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Abstract 
 
We show that dealers’ limited market participation, coupled with an informational friction 
resulting from lack of market transparency, can make liquidity demand upward sloping, 
inducing strategic complementarities: traders demand more liquidity when the market becomes 
less liquid, fostering market illiquidity. This can generate instability with an initial dearth of 
liquidity degenerating into a liquidity rout (as in a ash crash). In a fully transparent market, 
liquidity is increasing in the proportion of dealers continuously present in the market; however, 
in a less transparent market, liquidity can be U-shaped in this proportion and in the degree of 
transparency. 
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“The report describes how on October 15, some algos pulled back by widening

their spreads and other reduced the size of their trading interest. Whether such

dynamic can further increase volatility in an already volatile period is a question

worth asking, but a difficult one to answer.” (Remarks Before the Conference on the

Evolving Structure of the U.S. Treasury Market (Oct. 21, 2015), Timothy Massad,

Chairman, CFTC.)

1 Introduction

Concern for crashes has recently revived, in the wake of the sizeable number of “flash events”

that have affected different markets.1 However, episodes of extreme market turbulence where

liquidity seems to inexplicably disappear, are by far not a staple of modern markets. On the

contrary, as the stock market crash of October 19, 1987 makes clear, (apparently) fundamentals-

unrelated crashes have been a worrying, regular feature of financial markets.2

A unifying feature of these episodes seems to be the jamming of the “rationing” function of

market illiquidity. In normal market conditions, traders perceive a lack of liquidity as a cost,

while arbitrageurs regard it as an opportunity. This, in turn, leads the former to limit their

demand for immediacy, and the latter to increase their supply of liquidity (i.e., traders’ demand

for liquidity, and arbitrageurs’ “liquidity supply” are respectively decreasing and increasing in

the illiquidity of the market). In normal conditions, then, an illiquidity hike leads traders to

contain their demand, and arbitrageurs to take advantage of profitable opportunities, easing the

pressure on liquidity suppliers, thereby producing a stabilizing effect on the market. However,

on occasions, a bout of illiquidity, which can hardly be construed as fundamentals driven, has

a destabilizing impact, and fosters a disorderly “run for the exit” that is conducive to a rout.

In these cases, traders attempt to place orders despite the liquidity shortage, and arbitrageurs

flee the market, foregoing profitable (but risky) opportunities. In such conditions, liquidity is

fragile. What can account for such a dualistic feature of market illiquidity?

In this paper, we argue that liquidity supply fragmentation, and lack of transparency about

relevant market conditions, are important ingredients in the answer to this question. In cur-

rent markets, trading automation arguably boosts liquidity supply fragmentation by limiting

the market participation of some liquidity suppliers, or making it endogenous (Duffie (2010)

and SEC (2010));3 at the same time, computerized trading creates informational frictions by

1Starting with the May 6, 2010 U.S. “flash-crash” where U.S. equity indices dropped by 5-6% and recovered
within half an hour; moving to the October 15, 2014 Treasury Bond crash, where the yield on the benchmark
10-year U.S. government bond, dipped 33 basis points to 1.86% and reversed to 2.13% by the end of the trading
day; to end with the August 25, 2015 ETF market freeze, during which more than a fifth of all U.S.-listed
exchange traded funds and products were forced to stop trading. More evidence of flash events is provided by
NANEX.

2See https://en.wikipedia.org/wiki/List of stock market crashes and bear markets.
3Automated trading is by now pervasive across different markets. For financial futures, automated trading

accounts for about two-thirds of the activity in Eurodollars and Treasury contracts (Source: Keynote Address
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hampering some traders’ access to reliable and timely market information (Ding et al. (2014)).4

In less automated markets, liquidity supply fragmentation, and impaired access to market in-

formation arose because of different reasons. For example, in the 80s, access to the NYSE

trading floor was crucial to have a good view of market conditions, but obviously constrained

by physical limitations. Importantly, such frictions seem to have a bearing on episodes of liq-

uidity crashes. Several accounts of the August 24, 2015 “flash-crash,” point to the fact that

uncertainty over the price of ETF constituents contributed to a huge investors’ sellout, and

sidelined the actions of arbitrageurs, exacerbating the liquidity dry-up in some ETFs.5 In a

somewhat similar fashion, Amihud et al. (1990), in their analysis of the 1987 “Black Monday,”

argue that a number of operational issues affected the opening trade session on the day of the

event “[O]rders could not be executed, and information on market conditions, and on order

execution was delayed.” This, impaired the ability of traders outside of the market to provide

liquidity, restricting total liquidity supply.

We study a model where two classes of risk-averse dealers provide liquidity to two cohorts of

risk-averse, short-term traders, in a two-period market. Traders enter the market to partially

hedge their exposure to a risky endowment that is correlated to the risky asset traded in the

market. In the first round of trade both dealers’ types absorb the (market) orders of the first

traders’ cohort. In the second trading round, only one class of dealers, named ‘full,’ is able to

participate. Full dealers are continuously in the market and can therefore accommodate the

reverting orders of the first traders’ cohort, as well as those of the incoming second cohort who

observe an imperfect signal about the first period order imbalance.

In a nutshell, the message of the paper is as follows. When all market participants share

the same information, the market is stable, and increasing the proportion of dealers with full

market participation is good for liquidity. Suppose now that, due to an informational friction,

some liquidity traders are not able to know precisely the state of market imbalances in previous

periods. Then the market may be unstable, and increasing the proportion of full dealers, or the

degree of market transparency may be bad for liquidity (liquidity can be U-shaped in either

variable).

More in detail, we start by showing that dealers’ limited market participation favors the

propagation of the endowment shock across time, inducing a predictable price pressure. This

of CFTC Commissioner J. Christopher Giancarlo before the 2015 ISDA Annual Asia Pacific Conference).
4Ding et al. (2014) argue that in the U.S. “[n]ot all market participants have equal access to trade and quote

information. Both physical proximity to the exchange and the technology of the trading system contribute to
the latency.”

5In the morning of August 24, 2015, the Dow dropped roughly 1,100 points in the first five minutes of
trading, and trading in several stocks was halted due to unusual market turbulence. The ensuing lack of reliable
price information allowed profitable, but risky, arbitrage opportunities to go unexploited, leading to a widening
of spreads and a thinning of market depth. For example, during the event, the spread between the SPDR
S&P500 (SPY) and the Guggenheim S&P 500 Equal Weight ETF (RSP), two very similar ETFs whose prices
are normally in sync, at one point reached $21 (see What The E-T-F Happened On August 24?). In a similar
vein, in their account of the May 10, 2010 “Flash Crash” Easley et al. (2011) state: “This generalized severe
mismatch in liquidity was exacerbated by the withdrawal of liquidity by some electronic market makers and by
uncertainty about, or delays in, market data affecting the actions of market participants.”
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is because when first period traders load their positions–for example selling to hedge a positive

endowment shock–a part of their orders is absorbed by standard dealers. These agents, however,

are not in the market in the second period, when first period traders unwind. As a consequence,

an order imbalance (induced by first period traders’ unwinding orders and) affecting the second

period price, arises. This has three important implications. First, as full dealers are in the

market at both rounds, they exploit the predictable future price pressure, by leaning against

traders’ orders at the first round. This activity, which amounts to taking a directional bet,

contributes to liquidity provision. Second, as standard dealers are unable to rebalance in the

second period, they require a larger price concession to absorb traders’ orders. Thus, when

liquidity dries up, standard dealers absorb a larger imbalance, magnifying the propagation

effect. Third, as second period traders observe a signal about the first period trading imbalance,

they trade against the induced price pressure. This speculative activity, potentially adds to full

dealers’ second period liquidity provision, thereby easing the market impact of the propagated

imbalance. The workings of the model crucially depend on the transparency regime governing

the market.

In our transparent market benchmark, second period traders have a perfect signal on the

first period imbalance, and their speculative activity contributes to offset the propagated price

pressure, inducing a stabilizing impact on the market. As a consequence, first period traders’

demand for liquidity is a decreasing function of illiquidity (i.e., the compensation that dealers

demand to hold the asset inventory in equilibrium), and full dealers’ directional bets are instead

an increasing function of illiquidity: the less liquid is the market, the higher is the cost traders

incur to reduce exposure, but the more profitable it is for full dealers to take a directional bet.

Furthermore, illiquidity is increasing in traders’ hedging aggressiveness (the inverse supply for

liquidity is upward sloping). This is because lower hedging aggressiveness, and larger directional

bets, shrink the order imbalance dealers need to absorb, allowing for cheaper liquidity provision.

Thus, illiquidity in this case has a direct, “rationing” effect on traders’ liquidity consumption,

and a unique equilibrium arises. Additionally, along this equilibrium, small shocks to the

model’s parameters have a minimal impact on market liquidity.

In contrast, when access to imbalance information is impaired, second period traders’ specu-

lation can boost first period traders’ uncertainty, introducing a feedback, liquidity consumption

“expanding” effect of illiquidity. This can create a self-sustaining loop that turns the first pe-

riod demand for liquidity into an increasing function of illiquidity, fostering stronger liquidity

consumption, and leading to multiple equilibria. To see this, note that as a higher illiquidity

strengthens the endowment shock propagation (because standard dealers intermediate more of

the outstanding imbalance), it also heightens second period traders’ speculative activity. How-

ever, as information on the first period imbalance is noisy, speculation increases the first period

uncertainty about the second period price.6 This can lead first period traders to consume more

6Endowed with a noisy signal, second period traders can end up selling (buying) when first period traders
unwind a long (short) position, magnifying market impact.
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liquidity, and full dealers to scale down the size of their directional bets (as holding exposure

to the asset becomes riskier). In turn, this magnifies the imbalance dealers need to absorb (as

their inventory of the risky asset increases), leading to an illiquidity hike, eventually reinforcing

the initial, negative shock to market liquidity.

Equilibrium multiplicity induces three levels of liquidity that can be ranked in an increasing

order (low, intermediate, and high). At the low (respectively, intermediate, and high) liquidity

equilibrium, volatility and liquidity consumption are high (respectively, intermediate, and low).

Thus, our paper highlights a channel through which the combined effect of a heightened demand

for liquidity, and a reduced liquidity provision conjure to increase market volatility.

The liquidity consumption ranking across equilibria is a further manifestation of the fact

that lack of transparency jams the direct, rationing effect of illiquidity, while it strengthens

its feedback, liquidity consumption enhancing effect. The end result is that traders’ demand

for liquidity peaks at the equilibrium where the cost of trading is at its highest, consistently

with the pattern observed in many crash events. Importantly, we also find that along a unique

equilibrium with some degree of market opaqueness, illiquidity can be hump-shaped in the

proportion of fast dealers, or in the degree of market transparency.

