different amounts), and utility

is strictly concave, there cannot be a non-symmetric equilibrium. �

We will refer to the emission policies E1,NC (P1) and E2,NC (P2) as the business-as-usual (BAU)

policies in period 1 and 2 respectively. Condition (6) represents the usual balance of the marginal

benefit from current emissions with the present and future marginal damages from pollution. We would

like to draw the attention of the reader to the term (n− 1)E′2,NC . The presence of this term captures

the impact of a given country’s current emissions on the future emissions of other countries. In period

1, while any given country takes the strategies of the other countries as given, if the strategies are

stock-dependent, by affecting the stock of pollution, a country can manipulate the emission of other

countries. In the dynamic games literature, this channel of interaction is referred to as the feedback

effect. This term (n− 1)E′2,NC is negative as shown in proposition 1, therefore the feedback effect

reduces the future marginal damage from pollution and boosts the incentive of each country to increase

its current emissions compared to a situation where this channel is absent (e.g., if countries choose

emission paths instead of emission policies).

13A function g : Rn → R is coercive if g(x)→∞ as ||x|| → ∞. This holds in our problem due to item 3 in assumption

1.
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2.3 First-Best Solution

Before we examine the impact of anticipation of an IEA, we characterize some properties of the first-best

solution and how it compares to BAU. The objective of the unconstrained planner choosing (E1, E2) ≥ 0

can be written as

f(E1, E2;P1) ≡ u(E1)−D(P1 + nE1) + β

(
u(E2)−D

(
(1− δ)(P1 + nE1) + nE2

))
(7)

The planner’s problem is

Wcoop(P1) ≡ max
E1,E2≥0

f(E1, E2;P1) (8)

Proposition 3. Under assumption 1, there exists a unique solution (E1,Coop, E2,Coop) to planner’s

problem (8) for all P1 ≥ 0, and it solves

u′(E2,Coop) ≤ nD′(P2 + nE2,Coop) with equality if E2,Coop > 0 (9)

u′(E1,Coop) ≤ n
(
D′
(
P1 + nE1,Coop

)
+ β(1− δ)D′(P2 + nE2,Coop)

)
with equality if E1,Coop > 0,

where P2 ≡ (1− δ)(P1 + nE1,Coop).

Proof: By assumption 1, objective f(.) is strictly concave and −f(.) is coercive. The constraint

set E1, E2 ≥ 0 is non-empty, closed and convex. Hence, there exists a unique solution characterized by

Kuhn-Tucker first-order necessary conditions given in the proposition.�

Remark: The planner’s solution (E1,Coop, E2,Coop) established above is contingent on the given

initial pollution level P1, but it is straightforward to express the second period emissions in Marko-

vian form (contingent on P2) by solving this problem by backward induction. Clearly this solution

E2,Coop(P2) would also satisfy conditions (9) and we omit the proof.

It is well-known that under non-cooperation, free-riding prevails and in our framework it can be

shown that we have

E2,Coop(P2) < E2,NC(P2) and E1,Coop(P1) < E1,NC(P1)

for all P1, P2 ≥ 0 and such that E1,NC(P1) > 0 and E2,NC(P2) > 0. When P1, P2 are such that

E1,NC(P1) = 0 and E2,NC(P2) = 0, we have E1,Coop(P1) = 0 and E2,Coop(P2) = 0.

Interestingly, even though the cooperative emission policy is never above the BAU emission policy,

it does not imply that cooperative period 2 emission level is never above the period 2 emission level

under BAU. Under the first-best scenario, emissions in period 1, and therefore the stock of pollution

at the start of period 2, can be so small that the second period emissions could be larger than those

under BAU. This case arises when agents care little about smoothing emissions over time (close to linear

utility) and the damage function has a very high curvature (for instance, a cubic function). The intuition

can be summarized as follows: When marginal damage is very high, decay of pollution(δ) is low, and

12



utility is close to linear, efficiency requires postponing emissions as much as possible, because agents

suffer the consequences of first period marginal emissions over both periods. Under BAU, the private

marginal damage is dampened due to the “feedback effect” and agents pollute more in comparison.

Although this effect is always present, when utility is linear, the feedback effect is maximized.14 As a

result, under cooperation, agents enter the second period with a much lower pollution stock compared

to BAU. When the pollution stock and the curvature of the marginal damage are large enough, second

period emissions under BAU are below their first-best levels.

We use the example of a linear utility and cubic damage function to illustrate this possibility.15

More specifically suppose u′(E) = 1, and D′(P ) = P 2. The same result holds under CRRA utility with

a low value of CRRA coefficient σ, and any damage function that has higher curvature than a quadratic

function. Using the first-order necessary conditions in propositions 1, 2 and 3, the policy functions

(ignoring corner solutions) satisfy

E1,Coop(P1) =

(
1

n

)3/2√
1− β(1− δ)− P1

n
E2,Coop(P2) =

(
1

n

)3/2

− P2

n

E1,NC(P1) =
1

n

√
1− β(1− δ)

n
− P1

n
E2,NC(P2) =

1

n
− P2

n

Consider the case where β = 1, δ = 0 and P1 = 0. It can be verified that the path of emissions would

be E1,Coop = 0, E1,NC = 1
n

√
n−1
n , E2,Coop =

(
1
n

)3/2
, E2,NC = 1

n

(
1−
√

n−1
n

)
. Clearly, E2,Coop > E2,NC

for all n ≥ 2.

While we cannot rely on a clear ranking between the cooperative and non-cooperative level of

emissions in period 2, we show that, at the end of each period, the stock of pollution under non-

cooperation is never below the stock of pollution under cooperation. More precisely, we will refer to

equilibrium levels P2,Coop and P2,NC as the pollution stock in the short run under first-best and BAU

respectively. Analogously, we will call equilibrium levels P3,Coop ≡ (1−δ)(P1+nE1,Coop)+nE2,Coop and

P3,NC ≡ (1− δ)(P1 + nE1,NC) + nE2,NC , the long-run pollution stock under first-best and under BAU

respectively. The next proposition establishes a robust feature of the first-best solution which we will

take as a reference to compare against IEAs: The cooperative solution is environmentally conservative,

both in the short run and in the long run.

Proposition 4. Under assumption 1,

1. Long run equilibrium pollution stock satisfies P3,Coop ≤ P3,NC for all P1 ≥ 0.

2. Short run equilibrium pollution stock satisfies P2,Coop ≤ P2,NC for all P1 ≥ 0.

Proof: See Appendix A.

14Maximized in the sense that the policy function has the highest slope achievable in absolute value, − 1
n

.
15This specification violates assumptions 1 and 2 since u′′ = 0 and D′′′ ≥ 0, however, it can be verified by going over

the steps of the proofs that all conclusions in propositions 1, 2 and 3 are still valid under this particular specification.

Observe that the equilibrium strategy is linear (therefore convex), and all problems faced by agents are convex. Also,

there can be non-symmetric equilibria, but we ignore them here as their presence does not change our main point.
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3 Anticipated IEAs

Having provided the benchmark case, we now examine the impact of a fully anticipated IEA, under

which all n countries would implement an emission strategy in period 2, denoted by E2,C (P2) and that

is aimed at reducing pollution in the environment relative to BAU. In the previous section, we have seen

that first-best solution might feature second period emissions higher than BAU. On the other hand,

first-best solution is generically environmentally friendly both in the short run and in the long run,

independent of preference and damage functions. (Proposition 4) Given this property, from a welfare

point of view, it is more natural to seek IEAs that share the latter feature. For this reason we will use

the following terminology and criterion to judge whether an IEA is environmentally friendly relative to

BAU.

Definition 1. Given an initial pollution stock P1 ≥ 0, an IEA E2,C(P2) is

1. Environmentally friendly in the short run (relative to BAU) if the equilibrium pollution

stock satisfies P2,C ≤ P2,NC ,

2. Environmentally friendly in the long run (relative to BAU) if the equilibrium pollution stock

satisfies P3,C ≤ P3,NC .16

In the remainder of the paper we consider four different types of IEAs be implemented in period 2

but anticipated by all the countries at the beginning of period 1: (i) E2,C (P2) = Ē for all P2 ≥ 0, (ii)

E2,C (P2) = (1− ε)E2,NC (P2) for all P2 ≥ 0, (iii) E2,C (P2) = E2,NC (P2) − η for all P2 ≥ 0 and (iv)

E2,C (P2) = E2,Coop (P2) for all P2 ≥ 0. These IEAs will be referred to as IEA type 1, type 2, type 3,

and type 4 respectively.

An IEA type 1 prescribes a specific target of the level of emissions in period 2. Under this type of

IEA, countries are assumed to be able to commit to a level of emissions in period 2, even if the stock of

pollution in period 2 turns out to be different from the level anticipated. This arrangement is similar

to the commitment assumed in open-loop games and results in equilibria that may not be subgame

perfect.

IEAs of type 2 and 3 correspond to a cut, percentage in case of 2 and uniform in case of 3, with

respect to the BAU policy. Note that they represent a cut with respect to an emission policy and not a

level of emissions (as in case 1). Using emission policies for period 2 yields a more robust IEA than an

IEA type 1, since the agreement is stock dependent. If the stock of pollution in period 2 differs from

what was originally anticipated, the principle of the agreement is still valid. This robustness is similar

to that of a subgame perfect equilibrium in a non-cooperative framework.17 The IEAs of type 2 and 3

are inspired from a negotiation process where the benchmark is the BAU scenario, and where parties

16As we defined in the previous section, P3,C and P3,NC are the final (long-run) equilibrium pollution stocks under the

given IEA and under BAU respectively.
17See Dockner et al. (2000) Ch 4.

14



try to find improvements over the BAU policies. The size of the departure, captured by either ε or η,

reflects the limitations of policy makers to impose changes with respect to a BAU scenario because of

political pressure and lobbying from different groups in the economy.

The IEA type 4 is provided as a benchmark. It represents the ‘ideal’ agreement that can be reached

in period 2. Under an IEA type 4 policy makers are assumed free of any domestic political constraints,

and can choose the policy that maximizes global welfare. While it is a useful benchmark, in particular

in the assessment of the potential gains from an IEA, or the absence of an IEA, it has proven to be

too difficult to reach in practice. Most of the IEAs take the form of a reduction with respect to a BAU

scenario.

We separately examine the impact of the four IEAs in the short run, i.e., on P2 (or on first period

equilibrium emissions) and in the long run, i.e., on P3.

3.1 Short-run Impact

We define the short-run impact of an anticipated IEA as the impact of an IEA on the stock of pollution

at the start of period 2, P2. Since there is a one-to-one relationship between the equilibrium level of

emissions in period 1 and P2, the short-run impact of an IEA can be gauged by looking at the impact

on the first period emissions directly.

Given an announcement E2,C(P2), and period 1 strategies of all other countries, E1,−i, a country i

solves the following problem in period 1:

max
E≥0

u (E)−D
(
P1 + E +

∑
k∈I\{i}

E1,k

)
+ β

[
u (E2,C(P2))−D

(
P2 + nE2,C(P2)

)]
(10)

where

P2 =

(
P1 + E +

∑
k∈I\{i}

E1,k

)
(1− δ) .

Assuming that E2,C(.) is differentiable where it is positive, we obtain the following characterization of

the first period non-cooperative response E1,C(P1) using the first-order necessary condition for problem

(10) and imposing symmetry:

u′(E1,C) ≤ D′(P1+nE1,C)+β(1−δ)
{

[1+(n−1)E′2,C(P2,C)]D′(P3,C)−E′2,C(P2,C)
(
u′(E2,C(P2,C))−D′(P3,C)

)}
(11)

with equality if E1,C > 0, where P2,C = (1− δ)(P1 + nE1,C) and P3,C = P2,C + nE2,C(P2,C).

3.1.1 IEA Type 1: Setting an emission target

We examine the case in which

E2,C (P2) = Ē where 0 ≤ Ē < E2,NC (P2,NC) ,
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and where P2,NC is the equilibrium stock of pollution at the beginning of period 2 in the non-cooperative

scenario. Thus E2,NC (P2,NC) represents the equilibrium emissions in period 2 in the absence of an

IEA in period 2. Since Ē < E2,NC (P2,NC), at face value, this IEA is aimed at providing a cleaner

environment relative to BAU. Whether it actually is environmentally friendly in the sense we defined

it in the previous section depends critically on the countries’ anticipatory response in period 1. We

investigate this next.

How do countries react to this announcement in period 1? Assuming a symmetric equilibrium, the

first-order necessary condition (11) implies an emission strategy E1,C (P1) that solves

u′ (E1,C) ≤ D′ (P1 + nE1,C) + β (1− δ)D′
(
(P1 + nE1,C) (1− δ) + nĒ

)
with equality if E1,C > 0

(12)

This problem is well-defined and has a unique solution under assumption 1. We omit the details

since the steps of the proof are virtually identical to those in propositions 1 and 2.

Lemma 1. For an IEA type 1, a decrease in the threshold Ē unambiguously results in an increase in

current emissions and therefore an increase in P2,C .

Proof: See Appendix B.1.

We should note, however, that setting Ē = E2,NC (P2,NC) does not yield E1,C = E1,NC . Indeed,

when Ē = E2,NC (P2,NC) , we have E1,C < E1,NC , a result proven in the lemma below. This is due to

the feedback effect that is present in the non-cooperative case (i.e., E′2,NC (P2) < 0).18

Lemma 2. An IEA type 1 that features Ē = E2,NC (P2,NC) is environmentally friendly in the short

run.

Proof: See Appendix B.1.

Thus the mere announcement of an IEA that will set an emission target in period 2 equal to the

BAU emission level in period 2, results in a downward shift of period 1 emissions and therefore of the

initial stock of pollution in period 2, P2. We can infer from Lemmas 1 and 2 that the overall impact of

setting emissions in period 2 to a level Ē < E2,NC (P2,NC) on current emissions is ambiguous. It clearly

results in a decrease of current emissions if Ē is sufficiently close to E2,NC (P2,NC), whereas setting Ē

at level close to zero may result in an increase of current emissions.19 This result is summarized in the

following proposition:

Proposition 5. The impact of an IEA type 1 on the equilibrium emissions in period 1 is ambiguous,

therefore it may not be environmentally friendly in the short run.

