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Abstract 
 
We study equilibrium reporting behavior in cheating games when agents have a fixed cost of 
lying and image concerns not to be perceived as a liar. We show that equilibria naturally arise in 
which agents with low costs of lying randomize among a set of the highest potential reports. 
Such equilibria induce a distribution of reports in line with observed experimental patterns. We 
also find that higher image concerns lead to an increase in the range of reported lies while the 
effect of the fixed cost of lying is the opposite. 

JEL-Codes: D820, D830, C720. 

Keywords: cost of lying, image concerns, cheating game, truth-telling, deception. 
 
 
 
 

Kiryl Khalmetski 
Faculty of Management, Economics and 
Social Sciences, University of Cologne 

Albertus-Magnus-Platz 
Germany – 50923 Cologne 

kiryl.khalmetski@uni-koeln.de 

Dirk Sliwka 
Faculty of Management, Economics and 
Social Sciences, University of Cologne 

Albertus-Magnus-Platz 
Germany – 50923 Cologne 
sliwka@wiso.uni-koeln.de 

 
  
  

 
 
 
September 17, 2019 
Accepted for publication in American Economic Journal: Microeconomics. 
We thank three anonymous referees, Johannes Abeler, Martin Dufwenberg and Joel Sobel for 
very helpful comments and suggestions. Financial support of the German Research Foundation 
(DFG) through the Research Unit .Design and Behavior.(FOR 1371) is gratefully 
acknowledged. 



1 Introduction

Economists have only recently started to experimentally investigate lying behav-

ior. Gneezy (2005) has shown that a signi�cant share of subjects have a strong

aversion to lying besides purely distributional preferences.1 Subsequent studies

explored various determinants of individual lying aversion such as the payo¤ con-

sequences for the sender and the receiver of the message (Erat and Gneezy, 2012),

the form of communication (Lundquist et al., 2009), or anticipated trust of the

receiver (Charness and Dufwenberg, 2006; Sutter, 2009).

An important experimental paradigm for studying motivations for honesty

has been developed by Fischbacher and Föllmi-Heusi (2013) which already in the

rather short time frame since its publication has been used in a large number

of experimental studies. A recent meta-study by Abeler, Nosenzo and Raymond

(forthcoming) already includes more than 70 studies using this paradigm. In this

setting, subjects privately have to roll a die and then report the number they have

observed. The payo¤ is simply equivalent to the reported number (except for the

number 6 which leads to a payo¤of zero). An important advantage of the method

is that it avoids strategic interactions between subjects and thus facilitates the

identi�cation of intrinsic motives for lying behavior. Moreover, in the baseline

design the experimenter cannot verify the reported messages on the individual

level, hence, subjects can be close to certain that lies are not discovered, but lying

behavior can still be inferred from the distribution of reported numbers. If all

subjects told the truth each number should be reported with a likelihood of 1/6.

However, in the experiment the fractions of numbers 4 and 5 among all reported

numbers were signi�cantly above the expected 1/6 (i.e., 27.2 percent for the 4

and 35.0 percent for the 5). Hence, a substantial number of subjects did not

tell the truth - but also apparently many did not maximize their own material

payo¤ (i.e., did not report the number 5). As a possible explanation, Fischbacher

and Föllmi-Heusi (2013) suggest that some subjects might have a reputational

concern motivating them to disguise their lying to an outside observer (which

can be an experimenter or a future self) by reporting not the payo¤-maximizing

number. This conjecture was further substantiated by the experimental evidence

that partial lying in cheating games turns to be signi�cantly less frequent if lying

can be individually veri�ed by the experimenter (Gneezy, Kajackaite and Sobel,

2018; Abeler, Nosenzo and Raymond, forthcoming).

We now formalize this idea by developing a model which assumes both a

1Correspondingly, people have also strong aversion to being lied to as shown by Brandts and
Charness (2003).
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�xed cost of lying and social image concerns not to be viewed as a liar and

study whether equilibrium behavior can indeed predict patterns such as those

described in the experiment. In our model agents consider three motives: (i)

they are better o¤ when earning more money, (ii) they have an intrinsic cost of

lying (which varies between individuals) and (iii) an agent�s utility is decreasing in

the likelihood with which an outside observer believes her to have lied after having

observed the reported number.2 We show that such context naturally gives rise

to equilibria in which agents who lie randomize their reporting behavior among

a subset of the most favorable reports. The results remain robust to adding an

additional component to the intrinsic cost of lying which linearly depends on the

size of the lie.

We furthermore show that while stronger social image concerns reduce the

likelihood of lying, they expand the range of reports that agents lie to. If image

concerns are weak, all liars report the highest feasible number. In the opposite

case when image concerns become very strong, liars randomize over the whole set

of possible reports excluding the smallest number. Thus, too strong reputational

concerns of the sender may actually back�re for the receiver since then she can

never be sure to have obtained the correct information (except for the case of the

lowest message). Notably, we show that this e¤ect goes in the opposite direction

of the e¤ect of an increase in the �xed costs of lying, which leads to a smaller range

of reported lies. Finally, we consider the e¤ect of the stake size. While the total

rate of lying unambiguously increases with the stake size, the range of reported

lies can both increase and decrease depending on the parameters. The latter fact

is due to the opposing e¤ects from a relative decrease in the reputational concerns

and the �xed cost of lying.

With very few calibrated parameters, the model produces a good �t of the

predicted behavior to the experimental data from Fischbacher and Föllmi-Heusi

(2013) and related experiments. While our model is primarily motivated to ex-

plain the empirical evidence from experimental cheating games, it is worth noting

that such games also capture structural properties of many real-life communica-

tion settings where: 1) transmitted information is not easily veri�able (or veri�-

2Models of belief-independent costs of lying were developed by Kartik, Ottaviani and Squin-
tani (2007) and Kartik (2009). Ottaviani and Sørensen (2006a) and Ottaviani and Sørensen
(2006b) considered settings where the sender cares about the inferred precision of his private sig-
nal. The concern for the inferred social preferences was modeled in Bernheim (1994), Bénabou
and Tirole (2006) and Ellingsen and Johannesson (2008) where an agent prefers to be perceived
as having a certain type of preferences. In contrast to these models, we assume that the sender
cares about the receiver�s inference regarding the action of lying. See Abeler, Nosenzo and
Raymond (forthcoming) for further classi�cation of models relevant for the considered setting,
including the models of inequality aversion, social conformity and guilt aversion.
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able with a signi�cant delay), 2) there are material incentives to misreport, and

3) the sender of the message might care about not being perceived as a liar at the

time of communication. Potential examples include medical diagnoses, promises

in political election campaigns, the sale of credence goods, and academic reference

letters.

Independently from our work, a few recent papers aim to explain the exper-

imental data from cheating games. In Gneezy, Kajackaite and Sobel (2018) and

Abeler, Nosenzo and Raymond (forthcoming), the main model speci�cations also

combine both intrinsic costs of lying and image concerns depending on the prob-

ability others assign that the agent lies.3 Unlike us, Dufwenberg and Dufwenberg

(2018) incorporate only (belief-dependent) costs that are proportional to the size

of a lie perceived by the receiver. In terms of qualitative analytical results, the

closest study to ours is of Gneezy, Kajackaite and Sobel (2018) who showed some

of the important equilibrium properties also outlined in our analysis. While our

model has somewhat stricter restrictions on preferences (such as permitting only

linear dependency of the intrinsic lying cost on the size of the lie), at the same

time this allows us to provide a complete mathematical characterization of the

(unique) equilibrium distribution of reports. Moreover, our modeling framework

allows us to precisely characterize the comparative statics of the equilibrium with

respect to an increase in the image concerns, �xed lying costs and monetary

stakes, obtaining qualitatively di¤erent and testable predictions for each case

that can explain several previous experimental �ndings.4

The remainder of the paper is organized as follows. Section 2 presents the

model setting, Section 3 provides equilibrium analysis, Section 4 derives com-

parative statics, Section 5 shows the results of the calibration of the model to

the experimental data from Fischbacher and Föllmi-Heusi (2013) and Gneezy,

Kajackaite and Sobel (2018), and Section 6 concludes.