The strategic complementarity loop arising with lack of market market transparency implies

that liquidity can be “fragile” in our setup. We show this with two types of examples. In the first

one, we exploit equilibrium multiplicity and illustrate how a small shock to some parameter

values can produce a switch from the high liquidity equilibrium to an equilibrium with low

liquidity. In particular, we focus on the consequence of a shock that disconnects a small mass

of full dealers from the market (corresponding to a technological ‘glitch,’ in modern markets, or

the denial of responsibility that many dealers who refused to answer clients’ call during the 1987

crash seemed to display).7 We then analyze the effect of a positive shock to the volatility of first

and second period traders’ demand. These are meant to capture, respectively, an increase in the

probability of a large order hitting the first period market, and an increase in the uncertainty

first period traders face on their endowment value. In both cases, small parameter shocks

produce large liquidity withdrawals. Interestingly, the former example is consistent with some

narratives of the flash crash (see e.g. Easley et al. (2011)). The latter, appears instead to be in

line with the events that occurred on August 24, 2015.8

In the second type of example we review the impact of the glitch, but in this case taking

account of the result that along a unique equilibrium with lack of market transparency, illiq-

uidity can be hump-shaped in the proportion of fast dealers. Based on this finding, we show

that a high level of liquidity can suddenly evaporate because of a reduction in full dealers’ par-

ticipation along the same equilibrium. Furthermore, the evaporation of liquidity is related to

a large increase in volatility. This provides an insight into the question of this paper’s opening

7According to a Fortune 500 CFO: “When the sell orders poured in, our specialist ran into a cave.”
See http://fortune.com/2012/10/21/the-great-crash-what-happened-and-whats-next-fortune-1987/

8See https://www.investopedia.com/articles/investing/011116/two-biggest-flash-crashes-2015.asp
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quotation.

It is also the case that illiquidity can be hump-shaped in the degree of market transparency.

The reason is that first period illiquidity is positively associated to the return uncertainty faced

by first period traders. For low transparency, a more informative signal for second period traders

makes the market less liquid, as those traders speculate more aggressively on the propagated

imbalance, increasing first period traders’ uncertainty. However, as second period traders’ signal

precision increases, these traders’ speculation increasingly reduces the propagated imbalance,

lowering first period traders’ uncertainty.

The rest of the paper is organized as follows. In the next section we review the literature

related to our paper. We then introduce the model, and show that with limited market partic-

ipation, endowment shocks propagate across trading dates. Next, we analyze the benchmark

with a transparent market. In Section 5, we then illustrate how the presence of an informa-

tional friction can generate strategic complementarities between traders’ liquidity consumption

decisions. We show that such complementarities are at the root of the loop responsible for

equilibrium multiplicity and liquidity fragility. A final section contains concluding remarks.

All proofs are in the appendix.

2 Literature review

This paper is related to five strands of the literature. First, equilibrium multiplicity, comple-

mentarities, and liquidity fragility are phenomena known to obtain in economies where asset

prices are driven by fundamentals information and noise trading (see, e.g., Cespa and Foucault

(2014), Cespa and Vives (2015), Goldstein et al. (2014), and Goldstein and Yang (2015)). In

this setup, in contrast, asset prices are exclusively driven by non-fundamentals information.

However, the demand of all traders is responsive to the volatility of the price at which agents

unwind their positions. In turn, such volatility depends on traders’ demand. It is precisely this

two-sided loop—which in a noise traders’ economy cannot possibly arise—that is responsible

for our multiplicity result. Other authors obtain multiple equilibria in setups where order flows

are driven by only one type of shock (see, e.g., Spiegel (1998)). However, multiplicity there

arises from the bootstrap nature of expectations in the steady-state equilibrium of an overlap-

ping generations (OLG) model in which investors live for two periods. Our setup, in contrast,

considers an economy with a finite number of trading rounds. Interestingly, our fragility result

bears some resemblance with Gennotte and Leland (1990), in that fragility arises because of the

change in slope of a demand curve. Note, however, that Gennotte and Leland (1990) analyze

a market where non-linearity of the demand from portfolio insurers and sufficient uncertainty

about its magnitude, may make the aggregate demand for the security upward sloping in its

price. In this situation, fundamentals-informed traders may mistakenly attribute a price de-

cline to fundamentals, and start a selling pressure that triggers a price crash. In our setup, in

contrast, no trader has information on the fundamentals, and liquidity can rapidly deteriorate
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when traders’ demand becomes upward sloping in illiquidity.

Second, the paper is related to the literature on market transparency. A central tenet of this

literature is that of the different impact of pre- and post-trade transparency on market liquidity.

In this respect, it is generally accepted that visibility of competing quotes or incoming orders–

two distinct dimensions of pre-trade transparency–improves market liquidity; conversely, order

flow visibility–which instead relates to post-trade transparency–can have a mixed effect on the

time series of market liquidity (see, Foucault et al. (2013)). Our paper adds to the debate on

the effects of post-trade transparency showing that when traders’ information on past order

flows is noisy, the market can become fragile, but also arguing that transparency can have a

non-monotone effect on market liquidity.9

Third, the paper relates to the literature that assesses the impact of limited market par-

ticipation. Heston et al. (2010) and Bogousslavsky (2016) find that some liquidity providers’

limited market participation can have implications for return predictability. Chien et al. (2012)

focus instead on the time-series properties of risk premium volatility. Hendershott et al. (2014)

concentrate on the effect of limited market participation for price departures from semi-strong

efficiency. Our focus is, instead, on the destabilizing dynamics that is generated by bouts of

illiquidity. In this respect, our paper is also related to Huang and Wang (2009) who show

that with costly market participation, idiosyncratic endowment shocks can yield crashes. Note,

however, that in our setup traders are exposed to the same shock, which yields a different

mechanism for market instability.

Fourth, by highlighting the first order asset pricing impact of uninformed traders’ imbal-

ance predictability, this paper shares some features of our previous work (Cespa and Vives

(2012), and Cespa and Vives (2015)). In that setup, however, predictability obtained because

of the assumed statistical properties of noise traders’ demands, whereas in this paper it arises

endogenously, because of a participation friction. A growing literature investigates the asset

pricing implications of noise trading predictability. Collin-Dufresne and Vos (2015) argue that

informed traders time their entry to the presence of noise traders in the market. This, in turn,

implies that standard measures of liquidity may fail to pick up the presence of such traders.

Peress and Schmidt (2015) estimate the statistical properties of a noise trading process, finding

support for the presence of serial correlation in demand shocks.

Finally, the paper also adds to the theoretical literature on the impact of high frequency

trading (HFT) on market performance. Indeed, our full dealers can be seen as HFT who can

constantly monitor the market. In this respect, we show that an informational friction arising

from liquidity provision fragmentation can be responsible for liquidity fragility, reversing the

positive association between computerized trading and liquid markets (see, e.g., Hendershott

et al. (2010)).10 Additionally, our paper provides an alternative interpretation of some narrative

9Importantly, as none of the traders in our model has fundamentals information, transparency and opaqueness
relate to information about liquidity-motivated order imbalances, differently from e.g., Banerjee et al. (2018).

10Differently from our setup, the HFT literature has mostly concentrated on modeling risk neutral agents
(e.g., Budish et al. (2015), Hoffmann (2014), Du and Zhu (2017), Bongaerts and Van Achter (2015), Foucault
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of the May 10, 2010 “flash crash.” Easley et al. (2011, 2012), find that in the hours preceding the

flash crash, signed order imbalance for the E-mini S&P500 futures contract was unusually high.

They interpret this evidence as supportive of a high order flow “toxicity,” which led HFTs to flee

the market, eventually precipitating the crash. As argued above, our model also predicts that

large imbalances can lead to a huge liquidity withdrawal. However, the channel we highlight

is not related to adverse selection, but emphasizes the multiplier effect of illiquidity on the

demand for immediacy that can arise when some traders have access to differential information

on imbalances. Finally, Han et al. (2014), in a Glosten and Milgrom (1985) setup with HFT

and low frequency market makers, also find that illiquidity is hump-shaped in the proportion

of HFT. However, in their model this result arises from an adverse selection problem that

HFTs creates for low frequency dealers. In our model, instead, dealers face no adverse selection

risk, and hump-shaped illiquidity arises because of strategic complementarities between traders’

liquidity consumption decisions.

3 The model

A single risky asset with liquidation value v ∼ N(0, τ−1v ), and a risk-less asset with unit return

are exchanged in a market during two trading rounds. Three classes of traders are in the

market. First, a continuum of competitive, risk-averse, “Full Dealers” (denoted by FD) in the

interval (0, µ), are active at both dates. Second, competitive, risk-averse “Standard Dealers”

(SD) in the interval [µ, 1], are active only in the first period. Finally, a unit mass of short-term

traders enters the market at date 1. At date 2, these traders unwind their position, and are

replaced by a new cohort of short-term traders (of unit mass). The asset is liquidated at date

3. We now illustrate the preferences and orders of the different players.

3.1 Liquidity providers

A FD has CARA preferences with risk-tolerance γ, and submits price-contingent orders xFDt ,

t = 1, 2, to maximize the expected utility of his final wealth: W FD = (v − p2)x
FD
2 + (p2 −

p1)x
FD
1 .11 A SD also has CARA preferences with risk-tolerance γ, but is in the market only

in the first period. He thus submits a price-contingent order xSD1 to maximize the expected

utility of his wealth W SD = (v − p1)xSD1 . The inability of SD to trade in the second period

captures some liquidity suppliers’ limited market participation. This friction could be due to

technological reasons as in the case of dealers with impaired access to a technology that allows

trading at high frequencies. Alternatively, it could arise from limited access to the trading

venue, as in the case of those liquidity suppliers who in the 80s could not access the NYSE

trading floor.

et al. (2016), and Menkveld and Zoican (2017); see O’Hara (2015) and Menkveld (2016) for literature surveys)
11We assume, without loss of generality with CARA preferences, that the non-random endowment of FDs

and dealers is zero. Also, as equilibrium strategies will be symmetric, we drop the subindex i.
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3.2 Short-term traders

Short-term traders represent the liquidity demand side of the model. In the first period, a unit

mass of short-term, CARA traders with risk-tolerance γ1 is in the market. A short-term trader

receives a random endowment of a risky asset u1 whose payoff is perfectly correlated with the

one of the asset traded in the market, and takes a position (a market order) x1, anticipating that

it will unwind it in the following period, and leave the market. Formally, a trader maximizes

the expected utility of his wealth π1 = u1p2 + (p2 − p1)x1:

E [− exp{−π1/γ1}|Ω1] ,

where Ω1 ≡ {u1} denotes his information set. In period 2, first period traders are replaced by

a new (unit) mass of traders receiving a random endowment of the same risky asset as their

previous period peers u2, and observing a noisy signal of the previous period endowment shock

su1 = u1 + η. A second period trader has a CARA utility function with risk-tolerance γ2, and

submits a market order to maximize the expected utility of his wealth π2 = u2v + (v − p2)x2:

E [− exp{−π2/γ2}|Ω2] ,

where Ω2 ≡ {u2, su1} denotes his information set.12 We assume ut ∼ N(0, τ−1ut ), η ∼ N(0, τ−1η )

and Cov[ut, v] = Cov[ut, η] = Cov[u1, u2] = 0, t = 1, 2.

