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Abstract 
 
We characterize the second-best allocation in a Mirrleesian optimal tax model where agents 
differ in multiple dimensions and the planner can tax multiple goods non-linearly. We develop a 
new method that allows us to solve the partial differential equations that describe the optimum 
regardless of the dimensionality of the problem. We derive four theoretical properties of the 
optimum. First, the optimal tax system is described by a multidimensional version of Diamond’s 
(1998) and Saez’ (2001) ABC-formula. Second, the Atkinson-Stiglitz theorem does not 
generalize to settings where the planner screens in multiple dimensions. Third, the optimal 
marginal tax rate on each good depends on the consumption level of multiple goods. Fourth, a 
no-distortion at the top/bottom result continues to hold. A calibrated simulation on taxation of 
couples shows a strong positive relationship between an individual’s optimal marginal tax rate 
and the income earned by his spouse. 
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1 Introduction

How should a government combine taxes on labor income with health care subsidies?
What is the optimal relation between capital and labor income taxes? When should
housing subsidies depend on wealth and income? The optimal interplay between these
tax and subsidy instruments crucially depends on the dimensions in which agents differ.
However, up to now, the literature on optimal taxation has almost exclusively focused
on models where agents differ in only one dimension, namely ability (e.g. Mirrlees, 1971;
Diamond, 1998; Saez, 2001; Bovenberg and Jacobs, 2005), and on models where agents do
differ in multiple dimensions but the government can only tax labor income non-linearly
(e.g. Saez, 2002; Choné and Laroque, 2010; Rothschild and Scheuer, 2013; Jacquet and
Lehmann, 2014). One reason for this relatively narrow focus is provided in Mirrlees (1976,
p.344) when he remarks:
”the attractive simplicity of the [unidimensional] marginal-tax-rate equation has to some
extent been lost in its generalized [multi-dimensional] form ..... A principal purpose of this
section [on multi-dimensional taxation] has been to warn that the results of the previous
section depend for their relative simplicity on the one-parameter assumption.”

In other words, he considered solving the multidimensional optimal tax problem as
considerably more complex then the unidimensional problem.

However successful the unidimensional approach has been, economists have since rec-
ognized that it is important to expand our models to allow for both multidimensional het-
erogeneity between agents, and non-linear taxation of multiple goods (see a.o. Sandmo,
1993; Saez, 2002; Judd and Su, 2006; Lockwood and Weinzierl, 2012). Recent policy dis-
cussions on health care subsidies in the US, leading up to and following the introduction of
the affordable care act, have made the call to extend our models all the more urgent. This
act introduces a universal health care insurance system that includes income-dependent
subsidies. The act thus contains multiple instruments to redistribute from rich to poor,
and from healthy to sick. Moreover, the best-selling book Piketty (2014), as well as re-
cent developments in the literature, e.g. Farhi et al. (2012) and Piketty and Saez (2013),
have fueled the discussion on taxation of capital income. In this case, the government
combines a non-linear tax on labor and capital income in an effort to redistribute both
from high to low ability, and from wealthy to poor.

In this paper, we return to the Mirrleesian model of taxation where the government
taxes multiple goods non-linearly and screens in multiple characteristics of the agents.
Our main contribution is the development of a new solution method that allows us to solve
the partial differential equations (PDEs) that describe the optimal allocation analytically.
Using our method we derive a formula for the optimal marginal tax rates that is similar
to the ABC-formula for the unidimensional model (see Diamond, 1998; Saez, 2001).
The formula allows us to derive several general, theoretical properties of the optimal
allocations, and to perform a simple simulation calibrated to calculate the optimal non-
linear tax system for couples.

Our model follows the basic set-up of Mirrlees (1976, sect. 4). Agents differ in multiple
independent characteristics and their type is private information. Agents make a vector
of continuous, taxable choices pertaining to labor income, consumption of health care
products and savings, for instance. We will refer to these choices as goods, even though
they can be both inputs and outputs to the production process. For technical convenience
we restrict the preferences and choice set of the agents to ensure that the planner can
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(ex-post) deduce all the hidden characteristics of the agent by observing its bundle of
goods in an incentive-compatible allocation. Moreover, we assume that the preference
for at least one good is separable from the other goods as well as the type of the agent.
This good act as the numeraire (untaxed) commodity. The social planner maximizes a
(weakly) concave sum of the agents’ utility levels.1

We solve the optimization problem of the social planner by treating it as a multi-
dimensional screening problem. In the screening problem, each agents sends a message
concerning his type to the planner, and the planner assigns a bundle of goods to each
agent on the basis of the message it receives. We use a first-order approach to characterize
the planner’s optimum. That is, the planner maximizes social welfare subject to the first-
order incentive compatibility constraint, assuming that the identified optimal allocation
satisfies second-order incentive constraints.2

The first-order conditions of the planner’s problem form a set of PDEs. We show that
the PDEs can be rewritten in the form of a Poisson equation, which in turn can be solved
through a Green’s function. For most relevant type spaces there exists an analytical
Green’s function that solves the Poisson equation. In this paper we provide the Green’s
function, and hence provide an analytical solution for the PDEs, for the cases where the
type space equals R+,R2

+ and RJ . Analytical Green’s functions for other type spaces can
readily be obtained from the mathematical literature. To our knowledge, the application
of the Green’s function method is novel in the fields of mechanism design and optimal
taxation. We are, hence, the first to provide a general approach to analytically solving
multi-dimensional screening models.

We use the solution to the PDEs to describe the wedges between the marginal rate of
substitution and the marginal rate of transformation in the optimal allocation. At each
point in the type space, the optimal wedge for each good is the sum of characteristic-
specific wedges. For example, if the wedge on labor income redistributes from high
earnings ability to low earnings ability, as well as from healthy to sick types, the optimal
wedge on income can be decomposed in a health-specific and an ability-specific wedge.

Each of these characteristic-specific wedges can be written as a generalized version of
Diamond’s (1998) and Saez’ (2001) ABC -formula. In the formula, A measures the change
in the elasticity of the marginal rate of substitution of the good w.r.t. the numeraire,
when the characteristic changes. It serves as a measure of the quality of the signal
obtained from the good. If the marginal rate of substitution is strongly affected by the
characteristic, the good reveals a lot of information about the characteristic, and hence
the wedge should be large. When utility is additively separable as in Armstrong (1996);
Rochet and Choné (1998) the A-term can be rewritten in terms of empirically observable
elasticities. B Measures the redistributive benefit of marginally distorting the price of
the good. Its value is determined by the marginal social welfare weights (see Saez and

1A recent and growing literature discusses optimal tax models where agents differ in multiple di-
mensions, but the planner can only observe labor income (e.g. Choné and Laroque, 2010; Jacquet and
Lehmann, 2014). In that setting there is not enough information to deduce all hidden characteristics
even if the allocation is incentive compatible.

2 The reinterpretation of the optimal tax problem as a screening problem with only first-order con-
straints is not completely innocuous. In our derivation we do not explicitly consider the optimal-tax
system that implements the allocation in a market economy, nor do we address second-order constraints.
In our simulations we ensure that second-order incentive constraints are not binding, while we know from
Renes and Zoutman (2014) that a direct relation between the taxes and wedges exists. For technical
convenience we discuss both issues separately in subsections 4.5 and 4.6.
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Stantcheva, 2016) and a weighting function. The weighting function is the derivative
of the Green’s function. The weighting function describes how utility is redistributed
along the type space when the wedge at a specific point in the type space is marginally
increased without breaking incentive compatibility. For instance in the unidimensional
case, an increase in the wedge at n′ transfers utility from types above this point to types
below this point (see Diamond, 1998). Finally, C is the inverse of the size of the tax
base for which the marginal choice is distorted. Like in the unidimensional model, the
generalized ABC-formula thus facilitates an intuitive explanation of the wedges in terms
of equity and efficiency, and can moreover serve as a convenient way to approach data.

A corollary to our main proposition shows that the optimal wedge on a good is zero
if this good does not reveal information about any of the hidden characteristics. As a
direct result, if all hidden characteristics only affect the preferences of a single good, the
optimal tax rate on each of the other goods should equal zero. Under unidimensional
heterogeneity this result is known as the Atkinson-Stiglitz (A-S) theorem (see Atkinson
and Stiglitz, 1976). The corollary also implies that the A-S theorem does not generalize
to a setting where the planner screens in several dimensions of heterogeneity. With at
least two relevant sources of heterogeneity, the planner can never extract all the relevant
private information from an agent through a single choice and hence will want to use
several tax instruments.

Mirrlees (1976, sect. 3) shows that if agents are heterogeneous in only one dimension,
the optimal wedge on each good can be written as a function that only depends on
the consumption of that good. This is no longer possible in multidimensional screening
models. In order to facilitate full revelation of J hidden characteristics, the optimal
wedge is a function of J goods.3 This type of interdependency is common in real-world
tax systems. For instance, health care subsidies often depend both on income as well as
on the amount of health care consumed. These interdependencies are weakly sub-optimal
in the unidimensional optimal tax literature, but optimal in our multi-dimensional tax
model.

Intertemporal interdependencies between marginal tax rates have recently received a
lot of attention in the New Dynamic Public Finance (NDPF) (see Golosov et al., 2007 for
an overview). These models extend the Mirrleesian framework to a setting where agents’
types evolve stochastically over time. One of the most striking outcomes in this literature
is that the optimal marginal tax rate in any period depends on the income earned in
past periods (see e.g. Kocherlakota, 2005). We show that this result generalizes to a
deterministic dynamic setting. In particular, if agents know their entire (future) history
of types at the beginning of the first period, the optimal tax rate in each period does
not just depend on current and past earnings, but in addition it even depends on future
earnings. Earnings in each period provide information on the type of the agent, and hence,
allow the planner to screen more accurately. This also provides an intuitive explanation
for the interdependencies identified in the NDPF literature. In NDPF models agents do
not know the outcome of future shocks, but they do differ in both their current type and
their history of types. To screen for all this heterogeneity the optimal tax rate in the
current period must therefore depend on both current and previous periods’ earnings.

We also derive a generalization of the no-distortion at the top result (see e.g. Sadka,
1976 and Seade, 1977). As in the unidimensional case, the optimal wedges at the extreme

3This result describes the general case, special cases may exist where the optimal tax rate can be
written in a simpler form.
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points of the type distribution are zero. If a type exists that has extreme values for
all characteristics, his optimal marginal wedge on all goods equals zero. Intuitively,
since there are no “more extreme” types, setting a wedge to separate out more extreme
types yields no information to the planner. Hence, for any marginal distortion, the
efficiency cost of the distortion is higher than the welfare gain at the extreme points of the
distribution. Note that, unlike in the unidimensional case, in the multidimensional case
such types do not necessarily exist. For instance, the healthiest person in the economy
may not be the person with the highest ability in the economy. In that case, the health-
specific wedges are zero for the healthiest type in the economy, while the ability-specific
wedges equal zero for the type with the highest ability.

Finally, we use our ABC-formula to simulate a model of joint taxation of couples. Our
simulations are based on a simple fixed-point algorithm in the spirit of the unidimensional
algorithm in Mankiw et al. (2009). The important advantage of our algorithm over
previous algorithms discussed in Mirrlees (1976) and Golosov et al. (2014), is that it
does not rely on solving a partial differential equation numerically. Instead, we use the
analytical solution obtained by means of the Green’s function. We calibrate our model to
high income couples in the US, in a setting where both spouses choose their labor supply
to maximize a joint, quasi-linear utility function. The ability of the spouses is positively,
but not perfectly correlated.

Even though we assume the couple’s utility function is separable in each of the spouses
labor supply choices, we nevertheless find that the optimal tax rate exhibits large inter-
dependencies. Top income earners that are married to spouses with close to zero income
face a marginal tax rate of about 25 percent. However, if both spouses are top income
earners their marginal top tax rate should be around 65 percent. The simulation shows
that interdependencies in tax rates, in this case between the income of the two partners,
may be of quantitative importance.

The rest of this paper is organized as follows. The next section discusses related
literature. Section 3 introduces the model and discusses incentive compatibility in our
setting. The fourth section introduces the Green’s function method and derives the
optimal allocation and the ABC-formula. Section 5 discusses our generalization of the
Atkinson-Stiglitz theorem. Section 6 derives boundary conditions. Section 7 compares
our results to results obtained in the NDPF. Section 8 describes the simulations. The
final section concludes. Long proofs are relegated to the appendix.

2 Related Literature

In a concurrent working paper, Golosov et al. (2014) also investigate an optimal tax model
where agents choose multiple goods and have multiple hidden characteristics. In their
model they specify the set of tax instruments available to the planner ex ante, and use a
variational approach to derive the functional derivative towards a marginal perturbation
of the tax-schedule. This derivative can serve as a theoretically grounded measure to
evaluate the welfare effects of a tax reform. By setting this derivative equal to zero, one
obtains a set of PDEs that implicitly determine the optimal-tax system. The variational
approach adopted in Golosov et al. (2014) fundamentally differs from the mechanism-
design approach we use in this paper. Our mechanism-design approach allows us to
derive the allocation that maximizes welfare under a set of informational restrictions,
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without specifying the instruments required to attain this allocation. The variational
approach allows one to find the optimal allocation for a given set of instruments, without
specifying the informational restrictions. When the instrument set is restricted for reasons
that are difficult to model, the variational approach is an attractive method to derive the
optimal restricted tax system.4 However, mechanism design has proven to be better
suited in guiding policy makers in the choice of instruments to apply, since no a priori
restrictions are necessary. One clear example of this approach is our investigation of
the Atkinson-Stiglitz theorem in section 5. We show when one needs more than one
non-linear tax-instrument and relate this to the fundamentals of our model economy. A
similar analysis through a variational approach would be extremely cumbersome, since
the set of instruments to use or exclude is not clearly defined ex ante. Hence, while the
variational approach can have great practical value in deriving optimal tax systems when
the instruments are given, the mechanism design approach is more useful in deriving
fundamental properties of the optimal tax system. Finally, it should be emphasized
that in many cases the mechanism-design approach and the variational approach yield
identical outcomes (e.g. Saez, 2001). In those cases, the method we develop in this paper
has the distinct advantage that we can solve the resulting PDEs, whereas Golosov et al.
(2014) provide the optimal tax system in the form of a PDEs.