2 The Model

We consider a population of agents who play a variant of the Fischbacher and

Föllmi-Heusi (2013) cheating game. First, an agent privately observes a uniformly

distributed random (integer) number y 2 Y = f0; 1; ::; Kg with K > 1 such that

3Garbarino, Slonim and Villeval (2016) use a reduced form approach to model reputational
concerns in a cheating game (combined with intrinsic lying costs), while focusing on the e¤ect
of loss aversion in this setting.

4The focus of the comparative statics analysis in the other studies is somewhat di¤erent. In
particular, Gneezy, Kajackaite and Sobel (2018) primarily consider the e¤ect of the underlying
distribution of the observed numbers.
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Pr (y) = 1=(K + 1).5 She then has to report this number to a receiver making a

report x 2 Y which leads to a payment equal to x to the agent. We assume that
agents incur a personal �xed cost of lying l > 0 such that their utility is reduced

by l whenever they report x 6= y.
Besides, agents have a concern to be viewed as being honest. In particular,

we assume that utility is decreasing in the likelihood that the receiver (or some

outside observer) thinks that she has told a lie, i.e., in Pr [y 6= xjx].6 Thus, her
utility function is

u (l; x; y) = x� l � IL(x; y)� � � Pr [y 6= xjx] (1)

where L denotes the set of lies, i.e., L=f(x; y) 2 Y2 : x 6= yg, IL is the cor-
responding indicator function, and � > 0 captures the extent to which agents

dislike being viewed as liars by the receiver. Since the utility function depends on

the receiver�s beliefs, we obtain a psychological game (Geanakoplos, Pearce and

Stacchetti, 1989; Battigalli and Dufwenberg, 2009). The term �� �Pr [y 6= xjx] is
referred below as the agent�s reputational payo¤.7

We assume that l is distributed according to a strictly increasing continuous

cdf F (l) with F (l) = 0 for l � 0 and F (l) > 0 for l > 0.8 Note that our

model allows for a large probability mass on arbitrarily small lying costs: The

assumption that F (0) = 0 just implies that agents who are otherwise indi¤erent

between lying and telling the truth, will tell the truth (similarly to a lexicographic

preference for truth-telling). We also assume that F (K + �) < 1 which ensures

that in any equilibrium there is a strictly positive (potentially very small) prob-

ability mass of agents who always report truthfully and, in turn, all numbers are

reported with positive probability.9

5Setting the lowest number to 0 is without loss of generality for the qualitative results. The
case of K = 1 excludes overreporting of more than one number by construction, and hence is
not subject of our analysis.

6See also Bénabou and Tirole (2006), Fischbacher and Föllmi-Heusi (2013) and Dufwenberg
and Dufwenberg (2018) for discussions regarding the agent herself being a plausible audience.

7When � = 0 an agent who decides to lie always lies to the full extent. Thus, a �xed lying
cost (that does not depend on the size of the lie) cannot by itself explain overreporting of
numbers strictly lower than K �the main empirical puzzle in the experiment of Fischbacher
and Föllmi-Heusi (2013). While non-linear lying costs may explain some patterns, Abeler,
Nosenzo and Raymond (forthcoming) show that any conventional model with just intrinsic
lying costs would still be inconsistent with their experimental �ndings that 1) subjects lie
substantially more towards the high state when the ex-ante probability of this state is higher,
and 2) the distribution of reports signi�cantly depends on their observability. They conclude
that reputational concerns are the most plausible explanation for the observed patterns.

8Gneezy, Rockenbach and Serra-Garcia (2013) provide empirical evidence for heterogeneous
�xed lying costs with a large share of subjects being characterized by intermediate costs.

9Indeed, the meta analysis by Abeler, Nosenzo and Raymond (forthcoming) shows that this
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While we assume in the main body of the paper that agents have a �xed cost

of lying, we show in Section 3.3 that our results are robust to incorporating a

linear size-dependent cost of lying into the agent�s utility function.

3 Equilibrium Analysis

This section �rst derives general properties of the equilibrium reporting strategies,

then provides a complete characterization of the unique equilibrium distribution

of reports, and �nally shows the robustness of the results to adding a linear

size-dependent cost of lying.

3.1 General Characterization

We now consider Bayesian Nash equilibria of the game which are characterized

by (i) the reporting strategy of an agent as a function of her cost of lying l and

the observed number y and (ii) the receiver�s beliefs about the likelihood that

an agent lied which is a function of the reported number x. Denote the (mixed)

strategy of an agent as

� (l; y) =
�
p0ly; p

1
ly; :::; p

K
ly

�
;

which is a probability distribution over theK+1 pure reporting strategies, i.e., an

agent with cost of lying l who has observed y reports number x with probability

pxly. The receiver�s belief that a report x was truthful is denoted as

r(x) = Pr[y = xjx]:

Then, an equilibrium is a set of mixed strategies and beliefs satisfying the follow-

ing conditions:

8(l; x; y) : pxly > 0 only if x 2 argmax
x0
u(l; x0; y); (2)

8(l; y) :
KX
x=0

pxly = 1; (3)

is the case. To be speci�c, the assumption states that there is a strictly positive probability
that there are agents who never lie even if this would yield the highest possible lying payo¤ of
K � l, while telling the truth would yield them the lowest possible truth-telling payo¤ of ��.
Note that this assumption can also be viewed as a substitute for an equilibrium re�nement as
it guarantees that Pr[y = xjx] is well de�ned for all x 2 Y:
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8x : r(x) = Pr [y = x ^ x reported]
Pr [x reported]

=

R1
0
pxlxdF (l)PK

y=0

�R1
0
pxlydF (l)

� : (4)

The last condition ensures that beliefs are formed by Bayes rule.10 ;11

Denote by XL the set of numbers such that with a strictly positive probability
they are reported by liars in equilibrium, i.e.,

XL = fx 2 Y j r(x) < 1g : (5)

We �rst show that in any equilibrium XL is nonempty.

Lemma 1 In any equilibrium there is a strictly positive probability that the agent
lies.

Proof. Assume by contradiction that Pr [y 6= x] = 0. Then, r (x) = 1 for

all x 2 Y, and there must be a positive measure of truth-telling agents for any
interval of possible l. But then truth-telling agents with l < K � y observing
y < K would have incentive to deviate and report x = K. Thus, Pr [y 6= x] > 0:

When XL is a singleton, it is straightforward to show that the only feasible
candidate equilibrium with this property is one in which XL = fKg. To see that,
suppose that all agents who lie choose x0 < K.12 In that case, r (x0) < r (K) = 1.

But then the lying agents could earn a higher material payo¤ and reputation

when reporting the highest possible report K.

Note, however, that such an equilibrium where XL = fKg may not exist. The
reason is the following: suppose that su¢ ciently many liars report K. Then such

a report can lead to a strong loss in reputation. In turn, when � is large enough

liars will have an incentive to deviate and report a lower number. We can indeed

show:

Lemma 2 In any equilibrium in which the set of reports chosen by liars XL is
a singleton, all liars report x = K. If � is su¢ ciently large, XL can never be a
singleton.

10Recall that there are always agents who never lie (since F (K + �) < 1). Hence any value
of x is reported with strictly positive probability by a truthful agent on the equilibrium path.
11For our game, the de�ned equilibrium is equivalent to sequential equilibrium for psycho-

logical games developed by Battigalli and Dufwenberg (2009).
12More precisely, we mean by this "almost all agents who lie" (given that a deviation on a

zero-measure of types does not a¤ect XL). The same note applies to further similar instances.
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Proof. The �rst part of the lemma follows from the above considerations.

Let us show the second part. Assume that in equilibrium XL = fKg. Then,
one can show that the total likelihood of lying Pr[x = Kjy 6= K] is bounded from
below for any �. Indeed, consider agents observing y = 0 with l < K � 1. These
types will never tell the truth in equilibrium, since they have a strict incentive

to deviate to x = K � 1 earning K � 1 � l; which is then strictly higher than
the payo¤ of 0 they earn from truth-telling (while there is no reputational loss

in both cases). Thus, the probability of lying is bounded by the fraction of these

types, i.e.,

Pr[x = Kjy 6= K] � 1

K + 1
F (K � 1): (6)

Furthermore, note that agents observing K never report some x0 6= K (earning

x0 � l) since otherwise it should hold x0 > K � �(1� r(K)) so that all liars to K
would have a strict incentive to also deviate to x0 (being indi¤erent in terms of

lying costs). Then, by Bayes rule

r(K) =
Pr [y = K ^K reported]

Pr [K reported]
=

1
K+1

1
K+1

+ Pr[x = Kjy 6= K]
(7)

�
1

K+1
1

K+1
+ 1

K+1
F (K � 1)

=
1

1 + F (K � 1) ;

i.e., r(K) is bounded from above by 1
1+F (K�1) < 1.