The assumption of a random endowment whose value is perfectly correlated with that of

the risky asset traded in the market is standard in the literature (see, e.g., Huang and Wang

(2009) and Vayanos and Wang (2012)).13 Practically, it captures instances in which a trader

uses a security that replicates his endowment to hedge his risk exposure. For example, the

endowment could be a portfolio of stocks that tracks the market, say a fund, and the trader

could hedge his exposure using a market-tracking ETF; alternatively, the endowment could

represent a position on a S&P500 ETF, like the SPY, and the hedging instrument would be the

Emini (while the former trades from 6am to 8pm, including extended trading hours, the latter

trades 24/7, thus allowing overnight hedging).14 Importantly, in our setup the price at which

first period traders unwind their position depends on the market conditions prevailing at the

second trading round, and is therefore endogenous. This means that when unwinding the ETF

position at t = 2, the trader cashes p2x1 while valuing the endowment at the ETF price p2.

To simplify notation, in the following we denote by Ek
t [Y ], and Varkt [Y ], k ∈ {FD, SD}, the

12Our results are robust to the case in which the first period market is populated by a mass β of short-term
traders, that unwind at date 2, and a mass (1− β) of long-term ones that hold their position until liquidation.

13These authors posit that traders receive an endowment in a consumption good that is perfectly correlated
with the value of the risky asset at the terminal date.

14For an example involving SPY, see https://money.stackexchange.com/questions/54373/why-dont-spy-spx-
and-the-e-mini-sp-500-track-perfectly-with-each-other, and http://tastytradenetwork.squarespace.com/tt/blog/equating-
futures-to-etfs, and for other ETF related examples, see https://investorplace.com/2017/10/portfolio-hedge-
fund-consider-etfs/.
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conditional expectation and variance that a k-type dealer forms about Y , in period t = 1, 2.

Similarly, E1[Y ], and Var1[Y ] denote the conditional expectation and variance that a period-t

trader forms about Y .

3.3 Market clearing conditions

We restrict attention to linear equilibria where prices reflect traders’ information and endow-

ment shocks:

p1 = −Λ1u1 (1a)

p2 = −Λ2u2 − Λ21u1 − Λ22η, (1b)

and Λ1, Λ2, Λ21, Λ22 are coefficients which will be pinned down at equilibrium.

The intuition for (1a) and (1b) is as follows. At equilibrium the orders of first period traders

are absorbed by both FDs and SDs:

µxFD1 + (1− µ)xSD1 + x1 = 0. (2)

Traders know u1, while, at equilibrium, dealers infer it from the price, which justifies (1a).

Consider now the second period equilibrium condition. When µ < 1, FDs’ aggregate

position falls short of x1: µx
FD
1 + x1 6= 0. Thus, FDs second period inventory is insufficient

to absorb the reverting orders that first period traders post in period 2. This creates an order

imbalance driven by the first period endowment shock u1 that adds to the one originating from

second period trades, and affects the second period price. Formally, from the second period

market clearing equation we have

µ(xFD2 − xFD1 ) + (x2 − x1) = 0.

Substituting (2) in the latter and rearranging yields:

µxFD2 + x2 + (1− µ)xSD1 = 0. (3)

At equilibrium, dealers’ and traders’ strategies are a function of their information sets–{p1, p2}
for FDs, p1 for SDs and Ω2 for second period traders. As a consequence, the price will load

on {u1, u2, η}, justifying (1b). Figure 1 displays the timeline of the model.
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1

− Liquidity traders
receive u1 and
submit market
order x1.

− FDs submit limit
order µxFD

1 .

− Dealers sub-
mit limit order
(1− µ)xSD

1 .

2

− 1st period
liquidity traders
liquidate their
positions.

− New cohort of
liquidity traders re-
ceives u2, observes
su1

, and submits
market order x2.

− FDs submit limit
order µxFD

2 .

3

− Asset liquidates.

Figure 1: The timeline.

4 Market transparency and the rationing effect of illiq-

uidity

In this section, we assume that second period traders have a perfect signal on the first period

endowment shock, and derive the unique equilibrium of the model (Proposition 1). We then

characterize the trading strategies of liquidity suppliers and demanders (Corollary 1, and 2),

and derive the liquidity supply and demand functions (Corollary 3, and 4).

Proposition 1. When the market is fully transparent there exists a unique linear equilibrium,

where prices are given by (1a) and (1b), Λ22 = 0, and

Λ∗1 =
1

(γ + (γ + γ2)(µγ + γ1)(µγ + γ2)τvτu2)τv
(4a)

Λ∗2 =
1

(µγ + γ2)τv
(4b)

Λ∗21 = −(1− µ)γΛ∗1Λ
∗
2τv. (4c)

The coefficient Λt, i.e. the period t endowment shock’s negative price impact, is our measure

of illiquidity:

Λt = −∂pt
∂ut

. (5)

According to the above result, when second period traders have a perfect signal on the first

period endowment shock, the equilibrium is unique, and prices only reflect endowment shocks.

To understand the logic of the equilibrium, the next two results describe the strategies of market

participants:
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Corollary 1. When the market is fully transparent, liquidity providers’ strategies are given by

xFD1 = γ
EFD

1 [p2 − p1]
VarFD1 [p2]

− γτvp1 (6a)

xSD1 = −γτvp1 (6b)

xFD2 = −γτvp2, (6c)

where VarFD1 [p2] = Λ2
2τ
−1
u2

, EFD
1 [p2] = −Λ21u1.

In the second period, FDs supply liquidity by posting a price contingent order, with an

aggressiveness that is inversely proportional to their risk aversion and the risk of the asset

payoff. Other things equal, a lower liquidity (a higher Λ2) increases the price adjustment

induced by the endowment shock, making liquidity provision more profitable, and increasing

the size of their position. A similar behavior is displayed by standard dealers in the first

period. The first period strategy of a FD has two components which, substituting (1a) and

the expressions for expectation and conditional variance in (6a), are given by:

xFD1 = γτu2
Λ1 − Λ21

Λ2
2

u1︸ ︷︷ ︸
Speculation

− γτvp1︸ ︷︷ ︸
Market making

, (7)

According to (7), a FD provides liquidity in two distinct ways. First, for given u1 he speculates

on short-term returns, buying in the face of a price drop (i.e., when u1 > 0, since due to (4a)

and (4c) Λ1 − Λ21 > 0), and selling otherwise. This is because he anticipates the future price

impact of first period liquidity traders’ reversion.15 In this respect, FDs supply liquidity by

placing “directional bets.”16 The larger is the wedge between the impact of u1 on p2 and p1,

and the smaller is the conditional return volatility, the larger is the size of the FD’s directional

bet, in absolute value terms. Additionally, a FD places a price contingent order to absorb the

residual imbalance, like a standard dealer.

Corollary 2. When the market is fully transparent, traders’ strategies are given by x1 =

a1u1, x2 = a2u2 + bu1, where

a1 = γ1
Λ1 − Λ21

Var1[p2]
− 1 ∈

(
− 1,− µγ

µγ + γ1

)
(8a)

a2 = γ2τvΛ2 − 1 ∈ (−1, 0) (8b)

b = −(1− µ)(1 + a2)γτvΛ1 < 0, (8c)

where Var1[p2] = Λ2
2τ
−1
u2

.

15This is consistent with Hirschey (2016) who finds that HFTs trade ahead of other investors’ order flow.
16This is consisten with the literature linking liquidity supply to sophisticated traders’ contrarian behavior

(Nagel (2012), Brogaard et al. (2014), and Biais et al. (2015)).
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According to (8a) and (8b), first and second period traders demand liquidity to hedge

a fraction of their endowment shock (the hedging coefficient at, is negative). In the first

period, for given u1 a trader’s order is in absolute value larger, the smaller is the expected

short-term return (that corresponds to the wedge between the impact of u1 on p2 and p1:

E1[p2 − p1] = (Λ1 − Λ21)u1), and the larger is the conditional return volatility. Thus, FDs

and first period traders react in opposite ways to a change in the security short-term return

expectation and variance.

This is because a FD has no initial exposure to the risky security and seeks to profit

from placing a directional bet. The larger the expected appreciation, and the smaller the

conditional return volatility, the more profitable and less risky the bet is, and the larger its

size. Conversely, a trader holds an endowment u1 whose value is correlated with that of the

risky asset. He thus seeks protection against the hedging instrument’s future price uncertainty,

while banking (effectively, speculating) on its potential appreciation. Such protection is more

valuable (and thus x1 is larger in absolute value), the smaller the hedging instrument expected

appreciation, and the higher its future price volatility.

According to (8c), second period traders also speculate on the propagated order imbalance

by putting a negative weight on their signal (b < 0). Note that the “speculative aggressiveness”

|b| increases in first period illiquidity. This is because, for u1 > 0, first period traders’ reversion

has a positive impact on p2 (see (1b) and (4c)):

Cov[p2, u1] = −Λ21τ
−1
u1

> 0,

which prompts second period traders to short the asset. A less liquid first period market

increases the position held by standard dealers (see (6b)), increasing the size of the propagated

imbalance in the second period equilibrium condition (see (3)), and leading second period

traders to step up their speculative aggressiveness.

We now derive the liquidity supply and demand schedules, which we employ to illustrate

equilibrium determination in the paper.

Corollary 3. The illiquidity coefficient Λt reflects dealers’ risk-related compensation to absorb

the outstanding imbalance in their inventory, i.e., the cost of supplying liquidity:

Λ1 =

(
1− (µγ + γ1)(1 + a1)

γ1

)
1

γτv
(9a)

Λ2 = − a2
µγτv

. (9b)

Λt is decreasing in at.

Differently from a noise trader economy, in this model dealers’ inventory depends on the

equilibrium trading decisions of FDs and liquidity traders. For Λ2 (see (9b)), this is immedi-

ate, since a2 measures the fraction of the second period endowment shock that traders hedge
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(see (8b)), the risk of the asset payoff is Var[v] = 1/τv, and second period dealers’ aggregate

risk bearing capacity is given by µγ.17

For Λ1, the argument is as follows. In view of (8a), at equilibrium first period traders hold

a fraction

1 + a1, (10)

of their endowment shock. At the same time, according to (7) and (8a), FDs aggregate direc-

tional bet per unit of endowment shock is given by:

FDs aggregate directional bet per unit of endowment shock = µγ
1 + a1
γ1

. (11)

Thus, summing (10) and (11) yields the fraction of the endowment shock that does not dent

liquidity suppliers’ inventory bearing capacity:

1 + a1 + µγ
1 + a1
γ1

=
(µγ + γ1)(1 + a1)

γ1
, (12)

while the complement to one of (12) captures dealers’ inventory (per unit of endowment shock):

Dealer’s inventory per unit of endowment shock = 1− (µγ + γ1)(1 + a1)

γ1
. (13)

At date 1, FDs know that they will be able to unwind their inventory in the second trading

round, when x1 reverts. However, at that point in time, a new generation of traders enters the

market. These traders hedge a new endowment shock, exposing FDs to the risk of holding

their initial inventory until the liquidation date. Thus, for given inventory (13), the riskier is

the asset, and the more risk averse FDs are, the higher is the risk borne by liquidity suppliers,

and, according to (9a), the less liquid is the market.

According to (9a) and (9b), the liquidity supply curve is a decreasing function of the hedging

coefficient at. As at moves towards its upper bound, first period trader’s liquidity demand

decreases, dealers’ inventory shrinks (the cost of supplying liquidity declines), and dealers supply

more liquidity.

