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Abstract 
 
In this study, we compare the out-of-sample forecasting performance of several modern Value-
at- Risk (VaR) estimators derived from extreme value theory (EVT). Specifically, in a multi-
asset study covering 30 years of stock, bond, commodity and currency market data, we analyse 
the accuracy of the classic generalised Pareto peak over threshold approach and three recently 
proposed methods based on the Box-Cox transformation, L-moment estimation and the Johnson 
system of distributions. We find that, in their unconditional form, some of the estimators are 
acceptable under current regulatory assessment rules but none of them can continuously pass 
more advanced tests of forecasting accuracy. In their conditional forms, forecasting power is 
significantly increased and the Box-Cox method proves to be the most promising estimator. 
However, it is also important to stress that the traditional historical simulation approach, which 
is currently the most frequently used VaR estimator in commercial banks, can not only keep up 
with the EVT-based methods but occasionally even outperforms them (depending on the setting: 
unconditional vs. conditional). Thus, recent claims to generally replace this simple method by 
theoretically more advanced EVT-based methods may be premature. 
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1 Introduction

Over the past decades, stock market crashes, bond market collapses and foreign exchange crises
have forced financial institutions and regulators to recognise the growing importance of risk man-
agement. To protect single institutions and the entire financial system against such extraordinary
events, the determination of capital requirements to meet catastrophic market risk has become an
important topic, which in turn has stimulated the development of various methods to measure the
risks that financial institutions face (see Christoffersen, 2003; Pflug and Römisch, 2007).

A particularly popular tool for financial risk assessment is the Value-at-Risk (VaR), which is
defined as the maximum loss expected on a portfolio over a certain holding period at a given confi-
dence level (see Berkowitz et al., 2011), i.e., for a portfolio with random return X and cumulative
distribution function F (x), the VaR with a confidence level of 0 < α < 1 (typically set to 95%
or 99%) is simply the (1 − α)-quantile associated with F (x). Regardless of some criticisms,1 risk
management is now heavily geared toward the VaR. Besides risk reporting to senior managers and
shareholders, the VaR is applied for allocating financial resources and for evaluating risk-adjusted
performance (see Jorion, 2007). Furthermore, with the advent of the internal model approach
of the Basel Committee on Banking Supervision (1995, 1996a, 2009, 2011a), banks in the main
financial jurisdictions may now use their in-house VaR models for the calculation of regulatory
capital requirements (see Brooks et al., 2005). In light of this high practical relevance of the VaR
concept, the need for reliable VaR estimation and prediction strategies has arisen.

Accurate estimation of the VaR depends on the ability to estimate the tails of the probability
density function f(x) associated with F (x). Conceptually, this can be accomplished in two distinct
ways: (i) direct estimation of f(x), or (ii) indirectly through a suitably defined (parametric) model
for the tails of f(x). Early implementations of the VaR have followed the first approach by
assuming that the return-generating process for the portfolio in question is normally distributed
with moments that can be estimated using historical data and are time-invariant (see Danielsson
and de Vries, 2000; Neftci, 2000). Even though this simplifies VaR computation considerably,
the normality-assumption is inconsistent with empirical evidence of skewed and fat-tailed asset
returns (see Cont, 2001). Extreme events are much more likely to occur in practice than would
be predicted by the symmetric thinner-tailed normal distribution, which makes normality-based
VaR numbers unsuitable measures of the true risk (see Lee and Su, 2012). Similar problems arise
for other distributional assumptions because, unless estimation is based on a correct specification
of f(x), direct estimation will most likely provide a poor fit for its tails since most observed data
will probably take values away from the tail region of f(x) (see Martins-Filho and Yao, 2006). To
compensate for these drawbacks, a series of indirect estimation methods based on extreme value
theory (EVT) has recently emerged, including Embrechts et al. (1999), Longin (2000), McNeil and
Frey (2000), Brooks et al. (2005), Martins-Filho and Yao (2006) and Bali (2007). These methods
follow the idea of approximating only the tails of f(x) by an appropriately defined parametric
density function in order to resolve the the problem of underpredicting both the size and the
frequency of extreme market movements.

Empirical evidence indicates that EVT approaches may be considered superior to most direct
methods (see Danielsson and Morimoto, 2000; Kuester et al., 2006; Abad et al., 2014) and suggests
that historical simulation, which is the most frequently used VaR estimation method in commercial
banks (see Pérignon and Smith, 2010), may have to be replaced by these more advanced methods.
While this result is important for choosing the adequate VaR estimation methodology in practical
applications, the question of which EVT approach should be preferred, largely remains unanswered.
In the literature, we can detect a tendency that whenever a new EVT approach is proposed it is

1The VaR is not a coherent risk measure (see Artzner et al., 1999). It can lead to Pareto-inferior allocations if
agents are risk averse. In addition, the VaR can fail to account appropriately for portfolio risk diversification (see
Yamai and Yoshiba, 2002, 2005).
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usually compared either to standard direct approaches or to very early EVT methods.2 To the
best of our knowledge, a structured empirical comparison of more recent EVT methods does not
yet exist in the literature.

The purpose of our study is to fill this gap by comparing several modern EVT approaches for
univariate VaR prediction and to provide some guidance for choosing the appropriate estimation
strategy in practice. In principle, various estimators could be considered in such an analysis (see
Abad et al., 2014). Our choice of alternatives was motivated not by the desire to be exhaustive
but rather to represent what is commonly used both in the empirical finance literature and in
practice. Specifically, we compare the peak over threshold estimator of McNeil and Frey (2000),
the Box-Cox method of Bali (2007), the L-moment technique of Martins-Filho and Yao (2006)
and the simulated Johnson system approach of Brooks et al. (2005). Furthermore, to assess their
performance relative to classic direct methods, we also include the normal, Student-t and histori-
cal simulation approaches in our set of VaR estimators. In general, we use all VaR estimators in
the specifications which have become standard because this way we can judge the errors of the
approaches as they would actually occur in practice. Given the serial correlation and heteroskedas-
ticity of most financial data (see Cont, 2001), we implement all approaches in an unconditional
and a conditional form. This is important because unconditional implementations may weaken the
empirical performance of VaR estimators because they do not reflect the current mean-volatility
background.

We examine VaR forecasting performance for portfolios that are long in different asset classes
because this way we can address the critique of Bali (2007) that most studies focus on only one
asset class (mainly stocks) and thus their results may not hold for other assets with different return
characteristics. Specifically, we cover stock, commodity, bond and currency markets from 1986 to
2016 in order to obtain a more general picture. For each asset class, we obtain VaR predictions
by using a rolling window out-of-sample approach because, in practice, portfolio managers obtain
VaR estimates based on the past data and subsequently use these estimates to assess the risks
associated with current and future movements of their portfolios’ value. The quality of the VaR
forecasts is then evaluated by means of standard tests as well as some recently proposed (more
advanced) techniques.

Following the literature standard (see Kuester et al., 2006; Basel Committee on Banking Super-
vision, 2011b; Cheng and Hung, 2011), the core of our performance evaluation is the Christoffersen
(1998) framework because it specifies several properties a predictor needs to satisfy in order to be
considered accurate. That is, for example, that the nominal error probability 1 − α used in the
VaR estimation should equal the frequency of violations (i.e., cases where the actual losses exceed
the estimated VaR). The statistical test for this property (the unconditional coverage test), which
is based on the binomial distribution, is currently indirectly embodied in the 1996 Market Risk
Amendment to the Basel Capital Accord (see Basel Committee on Banking Supervision, 1996b;
Ziggel et al., 2014) which requires that commercial banks with significant trading activities set
aside capital to cover the market risk exposure by their trading accounts. The market risk capital
requirements are to be based on the VaR estimates generated by the banks’ own risk management
models provided that they pass this test.

While the unconditional coverage test is the current regulatory standard, it leaves important
additional properties of an appropriate VaR predictor unexamined. Thus, banks may identify
an approach that fulfils the regulatory minimum standard but still provides inadequate forecasts
which is not desirable from a rational perspective. To avoid such misjudgement, we apply two
additional tests which have become the most frequently used tests in the empirical literature (see
Huang and Lin, 2004; Bali, 2007; Marimoutou et al., 2009; Gaglianone et al., 2011). First, we use

2For example, McNeil and Frey (2000) compare their peak over threshold estimator to historical simulation
and Brooks et al. (2005) evaluate the performance of their simulation-based EVT approach relative to classic tail
estimators (e.g., the Hill estimator).
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the standard conditional coverage which takes into account that violations should be independent
over time. Second, because the information set of this test is restricted to past violations, we also
implement the dynamic quantile test of Engle and Manganelli (2004) which uses a more general
information set.

Our empirical analysis is supported by a variety of sensitivity checks that ensure the robustness
of our results. First, we use different types of models in our filter approaches for conditional VaR
estimators. Second, we analyse the impact of different sample sizes and differences in results
when looking at short positions instead of long positions. Third, we apply some recently proposed
simulation-based variants of unconditional and conditional coverage tests which are robust to small
sample issues and additionally take into account that the violations of an ideal predictor not only
need to be independent but also have to be identically distributed. Finally, in a last exercise, we
briefly document the behaviour of the VaR estimators in times of financial turmoil, i.e., in the
time spans of the dotcom crash of 2000 and the global financial crisis of 2007 to 2009.

The remainder of the article is organised as follows. Section 2 starts with a discussion of
our unconditional VaR estimators (traditional and EVT-based) followed by a description of filter
processes producing conditional VaR estimates. Section 3 presents the main characteristics of our
dataset and some preliminary results on the forecasting accuracy of the different VaR estimators.
Section 4 describes the statistical tests we use for analysing the quality of VaR forecasts. Section 5
presents the test results and summarises the outcome of several robustness checks. Finally, Section
6 concludes and outlines some directions for future research.

2 Value-at-Risk estimation

2.1 Traditional approaches

2.1.1 Normal and Student-t method

Probably the best-known way to estimate the VaR is to assume normally distributed (ND) asset
returns. For a confidence level α, the VaR forecast for time t + 1 is then

VaRND
t+1,α = µ + σz1−α (1)

where µ and σ denote the mean and the standard deviations of a moving window of T returns up
to time t (estimated via maximum-likelihood), respectively, and z1−α is the (1−α)-quantile of the
standard normal distribution (see Linsmeier and Pearson, 2000).

Because returns are typically characterised by substantial kurtosis, a straightforward approach
to generating better VaR forecasts is to assume that returns are sufficiently well described by a
Student-t (ST) distribution which can model fat-tails. In this case, we can estimate the VaR via

VaRST
t+1,α = µ + σ

√
v − 2

v
tv1−α, (2)

where µ and σ are defined as stated above and tv1−α is the (1 − α)-quantile of the Student-t
distribution with v degrees of freedom (see Alexander, 2008). In empirical applications, fat-tailed
data is typically modelled by v = 5 (see Campbell et al., 2001) or by determining the optimal
value of v via maximum-likelihood fit (see Lange et al., 1989).

2.1.2 Historical simulation method

In contrast to the two previous approaches, historical simulation, which is currently the most pop-
ular VaR estimation technique in investment practice (see Pritsker, 2006; Pérignon and Smith,
2010), is not bound to a prespecified theoretical distribution. Instead, it assumes that the distri-
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bution of past returns is a good and complete representation of expected future returns. This way,
it can not only account for kurtosis but additionally for skewness in empirical data.

For the confidence level α, historical simulation forecasts the VaR in t + 1 via the empirical
(1− α)-quantile, i.e.,

VaRHS
t+1,α = quantile1−α(xt, xt−1, ..., xt−T+1), (3)

where xt it the return in t. This means, for example, that the 95% VaR for a moving window of
length 1,000 is simply the 50th value in a series of returns sorted in ascending order.

2.2 EVT approaches

2.2.1 Method of block maxima

Recent research has directed considerable attention towards deriving new VaR estimators from
EVT because it is concerned with the asymptotic behaviour of extremes and thus represents a
natural candidate for VaR modeling. In the early literature, we can identify two fairly simple
approaches. While one makes use of the limiting distribution of block maxima and the other is
based on the asymptotic theory of exceedances over given thresholds (see Gilli and Këllezi, 2006;
Ferreira and De Haan, 2015). In this section, we cover the former.

Consider a sequence of independently and identically distributed (iid) random variables X1, X2, ...
with the unknown distribution function F (x) := P (Xt ≤ x) and define the maximum of a block of
n observations to be Mn := max(X1, . . . , Xn). A central result of EVT states that the generalised
extreme value distribution (GEVD) is the only possible limiting distribution for block maxima as
the block size increases. More formally, the limit law for the block maxima Mn is given by the
following theorem dating back to Fisher and Tippett (1928) and Gnedenko (1943).

Theorem 1 (Fisher-Tippett-Gnedenko Theorem). If there are constants an > 0, bn ∈ R as well
as some non-degenerate distribution function H such that

Mn − bn

an

d→ H

then H belongs to one of the three standard extreme value distributions:

Fréchet: Φϑ(x) =
{

0 if x ≤ 0 and ϑ > 0
exp(−x−ϑ) if x > 0 and ϑ > 0

Weibull: Ψϑ(x) =
{

exp(−(−x)ϑ) if x ≤ 0 and ϑ > 0
1 if x > 0 and ϑ > 0

Gumbel: Λ(x) = exp(− exp(−x)) if x ∈ R.

This theorem illustrates that the normalised maxima Mn either follows a Fréchet, a Weibull or
a Gumbel distribution. However, in general, we (i) do not know in advance the type of limiting
distribution and (ii) do not know the norming constants. To address (i), we can use a one-parameter
distribution proposed by Jenkinson (1955) and von Mises (1954) which includes all three standard
extreme value distributions as special cases. This distribution is the GEVD, which has the form

Hξ(x) =

{
exp

(
−(1 + ξx)−

1
ξ

)
if ξ 6= 0

exp(− exp(−x)) if ξ = 0
(4)

with x such that 1 + ξx > 0. It is obtained by setting ξ = ϑ−1 > 0 (ξ = −ϑ−1) for the Fréchet
(Weibull) distribution and by interpreting the Gumbel distribution as the limit case for ξ = 0. To
additionally address (ii), the GEVD can be generalised to a three-parameter specification
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Hξ,γ,δ(x) =

{
exp

(
−(1 + ξ x−γ

δ )−
1
ξ

)
if ξ 6= 0

exp(− exp(−x−γ
δ )) if ξ = 0

, (5)

for 1 + ξ x−γ
δ > 0, where γ and δ are the location and scale parameters representing the un-

known norming constants (see Embrechts et al., 1999). This is the limiting distribution of the
unnormalised maxima. It is particularly useful when maximum likelihood estimates have to be
computed. Integrated into the Fisher-Tippett-Gnedenko Theorem it delivers an analogous position
with respect to the study of maxima as the famous central limit theorem holds for the study of
sums or averages of random variables.

Based on these results, the VaR of the block maxima (BM) method can be obtained by inverting
(5) for a given confidence level α, i.e., by fitting the GEVD via maximum likelihood and plugging
the resulting parameter estimates into

VaRGEVD
t+1,α =

{
γ − δ

ξ (1− (− ln(1− α))−ξ) if ξ 6= 0

γ − δ ln(− ln(1− α)) if ξ = 0
. (6)

However, with few exceptions (see Ho et al., 2000; Longin, 2000), this approach is usually not
utilized in practice because it is subject to several drawbacks. For example, it ignores other
potentially important extremes within a block (see Marimoutou et al., 2009). Furthermore, there
are no rules for optimal block-length selection (see Tsay, 2005) such that subsamples are typically
based on calendar frequencies which introduces potential bias via seasonal effects (see Gilli and
Këllezi, 2006). However, as we will see in the following sections, the Fisher-Tippett-Gnedenko
Theorem is used in other forms of extreme value approaches.

2.2.2 Peak over threshold method

The peak over threshold (POT) method is one the most popular extreme value approaches in
practice because, in contrast to the BM method, it makes more efficient use of the often limited
data on extreme values (see Gençay and Selçuk, 2004). Instead of focusing on block maxima,
this method models the distribution of excesses Y = X − u of X over a high threshold u. This
distribution is defined as

Fu(y) = P (X − u ≤ y|X > u), (7)

for 0 ≤ y < x0−u, where x0 ≤ ∞ is the right endpoint of F (see McNeil, 1999).3 It represents the
probability that X exceeds the threshold u by at most an amount y, given the information that it
exceeds the threshold.

The following limit theorem of Pickands (1975) and Balkema and de Haan (1974) gives a key
property of (7) and lays the cornerstone for obtaining the VaR based on the POT method.

Theorem 2 (Pickands-Balkema-de-Haan Theorem). For a large class of underlying distribution
functions,4 the conditional excess distribution function Fu(y), for large u, is well approximated by
the generalised Pareto distribution (GPD)

3With an infinite right endpoint, we would allow the possibility of unreasonably large outcomes. Also note that
the form of (7) requires to multiply the empirical long-position returns by −1 in order to model the correct tail.

4Of course this is not mathematically complete because we do not exactly say what we mean by ‘a large class’.
For this article, it is sufficient to know that the class contains all the common continuous distributions of statistics
and actuarial science (normal, lognormal, χ2, Student-t, F, gamma, exponential, uniform, beta, etc.).
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Gξ,δ(y) =

{
1− (1 + ξ

δy)−
1
ξ if ξ 6= 0

1− exp(−y
δ ) if ξ = 0

, (8)

with y ∈ [0, x0 − u] if ξ ≥ 0 and y ∈ [0,− δ
ξ ] if ξ < 0,5 because we can find a positive measurable

function δ(u) such that

lim
u→x0

sup
y∈(0,x0−u)

|Fu(y)−Gξ,δ(u)(y)| = 0. (9)

Because we can rewrite (7) as Fu(y) = [F (u+y)−F (u)]/[1−F (u)] = [F (x)−F (u)]/[1−F (u)],
we can isolate F (x) in the form F (x) = (1 − F (u))Fu(y) + F (u) for x > u. Thus, we may move
easily to an interpretation of the model in terms of the tail of the underlying distribution F (x) for
x > u. Replacing Fu(y) by the GPD and F (u) by the estimate (T − Tu)/T , where T is the total
number of observations and Tu is the number of observations above the threshold u, we obtain

F (x) =

{
1− q

(
1 + ξ x−u

δ

)−1/ξ if ξ 6= 0
1− q exp(−x−u

δ ) if ξ = 0
, (10)

where q = Tu/T is the proportion of observations above the threshold (see Bali and Neftci, 2003).
Given a confidence level α with α > 1− q and a threshold u, we can invert this formula to get

VaRPOT
t+1,α =

{
u + δ

ξ ((1−α
q )−ξ − 1) if ξ 6= 0

u + δ ln( q
1−α) if ξ = 0

. (11)

To implement the POT method in an empirical application, we simply have to set u, fit the GPD
to the excesses by means of maximum likelihood and plug the resulting parameter estimates for
the GPD into (11). Typically, researchers set u such that q = 10% because McNeil and Frey (2000)
show that for this setting, the potential errors caused by an insufficient number of observations in
the GPD fit (too high u) and by a not fully achieved GPD convergence in the sample (too low u)
are reasonably balanced.6 In a simulation using Student-t returns, these authors also show that
the POT approach is more efficient than HS.