We rely on the first-order approach to derive the properties of the second-best allo-
cation. Another approach to keep the model tractable is to discretize the type space.5

In a model with discretely distributed types it is possible to (numerically) verify which
incentive constraints are binding, such that the optimal allocation can be derived with-
out relying on the first-order conditions alone (see e.g. Cremer et al., 2001, 2015). The
downside of a discrete distribution is that the optimal wedge can only be determined on
a discrete number of points. Moreover, as the number of types increases, the problem be-
comes less tractable. In our solution it is possible to calculate the wedge for all goods in a
tractable manner, because types and choices are continuously distributed. This provides
the entire shape of the optimal tax system.

Kleven et al. (2009) study the taxation of couples in a setting where partners have
different earnings ability. To maintain analytic tractability they assume the primary
earner chooses labor supply on the intensive margin while the secondary earner chooses
on the extensive margin. In our model agents only make intensive-margin choices. We
argue that many economic decisions, such as savings and consumption choices, are more
accurately portrayed as choices on the intensive margin. The best solution would be to
combine both approaches by extending our model with extensive-margin decisions, as
was done for the unidimensional model in Jacquet et al. (2013). However, we leave this
for future research.

Several papers study multidimensional screening in a setting where the number of ob-
servable choice variables is smaller than the number of characteristics. In such a setting,
it is not possible to reveal all hidden characteristics, even if the allocation is incentive
compatible. Pass (2012) develop a method where agents of a different type are pooled
together based on their marginal preferences, or some convex combination of their char-
acteristics. For a given “pooling function” one can integrate out the excess dimensions
in the type space, until it equals the dimensionality of the choice space. Choné and

4In the Ramsey-tax model, for example, the planner is exogenously restricted from using lump-sum
taxation.

5See Armstrong and Rochet, 1999 for a user’s guide.
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Laroque (2010) apply this method to calculate the optimal income tax rate in a setting
where agents differ in both ability and disutility of labor. Jacquet and Lehmann (2014)
extend the method further, by identifying the optimal pooling function in a setting where
multiple dimensions of the type space affect the behavioral elasticities of the agents. This
allows them to calculate the optimal tax rates in a setting where agents differ in both the
elasticity of labor supply and their earnings ability. To limit the complexity of our model
we restrict our attention to the case where all hidden characteristics can be revealed.
However, in future research it may be possible to use a pooling function in the spirit of
Pass (2012); Jacquet and Lehmann (2014) to extend our results to a setting where not
all characteristics can be revealed.

Rothschild and Scheuer (2011, 2013, 2014); Gomes et al. (2014); Scheuer (2013, 2014)
study a setting where agents face different productivity levels in different sectors of the
economy, and hence differ in multiple dimensions. The planner can only tax labor income
non-linearly. In these papers, general equilibrium effects exist because agents can shift
effort from one sector to the other. This forces the planner to adjust his optimal tax
rates, compared to the standard Mirrleesian tax rates, to reduce inefficient shifting. In
our model we do not explicitly model different sectors, but it does nest a model where
each agent decides on the intensive margin of effort in different sectors simultaneously.

3 The Model I, agents

We use a mechanism-design approach to find the optimal-tax system as has been the
standard in the literature since Mirrlees (1971, 1976). We first find the second-best
allocation using a direct mechanism. In the direct mechanism the agents send a message
to the planner that reveals their type. On the basis of this message, the planner assigns the
agents with a bundle of goods. The planner chooses the bundles in an effort to maximize
a Bergson-Samuelson welfare function of agents’ utility levels subject to resource and
incentive-compatibility constraints. After that we use the characterization of the second-
best allocation to identify the optimal tax system.

This section formally introduces the preferences of the agents and derives the incentive-
compatibility constraints. The subsequent section introduces the preferences of the plan-
ner, solve its maximization problem, and discusses the optimal-tax equation.

3.1 Preferences

The economy is populated by a unit mass of agents whose preferences can be characterized
by a twice-differentiable utility function:

u (x, y,n) .

x ∈ X ⊆ RI denotes a vector of I choice variables. These choice variables can, for
instance, include effective labor supply, consumption of health care products or savings.
Choices in x are indexed by i. y ∈ Y ⊆ R is the numeraire commodity and is therefore
untaxed. Throughout the paper we will refer to the choice variables in {x, y} as goods,
even though they can be both inputs and outputs to the production process. The planner
can observe each agent’s consumption of goods x and y perfectly.
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n ∈N ⊆ RJ Denotes an J-vector of characteristics that forms the type of the agent.
Elements in the type vector are denoted as nj and indexed by j. Characteristics can for
instance include earnings ability, health status and preference parameters. We assume
each characteristic denotes some independent aspect of the agents’ personality, such that
no characteristic can be found as a deterministic function of the other characteristics.6

An agent’s type is private information and can not be observed by the social planner.
However, the distribution is assumed to be known by both the agents and the planner. For
technical convenience we assume that the type space, N , is convex and piecewise smooth.
The distribution of n is then given by the twice-differentiable cumulative density function
F (n) with F : N → [0, 1] and associated probability density function f (n). Both are
defined over the closure of N . We assume f (·) > 0 in the interior of N .7

For simplicity we assume y is a normal good, such that uy > 0, uyy ≤ 0 for any value
of {x, y,n}. This assumption implies non-satiation of the utility function everywhere.
Moreover, we assume utility is separable in y such that cross-derivatives of u (·) with
respect to y equal zero, uynj = uyxi = 0 for all xi and nj. Since any good can be chosen
as the numeraire, this assumption implies that there must exists at least one good for
which the marginal utility is independent of all other goods and characteristics. These
assumptions greatly simplify the multi-dimensional screening problem faced by the social
planner (see also Basov, 2006 in this respect).

Note that we do not restrict ourselves to static models: different goods can be con-
sumed in different periods. However, we do assume that agents know all characteristics
of their type and the direct mechanism at the beginning of the first period.8

We need two additional assumptions to ensure full separation of types can occur in
a direct mechanism. These assumptions are our screening conditions. If they hold, the
government can screen for the unobserved characteristics via the choices made by the
agents. This allows a direct link between the optimal screening solution and market
outcomes. First, we assume that I ≥ J ≥ 1, such that there are at least as many goods
in x as characteristics in n. This ensures the goods space is large enough to contain all
information of the type space in an incentive compatible manner.

Second, let:

s (x,y,n) ≡ −ux (x, y,n)

uy (y)
,

denote the vector of shadow prices, such that each element, si (·), denotes the marginal
rate of substitution for decision variable xi with respect to the numeraire good y. We
assume the Jacobian matrix of partial derivatives of s towards n, denoted by sn, is of
full rank for any combination {x, y,n}, i.e. rank(sn) = J . This assumption ensures
there are no characteristics that do not influence marginal preferences. In addition, it
excludes the possibility of having two characteristics that jointly affect the preference for
only one good. An example of the latter is a model where agents differ in their degree of

6Note that the conventional utility representation ũ (y, L) with L denoting labor supply, is a special
case of our utility representation (e.g. Mirrlees, 1971; Saez, 2001). If one takes the standard assumption
that gross income equals x1 = n1L where n1 is earnings ability, it can be seen that this utility function

can be rewritten into our form: ũ (y, L) = ũ
(
y, x1

n1

)
= u (x1, y, n1)

7Ebert (1992) and Hellwig (2010b) show that in case of unidimensional heterogeneity of agents,
bunching of types generally occurs when f(n) is non differentiable, or zero on the interior.

8The model with unidimensional heterogeneity has often been used to describe a dynamic economy.
See Golosov et al. (2013) for a recent example.
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earnings ability and in their opportunity cost of work as in Choné and Laroque (2010).
In their model the utility cost of providing a unit of effective labor supply is decreasing in
ability and increasing in the opportunity cost of work. Since both characteristics act only
on effective labor supply, it is fundamentally impossible to separate them both through
this one choice. By assuming sn is of full rank, we guarantee that there is always a
second observable choice which can be used to disentangle the effect of ability and the
opportunity cost of work. For example, if the planner could also observe the time spend
on video games and the opportunity cost of working increases in the preference for video
games, the screening problem can be solved. In that case, the planner can deduce both
characteristics by jointly observing labor earnings and the time spend on video games.

For bookkeeping, the Jacobian of first-order derivatives φ′ (·) of any function φ (·) :
Ra → Rb, is of dimension b×a. The second-order derivatives φ′′ (·) are of dimension ab×a.
For any multi-vector functions ψ (z1, z2, . . .) : Ra1×Ra2 . . .→ R the vectors of first-order
derivatives ψzk are of dimension ak × 1 and the matrix of second-order derivatives ψzkzl
are of dimension ak × al, where the dimension of the matrix follows the order of the
subscripts. Superscript T denotes the transpose operator. Vectors and multidimensional
constructs are denoted in bold. Scalars and derivatives of scalar functions are in normal
font throughout the paper.

3.2 Incentive Compatibility

Before we go to the problem faced by the social planner, we need to consider the problem
of the agents in our economy. In particular, we derive conditions under which an allocation
is incentive compatible. The incentive compatibility constraints will serve as constraints
to the social planner when he chooses the optimal allocation.

In a direct mechanism the social planner offers bundles {x (m) , y (m)} for allm ∈N .
The set of all bundles, describing the complete pattern of consumption in the economy is
the allocation. The allocation is described by functions x (m) and y (m). Function x (·)
maps from the message space to the goods space, x : N →X ⊆ RI and y (m) maps
from the message space to the numeraire-commodity space, y : N → Y ⊆ R1.

Each agent selects a bundle {x (m) , y (m)} from the allocation by sending a mes-
sage m ∈ N to the social planner. An allocation is incentive compatible if each agent
truthfully reveals all his unobserved characteristics and receives the bundle designed for
him:

n = arg max
m

u (x (m) , y (m) ,n) ∀ n ∈N . (1)

Moreover, define indirect utility as follows:

V (n) ≡ max
m

u (x (m) , y (m) ,n) ∀ n ∈N.. (2)

Proposition 1, which largely follows Mirrlees (1976) and McAfee and McMillan (1988),
derives the first and second-order conditions to problem (1).

Proposition 1 An interior twice-differentiable allocation is incentive compatible, and
hence solves (1) if:

y′ (n) = s (x (n) , y (n) ,n)T x′ (n) ∀ n ∈N , (3)

x′ (n)T sn l 0 ∀ n ∈N , (4)
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where l0, signifies negative semi-definiteness of the matrix.

Through the envelope theorem a fully equivalent set of conditions can be derived:

V ′ (n) = un (x (n) ,n)T ∀ n ∈N , (5)

unn (x (n) ,n)− V ′′ (n) l 0 ∀ n ∈N . (6)

Proof. The proof can be found in the appendix.

Equation (3) states that an agent should be indifferent between truth telling and
mimicking at the margin for each of his characteristics. For each row j the left-hand
side of the equation denotes the gain in y as a consequence of marginally changing the
reported characteristic nj. The right-hand side denotes the loss in x, measured in y units
of utility, for the same marginal change in the message. Therefore, equation (3) states
that in equilibrium the marginal cost of mimicking should equal the marginal benefits
for all characteristics and for all types in the economy. Equation (4) is the usual second-
order condition as first derived in Mirrlees (1976). If the marginal rate of substitution
for decision variable xi is increasing (decreasing) in characteristic nj,

∂si
∂nj

> 0 ( ∂si
∂nj

< 0)

and the allocated amount of the good is decreasing (increasing) in the characteristic,
∂xi
∂nj

> 0 ( ∂xi
∂nj

< 0), the allocation induces self selection. The equation implies higher

(lower) quantities of the good are assigned to people with a stronger (weaker) preference
for the good.

Equations (5) and (6) are fully equivalent formulations of the incentive constraints
derived through the envelope theorem. Together they imply that the utility of agents
that truthfully reveal their type increases at leasts as fast as the utility of agents that
mimic ’lower’ types. Although their explanation is less intuitive, (5) and (6) are extremely
convenient mathematical expressions in the derivations in subsequent sections.

If the inequality in (4) holds strictly, our initial assumption that sn is of rank J ,
implies that full separation occurs on the market. This is formalized in the next lemma:

Lemma 1 If the allocation is incentive-compatible and satisfies (4) strictly, all charac-
teristics are revealed through the bundles chosen by the agents in the direct revelation
mechanism.

Proof. Note that (4) can only hold strictly, i.e. be a definite inequality, if the product
x′ (n)T sn is definite, and hence of full rank J . Since in a matrix product rank (AB) ≤
min (rank (A) , rank (B)), it follows that (4) can only hold strictly if the Jacobian of the
allocation, x′ (n), is of full rank J for all values n ∈ N . Since I ≥ J it follows that the
allocation is locally invertible around type n for all n ∈ N . Hence, at least one inverse
function from the image of x (n) to the type space exists: (x)← : image(x (·))→ N . It
follows that by observing the bundle chosen by an agent, one can deduce each of his
hidden characteristics.

By lemma 1, if the second order incentive constraints (4) are strictly satisfied it follows
that the type of the agent can be deduced by observing all his choice variables. This is
convenient for our analysis, since it allows us to relate optimal policy to the unobserved
underlying characteristics, as well as to observable goods.
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4 Model II, The Second-Best Allocation

Now that we have established conditions for incentive compatibility, we can turn our
attention to the social planner. In our derivation we apply the first-order approach, and
assume that the second-order incentive compatibility conditions (4) are satisfied strictly
such that lemma 1 holds. In subsection 4.6 we discuss potential violations of second-order
constraints in more detail.

4.1 The social planner

We assume the social planner maximizes a (weakly) concave sum of agent utility:

SW =

ˆ
N

W (u (x,y,n)) dF (n) , (7)

W ′ (·) > 0,W ′′ (·) ≤ 0, (8)

where
´
N
· · · dn is short-hand notation for the multiple integral with respect to each of

the characteristics. The social planner commits to the allocation he offers and cannot
alter the allocation after types are revealed.9 Redistribution is welfare increasing because
of (at least one of) two reasons. First, concavity in the utility functions of the agents
implies that agents with higher income, measured through the numeraire y, have a lower
marginal utility of income. Second, W ′′ (·) < 0 implies the social planner gives a higher
welfare weight to agents with lower utility. If, on the contrary, the utility function would
be linear in income and the welfare function linear in utility, the first best would be
attainable through lump-sum taxation.