Moreover, if XL = fKg any agent who lies to K must prefer to report x = K

to reporting x = K � 1 or

K � 1 � K � � � (1� r(K)) (8)

, 1� 1
�
� r(K): (9)

Conditions (7) and (9) thus yield

1� 1
�
� 1

1 + F (K � 1)

which leads to a contradiction when � is su¢ ciently large.

Hence, when � is su¢ ciently large liars will not all report the same number

in equilibrium, as otherwise someone reporting this number is perceived as a

liar with a too high probability which makes a deviation attractive. However,

there may be equilibria where liars report numbers from a larger set XL � Y.
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Intuitively, randomizing reports over a larger set makes it easier to disguise a lie.

It is important to note that this can only be the case when liars are indi¤erent

between all messages in XL or

x� � � (1� r (x)) = � for all x 2 XL (10)

where � is some constant which is equal to the gross payo¤ from lying (without

the lying costs l). To see this, note that if for some x0; x00 2 XL it would hold
�(x0) > �(x00), then all liars to x00 would have a strict incentive to deviate to x0

given that their lying cost from reporting x0 would either be the same as for x00,

i.e., l, or smaller (in case if y = x0). We use this to further characterize necessary

conditions for all feasible equilibria:

Proposition 1 In any equilibrium the following properties hold:

(i) The set of reports XL chosen by liars is characterized by a cut-o¤ value
xL 2 f1; ::; Kg such that XL = fx 2 Y : xL � x � Kg.
(ii) Agents who have observed a value y � xL report their observed values

truthfully.

(iii) The probability that someone who reports x is telling the truth is

r (x) =

(
1� x��

�
if x � xL

1 if x < xL,
(11)

where � is some constant in the interval (maxf0; K � �g; K).13

(iv) xL is the smallest integer strictly larger than � :

xL = min fx 2 f1; ::; Kg jx > �g : (12)

Proof. First, note that in any equilibrium XL is nonempty by Lemma 1. We
now show that XL consists of the largest elements of Y by contradiction: suppose
that xL is the smallest element of XL and there is a speci�c value x0 > xL which
is not an element of XL so that r (x0) = 1 > r(xL). Then u (x0; y) > u (xL; y) for
all y 6= xL (as both material and reputational payo¤s are higher by reporting x0)
and liars to xL would deviate and report x0 instead. Thus, xL =2 XL which is a
contradiction.

Let us show that agents who observed y 2 XL report their true value. Assume
by contradiction that there exists y0 2 XL such that some agent observing y0 lies
13Note that if the set of possible numbers is bounded from below by y, the interval of �

changes to (maxfy;K � �g;K):
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by reporting x = y00. For this agent, the following must hold

y0 � �(1� r (y0)) � y00 � �(1� r (y00))� l
) y0 � �(1� r (y0)) < y00 � �(1� r (y00)):

This implies that no agent observing y 6= y0 would like to lie to y0, strictly

preferring to report y00. Hence, y0 =2 XL which is a contradiction. It follows that
all untruthful reports are done by the agents observing y =2 XL.
The existence of the cut-o¤ value, together with condition (10), leads to the

characterization of the probability of truth-telling (11). Moreover, xL 6= 0 as the
opposite implies thatXL = Y and hence nobody would lie since, as we have shown,
agents observing y 2 XL report their number truthfully. This is a contradiction
by Lemma 1.

Since agents observing y 2 XL tell the truth while liars must use all messages
in XL by de�nition, we have

1 > r(x) > 0 for all x 2 XL; (13)

which together with K 2 XL and condition (10) leads to � 2 (K � �;K). Fur-
thermore, � must be strictly positive (i.e., strictly higher than the lowest possible

observation). Otherwise, we would have �� l < y for all (l; y) which would imply
that liars observing y =2 XL have a strict incentive to deviate to truth-telling.
Thus, � 2 (maxf0; K � �g; K).
Finally, we show that xL must be equal to the smallest integer strictly larger

than �. First, note that the equilibrium likelihood that a report x is truthful is

r(x) = 1� x� �
�

< 1 for all x � xL (14)

by (10) and (13). This implies that x > � for all x � xL and in turn we must

have xL > �: Assume now by contradiction that xL � 1 > �. Then, any agent

who lies would be better o¤ reporting xL� 1 (getting at least xL� 1� l) instead
of an x � xL (getting �� l) which leads to a contradiction. Hence, we must have
that

xL � 1 � � < xL: (15)

In equilibrium we must thus observe a speci�c pattern in the association

between a report and the reputation for truth-telling given this report. This
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reputation is linearly decreasing within the set of reports chosen by liars: the loss

in money when choosing a lower report must be exactly o¤set by an equivalent

gain in reputation so that the sum of monetary and reputational payo¤s remains

constant at some level � (see (10)).

As Proposition 1 also shows, all agents who have observed a y � xL tell the
truth. The intuition for this is simple: reporting a di¤erent value within XL would
lead to the identical sum of monetary and reputational payo¤s but comes along

with a utility loss due to the cost of lying l. A direct implication of this result

is that there is no downward lying: agents who observed a number smaller than

xL either tell the truth or report a number larger or equal to xL. Agents who

observed a number larger or equal to xL always tell the truth.

Finally, the gross payo¤ from lying � and the lower bound to the set of reports

chosen by liars xL are directly linked: xL must be equal to the smallest integer

strictly larger than �. The lying payo¤ � must be smaller than xL as reporting

xL will always come with a loss in reputation. But it cannot be smaller than

xL � 1 as otherwise liars would want to deviate and report xL � 1 avoiding the
reputational loss.

We can now consider the behavior of agents who have observed a true value

y strictly below the cut-o¤ value xL and thus either tell the truth or lie. When

reporting the truth such an agent�s utility is y and when lying she should obtain

�� l. Hence, she will report truthfully if and only if14

�� y � l: (16)

This implies:

Lemma 3 Consider an equilibrium with gross payo¤ from lying �. If an agent

observes a value y < xL she reports truthfully if and only if her cost of lying l is

not smaller than a cut-o¤ value l� (y) = �� y.

We can use Proposition 1 and Lemma 3 to characterize the equilibrium dis-

tribution of reported numbers:

Proposition 2 Consider an equilibrium with gross payo¤ from lying �. Then

the probability that x is reported is

Pr [x reported] =

(
�

(K+1)(��x+�) if x � xL
1

K+1
(1� F (�� x)) if x < xL

(17)

14The speci�cation of the strategy of the indi¤erent type with l = �� y does not matter for
the subsequent results.
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which is strictly increasing in x:Moreover, Pr [x reported] > 1=(K+1) for x � xL
and Pr [x reported] � 1=(K + 1) for x < xL.

Proof. By Bayes rule,

r (x) =
Pr [y = x ^ x reported]

Pr [x reported]
: (18)

At the same time, by Proposition 1 for any x � xL

Pr [y = x ^ x reported] = 1

K + 1
(19)

as x is observed with probability 1=(K +1) and all agents who observe it tell the

truth. We then obtain from (18) and (19) that

Pr [x reported] =
1

K + 1

1

r(x)
for x � xL; (20)

which is strictly larger than 1=(K + 1) since r(x) < 1 for any x � xL by (5). By
substituting r (x) = 1� (x� �)=� from Proposition 1 we obtain that

Pr [x reported] =
�

(K + 1) (� � x+ �) (21)

for x � xL.
For any x < xL the likelihood that x is reported is (given Lemma 3)

Pr [x reported] = Pr [x observed] � Pr [�� x � l] (22)

=
1

K + 1
(1� F (�� x)) � 1

K + 1
:

The claim that Pr [x reported] is strictly increasing in x for x � xL follows

from the fact that the right-hand side of (21) is strictly continuously increasing

in x given that � > K � � by claim (iii) of Proposition 1. It is left to show that

Pr[x reported] strictly increases in x also for x < xL, which by (22) must be the

case in case if � � x > 0 for any x < xL � 1. In turn, this condition is satis�ed
since � � xL � 1 by claim (iv) of Proposition 1.