18The feedback effect of production constraints has been highlighted in Dockner and Haug (1990, 1991) in the context

of dynamic import quotas.
19See appendix B.1 for a proof in the case where the damage from pollution is such that D′ (0) = 0.
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3.1.2 IEA Type 2: A percentage cut in emissions

Suppose now the countries anticipate an IEA of the following type:

E2,C (P2) = (1− ε)E2,NC (P2) where ε ∈ [0, 1] .

The intent of this IEA is clear when ε < 1. The policy targets a cleaner environment by prescribing

lower emissions in period 2 relative to BAU, conditional on the second period pollution stock, i.e.

E2,C (P2) < E2,NC (P2) for all P2. We investigate the first period response to the announcement of the

IEA. Assuming a symmetric equilibrium and an interior solution, the first-order necessary condition

(11) implies an emission strategy E1,C (P1) that solves

u′ (E1,C (P1))−D′ (P1 + nE1,C (P1)) = R (ε) (13)

where

R (ε) ≡ −β (1− δ) Λ

with

Λ ≡ u′ ((1− ε)E2,NC (P2)) (1− ε)E′2,NC (P2)−
[
1 + n (1− ε)E′2,NC (P2)

]
D′ (P2 + n (1− ε)E2,NC (P2)) .

The following technical lemma is useful in identifying under which conditions IEA type 2 is envi-

ronmentally friendly in the short run:

Lemma 3. We have

E1,NC (P1) > E1,C (P1) for all P1

if and only if

R (0) < R (ε) .

Proof: This follows from the facts that (i)

u′ (E1,C (P1))−D′ (P1 + nE1,C (P1)) = R (ε)

u′ (E1,NC (P1))−D′ (P1 + nE1,NC (P1)) = R (0)

and, (ii) u′ (X)−D′ (P1 + nX) is a strictly decreasing function of X.�

To establish the sign of R (0)−R (ε), we examine the impact of a change in ε on R (.). For tractability

reasons, we first examine the impact of a marginal proportional reduction of emissions with respect to

the BAU scenario, i.e., marginal change in ε in the neighborhood of ε = 0.

Proposition 6. A type 2 IEA that features a marginal proportional reduction in emissions is environ-

mentally friendly in the short run if and only if σ ≡ −E2,NC(P2)u′′(E2,NC(P2))
u′(E2,NC(P2)) < 1 :
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Proof: See Appendix B.2. This result (and in fact almost all of our results) extend to an infinite

horizon setting. To make this point concrete, Appendix B.2 also contains an extension of the proof of

proposition 6 to infinite horizon version of the model.

In light of Proposition 6, it is immediate that in the case where utility is of CRRA form, i.e.,

u (E) =
E1−σ

1− σ

we have R′ (0) > 0 or E1,NC (P1) > E1,C (P1) if and only if σ < 1.

We argue that this result does not carry over to large ε > 0. It is easy to construct an example where

small ε leads to an increase in current emissions, and large ε leads to a decrease in current emissions

relative to BAU levels. Suppose utility function is CRRA type with σ > 1. Fix P2, and consider the

limit of R(ε;P2) as ε → 1. Under CRRA utility, E2,NC(P2) > 0 holds for all P2 ≥ 0, and since σ > 1,

limε→1 u
′((1 − ε)E2,NC(P2))(1 − ε) = ∞. Under CRRA, E′2,NC(P2) < 0 holds and parts of R(ε;P2)

that involve D′(.) remain bounded in the limit. Therefore R(ε;P2) → ∞ for all P2 ≥ 0 as ε → 1.

The first-order condition (13) implies E1,C → 0 as a response. To sum up, by choosing ε sufficiently

high, one can make first period emissions E1,C arbitrarily small, in particular, it can be made smaller

than BAU level E1,NC . Proposition 6 suggests that small ε leads to an increase in current emissions

relative to BAU when σ > 1. These two results combined make it clear that the impact of IEA type 2

on first period emissions is ambiguous in general. CRRA utility with σ > 1 is an important case also

from an empirical point of view. There is no consensus on the value of the CRRA coefficient, especially

in the macroeconomics literature, largely due to the peculiar feature that the inverse of the coefficient

represents the elasticity of intertemporal substitution (EIS). Estimates on CRRA coefficient vary, but

most studies find empirical support for a value larger than one, and an EIS value smaller than one

whenever it is the subject of study. (See Friend and Blume (1975), Hall (1988), Holt and Laury (2002),

Havranek et al. (2015) among others.)

Along with the specification in which the utility exhibits constant elasticity, another widely used

framework is the linear-quadratic (LQ) model, where utility is a quadratic function of emissions, and

the damage function is a quadratic function of the stock of pollution. We show below that the sign of

R′ (0) is ambiguous even in the LQ case:

u (E) =

(
A− B

2
E

)
E

and

D (P ) =
1

2
γP 2.

For the rest of the exposition, we impose A = 1 and B = 1 without loss of generality. Note that u (E)

achieves its maximum at E = 1. It can be shown, at a symmetric equilibrium, that the emissions

strategies satisfy

E2,NC (P2) = max

{
0,

1− γP2

1 + nγ

}
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and

E1,C (P1) = max

{
0,

Γ + ΦP1

∆

}
where

∆ = 1 + [3 + β(1− δ)2]nγ + [3n+ β(1− δ)2(1 + ε2 + 2ε (n− 1))]nγ2 + [1 + β(1− δ)2ε2]n3γ3

Γ = 1 + γ [2n− β (δ − 1) (−1 + ε) (ε+ n)] + γ2n [n− β (δ − 1) (ε− 1) (1 + nε)] ,

Φ = −γ
{

1 + β (1− δ)2
+
(

1 + β (1− δ)2
ε2
)
γ2n2 + γ

(
β (1− δ)2 (

1 + ε2 + 2ε (n− 1)
)

+ 2n
)}

.

In the special case where ε = 0, we have E1,C(P1) = E1,NC(P1). Moreover, substitution of u′′ and u′

gives

σ =
(E2,NC (P2))

2

1− E2,NC (P2)

The sign of σ − 1 is difficult to determine, since the expression of P2 is non-trivial. We can however

state that in the limit case where γ tends to zero, one would expect E2,NC (P2) to be close to 1, since

u (E) achieves its maximum at E = 1 and the damage from pollution tends to zero. Therefore when γ

tends to zero σ tends to infinity, implying that a marginal proportional reduction of future emissions

results in an increase of current emissions. In another limit case where γ becomes arbitrarily large, one

could expect E2,NC (P2) to tend to zero and therefore σ would tend to zero, implying that a marginal

proportional reduction of future emissions results in a decrease of current emissions. We provide more

precise statements for the analysis of the sign of
dE1,C(P )

dε below. For ease of exposition, we examine

the cases P1 = 0 and P1 > 0 separately.

The case P1 = 0:

It can be shown that

dE1,C(0)

dε

∣∣∣∣
ε=0

=
β (1− δ) γ (n− 1) (1 + nγ) Ω

∆2

where

Ω = 1 +
(
−1 + β (1− δ)2

+ 2δ
)
γn− n3γ3 + γ2n

(
β (1− δ)2

+ n (2δ − 3)
)
.

Therefore the sign of
dE1,C(0)

dε

∣∣∣
ε=0

is the same as that of Ω.

The term Ω is a cubic function of γ. Its graph in a (γ,Ω) space has an inverted N shape and there

exist γ1 and γ2 > γ1 where Ω reaches a local minimum and maximum respectively. The function is an

increasing function of γ over (γ1, γ2) and decreasing elsewhere.

Lemma 4. There exists a unique γ̄ > 0 such that Ω < 0 for γ > γ̄ and Ω > 0 for 0 < γ < γ̄.
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Proof: See Appendix B.2.

We now summarize our main result for this case in the proposition below.

Proposition 7. For P1 = 0, there exists a unique γ̄ > 0 such that for γ > (<)γ̄, an IEA type 2 that

features a marginal proportional cut in emissions by all players is environmentally (not) friendly in the

short run.

Proof: This follows from the fact that the sign of
dE1,C(0)

dε

∣∣∣
ε=0

is the same as the sign of Ω, and

from Lemma 4.�

Note that Ω can also be rewritten as

Ω =
(
nγ (δ − 1)

2
+ nγ2 (δ − 1)

2
) (
β − β̄

)
where

β̄ ≡ n3γ3 + (3− 2δ)n2γ2 − (2δ − 1)nγ − 1

nγ (δ − 1)
2

+ nγ2 (δ − 1)
2 .

Thus Ω is an affine function of β with a positive slope, since
(
nγ (δ − 1)

2
+ nγ2 (δ − 1)

2
)
> 0 and

a sign of the intercept that is ambiguous. When nγ is small enough we have β̄ < 0 and therefore
dE1,C(0)

dε

∣∣∣
ε=0

> 0. When nγ is large enough β̄ > 1 and therefore for any β ∈ [0, 1] we have Ω < 0 and

therefore
dE1,C(0)

dε

∣∣∣
ε=0

< 0. For ’intermediate’ values of nγ , we have β̄ ∈ (0, 1) and then the sign of Ω

will depend on the value that β takes: for β ∈ (β̄, 1] we have Ω > 0 and
dE1,C(0)

dε

∣∣∣
ε=0

> 0 whereas for

β ∈ (0, β̄) we have
dE1,C(0)

dε

∣∣∣
ε=0

< 0. This is intuitive, when the discount factor plays a role, players

that are patient enough react to the IEA by reducing their emissions in period 1.

We can also rewrite Ω as

Ω = nβγ (1 + γ) δ2 − 2nγ (γ (β − n) + 2 (β − 1)) δ +
(
nγ2 (β − 3n)− n3γ3 + nγ (β − 1) + 1

)
.

This is a quadratic U-shaped function of δ. We have

dΩ

dδ

∣∣∣∣
δ=0

= −2nγ (γ (β − n) + 2 (β − 1)) > 0 since β ∈ [0, 1] and n ≥ 2

and therefore dΩ
dδ > 0 for all δ ≥ 0. Thus if nγ is small enough we have Ω|δ=0 =

(
nγ2 (β − 3n)− n3γ3 + nγ (β − 1) + 1

)
>

0 and therefore Ω > 0 and
dE1,C(0)

dε

∣∣∣
ε=0

> 0 for all δ > 0. If nγ is large enough we have Ω|δ=0 =(
nγ2 (β − 3n)− n3γ3 + nγ (β − 1) + 1

)
< 0 and therefore the sign of Ω depends on δ. Then there ex-

ists a threshold δ̄ > 0 such that for δ ∈ (0, δ̄) we have Ω < 0 and thus
dE1,C(0)

dε

∣∣∣
ε=0

< 0. When δ > δ̄ we

have
dE1,C(0)

dε

∣∣∣
ε=0

> 0.

The case P1 > 0 :

Let F (ε) ≡ Φ
∆ . After substitution and derivation with respect to ε we obtain

F (ε) = −
γ
{

1 + β (1− δ)2
+
(

1 + β (1− δ)2
ε2
)
γ2n2 + γ

(
β (1− δ)2 (

1 + ε2 + 2ε (n− 1)
)

+ 2n
)}

1 + [3 + β(1− δ)2]nγ + [3n+ β(1− δ)2(1 + ε2 + 2ε (n− 1))]nγ2 + [1 + β(1− δ)2ε2]n3γ3
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for which it can be shown that

F ′ (0) = − 2 (n− 1)βγ2 (δ − 1)
2

(nγ + 1)
2

(3n2γ2 + n3γ3 + 3nγ + nβγ + nβγ2 + nβγδ2 − 2nβγ2δ + nβγ2δ2 − 2nβγδ + 1)
2 < 0.

When emissions are positive, an increase in ε results in a decrease of the slope, a steeper emission

strategy. These expressions imply the following result.

Proposition 8. There exists a unique γ̄ > 0 such that for γ > γ̄, an IEA type 2 that features a marginal

proportional cut in emissions by all players is environmentally friendly in the short run for all P1 ≥ 0.

For γ ≤ γ̄, the impact of such an IEA depends on initial pollution stock P1 : There exists P̄ > 0

such that it is environmentally friendly in the short run if and only if P1 ≥ P̄ .

3.1.3 IEA Type 3: A constant cut in emissions

In this section, we examine the case where countries anticipate an IEA in period 2 that features a

constant cut in emissions:20

E2,C (P2) = E2,NC (P2)− η where η ∈ [0, E2,NC (P2,NC)] .

Assuming a symmetric equilibrium, and an interior solution, the first-order necessary condition (11)

implies an emission strategy E1,C (P1) that solves

u′ (E1,C (P1))−D′ (P1 + nE1,C (P1)) = Q (η)

where

Q (η) ≡ −β (1− δ)
(
u′ (E2,NC (P2)− η)E′2,NC (P2)−

(
1 + nE′2,NC (P2)

)
D′ (P1 + nE2,NC (P2)− nη)

)
Comparing E1,C (P1) with E1,NC (P1) amounts to comparingQ (η) andQ (0). Since u′′ (E1,NC (P1))−

D′′ (P1 + nE1,NC (P1)) < 0, we have E1,C (P1) < E1,NC (P1) if and only if Q (η) > Q (0). The sign of

Q (η) − Q (0) is difficult to determine in general. As in the case of a proportional emission reduction,

we evaluate the sign of Q (η)−Q (0) in the case of a marginal decrease of emissions with respect to the

BAU policy.

Proposition 9. An IEA type 3 that features a marginal cut in emissions by all players is not environ-

mentally friendly in the short run.

Proof: See Appendix B.3.

In the LQ model, it can be shown that the result of proposition 9 extends to the case of non-

marginal constant cut of emissions. However there exist functional forms of utility functions for which

20We should clarify that we actually assume that E2,C (P2) = max{0, E2,NC (P2) − η}, but we will not make this

explicit for notational simplicity.
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this extension does not hold: for some initial pollution levels P1 ≥ 0 and for some η > 0, first period

emissions can decrease relative to BAU level of emissions. Indeed, consider the following simple example:

Take any CRRA type utility function u(.), which we know satisfies limE↓0 u
′(E) = ∞. Fix initial

pollution P1 ≥ 0 and let η ≡ E2,NC(P2,NC) be the level of emissions in period 2 that would prevail

under BAU. If IEA takes the form E2,C(P2) = E2,NC(P2) − η, when all countries emit BAU levels

(or higher) in period 1, they would not be allowed to pollute in period 2. Obviously this cannot be a

Nash equilibrium: Polluting marginally less in period 1 is infinitely rewarding since doing so will lead

to a slightly lower P2 and positive emissions (in fact, for all agents) in period 2.21 We conclude that

the impact of a type 3 IEA on first period emissions is ambiguous. Small values of η unambiguously

increases current emissions due to proposition 9, but as our example illustrates, sufficiently large η may

decrease current emissions relative to BAU.