The social planner is bound by the economy’s resource constraint:

ˆ
N

y (n) dF (n) +R ≤
ˆ
N

q (x (n)) dF (n) , (9)

where R denotes exogenous government expenditure and q (·) is the agent’s production
function which transforms goods in x into units of y. A partial derivative qxi may be
either positive or negative depending on whether good xi is an input to, or an output
of the production process. We assume the production technology exhibits diminishing
marginal returns, i.e. qxixi ≤ 0 for all goods xi, to guarantee that an interior solution will
be reached in laissez faire. This specification nests standard partial-equilibrium analysis
where agents face a fixed set of prices for each of the goods. In that case the agent’s
production function can be written as q (x) = pTx, where p denotes a price vector.

4.2 First-order conditions

In the first-order approach the social planner maximizes social welfare subject to the
first-order incentive-compatibility constraint (5), the economy’s resource constraint (9),
and a constraint that allows us to introduce the indirect utility function as the state

9See Roberts (1984) for a discussion on the issue of commitment.
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variable:

max
V (n),x(n),y(n)

ˆ
N

W (V (n)) dF (n) ,

s.t.

0 ≥ R +

ˆ
N

(y(n)− q(x (n))) dF (n) ,

V ′ (n) = un (x (n) ,n)T , ∀ n ∈N (10)

V (n) = u (x (n) , y (n) ,n) . ∀ n ∈N (11)

The Lagrangian to this problem is given by:

L=

ˆ
N

[
(W (V )− λ (R + y − q(x))) f + θT

(
V ′T − un (x,n)

)
+ η (u(x, y,n)− V )

]
dn,

where λ is the Lagrangian multiplier associated with the resource constraint, θ (n) is
a J-column vector of Lagrangian multipliers for the set of local incentive-compatibility
constraints in (5), η (n) is the Lagrangian multiplier that ensures maximized utility equals
the utility function for each type. Note that in the Lagrangian x, y , V , f , F , θ and their
derivatives depend on n, but for clarity of exposition this notation is suppressed. Since
we cannot work with the derivative of the state variable, V ′, we apply the divergence
theorem to rewrite the Lagrangian as:10

L =

ˆ
N

[
(W (V )− λ (R + y − q(x))) f − V

J∑
j=1

∂θj
∂nj
− θTun (x,n) + η (u(x, y,n)− V )

]
dn

+

ˆ
∂N

[V θTe]d∂N . (12)

Where ∂N denotes the boundary of N and e the outward unit surface normal vector to
this boundary. We maximize this last equation pointwise for each type in the type space,
yielding the following first-order conditions for the planner:

∂L
∂y

= 0 : −λf + ηuy = 0 ∀ n ∈ N, (13)

∂L
∂x

= 0I : λq′Tf − uxnθ+ηux = 0I ∀ n ∈ N, (14)

∂L
∂V

= 0 : W ′f −
J∑
j=1

∂θj
∂nj
− η = 0 ∀ n ∈ N, (15)

∂L
∂V

= 0 : θTe = 0 ∀ n ∈ ∂N, (16)

These first-order conditions were previously derived in Mirrlees (1976). The quote in the
introduction shows his response, a general warning that the attractive simplicity of the
uni-dimensional model disappears in the general setting. The main complexities that

10The divergence theorem is also known as the Gauss’s theorem, or Ostrogradsky’s theorem. Here it
acts as a multi-dimensional version of integration by parts. Through it we can rewrite:

´
N
θTV ′T dn =

−
´
N
V
∑J
j=1

∂θj
∂nj

dn+
´
∂N

[V θTe]d∂N .
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arise, are caused by the first-order conditions for indirect utility V (n) (15,16). In the
unidimensional model these first-order conditions describe an ordinary differential equa-
tion, which can be solved analytically. However, with multi-dimensional heterogeneity
these same conditions form a set of J PDEs for the Lagrange multipliers θ(·). In the next
subsection we show that the solution to the PDEs depends on the shape and dimension-
ality of the type space N . Moreover, we show that the PDEs have an analytical solution
for many multidimensional type spaces that are relevant to economists.

4.3 Solving for multipliers on the incentive compatibility con-
straints

To solve for θ(·), first combine first-order conditions (13) and (15) to obtain:

J∑
j=1

∂θj
∂nj

=
λ (g (n)− 1)

uy (n)
f (n) (17)

where g (n) ≡ W ′(V (n))uy(n)

λ
denotes the social marginal welfare weight; the social value

of redistributing an extra unit of y towards type n (see Saez and Stantcheva, 2016), and
uy(n) is used as short-hand notation for uy(y(n)). Equation (17) forms a set of J first-
order PDEs for the vector θ(n). Boundary conditions are provided by (16). In lemma 2
we show that the solution to this set of PDE exists provided:

ˆ
N

λ (g (n)− 1)

uy (n)
f (n) = 0. (18)

This constraint can be satisfied by choosing λ as follows:

0 =

ˆ
N

(
W ′ (V )− λ

uy

)
fdn,

λ =

´
N
W ′ (V ) fdn´
N

f
uy
dn

(19)

Hence, λ equals the average marginal increase in welfare when the economy’s resource
constraint is relaxed by 1 unit of y. This was already shown to hold true for the uni-
dimensional model in Mirrlees (1971).

The lemma further shows that θ(n) is a conservative vector field. That is, there exists
a scalar function Θ(n) such that θ(n) = Θ′(n) for all types in the type space.11 The
scalar function Θ(·) allows us to write the set of J first-order partial differential equations
as a single second order differential equation:

∇2Θ (n) =
λ (g (n)− 1)

uy (n)
f (n) ∀ n ∈ N, (20)

Θ′ (n) e = 0 ∀ n ∈∂N , (21)

11If we do not assume uyn 6= 0, this is no longer the case. Without this assumption analytic solutions
for the partial differential equation only exist in very special cases. See example 35 in Basov (2006) for
a discussion.
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where the operator ∇2 denotes the Laplacian operator: ∇2 = ∂2

∂n2
1

+ . . . + ∂2

∂n2
J
. Equation

(20) is a type of elliptic PDE known as a Poisson equation. The set of equations (21) form
boundary conditions to the gradient of Θ (·), rather than to Θ (·) itself and are known as
Von Neumann boundary conditions in the mathematical literature. Hence, finding Θ (·)
amounts to solving a Poisson equation under Von Neumann boundary conditions.12

In the proof to lemma 2 we show how the partial differential equation for Θ (·) can be
solved using the method of Green’s functions. Afterwards, to find θ (·) we simply take
the gradient of the solution for Θ (·). These results, as well as some properties of the
solution for θ (·) are formalized in lemma 2.

Lemma 2 The set of Lagrange multipliers θ(·) follow from the solution to (20) subject
to boundary constraints (21). The solution has the following six properties:

(i) θ(·) is a conservative-field vector with potential function Θ(·),
(ii) the solution to the potential is given by:

Θ(n) = λ

ˆ
N

(g (m)− 1) f (m)

uy (m)
G(n,m)dm+D

where G(·) is the Green’s function corresponding to this problem, D denotes a con-
stant, and n,m ∈N ,

(iii) in our model G(·) is fully determined by the specification of the type space N ,
(iv) G(·) is twice differentiable everywhere except at m = n,
(v) the solution to the Lagrange multipliers is therefore given by:

θj (n) = λ

ˆ
N

(g (m)− 1) f (m)

uy (m)
ωj (m,n) dm, (22)

where ωj(n,m) ≡ ∂G(n,m)
∂nj

,

(vi) ωj(·) is unique up to an additive constant.

Proof. The proof can be found in the appendix.

Lemma 2 shows that solving for the Lagrange multipliers θ(·) can be reduced to finding
the appropriate Green’s function. The advantage of rewriting the PDE in this form is
that, for a given type space, the Green’s function is independent of the specification of the
model (e.g. the utility function, distribution of characteristics or the welfare function).
A Green’s function generally only depends on 3 things: i.) the differential operator, ii.)
the type of boundary constraints and iii.) the space of integration. For our optimal-tax
problem the differential operator is always the Laplacian and the boundary constraints are
always of the Neumann type. Hence, the only primitive that affects the Green’s function
is the space of integration: the dimensionality and shape of the type space determine
the appropriate G (·). This is an extremely useful property of our solution method since
the Green’s function for the Neumann problem has already been derived for many spaces
that are relevant to economists. Lemma 2 allows us to solve for θ (·) in all of these known
cases. For instance, if N = RJ with J ≥ 2 the Green’s function is given by (see e.g.

12The properties of this class of PDEs are well-known in mathematics and physics. Good introductions
to their properties and the solution technique used in this paper can be found in Strauss (1992); Evans
(2010)
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Seremet, 2002):

G (n,m) =
1

2π
log (||n−m||) if J = 2,

G (n,m) =
||n−m||2−J

(2− J)σJ
if J > 2,

where ||x|| denotes the Euclidean distance of vector x, and σJ is the surface area of
the unit sphere in RJ . The Green’s function is somewhat more difficult to determine
for bounded type spaces (we provide two examples below). However, Seremet (2002)
provides an extensive collection of Green’s Functions for both bounded and unbounded
spaces, which can readily be applied in any optimal-tax, or multi-dimensional screening
problem. Hence, lemma 2 provides the solution to the partial differential equation that
determines the optimal allocation for a large number of problems that involve multi-
dimensional heterogeneity.

To interpret equation (22), recall that g (m) denotes the monetized welfare gain of
marginally increasing the transfer of y to type m ∈ N . The marginal cost of public
funds equals 1 in the optimum (see Jacobs, 2010). Hence, g (m) − 1 denotes the net
welfare gain of transferring a marginal unit of public funds to type m in monetary terms.
Hence, g(m)−1

uy(m)
measures the monetary welfare gain of transferring a unit of utils to type

m. Multiplication by λ translates the value into units of welfare. Through multiplication
by f (·) population weights are given to each point in the integral.

Finally, ωj (n,m) is a weighting function. It gives a weight to each type within the
integral, where the weight depends on type m relative to the type n. Intuitively, θj (n)
is the Lagrange multiplier of the incentive constraint for characteristic j at point n,
and hence, measures the marginal welfare gain associated with a marginal relaxation of
incentive constraint j at n. When the incentive constraint at n is marginally relaxed, this
has incentive effects at all points in the vicinity of n. The relaxation allows the planner to
marginally decrease utils for some types and increase utils for others. ωj (n,m) provides
the pattern of marginal gains and losses over the type space, i.e. for all m ∈ N , that
occurs as a result of the relaxation in the constraint at one particular point n for which
the incentive effects on the rest of the space are off-set. The multiplication between ωj(·)
and the other terms denotes the welfare effect of these extra utility transfers that occur
when the incentive constraint is locally relaxed.

To provide more insight into the solution (22) we discuss two particular weighting
functions ωj (n,m) in detail. We study the case where the type space is given by
N = R+, such that there is one hidden characteristic that can only take positive value,
and the case whereN = R2

+. The first example is useful for instructional purposes. Since
the results are identical to those obtained in the existing literature, it allows the reader
to directly verify the results of our approach. The second case, with N = R2

+, is the
most obvious expansion of the unidimensional model, and is therefore useful for applied
researchers.

4.3.1 Case 1: Unidimensional heterogeneity

With N = R+ there is unidimensional heterogeneity in a single characteristic n and we
are in the setting of Mirrlees (1971). The weighting function for this problem is given in
example 1.
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Figure 1: Weighting function for R1
+

Example 1 When N = R+ the weighting function is:

ω (n,m) = H (n−m) ∀ n,m ∈ R+, (23)

where H (x) = 0 when x ≤ 0 and H (x) = 1 when x > 0.

Proof. The proof can be found in the appendix.

Figure 1 graphically displays the weighting function for a fixed value of n. In the
graph, m is on the horizontal axis. As can be seen the function takes value 1 for m < n
and value zero thereafter. Combining weighting function (23) with equation (22) we
arrive at the unidimensional solution for θ (·):

θ (n) = λ

ˆ ∞
0

H (n−m)
(g (m)− 1) f (m)

uy (m)
dm. (24)

Since, the weighting function takes value 0 for all m ≥ n, we can simplify this expression
to:

θ (n) = λ

ˆ n

0

(g (m)− 1) f (m)

uy (m)
dm. (25)

This solution for the multiplier is equivalent to the one found in Mirrlees (1971).13

As can be seen from equation (25), θ (n) measures the redistributive benefit when
the transfer to all types m < n is increased by a marginal unit. Intuitively, when the

13Following Diamond (1998) the convention is to present the solution as:

θ (n) = λ

ˆ ∞
n

(1− g (m)) f (m)

uy (m)
dm. (26)

To arrive at that solution, we simply rewrite our weighting function ω (n,m) from eq. (23). Since the
weighting function is unique up to an additive constant, we can rewrite as:

ω̂ (n,m) = ω (n,m)− 1,

and substitute this weighting function into (22) to obtain equation (26).
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(a) ωj(n,m) (b) Section mk = nk

Figure 2: Weighting function for R2
+ for type n = (nj, nk)

incentive-compatibility constraint is marginally relaxed at n, this allows the planner to
increase the amount of resources transferred to all agents with m < n uniformly. Hence,
the weighting function takes value 1 for all m < n and value zero for all m > n. With
this interpretation in mind we now turn to the weighting function when N = R2

+.

4.3.2 Case 2: Bidimensional heterogeneity

Assume N = R2
+ such that each type n has two characteristics, n1, n2 ∈ [0,∞]2. In this

case the weighting function is given in the following example:

Example 2 When N = R2
+ the weighting function is given by:

ωj (n,m) =
nj −mj

2π
[
(nj −mj)

2 + (nk −mk)
2] +

nj −mj

2π
[
(nj −mj)

2 + (nk +mk)
2]

+
nj +mj

2π
[
(nj +mj)

2 + (nk −mk)
2] +

nj +mj

2π
[
(nj +mj)

2 + (nk +mk)
2] ,(27)

for all n,m ∈ R2
+ and k, j ∈ {1, 2} k 6= j.