Proposition 2 thus implies a speci�c pattern in the observed distribution of

reports. First of all, all numbers above the threshold xL are reported more fre-

quently than they are actually observed, and all numbers below the threshold are
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reported (weakly) less frequently than observed.15 The reason is straightforward:

the agent lies only when observing y < xL, and she lies with a positive probability

only to x � xL.
Furthermore, the higher x the higher is the likelihood that x is reported. This

is due to two e¤ects: For x < xL all agents who report such an x are telling the

truth. But within this set the incentives to lie are stronger for lower observed

numbers as here the material gain from lying is larger. For larger values of x

(x � xL) the fact that the likelihood of a report x must increase in x is due to

the reputational payo¤ obtained in equilibrium. As laid out in the above, all

numbers reported by liars in equilibrium must lead to the same total payo¤. In

turn, any material gain must be o¤set by an equivalent reputational loss. As

higher values of x come along with a higher material gain, more liars must thus

choose to report them in equilibrium.

3.2 Existence and Uniqueness

In equilibrium, the total likelihood of sending a false message by an agent ob-

serving y < xL must be equal to the total likelihood of receiving a false message.

We now use this �accounting property�to show the existence and investigate the

uniqueness of equilibrium.

Theorem 1 All equilibria of the game induce the same distribution of reported
numbers characterized by �� 2 (maxf0; K � �g; K), which is implicitly de�ned by
the equation

xL(�
�)�1X

y=0

F (�� � y) =
KX

x=xL(��)

�
x� ��

� � x+ ��

�
(23)

that always has a unique solution in this interval.

Proof. By Proposition 1 and Lemma 3 the total fraction of liars is

Pr[Lie] =
xL(�)�1X
y=0

1

K + 1
F (�� y) (24)

as a function of �. At the same time we can determine the total probability that

a reported number is a lie as

Pr[Lie] =
KX

x=xL(�)

Pr [x reported] � Pr [x is a lie jx reported ] : (25)

15The number xL � 1 can still be reported with probability 1
K+1 if � = xL � 1, which is not

precluded by the incentive constraint (15).
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Using Proposition 2 and the fact that Pr [x is a lie jx reported ] = 1 � r (x) =
(x� �)=�, this is equal to

KX
x=xL(�)

�

(K + 1) (� � x+ �)
x� �
�

=

KX
x=xL(�)

x� �
(K + 1) (� � x+ �) : (26)

In equilibrium the fraction of liars (24) must be equal to the fraction of reported

lies (26) which then leads to condition (23).

In a next step, we show that (23) always has a unique solution on (maxf0;
K � �g; K). In order to do so, consider the function

� (�) =

xL(�)�1X
y=0

F (�� y)�
KX

x=xL(�)

x� �
�+ � � x (27)

which is strictly increasing in � on (maxf0; K��g; K). Let us show that � (�) = 0
always has a unique solution �� 2 (maxf0; K � �g; K).
First, we can show that

lim
�!maxf0;K��g+

� (�) < 0; (28)

lim
�!K�

� (�) > 0: (29)

Indeed, when � ! maxf0; K � �g (from above) then either � (�) ! �1 (if

maxf0; K��g = K��) or � (�)! �
PK

x=1 x=(��x) < 0 (if maxf0; K��g = 0).
When � ! K (from below) then xL = K by claim (iv) of Proposition 1 so that

� (�)!
PK�1

y=0 F (K � y) > 0.
We now show that � (�) is continuous on (maxf0; K � �g; K). First note

that � (�) is continuous when � is not an integer as in this case xL (�) does not

vary by claim (iv) of Proposition 1. We now demonstrate that the function

is continuous also at integer values of �: Suppose we have an integer value of

�0 2 (maxf0; K � �g; K). Then xL (�0) = �0 + 1 and

� (�0) =

�0X
y=0

F (�0 � y)�
KX

x=�0+1

x� �0
�0 + � � x:

It is straightforward to see that lim"!0 � (�
0 + ") = � (�0) since xL(�0 + ") =

xL(�
0) if �0 is an integer and " < 1 by claim (iv) of Proposition 1. Now consider

14



lim"!0 � (�
0 � "). First note that xL (�0 � ") = �0 for " < 1. Hence,

� (�0 � ") =

�0�1X
y=0

F (�0 � "� y)�
KX
x=�0

�
x� �0 + "

�0 � "+ � � x

�

=

�0X
y=0

F (�0 � "� y)� F (�0 � "� �0)

�
KX

x=�0+1

�
x� �0 + "

�0 � "+ � � x

�
�
�

�0 � �0 + "
�0 � "+ � � �0

�

=

�0X
y=0

F (�0 � "� y)� F (�")

�
KX

x=�0+1

�
x� �0 + "

�0 � "+ � � x

�
�
�

"

� � "

�
:

But then, as lim"!0 F (�") = 0 = F (0),

lim
"!0

� (�0 � ") =
�0X
y=0

F (�0 � y)�
KX

x=�0+1

�
x� �0

�0 + � � x

�
= � (�0) ; (30)

and thus the function is continuous. This together with (28), (29), the fact that

�(�) is increasing on (maxf0; K � �g; K) and the intermediate value theorem
implies that � (�) = 0 has a unique solution �� on (maxf0; K � �g; K). Given
that � uniquely pins down the equilibrium distribution of reported numbers by

Proposition 1 (claim (iv)) and Proposition 2, the claim follows.

The intuition behind the condition (23) is the following. Recall that only

agents who observed an y < xL (�) lie. And only reports x � xL (�) can be

lies with a positive probability. In equilibrium the likelihood that an agent who

observed y < xL (�) decided to lie (the left-hand side of (23)) must be equal to

the likelihood that an agent who reported x � xL (�) actually lied (the right-hand
side of (23)). The left-hand side of (23) is strictly increasing in �. Intuitively,

the higher the gross payo¤ of lying � the more agents lie. At the same time, the

right-hand side of (23) �the total probability that a reported number is a lie �

is strictly decreasing in �. Intuitively, the larger the fraction of lies among the

reported numbers the smaller is the reputation of somebody reporting an x � xL
and the smaller is thus �.
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Therefore there is a unique value of � that solves this equation and, by Propo-

sition 1 (claim (iv)) and Proposition 2, we thus can infer that any equilibrium

must induce the same distribution of messages. We can now combine these in-

sights to characterize the equilibrium strategies pxly chosen by liars. Note that

there are multiple equilibria but �as the following result shows �all are payo¤

equivalent to the unique mixed strategy equilibrium where all lying agents ob-

serving y < xL pursue symmetric randomization strategies over XL, i.e., pxly = px

for any y < xL, x � xL and l < �� y.

Proposition 3 There is a unique mixed strategy equilibrium with symmetric ly-

ing strategies. In this equilibrium an agent lies if and only if y < xL(�
�) and

l < �� � y and otherwise tells the truth. All liars report x � xL(��) with proba-
bility

px =
1PxL(��)�1

y=0 F (�� � y)
x� ��

� � x+ �� : (31)

All other equilibria yield the same distribution of messages and are payo¤-equivalent.

Proof. To derive px for given � recall that we know from Proposition 2 that

in equilibrium

Pr [x reported] =
�

(K + 1) (� � x+ �) for all x � xL:

But by the law of total probability this must be equal to

Pr[x reported] =
�

(K + 1) (� � x+ �)
= Pr[y = x ^ x reported] + Pr[y 6= x ^ x reported]

=
1

K + 1
+

xL�1X
y=0

Pr [x reportedjy] 1

K + 1

=
1

K + 1
+

xL�1X
y=0

F (�� y) px 1

K + 1

, �

� � x+ � = 1 +

xL�1X
y=0

F (�� y) px:

Solving for px yields

px =
1PxL�1

y=0 F (�� y)
x� �

� � x+ �:
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Note that the reporting strategies characterized by px, xL, l� (y) and beliefs

r(x) that are all uniquely pinned down by the equilibrium value of ��, indeed

constitute an equilibrium. In particular, the consistency of strategies with incen-

tive constraint (2) and beliefs with Bayesian rule (4) has been shown previously.