3.1.4 IEA Type 4: Ex post first-best emissions

We examine the case where countries anticipate that there will be full cooperation in period 2: The

chosen vector of emission strategies will be the one that maximizes the joint welfare of all the countries

in period 2. i.e. E2,C (P2) = E2,Coop(P2). We call this agreement, the ex post first-best IEA. In period

1, each country acts non-cooperatively, choosing its emission strategy that maximizes its private welfare.

We show that the anticipation effects might lead to environmental degradation in the short run. At a

symmetric equilibrium, period 1 strategy, denoted by E1,C (P1) solves

u′ (E1,C (P1))−D′ (P1 + nE1,C (P1))

+β (1− δ)
{
u′ (E2,Coop (P2))E′2,Coop (P2)−

[
1 + nE′2,Coop (P2)

]
D′ (P2 + nE2,Coop (P2))

}
= 0

In proposition 3, we have shown that under full cooperation, in period 2 we have u′ (E2,Coop (P2)) −
nD′ (P2 + nE2,Coop (P2)) = 0, and therefore the expression can be simplified further to

u′ (E1,C (P1))−D′ (P1 + nE1,C (P1))− β (1− δ)D′ (P2 + nE2,Coop (P2)) = 0.

In the following proposition, we provide a necessary condition for this particular IEA to result in a

decrease of current emissions.

Proposition 10. If IEA type 4 is environmentally friendly in the short run, then the following condition

must hold:
u′ (E2,Coop (P2,Coop))

u′ (E2,NC (P2,NC))
− n

(
1 + (n− 1)E′2,NC (P2,NC)

)
> 0. (14)

Proof: See Appendix B.4.

21By proposition 1, E′2,NC ≤ 0 and this inequality is strict under CRRA assumption.
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We argue below that the necessary condition for E1,NC (P1) > E1,C (P1) given in the above propo-

sition is never satisfied in the linear-quadratic (LQ) framework and the case where utility function is

logarithmic.

First of all, if E1,NC (P1) > E1,C (P1) were satisfied, then we have P2,NC > P2,Coop. Ignoring the

possibility of optimal zero emissions, since cooperative emissions strategy is downward sloping, we have

E2,Coop (P2,NC) < E2,Coop (P2,Coop)

or

u′ (E2,Coop (P2,NC)) > u′ (E2,Coop (P2,Coop))

This implies

u′ (E2,Coop (P2,Coop))

u′ (E2,NC (P2,NC))
−n
(
1 + (n− 1)E′2,NC (P2,NC)

)
<
u′ (E2,Coop (P2,NC))

u′ (E2,NC (P2,NC))
−n
(
1 + (n− 1)E′2,NC (P2,NC)

)
However, we show below in the LQ and Log cases that

u′ (E2,Coop (P2))

u′ (E2,NC (P2))
− n

(
1 + (n− 1)E′2,NC (P2)

)
< 0 for all P2,

and in particular
u′ (E2,Coop (P2,NC))

u′ (E2,NC (P2,NC))
− n

(
1 + (n− 1)E′2,NC (P2,NC)

)
< 0.

Therefore, the necessary condition for E1,NC (P1) > E1,C (P1) in proposition 10 is never satisfied. It

must then be the case that E1,NC (P1) ≤ E1,C (P1).

Linear-Quadratic Case: When u (E) = E
(
1− 1

2E
)

and D (P ) = 1
2γP

2, after substitution of the

optimal strategies, it can be shown that

u′ (E2,Coop (P2))

u′ (E2,NC (P2))
− n

(
1 + (n− 1)E′2,NC

)
= − γn (n− 1)

2

(1 + γ2n3 + γn (1 + n))
< 0

which implies violation of condition (14).

Logarithmic Utility Case: Let u (x) = ln (x) and D (P ) = 1
2γP

2. It is straightforward to show

that the equilibrium strategies satisfy

E2,NC (P2) =

√
4n+γP 2

2√
γ − P2

2n

E2,Coop (P2) =

√
4+γP 2

2√
γ − P2

2n

Condition (14) becomes

G (P1, n) ≡
−√γP1 +

√
4n+ γP 2

1

−√γP1 +
√

4 + γP 2
1

−
(n+ 1) +

(n−1)
√
γP1√

4n+γP 2
1

2
> 0 (15)
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In the limit case where P1 tends to zero it is straightforward to see that we have

G (0, n) ≡
√
n− n+ 1

2
< 0 for n > 1. (16)

In Appendix B.4 we prove that (15) is violated in general, for P1 > 0.

We therefore conclude that IEA type 4 is never environmentally friendly in the short run under LQ

and log-utility specifications.

3.2 Long-run Impact

Since the impact of an anticipated IEA on first period emissions as well as second period emissions can

be ambiguous, it is not clear that an IEA will necessarily result in an overall decrease of the stock of

pollution in the long run, i.e. at the end of period 2. We prove below that all of the four types of IEAs

share the feature that they are environmentally friendly in the long run, a feature which we think is

indispensable given the raison d’être of IEAs. To this end we first establish a general result that applies

to all potential IEAs. It provides two sufficiency conditions under which an IEA is environmentally

friendly in the long run. For what is to follow, define P2 ≡ {P2 ≥ 0|P3,C(P2) ≡ P2+nE2,C(P2) ≥ P3,NC}
for an initial stock P1 where P3,NC is the equilibrium BAU pollution stock with initial pollution P1.

This is the set of period 2 pollution stock levels that leads to a higher equilibrium long-run pollution

stock compared to BAU, when countries follow the given IEA.

Lemma 5. Given an initial pollution stock P1 ≥ 0, let P2,NC and P3,NC denote the equilibrium BAU

pollution levels. IEA E2,C(P2) is environmentally friendly in the long run, i.e. P3,C ≤ P3,NC , if the

following two conditions are satisfied:

1. (1 + (n− 1)E′2,NC(P2,NC))D′(P3,NC) ≤ (1 + (n− 1)E′2,C(P2))D′(P3,C)−E′2,C(P2)[u′(E2,C(P2))−
D′(P3,C)] for all P2 ∈ P2, where P3,C ≡ P2 + nE2,C(P2).

2. P2 + nE2,C(P2) ≤ P3,NC for all P2 ≤ P2,NC .

Proof: See Appendix B.5.

Remark: It can be verified that under assumptions 1 and 2, if an IEA features E2,C(P2) ≤
E2,NC(P2) and E′2,C(P2) ≥ E′2,NC(P2) for all P2, then it satisfies these two conditions. While the

impact of the former condition is clear, the second inequality ensures that the given IEA features less

“feedback effect” than under BAU.

The proof reveals that the first condition in lemma 5 is equivalent to the following statement: In any

(potentially off-equilibrium) contingency in which IEA is not environmentally friendly in the long run,

IEA must be environmentally friendly in the short run. The second condition states that whenever the

IEA is environmentally friendly in the short run, it must be environmentally friendly in the long run.
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Once these two conditions are satisfied by the given IEA, it is straightforward to show that it must be

environmentally friendly in the long run.

At face value, all four IEAs are aimed at providing a cleaner environment relative to BAU. In general,

whether an IEA actually is environmentally friendly, in the sense of Definition 1, depends critically on

the countries’ anticipatory response in period 1. It turns out all four IEAs reach their goals in the long

run, independent of the anticipatory response in period 1.

We first establish the long-run impact of an IEA of Type 1 that sets an emission target Ē that

satisfies Ē < E2,NC (P2,NC).

Proposition 11. Under assumption 1, IEA type 1 is environmentally friendly in the long run, i.e.

P3,C ≤ P3,NC .

Proof: We refer to lemma 5 and show that the two conditions are satisfied. We have E′2,C(P2) = 0

for all P2, therefore (1 + (n− 1)E′2,C(P2))D′(P3,C)−E′2,C(P2)[u′(E2,C(P2))−D′(P3,C)] = D′(P3,C) for

all P2.

Since E′2,NC(.) ≤ 0 by proposition 1, we have (1 + (n − 1)E′2,NC(P2,NC))D′(P3,NC) ≤ D′(P3,NC).

Damage function is convex, and P2 ∈ P2 implies P3,C ≥ P3,NC , therefore D′(P3,C) ≥ D′(P3,NC) for

all P2 ∈ P2. This proves that condition 1 in lemma 5 is met. Condition 2 is satisfied trivially since

E2,C(P2) ≤ E2,NC(P2,NC) for all P2.�

Next, we turn to the long-run impact of IEA types 2, 3, and 4. The steps of the proof of the next

proposition are very similar to those of the previous one, and the proof is therefore relegated to the

appendix.

Proposition 12. Under assumptions 1 and 2, IEA types 2, 3, and 4 are environmentally friendly in

the long run for any initial pollution stock P1, i.e. P3,C ≤ P3,NC .

Proof: See Appendix B.5.

Remark: Note that the conditions in lemma 5 are not necessary for an IEA to cause environmental

degradation in the short run. In fact, each of the four IEAs we considered so far satisfies the properties

in the lemma, yet, as shown in the previous sections, may not be environmentally friendly in the short

run.

4 Welfare Analysis

We have shown that the impact of an anticipated IEA on first and second period emissions is ambiguous,

therefore three questions related to welfare naturally arise: (i) “Do these IEAs lead to a welfare im-

provement over BAU?”, (ii) if so, “For a given target of emissions in period 2, what type of IEA achieves
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the highest level of welfare?”, and (iii) “Is there a clear welfare ranking between the four IEAs when

their parameters are chosen optimally?”. These questions are important for policy recommendations.

The first question posed is fundamental, and if the answer is negative, then the IEA should not even

be considered. For IEA types 2 and 3, the answer is clearly positive because the planner can always

choose ε = η = 0 to implement BAU level of emissions, hence the welfare level cannot decline if these

parameters are chosen optimally. For IEA type 1, the answer is not obvious, because a fixed emissions

target cannot implement the non-cooperative emissions profile in both periods in general. Nevertheless,

we show below, that the highest welfare IEA type 1 can achieve is than welfare under BAU.

The second question is framed from the perspective of a policy maker whose main objective is to

target a level of emissions for period 2. The answer to this question is not trivial because the same

pollution levels can be reached using different IEAs by a suitable choice of parameters. We present

some numerical results related to this question.

The third is related to constrained efficiency. In general, the planner will not be endowed with

the policy tools to implement first-best emissions/welfare level. Rather, the planner solves the three

problems of finding the welfare-maximizing IEA within the types i ∈ {1, 2, 3}. We address whether

these three problems are well-defined and what qualitative/quantitative properties an optimal IEA of

a given type possesses. We make some progress in this direction.

Let (Ei1,C , E
i
2,C) and W i

C be the equilibrium strategy and welfare level under the optimal IEA type

i ∈ {1, 2, 3} problem. IEA type 4 is not parametric, but for comparison, we will use the notation

(E4
1,C , E

4
2,C) and W 4

C to describe emissions and welfare levels under IEA type 4 respectively. Also

define P i2,C ≡ (1− δ)(P1 +nEi1,C) for i ∈ {1, 2, 3, 4} as the induced equilibrium second period pollution

stock.

We first show that the optimal IEA type 1 problem is well-behaved and has a unique solution

under our assumptions. Unfortunately, conditions even stronger than assumption 2 are necessary to

warrant existence and uniqueness of solutions for the other types of IEAs. The difficulty arises from

the fact that the choice set of the planner’s problem may not be convex, a shortcoming encountered

in many mechanism design problems. For theoretical results on IEA types 2 and 3, we will henceforth

assume that there is a unique solution to the optimal IEA problem. Conditions ensuring existence and

uniqueness are always satisfied under LQ setup, therefore, to ensure reliability, we will use numerical

results based on this setup to compare the four types of IEAs.

The planner’s problem for optimal IEA type 1 can be written as

W 1
C ≡ max

E1,E2≥0
f(E1, E2) (17)

subject to

E1 ∈ arg max
E≥0

{
u(E)−D(P1+(n−1)E1+E)+β

[
u(E2)−D

(
(1−δ)(P1+(n−1)E1+E)+nE2

)]
given E1, E2

}
(18)
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where function f(.) is defined in equation (7). Since the objective in (18) is strictly concave in E, the

first-order necessary condition is sufficient, therefore constraint (18) can be written as

u′(E1) ≤ D′(P1 + nE1) + β(1− δ)D′
(
(P1 + nE1)(1− δ) + nE2

)
with equality if E1 > 0. (19)

Proposition 13. Under assumptions 1 and 2,

1. There exists a unique solution to optimal IEA type 1 problem (17).

2. Welfare level under optimal IEA type 1, W 1
C , cannot be lower than the BAU level.

Proof: See Appendix C.

Our second result compares welfare under IEA type 4, ex post first-best IEA, to welfare under

optimal IEA type 1, 2 and 3 respectively. The following technical lemma applies to any parametric

IEA, including IEAs type 1, 2 and 3 considered in this paper.

Lemma 6. Suppose a parametric IEA E2,C(P2; θ) has the property that E2,C(P 4
2,C ; θ∗) = E4

2,C for some

θ∗. Then, (i) E1,C(P1; θ∗) = E4
1,C and (ii) welfare under optimal IEA of this class satisfies WC ≥W 4

C .

Proof: See Appendix C.

Our claim follows as a corollary to this lemma since parameters Ē, ε, η, for IEA type 1, 2, and 3

respectively, can always be chosen to satisfy the property E2,C(P 4
2,C ; θ∗) = E4

2,C for some θ∗.

Corollary 2. Welfare under IEA type 4 is dominated by welfare under optimal IEA types 1,2,3, i.e.

W 4
C ≤W i

C , i ∈ {1, 2, 3}.