Replacing (4b) and (4c) in (8a) yields the first period hedging coefficient as a function of

Λ1:

Corollary 4. In a fully transparent market, the first period demand for liquidity is a decreasing

function of Λ1:

a1 = γ1(γ + γ2)(µγ + γ2)τ
2
v τu2Λ1 − 1. (14)

Other things equal, a higher Λ1 increases the expected short term return on the endowment

u1, without affecting the conditional volatility of short-term returns. This, in turn, leads

traders to lower their liquidity demand (the hedging coefficient a1 approaches its upper bound):

17Limited market participation implies that only a proportion µ of FDs is in the market at date 2.
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illiquidity has a rationing effect. In Figure 2 we plot the liquidity supply and demand curves for

a given set of parameter values (respectively, in blue and green). The intersection between the

two curves identifies the equilibrium illiquidity and hedging coefficient in a transparent market.

In the figure, we also analyze the effect of an increase in the mass of FDs. A larger µ

increases the aggregate speculative position of FDs (see (11)), lowering dealers’ inventory.

This reduces the cost of liquidity supply for all levels of a1. As a result, when µ increases,

the new function Λ1 shifts downwards. Consider now a1. A larger FD mass lowers traders’

uncertainty on p2, lowering their demand for liquidity.18 Thus, when µ increases, a1 shifts

leftwards. Thus,

Corollary 5. In a fully transparent market, an increase in the mass of FDs makes the market

more liquid, and increases the first period liquidity demand.

0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

Λ1

a1

Λ1, µ = 0.2
a1, µ = 0.2
Λ1, µ = 0.5
a1, µ = 0.5

Figure 2: Liquidity consumption and illiquidity with transparency. Parameter values: γ =
γ2 = 0.9, γ1 = 0.2, τu1 = 2, τu2 = 200, and τv = 0.1.

We concentrate our analysis on the liquidity of the first period market. However, note that

as the volatility of the first period price is given by

Var[p1] = Λ2
1τ
−1
u1
,

our liquidity results can also be interpreted in terms of price volatility.

18To be sure, for given Λ1, µ has a weaker impact on the expected return E1[p2−p1] = Λ1(γ+γ2)u1/(µγ+γ2),
than on the volatility of the expected return Var1[p2] = 1/(µγ + γ2)2τ2v τu2 .
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5 Imperfect transparency and the feedback effect of illiq-

uidity

Suppose now that second period traders’ signal on u1 has a bounded precision (τη <∞). This

setup characterizes a scenario where some traders (FDs, in our setup) have access to better

market information (for example on order imbalances) compared to others (the second cohort

of traders). Alternatively, this assumption captures a situation where all traders can observe

past prices in real time but in which only FDs have the ability to exactly parse u1 out of p1.

In the following, we first state the equilibrium existence result when the market is not

fully transparent (Proposition 2). We then analyze how lack of transparency affects traders’

strategies (Corollary 6), and can make liquidity demand upward sloping in illiquidity and FDs’

directional bet decline with illiquidity (Corollary 8). We then concentrate on the analysis of

equilibrium multiplicity and liquidity fragility, providing numerical examples.

In terms of notation, we use the superscript T to denote the equilibrium coefficient of the

fully transparent market. The following result characterizes the equilibrium price coefficients:

Proposition 2. When 0 < τη < ∞, an equilibrium exists where prices are given by (1a)

and (1b), the second period price coefficients are as follows:

Λ∗2 =
1

(µγκ+ γ2)τv
(15a)

Λ∗21 = −1− µ
µ

Λ1Λ
∗
2τv(µγκ+ αγ2) (15b)

Λ∗22 =
1− µ
µ

Λ1Λ
∗
2τv(1− α)γ2, (15c)

where

κ ≡ τvVar2[v − p2] = 1 +

(
1− µ
µ

)2
Λ2

1τv
τu1 + τη

> 1, α ≡ τu1
τu1 + τη

, (16)

and first period illiquidity obtains as a fixed point of the following map:

ψ(Λ1) =
(Λ∗22)

2τu2 + ((Λ∗2)
2 + (µγ + γ1)τu2Λ

∗
21)τη

γ1τu2τη + γ(((Λ∗22)
2τu2 + (Λ∗2)

2τη)τv + µτητu2)
. (17)

At equilibrium, Λ∗1 ∈ (0, 1/γτv), and Λ∗2 ∈ (0,ΛT
2 ).

Second period traders cannot perfectly observe u1. This affects second period price coeffi-

cients via κ and α (see (15a)–(15c), and (16)), implies that the second period price loads also

on the error term η (see (15c)), and impacts traders’ behavior at both rounds:

Corollary 6. When the market is not fully transparent, traders’ strategies are given by x1 =
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a1u1, x2 = a2u2 + bsu1, where

a1 = γ1
Λ1 − Λ21

Var1[p2]
− 1 < 0 (18a)

a2 =
γ2τvΛ2 − 1

κ
∈ (aT2 , 0) (18b)

b = −(1− µ)(1 + κa2)(1− α)γτvΛ1 < 0, (18c)

where Var1[p2] = Λ2
2τ
−1
u2

+ Λ2
22τ
−1
η .

Traders at the second round face execution risk, and hedge a smaller fraction of their

endowment shock (see (18b)), which explains why Λ∗2 < ΛT
2 . The impact of lack of transparency

on second period traders’ speculation and first period traders’ hedging is instead more complex.

To see why, suppose that first period illiquidity increases. As in the transparent market

benchmark, this increases the propagation of the first period endowment shock, since

Cov[p2, u1] = −Λ∗21τ
−1
u1

> 0,

is increasing in Λ1. However, differently from the transparent market benchmark, as second

period traders cannot observe u1, this also increases these traders’ return uncertainty Var2[v−p2]
(see (16)), in turn affecting their hedging and speculative aggressiveness:

Corollary 7. In a not fully transparent market an increase in first period illiquidity, increases

both the impact of the first period endowment shock on the second period price and second period

traders’ return uncertainty, while decreasing second period traders’ hedging aggressiveness. The

impact on second period speculative aggressiveness is inconclusive:

∂Cov[p2, u1]

∂Λ1

> 0,
∂Var2[v − p2]

∂Λ1

> 0,
∂|a2|
∂Λ1

< 0,
∂|b|
∂Λ1

≶ 0. (19)

Based on (16), an increase in Λ1 increases second period traders’ execution risk, which

heightens Var2[v − p2], depressing |a2|. The impact on second period traders’ speculative ag-

gressiveness instead obtains as the sum of two contrasting effects:

∂|b|
∂Λ1

= (1− µ)(1− α)γτv

∣∣∣∣ 1 + κa2︸ ︷︷ ︸
Speculation effect (+)

+

(
∂κ

∂Λ1

a2 +
∂a2
∂Λ1

κ︸ ︷︷ ︸
Uncertainty effect (−)

)
Λ1

∣∣∣∣. (20)

As noted above, due to lack of transparency, a stronger endowment shock propagation, heightens

execution risk, taming traders’ reaction to their signal. However, as it also opens more profitable

opportunities to second period traders, it pushes them to speculate more aggressively, injecting

more noise in the second period price.19 If the latter effect is sufficiently strong, it can in turn

19For example, trying to sell (buy) when u1 < 0 (u1 > 0), because su1
> 0 (su1

< 0).
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lead to an increase in first period traders’ return uncertainty:

∂Var1[p2]

∂Λ1

= 2

(
∂Λ∗2
∂Λ1

τ−1u2︸ ︷︷ ︸
Uncertainty effect (−)

+
∂Λ∗21
∂Λ1

τ−1η︸ ︷︷ ︸
Speculation effect (±)

)
, (21)

which can offset the positive impact that a higher illiquidity has on the first period expected

return (per unit of endowment shock):

∂E1[p2 − p1]/u1
∂Λ1

=
1− µ
µ

τv

(
Λ∗2(µγκ+ αγ2) + Λ1

µγγ2(1− α)κ′

(µγκ+ γ2)2

)
+ 1 > 0, (22)

where κ′ ≡ ∂κ/∂Λ1.

As a result, we have that, differently from the transparent market benchmark:

Corollary 8. Without full transparency, in the fist period an increase in illiquidity may lead

to an increase in the demand for liquidity and a decrease in the size of FDs’ directional bets.
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Figure 3: Liquidity consumption and illiquidity with opaqueness. Parameter values: γ = γ2 =
1, γ1 = 0.5, τu1 = 0.5, τu2 = 200, τη = 10, µ = 0.1, and τv = 0.1.

In Figure 3 we show an example of the impact of alck of transparency for the equilibrium

level of illiquidity.20 In the figure, when the market is not fully transparent (“Opaque”), first

period traders’ liquidity demand has a backward bending segment (illiquidity becomes a Giffen

good). This, in turn, magnifies the equilibrium level of illiquidity, as well as traders’ liquidity

demand:

Λ∗1

{
0.37 Transparent market

3.82 Opaque market
a∗1

{
−0.2 Transparent market

−0.49 Opaque market

20The plot for Λ1 as a function of a1 is obtained using (9a), since lack of transparency does not change the
logic behind the construction of the liquidity supply curve.
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Note that in the example, lack of transparency leads to a 10-fold illiquidity increase, while

traders’ liquidity demand increases by a 2.5-factor. How can such a disproportionate effect

arise?

To understand the reason for this effect, recall the discussion following Corollary 2. There

we argued that FDs and first period traders react in opposite ways to a change in the risky

security’s short-term return expectation and variance. Due to market opaqueness, an illiquidity

spike can generate an increase in return uncertainty that swamps the positive impact it has on

expected returns. This leads first period traders to demand more liquidity (solid green curve in

Figure 3), and FDs to reduce the size of their directional bets (solid green curve in Figure 4),

exacerbating the liquidity rout.

0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

Λ1

µγ(1 + a1)/γ1

Opaque
Transparent

Figure 4: The effect of market opaqueness on FDs directional bets. Parameter values: γ =
γ2 = 1, γ1 = 0.5, τu1 = 0.5, τu2 = 200, τη = 10, µ = 0.1, and τv = 0.1.