Proof. The proof can be found in the appendix.

In figure 2 we have drawn ωj (n,m) for a fixed vector n = (n1, n2). The vertical
axis is the value of the weighing function, while the horizontal axes represent mj and
mk. To interpret the figure first consider the right-hand panel of figure 2. It displays
the cross section of the weighting function along the line where mk = nk. Recall that
ωj (·) provides the pattern of marginal gains and losses over the type space as a result of
the relaxation in incentive constraint j at point n. Consider first the extreme values in
dimension j. The weighting function is approximately zero for values of mj >> nj, while
for mj << nj the weighting function takes on positive values. Hence, a relaxation in the
incentive constraint allows the planner to transfer public funds to types mj << nj. Note
the similarity with the unidimensional case where a relaxation also allowed the planner
to redistribute public funds to types m < n.

Continuing our focus on the cross section mk = nk in figure 2, we see that relaxing the
incentive constraint allows the planner to additionally tax away large amounts of resources
from types just above nj, and to transfer those resources towards types just below nj.
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Because the incentive constraint is relaxed, this causes no mimicking. However, because
the incentive constraint is only relaxed locally, these large transfers have to converge to
zero very quickly. If they did not, they would induce violations of incentive constraints
at other points in the type space.

Turning our attention away from the line mk = nk, and to the left-hand picture, note
that a relaxation in incentive constraint j has to be accompanied by transfers to types
mk 6= nk to ensure the incentive constraint in dimension k is not violated. If the planner
would only redistribute funds on the line mk = nk, this would lead to a violation of the
incentive constraint in dimension k. All types on the line mk = nk that would loose funds,
would pretend to be just adjacent to the line to avoid making losses. Simultaneously, all
types that are adjacent to the line in the vicinity of positive transfers, would pretend to
have nk = mk to receive the extra funds. Hence there is a propagation of the forces in
the other direction and the transfer has to be smoothed out around the line mk = nk to
preserve incentive compatibility.

Generalizing from these two examples, relaxation of incentive constraint j at n =
(n1, . . . , nj, . . . , np) allows the planner to transfer extra resources towards types m =
(m1, . . . ,mj, . . . ,mJ) where mj < nj. Although the forces acting on incentives are the
same in any dimension, the shape of this transfer scheme is strongly influenced by the
propagation of incentive effects through the type space. This propagation is measured in
the weighting function ωj (n).

In the next subsection, we use lemma 2 to provide an implicit solution for the optimal
wedges on each good in the second-best allocation.

4.4 The ABC-formula

The first-order conditions derived in the subsection 4.2 provide an implicit solution for
the optimal allocation. With the solution we obtained for θ (·) in lemma 2, we can express
the optimal wedge on each good as a function of the allocation, in the spirit of the ABC-
formula in Diamond (1998) and Saez (2001). With this formula we provide an implicit
solution for the optimal wedge that is independent of the dimensions of the type space,
except through the weighting function ωj (·). In the remainder of the paper we show how
this formula can be applied to derive important properties of the optimal allocation, and
to numerically simulate the optimal-tax system.

Proposition 2 The optimal wedge on good i for type n can be described by the following
formula:

qxi (x (n))− si (x (n) , y (n) ,n)

si (x (n) , y (n) ,n)
=

J∑
j=1

Aij (n)Bij (n)Cij (n) (ABC)

∀ i = 1, . . . , I;n ∈N ,

where the derivatives of the production function, qxi, denote the marginal rate of trans-
formation between xi and y. The terms on the right-hand side of the equation are defined
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as:

Aij (n) ≡ ξsinj (n) = − ∂si
∂nj

nj
si

(28)

Bij (n) = uy (n)

ˆ
N

(g (m)− 1) f (m)

uy (m)
ωj (n,m) dm, (29)

Cij (n) =
1

njf (n)
,

Proof. The proof can be found in the appendix.

As in the unidimensional case, the left-hand side of equation (ABC) represents the
optimal wedge on good xi for type n. This wedge is measured as the normalized difference
between marginal rate of substitution and transformation with respect to our numeraire.
This optimal distortion is broken down into three factors of interest on the right-hand
side.

The Aij-term is equal to the elasticity of the marginal rate of substitution with respect
to ability, ξsinj . If ξxinj is large, it means that the marginal rate of substitution for good
xi, and hence the preferences of the agent, strongly increases in characteristic nj. It
follows that xi is a very strong signal of characteristic nj. Since the planner uses the
wedges to screen the agents, the wedges should be positively related to the strength of
the informational value of a good, and the magnitude of the optimal wedge therefore
increase in Aij.

The Bij-term represents the redistributive benefit of increasing the wedge on xi. Per-
haps surprisingly, the Bij-term in our multi-dimensional screening model is almost equiv-
alent to its counterpart in the unidimensional model of Saez (2001). As in his model, the
Bij-term is determined by the welfare weights g (·), the marginal utility of the numeraire
uy (·) and the distribution f (·). The main difference arises in the weighting function
ωj (·), which generalizes the formula to a setting with multi-dimensional heterogeneity.14

To see why ωj (·) appears in the formula of the optimal wedge recall from the previ-
ous subsection that ωj (·) provides the pattern of gains and losses when the incentive
constraint is marginally relaxed. An increase in the wedge, leads a relaxation in the
incentive-constraint, and hence allows the planner to make additional transfers according
to ωj (·). The remaining terms in Bij measure the welfare effects of such a transfer.

The Cij-term measures the effect of the distribution of types across the type space.
Cij is inversely related to the size of the potential tax base for which a wedge on good
xi distorts marginal incentives. The larger this tax base is, the larger the distortion, and
hence, the larger the efficiency cost associated with the distortion. Therefore, the optimal
wedge decreases in the size of the tax base.

The most striking difference between the unidimensional and the multidimensional
ABC-formula is the need to sum over all characteristics to get the optimal wedge for a
good xi. The optimal wedge on good xi is the sum of the optimal wedges for each of
the characteristics in the type. The fact that the wedge is additively separable in each

14Saez (2001) also normalizes the Bij-term by dividing through 1 − F (n) and multiplying Cij with
the same factor. In the unidimensional model, this allows one to interpret Bij as a conditional average.
Although, we can clearly apply the same normalization in our model, we opt not to. The interpretation
as a conditional average that makes this normalization appealing in unidimensional models is lost with
multi-dimensional heterogeneity.
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characteristic, implies that it can easily be decomposed. These decomposition can be
particularly useful for policy evaluation.

4.5 Optimal tax rates

So far we have assumed that the social planner offers bundles to the agents through a
direct mechanism. In this subsection we consider the properties of a tax system that
can implement the optimal allocation in a market economy. We first discuss the general
tax system that implements the second-best allocation on the market. Afterwards, we
impose additional additive separability constraints on the utility function and show that
this allows us to derive an elasticity-based formulation for the optimal-tax rate.

In a market economy the agents maximize utility subject to a budget constraint,
instead of sending a message to the planner. The planner can affect the budget constraint
by choosing an appropriate tax function. The maximization problem of the agent in the
market can be written as:

max
x,y
{u (x, y,n) : y = q (x)− T (x) ,x ∈X, y ∈ Y } , (30)

where T (·) represents the tax function. A tax function can implement the second-best
allocation in a market economy when the bundle selected by each agent under his budget
constraint equals the bundle that agent would have received in the direct mechanism.
Mathematically, this condition can be written as follows:

{x (n) , y (n)} = arg max
x,y
{u (x, y,n) : y = q (x)− T (x) ,x ∈X, y ∈ Y } ∀n ∈N .

(31)
The first-order condition to problem (31) can be written as:

Txi (x (n))

1− Txi (x (n))
=
qxi (x (n))− si (x (n) , y (n) ,n)

si (x (n) , y (n) ,n)
∀ x (n) ∈ x (n) ,n ∈N . (32)

That is, the tax rate on each good should be equal to the wedge for all bundles that are
assigned in the second-best allocation. The conditions in (32) form a necessary constraint
on the marginal tax rates in the market economy. However, these conditions are not
always sufficient. Intuitively, there may be bundles in x ∈ X that are not assigned
to any type in the direct mechanism. In that case, even if the second-best allocation
is (first- and second-order) incentive compatible, problems can occur if agents prefer
bundles outside of the allocation x(n) altogether. Then additional constraints may need
to be imposed on the tax function to ensure it implements the allocation in the market.
However, proposition 1 of Renes and Zoutman (2014) shows that conditions the conditions
in (32) are locally sufficient, provided the allocation {x (n) , y (n)} is optimal to a welfarist
planner. Since the social planner in our model is indeed welfarist, this proposition applies
here. Therefore, condition (32) is both a necessary, and a locally sufficient condition for
the optimal tax rate. Combining equation (32) with our proposition 2, the optimal
marginal tax rates on each good are thus given by:

Txi (x (n))

1− Txi (x (n))
=

J∑
j=1

ξsi,nj (n)
uy (n)

njf (n)

ˆ
N

(g (m)− 1) f (m)

uy (m)
ωj (n,m) dm. (33)
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When we compare the expression in (33) to the optimal-tax expression in equation (19)
of Golosov et al. (2014), the most important difference is that their expression forms a
partial differential equation which is generally difficult to solve, even numerically.15 On
the other hand, for type spaces where ωj (·) is known, equation (33) forms a fixed-point
solution to the optimal-tax function, which is much easier to solve and simulate.

4.5.1 The optimal tax expression under additive separability

If we restrict the utility function further, the first-order condition of the household on the
market allows us to express the optimal-tax expression in terms of the compensated elas-
ticity of demand similar to Saez (2001) and Jacquet et al. (2013). In particular, if we are
willing to assume utility is additively separable in each of the goods and characteristics:

u(x, y,n) = ψ (y) +
I∑
i=1

ui(xi, ni), (34)

it follows that the optimal tax on each good is given by the following expression:

Txi (x (n))

1− Txi (x (n))
=
εxi,ni
εcxi

uy (n)

nif (n)

ˆ
N

(g (m)− 1) f (m)

uy (m)
ωi (n,m) dm, (35)

where εxi,ni ≡ ∂xi
∂ni

ni
xi

is the elasticity of the consumption of xi with respect to characteris-

tic ni in the optimal allocation. While εcxi ≡
∂xi
∂τi
|u=ū

qxi−Txi
xi

is the compensated own-price

demand elasticity of the good.16 Additively separable utility functions are commonly
applied in the multi-dimensional screening literature for technical convenience (e.g. Arm-
strong, 1996; Rochet and Choné, 1998). In many optimal-tax models the additive sepa-
rability assumption has an intuitive interpretation, as it implies that the preferences for
each good differs in only one dimension. For instance, in our simulation we calculate the
optimal tax rate for couples where we assume that the labor supply of each spouse only
directly depends on his/her own ability level.

Additive separability in the utility function allows us to simplify the optimal-tax
expression significantly. If we compare equation (35) to equation (33) the most significant
difference lies in the fact that there is no need to sum over the different characteristics
of the agent. With additively separable utility the marginal rate of substitution of each
good is only influenced by its “own” characteristic. Hence, all but one term in the sum
cancels out. Additionally, separability allows us to decompose ξsi,xi into the elasticity
of the demand of the good with respect to its characteristic, and the compensated price
elasticity.17 This formulation also shows that the optimal-tax rate is inversely related
to the compensated elasticity, which is a standard result in optimal taxation (see e.g.
Ramsey, 1927).

4.6 Bunching

So far we have ignored possible violations of the second-order incentive constraints (4).
However, in multi-dimensional screening models with both incentive constraints and par-

15Equation (19) of Golosov et al. (2014) considers the optimal unrestricted tax system. This result is
closest to our setting since we do not impose any restrictions on the instruments.

16A proof to equation (35) can be found in Appendix D.
17This formulation of the A-term is equivalent to the formulation for the unidimensional model in

Jacquet et al. (2013).
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ticipation constraints bunching at the participation constraint is a common phenomenon
(e.g. Armstrong, 1996; Rochet and Choné, 1998; Zheng, 2000). Basov (2006, ch. 7) shows
that whether or not bunching occurs depends on the joint convexity of the type space
and the utility function. He argues that if a diffeomorphism of the type space exists that
allows us to represent it such that the surplus function (utility of participating minus
utility of non participation) is positive and concave in transformed types and the trans-
formed type space is convex, bunching does not occur. This condition is rather difficult to
check due to the interaction between type space and utility function, but it does indicate
that a large class of problems could exist where bunching does not occur.

Although our model is different in the sense that it has no participation constraint, we
cannot a priori exclude the possibility that the first-order approach will violate second-
order conditions on part of the type space. However, even if bunching is optimal on a part
of the type space, the optimality conditions in proposition 2 hold on the separating set,
as long as the separating set is convex. Hence, even if the first-order approach does not
yield the optimal wedge for every type, this does not necessarily invalidate our approach.

For instance, consider the class of utility functions in (34) with linear sub-utility
functions ui = niu

i(xi). This is the same class discussed in Rochet and Choné (1998). In
this case it can easily be shown that the separating set is convex. To see this, denote the
part of the the type space where bunching occurs as NB. Denote the part of the type
space that does separate out by NS ≡ N \NB. Define the 3 types n1, n2, n3, such
that n2 = kn1 + (1− k)n3 and assume that n1,n3 ∈NS and thus separate. If type n2

separates for all k ∈ (0, 1), n1,n3 ∈ NS the separating set is convex (or empty). Now
let {x, y}B denote the bundle that maximizes n2’s utility among the bunching bundles.
Define a loss function, L(n) = V (n)−u({x, y}B,n). We know from individual rationality
that L(n1), L(n3) > 0, otherwise they would not have separated out. From the fact that
utility is linear in types and conditions (5) and (6), we know that L(·) is convex, smooth
and has increasing differences over the separating set. It follows that L(n2) > 0. Hence,
any convex combination of types in the separating set, also resides in the separating set.
The set must thus be convex (or empty). Hence, for this utility function, which plays an
important role in the multi-dimensional screening literature, proposition 2 continues to
apply in the separating set.