In figure 1, we plot in the case of the LQ setup, welfare levels for IEA type 1, 2 and 3 as a function

of equilibrium E2: The parameters Ē, ε, and η for IEAs type 1,2,3 are chosen such that equilibrium E2

equals the corresponding value on the horizontal axis. For example, to generate a point on the graph of

welfare of an IEA type 2, we determine, for a specific value of emissions in period 2 (say Ẽ2), the value

of the parameter ε that implements E2,C (P2) = Ẽ2 in equilibrium. We then evaluate welfare for that

particular value of ε. The same procedure is carried out for an IEA type 3. An IEA type 1 already has

the emissions in period 2 as a parameter. We used the following parameter values to generate figure 1:

A = B = 1, γ = 1, β = 1, δ = 0 and P1 = 0.22

The rightmost point in all plots represent BAU level E2,NC . The welfare level achieved by IEA type

2 and type 3 at E2 = E2,NC are obviously equal to BAU level since this level is induced by ε = η = 0.

22We conducted robustness checks for the insights we draw from figure 1 and that we discuss below. In the first

numerical experiment we have used A = B = 1, γ = 1, δ = 0 and P1 = 0 and allowed the discount factor to take values in

{0.85, 90, .95, 1}. In the second numerical experiment we set A = B = 1, γ = 1, β = 1 and P1 = 0 and allowed the decay

rate to take values in {0, 0.05, 0.10, 0.15}. In the third experiment we set A = B = 1, γ = 1, β = 1 and δ = 0 and allowed

P1 to take values in {0, 0.10, 0.20, 0.30}.
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Figure 1: Welfare under different IEAs as a function of second period emissions.

Welfare under IEA type 1 at Ē = E2,NC is higher than under BAU, because IEA type 1 effectively

eliminates the feedback effect, which is partly responsible for inefficiently high emissions in period 1.

For reference, we also indicate welfare and emissions levels under the first-best. Clearly, all four IEAs

lead to a welfare improvement relative to BAU.

Another observation is that welfare functions cross at the same point, which represents emissions and

welfare level under IEA type 4. In light of proof of lemma 6 and corollary 2, this is not a coincidence.

IEA types 1,2,3 can all implement emissions (and welfare) under IEA type 4 by a suitable choice of

parameter value.

A third observation is that W 1
C is higher than W 2

C , W 3
C , and W 4

C , moreover, optimal emissions

under types 1,2,3 are all higher than that under type 4. It turns out that this is always the case for

environments in which the optimal IEA design problem is convex. In particular, it always holds in the

LQ case. This follows from two results: (i) It can be shown that for IEA type 1, 2 and 3 implementing

marginally higher emissions in period 2 than the E4
2,C level (by changing Ē, ε, η however necessary)

improves welfare, and (ii) the following lemma, which states that if an optimal IEA features second

period emissions higher than first-best levels, i.e. if E2,C ≥ E2,Coop(P2,C) holds, then switching to IEA

type 1 always leads to a welfare improvement.23

23If the planner’s problem is convex, the two claims imply IEA type 1 is unambiguously the best choice because the

welfare functions are strictly concave with a single peak as in figure 1. A proof is available upon request from the authors

for the LQ case.
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Lemma 7. Suppose the optimal choice of a parametric IEA, E2,C(P2; θ∗), features E′2,C(P2) ≤ 0 for

all P2 ≤ 0, and E2,C ≥ E2,Coop(P2,C). Then the induced welfare WC is dominated by that achieved

under the optimal IEA type 1, i.e. W 1
C ≥WC .

Proof: See Appendix C.

Figure 1 also delivers insights into which type of IEA is better suited to achieve a given target of

period 2 emissions. As noted above, given the three parametric IEAs, the same emissions cut can be

implemented in alternative ways. Looking at the upper envelope of the welfare functions in figure 1

provides the planner with the best way in which a given emissions cut can be achieved, i.e. with the

least welfare loss/highest welfare gain. For the case in figure 1, IEA type 1 is the best one to implement

if the intended emissions cut is less than ∆ ≡ E2,NC −E4
2,C .24 We would like to emphasize that an IEA

type 1 is feasible only if commitment to a level of emissions in period 2 is possible. If players cannot

commit to an emission level but can commit to a stock dependent emission policy for period 2, then

the insight obtained from figure 1 is that an IEA type 2 is always preferable to an IEA type 3 if the

intended emissions cut is less than ∆. To reduce emissions further, it is better to switch to an IEA type

3.

5 Optimal IEA: The General Case

We examine here the problem of designing an optimal cooperative agreement to announce, without

restricting ourselves to the 4 types of agreements studied in the previous sections.

We say that an announcement E2,C(P2) implements emission levels (Ē1, Ē2) if (i) emission of Ē1

by all countries is a Nash equilibrium of the non-cooperative game played in period 1, given that

they anticipate the given announcement, and (ii) Ē2 = E2,C((1 − δ)(P + nĒ1)) holds. We note that

after E2,C(P2) is announced and period 1 unfolds, at the beginning of period 2, it would be welfare-

improving to implement the emission that is optimal from that point of view: this corresponds to an

announcement of an IEA type 4. Therefore the use of any announcement other than an IEA type 4

requires a commitment on behalf of the IEA members not to switch to the ex post first-best policy

at the beginning of period 2. We assume that such a commitment is possible, similar to the standard

assumption made in optimal fiscal policy literature in the Ramsey tradition. (See, for instance, Judd

(1985) and Chamley (1986).) This is not too strong an assumption if the amount of emission reduction

from the announced policy is smaller than the reduction of emission required under an IEA type 4. The

rationale being that while it may be politically and logistically acceptable to implement a policy that is

less stringent than originally anticipated, it is much more difficult for policy makers to switch to a more

stringent policy, one that involves a bigger deviation from the BAU policy than initially announced.

24This can be proven in the LQ case. We conjecture that this remains true in the general case (provided assumptions

1 and 2 hold), however a proof is challenging due to potential lack of convexity of the planner’s choice set.
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We impose a mild restriction on the type of admissible IEAs for tractability. Let C be the space

of continuously differentiable and monotone functions g : R+ → R and let F be the space of functions

E2,C : R+ → R+ that are of the form E2,C(P2) = max{0, g(P2)} for some g ∈ C. We will henceforth

assume that our announcements satisfy E2,C ∈ F . Observe that these functions are continuously

differentiable everywhere except for the point at which g(P2) = 0. We argue that this is not very

restrictive as a choice set, because first-best emissions strategies, BAU emissions strategies, and all IEA

announcements we considered up to this point belong in F .

The following proposition establishes two results. The first result provides necessary conditions for

an announcement E2,C ∈ F to implement a given emissions profile (E1, E2). The second result states

that no announcement in F can implement the first-best level of emissions if both (E1,Coop, E2,Coop)

are positive.

Proposition 14. For given emissions Ē1, let P̄2 = (1−δ)(P1 +nĒ1) denote the induced pollution stock

at the beginning of period 2. Then,

1. If E2,C ∈ F implements emission levels (Ē1, Ē2) as a symmetric Nash equilibrium, then the

following two conditions must hold:

u′(Ē1)−D′(P1+nĒ1)+β(1−δ)
[
E′2,C(P̄2)(u′(Ē2)−nD′(P̄2+nĒ2))−D′(P̄2+nĒ2)

]
≤ 0 with equality if Ē1 > 0

(20)

and

E2 = E2,C(P̄2)

2. If E1,Coop, E2,Coop > 0, no announcement E2,C ∈ F can implement first-best level of emissions

and welfare.

Proof:

1. The first inequality follows from the first-order necessary condition for optimality for a country i

that takes profile E1,−i = Ē1 of other countries as given, equation (10), explicitly accounting for

the case of Ē1 = 0. The second equality follows from the definition of implementability.

2. Suppose E2,C ∈ F implements first-best level of emissions (Ē1, Ē2) = (E1,Coop, E2,Coop) > 0.

Then, E2,C satisfies (20) with equality at this point. Imposing second period optimality condition

(9) (which holds with equality) on (20) leads to

u′(E1,Coop) = D′(P1 + nE1,Coop) + β(1− δ)D′((1− δ)(P1 + nE1,Coop) + nE2,Coop)

This contradicts first period optimality condition in (9).�

Remark: To see why assumption E1,Coop, E2,Coop > 0 for part 2 is relevant, consider the case

with E1,Coop = E2,Coop = E1,NC = E2,NC = 0. Obviously the trivial announcement E2,C(P2) = 0
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implements first-best emissions levels, because in this particular case, the incentives of a planner and

non-cooperative agents are perfectly aligned.

The following proposition establishes a more optimistic result which states that under mild condi-

tions, almost any given emissions profile can be implemented using a linear announcement. For given

emissions level Ē1, let P̄2 = (1 − δ)(P1 + nĒ1) denote the induced pollution stock at the beginning of

period 2.

Proposition 15. Suppose that u is such that limE↓0 u
′(E) = ∞. For any Ē1, Ē2 > 0 such that

u′(Ē2) 6= nD′(P̄2 + nĒ2), there exists a unique pair (θ0, θ1) such that the announcement E2,C(P2) =

max{0, θ0 − θ1P2} implements (Ē1, Ē2).

Proof: Given the emissions profile Ē1, Ē2 > 0, let

θ1 ≡
u′(Ē1)−D′(P1 + nĒ1)− β(1− δ)D′(P̄2 + nĒ2)

β(1− δ)(u′(Ē2)− nD′(P̄2 + nĒ2))
(21)

θ0 ≡ Ē2 + θ1P̄2

where P̄2 = (1− δ)(P1 + nĒ1).

Under the given assumptions, these values are well-defined. We now claim that E2,C(P2) =

max{0, θ0 − θ1P2} just constructed implements the given emissions levels. Given this announcement,

and the assumption that limE↓0 u
′(E) = ∞, first period emissions cannot induce a pollution stock

P2 such that E2,C(P2) = 0, hence we will ignore the “max” operator. Given the announcement

E2,C(P2) = θ0 − θ1P2, and the emissions of all other countries E1,−i = Ē1, the first-order necessary

condition for period 1 emissions E1 for a representative country i reads

u′(E1)−D′(P1+(n−1)Ē1+E1) = β(1−δ)
[
θ1(u′(E2,C(P2))−nD′(P2+nE2,C(P2)))+D′(P2+nE2,C(P2))

]
(22)

where P2 = (1 − δ)(P1 + (n − 1)Ē1 + E1). Now observe that, given θ1 in expression (21), E1 = Ē1

is the unique solution to this equation. E1 = Ē1 being a solution follows from the fact that (21) is

a rearrangement of expression (22), and uniqueness follows from monotonicity of u′(.) and D′(.) by

assumption 1. We conclude that the necessary conditions for implementability in proposition 14 is met.

The second-order condition for this problem is also satisfied:

u′′(Ē1)−D′′(P1 + nĒ1) + β(1− δ)
[
θ2

1u
′′(Ē2)− (1− θ1n)2D′′(P̄2 + nĒ2)

]
< 0.

Sufficiency for Ē1 being optimal is also met and this completes the proof.�

Remarks: (i) The inclusion of all potential emissions profiles in this proposition comes at the cost

of the extra assumption that limE↓0 u
′(E) =∞. This assumption cannot be dispensed with, unless we

restrict the set of admissible emissions profiles. For instance, profile Ē1, Ē2 > 0 could be so extreme
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that a country with quadratic utility would rather emit E2 = 0. To do so, it might prefer deviating

from Ē1 to change the pollution stock P2 to the region where E2,C(P2) = 0. Clearly CRRA utility

imposes no such restrictions. (ii) A linear function is not the unique announcement that implements

any given (Ē1, Ē2). Basically, any announcement that can target a given level and derivative/slope

can implement the given levels, provided that necessary and sufficiency conditions for optimality are

satisfied. The proof of this proposition is as simple as illustrating that there exists a unique solution to a

system of two equations and two unknowns when the announcement is linear. Clearly, these properties

are satisfied by a large class of non-linear announcements as well.

Proposition 15 has the striking implication that almost any emissions profile can be implemented

by a linear announcement. Clearly, first-best solution is not in this domain, by proposition 14. In light

of these findings, the natural question to ask is, “How well can we do in terms of welfare by choosing an

announcement E2,C ∈ F?”. It turns out the social planner can get arbitrarily close to fully cooperative

emissions (E1,Coop, E2,Coop) and welfare levels. For this result, we omit the non-interesting cases where

E1,Coop = E2,Coop = 0.25 We would like to point out that the statement of the following proposition,

and its proof is constructive, therefore it is has direct implications on the design and implementation

of IEAs that are to be in effect in the future.

Proposition 16. If E1,Coop(P1), E2,Coop(P2,Coop) > 0 holds, for any ε > 0 sufficiently small, there

exist θ0, θ1 > 0 such that the announcement E2,C(P2; ε) = max{0, θ0 − θ1P2} implements the emission

levels (E1,Coop,
E2,Coop

1+ε ) as a symmetric equilibrium.

Proof: See Appendix D.

Remarks: (i) Note that assumption limE↓0 u
′(E) = ∞ is not necessary for this result. (ii)

Observe that Lemma 7 does not apply for the unconstrained case even when the subset of linear IEAs

are considered: Lemma 7 assumes there exists an optimal announcement in the given class, it is violated

here when the announcements are linear. Also, the second condition in Lemma 7 is violated.

Let W (E2,C ;P1) be the ex ante welfare level achieved using an announcement E2,C(P2) when the

initial pollution stock is P1. Since welfare is continuous in emissions levels, the following result follows

directly as a corollary of proposition 16. Even though no announcement can implement fully cooperative

emissions (proposition 14), welfare levels arbitrarily close to first-best can be achieved.

Corollary 3. supE2,C∈F W (E2,C ;P1) = Wcoop(P1) for all P1 ≥ 0.