2.2.3 Box-Cox method

In a recent article, Bali (2007) proposes a novel VaR estimation approach based on a more general
extreme value distribution and shows that it performs well in capturing both the rate of occurrence
and the extent of extreme events in financial markets. He also highlights that the new method
yields more precise VaR estimates than the normal and skewed-t distributions.

The new distribution is obtained following Bali (2003) by applying the one-parameter Box
and Cox (1964) transformation to the GEVD of Jenkinson (1955). The resulting Box-Cox (BC)
extreme value distribution has the cumulative distribution function

BCξ,γ,δ,λ(x) =


(
exp

(
−
(
1 + ξ

(x−γ
δ

))−1/ξ
))λ

− 1

λ

+ 1, (12)

5Similar to the GEVD, the GPD nests other distributions. The special cases ξ = 0 and ξ = 1 yield, respectively,
the exponential distribution with mean δ and the uniform distribution on [0, δ]. Classic Pareto distributions are
obtained when ξ < 0 (see Hosking and Wallis, 1987).

6Alternative methods for threshold determination are described in El-Aroui and Diebold (2002) and Scarrott and
MacDonald (2012).
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where the nature of the transformation ensures that BCξ,γ,δ,λ(x) → 1 for x → ∞. The Box-
Cox distribution nests the GEVD and the GPD (see Rocco, 2014). For λ = 1, we immediately
recover the GEVD, being BCξ,γ,δ,1(x) = Hξ,γ,δ(x). For λ → 0, we obtain the GPD,7 being
BCξ,γ,δ,λ(x) → Gξ,γ,δ(x) = Gξ,δ(x− γ), where x− γ are the excesses over the threshold γ.

In analogy to the POT method of Section 2.2.2, we can derive a quantile function which directly
yields the Box-Cox VaR as

VaRBC
t+1,α = γ +

δ

ξ

((
− 1

λ
ln
(

1− (1− α)λ
q

))−ξ

− 1

)
(13)

for λ ∈ [0, 1], where q is the ratio of the number of extremes to the total number of data points.
Bali (2007) uses this VaR technique for (i) extremes defined as excesses over a threshold given
by q = 10%, (ii) extremes over several trading days (i.e., 23 days or 1 month) and (iii) extremes
derived from the ‘mean excess function’ method described in Embrechts and Mikosch (1997). We
follow this approach, however, we report only the results for variant (i) because, as in Bali (2007),
the qualitative results turn out to be very similar for the alternatives.8

Because, in our application, the maximum likelihood method does not generally converge for
the Box-Cox distribution, we use a non-linear regression technique to estimate its parameters. This
approach is based on the idea of a Q-Q plot and is implemented as follows (see Tsay, 2005). First,
we sort the extremes in ascending order x1 ≤ · · · ≤ xi ≤ · · · ≤ xn. Using an important property of
order statistics (see Gumbel, 1958; Cox and Hinkley, 1974), we have E(BCξ,γ,δ,λ(xi)) = i/(n + 1)
for i = 1, ..., n. Furthermore, we have BCξ,γ,δ,λ(xi) from (12). Consequently, approximating
expectation by an observed value, we can equate both expressions:

i

n + 1
=


(
exp

(
−
(
1 + ξ

(xi−γ
δ

))−1/ξ
))λ

− 1

λ

+ 1. (14)

After some algebra, adding the deviation ωi between the previous two quantities and assuming
that ωi is not serially correlated, we can come up with a regression setup

ln
((

− 1
λ

)
ln
(

1 + λ

(
i

n + 1
− 1
)))

= −1
ξ

ln
(

1 + ξ

(
xi − γ

δ

))
+ ωi. (15)

The least squares estimates of γ, δ and ξ can be obtained by minimizing the sum of squares of ωi.
Intuitively, this means that we seek to minimise the distance between the diagonal in the Q-Q plot
and the quantile points plotted there because the closer the points are to the diagonal, the more
accurately the theoretical distribution can describe the empirical data. This procedure produces
consistent but less efficient estimates than the maximum likelihood method.

2.2.4 L-moment method

Given the results of Smith (1984, 1987) estimation of the GPD parameters in the POT method is
typically done by maximum likelihood. As most of the useful properties of maximum likelihood
only hold asymptotically and thus its effectiveness can be limited in small samples, Martins-Filho
and Yao (2006) propose to estimate ξ and δ based on the L-moment theory (LMT) of Hosking
(1990) and Hosking and Wallis (1997). As we will see, L-moment estimators exhibit a number of
desirable properties which make them preferable to maximum likelihood in some applications.

7This is because lim
λ→0

xλ−1
λ

= ln x.
8The detailed results for the variants (ii) and (iii) are available upon request.
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To illustrate L-moment estimation, recall that, for a random variable Y with quantile Q(α),
the L-moment of order r = 1, 2, ... is defined as

ϕr =

1∫
0

Q(α)Pr−1(α) dα, (16)

where Pr(α) = Σr
k=0pr,kα

k and pr,k = ((−1)r−k(r + k)!)/((k!)2(r − k)!), which contrasts with the
traditional raw moments φr =

∫ 1
0 Q(α)r dα involving powers of the quantile function.

Hosking (1990) shows that a distribution can be characterised by its L-moments even if raw
moments of order greater than one do not exist and, most importantly, this characterisation is
unique, which is not true for raw moments. Because ϕ1 = φ1, the first L-moment (when it
exists) provides the traditionally used measure of location of a distribution. Up to a scalar, ϕ2 is
the expectation of Gini’s mean difference statistic, therefore representing a measure of scale that
differs from the traditional variance by placing smaller weights on differences between realisations
of the random variable (see Hosking and Wallis, 1997). If φ1 exists, then τ3 = ϕ3

ϕ2
with −1 < τ3 < 1

and τ3 = 0 for symmetric distributions gives a measure of skewness that is less sensitive to the
extreme tails of the distribution than the traditional measure of skewness (see Hosking, 1989).
Similarly, τ4 = ϕ4

ϕ2
with −1 < τ4 < 1 is as a robust measure of kurtosis (see Oja, 1981).

L-moments can be used to estimate a finite number of parameters θ that identify a member of a
family of distributions (see Martins-Filho and Yao, 2006). Suppose F (θ) is a family of distributions
known up to θ. A sample yt, t = 1, ..., T, is available and the objective is to estimate θ. Since
ϕr, r = 1, 2, ..., uniquely characterises F , θ may be expressed as a function of ϕr. Hence, if
estimators ϕ̂r are available, we may obtain θ̂(ϕ̂1, ϕ̂2, ...).

From (16) we get ϕr+1 = Σr
k=0pr,kνk, where νk =

∫ 1
0 Q(α)αk dα for r = 0, 1, 2, ... Given the

sample, we define yk,T to be the kth smallest element of the sample, such that y1,T ≤ y2,T ≤ ... ≤
yT,T . As shown by Landwehr et al. (1979) and Wang (1990), an unbiased estimator of νk is

ν̂k = T−1
T∑

j=k+1

(j − 1)(j − 2)...(j − k)
(T − 1)(T − 2)...(T − k)

yj,T , (17)

which can be used to obtain the estimate ϕ̂r+1 = Σr
k=0pr,kν̂k for r = 0, 1, ..., T − 1. For the GPD

with θ = (ξ, δ) it can be shown that δ = (1 − ξ)ϕ1 and ξ = 2 − ϕ1/ϕ2. Thus, their L-moment
estimators are δ̂ = (1− ξ̂)ϕ̂1 and ξ̂ = 2− ϕ̂1/ϕ̂2.

Similar to maximum likelihood estimators, L-moment parameter estimators are asymptotically
normally distributed. However, they are easier and faster to implement because no numerical op-
timisation or iterative procedure is required. Furthermore, in finite samples, L-moment estimators
outperform maximum likelihood methods in terms of mean squared error (see Hosking et al., 1985;
Vogel and Fennessey, 1993).

2.2.5 Johnson method

Finally, in a last VaR estimation method, Brooks et al. (2005) suggest that, in contrast to most EVT
approaches focussing exclusively on the tails, a valid approach should make use of the information
from both the tails and the centre of the distribution, but treat each separately because extremes
are structurally different from the return generating process under normal market conditions. They
show that their approach is superior to three tail index estimation methods (the large sample
estimators of Hill, 1975; Pickands, 1975; De Haan and Resnick, 1980) used in the early EVT
literature and a more recent one (the small sample bias-corrected estimator of Huisman et al.,
2001) and that it is considerably closer to the nominal probability of violations than competing
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approaches which fit a single model for the whole distribution (bootstrapped historical simulation
and bootstrapped GARCH(1,1)).9

The general idea of the Brooks et al. (2005) approach is to (i) use a structured Monte Carlo
simulation which differentiates between the center and the tails of the empirical distribution, (ii)
fit an adequate member of the Johnson (1949) system of distributions (JSD) to the simulated data
and then (iii) obtain a VaR estimate based on the theoretical characteristics of this distribution.

Specifically, the simulation is performed as follows. In a first step, a GPD is fitted to each
of the tails xt > xu and xt < xl of a given empirical distribution, where xu and xl are the
thresholds for the upper and lower tails, respectively. In a second step, the POT method is used
to determine the quantiles Qu and Ql for given probabilities α and 1− α. Finally, the simulation
is performed by Efron (1982) bootstrapping from both the two fitted tails and from the empirical
distribution function derived from the returns. Specifically, one return path is simulated as follows.
(i) Draw a sample of size T , with replacement, from the xt, t = 1, ..., T observations of the empirical
distribution. Then, within the newly generated, data do the following. (ii) If xt < Ql then draw
from the GPD fitted to the lower tail. (iii) If xt > Qu, then draw from the GPD fitted to the
upper tail.10 (iv) However, if xt falls in the middle of the empirical distribution, i.e., Ql ≤ xt ≤ Qu,
then xt is retained. This simulation can be repeated 10, 000 times to come up with 10,000 series
{xl

1, ..., x
l
nl

, xlu
1 , ..., xlu

nlu
, xu

1 , ..., xu
nu
} with nl + nlu + nu = T .

Based on the simulated data, one might think of estimating the VaR by fitting the JSD to each
simulated series, obtaining a VaR estimate for each series and generating a final forecast V aRJSD

t+1,α

by averaging the VaR estimates. Instead, motivated by the work of Hsieh (1993), Brooks et al.
(2005) determine the lowest log price ratio xL = ln(Pmin/P0) for each return path and model the
resulting distribution, i.e., the sampling distribution of the maximum loss. Because its specific
distributional form is unknown, they use the fact that theoretically any non-normal continuous
distribution can be transformed into a standard normal distribution (see Baker, 1934). One way
to do this is via the JSD.

Johnson (1949) shows that a continuous random variable X with an unknown distribution can
be transformed to a standard normal variable Z by

Z = $ + ςf̃

(
X − γ

δ

)
, (18)

where f̃(·) is a transformation function. $ and ς > 0 determine the shape of the distribution
of X. γ is the location parameter and δ > 0 is the scale parameter. A collection of suitable
transformation functions forms the JSD as

Slog : Z = $ + ς ln(X − γ) for X > γ

Sunb : Z = $ + ς sinh−1
(

X−γ
δ

)
for −∞ < X < ∞

Sbou : Z = $ + ς ln
(

X−γ
γ+δ−X

)
for γ < X < γ + δ

,

where S refers to a sub-system and the subscript to the nature of the range. That is, the system Slog

covers the lognormal family. Sunb covers the unbounded system of distributions (e.g., the Student-t
distribution) and Sbou covers bounded distributions (e.g., the gamma or beta distribution).

If we have a statistic whose first four moments are known either exactly or approximately, then
the JSD density with equivalent first four moments (mean, variance, skewness, kurtosis) may be
used as an approximant (see Bowman and Shenton, 2004). This means that we can use

9Random GARCH returns have been produced by estimating the model, drawing randomly (with replacement)
from the sample standardised residuals and then using the GARCH equations to construct a simulated return path.

10The reason why the GPD distribution is used for the tails rather than the empirical distribution throughout
is that the number of observations in the tails may be insufficient to obtain accurate results without using an
appropriate fitted distribution.
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x1−α =


γ + exp

(
z1−α−$

ς

)
for Slog

γ + δ sinh
(

z1−α−$
ς

)
for Sunb

γ+(γ+δ) exp
(

z1−α−$

ς

)
1+exp

(
z1−α−$

ς

) for Sbou

(19)

where z1−α is the (1 − α)-quantile of the standard normal distribution, to obtain four-moment
approximations for the quantile x1−α. The method of moments is a natural candidate to estimate
the JSD parameters for each sub-system (see Florence, 2011).

Brooks et al. (2005) indicate that, in empirical data, the distribution of xL is best matched by
the unbounded system. For this case, they also show that the maximum loss, given a confidence
level α, can be obtained as

V aRJSD,Sunb
t+1,α = 1− exp((±xL,1−α · σL) + µL), (20)

where xL,1−α is calculated as in (19) and µL and σL are the mean and the standard deviation of
the simulated distribution of xL, respectively.

2.3 Filter processes

2.3.1 GARCH filtering

Even though the VaR estimation techniques in Sections 2.1 and 2.2 are based on sound statistical
theory, a critical point remains. They all assume that returns are iid which is in sharp contrast to
the empirical observations of serial correlation and conditional heteroskedasticity in most financial
data (see Campbell et al., 1993; Engle and Patton, 2001). Thus, the unconditional VaR estimates
produced by these methods may not provide an accurate characterisation of the actual VaR.

This problem is partially attenuated by the results of Leadbetter et al. (1983), Resnick (1987)
and Castillo (1988). They show that unconditional VaR approaches based on EVT are not neces-
sarily distorted because even if the underlying series exhibits a dependence structure, i.e., follows
a moving average (MA), autoregressive (AR) or ARMA process, the limit distribution of extremes
belongs to the domain of attraction of standard EVT distributions. Thus, as long as the underlying
series is stationary and follows an MA, AR or ARMA process, then the conventional procedures
developed for the iid data perform adequately on data with dependence structures.

As these findings do not fully resolve the potential problems with unconditional approaches, it
has become standard in the empirical literature to carry out extremal analysis on returns which
have been standardised by a conditional mean-volatility model and are thus approximately iid
if the model is correctly specified. As outlined by Diebold et al. (2000), this approach has two
steps. In the first stage, we fit a Bollerslev (1986) type generalised autoregressive conditional
heteroskedasticity (GARCH) model to the returns via maximum likelihood. Most commonly,
researchers and practitioners use a parsimonious AR(1)-GARCH(1,1) specification of the form

xt = κ0 + κ1xt−1 + ztσt = µt + ztσt (21)
σ2

t = τ0 + τ1z
2
t−1σ

2
t−1 + τ2σ

2
t−1 (22)

where zt is a normally-distributed iid random variable with zero mean and unit variance, µt is the
conditional mean, and σ2

t is the conditional variance of returns based on the information set up
to time t − 1. With the estimated model parameters, we can (i) obtain the model residuals or
standardised returns st = (xt − µt)/σt and (ii) generate out-of-sample forecasts of the conditional
mean µt+1 and the conditional volatility σt+1.

In the second step, we calculate the unconditional VaR of the standardised returns V aRuc
α (st).

Depending on which VaR approach we are focussing on, this computation is different. For example,
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for the historical simulation, the peak-over-threshold method and the Box-Cox approach, we use
(3), (11) and (13), respectively (see McNeil and Frey, 2000; Bali, 2007; Marimoutou et al., 2009).11

Together with the forecasts of the first step, we can plug the unconditional VaR estimate into

VaRt+1,α = µt+1 + σt+1VaRuc
α (st) (23)

to generate a conditional VaR estimate which is consistent with the current state of the market.
Various studies have shown that such conditional forecasts are more precise than their uncondi-
tional counterparts (see Barone-Adesi and Giannopoulos, 2001; McNeil and Frey, 2000).

With respect to this specification, several issues are worth noting. First, the low GARCH orders
are typically motivated by the observation that higher orders usually do not significantly increase
the explanatory power of the model (see Bollerslev et al., 1992). Second, several studies have
shown that filters like (21) and more complex specifications (other variants of variance equations
and distributional assumptions) significantly diminish intertemporal dependencies (see Bali, 2007).
However, they also show that, for many financial series, we still observe significant Ljung and Box
(1978) Q-statistics for the fitted models, indicating that the standardised residuals of a GARCH
process are not fully iid (see Bollerslev et al., 1994; Bali and Theodossiou, 2007). Nonetheless,
researchers continue to use these models because of a lack of alternatives that can reliably provide
iid series. As our objective is not to find the ideal filter but to analyse the forecasting power of
methods as they are typically used, we focus on the specification described above.12

2.3.2 Nonlinear filtering

While most of our approaches use a GARCH filter in their conditional versions, the method of
Martins-Filho and Yao (2006) differs with respect to the filter model used for the returns. They
propose a nonparametric Markov chain model (see Härdle and Tsybakov, 1997) as well as an
improved nonparametric estimation procedure for the conditional volatility of returns (see Fan
and Yao, 1998). The idea is to come up with a model that is general enough to accommodate
nonlinearities that have been regularly verified in empirical work (see Tauchen, 2001; Patton, 2004)
and thus generates a sequence of residuals adequate for EVT approaches. The nonlinear model is
more difficult to estimate than classic parametric models but there can be substantial inferential
gains if the alternative parametric models are misspecified or unduly restrictive.