Besides, it is easy to verify that the remaining equilibrium condition (3) holds

for the derived px since the condition (23) is satis�ed. Hence, the existence of a

unique (symmetric) equilibrium is guaranteed.

Finally, note that there can be multiple other equilibria yielding the same

distribution of messages (uniquely characterized by �� by Theorem 1). Such equi-

libria entail asymmetric lying strategies, i.e., strategies where pxly is not identical

for all y < xL(��) and l < l� (y). However, since �� uniquely de�nes r(x); xL and

l� (y), the total payo¤s of all agents are the same in all these equilibria.

Proposition 3 implies that in the symmetric equilibrium the likelihood as-

signed by liars to report x is increasing and convex in x. Intuitively, once the

reputation from reporting a number becomes low it gets less sensitive to a mar-

ginal increase in the probability mass of agents lying to this number (by Bayes�

formula). Consequently, one requires a larger increase in px to generate the same

amount of reputational loss.

At the same time, there are multiple payo¤-equivalent equilibria yielding the

same distribution of messages. This result is due to the fact that for a given cost

of lying l and observed value y an agent is indi¤erent between all reports in x � xL
under the equilibrium distribution of reports. Hence, all strategies in which pxly
di¤ers across l and y induce exactly the same payo¤s as the equilibrium strategy

where pxly = p
x as far as the total distribution of reported numbers remains the

same (equal to the unique equilibrium distribution pinned down by Theorem 1).

In any asymmetric equilibrium the role of the random variable l (or y) is thus

purely that of a coordination device. In particular, there are also equilibria with

partial lying where a given type of agent does not randomize between reports but

instead plays a pure strategy, and the equilibrium distribution of reports arises

due to di¤erent groups of lying agents playing di¤erent strategies.

We have thus shown that in any equilibrium agents with su¢ ciently small

lying costs choose to lie when the realized number they observed is smaller than a

cut-o¤ value xL. These agents then (generally) randomize among reports x � xL.
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3.3 Extension: Size-Dependent Cost of Lying

So far we assumed that the direct intrinsic costs of lying do not depend on the

size of the lie. We now explore the robustness of our results when we assume that

lying costs additionally include a linear size-dependent component. In particular,

in this section we consider the extended utility function

u (l; x; y) = x� l � IL(x; y)� ajx� yj � � � Pr [y 6= xjx] ; (32)

where a � 0 is a positive constant measuring sensitivity to the size of lying. We
also assume that a < 1, since for a � 1 the only possible equilibrium is complete

truth-telling.16 As in the above, we assume that F (0) = 0, and F (K + �) < 1

which again assures that all numbers are reported with positive probability on

the equilibrium path.

We can show that this game is outcome equivalent to a game with only �xed

cost of lying (with adjusted parameters). To do this, it is useful to establish as a

�rst step that there is still no downward lying:

Proposition 4 No agent reports a number lower than the observed one.

Proof. Assume by contradiction that there is a type observing y0 reporting
a di¤erent number y00 < y0 in equilibrium. Since she then loses both in terms of

the material payo¤ and lying costs, she must obtain a reputational bene�t from

lying, i.e.,

r(y0) < r(y00): (33)

Moreover, reporting y00 must yield a larger utility than truth-telling, i.e.,

y00 � �(1� r (y00))� ajy00 � y0j � l � y0 � �(1� r (y0)) (34)

) y00 � �(1� r (y00))� ajy00 � y0j > y0 � �(1� r (y0)) (35)

, (y00 � y0) + �(r (y00)� r(y0))� ajy00 � y0j > 0: (36)

We now show that this condition implies that any liar would then strictly prefer

to report y00 rather than y0. To see that consider a type who observes y 6= y0; y00.
16Intuitively, in the latter case any deviation from one�s own observation y to some x 6= y

causes a loss in terms of material payo¤ net of lying costs. If the di¤erence in the reputational
payo¤s r(x) � r(y) would o¤set this loss to still make this deviation pro�table, then one can
show that nobody would lie to y so that r(y) = 1, which contradicts r(x) � r(y) > 0 (see the
proof of Proposition 4 below for an analogous argument).
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The di¤erence in utility when reporting y00 rather than y0 is

(y00 � y0) + �(r (y00)� r (y0))� (ajy00 � yj � ajy0 � yj)
� (y00 � y0) + �(r (y00)� r (y0))� ajy00 � y0j > 0;

where the second inequality is by (36), and the �rst inequality follows from the

easily veri�able arithmetic property that for any a; b; c 2 R we must have that

ja� cj � jb� cj � ja� bj:

This implies that no agent observing y 6= y0 would like to lie to y0, strictly

preferring to report y00. Hence, r(y0) = 1 which contradicts (33).

Since there is no downward lying in equilibrium, the agent�s optimization prob-

lem can be replaced with maximizing the following expression over x 2 fy; ::;Kg:

max
x2fy;::;Kg

(1� a)x+ ay � l � IL(x; y)� � � Pr [y 6= xjx] :

Since increasing utility by ay for any choice of x does not a¤ect the optimal choice

of x for a given y, this problem is equivalent to

max
x2fy;::;Kg

(1� a)x� l � IL(x; y)� � � Pr [y 6= xjx] ;

which is �nally equivalent to

max
x2fy;::;Kg

x� l

1� a � IL(x; y)�
�

1� a � Pr [y 6= xjx] :

Hence, the agent�s choice problem is equivalent to the choice problem analyzed

before �except that the parameters l and � are rescaled with a factor (1�a)�1.17

Consequently, all previous results remain as before conditional on the rescaling

of the parameters. In particular, since the distribution of the rescaled �xed lying

costs is given by

eF (z) = Pr[ l

1� a � z] = Pr[l � (1� a)z] = F ((1� a)z);

17Note that in the previous analysis agents optimize over the set f0; ::;Kg : But since down-
ward lying is never observed in equilibrium also in the previous model by Proposition 1 (claims
(i) and (ii)), the restriction of the agent�s action set to fy; ::;Kg does not a¤ect the results.
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the equilibrium condition in Theorem 1 becomes

xL(�
�)�1X

y=0

F ((1� a) (�� � y)) =
KX

x=xL(��)

�
x� ��e� � x+ ��

�
;

where e� = �=(1 � a) and �� 2 (maxf0; K � e�g; K). Correspondingly, the subse-
quent results derived in Section 4 for the baseline model are valid for the extended

model with size-dependent lying costs conditional on the rescaling of the para-

meters.

Finally, we acknowledge that adding a nonlinear size-dependent lying cost

does not generally allow to transform the agent�s optimization problem into the

original problem with only a �xed cost of lying. The equivalence hinges on the

(piece-wise) linearity of the lying costs.

4 Comparative Statics

This section describes the comparative statics of the equilibrium with respect to

a change in the image concerns, �xed lying costs and monetary stakes.

4.1 E¤ect of a Change in the Image Concerns

We now go back to our initial model and consider how a change in the agents�

image concerns a¤ects the equilibrium distribution of the reported numbers.

Proposition 5 If the agents�image concerns � increase, then
(i) xL weakly decreases and

(ii) the likelihood that an agent lies strictly decreases.

Proof. (i) We start with the accounting condition (23)

� (�; �) =

xL(�)�1X
y=0

F (�� y)�
KX

x=xL(�)

x� �
�+ � � x = 0:

By Theorem 1, this implicitly de�nes a function ��(�) 2 (maxf0; K � �g; K)
such that �(��(�); �) = 0. Consider some 0 < �0 < �00. As � (��(�0); �) is strictly

increasing in � for � > �0 (given that then ��(�0) > K � �0 > K � �) we obtain

� (��(�0); �00) > � (��(�0); �0) = 0 = � (��(�00); �00) (37)
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so that

� (��(�0); �00) > � (��(�00); �00) : (38)

At the same time, �(�; �00) is strictly increasing in � on (maxf0; K � �00g; K).
This together with (38) and the fact that K > ��(�0) > maxf0; K � �0g �
maxf0; K � �00g implies that

��(�0) > ��(�00) (39)

for any �00 > �0 > 0. It follows that ��(�) is strictly decreasing in � and, by

Proposition 1 (claim (iv)), xL (��(�)) must then be (weakly) decreasing in �.