Observe that the announcement described above is a very steep emission strategy. In fact, the

proof reveals that as ε → 0, we have θ0, θ1 → ∞. Second period emissions are potentially extremely

high for an off-equilibrium contingency of P2 < P̄2 ≡ (1 − δ)(P + nE1,Coop). From a normative

point of view, this is not very appealing. One way in which this problem can be mitigated is as

25See the remark after proposition 14.
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Optimal Announcement

P̄ 2

Ē2

Noncooperative Strategy

P̄ 2

E2 , N C

Constrained Optimal Announcement

P̄ 2

Ē2

E2 , N C

Figure 2: An example construction of E2,C(P2) ∈ [0, E2,NC(P2)].

follows: Imagine that the planner faces an additional constraint that limits the emissions to be lower

than non-cooperative emissions strategy and higher than zero, i.e. E2,C(P2) ∈ [0, E2,NC(P2)] for all

P2 ≥ 0. An example of this construction is shown in figure 2 with the announcement E2,C(P2) ≡
max

{
0,min{E2,NC(P2), θ0−θ1P2}

}
. It is easy to show that when ε is sufficiently small, announcement

E2,C(P2) in Panel C of figure 2 still implements the emissions profile
(
E1,Coop,

E2,Coop

1+ε

)
as a symmetric

equilibrium.

Lemma 8. If E1,Coop(P ), E2,Coop(P2,Coop) > 0 holds, for ε > 0 sufficiently small, there exist θ0, θ1 > 0

such that the announcement E2,C(P2) = max
{

0,min{E2,NC(P2), θ0 − θ1P2}
}

implements the emission

levels (E1,Coop,
E2,Coop

1+ε ) as a symmetric equilibrium.

Proof: See Appendix D.

6 Discussion and Concluding Remarks

The contribution of this paper is twofold. First, we have shown that strategic behavior can potentially

exacerbate the tragedy of the commons in the pre-cooperation phase when there are delays in the

agreement. Second, we have identified types of IEAs that can result in the attenuation of the tragedy

of the commons problem in the pre-cooperation phase. In terms of policy recommendation, as far as

the emission levels are concerned, an IEA that sets a target emission level or a percent cut in emission

policy (in case the elasticity of marginal utility is smaller than unity) performs better than an IEA that

implements a constant cut with respect to the BAU emission policy. We have compared within the LQ
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framework the welfare performance of the four different types of IEAs. Which IEA is preferable depends

on the level emissions that one wishes to achieve in the second period. When period 2’s emission target

is above a certain threshold, an IEA type 1, that sets a target emission level, allows achieving a higher

welfare than the other three types of IEAs examined. If players cannot commit to an emission level for

period 2, when period 2’s emission target is above a certain threshold, an IEA type 2 is preferable to

an IEA type 3. Moreover the highest level of welfare achieved under an IEA type 1 is above the highest

level of welfare achieved by any one of the other three IEAs. While we have established that in general

no IEA can implement the first-best emissions, we proved existence of IEAs that can achieve a path of

emissions (and therefore welfare) arbitrarily close to the first-best levels. Unfortunately the complexity

of these IEAs increases substantially as we increase the number of periods that precedes the entry of

the agreement into force, reducing the policy relevance of such schemes.

The incentive to emit more pollution in period 1, in anticipation of a future IEA can be reduced

(or eliminated) by decreasing (or removing) the sensitivity of the emissions to the stock of pollution

in period 2. Under an emission policy in period 2 that is downward sloping, each player has an extra

benefit from emissions in period 1. Since an increase in private emissions results in an increase in the

future stock of pollution, and in turn in a decrease of the other players’ emissions. The strength of this

feedback depends on how steep the emission policy is. IEAs of type 1 and 2 in affect not only reduce

the level of emissions, but also the slope of the emission policy. In contrast, an IEA type 4, in the

LQ and log-utility framework, implements a steeper emission policy. Not surprisingly, the feedback is

exacerbated and each country responds by increasing its own current emissions.

In our framework, the damage incurred in period 2 is the result of the stock of pollution, after

emissions in period 2 take place, P2 + nE2,NC (P2). One possible target that can be set by negotiators

is to achieve a percentage cut in the stock of pollution, for instance, (1− ε) (P2 + nE2,NC (P2)). Such an

objective is equivalent to choosing an emission policy E2,C (P ) = (1− ε)E2,NC (P )− ε
nP. The equivalent

change in emission policy would imply a steeper environmental policy, a stronger feedback effect, and

ultimately larger emissions in period 1 than under a percent cut in the BAU emission policy. Similarly,

an IEA that aims to achieve a constant cut in the stock of pollution of the form (P2 + nE2,NC (P2))−η
is equivalent to adopting an emission policy E2,C (P ) = E2,NC (P ) − η

n , and would therefore have

qualitatively the same effect as a constant cut with respect to the BAU emission policy, i.e., an increase

in emissions in period 1 with respect to the BAU scenario. It is straightforward to establish this result

as well as many of our results within an infinite time horizon model as we did for the case of proposition

6 where cooperation takes place from period 2 onwards.26

While we assumed throughout the paper, for simplicity, that the ‘environmentally friendly’ policy

will be adopted in period 2 with certainty, our analysis extends to the case where there is uncertainty

about whether the ‘environmentally friendly’ policy will actually be adopted (where the probability

26The steps are similar to the steps followed in the 2 period model. They are omitted, but are available from the authors

upon request.
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of adoption of the cooperative solution is positive and less than one). For example, in the U.S., a

treaty is negotiated by the administration and ratified by the senate, where a sixty percent majority is

required. In the U.K., the Constitutional Reform and Governance Act 2010 gave a statutory footing

to the Ponsonby Rule, a convention that treaties be laid before Parliament before ratification.27 The

need of the approval of a legislative body often casts a significant amount of uncertainty on the actual

ratification of a treaty signed by the executive branch of government.28 Our analysis shows that even a

treaty that may end up being rejected at the ratification stage will have an impact on the current policy

(i.e., policy during the phase between adoption and the date of the ratification decision) as long as

there is a positive probability of ratification in the future. Depending on the nature of the externality,

and on the form of the anticipated future ‘friendly’ policy, the expectation of the ratification alone can

alleviate or worsen the tragedy of the commons.

A natural extension of our analysis is to move our stylized model closer to reality by introducing

country heterogeneity. In the case of climate change for example, while some countries are mildly

affected by global warming, others will experience catastrophic damages. The reaction of each group

of countries to an announced agreement is likely to differ, and reciprocally countries heterogeneity may

modify the type of IEA that countries may announce.

We believe that the lessons learned from this analysis extend to dynamic stock public good games

in general (see e.g., Fershtman and Nitzan (1991)). Anticipating a future agreement that will increase

the provision of a public good with a respect to a business-as-usual policy may result in an increase or

a decrease of current contributions of the public good. The optimistic message of this paper is that it

is possible to have agreements over contribution policies for the future than can alleviate the tragedy of

the commons in the present. To this end, a careful examination of the slopes of the contribution policy

and the BAU policy is required.

27In Australia, the Federal Government does not need parliamentary approval to enter a binding treaty. However,

legislation by Federal parliament is needed for the implementation of treaties.
28For example: the Kyoto Protocol was signed but not ratified by the U.S.; the initial 1973 Convention for the Prevention

of Pollution From Ships (Marpol 73) did not come into force for lack of ratifications.
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A Proofs for Section 2

Proposition 1. Under assumption 1, there exists a unique non-cooperative Nash equilibrium for period

2. The equilibrium is symmetric, and the strategy E2,NC : R+ → R+ solves

u′ (E2,NC(P2)) ≤ D′ (P2 + nE2,NC(P2)) with equality if E2,NC(P2) > 0. (23)

In addition, E2,NC has the following properties:

1. It is continuously differentiable and E′2,NC(P2) ∈ [− 1
n , 0] for all P2 > 0, except at P̄2 ≡ limE↓0(D′)−1

(
u′(E)

)
if this point is well-defined.

2. If, in addition, assumption 2 holds, strategy E2,NC(P2) is convex, and the value of following this

strategy, V2(P2) ≡ u(E2,NC(P2))−D(P2 + nE2,NC), is decreasing and concave in P2.

Proof: Under assumption 1, objective in problem (1), f(E), is strictly concave in E and −f(.) is

coercive in the convex constraint set E ≥ 0. Hence, there exists a unique E2,i that solves this problem

and the following Kuhn-Tucker first-order necessary condition is sufficient.

u′ (E2,i) ≤ D′
P2 + E2,i +

∑
k∈I\{i}

E2,k

 with equality if E2,i > 0.

Then strategy E2,NC(P2) is a symmetric Nash equilibrium if and only if condition (23) is satisfied. First,

we will show that if there exists such a function, it must be unique. Then we will establish existence

using a constructive argument. Obviously, there cannot be a Nash equilibrium that is not symmetric,

because the marginal damage component is identical for all countries, and both marginal utility and

damage functions are strictly monotone.

Uniqueness: Suppose the solution exists, but is not unique, and that there are two solutions that

differ at some P2: E ≡ E2,NC(P2) > Ẽ2,NC(P2) ≡ Ẽ. Since Ẽ ≥ 0, E > 0 must hold. Then

D′(P2 + nE) = u′(E) ≤ u′(Ẽ) ≤ D′(P2 + nẼ)

where the first inequality follows from concavity of u(.). Since D(.) is convex, we have E ≤ Ẽ, a

contradiction.

Existence: Let g(x;P2) ≡ u′(x) − D′(P2 + nx). This function is strictly decreasing over R++

by assumption 1 and it is easy to verify that limx→∞ g(x;P2) < 0 by assumption 1 part 3. Define

P̄2 ≡ limE↓0(D′)−1
(
u′(E)

)
. This value is well-defined if u′(0) > 0, otherwise P̄2 = ∞. For all P2 <

P̄2, limx↓0 g(x;P2) ≥ 0, hence, there exists a unique x∗(P2) > 0 that solves g(x∗(P2);P2) = 0 by

intermediate value theorem. Now let

E2,NC(P2) =

0 for P2 ≥ P̄2

x∗(P2) otherwise .

This function is well-defined, and by construction, it satisfies the symmetric Nash equilibrium condition.

This proves existence.
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1. Continuity and differentiability over the region in which E2,NC(P2) > 0 follows from continuity and

differentiability of its closed-form (explicit) inverse P2(E2,NC) = (D′)−1(u′(E2,NC)) − nE2,NC .

It is also easy to check that limP2↑P̄2
E2,NC(P2) = 0, hence there is no jump discontinuity at

P2 = P̄2.

At an interior solution, i.e. when P2 < P̄2, we have u′′(E2,NC)E′2,NC = D′′(.)(1 + nE′2,NC). By

assumption 1 item 2, we have E′2,NC ≤ 0, since otherwise left-hand side and right-hand side would

have different signs. Also observe that E′2,NC ≥ − 1
n must hold, otherwise right-hand side would

be negative and left-hand side would be positive. For the region in which E2,NC = 0, E′2,NC = 0

must hold, so the claim is trivially satisfied.

2. Strategy is convex: At an interior solution u′′(E2,NC)E′2,NC = D′′(.)(1 + nE′2,NC) holds. Assume

that u′(.) is convex and D′(.) is concave. Suppose, to get a contradiction, that E′2,NC is decreasing

in an open neighborhood of some P2. Since E′2,NC ≤ 0, left-hand side would unambiguously

increase as P2 goes up infinitesimally. Looking at the right-hand side, since E′2,NC(P2) ∈ [− 1
n , 0]

holds, the term (1 + nE′2,NC) and D′′(P2 + nE2,NC) both unambiguously decrease as P2 goes up

infinitesimally. Then, the equality cannot be preserved as P2 is varied. Convexity of the strategy

function is robust to corner solutions, because max{0, f(x)} is a convex function whenever f(x)

is a convex function.

Value function is decreasing and concave: Differentiate the value function and impose the first-

order necessary condition to get

V ′2(P2) = −
(
1 + (n− 1))E′2,NC(P2)

)
D′(P2 + nE2,NC(P2))

Clearly this derivative exists whenever E′2,NC(P2) exists. By assumption 1 and E′2,NC(P2) ∈
[− 1

n , 0], V ′2(P2) ≤ 0. Differentiating the value function a second time wherever a derivative exists,

we obtain

V ′′2 (P2) = −(n−1)E′′2,NC(P2)D′(P2+nE2,NC(P2))−[1+(n−1))E′2,NC(P2)]
(
1+nE′2,NC(P2)

)
D′′(P2+nE2,NC(P2)).29

Since the strategy is convex, E′′2,NC(P2) ≥ 0, and since E′2,NC(P2) ∈ [− 1
n , 0], we have [1 + (n −

1))E′2,NC(P2)]
(
1 + nE′2,NC(P2)

)
≥ 0. Then V ′′2 (P2) ≤ 0 as we wanted to show.�

Proposition 4. Under assumption 1,

1. Long run equilibrium pollution stock satisfies P3,Coop ≤ P3,NC for all P1 ≥ 0.

2. Short run equilibrium pollution stock satisfies P2,Coop ≤ P2,NC for all P1 ≥ 0.

Proof:

29Value function being twice continuously differentiable is not necessary to establish this result.
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1. Suppose, this is not the case and P3,Coop > P3,NC ≥ 0 holds. First, we show that this assumption

implies E1,Coop > E1,NC must hold. If E2,Coop = 0, this condition holds trivially since otherwise

P3,Coop > P3,NC is violated. Consider the non-trivial case of E2,Coop > 0: Using propositions 1

and 3, we have

u′(E2,Coop) = nD′(P3,Coop) ≥ nD′(P3,NC) ≥ nu′(E2,NC)

where the first inequality follows from convexity of D(.) and our assumption on pollution stocks

and the second inequality follows from equation (2). Since u(.) is concave and n > 1, E2,Coop ≤
E2,NC must hold. But then inequality E1,Coop > E1,NC ≥ 0 is satisfied, otherwise P3,Coop > P3,NC

is violated.

Next, we show that E1,Coop > E1,NC and P3,Coop > P3,NC jointly lead to a contradiction. Using

the first-order necessary condition in proposition 3, we have

u′(E1,Coop) = n

(
D′
(
P1 + nE1,Coop

)
+ β(1− δ)D′(P3,Coop)

)
≥ n

(
D′
(
P1 + nE1,NC

)
+ β(1− δ)D′(P3,NC)

)
(24)

where the inequality follows from convexity of D(.), E1,Coop > E1,NC ≥ 0 and P3,Coop > P3,NC .

Using proposition 2, we have

u′ (E1,NC) ≤ D′ (P1 + nE1,NC) + β (1− δ)
(
1 + (n− 1)E′2,NC

)
D′ (P3,NC)

≤ D′ (P1 + nE1,NC) + β (1− δ)D′ (P3,NC) (25)

where the inequality follows from E′2,NC ≤ 0. Combining inequalities (24) and (25), we have

u′(E1,Coop) ≥ nu′(E1,NC). Since u(.) is concave and n > 1, E1,Coop ≤ E1,NC must hold, a

contradiction.