5 The Atkinson-Stiglitz Theorem

The A-S theorem (Atkinson and Stiglitz, 1976) states that indirect taxation is superfluous
in a setting where agents are heterogeneous in earnings ability, as long as preferences
are homogeneous, and the utility function is weakly separable in labor. This result
has subsequently been shown to hold with more general utility functions in Laroque
(2005), Kaplow (2006), and Hellwig (2010a), all under the assumption of unidimensional
heterogeneity. Gauthier and Laroque (2009) are the first to consider multi-dimensional
heterogeneity. However, in their model the marginal rate of substitution between each of
the goods, except labor income, is independent of the hidden characteristics. Therefore,
it is impossible to screen for all characteristics in their model, whereas in our model the
government can screen for all characteristics.

When the conditions for the A-S theorem apply, the planner can reach the second-best
allocation by only taxing labor income. Equivalently the planner could tax labor income
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non-linearly and levy a uniform rate on all other commodities. The main application of
the theorem is, perhaps, the fact that commodities should be taxed at the same rate over
time. That is, the optimal capital income tax rate equals zero if the A-S theorem applies.

In this section we investigate whether the A-S theorem generalizes to a setting where
the government screens in multiple dimensions. To that end, the next corollary to propo-
sition 2 provides the conditions under which a good has a non-zero wedge in the optimum.

Corollary 1 The optimal wedge on good xi is zero for all types if ξsi,nj = 0 ∀ nj ∈N .
That is, the optimal wedge is zero if the marginal rate of substitution for xi does not depend
on any characteristic nj.

Proof. If the marginal rate of substitution, si, is independent of all characteristics nj,
then ξsi,nj = 0 ∀ nj ∈N , such the optimal wedge on xi is zero by equation (ABC).

Intuitively, corollary 1 shows that the marginal wedge on a good equals zero if the
preference for this good is not directly influenced by any characteristic. In that case, the
good does not provide any first-order information about characteristics, and distortions
away from laissez faire yields an efficiency loss without an offsetting information gain.

From corollary 1 one can derive the A-S theorem in a setting with unidimensional
heterogeneity. To see this note that weak separability implies that the marginal rates
of substitution for all goods except income are independent of the type, such that all
ξsinj = 0 except for income.

It also follows that the A-S theorem does not hold in a setting where the planner
screens in multiple dimensions. To see this remember that we have assumed sn has rank J ,
so that ξsi,nj 6= 0 for at least J choices in our model. Hence, the A-S theorem cannot hold
if J ≥ 2. Intuitively, a planner that wants to redistribute in multiple dimensions cannot do
so by distorting the price of only one good. In fact, under our full revelation assumption
a Tinbergen rule applies. A planner that wants to redistribute over J characteristics will
need to distort (at least) J goods.

In the literature many violations of the A-S theorem have been recorded. In Erosa and
Gervais (2002) preferences are not weakly separable over time since consumption at old
age is a stronger complement to leisure than consumption at a younger age. Therefore,
the distortion of the labor income tax is reduced by taxing capital income. In Golosov
et al. (2013) capital is optimally taxed if households with higher ability also have higher
patience. Boadway and Song (2015) show that the theorem fails if households optimally
choose corner solutions. Therefore, if some households are cash constrained and do not
buy all commodities, the tax rate on these commodities should be different to identify the
credit constrained households. Farhi and Werning (2010) and Kopczuk (2013) show that
the bequest motive may generate a negative externality which can be remedied through
the taxation of capital. The argument that is closest to our is derived in Cremer et al.
(2001) and Saez (2002). These papers show that under two-dimensional heterogeneity
commodity taxation is not superfluous. However, the former result is derived in a setting
with discrete types and the latter is derived under the assumption that welfare weights
are only correlated with earnings ability and commodity taxes are linear, which are
restrictions we do not use.

Our result adds to this literature by showing generally that the A-S theorem cannot
hold under multidimensional heterogeneity, provided that all (or at least two) underlying
characteristics can be revealed. This has large implications for the evaluation of govern-
ment policy. According to the A-S theorem we can obtain a second-best allocation if the
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only government intervention is the taxation of labor income. We show that if a govern-
ment cares about redistribution in multiple dimensions, such as from healthy to sick and
from rich to poor, it needs to distort multiple choices in order to attain the second-best
allocation. Therefore, government interventions in many markets, like the health care
and the housing market, are not just a empirical irregularities. These interventions may
well be optimal. In addition, the optimal wedge on capital income may be non-zero if
households differ in their investment skills, for no other reason than this difference in skill
(see also Golosov et al., 2014).

6 Boundary Conditions

The boundary conditions (16) imply that θj (·) equals zero on the boundary of the type
space ∂N . Hence, we find:

θj
(
nj
)

= θj (nj) = 0, (36)

where nj (nj) represents the type that has the lowest (highest) value for characteristic
j. Define corner types nq

y as agents that have either highest or lowest values for all their
characteristics. In a two-dimensional type space, type n = (n1, n2) and n = (n1, n2) are
obviously corner types, but so are the types that combine the lowest value of n1 with
the highest value of n2 and vice versa: n = (n1, n2) and n = (n1, n2). Note that corner
types do not necessarily exist. For instance, the characteristics may be distributed along
a circle, or the type space may alternatively be unbounded. There are at most 2J corner
types, but there may be less, or none at all, depending on the shape of the type space.
Corollary 2 establishes that the optimal wedge on all goods equals zero for each existing
corner type.

Corollary 2 The optimal wedge for any type nq
y equals zero if the types exist.

Proof. From the boundary conditions it follows that θj
(
nj
)

= θj (nj) = 0 for all
j = 1, . . . , J . The optimal wedge at the corner types can be found by taking the limit of
equation (ABC) if n goes to an nq

y:

lim
n→nq

y

qxi − si
si

= lim
n→nq

y

J∑
j=1

εxi,nj
uyθj (n) /λ

njf (n)
= 0 ∀ i ∈ 1, . . . , I,

provided nq
y ∈N . That is, provided the corner type exists.

Corollary (2) shows that the no-distortion at the top and the bottom results, as derived
in Sadka (1976) and Seade (1977), remains valid in a multidimensional framework as long
as the type distribution is bounded. The redistributive benefit of taxation, Bij, equals
zero at the corners of the type space. Intuitively, the marginal tax rate on any good at
type n redistributes resources from types above n to types below n. For corner types
at the top there is no redistributive benefit of redistributing resources from people above
the type since they do not exist. On the bottom, there is no redistributive benefit to
redistributing resources to types below that type since they do not exist. However, in
both cases there is an efficiency loss of taxation. Hence, the optimal tax rate equals zero.

Our result is similar to Golosov et al. (2011) who derive the optimal tax rate at the
boundary in a model where earnings ability follows a stochastic progress. They show that
the optimal tax rate for types that persistently have the highest or lowest skill realization
is zero, provided such types exist.
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7 Interdependencies in the Tax System in Mirrleesian

and New Dynamic Public Finance

The NDPF, pioneered in Golosov et al. (2003), generalizes the Mirrlees model with unidi-
mensional heterogeneity to a dynamic stochastic setting. For each agent, earnings ability
follows a stochastic process. Earnings ability in period t is revealed to the agent at the
beginning of the period. Agents do not know what their earnings ability will be in future
periods, but they form expectations about it based on the stochastic process and their
history. The planner does not observe ability, but does observe all choices made by the
agents in the economy, is aware of the stochastic process, and can keep records over time.

One of the most intriguing results in the NDPF is the complexity of the optimal tax
system. Kocherlakota (2005) shows that the optimal tax on labor income in period t may
depend on the entire history of labor income up to period t.18 However, so far there is
no clear explanation why interdependencies are present in the NDPF in the first place,
or alternatively, why they are typically absent in the classical (static) Mirrleesian public
finance. In this section we show that interdependencies in the wedges generally do occur
in static Mirrleesian public finance models, provided agents are heterogeneous in multiple
dimensions. Subsequently, we give our model a dynamic interpretation, and provide a
link between the result found in Kocherlakota (2005) and our model.

The next corollary uses proposition 2 and lemma 1 to show that the optimal tax rate
on each good generally depends on J goods.

Corollary 3 The optimal tax rate, Txi, on any good xi can be written as a function of J
goods.

Proof. By equation (33) the optimal tax on each good xi depends on all J characteristics.
To express the optimal tax system in terms of observables x rather than unobservables n
we need a mapping from the goods space to the type space. By corollary 1 there exists at
least one mapping from the optimal allocation to the type space: (x)← : X →N for all
n ∈N . Since the Jacobian x′(n) is of rank J everywhere, the inverse mapping depends
on J goods everywhere on the type space. Therefore, we can write the optimal tax rates
as a function of J goods.

By this corollary, a separable tax system where the tax rate of each good only depends
on the consumption of that good will generally not exist if J > 1. Intuitively, the optimal
wedge on each good depends on all characteristics in the type space. For instance, the
optimal wedge decreases in the density f (n) because a distortion becomes more costly
as the size of the distorted group increases (see proposition 2). Most probability density
functions, f(n), are a function of all characteristics. This is for instance true even if those
characteristics are independently distributed. In order to reveal all J characteristics that
influence the probability density function, the tax needs to be conditioned on at least J
goods. Similarly, the Bij-term directly depends on the weighting function and welfare
weights, all of which are likely to depend on each characteristic in the type. It may be

18Subsequent papers have made some progress on limiting the number of interdependencies in special
cases. In particular, Albanesi and Sleet (2006); Brendon (2012) investigate conditions under which
intertemporal interdependencies vanish. This is for instance the case if the stochastic process is iid. In
that case, the optimal wedge in each period depends on current labor income and wealth, such that only
an intratemporal interdependency remains between the optimal wedge on capital and labor income.

25



possible to construct special cases where the optimal wedge on each good depends on
fewer goods. However, in general we expect any optimal tax system that redistributes in
multiple dimensions to have an amount of interdependencies equal to the dimensionality
of the type space.

7.1 A Dynamic Interpretation

We now turn to the dynamic problem that is considered in the NDPF, and show that
lemma 3 provides an explanation to the interdependencies found in that literature as well.
Consider a T -period economy and assume that agents’ abilities evolve over time. Denote
ability in period t by nt. Assume that the agents know their entire (future) history of
ability levels, the vector n = [n1, . . . , nT ], at the beginning of the first period. Clearly,
this is a strong assumption on the information available to the agents in this model. In
contrast, in NDPF models agents only learn their ability in each period at the beginning
of that period, such that their knowledge of future types is limited to knowledge about
the stochastic process and their history. Note however, that this model can be seen as
a special case of a NDPF model where ability evolves according to a fully deterministic
process known to the agents, but not the planner. The planner cannot observe the agents’
ability levels but is aware of the probability density function f (n), and cumulative density
function F (n). In addition, assume for simplicity that each agent makes one independent
choice each period, the amount of labor income he earns, xt.

Our model can be used to calculate the welfare-optimizing wedge on each period’s
labor income xt. By proposition 2 the optimal wedge is given by equation (ABC). From
corollary 3 it follows that the optimal wedge in each period can be written as a function
of the entire history of labor income (including future periods in this case). Intuitively,
the optimal wedges depend on terms A, how much information a choice reveals, B, the
redistributive value of the wedge, and C, the incidence of marginal distortions. Each of
these terms may depend on the entire vector n. In turn, in order to reveal the entire
vector the planner needs to observe at least as many choices in x as there are elements
in n. Given the assumptions in this subsection, the planner therefore has to condition
the optimal tax rate in each period on the entire history of labor income.

It may seem surprising that an even stronger version of Kocherlakota’s result can
be constructed so easily in a deterministic setting. However, as was noted in Pavan et
al. (2014), in a deterministic model agents can plan their entire choice vector x with
full knowledge about their type n, regardless of the period the consumption is in. In
a stochastic setting information concerning the type is revealed over time, such that
agents always have weakly less information than in the deterministic setting. As such,
a stochastic model may allow for less (profitable) deviations than a deterministic model.
This implies the incentive constraints are more binding in our model than in the NDPF.

The practical implications of this result are less clear. A literal reading of the model
described in this subsection would suggest intertemporal interdependencies be build into
the tax system. One could let the labor income tax increase in previous income, for
instance. However, it is unclear how much welfare is gained by introducing such interde-
pendencies. Simulations on a NDPF model in Farhi and Werning (2013) show that much
of the welfare gain of optimal taxation can be obtained by tax systems that do not exhibit
any intertemporal interdependencies. If the cost of implementation and administration
are high, implementing interdependencies might not be optimal in real tax systems.
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8 Simulations

In this section we present our simulation results. We simulate the optimal income tax
for couples that maximize a joint utility function. The calibration of our simulation
is deliberately chosen to closely resemble the one-dimensional simulations on optimal
income taxation for individuals presented in Saez (2001). To facilitate comparison, we
will define the utility and welfare almost exactly as he does. This allows straightforward
comparison between the results obtained in the unidimensional model of income taxation,
and its closest bidimensional counterpart. Our main interest in these simulations lies in
the effect of bidimensional heterogeneity on the top tax rate. In particular, we try to
quantify whether, and by how much, the optimal top-income tax rate depends on earnings
of the other spouse in the couple. Below we first discuss the calibration of the model
before turning to the results.

8.1 Calibration

We assume all agents in our model are couples. The spouses within the couple are
assumed to maximize a joint utility function:

u (x, y,n) = y −
2∑
i=1

ni
δi

(Li)
δi

= y −
2∑
i=1

ni
δi

(
xi
ni

)δi
, (37)

where ni is the ability of spouse i, Li is labor effort, and xi = niLi is gross income, the
product between ability and labor effort.19 With this joint utility function, there is no
strategic interaction within the couple and the marginal utility of labor supply of one
spouse is independent of the labor supply of the other spouse.

The compensated labor supply elasticity of spouse i is given by εcxi = 1
δi−1

. We choose
δi = 3 for both spouses such that εcxi = 0.5.