(ii) Lemma 3 implies

Pr [Lie] =
1

K + 1

xL(�
�)�1X

y=0

F (�� � y) : (40)

From the proof of claim (i) we know that �� is strictly decreasing in �, which

together with �� > 0 by Theorem 1 leads to the claim.

Hence, stronger image concerns reduce the fraction of liars but enlarge the set

of numbers they report. An intuition for the latter e¤ect is that for high values

of � liars su¤er more from a loss in reputation. Hence, the incentives for liars

to deviate to a lower number (which would not be conceived as a lie) become

stronger. In equilibrium this pushes xL downwards.

Next, we can show that in the limits of � the highest and the lowest feasible

values of xL are reached.

Proposition 6 (i) When image concerns become su¢ ciently large, all numbers
besides 0 are reported by liars, i.e., lim�!1 xL (�) = 1.

(ii) When image concerns become su¢ ciently small, all agents who lie report K;

i.e., lim�!0 xL (�) = K.

Proof. (i) Consider again condition (23):

xL(�
�(�))�1X
y=0

F (�� (�)� y) =
KX

x=xL(��(�))

�
x� �� (�)

�� (�) + � � x

�
:

Since �� (�) > 0 by Theorem 1, the right-hand side, which is continuously de-

creasing in �� on (maxf0; K � �g; K), is bounded from above for a given � > K

21



by
KX

x=xL(��(�))

�
x

� � x

�
which tends to 0 if � !1: Consequently, the left-hand side must go to 0 as well.
Since

xL(�
�(�))�1X
y=0

F (��(�)� y) � F (��(�)� 0) = F (��(�))

we then obtain that F (��(�)) ! 0. As F is a continuously increasing function

and F (0) = 0 , this implies that lim�!1 �
�(�) = 0. This together with Proposi-

tion 1 (claim (iv)) leads to the claim.

(ii) In equilibrium, �� > K � � by Theorem 1. Consequently, at least for any

� < 1 we must have �� > K � 1 so that xL(�) = K by Proposition 1 (claim (iv)).

Note that the result of Proposition 6 (i) has potentially interesting welfare

implications. As we have seen already in the above, larger image concerns have

a dual e¤ect on reporting strategies: on the one hand, the fraction of lies is

reduced, but on the other hand, it becomes harder to infer whether a person

is telling the truth from observing a lower report as liars also report smaller

numbers. When � is su¢ ciently large so that xL = 1, an observer can never

be sure that a reported message is not a lie (except for the lowest message). If

such an observer would have to take a decision based on this information and

mistakes are extremely costly, this might preclude her from taking a (potentially

welfare-improving) action given the unavoidable risk of a mistake. Thus, image

concerns of the agent may back�re for the receiver under certain circumstances.

Appendix A provides a speci�c example of the receiver�s preferences where this is

indeed the case.18 The extension shows formally that higher image concerns not

to be perceived as a liar can back�re whenever it is important to either abstain

from an action or be entirely sure to do the right thing. That is, such image

concerns are harmful whenever even a small likelihood that a report is not true

will render it useless.
18At the same time, one can show that the total probability of lying is converging to 0 if

� ! 1 (the proof is available upon request). From this perspective, su¢ ciently high image
concerns of the sender are bene�cial to the receiver.
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4.2 E¤ect of a Change in the Fixed Costs of Lying

Let us now consider how the equilibrium is a¤ected by a change in the distribution

of the �xed lying costs F . We consider an increase in F in the sense of �rst-order

stochastic dominance (FOSD). That is, assume that the family of lying costs

distributions can be parametrized by � such that for any �0 < �00 and z > 0

F�0(z) > F�00(z). (41)

Proposition 7 If the distribution of lying costs F increases in the sense of

FOSD, then

(i) xL weakly increases and

(ii) the likelihood that an agent lies strictly decreases:

Proof. (i) Consider the accounting condition (23) now denoted as a function
of � and �:

� (�; �) =

xL(�)�1X
y=0

F� (�� y)�
KX

x=xL(�)

x� �
�+ � � x = 0:

By Theorem 1, this implicitly de�nes a function ��(�) 2 (maxf0; K��g; K) such
that �(��(�); �) = 0. By (41), for any given � > 0 and any �0 < �00

� (�; �0) > � (�; �00) : (42)

Hence, we must have that

� (�� (�00) ; �0) > � (�� (�00) ; �00) = 0 = � (�� (�0) ; �0) (43)

so that

� (�� (�00) ; �0) > � (�� (�0) ; �0) : (44)

At the same time, for given � and �, �(�; �) is strictly increasing in � on (maxf0; K�
�g; K). Consequently, (44) implies �� (�00) > �� (�0) for any any �0 < �00 and thus
��(�) must be strictly increasing in �. By Proposition 1 (claim (iv)), xL (��(�))

must then be (weakly) increasing in �.

(ii) Lemma 3 and Theorem 1 imply

Pr [Lie] =
1

K + 1

xL(�
�)�1X

y=0

F� (�
� � y) = 1

K + 1

KX
x=xL(��)

x� ��
�� + � � x: (45)
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From the proof of claim (i) we know that �� is strictly increasing in �, which

together with the fact that the right-hand side of (45) is decreasing in �� leads to

the claim.

Thus, the e¤ect of an increase in the �xed lying costs goes in the opposite

direction of the e¤ect of an increase in the image concerns not to be perceived

as a liar: the range of reported lies shrinks as the �xed lying costs increase. The

intuition for this e¤ect is that at higher lying costs less agents lie and thus the

reputational loss from reporting a high number decreases. In turn, the relative

incentive to disguise lies by reporting smaller values is reduced.

Next, we consider again limit results. Let us take a convention that if �!1
then F�(z) ! 0, and if � ! 0 then F�(z) ! 1 for any z > 0. The next

proposition shows that if lying costs get very large, agents lie only to the highest

possible number. At the same time, it is not generally true that xL converges to

the minimal possible value of 1 if � approaches 0 (given that it is increasing in �

by Proposition 7). The reason is that if � is su¢ ciently small, the incentives to

disguise the lie by reporting lower numbers remain weak for any lying costs. In

this case, agents may never report low numbers independently of the �xed lying

costs.

Proposition 8 (i) When lying costs become su¢ ciently large, all agents who lie
report K; i.e., lim�!1 xL (�; �) = K.

(ii) For every exL 2 f1; ::; Kg there exists an �0 > 0 such that lim�!0 xL (�
0; �) =exL.

Proof. (i) Consider the equilibrium condition (23) which implicitly de�nes

�� as a function of �:

xL(�
�(�))�1X
y=0

F� (�
� (�)� y) =

KX
x=xL(��(�))

�
x� �� (�)

�� (�) + � � x

�
: (46)

If �!1, then F�(��y)! 0 for any given � and y. Since �� (�) is bounded from

above byK (by Theorem 1), this implies that the left-hand side of (46) and hence

the right-hand side of (46) converge to 0 for �!1. Since the denominator on the
right-hand side of (46) is bounded from above and all terms in the corresponding

sum are positive (given that xL > �� by Proposition 1 (claim (iv)) and �� > K��
by Theorem 1), this is only possible if xL = K and ��(�)! K:

(ii) First, consider exL = K. Then, the claim follows from the fact that for

any � < 1 we have that xL(�) = K for any � (see the proof of Proposition 6(ii)).
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Next, consider any given fxL 2 f1; ::; K � 1g. Denote functions

� (�; �; �) =

xL(�)�1X
y=0

F� (�� y)�
KX

x=xL(�)

x� �
�+ � � x;

L1(�) = lim
�!0

�(fxL � 1; �; �)
= lim

�!0

0@fxL�1X
y=0

F� (fxL � 1� y)� KX
x=fxL

x� (fxL � 1)fxL � 1 + � � x
1A

= fxL � 1� KX
x=fxL

x� (fxL � 1)fxL � 1 + � � x;
L2(�) = lim

�!0
�(fxL; �; �) = lim

�!0

0@ fxLX
y=0

F� (fxL � y)� KX
x=fxL+1

x�fxLfxL + � � x
1A

= fxL � KX
x=fxL+1

x�fxLfxL + � � x;
where we used the facts that F� (0) = 0, and that for any integer x we have that

xL (�)j�=x = x+ 1.
Let us show that there exists an �0 2 (K �fxL + 1;1) such that

L1(�
0) < 0; (47)

L2(�
0) > 0: (48)

Indeed, consider � 2 (K � fxL + 1;1). In this domain, both L1(�) and L2(�)
are continuously increasing in �, while L2(�) > L1(�). Note also that L1(�) has

a unique root in this domain if fxL > 1 (since lim�!K�fxL+1 L1(�) = �1 and

lim�!1 L1(�) = fxL � 1 > 0). This implies that there exists an �0 in a su¢ cient
proximity to this root such that (47) and (48) hold. In the remaining case offxL = 1 we have that L1(�) is negative for all � > K � fxL + 1, while L2(�) is
positive for su¢ ciently large �. Hence, (47) and (48) again hold for su¢ ciently

large �.