2. Suppose, to get a contradiction, that P2,Coop > P2,NC , or equivalently, E1,Coop > E1,NC ≥ 0.

Since u(.) is concave, u′(E1,Coop) ≤ u′(E1,NC) must hold. Then using propositions 2 and 3, we

obtain

u′(E1,Coop) = n

(
D′
(
P1 + nE1,Coop

)
+ β(1− δ)D′(P3,Coop)

)
≤ u′(E1,NC)

≤ D′ (P1 + nE1,NC) + β (1− δ)
(
1 + (n− 1)E′2,NC

)
D′ (P3,NC)

≤ D′ (P1 + nE1,NC) + β (1− δ)D′ (P3,NC)

where the last inequality follows from E′2,NC ≤ 0. Collecting terms, we get

nD′
(
P1 + nE1,Coop

)
−D′ (P1 + nE1,NC) ≤ β(1− δ)

(
D′ (P3,NC)− nD′(P3,Coop)

)
(n− 1)D′ (P1 + nE1,NC) ≤ β(1− δ)

(
u′(E2,NC)− u′(E2,Coop)

)
where the inequality follows from convexity of D(.), E1,Coop > E1,NC , the first-order necessary

conditions for period 2 under BAU, (u′(E2,NC) = D′(P3,NC), equal since E2,NC > E2,Coop ≥ 0,
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otherwise P3,Coop ≤ P3,NC in part 1 is violated) and first-best (u′(E2,Coop) ≤ nD′(P3,Coop)). Since

left-hand side is non-negative, u′(E2,NC) ≥ u′(E2,Coop) holds, which implies E2,Coop ≥ E2,NC .

Along with E1,Coop > E1,NC , we must have P3,Coop > P3,NC , this contradicts part 1 of this

proposition. �

B Proofs for Section 3

B.1 IEA Type 1

Lemma 1. For an IEA of type 1, a decrease in the threshold Ē unambiguously results in an increase

in current emissions and therefore an increase in P2,C .

Proof: Total differentiation with respect to Ē gives

u′′ (E1,C)
dE1,C

dĒ
−D′′ (P1 + nE1,C)n

dE1,C

dĒ
−β (1− δ)D′′

[
(P1 + nE1,C) (1− δ) + nĒ

](
n (1− δ) dE1,C

dĒ
+ n

)
= 0

or

dE1,C

dĒ

(
u′′ (E1,C)−D′′ (P1 + nE1,C)n

dE1,C

dĒ
− β (1− δ)D′′[(P1 + nE1,C) (1− δ) + nĒ]n (1− δ)

)
= β (1− δ)D′′

[
(P1 + nE1,C) (1− δ) + nĒ

]
n

that is

dE1,C

dĒ
=

β (1− δ)D′′
[
(P1 + nE1,C) (1− δ) + nĒ

]
n

u′′ (E1,C)−D′′ (P1 + nE1,C)n
dE1,C

dĒ
− β (1− δ)D′′

[
(P1 + nE1,C) (1− δ) + nĒ

]
n (1− δ)

< 0

Therefore a decrease in Ē unambiguously results in an increase of E1,C .�

Lemma 2. An IEA of type 1 that features Ē = E2,NC (P2,NC) is environmentally friendly in the short

run.

Proof: When Ē = E2,NC (P2,NC) , we have

u′ (E1,C)−D′ (P1 + nE1,C)− β (1− δ)D′ [(P1 + nE1,C) (1− δ) + nE2,NC (P2,NC)] = 0

with

[u′ (E2,NC (P2))− nD′ (P2 + nE2,NC (P2))]E′2,NC (P2) > 0

whereas in the non-cooperative scenario

u′ (E1,NC)−D′ (P1 + nE1,NC) =− β (1− δ)
{
u′ (E2,NC (P2))− nD′ (P2 + nE2,NC (P2))E′2,NC (P2)

}
+ β (1− δ)D′ (P2 + nE2,NC (P2))

=0
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Let

h (E) = u′ (E)−D′ (P1 + nE)− β (1− δ)D′
(
(P1 + nE) (1− δ) + nĒ

)
we have h′ < 0 and

h (E1,C) = 0

and at Ē = E2,NC (P2,NC) we have

h (E1,NC) = −β (1− δ) {u′ (E2,NC (P2))− nD′ (P2 + nE2,NC (P2))}E′2,NC (P2) < 0

and therefore

E1,C < E1,NC .�

Setting Ē close to zero leads to an increase in emissions:

The non-cooperative equilibrium emission E1,NC is solution to

u′ (E1,NC)−D′ (P1 + nE1,NC) = β (1− δ)D′ (P2,NC + nE2,NC (P2,NC)) (26)

−β (1− δ) {u′ (E2,NC (P2,NC))− nD′ (P2,NC + nE2,NC (P2,NC))}E′2,NC (P2,NC)

where P2,NC = (P1 + nE1,NC) (1− δ). We know that in period 2 we have

u′ (E2,NC (P2))−D′ (P2 + nE2,NC (P2)) = 0

so

u′ (E1,NC)−D′ (P1 + nE1,NC) = β (1− δ)D′ (P2,NC + nE2,NC (P2,NC))
[
1 + (n− 1)E′2,NC (P2,NC)

]
(27)

Under an IEA that sets a target emissions level, the equilibrium emission level in period 1, E1,C , is

solution to

u′ (E1,C)−D′ (P1 + nE1,C) = β (1− δ)D′
(
P2,C + nĒ

)
(28)

where P2,C = (P1 + nE1,C) (1− δ).
First we note that that for β = 0 we have E1,C = E1,NC and P2,C = P2,NC . Moreover total

differentiation of (27) with respect β gives

[u′′ (E1,NC)−D′′ (P1 + nE1,NC)]n
dE1,NC

dβ

= (1− δ)D′ (P2,NC + nE2,NC (P2,NC))
[
1 + (n− 1)E′2,NC (P2,NC)

]
+β (1− δ)

d
{
D′ (P2,NC + nE2,NC (P2,NC))

[
1 + (n− 1)E′2,NC (P2,NC)

]}
dP2

dP2NC

dE1,NC

dE1,NC

dβ

which, when β = 0, simplifies into

[u′′ (E1,NC)−D′′ (P1 + nE1,NC)]n
dE1,NC

dβ

∣∣∣∣
β=0

= (1− δ)D′ (P2,NC + nE2,NC (P2,NC))
[
1 + (n− 1)E′2,NC (P2,NC)

]
.
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Similarly, total differentiation of (28) with respect β gives

[u′′ (E1,C)−D′′ (P1 + nE1,C)]n
dE1,C

dβ
= (1− δ)D′

(
P2,C + nĒ

)
+ β (1− δ)

dD′
(
P2,C + Ē

)
dE1,NC

dE1,C

dβ

which, when β = 0, yields

[u′′ (E1,C)−D′′ (P1 + nE1,C)]n
dE1,C

dβ

∣∣∣∣
β=0

= (1− δ)D′
(
P2,C + nĒ

)
So

[u′′ (E1,NC)−D′′ (P1 + nE1,NC)]n

(
dE1,C

dβ

∣∣∣∣
β=0

− dE1,NC

dβ

∣∣∣∣
β=0

)
= (1− δ)

{
D′
(
P2,C + nĒ

)
−D′ (P2,NC + nE2,NC (P2,NC))

[
1 + (n− 1)E′2,NC (P2,NC)

]}
or

[u′′ (E1,NC)−D′′ (P1 + nE1,NC)]n

(
dE1,C

dβ

∣∣∣∣
β=0

− dE1,NC

dβ

∣∣∣∣
β=0

)
= (1− δ)

{
D′
(
P2,C + nĒ

)
−D′ (P2,NC + nE2,NC (P2,NC))

[
1 + (n− 1)E′2,NC (P2,NC)

]}
for Ē = 0, since u′′ −D′′ < 0, we have

sign

(
lim
δ↑1

(
dE1,C

dβ

∣∣∣∣
β=0

− dE1,NC

dβ

∣∣∣∣
β=0

))

= −sign
(

lim
δ↑1

{
D′ (P2,C)−D′ (P2,NC + nE2,NC (P2,NC))

[
1 + (n− 1)E′2,NC (P2,NC)

]})
We know that

1 + nE′2,NC (P2) > 0

and therefore, for E′2,NC (P2) < 0, we have

1 + (n− 1)E′2,NC (P2) > 0.

Moreover in the limit case where δ ↑ 1 we have full depreciation of the stock of pollution and therefore

P2 → 0. We have

lim
δ↑1

{
D′ (P2,C)−D′ (P2,NC + nE2,NC (P2,NC))

[
1 + (n− 1)E′2,NC (P2,NC)

]}
= lim

δ↑1

{
D′ (0)−D′ (nE2,NC (0))

[
1 + (n− 1)E′2,NC (0)

]}
Since E2,NC (0) > 0 and

[
1 + (n− 1)E′2,NC (0)

]
> 0, when D′ (0) = 0 we have

lim
δ↑1

{
D′ (P2,C)−D′ (P2,NC + nE2,NC (P2,NC))

[
1 + (n− 1)E′2,NC (P2,NC)

]}
< 0

and thus

lim
δ↑1

(
dE1,C

dβ

∣∣∣∣
β=0

− dE1,NC

dβ

∣∣∣∣
β=0

)
> 0.

Recall that E1,C = E1,NC when β = 0. We can therefore conclude that, when D′ (0) = 0, for Ē = 0,

there exists β̄ > 0, δ̄ ∈ (0, 1) such that

E1,C − E1,NC > 0 for 0 < β < β̄ and 1 > δ > δ̄.�
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B.2 IEA Type 2

Proposition 6. A type 2 IEA that features a marginal proportional reduction in emissions is environ-

mentally friendly in the short run if and only if σ ≡ −E2,NC(P2)u′′(E2,NC(P2))
u′(E2,NC(P2)) < 1

Proof:

We have

R′ (ε)

−β (1− δ)
= −u′ {(1− ε)E2,NC (P2)}E′2,NC (P2)− E2,NC (P2)u′′ {(1− ε)E2,NC (P2)} (1− ε)E′2,NC (P2)

−
(
−nE′2,NC (P2)

)
D′ (P2 + n (1− ε)E2,NC (P2))

−
[
1 + n (1− ε)E′2,NC (P2)

]
(−nE2,NC (P2))D′′ (P2 + n (1− ε)E2,NC (P2))

The impact of a marginal change in ε in the neighborhood of ε = 0 is given by

R′ (0)

β (1− δ)
= [u′ (E2,NC (P2))− nD′ (P2 + nE2,NC (P2))]E′2,NC (P2)

+E2,NC (P2)u′′ (E2,NC (P2))E′2,NC (P2)

−n
(
1 + nE′2,NC (P2)

)
E2,NC (P2)D′′ (P2 + nE2,NC (P2))

Using expression (3) gives

R′ (0)

β (1− δ)
= [u′ (E2,NC (P2))− nD′ (P2 + nE2,NC (P2))]E′2,NC (P2)

+E2,NC (P2)
[
u′′ (E2,NC (P2))E′2,NC (P2)− nu′′ (E2,NC (P2))E′2,NC (P2)

]
or

R′ (0)

β (1− δ)
= [u′ (E2,NC (P2))− nD′ (P2 + nE2,NC (P2))]E′2,NC (P2)

+E2,NC (P2) (1− n)u′′ (E2,NC (P2))E′2,NC (P2)

that is

R′ (0)

β (1− δ)E′2,NC (P2)
= u′ (E2,NC (P2))− nD′ (P2 + nE2,NC (P2))︸ ︷︷ ︸

<0

+ E2,NC (P2) (1− n)u′′ (E2,NC (P2))︸ ︷︷ ︸
>0

(29)

Note that u′ (E2,NC (P2)) − nD′ (P2 + nE2,NC (P2)) < 0 from E2,NC (P2) larger than first-best

emissions which solve u′ (E)− nD′ (P2 + nE) = 0.

The sign of R′ (0) is therefore undetermined.

The condition (29) may be rewritten as

R′ (0)

β (1− δ)
= − (n− 1)E′2,NC (P2)u′ (E2,NC (P2)) (1− σ)
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where

σ ≡ −E2,NC (P2)u′′ (E2,NC (P2))

u′ (E2,NC (P2))

The sign of R′ (0) depends on the elasticity of marginal utility. It is positive if and only if σ < 1.�

Infinite-Horizon Extension

Under infinite horizon, BAU value function satisfies the following recursive relation under the optimal

policy ENC(P )

V (P ) = u(ENC(P ))−D(P + nENC(P )) + βV
(
(1− δ)(P + nENC(P ))

)
The first-order necessary condition (ignoring a corner solution) for each country is

u′(ENC(P ))−D′(P + nENC(P )) = −β(1− δ)V ′(P ′) (30)

where P ′ denotes next period pollution stock and

V ′(P ′) = u′(ENC(P ′))E′NC(P ′)− (D′(P + nENC(P ′))− β(1− δ)V ′(P ′′))(1 + nE′NC(P ′))

Differentiating expression (30) equality with respect to P , we obtain an expression for the derivative of

the strategy:

u′(.)E′NC(P ) = (1 + nE′NC(P ))D′′(.)− β(1− δ)V ′′(P ′) (31)

Now consider the announcement EC(P ) = (1− ε)ENC(P ) to be effective from next period onwards.

Just as we did in the two-period case, we can write the following analogous conditions

u′(ENC(P ))−D′(P + nENC(P )) = −β(1− δ)V ′(P ′;EC) ≡ R(ε)

where

R(ε;P ′) ≡ −β(1−δ)
{
u′[(1−ε)ENC(P ′)](1−ε)E′NC−[1+n(1−ε)E′NC ][D′(P ′+(1−ε)ENC(P ′))−β(1−δ)V ′(P ′′)]

}
and V ′(P ′;EC) represents the derivative of the value function in which all occurances of ENC(P ) are

replaced with (1 − ε)ENC(P ′). Obviously, as in the two-period case, the sign of R′(0) determines

whether a marginal increase in ε leads to an increase or decrease in emissions today, relative to BAU.