Note that we use a slightly altered version of the standard quasi-linear utility function,
because we multiply the marginal utility of labor supply with ability. The advantage
of this specification is that it ensures that labor supply Li is bounded between 0 and
1 as long as each spouse faces a positive tax rate. In the Algorithm section in our
Appendix we show that this allows us to simplify the couples’ numerical optimization
problem significantly. To our knowledge, this transformation of quasi-linear utility was
first introduced in Brewer et al. (2010) in optimal-tax simulations for the UK.

The total vector of characteristics of a couple, the type of the agent, is given by
n = (n1, n2). We assume matches between spouses are exogenous. The distribution of
types follows a bivariate type I Pareto distribution:

f (n1, n2) = (α + 1)α (n1n2)α+1 (n2n1 + n1n2 − n1n2)−(α+2) ∀ ni ∈ [ni,∞). (38)

This bivariate Pareto distribution has the property that the marginal distribution of each
characteristic ni follows a standard Pareto distribution with shape parameter α and scale

19In this section we deviate from our convention to use i as a count variable for the goods, and j as a
count variable for the characteristics. Instead, the count variable i here denotes both the characteristic
and the choice variables of spouse i.
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parameter ni. It has been shown that this marginal distribution provides an excellent fit
for top incomes in the US (see e.g. Saez, 2001; Atkinson et al., 2011), and it is hence a
logical choice for inquiry into the optimal top tax rates. However, for lower-and middle
income levels the Pareto distribution does not provide a good fit. Evaluating what the
tax rates are at those income levels is therefore beyond the scope of this simulation. We
leave the modeling of the overall shape of the optimal tax system to future research.

Consistent with US evidence we set α = 2. The scaling parameters are chosen such
that n1 = n2 = 1. This implies the marginal distribution of earnings ability for each of
the two spouses is equal. In reality, women typically earn less than men. However, it
is unclear whether this difference is driven by differences in ability, effort, occupational
decisions or outright discrimination. We leave the modeling of this aspect of reality to
future research.

The correlation between the two ability levels is given by ρ = 1
α

= 0.5. This is
consistent with positive but imperfect assortative matching. For comparison, we also
show results with perfect positive assortative matching, i.e. ρ = 1. In that case there
is effectively only a single dimension of heterogeneity, because there exists a one-to-one
(linear) mapping between the ability levels of the spouses. By corollary 3 It follows that
the income tax on the income of a spouse only depends on his or her own income. As a
result, the optimal tax rates on the income of each of the two spouses follows the standard
optimal-tax formula provided in Saez (2001).

We measure the production of each couple as their combined gross income, such that
the production function within the couple is given by:

q (x) =
2∑
i=1

xi. (39)

y denotes the consumption of the couple and is given by the difference between gross
income and the tax function:

y =
2∑
i=1

xi − T (x1, x2) .

The tax function T (·) depends on both income levels, and is allowed to take on any
non-linear form, consistent with our model.

Finally, we assume that the planner maximizes a logarithmic transformation of the
couple’s indirect utility function:

W (V (n)) =

ˆ
N

log (V (n)) f(n)dn. (40)

To find the optimal tax system we use a fixed-point algorithm which can be roughly
subdivided into three stages. In the first stage, we define the primitives of the model
and define an initial tax system. In the second stage, the algorithm uses the couple’s
maximization problem to find the allocation that is implemented by this tax system. In
the third stages, the algorithm updates the tax system using the first-order condition
for the planner provided in proposition 2 with the allocation that was calculated in the
second stage. The algorithm then returns to the second stage to find the allocation under
the updated tax system and so forth, until it converges. Since our description of the
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second best is derived through a first-order approach, we verify that the the second-
order incentive constraints are met after the algorithm has converged. In our application,
second-order incentive constraints are never violated. A detailed step-by-step description
of the algorithm can be found in the Appendix.

8.2 Results

Our results are presented in figure 3. The top panel of the figure shows the entire shape
of the marginal tax rate on the income of partner i, Txi (xi, xj). The bottom panel
shows the cross section of the main figure where partner j earns the same gross income,
xi = xj (solid line) and the cross section where partner j earns close to zero income
(dashed line). For comparison, the bottom panel also shows the tax rate in case ability
is perfectly correlated between the two partners (grey dashed-dotted line).

As can be seen from the figure, marginal tax rates are strictly progressive in the sense
that they increase in earned income.20 In addition, they appear to converge to a constant
at the top. When ability between the two partners is correlated perfectly, this constant
coincides with the top tax rate in Saez (2001). However, with imperfect correlation the
top tax rate strongly depends on the income earned by the partner. When both partners
are top earners, the tax rate is around 65 percent. However, when only one partner is
a top earner while the other earns very little, the top tax rate is only about 25 percent.
Hence, the top tax rate strongly depends on the income earned by the partner.

To assess why this interdependency plays such a prominent role in our simulations,
figure 4 shows the Bii and Cii-term of proposition 2. Our utility function guarantees that
the Aii-term is a constant for all types. As can be seen, the Bii-term is close to constant
for top-income earners. Intuitively, the welfare weights g (n) in equation (29) are close to
zero for all couples when at least one of the two spouses is a top-income earner. However,
the Cii-term is much larger for couples in which both partners earn a high income, than
in couples where only one of the two partners has a high income. The reason is that the
density strongly decreases in the income of the partner. Intuitively, couples with two top
income earners are extreme outliers. Even with positive assortative matching, it is still
rather unlikely that two top earners match, unless matching is perfect. Hence, taxing
couples with two top-earners causes less distortions than taxing couples with only one
top-income earner, which provides an efficiency argument for increasing their marginal
tax rate.

The point of this simulation is not to give a definitive answer on what the top income
tax rate in the US, or any country for that matter, should be. Answering this question
requires a far more comprehensive calibration of the model, which is beyond the scope
of this paper. However, the simulation does show that the top income tax rate is not
a fixed constant. It can (strongly) depend on other observable choice variables such as
the income earned by the spouse. The reason is that these choice variables can provide
additional information on preferences, welfare weights and densities, all of which plays
an important role in calculating the optimal tax rate. Conditioning tax systems on these
additional variables allows the government to redistribute more income at lower efficiency
cost.

20Unlike in Saez (2001) the optimal tax schedule in our model does not follow a U-shape. The likely
reason is that the ability of all spouses follows a Pareto distribution in our model, whereas this distribution
only applies to the top agents in Saez (2001).
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Figure 3: Optimal marginal tax rates
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(a) B-term

(b) C-term

Figure 4: Decomposition of Optimal Tax Rates
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9 Concluding Remarks

Although significant progress has been made in multidimensional mechanism design, the
equilibrium in a Mirrleesian optimal tax model with multiple goods and multiple char-
acteristics has so far not been characterized. In this paper we characterize it and show
some similarities and differences with the unidimensional Mirrleesian model. Our model
can be used to study the relationship between several tax tools. Our characterization
of the second-best equilibrium shows that the government should condition taxes on
consumption patterns that provide as much information on the underlying types as pos-
sible.Furthermore, we show how the equilibrium in this model relates to the equilibria in
stochastic dynamic NDPF models and in the wider class of multidimensional screening
models.

Since we use a first-order approach to characterize the optimum, we implicitly assume
all types separate out in equilibrium in most of this paper. In reality, it may not be
optimal to allow some bunching at the lower end of the type space. This prescription
fits reasonably well with the tax systems observed in welfare states. The lowest earning
individuals get a fixed amount of welfare assistance, or income subsidies, creating a
bunch at the lower end of the income distribution. Moreover, most income assistance
programs are conditioned on (the absence of) wealth, to prevent abuse. These are the
kind of interdependencies between underlying characteristics (wealth and ability) our
model shows to be optimal in case of multiple sources of heterogeneity. This observation
is particularly relevant in the many welfare systems that (also) subsidize medical expenses
and/or housing for a large group of individuals. These individual subsidies generally
depend on both the expenses and on income. In models where agents only differ in
earnings ability such interdependencies between subsidies are suboptimal. Since transfers
to the agents need only be differentiated by income level, only distortions in income are
necessary. Similarly, in models of health insurance where agents only differ in health
status optimal transfers are independent of income. Separability of the income/subsidy
scheme would follow from a direct application of the Atikinson-Stiglitz theorem. However,
if the government wants to redistribute both from rich to poor and from healthy to sick,
our results indicate that the government should use instruments that depend on both
income and health care expenses (or other observables related to the same characteristics).
This gives a clear theoretical explanation for the interdependencies often found in real
world taxes and subsidies.

The equilibrium in our model depends on a set of partial differential equations that
cannot be solved using traditional techniques applied in mechanism design. We rewrite
these equations and use the method of Green’s functions to solve these PDE, allowing us
to write the equation for the optimal tax rate as a fixed point that can easily be solved
numerically. In future work this method can be extended to other economic problems.
Although this new approach does not give us closed form solutions for the optimum, the
fixed-point equation obtained allow a much more general interpretation of the properties
of the second best than the PDE do. Furthermore, we can identify some important
properties that are independent of the dimensions of the problem.

Since this model contains the multidimensional type space that is also found in the
NDPF, but without the dynamic stochasticity, it provides a convenient middle ground
between the complex stochastic dynamics in these models, and the known intuitions of
the classical Mirrlees model. The interdependencies in the optimal wedges that present
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difficulties in NDPF models are, for instance, also prevalent in our setting, but can be
traced much more conveniently. We can gain intuition for these tax schedules from
multidimensional screening models, in particular from our model. In fact, the discussion
in section 7 already suggests that our findings might be generalized to dynamic settings.
This would allow an elasticity approach and a new focus on screening and implementation
separately in these models as well.

The next step in this line of research clearly is to find specific, realistic and relevant
settings and simulate the model for realistic parameter settings. The simulations reported
in this paper show that such simulations are feasible, even though the multidimensional
heterogeneity does set strong requirements on the optimization algorithm. In addition,
the problem of implementation, which is discussed in Renes and Zoutman (2014), might
add further difficulties. Implementation can proof especially difficult if there is bunching
as well as separation. The instruments on the interior of the separating partition will likely
require a differ from the instruments on the bunching partitions. However, the pay-off
seems worth the effort. The model presented in this paper can be used to provide a more
precise insight in the optimal relation between the income tax system and the myriad of
social schemes like health care subsidies, housing subsidies, and welfare assistance that
characterize modern welfare states.
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A Proof of proposition 1

Proof. The first order conditions for incentive compatibility are given by:

0J =
∂u (x (m) , y (m) ,n)

∂ m
|m=n,

= x′ (n)T ux (x (n) ,n) + uy (y (n)) y′ (n)T , (41)

where 0J denotes a J-column vector of zeros. This can be rewritten as follows:

y′ (n) = s (x (n) , y (n) ,n)T x′ (n) , (42)

which is equation (3).

We can derive (5) from (2) using the envelope theorem:

V ′ (n)T = x′ (n)T ux (x (n) ,n) + uy (y(n)) y′ (n)T + un (x (n) ,n) ,

V ′ (n) = un (x (n) ,n)T , (43)

where the latter equality follows from the first-order condition (3).

The second-order conditions are :

∂2u (x (m) , y (m) ,n)

∂m2
|m=n l 0, (44)

Where l0 denotes the negative semi-definiteness of the matrix. Taking the derivative of
(43) with respect to m gives:

∂2u (x (m) , y (m) ,n)

∂m2
=

(
ux (x (m) ,n)T ⊗ IJ

)
x
′′

(m)

+x′ (m)T uxx (x (m) ,n)x′ (m)

+uyy (y (m)) y′ (m)T y′ (m)

+uy (y (m)) y
′′

(m) . (45)
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where ⊗ denotes the Kronecker product. To simplify this expression we take the total
derivative of the first order condition (41):

Dn0J = Dn

[
x′ (n)T ux (x (n) ,n) + uy (y (n)) y′ (n)T

]
(46)

0J×J =
(
ux (x (n) ,n)T ⊗ IJ

)
x
′′

(n)T + x′ (n)T uxx (x (n) ,n)x′ (n) +

uyy (y (n)) y′ (n)T y′ (n) + uy (y (n)) y
′′

(n) +

x′ (n)T uxn (x (n) ,n) , (47)

Now combine equations (44, 45, 47) to get the following expression:

0 m x′ (n)T uxn (x (n) ,n) . (48)

Partially differentiate the vector of shadow prices with respect to n to express (48) in
terms of this derivative:

sn =
−uxnuy

(uy)
2

uxn = −snuy,

and substitute this result and (42) into (48) to arrive at:

0 m x′ (n)T [−sn (x (n) , y(n),n)uy (y(n))]

0 l x′ (n)T sn (x (n) , y(n),n) , (49)

where the final inequality, equation (49), follows from the fact that uy > 0.

An equivalent expression can be derived by totally differentiating, equation (43) with
respect to n:

V
′′

(n) = Dun (x (n) ,n)

= x′ (n)T uxn (x (n) ,n)

+unn (x (n) ,n)

Now combine this last expression with (48) to obtain the final equation of the proposition:

V
′′

(n)− unn (x (n) ,n) m 0.

B The Green’s function

B.1 Proof of lemma 2

Proof. To proof the lemma we solve the set of PDEs (17) subject to boundary constraints
(16). During the proof we simply denote the right-hand side of equation (17) as h (n) for
simplicity. First, assume θ(·) is a conservative field vector. Under this assumption there
exists a scalar potential function Θ (·) : N → R such that:

Θ′ (n) = θ (n) ∀ n ∈N . (50)
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In that case we can write the PDEs (17) and the boundary constraints (16) as Poisson
equation (20) under Neumann boundary constraints given by (21). During the remainder
of the proof we refer to this as the Neumann Problem. If this Neumann problem has a
solution, it follows that we were correct in assuming that θ(·) is a conservative field
vector. Proving existence of a solution is beyond the scope of this paper. However,
Showalter (1977, Th. I.4.5, III.1.1 and III.2.1) shows that the Neumann has a solution if
the boundary of N is piecewise smooth, as we have assumed, and the following condition
holds:

ˆ
∂N

Θ′ (n) edn =

ˆ
N

h (n) dn = 0. (51)

For our problem this implies we should choose λ according to equation (19) which is
the standard first-order condition for λ. Hence, θ(·) is a conservative-field vector proving
the first part of the lemma.