5.1 Equilibrium multiplicity

A second effect of alck of transparency is the possibility of multiple, self-fulfilling equilibria

which arise out of strategic complementarities in liquidity demand. According to Corollary 7,

a less liquid first period market heightens the time-propagation of the first period shock. This,

in turn, can lead second period traders to speculate more aggressively on the u1-led imbalance

(see (20)), which can increase the uncertainty faced by first period traders on p2 (see (21)). As a

consequence, first period traders can decide to hedge more (Corollary 8), and FDs to speculate

less. This chain of effects turns out to be particularly strong when the risk bearing capacity of

FDs is sufficiently high, first period traders are sufficiently risk averse, second period traders

have a sufficiently informative signal, and face low endowment risk, and the risk of the asset

payoff is large. In these conditions, an initial dearth of liquidity escalates into a loop that

sustains three equilibrium levels of liquidity:
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Proposition 3. Without full market transparency, there exists a set of parameter values, such

that for, τv < τ̄v, µ < µ̄, and γ1 < γ̄1, three equilibrium levels of liquidity (Λ∗1)
H , (Λ∗1)

I , (Λ∗1)
L

arise, where

0 < (Λ∗1)
H <

µ

1− µ
< (Λ∗1)

I <
1

1− µ
< (Λ∗1)

L <
1

γτv
. (23)

We will refer to the equilibrium where Λ∗1 is low (resp., intermediate, and high) as the

High, (resp., Intermediate, and Low) liquidity equilibrium (HLE, ILE, and LLE). Note that

the expression for Λ1(a1) coincides with the one obtained in Section 4. Since Λ1(a1) is decreasing

in a1 (Corollary 3), the hedging activity of first period traders is respectively high, intermediate,

and low along (Λ∗1)
L, (Λ∗1)

I , and (Λ∗1)
H . This is a further manifestation of the fact that the

feedback effect of liquidity jams the stabilizing impact of an increase in illiquidity on traders’

hedging demand. Figure 5 provides a numerical example of the proposition.
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Figure 5: Liquidity consumption and illiquidity with opaqueness. Parameter values: γ = γ2 =
0.9, γ1 = 0.2, τu1 = 2, τu2 = 600, τη = 10, µ = 0.2, and τv = 0.1. The first (second) gridline
is drawn at µ/(1 − µ) = 0.25 (1/(1 − µ) = 1.25), which according to (23) define the intervals
where the HLE (ILE) are located.

The following corollary follows from Proposition 3:

Corollary 9. Without full market transparency, when the volatility of the second period en-

dowment shock vanishes (τu2 →∞), (Λ∗1)
H → 0. When the market is fully transparent, this is

the unique equilibrium of the model.

When τu2 → ∞, second period traders have no endowment to hedge, and only trade to

speculate on the u1-induced imbalance. In the equilibrium where Λ∗1 = 0, xD1 = 0, so that

first period traders’ orders are absorbed by FDs’ speculative trades, no imbalance arises in the

second period, and b = 0 (see (18c)). When second period traders’ signal on u1 is noiseless, this

equilibrium is unique. For τη finite, however, first period traders cannot rule out the possibility
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that second period traders speculate on a certain realization of su1 that gives an incorrect signal

about u1 (e.g., su1 > 0, while u1 < 0). This increases the uncertainty they face, and triggers

the loop that can lead to the appearance of two further equilibria.

To study comparative statics, we plot the function ψ(Λ1) (see (17)), that can be interpreted

as an aggregate best response of first period traders to a change in first period illiquidity. As we

explain in the appendix, the fixed points of ψ(Λ1) correspond to the equilibria of the market.21

Figure 6 provides a graphical representation of the best response, for a set of parameters yielding

multiple equilibria.
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Figure 6: The best response mapping Ψ(Λ1). Parameter values: γ = γ2 = 0.9, γ1 = 0.2,
τu1 = 2, τu2 = 400, τη = 10, µ = 0.2, and τv = 0.1.

Higher values of τu2 , γ2, and intermediate values of τη, strengthen the degree of strategic

complementarity, facilitating equilibrium multiplicity. Intuitively, under these conditions sec-

ond period traders are relatively better positioned to speculate on the propagated imbalance,

which reinforces the impact of their orders on first period traders’ uncertainty. A positive shock

to µ, γ, γ1, τu1 , and τv moves the best response down and also mildly decreases the degree of

strategic complementarity. These shocks increase the risk bearing capacity of the market, and

reduce the risk to which first period traders are exposed. As a consequence, they weaken the

impact of second period traders’ orders on first period traders’ uncertainty

More in detail, as shown in Figures 11 and 12 (in the Appendix):

1. An increase in µ increases the risk bearing capacity of the market, and lowers the second

period imbalance due to u1. This shifts the best response mapping downwards, implying

a higher (lower) liquidity at (Λ∗1)
H , (Λ∗1)

L ((Λ∗1)
I). A similar effect obtains when γ or τv

increase (see Figure 11, Panel (a), (b), and (c)).

21See the proof of Proposition 2, and in particular the discussion around (A.22).
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2. An increase in γ1 or in τu1 works to lower the supply shock that Ds and FDs absorb in the

first period, and thus the second period imbalance due to u1, shifting the best response

mapping downwards (see Figure 11, Panel (d) and (e)).

3. An increase in τη has two contrasting effects on the strength of strategic complementarity.

For τη small, a more precise signal on u1 boosts second period traders’ speculation on the

u1-induced imbalance, heightening first period traders’ uncertainty on p2, increasing Λ∗1,

and strengthening complementarity. As τη increases further, Var1[p2] starts decreasing

(see the expression in Proposition 2), leading first period traders to hold more of their

endowment shock, increasing the liquidity of the first period market, reducing the size of

the u1-led imbalance, and weakening complementarity. When τη →∞, first period short

term traders anticipate the trades of second period short term traders. The consequence

is that (i) the impact of second period traders’ speculation on Var1[p2] disappears, and

(ii) second period traders’ uncertainty no longer depends on Λ∗1 (see the expression for

Var2[v − p2] in Proposition 2). This severs the link between trading decisions at the

two dates, yielding a unique equilibrium (as we know from the analysis of Section 4).

Figure 12, panel (a), illustrates this effect. Note that as τη increases, the intermediate and

low liquidity equilibria eventually disappear, but liquidity at the high liquidity equilibrium

diminishes (compared with the case with low signal precision).

4. An increase in γ2 increases the strength of strategic complementarity. Other things equal,

according to (18b) and (18c), when second period traders become more risk tolerant they

hedge less of their endowment shock, and speculate more aggressively against the u1-led

imbalance. The first of the above effects works to weaken strategic complementarities,

because it reduces the impact of the endowment shock on first period traders’ uncertainty.

Conversely, the second effect strengthens them, and always prevails in our simulations as

illustrated in Figure 12, Panel (b).

5. Finally, for τu2 < ∞, a lower τu2 magnifies the risk to which first period traders are

exposed, and works to shift the best response upwards. The smaller τu2 becomes, the

harder it is to sustain the equilibrium with high liquidity. When τu2 becomes very small,

our simulations show that only the low liquidity equilibrium survives. Figure 12, Panel

(c) in the Appendix illustrates this effect.22 In the limit case where τu2 → 0, we obtain

the following result:

Corollary 10. When τu2 → 0, Λ∗1 = 1/γτv, and a1 = −1.

22According to Corollary 9 in the extreme case in which the second period endowment shock is null (almost
surely), there always exist an equilibrium where Λ∗1 = 0, xSD

1 = 0, so that first period traders’ orders are
absorbed by FDs’ speculative trades, which implies that no imbalance arises in the second period, and b = 0
(see (18c)). A full analytical characterization of this equilibrium is complex. Numerically, it can be seen that
first period liquidity traders hedge the smallest possible fraction of their endowment shock: a1 → −µγ/(µγ+γ1).
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Therefore, when second period traders’ endowment shock volatility explodes, first period

traders cannot anticipate p2, and hedge all of their endowment, like noise traders.

5.2 Fragility

The feedback loop induced by lack of market transparency implies that liquidity can be “fragile,”

in the sense that a relatively small shock to one of the model’s parameters can lead to a

disproportionately large change in liquidity. We show this with two examples. In the first one,

we consider the effect of a parameter shock yielding a switch from the HLE to an equilibrium

with low liquidity. In the second example, we show that when a unique equilibrium obtains, Λ∗1

can be hump-shaped in µ. This implies that a sudden reduction in the mass of FDs can lead

to a large drop in liquidity.

5.2.1 Equilibrium switch

Consider Panel (a) in Figure 7, and suppose that initially the market is at the high liquidity

equilibrium, where Λ∗1 = 0.22. Suppose that a technical “glitch” disconnects 6% of the FDs. In

this new situation, the plot for Λ1(a1) shifts upwards, while the one for a1(Λ1) moves downwards,

as illustrated in panel (b) of the figure. As a result, a new, unique equilibrium obtains with

Λ∗1 = 3.5, which corresponds to a 16-fold liquidity decrease.

A similar effect also arises if we shock the volatility of first or second period traders’ en-

dowment. To see this, suppose now that starting from Panel (a) in the figure, we introduce

a 5% negative shock to τu1 (i.e., we move τu1 from 2 to 1.9), which increases the likelihood

that an order of an unusual magnitude hits the first period market. As shown in Panel (c) of

Figure 7, this leads to a downward shift in the plot for a1 which is large enough to eliminate

the HLE and move the market towards a new equilibrium with low liquidity in which Λ∗1 = 3.5

and a1 = −0.6. Finally, suppose that we increase the volatility of the second period endow-

ment shock, introducing a 7% negative shock to τu2 (lowering it to 620). In this new situation,

the plot for the function a1(Λ
∗
1) moves downwards, while the one for Λ∗1(a1) is unchanged (see

Panel (d) in Figure 7). A unique equilibrium obtains, where Λ∗1 = 3.5, implying liquidity dry-up

comparable to the one of the previous examples.

The dynamics of the latter comparative statics exercise appear to be consistent with the

events that occurred on August 24, 2015, when the S&P500 lost 5% in a matter of minutes at

the open, eventually recovering the loss along the day. Importantly, the narrative of the event

points to the fact that due to the lack of bids, the opening of many NYSE stocks was delayed

on that day. This, in turn, complicated establishing the fair value of ETFs, causing traders to

sell more and bid less at the market opening.23

Table 1 summarizes the results of these exercises and compares them with the effects that

obtain in the fully transparent market case.

23See https://www.investopedia.com/articles/investing/011116/two-biggest-flash-crashes-2015.asp
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Figure 7: Liquidity fragility. In panel (a) we set γ = γ2 = 0.9, γ1 = 0.2, τu1 = 2, τu2 = 661,
τη = 3, µ = 0.15, and τv = 0.1 Comparing panel (a) with (b) illustrates the effect of a decrease
in the mass of FDs. Comparing panel (a) with (c) and (d) illustrates the effect of an increase
in the volatility of first and second period liquidity traders’ demand.

Status quo Λ∗1 Shock to parameter New Λ∗1 ∆Λ∗1/Λ
∗
1

Fully transparent market
(τη →∞)

0.237

∆µ/µ = −6% 0.245 3.2%

∆τu1/τu1 = −5% 0.237 0%

∆τu2/τu2 = −7% 0.252 6.3%

Not fully transparent mar-
ket (τη <∞)

0.22

∆µ/µ = −6% 3.5 1470%

∆τu1/τu1 = −5% 3.5 1470%

∆τu2/τu2 = −7% 3.5 1470%

Table 1: Illiquidity impact of an equilibrium switch according to transparency.
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5.2.2 Fragility along a unique equilibrium

Liquidity fragility can also arise when the equilibrium is unique because, with some opaqueness,

parameter shocks can have a non monotone effect on market liquidity. For example, an increase

in µ triggers two potentially contrasting effects on liquidity:

∂Λ∗1
∂µ

= − 1

γτv
×
(

γ(1 + a1)

γ1︸ ︷︷ ︸
Direct effect(+)

+
∂a1
∂µ

(
1 +

µγ

γ1

)
︸ ︷︷ ︸

Indirect effect(±)

)
. (24)

For given a1, the direct effect captures the increase in FDs’ aggregate speculative position,

which works to lower dealers’ inventory, and make the market more liquid. The indirect effect

reflects the impact of the change in µ on first period traders’ demand for liquidity (∂a1/∂µ),

and on each FDs speculative position ((µγ/γ1)(∂a1/∂µ)). The sign of this effect is, instead,

ambiguous. Indeed, an increase in the mass of FDs can lower the impact of second period

traders’ orders on p2, thereby lowering Var1[p2] and leading first period traders to hold more

of their endowment, and each FD to speculate more on the short term capital gain;24 at the

same time, however, it can also lower the propagation of u1 to the second period, impairing the

predictability of p2, and inducing traders to shed more of their endowment, and each FD to

speculate less.25 When the market is not fully transparent, second period traders face execution

risk, which tames their hedging aggressiveness (see (18b)), and lowers first period traders’ return

uncertainty. In this situation, the uncertainty reduction effect of µ on a1 can be dwarfed by

the one due to reduced predictability. As a consequence, when µ increases, first period traders’

demand for immediacy can increase and the individual speculative activity of each FD can

abate, offsetting the direct positive effect of FDs’ aggregate speculative trades. Hence, a wider

FDs’ participation can impair liquidity.