Martins-Filho and Yao (2006) use the following model. The two dimensional strictly stationary
process {(Xt, Xt−1)′} is described by a Markov chain of order one, i.e.,

Xt = µ(Xt−1) + σ(Xt−1)εt, (24)

where µ(x) and σ2(x) are the conditional mean E(Xt|Xt−1 = x) and variance function E((Xt −
µ(x))2|Xt−1 = x) and εt is iid with zero mean, unit variance and unknown marginal distribution.
This is the conditional heteroskedastic autoregressive nonlinear (CHARN) model of Diebold and
Guégan (1993), Härdle and Tsybakov (1997) and Hafner (1998). It is more flexible than the popular
GARCH(1,1) model in that µ(x) is a nonparametric function and, most importantly, σ2(x) is not
a linear function of X2

t−1. However, note that its Markov property restricts its ability to effectively
model longer memory that is commonly observed in return processes.

To estimate µ(x) and σ(x) in (24), Martins-Filho and Yao (2006) suggest to use a procedure
proposed by Fan and Yao (1998),13 which consists of two steps. First, µ(x) is estimated using the

11In the case of the traditional approaches based on specific distributional assumptions, we use the quantile of the
theoretical distribution (standard normal, Student-t) instead of (1) and (2).

12In our robustness checks in Section 5.2, we summarise the results for more general GARCH variants.
13This is because the approach suggested by Härdle and Tsybakov (1997) has several undesirable properties.

For example, the procedure for estimating conditional variance suffers from significant bias and does not produce
estimates that are constrained to be positive. Furthermore, it is sensitive to how well µ(x) is estimated.
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local estimator of Fan (1992). Let A(x) and B(x) be Gaussian kernel functions, x in the support
of the conditional density of X, and ã(T ), b̃(T ) be sequences of positive real numbers (bandwidths)
such that ã(T ), b̃(T ) → 0 as the sample size T →∞. Then with

(%̂, ρ̂)′ = arg min
%,ρ

T∑
t=2

(xt − %− ρ(xt−1 − x))2A
(

xt−1 − x

ã(T )

)
(25)

the local estimator of µ(x) is %̂(x). In the second step, let x̄t = (xt − %̂(xt−1))2 and define

(η̂, ζ̂)′ = arg min
η,ζ

T∑
t=2

(x̄t − η − ζ(xt−1 − x))2B
(

xt−1 − x

b̃(T )

)
, (26)

such that the local estimator of σ2(x) is η̂(x). The bandwidths are selected using the data driven
method of Ruppert and Wand (1995) which is a consistent estimator of the (optimal) bandwidth
sequence that minimises the asymptotic mean integrated squared error of %̂(x) and η̂(x).

Thus, we can estimate the conditional VaR similar to (23) with the only difference that the
residuals and the forecasts for conditional mean and volatility come from a new model. Martins-
Filho and Yao (2006) show that using the alternative filter model and the L-moment approach of
Section 2.2.4 outperforms the approach of McNeil and Frey (2000), which uses a GARCH filter
and the classic maximum likelihood method for the GPD fit, in terms of mean squared error in
simulation and backtesting experiments for stock market series.14

3 Data and preliminary results

To examine the accuracy of different VaR forecasting models, it has become standard to compare
their predictions with actual return realisations following the prediction. To this end, most studies
focus on one or more representative time series for the stock market. For example, Kuester et al.
(2006), Martins-Filho and Yao (2006) and Bali et al. (2008) use the NASDAQ Composite Index,
the S&P 500 and the CRSP Value-Weighted Index, respectively. Because one may argue that the
results for one specific asset class cannot be generalised (a good performance for stock returns
may not imply comparable performance for commodities, bonds or currencies), we combine the
ideas outlined in Brooks et al. (2005), Bali (2007) and Cheng and Hung (2011), that is, we focus
on several asset classes by conducting a multi-asset study. Specifically, we use the CRSP Value-
Weighted Index and the S&P 500 Index to represent the stock market. Furthermore, we have
a look at the Goldman Sachs Commodity Index, which represents a futures-based total return
investment in a rich commodity basket, and a spot investment in the gold market by using London
Bullion Market quotations. Finally, we include the Datastream US Government Bond Index and
the US-Dollar to Great Britain Pound exchange rate to cover bond and currency markets.

Our dataset consists of daily closing prices (or index levels) from January 1, 1986 to February
29, 2016, which leads to a sample size of 7,869 observations for each series. The CRSP index
was obtained from the data library of Kenneth French,15 whereas the other data was collected
from Thomson Reuters Datastream.16 The series are used to calculate percentage log returns
xt = [ln(Pt)− ln(Pt−1)] · 100, where Pt is the closing price (or index level) at time t.

Table 1 presents the descriptive statistics for our return sample. Besides minimum, maximum,
mean, standard deviation, skewness and kurtosis of returns, we also report the Q-statistics to
test the null hypothesis that there is no autocorrelation in the returns and squared returns. For

14In the simulation study, they use an interesting stochastic process with Hansen (1994) skewed-t errors, for which
the true VaR can be directly calculated. Thus, in repeated sampling, they can answer the question of how close the
estimates of different VaR methods are to the true VaR.

15See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
16The codes of the series are S&PCOMP, GSCITOT, GOLDBLN, BMUS10Y and BOECGBP.
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our sample period, we can observe the highest mean returns in the stock indices followed by the
commodity investments and the bond index. The $/£ exchange rate shows a negative mean return.
Volatilities are highest for the commodity index and lowest for the bond index. As far as skewness
is concerned, we obtain negative values for all series. While the most negative values occur in the
stock market, the bond market does not deviate strongly from a normal distribution in terms of
skewness. Similarly, the stock market shows crucial kurtosis which is significantly higher than for
all other series. In general, the fat-tail property is more dominant than skewness in the sample.17

The Q-statistics for the cumulative effect of up to twelfth-order autocorrelation are highly
significant and indicate the presence of intertemporal dependencies in the first and second moments
of the return distributions.18 This implies that the returns are not iid and thus using filtered returns
may significantly improve the forecasting performance of our VaR estimators.

CRSP SP500 GSCI GOLD USGBI $/£

Min -17.413 -22.900 -18.432 -10.162 -2.876 -3.960
Max 11.354 10.957 7.600 7.382 4.061 4.429
Mean 0.044 0.028 0.011 0.017 0.005 -0.001
Std Dev 1.132 1.147 1.290 0.984 0.463 0.590
Skewness -0.648 -1.280 -0.568 -0.358 -0.044 -0.136
Kurtosis 18.350 31.294 11.849 10.601 6.437 6.517
Q(12) 42.289 44.198 13.308 30.724 23.547 38.930
Q2(12) 2,988.763 1,345.942 1,114.469 919.475 769.190 1,598.932

For the period from January 1, 1986 to February 29, 2016 and our six time series, this table reports the minimum,
maximum, mean, standard deviation, skewness and kurtosis of daily percentage log returns. Furthermore, we display
the Ljung-Box Q-statistics with 12 lags for the returns and the squared returns. It tests the null hypothesis that there
is no autocorrelation up to lag 12. The time series are abbreviated as follows: CRSP = CRSP Value-Weighted Index,
SP500 = S&P 500 Index, GCSI = Goldman Sachs Commodity Index (futures-based total return version), GOLD
= London Bullion Market gold spot price, USGBI = Datastream US Government Bond Index, $/£ = US-Dollar to
Great Britain Pound exchange rate.

Table 1: Descriptive statistics

To get a first impression of the accuracy of our VaR forecasting models, we have a descriptive
look at their out-of-sample performance. In contrast to in-sample performance, it provides a more
practically relevant perspective on forecasting abilities because risk managers by definition obtain
VaR estimates in real time and hence must use parameters obtained from an already observed
sample to evaluate risks associated with current and future movements in risk factors. Hence, the
true quality of a VaR approach can only be revealed by its performance outside the sample, i.e.,
in data not used in the estimation of the underlying parameters (see Angelidis et al., 2004).

To capture this idea of performance evaluation, we perform a rolling window analysis from
which we obtain violation rates (see Christoffersen, 1998; Berkowitz and O’Brien, 2002). We
define a rolling window of 1, 000 daily returns (roughly four years of trading data) which we move
in steps of one day from the beginning to the end of our sample. This implies that we allow the
corresponding parameters to change over time. The choice of window length is motivated by prior
studies on EVT-based VaR methods (see McNeil and Frey, 2000) and by the fact that this number
is a minimum requirement for adequate filter performance (see Hwang and Vallis Pereira, 2006).
Within each window, we calculate our VaR estimators (as specified in Section 2) for confidence
levels of 95%, 97.5% und 99%, i.e., nominal error probabilities of 5%, 2.5% and 1%, and compare
the VaR estimates to the actual return on the day following the window. That is, as in Kuester

17The fact that heavy-tailed distributions may not possess low-order moments implies that usual significance tests
for skewness and kurtosis are most likely unreliable and are not worth reporting (see Paolella, 2001).

18Note that the statistics take high values partially because of the large sample size (see Bali, 2007).
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et al. (2006) and Bali (2007), we are interested in the performance of one-step-ahead forecasts for
the VaR.19 More formally, we calculate a violation indicator

It =
{

1 if xt < V aRt,α

0 else
(27)

which takes the value 1 if the realised return exceeds the VaR forecast and is 0 otherwise. To
obtain the violation rate p̂, we divide the number of ones (over all windows) by the total number
of windows in our sample.20 Then p̂ can be compared to the nominal error probability π = (1−α)
used in VaR estimation. For example, if the error probability is set to be π = 5%, then p̂ = 7%
(p̂ = 3%) implies that our VaR estimator predicts that the calculated VaR will only be exceeded
with a probability of 5% but, in fact, it is exceeded more (less) frequently. While a good VaR model
would be one that generated a p̂ close to π, a situation p̂ > π, where the true risk is underestimated,
is likely to be far more serious for a firm (because risk management activities based on the VaR
estimates may lead to insufficient hedges) than having too much capital reserves in the case of
p̂ < π indicating an overestimated VaR (see Brooks et al., 2005; Ziggel et al., 2014).21,22

Table 2 reports the violation rates for the unconditional versions of our EVT-based VaR
estimators and, for comparison, also for selected traditional approaches. These rates are based
on 7, 869 − 1, 000 = 6, 869 VaR forecasts. Starting with a look a the 5% error probability and
the traditional methods, we can observe violation rates above 5% for all series when the Student-t
method is used. With the exception of the currency market, the normal and the historical sim-
ulation methods also have a tendency to underestimate risk.23 Turning to the EVT approaches,
the peak over threshold method and the L-moment method tend to deliver higher (lower) viola-
tion rates than historical simulation in stock and bond markets (currency markets). The Box-Cox
method is, with the exception of the exchange rate, superior to these two EVT approaches and
to the traditional methods because its violation rates are closer to the nominal error probability.
The Johnson method provides violation rates below 5% for all time series and is thus the most
conservative approach. For the least volatile series (bond and currency market), the difference
from 5% is most substantial.

As far as the 2.5% error probability is concerned, the picture becomes clearer. The violation
rates are highest for the normal and Student-t approaches and they are consequently above 2.5%
for all series. Interestingly, despite the conceptual differences of the methods, the violation rates
for the simple historical simulation and the more complex peak over threshold method are very
similar. Both methods and also the L-moment approach deliver violation rates above 2.5% for
all series. Finally, the Box-Cox method overestimates risk for some series (both stock indices and
gold) and the Johnson method overestimates for all series.

Finally, for the 1% level, we arrive at conclusions similar to the 2.5% case. However, now we
can detect fewer instances of overestimation for the Box-Cox approach (one vs. three) and the
Johnson method (five vs. six).

Table 3 allows a more compact comparison of the unconditional VaR estimators because it
summarises the violations across all error probabilities and time series by reporting the mean

19We leave the performance of multi-step-ahead forecasts for future research because problems with the square-
root-of-time scaling rule and related techniques must to be resolved first (see McNeil and Frey, 2000).

20Brooks et al. (2005) use only one out-of-sample period of 250 days and calculate the percentage of days for
which the VaRs were exceeded by actual trading losses. Bali (2007) defines a 10-year rolling sample (in one-year
increments) to estimate parameters and sets a one-year holdout sample (subsequent to the estimation) to evaluate
performance. Kuester et al. (2006) use our approach.

21Of course, in a regime of negative interest rates, this point of view can change because then reserves are subject
to capital depreciation.

22Underpredictions have potentially serious solvency implications in the context of futures margin systems because
margin setting is known to be sensitive to the occurrence of large price changes (see Brooks et al., 2005).

23This is consistent with the results of Kuester et al. (2006) for the NASDAQ Composite index.
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CRSP SP500 GSCI GOLD USGBI $/£

5% level
Normal 5.38 5.24 5.80 5.13 5.24 4.89
Student-t 5.91 5.61 6.46 5.58 5.88 5.40
Historical simulation 5.58 5.45 5.66 5.40 5.08 4.82
Peak over threshold 5.68 5.58 5.85 5.33 5.20 4.79
L-moment 5.81 5.65 5.78 5.50 5.23 4.70
Box-Cox 5.03 5.10 5.71 4.85 5.05 4.76
Johnson 4.38 4.72 4.32 4.35 3.64 3.83
2.5% level
Normal 3.71 3.60 3.77 3.33 3.29 3.16
Student-t 3.56 3.34 3.62 3.23 3.16 3.06
Historical simulation 3.05 2.85 3.16 2.68 2.80 2.55
Peak over threshold 3.04 2.88 3.26 2.66 2.77 2.65
L-moment 3.10 2.92 3.25 2.75 2.72 2.62
Box-Cox 2.28 2.15 2.93 2.20 2.59 2.55
Johnson 2.23 2.32 2.36 2.21 2.01 1.89
1% level
Normal 2.23 2.21 2.37 2.22 2.17 1.86
Student-t 1.70 1.67 1.57 1.54 1.38 1.15
Historical simulation 1.41 1.35 1.54 1.14 1.35 1.14
Peak over threshold 1.35 1.28 1.53 1.21 1.25 1.11
L-moment 1.40 1.33 1.50 1.18 1.30 1.08
Box-Cox 1.08 1.00 1.21 0.82 1.06 1.03
Johnson 0.79 0.92 1.05 0.67 0.77 0.55

For our unconditional VaR estimators (i.e., the approaches of Sections 2.1 and 2.2), three error probabilities and
six time series, this table reports the percentage violation rates obtained from a rolling window approach in which
the VaR estimates based on 1,000 day windows are compared to actual return realisations on the day following the
windows. Series abbreviations are used as in Table 1.

Table 2: Violation rates for unconditional VaR estimators

ND ST HS POT LM BC JO

MAPE 54.36 33.14 17.98 17.80 18.82 7.73 17.19
Rank 7 6 4 3 5 1 2

MPE 54.11 33.14 17.58 17.33 18.16 1.00 -16.63
Rank 7 6 4 3 5 2 1

For each of our unconditional VaR estimators, this table reports the mean absolute percentage errors (MAPE) and
mean percentage errors (MPE) across the three error probabilities and six time series in Table 2. Furthermore, it
presents rankings of the VaR estimators, where rank 1 (rank 7) is the best (worst) methodology in terms of MAPE
or MPE. The methodologies are abbreviated as follows: ND = normal distribution, ST = Student-t, HS = historical
simulation, POT = peak over threshold, LM = L-moments, BC = Box-Cox, JO = Johnson.

Table 3: Violation summary for unconditional VaR estimators

absolute percentage error MAPE = 1
18Σ6

j=1Σ
3
k=1|(πk − p̂jk)/πk| and the mean percentage error

MPE = 1
18Σ6

j=1Σ
3
k=1(πk − p̂jk)/πk, where j (k) is an index for our six (three) time series (error

probabilities). While MAPE reflects the overall deviations regardless of their direction, the sign of
the MPE gives additional information on whether a VaR model has a tendency to underestimate
(positive sign) or to overestimate (negative sign) risk. Besides MAPE and MPE, Table 3 contains
a ranking of the VaR estimators based on MAPE and MPE from best (rank 1) to worst (rank 7),
where in the case of MPE we assume that overestimation is preferable to underestimation.

Focussing on the MAPE first, the Box-Cox method appears to be superior in terms of absolute
error. It is followed by the Johnson, peak over threshold, historical simulation and L-moments
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techniques, which show similar error levels. Finally, the normal and Student-t approaches rank
lowest. Turning to the MPE, we detect a similar ranking. However, now we can see that the
Johnson method scores highest because it is the only estimator with an (on average) negative
error. Furthermore, the Box-Cox method ranks second with a very low positive MPE. The MPE
values for all other estimators crucially differ from these two methods.

So far, we have concentrated on unconditional approaches. If we repeat our violation analysis
for the conditional versions of the VaR estimators, we obtain the results of Tables 4 and 5. We can
gain several important insights. First, with a few exceptions, using filtered returns improves fore-
casting accuracy (i.e., reduces violation rates) over all error probabilities and time series. Second,
historical simulation can keep up with the peak over threshold method and the L-moment method
by delivering largely similar errors or partially even lower errors. Finally, while the L-moment
method now appears to be preferable in terms of MAPE, the Box-Cox method and the Johnson
method (i.e., their MPE) again show a tendency to overestimation and can thus be interpreted as
the most conservative estimators.

CRSP SP500 GSCI GOLD USGBI $/£

5% level
Normal 5.87 5.58 5.65 4.89 5.02 5.36
Student-t 6.69 6.51 6.44 5.46 5.81 6.09
Historical simulation 5.29 5.14 5.46 4.97 4.92 4.99
Peak over threshold 5.41 5.13 5.49 4.99 4.95 5.02
L-moment 5.33 5.11 5.45 5.05 5.04 4.98
Box-Cox 4.86 4.63 5.33 4.71 4.88 5.01
Johnson 3.47 3.73 3.52 3.73 3.36 3.57
2.5% level
Normal 3.66 3.68 3.28 3.15 3.04 3.16
Student-t 3.47 3.54 3.07 3.03 2.84 3.01
Historical simulation 2.58 2.56 2.68 2.53 2.46 2.50
Peak over threshold 2.81 2.77 2.69 2.53 2.36 2.64
L-moment 2.78 2.81 2.71 2.52 2.43 2.55
Box-Cox 2.34 2.15 2.45 2.14 2.18 2.52
Johnson 1.58 1.79 1.67 1.82 1.50 1.56
1% level
Normal 2.08 2.15 1.86 1.91 1.57 1.64
Student-t 1.38 1.43 1.09 1.28 1.09 0.98
Historical simulation 1.12 1.12 1.22 0.98 1.09 0.93
Peak over threshold 1.06 1.08 1.18 1.00 1.11 1.06
L-moment 1.00 1.05 1.16 0.99 1.14 0.96
Box-Cox 0.71 0.73 0.99 0.83 1.00 0.96
Johnson 0.67 0.61 0.70 0.61 0.66 0.41

For our conditional VaR estimators (i.e., the approaches of Sections 2.1 and 2.2 combined with the filters of Section
2.3), three error probabilities and six time series, this table reports the percentage violation rates obtained from a
rolling window approach in which the VaR estimates based on 1,000 day windows are compared to actual return
realisations on the day following the windows. Series abbreviations are used as in Table 1.