To derive the solution for θ(·) we now solve for the potential function Θ (·). The
Neumann problem, can be solved by means of a Green’s function G (n,m) : N ×N →R.
With a Green’s function one can write the solution to the Poisson equation in integral
form:

Θ (n) =

ˆ
N

h (m)G (n,m) dm+ boundary terms,

as we will show formally below. The Green’s function G (n,m) for the Neumann problem
has to satisfy the following properties (see e.g. Franklin, 2012):(

∂G (n,m)

∂m

)T
e = 0 ∀ n ∈N ,m ∈ ∂N . (52)

∇2
mG (n,m) = − 1

V
+ δ (n−m) ∀ n,m ∈N . (53)

∇2
nG (n,m) = δ (n−m) ∀ n,m ∈N . (54)

Equation (52) states that the inner product between the gradient of G (·) and the outward
normal to N should equal 0 on the boundary of N . Equation (53) states that the
Laplacian of G (·) with respect to m should be the difference between a Dirac-Delta
function and 1

V
, where V is the Lebesgue measure of the entire space N : V ≡

´
N
dm.

Equation (54) states that the Laplacian of G (·) with respect to n should be a Dirac-Delta
function. The Dirac-Delta function is defined as follows:

δ (n−m) : RJ → R
δ (x) = 0 ∀ x 6= 0,ˆ

N

δ (n−m) dm = 1 ∀ n ∈N .

That is, the Dirac-Delta function equals zero everywhere except at 0 and it should in-
tegrate to 1 over the entire space. Clearly, this is only possible if δ (0) is undefined.
Intuitively, the Dirac-Delta function acts as a distribution function with a single mass
point at x = 0. Combining the properties of the Dirac-Delta function with conditions
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(53,54) we arrive at the following conditions:

∇2
mG (n,m) = − 1

V
∀ n 6= m, (55)

∇2
nG (n,m) = 0 ∀ n 6= m, (56)ˆ

N

∇2
nG (n,m) dm =

ˆ
N

δ ( n−m) dm = 1 ∀ n ∈N , (57)
ˆ
N

∇2
mG (n,m) dm = − 1

V

ˆ
N

dm+

ˆ
N

δ (n−m) dm = 0 ∀ n ∈N . (58)

The final condition (58) is superfluous, because it is implied by condition (52). To see
this apply the divergence theorem to ∇2

mG (·):
ˆ
N

∇2
mG (n,m) dm =

ˆ
∂N

∂G (n,m)

∂m
edm = 0.

where the second equality follows through condition (52). Hence, any function G (·) that
satisfies conditions (52,55,56,57) is a Green’s function for the Neumann problem.

By combining properties (55,58) one can show that:
ˆ
N

∇2
mG (n,m) Θ (m) dm =

ˆ̂̂
N

δ(n−m)Θ(m)dm− 1

V

ˆ̂̂
N

Θ (m)dm,

= Θ (n)− Θ̄, (59)

where Θ̄ = 1
V

´́́
N

Θ (m) dm is the average value of Θ̄ in N . The simplification of the first
term on the right-hand side follows because the Dirac-Delta function acts as a distribution
function with a single mass point at n = m. The second term is the standard definition
of an unweighted average. Note that the second term acts as a constant for all n.

We can now use Green’s second identity in conjunction with (59) to write the solution
to the Neumann problem in terms of the Green’s function:ˆ

N

∇2
mG (n,m) Θ (m) − ∇2Θ ( m)G (n,m) dm = (60)

´
∂N

(
Θ (m)

(
∂G (n,m)

∂m

)T
−Θ′ (m)G (n,m)

)
ed∂N ,

Θ (n) =

ˆ
N

h (m)G (n,m) dm+Θ̄. (61)

The first equality in (60) is simply Green’s second identity. The right hand side of this
expression vanishes because of conditions (21) and (52). The second equality follows from
equations (59) and (20). Equation (61) gives the general solution to the Poisson equation
in terms of the Green’s function. Hence, the problem of solving equations (20,21) can
be reduced to finding a Green’s function that satisfies equation (52,55,56,57) and then
applying equation (61). This proofs the second part of the lemma.

To solve for the third part of the lemma take the derivative of Equation (61) towards
nj:

θj (n) =

ˆ
N

h (m)
∂G (n,m)

∂nj
dm, (62)

and define ωj (n,m) ≡ ∂G(n,m)
∂nj

as the weighting function.
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From condition (57) and (58) it follows that the weighting function is differentiable
everywhere except at n = m proving the fourth part of the lemma.

Moreover, conditions (52,55,56,57) only depend on the type space proving the fifth
part of the lemma.

Finally, note that the weighting function is unique up to a constant C. To see this
choose ω̂j (n,m) = ωj (n,m) + C where C is an arbitrary constant, and substitute the
new weighting function into (62):

ˆ
N

h (m) ω̂j ( n,m) dm =

ˆ
N

h ( m)ωj (n,m) dm+ C

ˆ
N

h (m) dm,

= θj (n) ,

where the first equality follows through the sum rule, and the last equality follows through
equation (18). This proofs the sixth and final point of the lemma.

B.2 Case 1: The positive real line

Proof. It is useful to think of R+ as the interval [0, V ] where we will let V approach
∞ at the end of the proof. In that case the boundary of N is given by the two points
∂N = {n = 0, n = V }.

The Green’s function for this Neumann problem is given by Franklin (2012):21

G (n,m) = nH (n−m) +mH (m− n)− m2

2V
∀ n,m ∈ R+, (63)

Where H(·) is the heaviside step function. To proof this function is the Green’s function
for this problem, we show that it satisfies conditions (52,55,56,57). To see that this
function satisfies (52) take the derivative with respect to m:

∂G (n,m)

∂m
= H (m− n)− m

V
∀ m 6= n.

The derivative evaluated at m = 0 and at m = V both equal zero which satisfies condition
(52). Moreover, the second derivative of the Green function with respect to m is given
by:

∂G2 (n,m)

∂2m
= −H (n−m)

V
− H (m− n)

V
= − 1

V
∀ m 6= n.

Therefore, the second derivative takes value − 1
V

everywhere except at m = n. This
satisfies conditions (55). Finally, it is easy to verify that conditions (56,57) are satisfied,
since the Green’s function is symmetric in m and n except for its final term. Hence, (63)
is a Green’s function for this problem. The weighting function is the derivative of the
Green’s function with respect to n:

ω (n,m) =
∂G (n,m)

∂n
= H (n−m) ,

which proofs the example.

21Note that since V →∞ all terms that depend on V vanish. We include them here for completeness.
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B.3 Case 2: positive quadrant in 2D

Proof. It is again useful to think of the measure of the type-space as limiting to infinity.

Therefore, let n1, n2 ∈ [0, V
1
2 ] such that the total area of the type space is

(
V

1
2

)2

=

V. We will again let the Lebesgue measure V go to infinity in the proof. The Green’s
function for the positive quadrant is then given by:

G (n,m) =
1

2π
ln (|| n−m||) +

1

2π
ln (||n−m∗||) (64)

+
1

2π
ln (||n−m∗∗||) +

1

2π
ln (||n+m||)− m2

1

4V
− m2

2

4V
,

where m∗ = (m1,−m2) and m∗∗ = (−m1,m2). To see that this Green’s function satisfies
conditions (52,55,56,57) note first that the border of R2

+ can be partitioned into four parts:

∂N = {n = (n1, 0) , n1 ∈ R+} ∪ {n = (0, n2) , n2 ∈ R+} ∪{
n =

(
n1, V

1
2

)
, n1 ∈ R+

}
∪
{
n =

(
V

1
2 , n2

)
, n2 ∈ R+

}
.

The outward unit normal vectors to each partition respectively are given by (0,−1),
(−1, 0), (0, 1) and (1, 0). It follows that we can write (52) as a set of four equations:

∂G (n,m)

∂m1

|m1=0 = 0, (65)

∂G (n,m)

∂m2

|m2=0 = 0, (66)

lim
V→∞

∂G (n,m)

∂m1

|
m1=V

1
2

= 0 (67)

lim
V→∞

∂G (n,m)

∂m2

|
m2=V

1
2

= 0, . (68)

To see that equation (64) indeed satisfies these restrictions we take its derivative with
respect to m1,m2. To facilitate derivation, note that the first 4 terms of the Green’s
function (64) all have the same form, and thus very similar derivatives. Denoting the
first term of (64) by Γ, we can see the derivative with respect to m1 is given by:

Γ =
1

2π
ln (||n−m||) ,

∂Γ

∂m1

=
1

2π

[
1

|| n−m||
∂||n−m||

∂m1

]
,

∂Γ

∂m1

=
1

2π

[
1

|| n−m||
n1 −m1

((n1 −m1)2 + (n2 −m2)2)0.5

]
,

∂Γ

∂m1

=
n1 −m1

2π ((n1 −m1)2 + (n2 −m2)2)
.
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Hence, the derivatives of (64) with respect to m1 and m2 are given by:

∂G (n,m)

∂m1

=
m1 − n1

2π
[
(n1 −m1)2 + (n2 −m2)2] +

m1 − n1

2π
[
(n1 −m1)2 + (n2 +m2)2] (69)

+
n1 +m1

2π
[
(n1 +m1)2 + (n2 −m2)2] +

n1 +m1

2π
[
(n1 +m1)2 + (n2 +m2)2] − m1

2V
,

∂G (n,m)

∂m2

=
m2 − n2

2π
[
(n1 −m1)2 + (n2 −m2)2] +

n2 +m2

2π
[
(n1 −m1)2 + (n2 +m2)2]

+
m2 − n2

2π
[
(n1 +m1)2 + (n2 −m2)2] +

n2 +m2

2π
[
(n1 +m1)2 + (n2 +m2)2] − m2

2V
.

By substituting in m1 = 0 and m2 = 0 respectively, it can be verified that (65,66) are
satisfied. Moreover, (67) and (68) are established by choosing m1,m2 = V 0.5 and taking
the limit V →∞.

To show condition (55) is satisfied take the second derivative of (64) with respect to
m1 and m2:

∂2G (n,m)

∂m2
1

=
− (n1 −m1)2 + (n2 −m2)2

2π
[
(n1 −m1)2 + (n2 −m2)2]2 +

− (n1 −m1)2 + (n2 +m2)2

2π
[
(n1 −m1)2 + (n2 +m2)2]2

+
− (n1 +m1)2 + (n2 −m2)2

2π
[
(n1 +m1)2 + (n2 −m2)2]2 +

− (n1 +m1)2 + (n2 +m2)2

2π
[
(n1 +m1)2 + (n2 +m2)2]2 − 1

2V
,

∂2G (n,m)

∂m2
2

=
(n1 −m1)2 − (n2 −m2)2

2π
[
(n1 −m1)2 + (n2 −m2)2]2 +

(n1 −m1)2 − (n2 +m2)2

2π
[
(n1 −m1)2 + (n2 +m2)2]2

+
(n1 +m1)2 − (n2 −m2)2

2π
[
(n1 +m1)2 + (n2 −m2)2]2 +

(n1 +m1)2 − (n2 +m2)2

2π
[
(n1 +m1)2 + (n2 +m2)2]2 − 1

2V
.

Since ∂2G(n,m)

∂m2
1
|n6=m = −∂2G(n, m)

∂m2
2
|n6=m, the Laplacian of G equals − 1

V
for all m 6= n, sat-

isfying (55). Verifying conditions (56,57) is straightforward, since the Green’s function
is symmetric between m and n except for its final two terms. Hence, (64) is a Green’s
function to the Neumann problem in the positive quadrant. Finally, the weighting func-
tion in the example is found by taking the first derivative of (64) and letting V → ∞.

C Proof of proposition 2

Proof. Starting from the first order conditions (13), (14) and (15), first solve (13) for η:

η =
λf

uy
.

Now substitute this expression into (14):

λq′Tf − uxnθ +
λf

uy
ux = 0k,
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Consider equation i of this system of equations and simplify:

qxi − si =
J∑
j=1

− ∂si
∂nj

θj
uy
λf
,

qxi − si
si

=
J∑
j=1

ξsi,njθj
uy
λ

1

njf
.

Substitute in equation (22) to arrive at the ABC-formula.

D Proof to equation (35)

Proof. To proof equation (35) we start from equation (33) and show that ξsi,ni =
εxi,ni
εcxi

and ξsi,nj = 0 for all j 6= i when utility is additively separable. The second part of this
statement is trivial, since the cross-derivative uxinj = 0 for all j 6= i. To proof the first
part we first derive εxi,ni and εcxi in a setting where we do not restrict the utility function,
beyond the restrictions discussed in section 3. Subsequently, we show that ξsi,ni =

εxi,ni
εcxi

follows from additive separability of the utility function.

Take the agent’s optimization problem on the market (30) and consider a small per-
turbation in the tax gradient around the optimum. Denote the perturbation by column
vector τ . The agent’s optimization problem including the perturbation is given by:

max
x,y

u(x, y,n) s.t. y = q (x)− T (x) + τ T (x− x (n))

We use the perturbation τ to find the effect of a change in the marginal tax rate on the
demand for good xi. A change in τ affects the marginal tax rate, but at the margin
around x = x (n) it has no influence on the average tax rate. As such, evaluating the
effect of the perturbation at the optimum (i.e. at τ = 0,x = x (n)) allows us to find
compensated demand effects. The agents’ perturbed first-order condition is given by:

k (x,n, τ ) ≡ ux (x,n) + uy (y(n))
(
q′T (x)− T ′T (x) + τ

)
= 0.

The function k (x,n, τ ) implictly defines x as a function of n and τ . We now totally
differentiate k (x,n, τ ) with respect to τ , n and all the endogenous variables x to arrive
at the effect of a change in the exogenous variables on demand:

kxdx+ kndn+ kτdτ = 0,

dx = − (kx)−1 (kndn+kτdτ ) (70)

where dx, dn and dτ are column vectors containing the differentials for vectors x, n
and τ . The second-order condition to the household maximization problem ensure kx is
negative definite. Hence, its inverse exists. Now consider the partial derivatives of k(·)
with respect to the exogenous variables evaluated around the optimum, such that τ = 0
and x = x (n):

kn = uxn,

kτ = uyI,
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The compensated own-elasticity depends on the compensated demand effect ∂xi
∂τi

. To
arrive at this partial derivative, consider row i of the system of equations (70) and set all
differentials of the exogenous variables n, τ except dτi equal to zero. We find:

∂xi
∂τi
|u=ū = −uy (kx)−1

ii ,

where the notation (kx)−1
ii denotes the i-th element on the main diagonal of matrix (kx)−1.