24The volatility reduction can happen for two different reasons. As µ increases, (i) less of the first period
endowment shock propagates to the second period, and (ii) more FDs absorb second period liquidity traders’
orders, enhancing risk sharing.

25In a fully transparent market, this latter effect is never strong enough to overcome the previous two, and
liquidity increases in the mass of FDs.
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Figure 8: Fragility at an equilibrium with low liquidity. In panel (a), (b), and (c) we plot Λ∗1, a1,
and Var1[p2], for τv = τu1 = 0.1, τu2 = 100, τη = γ = γ2 = 1, γ1 = 0.5, and µ ∈ {0.01, .02, . . . , 1};
the blue (green) plot relates to the transparent (opaque) case. A glitch disconnecting 10%
of FDs yields a 9% increase in the demand for immediacy, a 310% increase in first period
uncertainty and a 216% illiquidity spike. The gridlines are drawn at µ = µ̂ ∈ {0.36, 0.4} and
at the corresponding values for Λ∗1, a1, and Var1[p2].

This implies that illiquidity can be hump-shaped in the proportion of FDs, as shown in

Figure 8 (Panel (a)). The non-monotone relationship between Λ∗1 and µ illustrates an additional

channel through which liquidity fragility can arise. To see this, suppose that the proportion

of FDs in the market is initially µ = 0.4. According to the figure, for this fraction of FDs’

participation, in the opaque market case we have Λ∗1 = 0.5, and a1 = −0.47 (see Panel (a) and

Panel (b)). Suppose now that a glitch disconnects 10% of FDs, implying that a proportion

µ = 0.36 of FDs supplies liquidity. In the opaque market case, this implies a new illiquidity

level Λ∗1 = 1.58, corresponding to a 216% liquidity withdrawal. Conversely, in the case with

transparent markets, when µ = 0.4, Λ∗1 = 0.38, while when µ = 0.36, Λ∗1 = 0.41, corresponding

to an 8% liquidity decrease. This shows that along an equilibrium with low liquidity, following

a reduction in FD participation, liquidity can dry up quite dramatically.

The example highlights an additional implication of our analysis. When µ = 0.36, a1 =
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−0.51 (see Figure 8, Panel (b)), which, compared to the status quo liquidity demand, cor-

responds to a 9% increase in liquidity consumption by first period traders (i.e., a1 = −0.47

when µ = 0.4). How can such a comparatively small increase in liquidity consumption generate

an illiquidity spike of this magnitude? The explanation is once again that increased liquidity

consumption only accounts for part of the total effect, as it occurs jointly with a steep increase

in first period return uncertainty (according to Panel (c) in the figure, Var1[p2] experiences a

310% increase across the two equilibrium outcomes). This, leads each FD to scale down his

speculative position, thereby adding to the aggregate effect of a reduced liquidity supply. Using

expression (24) to break down the different effects yields:

∆Λ∗1
∆µ︸ ︷︷ ︸
≈−27

≈ − 1

γτv︸︷︷︸
=−10

× (25)

(
γ(1 + a1)

γ1︸ ︷︷ ︸
∆ in FDs’ aggregate specula-

tive position ≈ 1

+
µγ

γ1︸︷︷︸
=4/5

× ∆a1
∆µ︸︷︷︸

∆ in each FD speculative po-

sition ≈ 1

+
∆a1
∆µ

)
︸ ︷︷ ︸

∆ in liquidity demand ≈ 1

Thus, the increase in liquidity consumption accounts for roughly 36% of the drought, whereas

the lion share of it (about 64%) is due to the combined effect of the aggregate and individual

reduction in FDs’ speculative activity.26 This suggests that in the wake of a liquidity crash,

we should observe FDs unwinding their directional bets.27

26According to (25), the sum of ∆ in FDs’ aggregate speculative position, ∆ in each FD speculative position,
and ∆ in traders’ liquidity demand amounts to 2.8, of which ∆a1/∆µ accounts for 1.

27In this example too, for µ small, the stabilizing effect of illiquidity is jammed and first period traders
demand more immediacy precisely when the cost of liquidity supply is increasing.
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Figure 9: Liquidity comparison between the opaque and transparent market case. In panel (a),
we plot Λ∗1, for τv = τu1 = 0.1, τu2 = 100, τη = γ = γ2 = 1, γ1 = 0.5, and µ ∈ {0.01, .02, . . . , 1};
the blue (green) plot relates to the transparent (opaque) case. In panel (b), (c), and (d) we
progressively reduce τη.

A final implication of this example is that when information on prices and/or order im-

balances is opaque, an increase in the mass of FDs (promoting full participation), can lower

market liquidity. This finding is consistent with Boehmer et al. (2015) who show that greater

algorithmic trading intensity is associated with more liquidity for average firm size, the same

is not true for small market cap firms. For these firms, when algorithmic trading increases,

liquidity declines.28

5.2.3 Transparency and liquidity

An important feature of the example in Figure 8 is that for all values of µ the market is at

least as liquid with full transparency as it is without it. This result is not general. In Figure 9

we reproduce Panel (a) of Figure 8, and in panels (b), (c), and (d), investigate the effect of

progressively lowering the informativeness of the signal observed by second period traders. The

28See also Breckenfelder (2014) for other evidence on the negative impact of an increase in HFT competition
on market liquidity for a sample of stocks traded on the Stockholm Stock Exchange.
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figure shows that while the hump-shaped feature of the illiquidity plot is preserved, the liquidity

ranking is progressively reversed. In fact, we can prove the following result:

Corollary 11. When the market is strongly opaque (τη → 0), there exists a unique equilibrium

along which liquidity is higher than in the transparent market benchmark:

Λ∗1|τη→0 ≤ Λ∗1|τη→∞. (26)

Intuitively, if second period traders receive an uninformative signal, they stop speculating on

the propagated imbalance, killing the loop that is responsible for equilibrium multiplicity. Thus,

in this case, first period traders’ uncertainty only depends on a2, similarly to the transparent

benchmark where first period traders can perfectly anticipate the impact of second period

speculation. Furthermore, due to execution risk, second period traders also hedge less of their

endowment shock when the signal is uninformative (since κ > 1) than when it is perfect (in

which case, instead, κ = 1). As a consequence, with strong opaqueness, first period traders

face lower uncertainty than in the transparent market benchmark. Thus, in the latter case they

hedge more, and FDs speculate less, lowering market liquidity.

Figure 9 also suggests that for µ < 1, increasing transparency won’t necessarily enhance

market liquidity, precisely because a more informative signal leads second period traders to

trade more aggressively, increasing first period traders’ uncertainty. This insight is confirmed

in Figure 10, where we plot Λ∗1 as a function of τη. For low values of transparency, a more

informative signal makes the market less liquid. This is because, second period traders speculate

more aggressively on the propagated imbalance, increasing first period traders’ uncertainty (as

we observed in Section 5.1). As second period traders’ signal precision increases, first period

traders become increasingly better able to anticipate their strategy, and face lower return

uncertainty. This explains the declining branch of the plot. As argued in Corollary 11, a very

precise signal (τη large) fosters second period traders’ hedging aggressiveness, which heightens

first period traders’ uncertainty compared to the case in which the signal is uninformative

(τη ≈ 0).
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Figure 10: Illiquidity as a function of transparency, for τv = τu1 = 0.1, τu2 = 100, γ = γ2 = 1,
γ1 = 0.5, µ = 0.1.

5.2.4 Summary

This section highlights the role of informational frictions in generating a liquidity feedback loop

that can have a destabilizing effect on the market. Second period traders, endowed with a noisy

signal on the first period endowment shock, speculate against the propagated order imbalance,

generating additional volatility. This can feed back on first period traders’ strategies, leading

them to consume more liquidity and FDs to retreat from speculation, thereby magnifying the

outstanding imbalance liquidity suppliers need to absorb, and further lowering market liquidity.

This self-sustaining loop can induce multiple equilibria and liquidity fragility. Equilibria can

be ranked in terms of liquidity and first period traders’ hedging activity, with the most (least)

liquid equilibrium occurring with the least (highest) liquidity consumption. Thus, without

full market transparency, the self-stabilizing mechanism whereby an illiquidity spike depresses

liquidity consumption, and fosters’ FDs directional bets can jam, and instead be replaced by

a vicious cycle that creates a liquidity rout.

Transparency Full (τη →∞) Partial (0 < τη <∞)

Equilibrium Unique Possible ME

Illiquidity Decreasing in µ
Can be ‘fragile’ and
hump-shaped in µ and
τη (numerical)

First period traders’ demand for
immediacy

Decreasing in Λ1 Can be increasing in Λ1

FDs speculative demand Increasing in Λ1 Can be decreasing in Λ1

Table 2: A summary of our results.
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6 Concluding remarks

We study a 2-period model in which two classes of dealers—full and standard—intermediate

the orders of two successive cohorts of short-term traders, in a context where markets are

fragmented due to both an informational and a participation friction. We show that dealers’

limited market participation favors the propagation of first period traders’ endowment shock

across time, inducing a predictable price pressure. This, in turn, leads second period traders to

speculate against the propagated endowment shock. The effect of speculation crucially depends

on the transparency regime governing the market. With full transparency the market is stable

and increasing the proportion of full dealers is good for liquidity. Without it, the market may

be unstable, and liquidity hump-shaped in the proportion of full dealers and in the degree of

transparency. More in detail, our main findings can be summarized as follows (see Table 2):

1. When second period traders have perfect information about the first period endowment

shock, speculation exerts a stabilizing effect. In this context, a unique equilibrium obtains,

and a dearth of liquidity increases first period traders’ cost of hedging, reducing their

liquidity consumption. Furthermore, higher FDs participation always has a beneficial

impact on liquidity.

2. When the market is somewhat opaque—in that second period traders’ information is

imprecise—speculation can augment first period traders’ uncertainty, leading them to

demand more immediacy when the market is less liquid. This can offset the rationing

impact of illiquidity, and trigger a liquidity feedback loop in which a liquidity dry-up

breeds a further, larger liquidity withdrawal. We show that in this scenario:

(a) Multiple equilibria—that can be ranked in terms of liquidity, price volatility, and

demand for immediacy—can arise.