Table 4: Violation rates for conditional VaR estimators

4 Evaluating VaR estimators

4.1 General framework

To statistically back up and extend descriptive analyses like the one in Section 3, it has become
standard to rely on the Christoffersen (1998) framework which is designed to evaluate out-of-sample
VaR forecasts by focusing on ideal properties of the violation indicator (27) (see Kuester et al.,
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ND ST HS POT LM BC JO

MAPE 42.87 23.74 5.54 6.36 5.42 8.53 33.87
Rank 7 5 2 3 1 4 6

MPE 42.62 23.52 4.10 5.60 4.51 -7.69 -33.87
Rank 7 6 3 5 4 2 1

For each of our conditional VaR estimators, this table reports the mean absolute percentage errors (MAPE) and
mean percentage errors (MPE) across the three error probabilities and six time series in Table 4. Furthermore, it
presents rankings of the VaR estimators, where rank 1 (rank 7) is the best (worst) methodology in terms of MAPE
or MPE. Method abbreviations are used as in Table 3.

Table 5: Violation summary for conditional VaR estimators

2006; Bali et al., 2008; Candelon et al., 2011; Ziggel et al., 2014). In this framework, a sequence
of VaR forecasts with specified nominal error probability π is said to be efficient with respect to
the information set Ωt−1 if

E(It|Ωt−1) = π. (28)

This implies that It has to be uncorrelated with any function of a variable in the information set
available at t− 1. If the efficiency condition holds, then VaR violations will occur with the correct
probability, and neither the forecast for V aRt,α, nor that for It could be improved.

Although a general test is desirable, we follow Kuester et al. (2006) by using intermediate
statistics for testing specific implications of the general hypothesis (28), such that particular inad-
equacies of a model can be revealed.

4.2 Indicator information sets

To make the criterion (28) operational, Christoffersen (1998) considers an information set Ωt−1 =
{It−1, It−2, ..., I1}, which consists of past realisations for the indicator sequence, and shows that,
in this case, testing E(It|Ωt−1) = E(It|It−1, It−2, ..., I1) = π, for all t, is equivalent to testing
that the sequence {It} is iid Bernoulli with parameter π. He calls a sequence of interval forecasts
with {It}

iid∼ Bern(π), for all t, to have correct conditional coverage and proposes a likelihood ratio
testing framework to test this property. This framework consists of a test of unconditional coverage
and a test of independence which can be combined to a test of conditional coverage. These tests
are most frequently used in practice (see Basel Committee on Banking Supervision, 2011b).

Unconditional coverage test. To test for unconditional coverage, the hypothesis H0 : E(It) =
π should be tested against the alternative HA : E(It) 6= π given independence (see Kupiec,
1995). As shown by Christoffersen (1998), the likelihood under this null hypothesis is simply
L(π; I1, I2, · · · , Iw) = πw1(1 − π)w0 and under the alternative L(p; I1, I2, · · · , Iw) = pw1(1 − p)w0 .
Thus, testing for unconditional coverage can be performed by a standard likelihood ratio test

LRuc = −2 ln (L(π; I1, I2, · · · , Iw)/L(p̂; I1, I2, · · · , Iw))
asy∼ χ2(1), (29)

where p̂ = w1/(w1 + w0) is the maximum likelihood estimator of p and w1 (w0) is the number of
ones (zeros) in the indicator sequence of length w = w1 + w0. As the test is a two-sided test, a
model will be rejected if it generates too many or too few violations.

Independence test. VaR estimators that do not take temporal volatility dependence into account
may be correct on unconditional coverage but will produce violation clusters, which cause incorrect
conditional coverage (see Bali et al., 2008). As the test of unconditional coverage has no power
against such an alternative, an additional test − a test of independence of violations − is required
to fully judge the adequacy of VaR forecasts. For this purpose, various standard tests could
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be used (see Campbell et al., 1997). Christoffersen (1998) proposes to test the null hypothesis of
independence, i.e., that a violation today has no influence on the probability of violation tomorrow,
against an explicit alternative, i.e., that {It} follows a binary first-order Markov chain with the
transition probability matrix

Π =
(

1− π01 π01

1− π11 π11

)
,

where πij = P (It = j|It−1 = i).24 The approximate joint likelihood for this process, conditional
on the first observation, is

L(Π; I2, · · · , Iw|I1) = (1− π01)w00πw01
01 (1− π11)w10πw11

11 ,

where wij is the number of indicator observations with value i followed by j and the maximum-
likelihood estimators for the parameters are π̂01 = w01/(w00 + w01) and π̂11 = w11/(w10 + w11).

Under the null hypothesis of independence, we have π01 = π11 =: π1, from which the conditional
binomial joint likelihood follows as

L(π1; I2, · · · , Iw|I1) = (1− π1)w00+w10πw01+w11
1

and the maximum-likelihood estimate is π̂1 = (w01 + w11)/(w00 + w10 + w01 + w11). Based on the
results of Hoel (1954), the likelihood ratio statistic is then given by

LRind = −2 ln(L(π̂1; I2, · · · , Iw|I1)/L(Π̂; I2, · · · , Iw|I1))
asy∼ χ2(1). (30)

Note that, because π̂1 is unconstrained, this test statistic tests only for independence and does not
take correct coverage into account.

Conditional coverage test. An accurate VaR assessor should have the property to examine
both, independence and coverage. Therefore, Christoffersen (1998) suggests to combine (29) and
(30) to

LRcc = −2 ln(L(π; I2, · · · , Iw|I1)/L(Π̂; I2, · · · , Iw|I1))
asy∼ χ2(2) (31)

to test for correct conditional coverage.25 By conditioning on the first observation in (29), we
have LRcc = LRuc + LRind, which provides a means to check in which regard the violation series
{It} fails the correct conditional coverage property. Thus, if the null hypothesis is rejected, we
can look at the components of Lcc to answer the question of whether the rejection is caused by
inaccurate coverage and/or by clustered violations. As argued by Campbell (2007) even in the
case of not rejecting the null we should have a look at the components because the test result may
disguise a violation of one of the properties. For example, consider the test statistics Luc = 7.4
and Lind = 1.5 such that Lcc = 8.9. At the 1% level, the critical values are χ2(1) = 6.63 and
χ2(2) = 9.21. Thus, the conditional coverage null hypothesis wouldn’t be rejected although the
unconditional coverage null hypothesis is rejected.

As with all asymptotically motivated inferential procedures, the actual size of the tests for
finite samples can deviate from their nominal sizes. Lopez (1997) examines the size of uncondi-
tional and conditional coverage tests via simulation, as well as their power against various model
misspecifications. For a sample size of 500 observations, he finds both tests to be adequately sized.
Furthermore, even for such a small sample, power appears to be reasonable. However, as Berkowitz
(2001) and Berkowitz et al. (2011) provide evidence of low power in small samples for an extended

24Berkowitz et al. (2011) summarises tests which focus on the duration between violations because, under the null
that VaR forecasts are correctly specified, this duration should be completely unpredictable.

25In effect, the null hypothesis of the unconditional coverage test will be tested against the alternative of the
independence test.
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set of alternatives, we follow Bali (2007) and minimise such potential problems by resorting to a
large sample of daily data.

4.3 Extended information set

Because the conditional coverage test only considers past violations in the information set, it
only tests a special case of conditional coverage, whereas the condition (28) suggests that any
variable in Ωt−1 be uncorrelated with It. To address this limitation, Engle and Manganelli (2004)
propose to add a judicious choice of additional variables to the information set. Specifically, they
operationalise (28) by regressing It on past violations and the VaR estimate for period t. That is,
they run the regression

It = π̃ +
m∑

i=1

βiIt−i + βm+1V aRt,α + εt, (32)

where, under the null hypothesis, π̃ = π and βi = 0, i = 1, ...,m + 1. In vector notation, we have

I − πι = Xβ + e (33)

where β0 = π̃ − π and ι is a conformable vector of ones. Under the null hypothesis (28), the
regressors should not have explanatory power, that is, H0 : β = 0 (see Chen and Lu, 2012).
Because the regressors are not correlated with the dependent variable under the null hypothesis,
invoking a suitable central limit theorem yields

β̂LS = (X ′X)−1X ′(I − πι)
asy∼ N(0, (X ′X)−1π(1− π)) (34)

from which Engle and Manganelli (2004) deduce the test statistic

DQ =
β̂′LSX ′Xβ̂LS

π(1− π)
asy∼ χ2(m + 2).

In our study, we follow Kuester et al. (2006) and Bali et al. (2008) by using a pure violation-
based and a mixed specification of the dynamic quantile test. In the first, denoted DQHit, the
regressor matrix contains a constant and three lagged indicators It−1, ..., It−3. For the second one,
denoted by DQV aR, we additionally include the contemporaneous VaR estimate.26

5 Empirical analysis

5.1 Main results

5.1.1 Unconditional approaches

Tables 6 to 8 report the test results for the unconditional VaR estimators, where each table
concentrates on two of our six time series. We present the test statistics of the unconditional
coverage test, the independence test, the unconditional coverage test and the two variants of the
dynamic quantile test. Cases in which the null hypothesis cannot be rejected at the 1% level
are marked in bold type because insignificance of these tests is typically interpreted as implying
that a VaR approach provides a good assessment of the risk exposure of a given asset or portfolio
(see Bali, 2007; Bali et al., 2008). Furthermore, we calculate some additional statistics. First,
for each test and error probability, we rank the VaR estimators based on the test statistics from
lowest (rank 1) to highest (rank 7). For each estimator and error probability, we then compute the

26Thus, at a 1% level, the tests require the critical values χ2(4) = 13.28 and χ2(5) = 15.09, respectively (see
Domitrescu et al., 2012).
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average rank across all tests in order to be able to judge the relative performance of the estimators
even in cases where they are rejected (or not rejected) by almost all tests. Here, lower ranks signal
more favorable VaR estimators. Second, we obtain the loss measure of Lopez (1999). That is,
we (i) define a loss function Lt which takes the value 1 + (rt − V aRt,α)2 if rt < V aRt,α and is
zero otherwise and (ii) calculate the average of its realisations over time. For a good VaR model,
this average should be close to zero. It also allows judging the relative performance but implicitly
rewards VaR estimators for being conservative. Finally, as a last statistic, we report the (absolute)
average VaR estimate for each methodology because based on this value we can directly assess
differences in the VaR levels produced by the different estimators.

Starting with a look at the results for the CRSP Value-Weighted Index in Panel A of Table
6, we find that only the Box-Cox and the Johnson method pass the unconditional coverage test
for all error probabilities. Because this test and a general nominal error level of 1% are implicitly
incorporated in the framework for backtesting internal models proposed by the Basel Committee
on Banking Supervision (1996b), our results imply that, from a regulatory perspective, only these
two methods would be acceptably accurate and thus be used for obtaining the VaR estimates
that have to be reported to the regulators who observe when actual portfolio losses exceed these
estimates.27 Of course this also means that, for all other approaches, the rejection of the null of
unconditional coverage indicates that the computed VaR estimates are not accurate enough.

As discussed in Section 4, the quality of a VaR model does not depend only on hitting the
given confidence level. It should also be able to produce violations independent of both past
violations and other potential predictive variables. A look at the additional tests analysing these
properties reveals that their null hypotheses are rejected for all VaR estimators and all nominal
error probabilities. Thus, the use of the Box-Cox and the Johnson approaches is justified under
the Basel framework but they cannot be considered accurate VaR estimation techniques. However,
even though they are rejected by most tests, our average ranks and losses indicate that they are
still more accurate than the alternative VaR estimators. In line with our overestimation tendency
identified in Section 3, we can also observe higher VaR estimates on average in comparison to the
other approaches.

The results for the S&P 500 Index in Panel B of Table 6 show that, while all VaR estimators
pass the unconditional coverage test for the 5% error probability, only the peak over threshold, Box-
Cox and Johnson methods pass this test when we switch to the 1% error probability. Interestingly,
while, for the 1% error level, almost all VaR approaches are rejected based on the independence
and conditional coverage test, this is not the case for the Box-Cox method. Thus, given a violation
today there is no higher probability of a violation tomorrow. However, despite this promising
result, the dynamic quantile test rejects all VaR estimators including the Box-Cox method.

Because the 1% error probability is the focus of interest in the Basel framework, we concentrate
on this error level in the following discussion of our results for the commodity, bond and currency
series (and also in the conditional analysis in Section 5.1.2). Turning to the commodity index in
Panel A of Table 7, we can document results similar to the CRSP Value-Weighted Index. That
is, (i) only the Box-Cox and Johnson approaches pass the unconditional coverage test, (ii) all
VaR estimators fail the more advanced tests and (iii) the overall performance of the Box-Cox
and Johnson method appears to be superior. For the gold investment in Panel B of Table 7, the
results are slightly different. Historical simulation and all EVT-based methods (except for the
Johnson method) pass the unconditional coverage test. The Box-Cox and the L-moment method

27The Basel three-zone framework deems a VaR model acceptable (green zone) if the number of violations of the
99%-VaR is below the 1%-binomial 95% quantile. A model is disputable (yellow zone) up to the 99.99% quantile
and is deemed seriously flawed (red zone) whenever more violations occur (see Kuester et al., 2006; Campbell, 2007).
Thus, with the decision rule ‘reject the null hypothesis of a valid VaR model whenever the model scores red’, the
procedure can be interpreted as a significance test, i.e., basically as a one-sided version of the unconditional coverage
test (see Ziggel et al., 2014). Not-rejecting the two-sided version directly implies not-rejecting the one-sided version.
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additionally pass the independence and conditional coverage test. However, all approaches are
rejected based on the dynamic quantile test. Based on our testing ranks, the L-moment method
scores first, the Box-Cox method second and historical simulation third.

Finally, while the results for the US-Dollar to Great Britain Pound exchange rate in Panel B of
Table 8 also indicate that all methods fail the more advanced backtests but highlight superiority
of the Box-Cox and Johnson method similar to our stock market results, the numbers in Panel A
of Table 8 for the bond market are quite interesting. Here, we find several cases where the VaR
methods are not rejected based on more advanced tests. Specifically, we see that the L-moment
and the Box-Cox method pass all tests (except for the second dynamic quantile specification).
Furthermore, the Johnson method cannot be rejected by any of the tests indicating a far better
performance of this method in bond markets than in stock, commodity and currency markets.

We can conclude that none of the unconditional VaR models is acceptable for all asset classes
and target probabilities. However, we find some evidence that (i) EVT-based approaches are
superior to traditional ones and (ii) the Box-Cox and Johnson method are the most promising
VaR estimators in the EVT-based class.

5.1.2 Conditional approaches

Given the relatively poor performance of most approaches in their unconditional versions, this
section analyses the accuracy of their conditional counterparts which take into account the dynamic
behaviour of asset returns over time. In a structure similar to Section 5.1.1, Tables 9 to 11 present
our results. As to be expected from the apparent serial correlation and volatility clustering in
our time series (see Table 1), introducing filtering almost uniformly improves VaR prediction
performance. Across all error levels and all series considered, we can observe much more cases
where the VaR estimators are not rejected by our statistical tests.

Again with a focus on the 1% nominal error probability, we start by having a more detailed look
at the results for the CRSP Value-Weighted Index in Panel A of Table 9. We can observe that the
conditional normal approach performs quite poorly even though some studies (see, for example,
Danielsson and Morimoto, 2000) show that it might have some merit (especially for larger values
of the nominal error probability).28 However, while it does not perform satisfactorily in terms
of unconditional coverage, it appears to be able to produce cluster-free violations. Turning to
the alternative approaches, we detect several instances hinting at more efficient VaR forecasts.
Historical simulation and all EVT-based approaches (except for the Johnson method) cannot
be rejected based on the unconditional coverage, independence and conditional coverage tests.
Interestingly, now the peak over threshold method is the most promising EVT-based approach in
terms of average test ranks. It is followed by the Johnson method which again is characterised by
the lowest average value of the loss function confirming its conservatism. However, it is important
to note that the historical simulation also performs quite well with the lowest average testing rank
over all approaches (traditional and EVT-based).

For the S&P 500 Index in Panel B of Table 9, we find that the peak over threshold and the
L-moment estimators cannot be rejected based on almost all tests but the second dynamic quantile
specification. Historical simulation passes all tests and scores first based on the average testing
rank, again followed by the peak over threshold method.