Differentiating R(ε) with respect to ε, imposing ε = 0, the first-order condition (30), and the derivative

condition (31), we obtain the simplified version

R′(0)

β(1− δ)
= −(n− 1)E′NCu

′(.)

(
u′′(.)ENC
u′(.)

+ 1

)
= −(n− 1)E′NCu

′(.)(1− σ).

Therefore the same conclusion holds under infinite horizon.

Lemma 4. There exists a unique γ̄ > 0 such that Ω < 0 for γ > γ̄ and Ω > 0 for 0 < γ < γ̄.
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Proof: We first establish existence of γ̄ such that Ω = 0. This follows from the fact that Ω (γ = 0) =

1 > 0, limγ→∞ Ω = −∞ and that Ω is continuous.

We now establish uniqueness of γ̄. The function Ω can have at most three roots. From Ω (γ = 0) =

1 > 0 we can infer that Ω cannot have two positive roots only. Suppose Ω has three positive roots then

one of the following two statements must hold Ω is strictly decreasing strictly convex in the neighborhood

of γ = 0

dΩ

dγ
=
(
−1 + β (1− δ)2

+ 2δ
)
n− 3n3γ2 + 2nγ

(
β (1− δ)2

+ n (2δ − 3)
)

d2Ω

dγ2
= −6n3γ + 2n

(
β (1− δ)2

+ n (2δ − 3)
)

At γ = 0, dΩ
dγ

∣∣∣
γ=0

=
(
β (1− δ)2

+ 2δ − 1
)
n < 0

d2Ω

dγ2

∣∣∣∣
γ=0

= 2n
(
β (1− δ)2

+ n (2δ − 3)
)
> 0

d2Ω

dγ2

∣∣∣∣
γ=0

= 2n

(
1

n

dΩ

dγ

∣∣∣∣
γ=0

+ (n− 1) 2δ − 3n+ 1

)
The term (n− 1) 2δ − 3n+ 1 is a strictly increasing function of δ for n > 1 therefore, since δ ∈ [0, 1] is

no larger than (n− 1) 2 − 3n + 1 = −n − 1 < 0. Therefore if dΩ
dγ

∣∣∣
γ=0
≤ 0 we must have d2Ω

dγ2

∣∣∣
γ=0

< 0,

i.e. Ω is strictly concave in the neighborhood of γ = 0. This rules out the existence of three positive

roots of Ω. This completes the proof.�

B.3 IEA Type 3

Proposition 9. An IEA of type 3 that features a marginal cut in emissions by all players is not

environmentally friendly in the short run.

Proof: We have

Q′ (η)

−β (1− δ)
= −u′′ (E2,NC (P2)− η)E′2,NC (P2) + n

(
1 + nE′2,NC (P2)

)
D′′ (P2 + nE2,NC (P2)− nη)

and thus

Q′ (0)

−β (1− δ)
= −u′′ (E2,NC (P2))E′2,NC (P2) + n

(
1 + nE′2,NC (P2)

)
D′′ (P2 + nE2,NC (P2))

From (3)

u′′ (E2,NC)E′2,NC −
(
1 + nE′2,NC

)
D′′ (P2 + nE2,NC) = 0 (32)

so
Q′ (0)

−β (1− δ)
= (n− 1)u′′ (E2,NC (P2))E′2,NC (P2) > 0
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or

Q′ (0) < 0

and therefore in the neighborhood of η = 0 we have

Q (η) < Q (0) for η > 0

and thus

E1,C (P1) > E1,NC (P1) for all P1.�

B.4 IEA Type 4

Proposition 10. If IEA type 4 is environmentally friendly in the short run, then the following condition

must hold:
u′ (E2,Coop (P2,Coop))

u′ (E2,NC (P2,NC))
− n

(
1 + (n− 1)E′2,NC (P2,NC)

)
> 0.

Proof: Using equation (9) we have

u′ (E1,C (P1))−D′ (P1 + nE1,C (P1))− β (1− δ) u
′ (E2,Coop (P2))

n
= 0

Recall that for the non-cooperative equilibrium we have

u′ (E1,NC (P1))−D′ (P1 + nE1,NC (P1))− β (1− δ)
(
1 + (n− 1)E′2,NC

)
u′ (E2,NC (P2)) = 0

If E1,NC (P1) > E1,C (P1) then, since u′′ −D′′ < 0,

u′ (E1,NC (P1))−D′ (P1 + nE1,NC (P1)) < u′ (E1,C (P1))−D′ (P1 + nE1,C (P1))

that is

β (1− δ)
(
1 + (n− 1)E′2,NC

)
u′ (E2,NC (P2)) < β (1− δ) u

′ (E2,Coop (P2))

n

or
u′ (E2,Coop (P2,Coop))

u′ (E2,NC (P2,NC))
− n

(
1 + (n− 1)E′2,NC (P2,NC)

)
> 0. (33)

where

P2,NC = P1 + nE1,NC (P1)

and

P2,Coop = P1 + nE1,C (P1)

The above condition (33) is a necessary condition for E1,NC (P1) > E1,C (P1) .�

Lemma 5. For P1 ≥ 0, condition (14) is never satisfied, i.e., G (P1, n) < 0
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Proof: For clarity of notation, we will let P ≡ P1. Without loss of generality, let γ = 1. We have

G (P, n) =
−P +

√
4n+ P 2

−P +
√

4 + P 2
−
n+ 1 + (n−1)P√

4n+P 2

2
(34)

we rewrite
−P +

√
4n+ P 2

−P +
√

4 + P 2
= 1 +

−
√

4 + P 2 +
√

4n+ P 2

−P +
√

4 + P 2

or
−P +

√
4n+ P 2

−P +
√

4 + P 2
= 1 +

4n− 4(
−P +

√
4 + P 2

) (√
4 + P 2 +

√
4n+ P 2

)
We can therefore write that(

−P +
√

4 + P 2
)(√

4 + P 2 +
√

4n+ P 2
)

= 4 + P 2 − P
√

4 + P 2 +
√

4 + P 2
√

4n+ P 2 > 4 + 2
√

4n+ P 2

because we have P 2 − P
√

4 + P 2 < 0 and
√

4 + P 2 > 2.

We thus have
−P +

√
4n+ P 2

−P +
√

4 + P 2
< 1 +

4n− 4

4 + 2
√

4n+ P 2

which implies that

G (P, n) < 1 +
4n− 4

4 + 2
√

4n+ P 2
−
n+ 1 + (n−1)P√

4n+P 2

2
(35)

or

G (P, n) < 1− n+ 1

2
+

4n− 4

4 + 2
√

4n+ P 2
− (n− 1)P

2
√

4n+ P 2
(36)

We can rewrite this inequality as

G (P, n) < (n− 1)

(
−1

2
− P

2
√

4n+ P 2
+

4

4 + 2
√

4n+ P 2

)
(37)

or

G (P, n) < − (n− 1)

2
√
P 2 + 4n (P 2 + 4n− 4)

{(
P 2 + 4 + 4n

)√
P 2 + 4n− 16n− 4P + 4Pn− 4P 2 + P 3

}
.

(38)

where A ≡
(
P 2 + 4 + 4n

)√
P 2 + 4n− 16n− 4P + 4Pn− 4P 2 + P 3.

We now show that the expression A is positive. Indeed, we have

A > Ā ≡ −
(
P 2 + 4 + 4n

)√
P 2 + 4n− 16n− 4P + 4Pn− 4P 2 + P 3

moreover the product AĀ gives

AĀ = −8P 5 − 4P 4n− 64P 3n+ 32P 3 − 32P 2n2 + 32P 2n− 128Pn2 + 128Pn− 64n3 + 128n2 − 64n

or

AĀ = −8P 5 − 4P 4n− 32P 3 (2n− 1)− 32P 2n (n− 1)− 128Pn (n− 1)− 64n (n− 1)
2
< 0

Since AĀ < 0 and A > Ā this implies that A > 0 and therefore from equation (38), we have that

G (P, n) < 0.�
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B.5 Long-Run Impact

Lemma 5. Given an initial pollution stock P1 ≥ 0, let P2,NC and P3,NC denote the equilibrium BAU

pollution levels. IEA E2,C(P2) is environmentally friendly in the long run, i.e. P3,C ≤ P3,NC , if the

following two conditions are satisfied:

1. (1 + (n− 1)E′2,NC(P2,NC))D′(P3,NC) ≤ (1 + (n− 1)E′2,C(P2))D′(P3,C)−E′2,C(P2)[u′(E2,C(P2))−
D′(P3,C)] for all P2 ∈ P2, where P3,C ≡ P2 + nE2,C(P2).

2. P2 + nE2,C(P2) ≤ P3,NC for all P2 ≤ P2,NC .

Proof: Fix P1 ≥ 0, and assume, to get a contradiction, that the two conditions above hold, but

that P3,C > P3,NC . Obviously, P2,C ∈ P2, therefore condition 1 implies

[1 + (n− 1)E′2,NC(P2,NC)]D′(P3,NC) ≤ [1 + (n− 1)E′2,C(P2,C)]D′(P3,C)

− E′2,C(P2,C)[u′(E2,C(P2,C))−D′(P3,C)]

We have E1,C > 0, otherwise P2,C = 0 and condition 2 contradicts P3,C > P3,NC . The first-order

condition (11), the first-order condition for BAU in proposition 2, and the inequality above jointly

imply

u′(E1,C)−D′(P1 + nE1,C) ≥ u′(E1,NC)−D′(P1 + nE1,NC)

or equivalently,

u′(E1,C)− u′(E1,NC) ≥ D′(P1 + nE1,C)−D′(P1 + nE1,NC)

Utility is concave, and damage function is convex, therefore E1,C ≤ E1,NC , and P2,C ≤ P2,NC hold.

Then condition 2 implies P3,C ≤ P3,NC , a contradiction.�

Proposition 12. Under assumptions 1 and 2, IEA types 2, 3, and 4 are environmentally friendly in

the long run for any initial pollution stock P1, i.e. P3,C ≤ P3,NC .

Proof: We verify the two conditions in lemma 5 are satisfied for any P1 ≥ 0. Fix some P1 ≥ 0

and take any P2 ∈ P2.

IEA type 2: Consider the IEA E2,C (P2) = (1− ε)E2,NC (P2) where ε ∈ [0, 1]. By straightforward

algebra, we can write

(1 + (n− 1)E′2,C(P2))D′(P3,C)− E′2,C(P2)[u′(E2,C(P2))−D′(P3,C)]

=(1 + (n− 1)E′2,NC(P2))D′(P3,C)− (n− 1)εE′2,NC(P2)D′(P3,C)

− (1− ε)E′2,NC(P2)(u′(E2,C(P2))−D′(P3,C))

≥(1 + (n− 1)E′2,NC(P2))D′(P3,C)

≥(1 + (n− 1)E′2,NC(P2,NC))D′(P3,NC)
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where the first inequality holds due to the fact that last two terms are negative for all P2 ≥ 0:

If E2,NC(P2) > 0, this follows from E′2,NC ≤ 0 and u′(E2,C(P2)) ≥ u′(E2,NC(P2)) = D′(P2 +

nE2,NC(P2)) ≥ D′(P2 + nE2,C(P2)) ≡ D′(P3,C). Otherwise E′2,NC(P2) = 0 holds so the claim is

trivially true. The last inequality follows from convexity of E2,NC established in proposition 1, convex-

ity of damage function, and P3,C ≥ P3,NC due to P2 ∈ P2. We conclude that condition 1 in lemma 5

is satisfied.

To show that condition 2 is satisfied, take any P2 ≤ P2,NC . We have P2 + n(1 − ε)E2,NC(P2) ≤
P2 + nE2,NC(P2) ≤ P2,NC + nE2,NC(P2,NC) = P3,NC where the last inequality follows from the fact

that final pollution stock is increasing in P2 under BAU. (See the remark after proposition 1).

IEA type 3: Consider the case where countries anticipate an IEA in period 2 that features a constant

cut in emissions η > 0. By straightforward algebra, we can write

(1 + (n− 1)E′2,C(P2))D′(P3,C)− E′2,C(P2)(u′(E2,C(P2))−D′(P3,C))

=(1 + (n− 1)E′2,NC(P2))D′(P3,C)− E′2,C(P2)(u′(E2,C(P2))−D′(P3,C))

≥(1 + (n− 1)E′2,NC(P2,NC))D′(P3,NC)− E′2,C(P2)(u′(E2,C(P2))−D′(P3,C))

≥(1 + (n− 1)E′2,NC(P2,NC))D′(P3,NC)

the first inequality follows from convexity of E2,NC (proposition 1), P3,C ≥ P3,NC (due to P2 ∈ P2)

and convexity of D(.). The last inequality follows from u′(E2,C(P2)) −D′(P3,C) ≥ 0 for all P2, this is

the case because E2,C(P2) ≤ E2,NC(P2) for all P2. Verification of the claim that the second condition

in lemma 5 follows the same steps in the proof of Type 2.

IEA type 4: Consider the case where countries anticipate that there will be full cooperation in period

2, i.e. E2,C (P2) = E2,Coop(P2). By straightforward algebra, we can write

(1 + (n− 1)E′2,C(P2))D′(P3,C)− E′2,C(P2)(u′(E2,C(P2))−D′(P3,C))

=D′(P3,C)− E′2,C(P2)(u′(E2,C(P2))− nD′(P3,C))

=D′(P3,C)

≥(1 + (n− 1)E′2,NC(P2,NC))D′(P3,NC)

the first equality follows by collecting terms. The second equality follows from the first-order necessary

condition for optimality under full cooperation, u′(E2,C(P2)) = nD′(P3,C). The inequality follows from

E′2,NC ≤ 0, convexity of D(.) and P2 ∈ P2. Hence condition 1 is satisfied. We leave the verification of

condition 2 to readers as the steps are virtually identical to those used for IEA type 2.�

C Proofs for Section 4

Proposition 13. Under assumptions 1 and 2,

1. There exists a unique solution to optimal IEA type 1 problem (17).
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2. Welfare level under optimal IEA type 1, W 1
C , cannot be lower than the BAU level.