(b) Liquidity can be fragile, either because a shock to parameter values can prompt a

switch from the high liquidity equilibrium to an equilibrium with low liquidity; or,

with a unique equilibrium, because illiquidity may be hump-shaped and with steep

slope in the mass of full dealers, implying that a reduction in FDs participation can

generate a large spike in illiquidity.

3. Our results are robust to the case in which the first period market is populated by a pro-

portion β of short-term traders, that unwind at date 2, and a complementary proportion

(1− β) of long-term ones that hold their position until liquidation.

From a methodological point of view, our work shows that because of lack of market trans-

parency, uncertainty on future prices can become an increasing function of current illiquidity,

implying that fragility can arise in a context where prices are driven by a non-payoff related

shock. We view this as a realistic feature of trading at high frequencies since in those conditions,
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the chances that payoff fundamentals drive prices are negligible. This also allows us to offer

an alternative explanation for how the buildup of a large imbalance can precipitate the market

into a crash, which does not rely on the effect of order flow toxicity (Easley et al. (2011, 2012)).

From a policy perspective, our paper has two important implications. First, our analysis

of the not fully transparent market model shows that favoring FDs’ entry (i.e., reducing the

participation friction) doesn’t necessarily enhance liquidity. Indeed, illiquidity can be hump-

shaped in the proportion of FDs. This can also serve as a guide to empirical analysis, as it

suggests that the liquidity impact of FDs entry should be assessed taking into account the

effect of frictions in the access to market information. Second, with noisy market information,

fragmented liquidity supply may make liquidity fragile, either because a shock to parameters

can prompt a switch across equilibria; or because, due to the hump-shaped relationship between

illiquidity and the proportion of FDs, a sudden reduction of these dealers’ participation can

lead to a large liquidity withdrawal. This supports regulatory concerns about the potential

drawbacks of automated trading due to operational and transmission risks.29

Finally, our analysis of fragility along a unique equilibrium highlights the role that changes

in FDs’ strategies in the wake of crashes have to explain huge illiquidity spikes. As we argued

in our numerical examples, the unwinding of FDs’ directional bets can act as a multiplier of

the initial increase in traders’ liquidity consumption. This can be of help in empirical analyses

of these events, in that an exclusive focus on changes in liquidity consumption can miss an

important explanatory factor and suggests the following empirical prediction. We expect that

in the wake of a liquidity crash, FDs should unwind their directional bets, thereby depleting

the market of the liquidity that they otherwise supply with contrarian marketable orders (see

the evidence in Brogaard et al. (2014), and Biais et al. (2015)).

29See Joint Staff Report: The U.S. Treasury Market on October 15, 2014.
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A Appendix

The following is a standard results (see, e.g. Vives (2008), Technical Appendix, pp. 382–383)

that allows us to compute the unconditional expected utility of market participants.

Lemma 1. Let the n-dimensional random vector z ∼ N(0,Σ), and w = c + b′z + z′Az, where

c ∈ R, b ∈ Rn, and A is a n×n matrix. If the matrix Σ−1 +2ρA is positive definite, and ρ > 0,

then

E[− exp{−ρw}] = −|I + 2ρΣA|−1/2 exp{−ρ(c− ρb′(Σ + 2ρA)−1b)}.

Proof of Proposition 1

From the proof of Proposition 2 (see (A.29)) we know that when τη →∞, a unique equilibrium

obtains where

Λ1 =
1

τv(γ + (µγ + γL1 )(µγ + γL2 )(γL2 + γ)τu2τv)
, (A.1)

implying that the second period price coefficients (A.14a) and (A.14b) have the closed form

solution ((4b), and (4c)).

Replacing (4b) and (4c) in (8a) yields

a1 = γ1(γ2 + γ)(γ2 + µγ)Λ1τu2τ
2
v − 1.

Furthermore, limτη→∞Var2[v−p2] = τ−1v , so that a2 and b in (A.5) have the closed form solution

displayed in (8b) and (8c).

2

Proof of Proposition 2

We work by backward induction. In the second period, CARA and normality assumptions

imply that the objective function of a liquidity trader is given by

E2[− exp{−π2/γ2}] = − exp

{
− 1

γ2

(
E2[π2]−

1

2γ2
Var2[π2]

)}
, (A.2)

where π2 ≡ (v− p2)x2 + u2v. Maximizing (A.2) with respect to x2, and solving for the optimal

strategy yields:

x2 = γ2
E2[v − p2]

Var2[v − p2]
− Cov2[v − p2, v]

Var2[v − p2]
u2. (A.3)
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Using (1b) we can compute:

E2[v − p2] = Λ2u2 +
Λ21τη + Λ22τu1

τη + τu1
su1 (A.4a)

Var2[v − p2] =
1

τv
+

(Λ21 − Λ22)
2

τη + τu1
(A.4b)

Cov2[v − p2, v] =
1

τv
. (A.4c)

Substituting (A.4a)–(A.4c) in (A.3), and rearranging yields:

x2 =
γ2τvΛ2 − 1

τvVar2[v − p2]︸ ︷︷ ︸
a2

u2 + γ2
Λ21τη + Λ22τu1

(τη + τu1)Var2[v − p2]︸ ︷︷ ︸
b

su1 . (A.5)

A FD maximizes the expected utility of his second period wealth:

EFD
2

[
− exp

{
− 1

γ

(
(p2 − p1)xFD1 + (v − p2)xFD2

)}]
= (A.6)

= exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ

(
EFD

2 [v − p2]xFD2 − (xFD2 )2

2γ
VarFD2 [v − p2]

)})
,

where the last expression in (A.6) is due to CARA and normality. For given xFD1 the above is

a concave function of the second period strategy xFD2 . Solving the first order condition, yields

that a second period FD’s strategy is given by:

xFD2 = γ
EFD

2 [v − p2]
VarFD2 [v − p2]

. (A.7)

Computing expectation and variance in the above expression:

EFD
2 [v − p2] = −p2 (A.8a)

VarFD2 [v − p2] =
1

τv
, (A.8b)

and substituting these in xFD2 yields:

xFD2 = −γτvp2. (A.9)

Similarly, due to CARA and normality, in the first period an SD maximizes

ESD
1

[
− exp

{
− 1

γ
(v − p1)xSD1

}]
= (A.10)

− exp

{
− 1

γ

(
ESD

1 [v − p1]xSD1 −
(xSD1 )2

2γ
VarSD1 [v − p1]

)}
.
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Maximizing the above and solving for xSD1 yields:

xSD1 = γ
ESD

1 [v − p1]
VarSD1 [v − p1]

. (A.11)

Computing the conditional expectation and variance:

ESD
1 [v − p1] = −p1 (A.12a)

VarSD1 [v − p1] =
1

τv
, (A.12b)

so that

xSD1 = −γτvp1. (A.13)

We can now substitute (A.5), (A.9), and (A.13) in (3), and identify the price coefficients,

obtaining:

Λ2 =
(τη + τu1)µ

((1− µ)2γτvΛ2
1 + (τη + τu1)(µγ + γ2)µ)τv

(A.14a)

Λ21 = −(1− µ)(τu1 + (1− γ2τvΛ2)τη)Λ1

(τη + τu1)µ
(A.14b)

Λ22 =
(1− µ)γ2Λ1Λ2τvτη

(τη + τu1)µ
. (A.14c)

Note that Λ2 > 0, while the sign of Λ21 and Λ22 depend on that of Λ1. Indeed,

1− γ2τvΛ2 = γ
(1− µ)2τvΛ

2
1 + (τη + τu1)µ

2

(1− µ)2γτvΛ2
1 + (τη + τu1)(µγ + γ2)µ

> 0.

Consider now the first period. We start by characterizing the strategy of a FD. Substituting

a FD’s second period strategy (A.7) in (A.6), rearranging and applying Lemma 1 yields the

following expression for the first period objective function of a FD:

EFD
1 [U((p2 − p1)xFD1 + (v − p2)xFD2 )] = −

(
1 +

VarFD1 [p2]

Var[v]

)−1/2
× (A.15)

exp

{
−1

γ

(
γτv
2
ν2 + (ν − p1)xFD1 − (xFD1 + γτvν)2

2γ

(
1

VarFD1 [p2]
+

1

Var[v]

)−1)}
,

where

EFD
1 [p2] = −Λ21u1 (A.16a)

VarFD1 [p2] =
Λ2

21

τu2
+

Λ2
22

τη
. (A.16b)
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Maximizing (A.15) with respect to xFD1 and solving for the first period strategy yields

XFD
1 (p1) =

γ

VarFD1 [p2]
ν − γ

(
1

VarFD1 [p2]
+

1

Var[v]

)
p1. (A.17)

As we argued above, due to CARA and normality, for traditional market makers at date 1 we

have XD
1 (p1) = −γτvp1.

We now turn to the characterization of first period liquidity traders’ strategies. CARA and

normality imply

E[− exp{−π1/γ1}] = − exp

{
− 1

γ

(
E1[π1]−

1

2γ1
Var1[π1]

)}
, (A.18)

where π1 ≡ (p2 − p1)x1 + u1p2. Maximizing (A.18) with respect to x1, and solving for the

optimal strategy, yields

X1(u1) = γ1
E1[p2 − p1]

Var1[p2]
− Cov1[p2 − p1, p2]

Var1[p2]
u1, (A.19)

where

E1[p2 − p1] = −(Λ21 − Λ1)u1 (A.20a)

Var1[p2] = VarFD1 [p2] =
Λ2

2

τu2
+

Λ2
22

τη
(A.20b)

Cov1[p2 − p1, p2] = Var1[p2]. (A.20c)

Substituting (A.20a)–(A.20c) in (A.19) and rearranging yields:

x1 =

(
γ1

Λ1 − Λ21

Var1[p2]
− 1︸ ︷︷ ︸

a1

)
u1. (A.21)

We can now substitute (A.13), (A.17), and (A.21) into (2) to identify the first period price

coefficient Λ1:

Λ1 = ψ(Λ1) =
Λ2

22τu2 + (Λ2
2 + (µγ + γ1)τu2Λ21)τη

γ1τu2τη + γ((Λ2
22τu2 + Λ2

2τη)τv + µτητu2)
(A.22)

= −µγCov[p2, u1]τu1 + a1Var1[p2]

γ(µ+ τvVar1[p2])
.

According to (A.22), Λ1 is pinned down by the solution of the following equation:

f(Λ1) ≡ ψ(Λ1)− Λ1 =
(µγ + γ1)(Cov[p2, u1]τu1 + Λ1) + Var1[p2](γτvΛ1 − 1)

γ(µ+ τvVar1[p2])
= 0. (A.23)
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For µ ∈ (0, 1] the denominator in the above expression is positive, which implies that equilibria

are pinned down by solutions to the quintic at the numerator of (A.23), which is given by:

f(Λ1) = γ2(1− µ)4Λ5
1(µγ + γ1)τu2τ

4
v

+ µγ(1− µ)2τu2τ
3
vΛ3

1

(
((µγ + γ1)(2µγ + γ2(1 + µ)) + γ22)τη + 2τu1(µγ + γ1)(µγ + γ2)

)
− γ22(1− µ)2µτητu2τ

2
vΛ2

1 (A.24)

+ µ2(τη + τu1)τvΛ1

(
µγ(τη + τu1) + (µγ + γ1)(µγ + γ2)(µγ(τη + τu1) + γ2(µτη + τu1))τu2τv

)
− µ3(τη + τu1)

2 = 0.