As far as the commodity market is concerned, Panel A of Table 10 for the Goldman Sachs
Commodity Index reveals that the peak over threshold, L-moment, Box-Cox and historical sim-
ulation approaches and even the Student-t method pass all tests. The Box-Cox method provides
the highest average testing rank. When focusing on the gold spot investment in Panel B of Table

28Our results indicate that, at least for our dataset, the 5% quantile is still not large enough for the normal
assumption to be adequate.
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Test results Additional statistics

LRuc LRind LRcc DQHit DQV aR Rank Loss V aR

Panel A: CRSP Value-Weighted Index
5% level
Normal 1.95 (2) 23.83 (5) 25.78 (3) 151.94 (2) 175.27 (3) 3.0 0.15 1.74
Student-t 10.91 (7) 17.62 (3) 28.53 (4) 192.08 (5) 213.42 (6) 5.0 0.17 1.65
Historical simulation 4.46 (3) 25.49 (7) 29.95 (6) 170.40 (4) 187.22 (4) 4.8 0.16 1.70
Peak over threshold 6.22 (5) 23.37 (4) 29.59 (5) 194.50 (6) 209.74 (5) 5.0 0.16 1.69
L-moment 8.56 (6) 24.56 (6) 33.12 (7) 199.58 (7) 215.27 (7) 6.6 0.16 1.67
Box-Cox 0.01 (1) 14.22 (2) 14.23 (1) 152.66 (3) 171.24 (2) 1.8 0.15 1.78
Johnson 5.60 (4) 13.90 (1) 19.51 (2) 139.35 (1) 156.92 (1) 1.8 0.14 1.88
2.5% level
Normal 34.39 (6) 10.88 (1) 45.26 (6) 229.45 (6) 264.46 (6) 5.0 0.11 2.09
Student-t 34.39 (6) 10.88 (1) 45.26 (6) 229.45 (6) 264.47 (7) 5.2 0.11 2.09
Historical simulation 7.77 (4) 16.49 (4) 24.26 (3) 155.14 (4) 167.46 (4) 3.8 0.10 2.22
Peak over threshold 7.36 (3) 19.25 (7) 26.61 (4) 146.67 (3) 162.29 (3) 4.0 0.10 2.21
L-moment 9.05 (5) 18.13 (6) 27.18 (5) 162.32 (5) 176.79 (5) 5.2 0.10 2.19
Box-Cox 1.35 (1) 16.85 (5) 18.20 (2) 121.44 (2) 140.34 (2) 2.4 0.08 2.54
Johnson 1.98 (2) 12.01 (3) 13.99 (1) 93.56 (1) 107.23 (1) 1.6 0.08 2.48
1% level
Normal 74.94 (6) 9.48 (2) 84.42 (6) 337.95 (6) 376.75 (6) 5.2 0.08 2.49
Student-t 74.94 (6) 9.48 (2) 84.42 (6) 337.95 (6) 376.75 (6) 5.2 0.08 2.49
Historical simulation 10.07 (5) 12.77 (5) 22.83 (5) 122.45 (3) 143.66 (4) 4.4 0.05 2.98
Peak over threshold 7.44 (3) 13.84 (7) 21.28 (3) 127.54 (5) 148.04 (5) 4.6 0.05 2.97
L-moment 9.38 (4) 13.03 (6) 22.41 (4) 123.63 (4) 142.87 (3) 4.2 0.05 2.96
Box-Cox 0.41 (1) 10.81 (4) 11.22 (2) 81.19 (1) 100.04 (2) 2.0 0.03 3.75
Johnson 3.15 (2) 7.01 (1) 10.16 (1) 93.16 (2) 97.55 (1) 1.4 0.03 3.48

Panel B: S&P 500 Index
5% level
Normal 0.83 (2) 14.04 (6) 14.87 (4) 134.11 (1) 159.35 (1) 2.8 0.16 1.77
Student-t 5.11 (6) 13.06 (5) 18.17 (6) 171.44 (7) 196.21 (7) 6.2 0.17 1.68
Historical simulation 2.79 (4) 11.18 (3) 13.98 (3) 152.02 (4) 172.20 (4) 3.6 0.17 1.72
Peak over threshold 4.64 (5) 14.92 (7) 19.56 (7) 165.66 (5) 186.15 (5) 5.8 0.17 1.70
L-moment 5.86 (7) 11.13 (2) 16.99 (5) 167.38 (6) 186.28 (6) 5.2 0.17 1.68
Box-Cox 0.13 (1) 9.02 (1) 9.16 (1) 148.12 (3) 169.94 (3) 1.8 0.16 1.78
Johnson 1.17 (3) 12.49 (4) 13.66 (2) 136.02 (2) 159.84 (2) 2.6 0.15 1.87
2.5% level
Normal 29.89 (7) 7.91 (2) 37.80 (7) 232.41 (7) 269.36 (7) 6.0 0.12 2.11
Student-t 18.38 (6) 7.43 (1) 25.82 (6) 193.53 (6) 226.85 (6) 5.0 0.11 2.15
Historical simulation 3.38 (2) 9.64 (3) 13.01 (2) 135.36 (4) 150.67 (4) 3.0 0.10 2.23
Peak over threshold 3.94 (4) 11.32 (6) 15.26 (3) 132.41 (3) 150.24 (3) 3.8 0.10 2.25
L-moment 4.87 (5) 10.72 (5) 15.59 (4) 139.87 (5) 154.81 (5) 4.8 0.10 2.22
Box-Cox 3.52 (3) 12.48 (7) 16.00 (5) 120.86 (2) 137.10 (2) 3.8 0.08 2.51
Johnson 0.99 (1) 10.15 (4) 11.14 (1) 93.71 (1) 113.92 (1) 1.6 0.09 2.44
1% level
Normal 75.89 (7) 11.60 (5) 87.49 (7) 326.53 (7) 378.56 (7) 6.6 0.08 2.51
Student-t 26.24 (6) 14.52 (7) 40.75 (6) 250.90 (6) 278.89 (6) 6.2 0.07 2.82
Historical simulation 7.83 (5) 9.75 (2) 17.58 (5) 96.49 (2) 112.24 (2) 3.2 0.05 3.02
Peak over threshold 5.04 (3) 10.87 (4) 15.92 (3) 114.95 (5) 130.29 (5) 4.0 0.05 3.04
L-moment 6.65 (4) 10.19 (3) 16.84 (4) 111.01 (4) 125.07 (4) 3.8 0.05 3.02
Box-Cox 0.00 (1) 4.33 (1) 4.34 (1) 77.88 (1) 96.96 (1) 1.0 0.04 3.67
Johnson 0.49 (2) 13.38 (6) 13.87 (2) 103.70 (3) 113.04 (3) 3.2 0.04 3.52

For our unconditional VaR estimators and three nominal error probabilities, this table reports the test statistics
of the unconditional coverage test (Luc), the independence test (Lind), the conditional coverage test (Lcc) and the
dynamic quantile test (DQ) of VaR forecasts for the CRSP Value-Weighted Index and the S&P 500 Index. DQ is
applied in two specifications: one that contains only a constant and three lagged violations (DQHit) and one that
additionally considers the contemporaneous VaR estimate (DQV aR). Bold type entries are not significant at the 1%
level. Besides these test statistics we report the ranks of each estimator based on each test (from best = 1 to worst
= 7). The last three columns present the average rank over all tests (Rank), the average value of the loss function
(Loss) and the (absolute) average of the VaR estimates (V aR).

Table 6: VaR prediction performance of unconditional models for CRSP and SP500
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Test results Additional statistics

LRuc LRind LRcc DQHit DQV aR Rank Loss V aR

Panel A: Goldman Sachs Commodity Index
5% level
Normal 8.71 (5) 22.26 (3) 30.97 (3) 77.99 (3) 88.49 (2) 3.2 0.20 2.07
Student-t 28.52 (7) 20.90 (2) 49.42 (7) 95.86 (7) 115.06 (7) 6.0 0.22 1.96
Historical simulation 6.21 (1) 19.69 (1) 25.81 (1) 63.02 (1) 73.18 (1) 1.0 0.21 2.03
Peak over threshold 10.00 (6) 22.83 (4) 32.83 (5) 80.47 (5) 89.33 (4) 4.8 0.21 2.02
L-moment 8.40 (4) 24.27 (6) 32.67 (4) 78.57 (4) 88.91 (3) 4.2 0.21 2.02
Box-Cox 6.94 (3) 23.97 (5) 30.91 (2) 72.29 (2) 89.89 (5) 3.4 0.20 2.08
Johnson 6.90 (2) 42.04 (7) 48.95 (6) 88.50 (6) 103.75 (6) 5.4 0.17 2.32
2.5% level
Normal 39.48 (7) 41.31 (1) 80.79 (7) 184.80 (7) 203.45(7) 5.8 0.15 2.47
Student-t 31.40 (6) 42.65 (2) 74.05 (6) 176.13 (6) 194.85 (6) 5.2 0.14 2.51
Historical simulation 11.33 (3) 51.12 (7) 62.44 (3) 169.56 (3) 192.19 (4) 4.0 0.13 2.67
Peak over threshold 14.93 (5) 47.68 (4) 62.61 (5) 171.09 (5) 190.93 (3) 4.4 0.13 2.62
L-moment 14.39 (4) 48.16 (5) 62.55 (4) 170.25 (4) 192.63 (5) 4.4 0.14 2.62
Box-Cox 4.87 (2) 48.42 (6) 53.29 (2) 148.42 (2) 182.47 (2) 2.8 0.12 2.82
Johnson 0.57 (1) 45.06 (3) 45.63 (1) 122.47 (1) 136.74 (1) 1.4 0.11 2.99
1% level
Normal 94.43 (7) 36.87 (7) 131.31 (7) 384.40 (7) 402.71 (7) 7.0 0.11 2.93
Student-t 19.37 (6) 32.82 (2) 52.19 (6) 205.84 (6) 211.95 (6) 5.2 0.08 3.29
Historical simulation 17.57 (5) 33.75 (3) 51.32 (5) 181.83 (5) 196.93 (5) 4.6 0.08 3.43
Peak over threshold 16.70 (4) 34.22 (4) 50.92 (4) 173.49 (3) 185.22 (3) 3.6 0.08 3.44
L-moment 15.02 (3) 35.18 (5) 50.20 (3) 176.20 (4) 188.71 (4) 3.8 0.08 3.44
Box-Cox 2.83 (2) 20.46 (1) 23.29 (1) 78.50 (1) 97.82 (1) 1.2 0.07 3.93
Johnson 0.16 (1) 35.71 (6) 35.87 (2) 142.46 (2) 146.90 (2) 2.6 0.07 3.93

Panel B: London Bullion Market gold
5% level
Normal 0.23 (1) 11.33 (1) 11.55 (1) 27.49 (1) 28.15 (1) 1.0 0.14 1.53
Student-t 4.64 (6) 13.48 (2) 18.12 (5) 37.07 (2) 37.50 (2) 3.4 0.15 1.45
Historical simulation 2.28 (4) 14.62 (4) 16.90 (4) 38.62 (4) 40.16 (4) 4.0 0.14 1.51
Peak over threshold 1.53 (3) 14.23 (3) 15.76 (3) 37.09 (3) 38.49 (3) 3.0 0.14 1.50
L-moment 3.56 (5) 16.06 (6) 19.62 (6) 40.81 (6) 42.18 (6) 5.8 0.14 1.49
Box-Cox 0.33 (2) 15.34 (5) 15.67 (2) 38.78 (5) 40.60 (5) 3.8 0.13 1.58
Johnson 6.31 (7) 22.23 (7) 28.54 (7) 47.71 (7) 53.97 (7) 7.0 0.12 1.67
2.5% level
Normal 17.78 (7) 13.12 (5) 30.90 (7) 67.28 (6) 68.07 (6) 6.2 0.10 1.83
Student-t 13.86 (6) 14.70 (7) 28.55 (6) 68.30 (7) 69.18 (7) 6.6 0.09 1.86
Historical simulation 0.88 (2) 9.82 (2) 10.70 (1) 34.77 (2) 39.95 (2) 1.8 0.08 2.00
Peak over threshold 0.75 (1) 10.01 (3) 10.76 (2) 39.35 (3) 44.58 (3) 2.4 0.08 2.00
L-moment 1.73 (3) 13.25 (6) 14.99 (5) 40.86 (5) 44.60 (4) 4.6 0.08 1.98
Box-Cox 2.67 (5) 11.81 (4) 14.48 (4) 40.31 (4) 56.59 (5) 4.4 0.07 2.27
Johnson 2.41 (4) 9.12 (1) 11.53 (3) 30.89 (1) 38.66 (1) 2.0 0.07 2.22
1% level
Normal 77.51 (7) 11.38 (6) 88.89 (7) 183.65 (7) 193.69 (7) 6.8 0.07 2.17
Student-t 17.57 (6) 10.19 (5) 27.76 (6) 59.69 (6) 61.60 (6) 5.8 0.05 2.44
Historical simulation 1.22 (1) 9.53 (4) 10.75 (3) 29.34 (3) 34.71 (2) 2.6 0.04 2.66
Peak over threshold 2.83 (4) 8.47 (3) 11.30 (4) 33.91 (4) 41.10 (3) 3.6 0.04 2.70
L-moment 2.11 (2) 5.60 (2) 7.71 (2) 25.67 (1) 31.78 (1) 1.6 0.04 2.68
Box-Cox 2.52 (3) 0.49 (1) 3.02 (1) 26.23 (2) 44.43 (4) 2.2 0.03 3.33
Johnson 8.56 (5) 13.74 (7) 22.30 (5) 45.44 (5) 46.04 (5) 5.4 0.03 3.15

For our unconditional VaR estimators and three nominal error probabilities, this table reports the test statistics
of the unconditional coverage test (Luc), the independence test (Lind), the conditional coverage test (Lcc) and the
dynamic quantile test (DQ) of VaR forecasts for the Goldman Sachs Commodity Index and London Bullion Market
gold. DQ is applied in two specifications: one that contains only a constant and three lagged violations (DQHit) and
one that additionally considers the contemporaneous VaR estimate (DQV aR). Bold type entries are not significant
at the 1% level. Besides these test statistics we report the ranks of each estimator based on each test (from best =
1 to worst = 7). The last three columns present the average rank over all tests (Rank), the average value of the loss
function (Loss) and the (absolute) average of the VaR estimates (V aR).

Table 7: VaR prediction performance of unconditional models for GSCI and GOLD

23



Test results Additional statistics

LRuc LRind LRcc DQHit DQV aR Rank Loss V aR

Panel A: Datastream US Government Bond Index
5% level
Normal 0.83 (5) 12.57 (7) 13.40 (5) 24.36 (4) 51.87 (2) 4.6 0.06 0.74
Student-t 10.68 (6) 9.44 (4) 20.12 (6) 36.95 (7) 73.90 (7) 6.0 0.07 0.70
Historical simulation 0.10 (2) 7.95 (2) 8.05 (1) 18.64 (1) 45.00 (1) 1.4 0.06 0.75
Peak over threshold 0.56 (3) 9.09 (3) 9.65 (2) 21.45 (2) 54.33 (3) 2.6 0.06 0.75
L-moment 0.74 (4) 10.02 (5) 10.76 (3) 25.20 (5) 62.93 (5) 4.4 0.06 0.74
Box-Cox 0.04 (1) 10.89 (6) 10.93 (4) 23.91 (3) 57.35 (4) 3.6 0.06 0.75
Johnson 29.41 (7) 3.49 (1) 32.90 (7) 36.40 (6) 64.13 (6) 5.4 0.04 0.85
2.5% level
Normal 16.04 (7) 3.68 (7) 19.73 (7) 31.01 (7) 60.95 (7) 7.0 0.04 0.89
Student-t 11.33 (6) 1.36 (2) 12.68 (6) 19.28 (6) 47.38 (6) 5.2 0.04 0.90
Historical simulation 2.37 (4) 1.20 (1) 3.57 (3) 8.25 (2) 36.60 (4) 2.8 0.03 0.95
Peak over threshold 1.93 (3) 2.35 (5) 4.28 (4) 8.25 (2) 27.53 (1) 3.0 0.03 0.95
L-moment 1.36 (2) 1.51 (3) 2.87 (2) 8.45 (4) 37.26 (5) 3.2 0.03 0.95
Box-Cox 0.23 (1) 2.17 (4) 2.40 (1) 5.47 (1) 30.06 (2) 1.8 0.03 0.98
Johnson 7.26 (5) 2.96 (6) 10.23 (5) 14.28 (5) 35.41 (3) 4.8 0.02 1.09
1% level
Normal 71.11 (7) 0.87 (6) 71.98 (7) 101.32 (7) 126.92 (7) 6.8 0.03 1.05
Student-t 9.10 (5) 0.32 (3) 9.42 (5) 11.71 (5) 28.74 (3) 4.2 0.02 1.18
Historical simulation 7.83 (4) 0.38 (4) 8.21 (4) 10.02 (4) 53.46 (5) 4.2 0.02 1.24
Peak over threshold 67.99 (6) 0.97 (7) 68.96 (6) 97.37 (6) 123.39 (6) 6.2 0.02 1.22
L-moment 5.55 (3) 0.02 (1) 5.57 (3) 6.18 (3) 40.14 (4) 2.8 0.02 1.22
Box-Cox 0.27 (1) 0.06 (2) 0.33 (1) 0.48 (1) 18.63 (2) 1.4 0.01 1.30
Johnson 3.92 (2) 0.62 (5) 4.54 (2) 5.30 (2) 7.21 (1) 2.4 0.01 1.40

Panel B: US-Dollar to Great Britain Pound exchange rate
5% level
Normal 0.17 (1) 34.22 (3) 34.39 (3) 64.40 (5) 78.95 (5) 3.4 0.07 0.95
Student-t 2.28 (6) 28.56 (1) 30.84 (1) 66.44 (6) 85.77 (6) 4.0 0.07 0.90
Historical simulation 0.48 (2) 33.75 (2) 34.23 (2) 55.62 (1) 67.18 (1) 1.6 0.06 0.96
Peak over threshold 0.64 (3) 36.83 (5) 37.48 (5) 62.58 (3) 73.28 (3) 3.8 0.06 0.96
L-moment 1.30 (5) 34.35 (4) 35.65 (4) 58.39 (2) 71.18 (2) 3.4 0.06 0.97
Box-Cox 0.84 (4) 37.60 (6) 38.44 (6) 64.19 (4) 77.45 (4) 4.8 0.06 0.97
Johnson 21.48 (7) 42.51 (7) 63.99 (7) 82.51 (7) 94.08 (7) 7.0 0.05 1.07
2.5% level
Normal 11.33 (7) 31.67 (1) 43.00 (6) 88.29 (5) 101.88 (7) 5.2 0.04 1.14
Student-t 8.19 (5) 34.35 (4) 42.54 (5) 89.43 (6) 101.12 (6) 5.2 0.04 1.15
Historical simulation 0.06 (1) 31.90 (2) 31.96 (1) 70.08 (1) 85.98 (1) 1.2 0.03 1.25
Peak over threshold 0.62 (4) 35.91 (6) 36.53 (4) 78.49 (4) 87.75 (3) 4.2 0.04 1.22
L-moment 0.41 (3) 33.31 (3) 33.72 (2) 72.82 (2) 86.98 (2) 2.4 0.04 1.24
Box-Cox 0.06 (1) 35.36 (5) 35.42 (3) 77.33 (3) 90.88 (4) 3.2 0.03 1.27
Johnson 11.32 (6) 40.11 (7) 51.44 (7) 96.94 (7) 101.00 (5) 6.4 0.03 1.37
1% level
Normal 41.26 (7) 32.57 (7) 73.83 (7) 242.44 (7) 247.89 (7) 7.0 0.03 1.34
Student-t 1.49 (5) 32.00 (6) 33.49 (6) 172.26 (6) 173.15 (6) 5.8 0.02 1.51
Historical simulation 1.22 (4) 17.71 (3) 18.94 (2) 136.91 (5) 140.83 (5) 3.8 0.02 1.59
Peak over threshold 0.76 (3) 18.39 (4) 19.15 (3) 121.93 (3) 123.53 (3) 3.2 0.02 1.56
L-moment 0.41 (2) 19.09 (5) 19.50 (4) 126.17 (4) 127.97 (4) 3.8 0.01 1.58
Box-Cox 0.08 (1) 15.49 (2) 15.57 (1) 119.11 (2) 123.45 (2) 1.6 0.01 1.68
Johnson 16.52 (6) 10.79 (1) 27.31 (5) 58.81 (1) 59.21 (1) 2.8 0.01 1.82

For our unconditional VaR estimators and three nominal error probabilities, this table reports the test statistics
of the unconditional coverage test (Luc), the independence test (Lind), the conditional coverage test (Lcc) and the
dynamic quantile test (DQ) of VaR forecasts for the Datastream US Government Bond Index and the US-Dollar to
Great Britain Pound exchange rate. DQ is applied in two specifications: one that contains only a constant and three
lagged violations (DQHit) and one that additionally considers the contemporaneous VaR estimate (DQV aR). Bold
type entries are not significant at the 1% level. Besides these test statistics we report the ranks of each estimator
based on each test (from best = 1 to worst = 7). The last three columns present the average rank over all tests
(Rank), the average value of the loss function (Loss) and the (absolute) average of the VaR estimates (V aR).