Proof: Consider the following relaxed problem:

W̃ 1
C ≡ max

E1,E2≥0
f(E1, E2) (39)

subject to

u′(E1) ≤ D′(P1 + nE1) + β(1− δ)D′
(
(P1 + nE1)(1− δ) + nE2

)
(40)

Clearly constraint set (40) includes (19) and therefore W̃ 1
C ≥W 1

C .

1. Under assumption 1, the objective in problem (39), f(E1, E2) is jointly strictly concave in (E1, E2)

and −f(.) is coercive, as in proposition 3. The constraint set (40) is closed, non-empty, and

under the assumptions u′′′(.) ≥ 0 and D′′′(.) ≤ 0, it is convex.30 Therefore, there exists a

solution (Ẽ1, Ẽ2), it is unique, and moreover, Kuhn-Tucker necessary conditions of the associated

Lagrangian are sufficient.

Next, we show that (Ẽ1, Ẽ2) belongs to the constraint set (19). This shows that relaxed problem

achieves its maximum inside the original constraint and hence it must be a solution to problem

(17). There are two possibilities for (Ẽ1, Ẽ2):

(i) The constraint (40) does not bind: Then it must be that (Ẽ1, Ẽ2) = (E1,Coop, E2,Coop) since

latter is the unique solution to the unconstrained problem as shown in proposition 3. It is easy

to show that E1,Coop = Ẽ1 = 0. If this is not the case,

u′(Ẽ1) = n

(
D′(P1 + nẼ1) + β(1− δ)D′

[
(P1 + nẼ1)(1− δ) + nẼ2

])
>

(
D′(P1 + nẼ1) + β(1− δ)D′

[
(P1 + nẼ1)(1− δ) + nẼ2

])
The first equality holds since this is the first-order necessary condition for the fully cooperative

solution. The inequality follows from n > 1. But then (Ẽ1, Ẽ2) violates constraint (40). This

proves Ẽ1 = 0 and that (Ẽ1, Ẽ2) satisfies (19).

(ii) The constraint (40) binds: This case is trivial, obviously (Ẽ1, Ẽ2) satisfies (19).

We have thus shown that problem (17) has a unique solution and it can be characterized by

solving the relaxed problem (39).

2. Fully non-cooperative/BAU emissions (E1,NC , E2,NC) solve

u′(E1,NC)−
(
D′(P1+nE1,NC)+β(1−δ)[1+(n−1)E′2,NC(P2)]D′

[
(P1+nE1,NC)(1−δ)+nE2,NC

])
≤ 0

with equality when E1,NC > 0. Since E′2,NC(P2) ≤ 0, this implies

u′(E1,NC) ≤ D′(P1 + nE1,NC) + β(1− δ)D′
[
(P1 + nE1,NC)(1− δ) + nE2,NC

]
30It is non-empty, because it contains BAU emissions (E1,NC , E2,NC) as shown in part 2 of the proof.
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But then (E1,NC , E2,NC) belongs to constraint set (40), so the welfare level achieved under optimal

IEA type 1, W 1
C cannot be below BAU level.�

Lemma 6. Suppose a parametric IEA E2,C(P2; θ) has the property that E2,C(P 4
2,C ; θ∗) = E4

2,C for some

θ∗. Then, (i) E1,C(P1; θ∗) = E4
1,C and (ii) welfare under optimal IEA of this class satisfies WC ≥W 4

C .

Proof: It suffices to show that under parameter θ = θ∗, this IEA implements (E4
1,C , E

4
2,C) and

therefore obtains a welfare level of W 4
C . This implies welfare cannot deteriorate if θ is chosen optimally.

Consider the first-order necessary condition for E1,C when E2,C(P2; θ∗) is announced, and impose

symmetry:

u′(E1,C)−D′(P1 +nE1,C)+β(1−δ)
[
E′2,C(.)(u′(E2,C(.))−nD′(P2 +nE2,C(.)))−D′(P2 +nE2,C(.))

]
≤ 0

with equality if E1,C > 0. We will assume that this problem is convex so that it has a unique solution. It

is easy to see that (E4
1,C , E

4
2,C) satisfies this condition: We first guess that E1,C = E4

1,C , and P2 = P 4
2,C

and then verify it. By assumption, E2,C(P 4
2,C ; θ∗) = E4

2,C . Since E4
2,C is the equilibrium under ex post

first-best, we have u′(E2,C(.))− nD′(P 4
2,C + nE2,C(.)) = 0. Then, the condition above simplifies to

u′(E1,C)−D′(P1 + nE1,C)− β(1− δ)D′(P 4
2,C + nE4

2,C)
]
≤ 0

with equality if E1,C > 0. Observe that E1,C = E4
1,C satisfies this condition since this is the first-order

necessary condition for E1,C under IEA type 4.�

Lemma 7. Suppose the optimal choice of a parametric IEA, E2,C(P2; θ∗), features E′2,C(P2) ≤ 0 for

all P2 ≥ 0, and E2,C ≥ E2,Coop(P2,C). Then the induced welfare WC is dominated by that achieved

under the optimal IEA of type 1, i.e. W 1
C ≥WC .

Proof: As shown in proof of proposition 13, the choice set for IEA type 1 can be expanded to a

convex set with non-empty interior: E1 ≥ 0, E2 ≥ 0 and

u′(E1) ≤ D′(P1 + nE1) + β(1− δ)D′
(
(P1 + nE1)(1− δ) + nE2

)
We will show that under the given conditions, the emissions under optimal IEA of the given type,

(E1,C , E2,C), is contained in this choice set. This implies welfare obtained under optimal IEA type 1

cannot be inferior. Using the first-order necessary condition for E1, given the announcement E2,C(P2),

we have

u′(E1,C) ≤ D′(P1 + nE1,C) + β(1− δ)D′
(
P3,C

)
− β(1− δ)E′2,C(P2,C)

(
u′(E2,C)− nD′(P3,C)

)
≤ D′(P1 + nE1,C) + β(1− δ)D′

(
P3,C

)
The inequality follows from (i) E2,C ≥ E2,Coop(P2,C), utility is concave and damage is convex, so that

we have u′(E2,C)−nD′(P3,C) ≤ 0, and (ii) E′2,C(P2) ≤ 0. Therefore allocation (E1,C , E2,C) is contained

in the choice set of optimal IEA type 1 problem.�
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D Proofs for Section 5

Proposition 16. If E1,Coop(P1), E2,Coop(P2,Coop) > 0 holds, for any ε > 0 sufficiently small, there

exist θ0, θ1 > 0 such that the announcement E2,C(P2; ε) = max{0, θ0 − θ1P2} implements the emission

levels (E1,Coop,
E2,Coop

1+ε ) as a symmetric equilibrium.

Proof: Fix initial pollution level P1. If limE↓0 u
′(E) = ∞ holds, the result follows immediately

from proposition 15, and, for ε > 0 sufficiently small, both θ0 and θ1 are positive.31

Assume for the rest of the proof that u′(0) < ∞. Define Vi({E1j , E2j}nj=1) be the level of ex ante

private value of the country i when countries emit {E1j , E2j}nj=1. Social welfare, given this profile

is defined as W (.) =
∑n
j=1 Vj(.). Obviously W ({E1j , E2j}) ≤ W (E1,Coop, E2,Coop) ≡ Wcoop for any

feasible emissions profile. Imagine an auxillary cooperative problem where the planner chooses first

period emissions E1 subject to the constraint E2 = 0 for each country. This problem is well-behaved

and has a unique solution under assumption 1. Call the resulting welfare W̃ . Clearly W̃ < Wcoop,

since the auxillary problem imposes extra constraints relative to the first-best. The inequality is strict

since there is a unique solution to the planner’s unconstrained problem by proposition 3, and it features

E2,Coop > 0 by assumption. Then, there exists η > 0 such that Wcoop − η > W̃ . By continuity, there

exists some ε̄ > 0 such that WC(ε) ≡ W (E1,Coop,
E2,Coop

1+ε ) > Wcoop − η for all ε ∈ (0, ε̄]. Define θ0 and

θ1 as in proposition 15 for emissions profile (E1,Coop,
E2,Coop

1+ε ). For ε > 0 sufficiently small, both θ1 and

θ0 are positive. Fix such an ε > 0.

Now we claim that the announcement E2,C(P2) = max{0, θ0 − θ1P2} supports (E1,Coop,
E2,Coop

1+ε ) as

a symmetric equilibrium. Given the proof of proposition 15 and the remark right after that, it suffices

to verify that no country would deviate in period 1, pollute more in period 1 to emit zero in period 2.

Suppose every player except for country 1 plays E1,Coop so that P2 = (1− δ)(P1 + (n− 1)E1,Coop +E1)

effectively becomes the “choice variable” for country 1 since it is uniquely determined by E1. Obviously,

a deviation to any point where E2,C(P2) = θ0 − θ1P2 cannot be optimal by revealed preference (by

proposition 15).

Consider a deviation where E1 is sufficiently high, so that resulting P2 is over the region in which

E2,C = 0. Let E1 = E1,Coop + n∆, ∆ > 0 be this deviation when all other players continue playing

E1,Coop. Observe that the resulting second period pollution level is P2 = (1− δ)(P1 + nE1,Coop + ∆) >

P ∗2,C . Moreover, since there is commitment, the second period emission equals Ē2 ≡ 0 for all countries.

If this deviation is an improvement for country 1, we must have

nV1(E1,Coop + n∆, E1,Coop, ..., Ē2, Ē2, ...) > WC(ε)

Now reshuffle the emissions in period 1 and consider Ē1 ≡ E1,Coop+∆ for all countries. Clearly, damage

values and pollution stock P2 remains intact, but social welfare improves because utility function is

31Observe that the denominator of (21) is positive, because E2,Coop makes the denominator zero and the given profile

features lower emissions. Fully cooperative emissions solve u′(E1,Coop)− nD′(P1 + nE1,Coop)− nβ(1− δ)D′(P2,Coop +

nE2,Coop) = 0. Since n > 1, for sufficiently small ε > 0, the numerator of (21) is also positive.

54



concave, i.e. nu(E1,Coop + ∆) ≥ u(E1,Coop + n∆) + (n − 1)u(E1,Coop). Moreover, emissions in period

2 are identical since all countries play non-cooperatively and P2 did not change. The social welfare

satisfies

W (Ē1, Ē2) ≥ nV1(E1,Coop + n∆, E1,Coop, ..., Ē2, Ē2, ...) > WC(ε).

Profile (Ē1, Ē2) just constructed is a feasible emissions in the auxilary problem where the planner chooses

first period emissions subject to E2 = 0, hence W̃ ≥ W (Ē1, Ē2). Since WC(ε) > W̃ by construction,

we obtain a contradiction. �

Lemma 8. If E1,Coop(P ), E2,Coop(P2,Coop) > 0 holds, for ε > 0 sufficiently small, there exist θ0, θ1 > 0

such that the announcement E2,C(P2) = max
{

0,min{E2,NC(P2), θ0 − θ1P2}
}

implements the emission

levels (E1,Coop,
E2,Coop

1+ε ) as a symmetric equilibrium.

Proof: We follow similar steps as in the proof of proposition 16. Define private value Vi(.) and

social welfare W (.) in the same way. Fix initial pollution level P1, imagine an auxillary cooperative

problem where planner chooses first period emissions E1 subject to the constraint that countries will

act non-cooperatively in period 2 and follow E2,NC(P2). Let W̃1 be the welfare level at an optimal

solution to this problem. Similarly, consider a second auxillary problem where the planner chooses first

period emissions E1 subject to the constraint E2 = 0 for each country, call the resulting welfare level

W̃2. Clearly W̃ ≡ max{W̃1, W̃2} < Wcoop, therefore, there exists η > 0 such that Wcoop − η > W̃ . By

continuity, there exists some ε̄ > 0 such that WC(ε) ≡W (E1,Coop,
E2,Coop

1+ε ) > Wcoop−η for all ε ∈ (0, ε̄].

Fix such an ε > 0. Define θ0, θ1 as in proposition 16.

Now we claim that the announcement E2,C(P2) = max
{

0,min{E2,NC(P2), θ0− θ1P2}
}

implements

the emission levels (E1,Coop,
E2,Coop

1+ε ) as an equilibrium so that WC(ε) > W̃ . Suppose every player

except for country 1 plays E1,Coop so that P2 = (1− δ)(P1 + (n− 1)E1,Coop + E1) effectively becomes

the “choice variable” for country 1 since it is uniquely determined by E1. Obviously, a deviation to any

point in the steeper portion of E2,C cannot be optimal by revealed preference.

We focus on the two cases separately.

(i) The first period emissions is sufficiently small, so that resulting P2 is on the non-cooperative

portion in Panel C of figure 2. Let E1 = E1,Coop − n∆, ∆ > 0 be this deviation when all other

players continue playing E1,Coop. Observe that the resulting second period pollution level is P2 =

(1− δ)(P1 + nE1,Coop −∆) < P ∗2,C . Moreover, since there is commitment, the second period emission

equals Ē2 ≡ E2,NC(P2) for all countries. If this deviation is an improvement for country 1, we must

have

nV1(E1,Coop − n∆, E1,Coop, ..., Ē2, Ē2, ...) > WC(ε)

Now reshuffle the emissions in period 1 and consider Ē1 ≡ E1,Coop−∆ for all countries. Clearly, damage

values and pollution stock P2 remains intact, but social welfare improves because utility function is

concave, i.e. nu(E1,Coop −∆) ≥ u(E1,Coop − n∆) + (n − 1)u(E1,Coop). Moreover, emissions in period
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2 are identical since all countries play non-cooperatively and P2 did not change. From a social welfare

point of view, we have

W (Ē1, Ē2) ≥ nV1(E1,Coop − n∆, E1,Coop, ..., Ē2, Ē2, ...) > WC(ε).

Profile (Ē1, Ē2) is a feasible emissions profile for the first auxilary problem in which the planner chooses

first period emissions subject to the constraint that countries play non-cooperatively in period 2, hence

W̃ ≥W (Ē1, Ē2). Since WC(ε) > W̃ by construction, we obtain a contradiction.

(ii) Deviation E1 is sufficiently high so that second period emissions equal zero. This case is already

covered in the proof of proposition 16 and the details are omitted.

We have shown that W̃ ≥W (Ē1, Ē2). Since WC(ε) > W̃ by construction, we obtain a contradiction.

�
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