The above expression shows that there are three sign changes in the sequence formed by the

quintic’s coefficients. Therefore, by Descartes’ rule of sign, there are up to three positive roots

of the equation f(Λ1) = 0.

Computing Cov[p2, u1] yields:

Cov[p2, u1] = −Λ21τ
−1
u1
, (A.25)

which is positive if and only if Λ1 > 0. Consider (A.23) and suppose that at equilibrium Λ1 < 0.

From (A.25), Cov[p2, u1] < 0. Due to (A.23) this implies f(Λ1) < 0, which is impossible. Thus,

at equilibrium, 0 < Λ1 < 1/γτv, and Cov[p2, u1] ≥ 0.

To sign the strategy coefficient of a first period liquidity trader, we use (A.21):

a1 = γ1
Cov[p2, u1]τu1 + Λ1

Var1[p2]
− 1. (A.26)

From (A.26) we obtain Var1[p2](1 + a1)/γ1 = Cov[p2, u1]τu1 + Λ1, which substituted in (A.23)

at equilibrium yields

f(Λ1) =
Var1[p2]

(µ+ τvVar1[p2])γγ1
((1 + a1)(µγ + γ1) + (γτvΛ1 − 1)γ1) = 0. (A.27)

Solving the above for Λ1 yields: Λ1 = (−µγ − a1(µγ + γ1))/γ1γτv. Since Λ1 > 0, the previous

equation implies that at equilibrium a1 < 0. Furthermore, using (A.26), 1 + a1 > 0, which

proves our result.

Taking the limit for τη →∞ in ψ(Λ1) yields:

lim
τη→∞

ψ(Λ1) =
1− Λ1(γ2 + µγ)(γ1(γ + γ2) + µγ2(1− µ))τu2τ

2
v

γτv(1 + µ(γ2 + µγ)2τu2τv)
. (A.28)

Identifying Λ1 yields

Λ1 =
1

τv(γ + (µγ + γ1)(µγ + γ2)(γ2 + γ)τu2τv)
. (A.29)
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2

Proof of Corollary 6

The expressions for the strategies’ coefficients are obtained in the proof of Proposition 2. Here

we prove that lack of transparency reduces second period traders’ hedging aggressiveness. With

a transparent market, solving for a2 yields a2 = −µγ/(γ2 + µγ). When the market is not

transparent, instead, replacing Λ∗2 in (A.5) and solving for a2 yields a2 = −µγ/(γ2 + µγκ).

Since κ > 1, the result follows. 2

Proof of Corollary 7

From Proposition 2 it is immediate that Var2[v − p2] is increasing in Λ1. Differentiating

Cov[p2, u1] yields

∂Cov[p2, u1]

∂Λ1

=
1− µ
µ

(
(µγκ+ αγ2)Λ

∗
2 +

µγγ2κ
′(1− α)

(µγκ+ γ2)2
Λ1

)
≥ 0,

for µ ≤ 1 (where κ′ ≡ ∂κ/∂Λ1). Finally, from Proposition 2 we know that a2 is increasing in

κ, and thus in Var[v − p2]. This implies that a2 is increasing in Λ1. 2

Proof of Proposition 3

The equilibrium quintic (A.24) can be expressed as the sum of two polynomials: a quintic in Λ∗1

that multiplies τu2 , and a first degree polynomial in Λ∗1 that does not depend on τu2 , as shown

in the expression below:

f(Λ1) =
[
Λ1(τu1((γ

L
2 /µγτv) + Var2[v − p2]) + τη((γ2/γτv) + Var2[v − p2]))(µγ + γ1)×

(τu1 + τη)((γ2/µγτv) + Var2[v − p2])τη + (1/µγτv)
2((γ2τη/µγτv)(1− µ)γτvΛ1)

2(γτvΛ1 − 1)µ
]
τu2τ

2
v

+ (1/µγτv)
2(τu1 + τη)

2µτη(γτvΛ1 − 1). (A.30)

Inspection of the equilibrium mapping ψ(Λ1) shows that if we let τu2 →∞, the corresponding

equilibrium quintic is proportional to the term in square brackets in (A.30) (i.e., the one that

multiplies τu2). We first concentrate on the analysis of this quintic:

f̂(Λ1) = Λ1(τu1((γ2/µγτv) + Var2[v − p2]) + τη((γ2/γτv) + Var2[v − p2]))(µγ + γ1)× (A.31)

(τu1 + τη)((γ2/µγτv) + Var2[v − p2])τη + (1/µγτv)
2((γ2τη/µγτv)(1− µ)γτvΛ1)

2(γτvΛ1 − 1)µ.

First, note that f̂(0) = 0, implying that when τu2 →∞, Λ∗1 = 0 is an equilibrium of the model.

Additionally, considering h(Λ1) ≡ f̂(Λ1)/Λ1, a quartic in Λ1, we can pin down parameter
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restrictions that ensure the existence of two additional equilibria. To see this, we start by

evaluating h(·) at Λ1 = 0 obtaining:

h(0) =
τη(µγ + γ1)(µγ + γ2)(τu1 + τη)(µγ(τu1 + τη) + γ2(τu1 + µτη))

γ2µ2
> 0. (A.32)

Next, evaluating h(·) at the point Λ̄∗1 = 1/(1− µ), yields

h(Λ̄∗1) =
τη
γ2τ 4η
× (A.33)(

(µγ + γ1)(µ(µγ + γ2)(τu1 + τη) + γτv)(µγ2µ(τu1 + µτη) + γ(µ2(τη + τu1) + τv))

− µ(γ2)
2τη(1− µ− γτv)

)
,

which is negative when the following parameter restrictions are satisfied:

0 < µ < µ̄ ≡
γ2(
√

5γ2 + γ2(2γ + γ2)− (γ + γ2))

2γ2
(A.34a)

0 < τv < τ̄v ≡
(1− µ)(γ2)

2 − µγ(µγ + γ2)

γ(γ2)2
(A.34b)

τη > τ η ≡
γ(µ(µγ + γ2)τu1 + γτv)

(1− µ− γτv)(γ2)2 − µγ(µγ + γ2)
(A.34c)

0 < γ1 < γ̄1 ≡
µ((γ2)

2τη(1− µ− γτv)− µγγ2(τu1 + τη)− γ2(τv + µ2(τu1 + τη)))

γτv + µ(µγ + γ2)(τu1 + τη)
. (A.34d)

Therefore, when (A.34a)-(A.34d) hold, two additional equilibria exist (Λ∗1)
I ∈ (0, Λ̄∗1), and

(Λ∗1)
L ∈ (Λ̄∗1, 1/γτv). This establishes that in the case τu2 → ∞, when (A.34a)-(A.34d) hold,

three equilibria: 0 < (Λ∗1)
I < Λ̄∗1 < (Λ∗1)

L < 1/γτv, arise. Consider now the general quin-

tic (A.30). First, note that

f(0) = −τη(τη + τu1)
2

µ(γτv)2
< 0. (A.35)

Next, evaluating f(·) at Λ∗1 = µ/(1− µ) < Λ̄∗1 yields

f(Λ∗1) =
τη
µγ2

{
(τη + τu1)

2(µγτv − (1− µ))

(1− µ)τ 2v
+

τu2
1− µ

(
(γ2)

2τη(µγτv − (1− µ)) + (A.36)

+ (µγ + γ1)(γ2(τu1 + τη) + µγ(τu1 + τη + τv))(γ2(τu1 + µτη) + µγ(τu1 + τη + τv))

)}
.

The sign of (A.36) is determined by the sign of the expression inside the curly brackets. As

Λ∗1 < 1/γτv, the term µγτv−(1−µ) < 0. Also, by inspection, the expression within parentheses

is positive provided that

γ > γ ≡ (1− µ)τη − γ1(τu1 + τη)(τu1 + µτη)

µ(τvτη + (τu1 + τη)(τu1 + µτη))
. (A.37)
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Hence, if (A.37) holds, and

τu2 > τu2 ≡
(
(τ 2v (γ22(τη(µγτv − (1− µ)) + (µγ + γ1)(τ1 + τη)(τu1 + µτη)) + µγγ2×

(µγ + γ1)(τ1 + τv + τη)(2τu1 + τη(1 + µ)) + (µγ + γ1)(µγ)2(τu1 + τη + τv)
2))
)−1×(

(τu1 + τη)
2(1− µ− µγτv)

)
, (A.38)

expression (A.36) is positive. This establishes the existence of an equilibrium 0 < (Λ∗1)
H < Λ∗1.

Finally, provided (A.34a)-(A.34d) hold, f(Λ̄∗1) < 0, since f̂(Λ̄∗1) < 0 and γτv/(1 − µ) < 1.

Therefore, we can conclude that when τu2 < ∞, if (A.34a)-(A.34d), and (A.37), (A.38) hold,

the model displays three equilibria:

0 < (Λ∗1)
H < Λ∗1 < (Λ∗1)

I < Λ̄∗1 < (Λ∗1)
L <

1

γτv
. (A.39)

2

Proof of Corollary 9

See the proof of Proposition 3. 2

Proof of Corollary 10

Taking the limit for τu2 → 0 in Ψ(Λ1), and collecting terms, yields the following equilibrium

condition:

f(Λ1) = µ3(τu1 + τη)
2(γτvΛ1 − 1) = 0. (A.40)

The above equation has a unique real solution Λ∗1 = 1/γτv. Substituting this solution in (A.10)

implies that at this equilibrium a1 = −1. 2

Proof of Corollary 11

If we let τη → 0, (A.24) reads as follows:

f(Λ1) = −µ3τ 2u1(1− γτvΛ1) + Λ1(γ1 + µγ)τu2τ
2
v (γτvΛ

2
1(1− µ)2 + µτu1(γ2 + µγ))2 = 0. (A.41)

By inspection, f(0) < 0, f(1/γτv) > 0, and f ′(Λ1) > 0, which implies that in this case there

exists a unique positive root. Evaluating (A.41) at (A.29) yields f(Λ∗1) > 0 which implies that

a strongly opaque market is more liquid than a fully transparent one. 2
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Figure 11: Comparative statics. The figure displays the effect of a change in the proportion of
FDs (Panel (a)), the risk tolerance of SDs and FDs (Panel (b)), the volatility of the payoff
(Panel (c)), the risk tolerance of first period traders (Panel (d)), and the volatility of the first
period endowment shock (Panel (e)). The continuous blue curve represents the function ψ(Λ1)
for the set of parameters’ values used in Figure 6.
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Figure 12: Comparative statics. The figure displays the effect of a change in the precision of
second period liquidity traders’ signal (Panel (a)), second period liquidity traders’ risk tolerance
(Panel (b)), and the precision of second period liquidity traders’ endowment shock (Panel (c)).
The other parameters’ values are as in Figure 6.
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