Table 8: VaR prediction performance of unconditional models for USGBI and $/£
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Test results Additional statistics

LRuc LRind LRcc DQHit DQV aR Rank Loss V aR

Panel A: CRSP Value-Weighted Index
5% level
Normal 9.87 (5) 0.36 (6) 10.23 (5) 24.50 (5) 26.33 (5) 5.2 0.11 1.57
Student-t 35.81 (6) 0.01 (3) 35.82 (6) 53.93 (7) 54.97 (7) 5.8 0.12 1.49
Historical simulation 1.13 (2) 0.01 (3) 1.14 (2) 17.90 (3) 23.07 (3) 2.6 0.09 1.67
Peak over threshold 2.27 (4) 0.00 (1) 2.28 (4) 17.62 (2) 21.71 (2) 2.6 0.09 1.65
L-moment 1.52 (3) 0.00 (1) 1.52 (3) 19.75 (4) 24.75 (4) 3.0 0.09 1.66
Box-Cox 0.26 (1) 0.14 (5) 0.40 (1) 13.04 (1) 15.94 (1) 1.8 0.09 1.71
Johnson 36.40 (7) 0.55 (7) 36.95 (7) 47.85 (6) 49.13 (6) 6.6 0.06 1.92
2.5% level
Normal 31.99 (7) 0.16 (1) 32.15 (7) 59.49 (7) 61.74 (7) 5.8 0.07 1.89
Student-t 22.49 (5) 0.55 (2) 23.04 (5) 45.75 (6) 47.68 (6) 4.8 0.06 1.92
Historical simulation 0.19 (1) 2.54 (7) 2.72 (2) 11.63 (1) 16.90 (1) 2.4 0.04 2.12
Peak over threshold 2.52 (4) 1.38 (3) 3.90 (4) 15.27 (3) 18.63 (2) 3.2 0.05 2.08
L-moment 2.06 (3) 1.51 (5) 3.57 (3) 15.34 (4) 19.12 (3) 3.6 0.05 2.10
Box-Cox 0.70 (2) 1.40 (4) 2.10 (1) 13.44 (2) 20.18 (4) 2.6 0.04 2.26
Johnson 26.20 (6) 2.51 (6) 28.71 (6) 40.93 (5) 43.22 (5) 5.6 0.03 2.44
1% level
Normal 59.32 (7) 1.39 (6) 60.71 (7) 110.32 (7) 119.42 (7) 6.8 0.04 2.26
Student-t 8.71 (6) 1.80 (7) 10.51 (6) 38.34 (6) 44.20 (6) 6.2 0.02 2.54
Historical simulation 0.99 (3) 0.03 (1) 1.02 (2) 15.92 (2) 21.10 (2) 2.0 0.02 2.62
Peak over threshold 0.27 (2) 0.08 (2) 0.35 (1) 16.68 (3) 22.40 (3) 2.2 0.02 2.67
L-moment 0.00 (1) 1.33 (5) 1.34 (3) 18.39 (4) 23.50 (4) 3.4 0.02 2.67
Box-Cox 6.03 (4) 0.67 (4) 6.70 (4) 21.19 (5) 25.81 (5) 4.4 0.01 3.05
Johnson 8.26 (5) 0.59 (3) 8.85 (5) 14.36 (1) 17.07 (1) 3.0 0.01 3.03

Panel B: S&P 500 Index
5% level
Normal 4.64 (5) 0.62 (6) 5.26 (5) 18.18 (4) 20.02 (4) 4.8 0.11 1.58
Student-t 30.17 (7) 0.03 (1) 30.20 (7) 49.36 (7) 50.41 (7) 5.8 0.13 1.50
Historical simulation 0.28 (3) 0.29 (5) 0.57 (3) 16.40 (2) 18.46 (3) 3.2 0.10 1.66
Peak over threshold 0.22 (2) 0.07 (3) 0.29 (2) 14.63 (1) 16.18 (1) 1.8 0.10 1.66
L-moment 0.17 (1) 0.06 (2) 0.23 (1) 16.57 (3) 18.16 (2) 1.8 0.10 1.66
Box-Cox 2.02 (4) 0.12 (4) 2.14 (4) 18.91 (5) 21.52 (5) 4.4 0.09 1.72
Johnson 25.58 (6) 0.63 (7) 26.22 (6) 35.68 (6) 36.81 (6) 6.2 0.07 1.88
2.5% level
Normal 34.54 (7) 0.77 (1) 35.30 (7) 58.55 (7) 60.79 (7) 5.8 0.07 1.90
Student-t 26.96 (6) 1.30 (2) 28.26 (6) 49.21 (6) 50.62 (6) 5.2 0.07 1.93
Historical simulation 0.11 (1) 5.30 (7) 5.41 (1) 18.90 (3) 23.32 (3) 3.0 0.05 2.14
Peak over threshold 1.93 (2) 5.12 (6) 7.06 (3) 17.73 (2) 19.90 (1) 2.8 0.05 2.11
L-moment 2.61 (3) 3.31 (4) 5.92 (2) 19.51 (4) 21.16 (2) 3.0 0.05 2.10
Box-Cox 3.52 (4) 3.59 (5) 7.10 (4) 17.32 (1) 25.31 (4) 3.6 0.04 2.32
Johnson 15.70 (5) 2.73 (3) 18.43 (5) 25.08 (5) 30.81 (5) 4.6 0.03 2.41
1% level
Normal 69.54 (7) 3.59 (6) 73.13 (7) 127.06 (7) 139.11 (7) 6.8 0.04 2.26
Student-t 11.17 (5) 0.24 (2) 11.41 (5) 37.37 (6) 45.81 (6) 4.8 0.03 2.54
Historical simulation 0.98 (3) 0.02 (1) 1.00 (1) 8.11 (1) 13.44 (1) 1.4 0.02 2.67
Peak over threshold 0.41 (2) 1.31 (4) 1.72 (3) 10.03 (2) 16.52 (3) 2.8 0.02 2.72
L-moment 0.16 (1) 1.45 (5) 1.61 (2) 10.35 (3) 16.37 (2) 2.6 0.02 2.71
Box-Cox 5.67 (4) 3.65 (7) 9.32 (4) 16.11 (4) 22.47 (5) 4.8 0.02 3.18
Johnson 12.15 (6) 0.51 (3) 12.67 (6) 18.08 (5) 18.09 (4) 4.8 0.01 4.01

For our conditional VaR estimators and three nominal error probabilities, this table reports the test statistics of
the unconditional coverage test (Luc), the independence test (Lind), the conditional coverage test (Lcc) and the
dynamic quantile test (DQ) of VaR forecasts for the CRSP Value-Weighted Index and the S&P 500 Index. DQ is
applied in two specifications: one that contains only a constant and three lagged violations (DQHit) and one that
additionally considers the contemporaneous VaR estimate (DQV aR). Bold type entries are not significant at the 1%
level. Besides these test statistics we report the ranks of each estimator based on each test (from best = 1 to worst
= 7). The last three columns present the average rank over all tests (Rank), the average value of the loss function
(Loss) and the (absolute) average of the VaR estimates (V aR).

Table 9: VaR prediction performance of conditional models for CRSP and SP500
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Test results Additional statistics

LRuc LRind LRcc DQHit DQV aR Rank Loss V aR

Panel A: Goldman Sachs Commodity Index
5% level
Normal 5.86 (5) 2.36 (7) 8.22 (5) 12.23 (5) 12.52 (5) 5.4 0.15 1.97
Student-t 27.43 (6) 2.13 (3) 29.57 (6) 35.50 (7) 35.52 (7) 5.8 0.17 1.87
Historical simulation 2.98 (3) 2.13 (3) 5.11 (3) 9.60 (4) 9.68 (4) 3.4 0.14 2.02
Peak over threshold 3.36 (4) 1.98 (2) 5.34 (4) 9.25 (2) 9.26 (2) 2.8 0.15 2.01
L-moment 2.79 (2) 2.21 (5) 5.01 (2) 9.37 (3) 9.39 (3) 3.0 0.14 2.00
Box-Cox 1.53 (1) 2.21 (5) 3.74 (1) 7.91 (1) 8.14 (1) 1.8 0.14 2.02
Johnson 34.99 (7) 1.36 (1) 36.35 (7) 32.95 (6) 33.15 (6) 5.4 0.10 2.31
2.5% level
Normal 15.48 (6) 0.91 (2) 16.39 (6) 18.71 (6) 19.39 (6) 5.2 0.09 2.36
Student-t 8.61 (5) 1.76 (6) 10.37 (5) 12.24 (5) 13.45 (5) 5.2 0.09 2.40
Historical simulation 0.88 (2) 1.71 (5) 2.59 (1) 3.30 (1) 4.75 (1) 2.0 0.08 2.51
Peak over threshold 1.03 (3) 1.64 (4) 2.67 (2) 3.39 (2) 5.30 (3) 2.8 0.08 2.50
L-moment 1.19 (4) 1.57 (3) 2.76 (3) 3.49 (3) 5.67 (4) 3.4 0.08 2.50
Box-Cox 0.08 (1) 3.06 (7) 3.14 (4) 4.51 (4) 5.15 (2) 3.6 0.08 2.57
Johnson 21.69 (7) 0.53 (1) 22.22 (7) 19.99 (7) 20.37 (7) 5.8 0.06 2.86
1% level
Normal 41.26 (7) 0.15 (4) 41.41 (7) 54.50 (7) 55.21 (7) 6.4 0.06 2.81
Student-t 0.57 (2) 1.25 (7) 1.82 (3) 8.87 (6) 9.05 (6) 4.8 0.04 3.15
Historical simulation 3.22 (5) 0.74 (6) 3.96 (5) 4.62 (2) 4.65 (2) 4.0 0.05 3.10
Peak over threshold 2.11 (4) 0.00 (1) 2.11 (4) 7.52 (4) 7.67 (4) 3.4 0.04 3.13
L-moment 1.79 (3) 0.01 (2) 1.80 (2) 7.37 (3) 7.43 (3) 2.6 0.04 3.12
Box-Cox 0.01 (1) 0.14 (3) 0.15 (1) 2.95 (1) 2.98 (1) 1.4 0.04 3.31
Johnson 7.03 (6) 0.67 (5) 7.70 (6) 7.67 (5) 8.18 (5) 5.4 0.03 3.49

Panel B: London Bullion Market gold
5% level
Normal 0.17 (4) 1.90 (3) 2.07 (3) 2.65 (3) 2.69 (2) 3.0 0.11 1.50
Student-t 2.96 (6) 1.05 (1) 4.03 (5) 5.55 (6) 5.57 (6) 4.8 0.13 1.42
Historical simulation 0.02 (2) 2.93 (7) 2.94 (4) 3.88 (4) 3.97 (4) 4.2 0.12 1.48
Peak over threshold 0.00 (1) 2.03 (5) 2.03 (2) 2.62 (2) 2.77 (3) 2.6 0.12 1.48
L-moment 0.04 (3) 1.18 (2) 1.22 (1) 1.49 (1) 2.18 (1) 1.6 0.12 1.48
Box-Cox 1.17 (5) 2.89 (6) 4.06 (6) 4.45 (5) 4.71 (5) 5.4 0.11 1.52
Johnson 25.58 (7) 1.98 (4) 27.56 (7) 25.29 (7) 27.27 (7) 6.4 0.09 1.68
2.5% level
Normal 10.85 (6) 1.42 (2) 12.27 (6) 14.73 (6) 14.99 (5) 5.0 0.08 1.79
Student-t 7.38 (5) 1.09 (1) 8.47 (4) 10.05 (4) 10.27 (4) 3.6 0.08 1.82
Historical simulation 0.03 (2) 2.51 (3) 2.54 (1) 5.21 (2) 7.63 (1) 1.8 0.07 1.94
Peak over threshold 0.03 (2) 2.51 (3) 2.54 (1) 6.17 (3) 8.52 (3) 2.4 0.07 1.93
L-moment 0.01 (1) 2.59 (5) 2.60 (3) 3.95 (1) 7.93 (2) 2.4 0.07 1.93
Box-Cox 3.83 (4) 5.56 (6) 9.39 (5) 13.28 (5) 15.37 (6) 5.2 0.06 2.07
Johnson 14.37 (7) 6.66 (7) 21.02 (7) 20.54 (7) 25.00 (7) 7.0 0.05 2.17
1% level
Normal 45.12 (7) 8.10 (6) 53.22 (7) 81.56 (7) 87.75 (7) 6.8 0.05 2.12
Student-t 5.04 (5) 10.87 (7) 15.91 (6) 34.70 (6) 36.47 (6) 6.0 0.04 2.38
Historical simulation 0.04 (3) 1.84 (2) 1.88 (1) 3.63 (1) 5.92 (1) 1.6 0.03 2.64
Peak over threshold 0.00 (1) 7.73 (4) 7.74 (2) 16.96 (4) 18.43 (4) 3.0 0.03 2.56
L-moment 0.01 (2) 7.94 (5) 7.95 (3) 17.38 (5) 19.57 (5) 4.0 0.03 2.57
Box-Cox 2.13 (4) 6.26 (3) 8.39 (4) 14.19 (3) 16.58 (3) 3.4 0.03 2.88
Johnson 12.15 (6) 1.26 (1) 13.41 (5) 12.11 (2) 12.78 (2) 3.2 0.02 3.02

For our conditional VaR estimators and three nominal error probabilities, this table reports the test statistics of the
unconditional coverage test (Luc), the independence test (Lind), the conditional coverage test (Lcc) and the dynamic
quantile test (DQ) of VaR forecasts for the Goldman Sachs Commodity Index and London Bullion Market gold.
DQ is applied in two specifications: one that contains only a constant and three lagged violations (DQHit) and one
that additionally considers the contemporaneous VaR estimate (DQV aR). Bold type entries are not significant at
the 1% level. Besides these test statistics we report the ranks of each estimator based on each test (from best = 1
to worst = 7). The last three columns present the average rank over all tests (Rank), the average value of the loss
function (Loss) and the (absolute) average of the VaR estimates (V aR).

Table 10: VaR prediction performance of conditional models for GSCI and GOLD
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Test results Additional statistics

LRuc LRind LRcc DQHit DQV aR Rank Loss V aR

Panel A: Datastream US Government Bond Index
5% level
Normal 0.01 (1) 5.30 (5) 5.31 (4) 6.51 (4) 9.89 (5) 3.8 0.06 0.73
Student-t 9.03 (6) 5.89 (7) 14.92 (6) 18.72 (6) 19.05 (6) 6.2 0.07 0.69
Historical simulation 0.09 (4) 2.37 (2) 2.46 (1) 3.09 (1) 4.77 (1) 1.8 0.06 0.73
Peak over threshold 0.04 (3) 3.55 (3) 3.58 (2) 4.69 (2) 6.08 (2) 2.4 0.06 0.73
L-moment 0.02 (2) 5.41 (6) 5.43 (5) 7.49 (5) 8.24 (4) 4.4 0.06 0.73
Box-Cox 0.22 (5) 4.29 (4) 4.51 (3) 6.47 (3) 7.74 (3) 3.6 0.06 0.74
Johnson 43.55 (7) 2.36 (1) 45.91 (7) 40.13 (7) 41.19 (7) 5.8 0.04 0.84
2.5% level
Normal 7.78 (6) 2.33 (7) 10.11 (6) 11.06 (6) 14.18 (6) 6.2 0.04 0.87
Student-t 3.11 (5) 1.47 (6) 4.58 (5) 5.27 (5) 8.16 (5) 5.2 0.03 0.88
Historical simulation 0.04 (1) 1.45 (5) 1.49 (2) 1.56 (2) 5.08 (3) 2.6 0.03 0.91
Peak over threshold 0.57 (3) 1.10 (3) 1.67 (3) 2.30 (3) 4.45 (2) 2.8 0.03 0.92
L-moment 0.13 (2) 1.34 (4) 1.47 (1) 1.50 (1) 3.75 (1) 1.8 0.03 0.91
Box-Cox 2.94 (4) 0.60 (2) 3.54 (4) 4.85 (4) 7.07 (4) 3.6 0.03 0.94
Johnson 32.83 (7) 0.23 (1) 33.06 (7) 29.31 (7) 30.02 (7) 5.8 0.02 1.04
1% level
Normal 19.37 (7) 0.35 (2) 19.71 (7) 26.08 (7) 28.00 (7) 6.0 0.02 1.03
Student-t 0.57 (2) 1.65 (5) 2.22 (3) 2.48 (1) 3.33 (1) 2.4 0.01 1.15
Historical simulation 0.57 (2) 0.04 (1) 0.61 (1) 3.46 (2) 7.08 (5) 2.2 0.01 1.18
Peak over threshold 0.76 (4) 1.70 (6) 2.46 (4) 4.47 (4) 5.79 (2) 4.0 0.01 1.16
L-moment 1.22 (5) 1.79 (7) 3.01 (5) 4.93 (5) 6.52 (4) 5.2 0.01 1.16
Box-Cox 0.00 (1) 1.40 (4) 1.40 (2) 3.91 (3) 6.18 (3) 2.6 0.01 1.21
Johnson 9.39 (6) 0.59 (3) 9.98 (6) 9.74 (6) 10.78 (6) 5.4 0.01 1.31