Normalize to arrive at the compensated elasticity:

εcxi ≡
∂xi
∂τi
|u=ū

qxi (x)− Txi ( x)

xi
=
−uy (kx)−1

ii (qxi (x)− Txi ( x))

xi
.

In addition we need to calculate the elasticity of consumption of good i with respect to
characteristic i. To that end again consider row i of the system of equations (70) and
now set all differentials of the exogenous variables n, τ except dni equal to zero. We then
arrive at:

∂xi
∂ni

= − (kx)−1
i uxni = − (kx)−1

ii uxini ,

where (kx)−1
i denotes the i-th row of matrix (kx)−1, and the final equality follows from

the fact that we assumed utility is additively separable, such that uxi,nj = 0 for all i 6= j.
Normalize to arrive at the elasticity of xi with respect to characteristic ni:

εni,xi ≡
∂xi
∂ni

ni
xi

=
−ni (kx)−1

ii uxini
xi

.

The final step is show that ξsi,ni can be written as
εni,xi
εcxi

:

εni,xi
εcxi

=
niuxini

uy (qxi (x)− Txi (x))
,

= − ∂si
∂ni

ni
qxi (x)− Txi (x)

,

=
∂si
∂ni

ni
si

= ξsi,ni .

where the second equality follows by noting that ∂si
∂ni

= −uxini
uy

, and the third equality

follows by substituting in the agent’s FOC.

E Simulation Algorithm

In this appendix we describe our simulation algorithm step-by-step.

1. We first specify the primitives of the model. These are i.) the utility function from
equation (37):

u (x, y,n) = y −
2∑
i=1

ni
δi

(
xi
ni

)δi
,
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ii.) the welfare function from equation (40):

W (V (n)) = log (V (n)) ,

iii.) the couples’ production function from equation (39):

q (x) = x1 + x2,

iv.) the distribution of unobserved characteristics from equation (38):

f (n) = (α + 1)α (n1n2)α+1 (n2n1 + n1n2 − n1n2)−(α+2) ∀ ni ∈ [ni,∞), (71)

where we set the lower bounds n1 = n2 = 1, and α = 2, and
v.) the weighting function ω (n,m) that matches the type space ni ∈ [ni,∞).
Compared to weighting function (27) we make a slight adjustment, because the
lower bound of the type space is larger than zero. The weighting function for this
type space is given by:

ωi (n,m) =
ni −mi

2π
[
(ni −mi)2 + (nj −mj)

2] +
ni −mi

2π
[
(ni −mi)

2 +
(
nj +mj − 2nj

)2
]

+
ni +mi − 2ni

2π
[
(ni +mi − 2ni)

2 + (nj −mj)
2]

+
ni +mi − 2ni

2π
[
(ni +mi − 2ni)

2 +
(
nj +mj − 2nj

)2
] . (72)

2. With the primitives in place we divide the type space into a discrete grid for com-
putational purposes. The grid, denoted by N , consists of types n1

,...,n
K2

where
the bounds on the grid are chosen such that it covers most of the mass of types.
We select the bottom type slightly larger than the bottom of the type space n1 =
(n1 + ε, n2 + ε) , ε > 0.22 The top type is denoted nK

2
=
(
nK , nK

)
, where nK is cho-

sen such that the cumulative mass of types covered by our grid is F
(
nK

2
)

= 0.9999.

This implies the grid contains about 99.99 percent of the mass of types. In between
the top and bottom type we create a “full” grid of types. Having a full grid implies
that for each characteristic nk1 we have a full set of types ranging from

(
nk1, n

1
2

)
to(

nk1, n
K
2

)
and vice versa. A full grid turns out to be extremely useful for numerical

purposes. We space the grid log-linearly to account for the high density at the lower
end. We choose K = 100 such that there are a total of K2 = 10, 000 types in our
type space.

3. We define an additional grid of types M consisting of types m1
,...,m

K2
M , which

we use as the integration variable in the government’s first-order condition. In
equation (72) the weighting function is undefined at points where n = m. We
therefore choose the gridM such that between each type

(
nk1, n

j
2

)
and

(
nk+1

1 , nj+1
2

)
there are four log-linearly spaced types in M that satisfy nk1 < m1 < nk+1

1 and
nj2 < m2 < nj+1

2 . This guarantees that there exist no two grid points n ∈ N and
m ∈ M for which n = m. Moreover, it makes sure that grid M contains more
types than grid N to increase the precision of our numerical integration procedure.

22The density function at the exact bottom of the type space is undefined.
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4. The next step is to define an initial tax system. We choose a tax system with
tax gradient T ′ (x) = 0 and the intercept T (0) = −1. We additionally define
an iteration counter ι and set it to 0. We adopt the convention that for any set
of variables or functions x, y, · · · curly brackets {x, y, · · · }ι denotes the value of
the variables in iteration ι. For instance the initial tax system can be written as
{T ′ (x) , T (0)}0.

5. The next step is to numerically approximate the allocation {x1 (n) , x2 (n) , y (n) , V (n)}ι
under the tax system {T ′ (x) , T (0)}ι. We do this by solving the household op-
timization problem for all types in M and N . Because the utility function is
quasi-linear in y it is possible to solve for x and y independently. We first solve for
x. The first-order conditions for a type nk=

(
nk1, n

k
2

)
∈ N ,M and good xi is given

by:

1− Txi (x1, x2) =

(
xi
nki

)δi−1

,

For positive tax rates, the left-hand side of the first-order condition of each good
is bounded between 0 and 1. Hence, Lki ≡ xi

nki
is bounded between 0 and 1 as long

as the tax rate is non-negative. This allows us to solve the first-order conditions
for x1 and x2 using a grid-search approach. To be precise, we create a full grid L
which consists of 7502 linearly spaced values in the interval [0, 1]× [0, 1]. For each
type we then choose the combination {L1, L2} ∈ L that minimizes, the Euclidian
distance of the vector of FOCs. Formally: written as:

min
{L1,L2}

{
2∑
i=1

((
1− Txi

(
nk1L1, n

k
2L2

))
− Lδi−1

i

)2
: {L1, L2} ∈ L

}
. (73)

The first-order condition depends on the tax gradient T ′ (·) as a function of nkiLi.
Hence, in order to do a full grid search procedure we need to evaluate the tax
gradient for each n ∈ N ,N and each L1, L2 ∈ L. However, the planner’s first-
order condition below only provides information on the tax gradient for the optimal
choices of types in N . We use nearest-neighbor interpolation to approximate for
the marginal tax rates on other points. This does not have a big impact on the
results unless the tax function is highly non-linear or the types in N are spaced
very far apart, our grid L guarantees the later is not the case. The optimization
problem (73) then allows us to calculate {x1 ( n) , x2 (n)}ι for all types in N ,M.

We proceed by solving for indirect utility V (n) and consumption y (n). We first
calculate the consumption of the bottom type, y(n1). Since the marginal tax rate
of the bottom type equals zero, its budget constraint is given by:

y
(
n1
)

= q
(
x
(
n1
))

+ T0

=
2∑
i=1

xi
(
n1
)

+ T0,

The indirect utility of the bottom type follows by substituting the optimal choice
variables into the utility function:

V
(
n1
)

= u
(
x
(
n1
)
, y
(
n1
)
,n1
)

= y
(
n1
)
−

2∑
i=1

δi
n1
i

(
xi (n

1)

n1
i

)
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This provides us with {x1 (n1) , x2 (n1) , y (n1) , V (n1)}ι for the bottom type. To
find the allocation for the remaining types, note that the incentive-compatibility
constraint (5) provides information on the gradient of the indirect utility function.
The gradient of V (n) is given by:

Vni (n) = uni (x (n) , y (n) ,n) ,

=

(
1− 1

δi

)(
xi (n)

ni

)δi
.

Since the gradient only depends on variables that we have already determined, we
can find the indirect utility of each of the agents by integrating over this gradient.
We use two iterative methods to obtain the indirect utility of a type

(
nk1, n

j
2

)
. First,

we consider the indirect utility of the previous type V
(
nk−1

1 , nj2
)

and note that:

V
(
nk1, n

j
2

)
= V

(
nk−1

1 , nj2
)

+

ˆ nk1

nk−1
1

Vn1

(
x, nj2

)
dx.

Alternatively, we can apply the same method now considering the indirect utility
of type V

(
nk1, n

j−1
2

)
:

V
(
nk1, n

j
2

)
= V

(
nk1, n

j−1
2

)
+

ˆ nj2

nj−1
2

Vn2

(
nk1, x

)
dx.

We use the trapezodial method to approximate the integral using both approaches.
In the absence of an approximation error, both approaches yield the same result.
However, the gradient of V (n) is typically non-linear, and hence, the trapezodial
method contains an approximation error. In our application the trapezoidal ap-
proximation tends to underestimate the true value of the integral. We therefore use
the maximum of both approximations as the value V

(
nk1, n

j
2

)
.23

Finally, to find y (n) we use the relationship between the direct and the indirect
utility function again:

V
(
nk
)

= u
(
x1

(
nk
)
, x2

(
nk
)
, y
(
nk
))
,

= y
(
nk
)
−

2∑
i=1

δi
nki

(
xi
(
nk
)

nki

)
,

y
(
nk
)

= V
(
nk
)

+
2∑
i=1

δi
nki

(
xi
(
nk
)

nki

)
.

This provides us with the entire allocation {x1 (n) , x2 (n) , y (n) , V (n)}ι.

6. The next step is to calculate the optimal tax rate for allocation {x1 (n) , x2 (n) , y (n) , V (n)}ι
using the ABC-formula in proposition 2. For our utility function the A-term sim-
plifies to:

Aii (n) = 1− 1

δi
∀ i = 1, 2,

Aij (n) = 0 ∀ j 6= i.

23If k = 1 the first approximation approach does not work. In that case we choose the second
approximation by default, and vice versa if j = 1. We do not need to consider the case where k = j = 1
since we have already calculated indirect utility for the bottom type.
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Hence, the ABC-formula for each good k can be written as:

Txi (x1 (n) , x2 ( n))

1− Txi (x1 ( n) , x2 (n))
=

(
1− 1

δi

)
BiiCii. (74)

Using our welfare function (40) and utility function (37) the Bii simplifies to:

Bii (n) =

ˆ
m∈N

(
1

V (m)λ
− 1

)
f (m)ωi (n,m) dm. (75)

To calculate λ we use equation (19). With our welfare and utility function this
equation can be written as:

λ =

ˆ
m∈N

f (m)

V (m)
dm. (76)

We approximate the integrals in (75) and (76) over grid M using Simpson’s rule.
Finally, the C-term is simply given by:

Cii (n) =
1

nif (n)
. (77)

Combining equations (74-77) we arrive at the following optimal marginal tax rates
under the given allocation:

Txi (x1 (n) , x2 (n)) =

(
1− 1

δi

)
nif(n)

´
m∈N

(
1

V (m)λ
− 1
)
f (m)ωi (n,m) dm

1 +

(
1− 1

δi

)
nif(n)

´
m∈N

(
1

V (m)λ
− 1
)
f (m)ωi (n,m) dm

,

which we can evaluate for all agents in the gridN . To arrive at a new tax gradient we
take a weighted average between the old tax gradient and the optimal tax gradient:

{T ′ (x1 (n) , x2 (n))}ι+1
= κT ′ (x1 (n) , x2 (n)) + (1− κ) {T ′ (x1 (n) , x2 (n))}ι ,

where κ ∈ (0, 1) denotes the speed with which the algorithm updates. Higher values
of κ can increase the rate of convergence, but may in some cases lead to a less stable
algorithm. In our algorithm we set κ = 0.1.

We use the resource constraint measured as a population average to update the
value of the intercept T (0). The resource deficit in the economy is given by:

DEF =

ˆ
n∈N

(y (n)− x1 (n)− x2 (n)) f (n) dn.

We update T (0) by setting:

{T (0)}ι+1 = {T (0)}ι +DEF.

This provides us with a new tax system {T ′ (x) , T (0)}ι+1.

7. Finally, we calculate convergence measures. In the ABC-formula for the optimal
tax rate the only part that updates between subsequent iterations are the welfare
weights g (·).
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We calculate the average distance between the welfare weights in the previous iter-
ation and the current iteration for all types in M. Denote this distance by |g|. In
addition, we calculate the absolute value of the resource deficit relative to overall
income:

RDEF =
|DEF |´

n∈N (x1 (n) + x2 (n)) f (n) dn
.

If max (|g|, RDEF ) < 0.001 the algorithm has converged. If not, we set ι = ι + 1
and the algorithm returns to step 5.

50


	CESifo Working Paper No. 6301
	Category 1: Public Finance
	January 2017
	Abstract
	Zoutman As Easy as ABCpdf.pdf
	Introduction
	Related Literature
	The Model I, agents
	Preferences
	Incentive Compatibility

	Model II, The Second-Best Allocation
	The social planner
	First-order conditions
	Solving for multipliers on the incentive compatibility constraints
	Case 1: Unidimensional heterogeneity 
	Case 2: Bidimensional heterogeneity 

	The ABC-formula
	Optimal tax rates
	The optimal tax expression under additive separability

	Bunching

	The Atkinson-Stiglitz Theorem
	Boundary Conditions
	Interdependencies in the Tax System in Mirrleesian and New Dynamic Public Finance 
	A Dynamic Interpretation

	Simulations
	Calibration
	Results

	Concluding Remarks
	Proof of proposition 1
	The Green's function
	Proof of lemma 2
	Case 1: The positive real line
	Case 2: positive quadrant in 2D

	Proof of proposition 2
	Proof to equation (35)
	Simulation Algorithm