Let us �x �0 such that (47) and (48) hold. Given the de�nitions of L1(�) and

L2(�), these conditions imply that there exists a � such that for all � � � we
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have that

�(fxL � 1; �; �0) < 0;

�(fxL; �; �0) > 0:

Note also thatK > fxL > maxf0; K��0g (due to �0 > K�fxL+1 by construction).
Consequently, for all � � � the value of � yielding �(�; �; �0) = 0 on the interval
(maxf0; K � �0g; K) must lie between fxL � 1 and fxL (since � is continuously
increasing in � on this interval as shown in the proof of Theorem 1). Hence, by

Theorem 1 for all � � �

��(�; �0) 2 (fxL � 1;fxL): (49)

This together with Proposition 1 (claim (iv)) implies that for � = �0 we have

xL = fxL for all � � �.
Proposition 8 thus shows that partial lying to reports below K �the main

feature of the characterized equilibrium �can emerge also if the �xed lying costs

are negligible.19 In fact, when the �xed lying costs become very small, the set

of reports chosen by liars is not uniquely pinned down but is determined by

the strength of the image concerns. Moreover, in this case we can partition

all potential values of � > 0 into disjoint intervalsM1; ::;MK (in a consecutive

order) such that for every x 2 f1; ::; Kg there is a corresponding interval of � from
this partition which induces xL = x when the costs of lying become su¢ ciently

small, as shown in the next corollary.

Corollary 1 There is a unique partition of R+ into K nonempty convex sets

M1; ::;MK such that x = lim�!0 xL (�; �) if and only if � 2 Mx. Moreover, for

any �i 2Mi and �j 2Mj such that i < j we have that �i > �j.

Proof. By Theorem 1 for each � and � there exists a unique equilibrium value
xL (�; �). By Proposition 7(i) xL (�; �) is monotonically increasing in �. Since

it is also bounded, there is a unique value of xL for each � to which xL (�; �)

converges as � ! 0: At the same time, by Proposition 8(ii) we know that for

each x 2 f1; ::; Kg there exists an � > 0 such that x = lim�!0 xL (�; �). Hence,

there must be a partition of R+ into K nonempty sets M1; ::;MK such that

x = lim�!0 xL (�; �) if and only if � 2Mx.

19Note that we still need F (0) = 0; i.e., the assumption that people avoid the lie when they
are otherwise indi¤erent between lying and telling the truth, to ensure the existence of the
considered equilibrium (see the proof of Theorem 1).

26



Consider now any �i 2 Mi and �j 2 Mj such that i < j. By construction

of setsM we must have that xL(�i; �) = i < j = xL(�j; �) for su¢ ciently small

values of �. By Proposition 5 this implies �i > �j.

Finally, the monotonicity of the index i inMi with respect to � implies that

all setsM are convex.

The next result demonstrates that intrinsic lying costs are still required to

explain the typical pattern observed in experiments that (i) at least several lowest

numbers are not overreported (i.e., xL � 2; that is there are at least two lowest
reports which are reported with a probability between 0 and 1=(K +1)), and (ii)

there is a signi�cant share of subjects reporting even x = 0. In particular, if the

�xed lying costs converge to 0 while lim�!0 xL � 2 (which happens if � is not too
large by Corollary 1), the lowest number is almost never reported in contrast to

this evidence.

Proposition 9 Fix any � 2 Mi such that i � 2. Then the equilibrium has the

property that lim�!0 Pr[x = 0] = 0.

Proof. Note that for any �

��(�) � xL(�)� 1 � 1; (50)

where the �rst inequality is by Proposition 1 (claim (iv)), and the second in-

equality is due to Proposition 7 and lim�!0 xL � 2 (with the latter implied by

i � 2 and the de�nition ofMi). Hence, ��(�) is bounded from below by 1. By

Lemma 3, the lying rate conditional on observing 0 is F� (��) which converges to

1 when � ! 0 (and �� is bounded from below) such that lim�!0 Pr[x = 0] = 0.

Hence, having nonnegligible �xed costs of lying in the model is necessary to

explain the whole pattern of experimental data.20

4.3 E¤ect of a Change in the Monetary Stakes

As a �nal step in the theoretical analysis, we consider the e¤ect of the size of

monetary stakes on the structure of the equilibrium reporting behavior. Assume

20This is consistent with the results of Abeler, Nosenzo and Raymond (forthcoming) who
came to a similar conclusion within their modeling framework.
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now that the agent�s utility is

u (l; x; y) = s � x� l � IL(x; y)� � � Pr [y 6= xjx] ;

where s denotes the stake size. Note that the agent�s choice problem is equivalent

to maximizing

bu (l; x; y) = x� l

s
� IL(x; y)�

�

s
� Pr [y 6= xjx] (51)

such that an increase in stake size can be analogously expressed as a joint decrease

in image concerns and lying costs. Intuitively, reputational concerns and �xed

lying costs become relatively less important for the agent as the monetary reward

for lying increases. Given (51), we can apply all of our earlier results substituting

the image concerns parameter and costs of lying appropriately. In particular, an

increase in the stake size (i.e., s > 1) corresponds to a shift in the distribution of

the costs of lying in the sense of FOSD since for any z > 0

F (z) = Pr[l � z] < Pr[l=s � z] = Fs(z); (52)

where Fs(z) is the distribution of the normalized lying costs.

Proposition 10 An increase in monetary stakes raises the likelihood that an
agent lies.

Proof. For any �0 < �00 and �0 < �00 we must have that

Pr[Liej�0; �0] > Pr[Liej�0; �00] > Pr[Liej�00; �00]; (53)

where the �rst inequality follows from Proposition 7 (ii) and the second from

Proposition 5 (ii). Hence, any joint reduction in � and � (which is outcome

equivalent to an increase in s as shown above) causes a (strict) increase in the

lying rate.

Proposition 10 is in line with the experimental evidence of Kajackaite and

Gneezy (2017) who show that the total rate of lying signi�cantly increases with

the stake size once controlling for the perceived negative consequences from being

eventually detected as a liar (which in turn might be correlated with monetary

stakes). However, in some other studies not controlling for this (e.g., Mazar, Amir

and Ariely, 2008) the evidence for the stake size e¤ect on lying is ambiguous. The

meta study by Abeler, Nosenzo and Raymond (forthcoming) �nd positive stake
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size e¤ects when analyzing only studies in which the stake size is varied within

the same experiment. However, they don�t �nd stake size e¤ects when comparing

lying behavior across di¤erent experiments in di¤erent laboratories.

At the same time, a plausible extension of our model would be consistent with

observing only weak stake size e¤ects. In particular, this could be explained by

the possibility that a higher stake size leads to a higher marginal cost of lying.