Panel B: US-Dollar to Great Britain Pound exchange rate
5% level
Normal 1.81 (5) 3.48 (6) 5.29 (5) 7.77 (5) 8.36 (5) 5.2 0.06 0.89
Student-t 16.00 (6) 2.99 (5) 18.99 (6) 23.23 (6) 23.66 (6) 5.8 0.07 0.85
Historical simulation 0.00 (1) 1.42 (2) 1.42 (2) 2.16 (1) 3.84 (1) 1.4 0.06 0.92
Peak over threshold 0.01 (3) 1.29 (1) 1.30 (1) 3.22 (2) 5.67 (2) 1.8 0.06 0.92
L-moment 0.01 (3) 2.11 (4) 2.12 (4) 4.01 (3) 6.80 (3) 3.4 0.06 0.92
Box-Cox 0.00 (1) 1.96 (3) 1.96 (3) 4.01 (3) 6.92 (4) 2.8 0.06 0.92
Johnson 32.83 (7) 5.29 (7) 38.12 (7) 34.81 (7) 35.73 (7) 7.0 0.04 1.03
2.5% level
Normal 11.33 (6) 6.20 (7) 17.53 (6) 23.75 (6) 24.01 (6) 6.2 0.04 1.07
Student-t 6.99 (5) 6.03 (6) 13.02 (5) 17.47 (5) 17.61 (5) 5.2 0.04 1.08
Historical simulation 0.00 (1) 0.63 (1) 0.63 (1) 0.85 (1) 4.20 (1) 1.0 0.03 1.16
Peak over threshold 0.51 (4) 1.93 (5) 2.44 (4) 3.48 (4) 6.22 (4) 4.2 0.03 1.14
L-moment 0.06 (3) 1.31 (3) 1.37 (2) 1.75 (2) 4.55 (2) 2.4 0.03 1.15
Box-Cox 0.01 (2) 1.43 (4) 1.44 (3) 1.85 (3) 4.61 (3) 3.0 0.03 1.15
Johnson 28.81 (7) 0.89 (2) 29.71 (7) 26.54 (7) 28.53 (7) 6.0 0.02 1.29
1% level
Normal 24.18 (6) 3.79 (7) 27.97 (6) 40.01 (7) 40.10 (7) 6.6 0.02 1.27
Student-t 0.04 (1) 1.32 (5) 1.36 (1) 3.65 (4) 3.67 (3) 2.8 0.01 1.42
Historical simulation 0.33 (5) 1.20 (2) 1.53 (4) 4.31 (5) 5.05 (5) 4.2 0.01 1.44
Peak over threshold 0.27 (4) 1.57 (6) 1.84 (5) 3.30 (3) 4.37 (4) 4.4 0.01 1.41
L-moment 0.11 (2) 1.28 (3) 1.39 (2) 1.14 (1) 2.25 (1) 1.8 0.01 1.43
Box-Cox 0.11 (2) 1.28 (3) 1.39 (2) 1.14 (1) 2.46 (2) 2.0 0.01 1.44
Johnson 31.36 (7) 0.23 (1) 31.59 (7) 30.09 (6) 30.09 (6) 5.4 0.00 1.66

For our conditional VaR estimators and three nominal error probabilities, this table reports the test statistics of the
unconditional coverage test (Luc), the independence test (Lind), the conditional coverage test (Lcc) and the dynamic
quantile test (DQ) of VaR forecasts for the Datastream US Government Bond Index and the US-Dollar to Great
Britain Pound exchange rate. DQ is applied in two specifications: one that contains only a constant and three
lagged violations (DQHit) and one that additionally considers the contemporaneous VaR estimate (DQV aR). Bold
type entries are not significant at the 1% level. Besides these test statistics we report the ranks of each estimator
based on each test (from best = 1 to worst = 7). The last three columns present the average rank over all tests
(Rank), the average value of the loss function (Loss) and the (absolute) average of the VaR estimates (V aR).

Table 11: VaR prediction performance of conditional models for USGBI and $/£
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10 this picture is significantly altered. Here, only historical simulation passes all tests and reaches
the highest rank.

Interestingly, for the bond market (Panel A of Table 11) and the currency market (Panel B
of Table 11) our findings are similar to the ones for the commodity index. That is, all methods
except for the normal and the Johnson approach pass all tests. As for the commodity index, the
L-moment and the Box-Cox method are the highest ranked approaches for the exchange rate,
whereas historical simulation scores first and is followed by the Student-t approach in the case of
the bond index.

5.1.3 Compact testing rank summary

In order to provide a compact summary of our findings allowing the identification of the most
suitable approaches in both the unconditional and the conditional setup, Table 12 summarises our
testing ranks over all time series. While Panel A covers all nominal error probabilities (5%, 2.5%
and 1%) and is thus more relevant for non-financial institutions, Panel B is geared towards the 1%
level required by the Basel framework and thus is of particular interest for financial institutions
(see Gilli and Këllezi, 2006).

As we can see, with a focus on all error probabilities, the Box-Cox method is the most promising
unconditional approach directly followed by historical simulation. However, in the conditional
setting, historical simulation takes the lead before the peak over threshold method indicating
that return filtering has a stronger positive effect on historical simulation than on the EVT-based
approaches.29 Thus, considering the generally better test results for the conditional approaches and
putting ourselves in the perspective of a risk manager who is interested in ‘higher-order’ quantiles,
our results suggest that, at least for our data, EVT-based approaches are not necessarily superior
to simple historical simulation.

When looking only at the 1% nominal error probability, we find that again the Box-Cox method
shows the best unconditional performance. However, this time the Johnson method ranks second
instead of historical simulation. For the conditional versions, we find the most promising results
for the historical simulation, followed by the Box-Cox method.

ND ST HS POT LM BC JO

Panel A: All error probabilities
Unconditional 5.1 5.3 3.1 4.0 4.1 2.6 3.6
Conditional 5.6 5.0 2.5 2.9 3.0 3.3 5.5

Panel B: 1% error probability
Unconditional 6.6 5.4 3.8 4.2 3.3 1.6 3.0
Conditional 6.5 4.5 2.6 3.3 3.3 3.1 4.5

For each VaR estimation method, Panel A of this table averages the testing ranks reported in Tables 6 to 11 over
all analysed time series and nominal error probabilities. Similarly, Panel B provides a summary over all time series
but for the 1% level only. Methodology abbreviations are used as in Table 3.

Table 12: Overall testing ranks

29A detailed investigation of this issue is bejond the scope of this article but might be an interesting topic for
future research.
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5.2 Robustness checks

5.2.1 General specification tests

To ensure that our main results are not driven by some specific characteristics of our research
setup, we have performed a variety of sensitivity checks. For the sake of brevity, this section
concentrates on describing their design and main outcomes.30

Alternative GARCH filters. So far, we have implemented the GARCH filters for our conditional
approaches based on typical standard settings commonly used in practice and academia. That
is, we have (i) used only a very parsimonious number of parameters, (ii) focused on normally
distributed errors and (iii) specified a standard GARCH equation of the Bollerslev (1986) type.
However, as highlighted by Escanciano and Olmo (2010), model misspecification can seriously bias
VaR estimators and related procedures. Therefore, to shed some light on the impact of different
(potentially more adequate) filter settings on our results, we perform three robustness checks.
First, we follow Bali (2007) and Cheng and Hung (2011) by also considering Hansen (1994) skewed-
t distributed errors. Second, we implement the set of alternative GARCH specifications used by
Bali et al. (2008), i.e., AGARCH, EGARCH, GJR-GARCH, IGARCH, NGARCH, QGARCH,
TGARCH and TS-GARCH. Finally, instead of using the simplest specification, we determine the
GARCH orders by means of the Akaike information criterion, as done in, for example, Silvennoinen
and Teräsvirta (2009). Interestingly, our results on the relative performance of traditional and
EVT-based VaR estimators are not significantly altered, indicating that the choice of GARCH
filter does not crucially matter. This is partially because, in our data, (i) the Akaike criterion
identifies low GARCH orders and (ii) skewness is not critical such that asymmetric GARCH
models do not add significant value over our standard model.

Alternative nonparametric filters. We also analyse how modifications of our nonparametric
filter affect our main conclusions. Besides using the method of Fan (1992) we also implement the
volatility estimator of Carroll et al. (2002) in our filter procedure for the L-moment method. Using
their least squares method with a rule-of-thumb bandwidth selection for the bivariate marginal
integration estimation (as in Linton and Nielsen, 1995), we find that, in line with the simulation
evidence of Martins-Filho and Yao (2006), our results on the performance of the conditional L-
moment method do not change.

Direct extreme modeling. Motivated by the results of Bali and Neftci (2003) and Bali and
Weinbaum (2007) showing significant time-series variation in the conditional mean and standard
deviation of the excesses over high thresholds, Bali (2007) presents an exercise which directly
models serial correlation and volatility clustering in the exceedances over high thresholds. That
is, he specifies a different kind of conditional approach in which the parameters of the Box-Cox
distribution are time-varying.31 He parameterises the location parameter γt to be a function of
the last period’s extrema and the scale parameter δt as a function of the last period’s unexpected
information shock (absolute deviation of the extrema from the predicted extrema) and the last
period’s scale parameter. Furthermore, the shape parameter ξt is modelled as a function of the
last period’s information shock and the last period’s shape parameter.32 These functions are
estimated based on a rolling time interval and the resulting time-varying Box-Cox parameter
values are plugged into the formula (13) to obtain a conditional VaR estimate. We implement this
alternative approach and find that, for our time series, its performance is similar to applying the
Box-Cox approach to GARCH filtered data.

30Detailed results are available upon request.
31This approach is comparable to Bali et al. (2008) where the parameters of the skewed generalised t distribution

(which nests the Hansen (1994) skewed-t distribution) are modelled to be time-varying.
32Thus, not only the means and the dispersion of extremes are time-varying but also the tail index which measures

the fatness of the distribution (or the weight of the tails).
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Alternative window sizes. Motivated by previous research, our main analysis uses a moving
window of 1,000 observations to generate VaR forecasts. However, as it can be decisive to know the
extent to which the results are compatible when using different window lengths, we (i) also follow
Bali et al. (2008) by using a 10-year sample to obtain more extremes and (ii) repeat all calculations
using 500 and 250 observations, as in Kuester et al. (2006).33 In this analysis, we can gain the
following insights. First, less parameterised conditional models (such as the conditional historical
simulation) have an advantage as the window size decreases. In other words, we can observe, for
example, that the difference in average ranks between the historical simulation and the Box-Cox
method increases with shrinking window size.34 Second, also in the conditional setup, we can
partially observe higher values of the backtest statistics for smaller window sizes. This may be
because the advantage of using only more recent information could compensate for the disadvantage
of lower sample sizes in the GARCH parameter and distribution parameter estimation. Finally,
our findings for the 10-year sample are quite consistent with the results (rankings) for our standard
setting of 1,000 observations.

Short positions. Our main analysis focuses on the risk of long positions. However, as investors
may also be interested in evaluating the risk of short positions, it is instructive to have a look
at their VaR as well. Because the gains of the long position are the losses of the short position,
we can obtain the VaR of short positions in our assets by simply multiplying our time series by
−1 and repeating the calculations of Sections 3 and 5.1 (see Marimoutou et al., 2009). Again the
general picture indicates that the Box-Cox method tends to be the best EVT approach and that
the historical simulation is a serious competitor.

Alternative VaR backtests. Even though we have selected a large sample to limit small sample
issues with the unconditional and conditional coverage tests, we additionally apply two more
advanced versions of these tests recently proposed by Ziggel et al. (2014).35 These tests are
simulation-based and thus more reliable in small samples. Furthermore, they take into account
that conditional coverage also means that the violations are identically distributed − a feature
not considered by the standard conditional coverage test. Besides using these tests, we employ a
recent extension of the dynamic quantile test proposed by Gaglianone et al. (2011). In both cases,
our main results are confirmed, indicating that our sample size is sufficient to avoid known small
sample problems of classic backtesting procedures.

5.2.2 Crisis subsamples

In a final robustness check, we have a brief look at how our different VaR estimators behave
in times of financial turmoil. This is important because a VaR estimator or hedging method is
particularly valuable when it performs well in situations where reliable performance is needed most
(see Baur and Lucey, 2010; Baur and McDermott, 2010). To shed light on this issue, we select the
two most pronounced financial crises in our sample period: the dotcom crash of 2000 (related to
the preceding excessive demand for internet stocks) and the global financial crisis of 2007 to 2009
(caused by the US subprime meltdown).36 The dotcom crash is typically dated from March 2000
to December 2000 (see Ofek and Richardson, 2003) and the global financial crisis from October

33Note that we have also experimented with alternative threshold quotas q. However, both increasing and decreas-
ing our initial value of 10% negatively influences VaR estimator performance. This indicates that the 10% suggestion
of McNeil and Frey (2000) is a quite good guideline for a variety of different time series.

34Kuester et al. (2006) also show that conditional historical simulation is quite robust to the choice of window
length but also that there are some non-EVT parametric methods that outperform this method even as the sample
size shrinks.

35We have also implemented the bootstrap-based procedures of Escanciano and Olmo (2010) which are designed
to address the issue that classic coverage tests are affected by model misspecification in conditional VaR models.

36For an nice summary of the past 40 years in financial crises and a review of literature that attempts to identify,
classify and explain such episodes, see Anderson (2013) and Claessens and Kose (2013), respectively.

30



2007 to March 2009 (see Dwyer, 2009).37 Because these crisis subsamples are too small to conduct
reliable statistical inference based on our main testing approaches of Section 4, we concentrate on
an analysis of violation rates and their summary in terms of MAPE and MPE.38

Similar to Tables 2 and 4, Tables 13 and 14 present the violation rates which occurred in the two
crisis periods.39 A closer look at the results reveals several important aspects. First, in comparison
to our results for the entire sample period (containing non-crisis and crisis periods), the violation
rates in the crisis periods tend to be significantly higher. Second, the violation rates in the global
financial crisis are higher than in the period of the dotcom crash reflecting the stronger impact of
the former on financial markets. Finally, for the dotcom crash, we can detect several instances of
zero violation rates for gold and bonds; a result partially related to the fact that these two assets
typcially act as hedges (negative correlation to stocks) in times of stock market turbulences and
thus show different risk characteristics (see Ciner et al., 2013).

To judge the relative performance of the VaR estimators in times of crisis, Table 15 summarises
the results of Tables 13 and 14 by computing the MAPE and the MPE similar to Tables 3 and
5. The reported results confirm our previous finding of high errors in times of crisis (reflected by
three-digit percentage errors). Furthermore, they highlight that, even though EVT-based methods
show better performance, historical simulation is a serious competitor.

6 Conclusion

In recent decades, the VaR has become one of the most important risk management tools for market
regulators, portfolio managers and internal risk control. This growing importance is reflected by
(i) the Bank of International Settlements’ capital adequacy requirements on financial institutions
that are based on the VaR and by (ii) the significant proliferation of the VaR among non-financial
firms (see Martins-Filho and Yao, 2006; Jorion, 2007; Berkowitz et al., 2011).

Traditional VaR models make specific assumptions about the distribution for all returns and
thus estimate the maximum loss of an asset under normal market conditions. Thus, the VaR
measures may provide inaccurate estimates of actual losses during highly volatile periods corre-
sponding to financial crises (see Martins-Filho and Yao, 2006). In contrast, a recent strand of
literature focuses on the distributions of extreme returns instead of the distribution of all returns
such that the corresponding VaR estimates have higher potential to provide good predictions of
catastrophic market risk during extraordinary periods (see Abad et al., 2014).

Given this development, it is crucial to have a body of research that compares different EVT-
based approaches to computing VaR. In this article, we provide the first structured empirical
comparison of the predictive performance of the most popular EVT-based VaR estimators with
special attention to the peak over threshold estimator of McNeil and Frey (2000), the Box-Cox
method of Bali (2007), the L-moment technique of Martins-Filho and Yao (2006) and the simulated
Johnson system approach of Brooks et al. (2005). In response to the critique that previous studies
analysing VaR estimator performance typically focus on one specific asset class (mainly stocks),
we provide a multi-asset study covering stocks, commodities, bonds and currencies. Furthermore,
we do not only analyse whether the VaR estimators can pass the current regulatory standard tests
but also whether they satisfy additional important properties of an efficient VaR estimator.

Our analysis generates several important insights. First, when applied in their unconditional
versions (not considering time-varying means and volatilities of asset returns), we detect that none

37Reinhart and Rogoff (2008), Bartram and Bodnar (2009) and Bordo and Landon-Lane (2010) provide compar-
isons of the global financial crisis to other crises. Ben-David et al. (2012), Fratzscher (2012) and Flannery et al. (2013)
discuss its consequences for hedge fund stock trading, international capital flows and bank opaqueness, respectively.

38Nevertheless, an application of the tests of Section 4 (and 5.2.1) confirms the results of our descriptive analysis.
39Tables A1 and A2 of the Appendix report the corresponding (absolute) averages of daily VaR estimates produced

by our different methods.
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CRSP SP500 GSCI GOLD USGBI $/£

Panel A: Unconditional estimators
5% level
Normal 12.70 7.80 9.17 0.92 2.75 6.88
Student t 13.89 9.17 11.01 2.29 3.67 8.26
Historical simulation 11.11 7.34 9.17 3.67 2.29 7.80
Peak over threshold 12.70 8.26 9.63 3.67 2.75 7.34
L-moment 13.89 10.09 9.63 4.13 2.75 7.34
Box-Cox 9.13 5.50 9.63 1.83 2.75 7.34
Johnson 7.54 4.59 8.26 0.92 1.83 5.96
2.5% level
Normal 6.75 3.21 7.34 0.00 0.92 4.59
Student t 6.75 3.21 7.34 0.00 0.92 4.13
Historical simulation 6.75 3.21 7.34 0.00 0.92 4.59
Peak over threshold 5.56 2.75 7.34 0.00 0.46 4.59
L-moment 6.75 3.21 7.34 0.00 0.46 4.59
Box-Cox 2.38 0.92 6.88 0.00 0.00 4.59
Johnson 3.57 1.38 6.42 0.00 0.46 3.21
1% level
Normal 3.57 1.38 5.50 0.00 0.00 2.29
Student t 1.98 0.92 2.75 0.00 0.00 0.92
Historical simulation 2.38 0.92 3.67 0.00 0.00 1.38
Peak over threshold 1.19 0.46 3.21 0.00 0.00 1.38
L-moment 1.59 0.92 3.67 0.00 0.00 1.38
Box-Cox 0.79 0.46 2.29 0.00 0.00 1.38
Johnson 0.79 0.46 1.83 0.00 0.00 0.46

Panel B: Conditional estimators
5% level
Normal 7.54 5.96 8.26 3.67 3.67 6.42
Student t 9.52 6.88 8.72 4.13 4.13 7.80
Historical simulation 6.75 5.05 8.26 3.67 3.67 7.80
Peak over threshold 5.95 5.50 8.26 4.13 3.67 7.80
L-moment 6.35 5.50 8.26 4.13 3.67 7.80
Box-Cox 5.16 4.13 8.26 3.67 3.67 7.80
Johnson 3.57 3.21 5.50 2.29 2.29 5.50
2.5% level
Normal 4.37 3.21 5.05 1.38 2.29 3.21
Student t 4.37 3.21 4.59 0.92 2.29 3.21
Historical simulation 2.78 2.29 3.67 0.92 0.92 3.21
Peak over threshold 2.38 2.29 3.67 0.92 0.92 3.67
L-moment 2.78 2.29 3.67 0.92 0.92 3.21
Box-Cox 1.98 0.92 3.67 0.46 0.00 3.21
Johnson 0.79 0.46 1.83 0.00 0.00 2.75
1% level
Normal 1.98 0.46 2.29 0.46 0.00 2.29
Student t 0.79 0.46 0.92 0.00 0.00 1.38
Historical simulation 0.79 0.46 1.83 0.00 0.00 1.38
Peak over threshold 0.79 0.46 1.38 0.00 0.00 1.38
L-moment 0.79 0.46 1.38 0.00 0.00 1.38
Box-Cox 0.79 0.46 1.38 0.00 0.00 1.38
Johnson 0.79 0.46 0.92 0.00 0.00 0.00

For the period from March 2000 to December 2000 (the dotcom crash), this table reports the violation rates of our
set of unconditional and conditional VaR estimators. Similar to Tables 2 and 4 we focus on three nominal error
probabilities and six time series representing several asset classes.

Table 13: Violation rates − Dotcom crash

of the EVT-based VaR estimators is accurate for all time series and confidence levels considered.
While there are some approaches that pass as acceptable based on the conditional coverage test,
they are rejected by more informative tests, which indicates that regulatory forecasting assessment
is flawed and decision makers are directed towards inaccurate approaches for calculating capital
requirements. However, despite the poor performance of the models, a ranking of the methods
based on their test statistics reveals that the Box-Cox method appears to be the most promising
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CRSP SP500 GSCI GOLD USGBI $/£

Panel A: Unconditional estimators
5% level
Normal 20.73 20.49 14.29 12.94 14.82 15.63
Student t 21.85 21.29 14.82 14.02 16.17 15.90
Historical simulation 20.73 21.56 13.75 11.59 14.82 14.82
Peak over threshold 21.01 21.29 14.02 11.86 15.36 15.09
L-moment 21.01 20.49 14.02 12.40 15.90 14.82
Box-Cox 20.73 20.49 14.02 11.86 15.36 15.09
Johnson 19.89 21.02 11.05 10.24 12.67 12.67
2.5% level
Normal 17.93 17.79 10.51 8.89 11.59 11.59
Student t 17.37 16.98 10.24 8.89 11.05 11.32
Historical simulation 15.69 14.29 9.97 6.20 10.78 10.24
Peak over threshold 14.29 14.29 10.24 6.47 10.24 10.78
L-moment 14.01 13.48 9.97 6.47 10.51 10.51
Box-Cox 14.29 12.67 9.70 6.20 9.97 10.78
Johnson 12.61 13.21 9.16 5.66 8.63 8.36
1% level
Normal 13.45 12.40 8.63 6.20 8.09 9.43
Student t 11.20 11.59 7.28 4.58 6.47 7.55
Historical simulation 8.68 8.36 6.74 2.16 6.20 7.01
Peak over threshold 9.52 9.16 7.55 2.70 5.66 7.01
L-moment 9.52 9.16 7.82 2.70 6.47 7.01
Box-Cox 8.96 8.09 6.20 2.43 5.39 6.74
Johnson 6.44 7.28 6.47 2.16 3.77 5.39

Panel B: Conditional estimators
5% level
Normal 10.64 9.97 8.89 6.74 7.01 8.89
Student t 11.76 11.59 9.43 7.28 7.82 10.78
Historical simulation 8.68 8.89 8.63 7.01 6.20 8.09
Peak over threshold 8.96 8.89 8.63 6.47 6.20 8.09
L-moment 8.40 8.89 9.16 5.93 6.47 8.09
Box-Cox 8.12 8.09 8.63 6.20 6.20 8.09
Johnson 6.72 7.28 4.85 4.31 3.77 5.93
2.5% level
Normal 6.72 7.28 4.58 3.77 2.96 5.66
Student t 6.72 7.28 4.58 3.77 2.70 5.39
Historical simulation 4.76 4.85 4.58 2.43 2.70 4.31
Peak over threshold 5.88 5.66 4.58 2.70 2.70 4.31
L-moment 5.32 5.66 4.58 2.43 2.70 4.31
Box-Cox 5.04 4.58 4.58 2.43 2.43 4.31
Johnson 3.92 3.77 2.43 1.89 0.54 3.23
1% level
Normal 4.48 4.31 2.43 2.16 0.81 3.50
Student t 3.36 3.50 1.35 1.89 0.54 2.70
Historical simulation 2.52 2.96 2.16 1.35 0.54 2.96
Peak over threshold 2.24 2.96 2.16 1.62 0.54 2.96
L-moment 2.24 2.43 2.16 1.35 0.54 2.96
Box-Cox 1.40 0.81 2.16 1.35 0.54 2.96
Johnson 1.40 1.08 1.62 0.81 0.54 1.89

For the period from October 2007 to March 2009 (the global financial crisis), this table reports the violation rates of
our set of unconditional and conditional VaR estimators. Similar to Tables 2 and 4 we focus on three nominal error
probabilities and six time series representing several asset classes.

Table 14: Violation rates − Global financial crisis

of all approaches. This method and the Johnson method tend to overestimate risk and thus can
be considered the most conservative VaR estimation techniques.

Second, when applying conditional versions of the EVT-based estimators, we obtain far more
acceptable forecasts with many instances where the more informative tests are passed. When
concentrating on the 1% nominal error probability, which is particularly important for the Basel
capital requirements, the Box-Cox method proves to be the best of the EVT-based methods.
However, when extending our selection of methods to traditional non-EVT methods, we find
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ND ST HS POT LM BC JO

Panel A: Dotcom crash
Unconditional estimators
MAPE 120.58 90.93 93.28 86.30 95.03 72.73 64.16

Rank 7 4 5 3 6 2 1
MPE 66.16 39.82 43.06 29.94 44.81 0.36 -14.58

Rank 7 4 5 3 6 2 1
Conditional estimators
MAPE 59.31 50.06 45.98 43.24 43.02 49.27 53.48

Rank 7 5 3 2 1 4 6
MPE 24.38 6.79 -5.47 -7.71 -7.40 -18.64 -50.14

Rank 7 6 5 3 4 2 1

Panel B: Global financial crisis
Unconditional estimators
MAPE 507.22 454.56 374.84 388.06 391.04 359.80 300.39

Rank 7 6 3 4 5 2 1
MPE 507.22 454.56 374.84 388.06 391.04 359.80 300.39

Rank 7 6 3 4 5 2 1
Conditional estimators
MAPE 127.14 112.04 80.10 84.33 78.02 61.37 35.91

Rank 7 6 4 5 3 2 1
MPE 125.03 106.93 74.68 79.22 72.60 53.52 12.36

Rank 7 6 4 5 3 2 1

For each of our unconditional and conditional VaR estimators, this table reports the mean absolute percentage errors
(MAPE) and mean percentage errors (MPE) across the three error probabilities and six time series in Tables 13
and 14, i.e., the errors in times of financial crises. Similar to Tables 3 and 5 it also presents rankings of the VaR
estimators, where rank 1 (rank 7) is the best (worst) methodology in terms of MAPE or MPE.

Table 15: Violation summary − Dotcom crash and global financial crisis

that historical simulation outperforms this EVT-based approach. This result is of high practical
importance because many large banks currently use or plan to use historical simulation methods
(see Pritsker, 2006; Pérignon and Smith, 2010) but academic research urges them to switch to
EVT-based methods (see Abad et al., 2014).

Finally, in a variety of sensitivity checks, we can show that the standard VaR estimator speci-
fications and backtests used in practice (on which we have focused in our empirical analysis) are
quite robust. That is, more sophisticated filter procedures, alternative sample size settings in the
out-of-sample performance evaluation or simulation-based coverage tests, do not significantly alter
the relative performance we have detected. This also holds when focusing on the performance of the
VaR estimators in times of financial crisis. Thus, the key message here is that simple specifications
can be quite powerful and more complex ones do not necessarily add significant value.

Even though we have used a variety of representative time-series reflecting important charac-
teristics of asset returns and covering many phases of high market turbulences, one might still
argue that conclusions based on these series cannot be sufficiently generalised. Future research
might address this issue in two ways. First, the set of test assets could be significantly extended.
For example, it might be interesting to have a look at the performance of EVT-based VaR esti-
mators for highly liquid individual stocks (such as the components of the Dow Jones Industrial
Average; see Taylor, 2014; Auer and Schuhmacher, 2015) or futures (such as the subindices of the
GSCI; see Auer, 2015; Bianchi et al., 2015) which are typical components of investors’ portfolios.
Second one might conduct a suitable simulation study in which our VaR estimators are compared
in different settings. However, such studies have problems of their own. Previous VaR-related
simulation studies have typically generated random numbers based on very simple distributions
(see McNeil and Frey, 2000) or standard stochastic processes (see Martins-Filho and Yao, 2006).
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While such approaches allow determining the impact of, for example, different degrees of volatility
clustering on VaR estimator performance, their general drawbacks are that the used theoretical
models (i) naturally cannot capture all relevant features observed in empirical data and, (ii) if
they can, the characteristics are highly idealised. Consequently, simulated extremes may be quite
different from what we actually observe in empirical time series. Therefore, in order to fully
understand differences in VaR estimator performance, future simulation-based comparisons must
come up with more complex processes or rely on model-free bootstrap procedures delivering more
realistic simulated time-series (for an interesting example, see Kinateder, 2016).

Another interesting topic for future research is related to the risk measure Expected Shortfall
(ES) which is defined as the conditional expectation ESα = E(rt|rt ≤ V aRα) (see Eling and
Schuhmacher, 2007) and has received increased interest in recent research because of its more
favourable theoretical properties in comparison to the VaR (see Yamai and Yoshiba, 2005).40

While the VaR asks the question ’How bad can things get?’, ES asks ’If things do get bad, what is
our expected loss?’. By the definition of ES, errors in VaR measurement are linked to errors in ES
estimates. However, for a closer look at the performance of ES estimators originating from our EVT
approaches, we require two important inputs. First, we have to derive the corresponding explicit
ES formulas which can usually be found in the articles proposing a new VaR estimation method (in
our case, for example, McNeil and Frey, 2000; Martins-Filho and Yao, 2006) or in review articles
covering a variety of different ES estimation techniques (see Nadarajah et al., 2014). Second,
we have to consider that the evaluation and backtesting of ES is more complicated and requires
alternative procedures and tests (see Wong, 2008). With these tools at hand, future research could
contribute to a better understanding of the performance of EVT-based ES estimators which is
important because most recent Basel Accords put significant emphasis on the ES as a preferable
measure of market risk (see Chen, 2014).

40Nevertheless, ES has its own shortcomings. For example, it is not consistent with right tail risk as measured by
the convex order of degree three (see Hürlimann, 2004).

35



References
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Appendix

CRSP SP500 GSCI GOLD USGBI $/£

Panel A: Unconditional estimators
5% level
Normal 1.80 1.88 1.80 1.40 0.65 0.77
Student t 1.71 1.78 1.71 1.33 0.62 0.73
Historical simulation 1.83 1.86 1.79 1.27 0.67 0.73
Peak over threshold 1.78 1.82 1.78 1.23 0.66 0.74
L-moment 1.71 1.76 1.75 1.20 0.66 0.74
Box-Cox 1.94 2.00 1.78 1.34 0.66 0.74
Johnson 2.07 2.12 2.03 1.49 0.74 0.82
2.5% level
Normal 2.16 2.26 2.15 1.66 0.78 0.92
Student t 2.20 2.29 2.18 1.68 0.79 0.93
Historical simulation 2.25 2.25 2.18 1.61 0.84 0.94
Peak over threshold 2.33 2.38 2.21 1.64 0.85 0.92
L-moment 2.21 2.28 2.16 1.57 0.86 0.92
Box-Cox 2.80 2.90 2.22 1.97 0.87 0.92
Johnson 2.69 2.69 2.45 2.07 0.92 1.06
1% level
Normal 2.58 2.69 2.55 1.96 0.92 1.09
Student t 2.91 3.02 2.86 2.19 1.03 1.22
Historical simulation 2.76 2.99 2.74 2.16 1.04 1.17
Peak over threshold 3.13 3.20 2.77 2.21 1.09 1.16
L-moment 2.97 3.08 2.72 2.14 1.10 1.17
Box-Cox 4.19 4.33 2.81 2.99 1.14 1.17
Johnson 3.52 3.38 3.13 2.83 1.23 1.31

Panel B: Conditional estimators
5% level
Normal 2.26 2.06 2.11 1.21 0.60 0.82
Student t 2.14 1.95 2.00 1.15 0.57 0.78
Historical simulation 2.32 2.16 2.11 1.19 0.60 0.78
Peak over threshold 2.36 2.12 2.10 1.18 0.60 0.78
L-moment 2.33 2.10 2.08 1.19 0.60 0.79
Box-Cox 2.42 2.22 2.10 1.21 0.60 0.77
Johnson 2.81 2.50 2.37 1.30 0.69 0.90
2.5% level
Normal 2.71 2.47 2.51 1.43 0.72 0.97
Student t 2.75 2.51 2.55 1.46 0.73 0.99
Historical simulation 3.08 2.71 2.63 1.57 0.78 1.00
Peak over threshold 3.03 2.74 2.60 1.55 0.77 0.96
L-moment 2.98 2.70 2.57 1.56 0.77 0.99
Box-Cox 3.28 3.06 2.60 1.66 0.80 0.97
Johnson 3.64 3.18 2.95 1.77 0.87 1.12
1% level
Normal 3.24 2.95 2.98 1.69 0.85 1.15
Student t 3.64 3.32 3.34 1.88 0.96 1.29
Historical simulation 3.81 3.47 3.06 2.03 1.00 1.21
Peak over threshold 3.99 3.64 3.23 2.03 0.99 1.22
L-moment 3.93 3.59 3.18 2.04 1.00 1.24
Box-Cox 4.60 4.38 3.23 2.34 1.07 1.27
Johnson 4.27 3.88 3.64 2.50 1.08 1.39

For the period from March 2000 to December 2000 (the dotcom crash), this table reports the (absolute) average of
daily VaR estimates produced by our set of unconditional and conditional VaR estimators. Similar to Tables 6 to
11 we focus on three nominal error probabilities and six time series representing several asset classes.

Table A1: Mean VaR estimates − Dotcom crash
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CRSP SP500 GSCI GOLD USGBI $/£

Panel A: Unconditional estimators
5% Level
Normal 1.59 1.59 2.44 1.90 0.66 0.89
Student t 1.50 1.51 2.32 1.80 0.63 0.84
Historical simulation 1.56 1.55 2.44 2.02 0.67 0.91
Peak over threshold 1.55 1.55 2.42 2.01 0.66 0.90
L-moment 1.57 1.57 2.39 1.97 0.65 0.91
Box-Cox 1.58 1.59 2.44 2.03 0.66 0.89
Johnson 1.64 1.58 2.76 2.12 0.72 1.03
2.5% Level
Normal 1.89 1.90 2.92 2.28 0.79 1.06
Student t 1.92 1.93 2.96 2.32 0.80 1.08
Historical simulation 2.06 2.11 2.99 2.70 0.84 1.14
Peak over threshold 2.07 2.11 2.98 2.73 0.85 1.13
L-moment 2.09 2.14 2.94 2.67 0.83 1.14
Box-Cox 2.18 2.25 3.04 2.82 0.85 1.14
Johnson 2.29 2.25 3.35 2.88 0.91 1.30
1% Level
Normal 2.25 2.26 3.47 2.72 0.94 1.26
Student t 2.52 2.53 3.89 3.05 1.05 1.41
Historical simulation 3.02 3.15 3.74 3.70 1.07 1.46
Peak over threshold 2.80 2.92 3.73 3.65 1.10 1.44
L-moment 2.84 2.96 3.68 3.60 1.06 1.45
Box-Cox 3.10 3.27 3.84 3.93 1.10 1.47
Johnson 3.40 3.44 4.09 4.11 1.21 1.63

Panel B: Conditional estimators
5% Level
Normal 2.92 2.94 3.36 2.75 1.05 1.28
Student t 2.76 2.79 3.19 2.61 1.00 1.21
Historical simulation 3.15 3.16 3.43 2.77 1.07 1.35
Peak over threshold 3.08 3.11 3.42 2.79 1.05 1.33
L-moment 3.15 3.17 3.38 2.83 1.05 1.33
Box-Cox 3.18 3.21 3.42 2.82 1.05 1.33
Johnson 3.64 3.63 3.91 3.21 1.20 1.51
2.5% Level
Normal 3.49 3.51 4.02 3.29 1.25 1.52
Student t 3.54 3.57 4.08 3.34 1.27 1.55
Historical simulation 4.03 4.14 4.06 3.66 1.29 1.66
Peak over threshold 3.81 3.92 4.11 3.67 1.29 1.65
L-moment 3.91 4.01 4.06 3.75 1.27 1.65
Box-Cox 4.17 4.32 4.11 3.81 1.29 1.65
Johnson 4.62 4.67 4.67 4.19 1.46 1.87
1% Level
Normal 4.15 4.18 4.78 3.91 1.48 1.81
Student t 4.66 4.69 5.36 4.39 1.66 2.03
Historical simulation 4.82 4.98 4.97 5.16 1.49 1.99
Peak over threshold 4.83 5.07 4.93 4.89 1.58 2.03
L-moment 4.90 5.12 4.91 5.00 1.57 2.02
Box-Cox 5.67 6.02 4.93 5.22 1.60 2.03
Johnson 5.79 5.91 5.35 5.46 1.78 2.30

For the period from October 2007 to March 2009 (the global financial crisis), this table reports the (absolute) average
of daily VaR estimates produced by our set of unconditional and conditional VaR estimators. Similar to Tables 6 to
11 we focus on three nominal error probabilities and six time series representing several asset classes.

Table A2: Mean VaR estimates − Global financial crisis
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