To see that consider our extension from Section 3.3 where we allowed costs of

lying that linearly depend on the size of the lie. If we now assume that the

marginal intrinsic cost of lying a is an increasing function of the stake size (i.e.,

of the marginal monetary bene�t of lying by one report unit) the utility function

becomes

u (l; x; y) = sx� l � IL(x; y)� a (s) jx� yj � � � Pr [y 6= xjx] :

We can apply the same considerations as in Section 3.3 to show that maximizing

u (l; x; y) is equivalent to maximizing

max
x2fy;::;Kg

x� 1

s� a (s) l � IL(x; y)�
1

s� a (s)� � Pr [y 6= xjx] :

But note that
@

@s

�
1

s� a (s)

�
= � 1� a0 (s)

(s� a (s))2

which may have a negative sign depending on the shape of a (s). In the latter

case, the rate of lying should decrease by Propositions 5 and 7. Hence, when

the intrinsic costs of lying depend on its monetary consequences, the e¤ect of an

increase in stake size s on the probability of lying can be attenuated and even

may be (locally) negative.

With respect to the e¤ect of the stake size on the range of reported lies

(i.e., xL) our model does not provide clear directional predictions. As outlined

above, an increase in the stake size is equivalent to a joint decrease in both

the reputational lying costs (�) and the �xed lying costs (�). Yet, according

to Propositions 5 and 7, these two e¤ects push xL in the opposite directions.

The net e¤ect depends on the parameter values, in particular on the form of

distribution F . If the resulting decrease in the relative �xed lying costs is more

prominent, the range of reported lies can expand with s (see Appendix B for

a numerical example). Notably, this is in line with the e¤ect of the stake size

in Fischbacher and Föllmi-Heusi (2013) who observed a shift in reporting the

second-highest number of 4 from 17:72 to 27:50 percent (with only the second
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value being signi�cantly di¤erent from 1/6) as the stake size was tripled.21

5 Empirical Calibration

The model predicts the main qualitative patterns observed in Fischbacher and

Föllmi-Heusi (2013)-type cheating games. In particular, it rationalizes the exis-

tence of a threshold xL with numbers below (above) xL being under(over)reported

(see Proposition 2). And, moreover, it shows why there are �partial lies�, i.e.,

why not all liars report the payo¤ maximizing number.

Of course, there may be other behavioral mechanisms at work in addition to

those we capture in our model. But it is yet instructive to verify how well the

model can be calibrated to �t the actual experimental data in Fischbacher and

Föllmi-Heusi (2013). For the distribution of lying costs F , we assume that they

are drawn from a normal distribution left-truncated at 0, where the underlying

(nontruncated) distribution has mean 0 and standard deviation �.22 The cali-

bration was obtained by �nding the values of � and � which minimize the mean

squared error between the predicted and the observed values.23

The parameter values producing the best �t of the message frequencies pre-

dicted by the model to the data in the baseline treatment of Fischbacher and

Föllmi-Heusi (2013) are � = 3:65 and � = 2:96 yielding xL = 4 (Fig. 1). One

can see that the model predicts the main data patterns from the experiment, in

particular the substantial amount of partial lying to x = 4, as well as a positive

fraction of subjects reporting 0.24 Notably, setting � = 0, i.e., using the model

without reputational concerns results in a much worse �t than that of the main

model (see Fig. 2).25

The model is also capable to analyze speci�c treatment e¤ects found in ex-

perimental cheating games. Gneezy, Kajackaite and Sobel (2018) compared two

21The rates of reporting smaller numbers were lower than 1/6 in both treatments. The
control treatment was formed within the same subject sample, and hence was di¤erent from
the baseline treatment reported in our Section 5.
22We assume that the distribution of lying costs is shifted towards 0 given the frequent

experimental observation that the probability mass of individual social preference parameters
is shifted towards payo¤ maximization (see, e.g., Engel, 2011).
23Note that using the extended model with size-dependent lying cost from Section 3.3 cannot

improve the calibration since such model is structurally equivalent to the original model as
shown in that section.
24Similarly good �t is obtained by calibrating the model to the aggregated data from the

meta-study of Abeler, Nosenzo and Raymond (forthcoming).
25The mean squared error is 6:79 in the main model with image concerns and 29:90 in the

benchmark model (in terms of percentage points). According to the F-test, the �rst model �ts
the data signi�cantly better (p = 0:021).
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Figure 1: Empirical calibration of the main model to the baseline treatment in
Fischbacher and Föllmi-Heusi (2013).

Figure 2: Empirical calibration of the model without reputational concerns (� =
0) to the baseline treatment in Fischbacher and Föllmi-Heusi (2013).
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treatments ("observed" and "non-observed") which di¤ered in whether the ex-

perimenter was able to verify (ex-post) the true number rolled by the participant

(since in the observed treatment the number was protocoled by the computer

software).26 Consider the observed treatment. Since subjects observed their true

number privately on a computer screen (and later had to report it on a sheet of pa-

per to the experimenter), they could still be uncertain whether the experimenter

necessarily had veri�ed their report by the time they received their payments

(at which moment the image concerns may be considered to be most relevant).

Hence, it is plausible to model the subject�s utility function as

u (l; x; y) = x� l � IL(x; y)� � � (IL(x; y) + (1� r(x))(1� )) ;

where  is the probability that the experimenter veri�es the report.27 This trans-

forms into

u (l; x; y) = x� (l + �) � IL(x; y) + �(1� ) � (1� r(x)):

Thus, when there is the possibility of veri�cation the behavior of agents with

parameter values � and l would be equivalent to the behavior of the hypothetical

agents with adjusted parameters e� = �(1 � ) and el = l + � in our baseline

setting. Consequently, the model would predict that in the observed treatment

the estimated image concerns should decrease relative to the non-observed treat-

ment (once the estimation is based on the baseline model in both cases). And

analogously the estimated �xed lying costs should increase.

In line with this prediction, calibrating the empirical results from the two

treatments in Gneezy, Kajackaite and Sobel (2018) with the baseline model results

in that the observed treatment yields relatively lower estimate of image concerns

(� = 2:45 vs. � = 3:18) and relatively higher estimate of the �xed costs of lying

(� = 10:18 vs. � = 4:98), see Fig. 3.28 Note also that the estimation of � in the

non-observed treatment in Gneezy, Kajackaite and Sobel (2018) is close to that

in the baseline treatment of Fischbacher and Föllmi-Heusi (2013) (3:18 vs. 3:65).

Finally, the data in Gneezy, Kajackaite and Sobel (2018) for the observed

treatment allows to construct the distribution of reports conditional on a given

number drawn by subjects (which was also known to the experimenter). As Fig.

26In particular, we consider their Numbers observed treatment and Basic non-observed treat-
ment. In both of these treatments, the payo¤ was equal to the reported number.
27This captures that Pr[Liejx] = 1 if the experimenter veri�es the report while x 6= y, and

Pr[Liejx] = 1� r(x) if the experimenter does not verify the report.
28The calibrated values of xL are 8 in the non-observed treatment and 9 in the observed

treatment.
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(a) Non-observed treatment (a) Observed treatment

Figure 3: Empirical calibration of the main model to the experimental treatments
in Gneezy, Kajackaite and Sobel (2018).

(a) Theory (b) Data

Figure 4: Distribution of reports for each drawn number: a) in the calibrated
model and b) in the observed treatment in Gneezy, Kajackaite and Sobel (2018).

4 shows, this empirical distribution is again close to the theoretical prediction

(after substituting the previously calibrated parameter values).

6 Conclusion

We have shown that incomplete lying behavior naturally arises in the Fischbacher

and Föllmi-Heusi (2013) setting when agents have (i) a �xed cost of lying and (ii)

image concerns not to be perceived as a liar. When image concerns are su¢ ciently

strong agents can �disguise�a lie only when liars randomize over a set of reports.

This allows to reduce larger reputational losses occurring when all liars report

the highest feasible report. In particular, as we have shown an agent�s reputation
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to be honest must be strictly decreasing in the reported number so that any

monetary gain is o¤set by an equivalent loss in reputation.

We furthermore have shown how the distribution of the reported numbers

changes with the agents�image concerns. When they are weak, all liars report

the number yielding the maximum feasible payo¤. As image concerns increase,

the lower bound of the set of numbers reported by the liars shifts to the left. In

the limit, liars randomize over all but the lowest feasible number. Hence, higher

image concerns of the agent may actually back�re for the receiver in terms of

the usefulness of information: in the limit case, the receiver can never be sure

that the reported number is not a lie, except for the lowest message. In contrast,

higher �xed costs of lying always lead to a reduction in the range of reported lies.

The model can explain many stylized facts identi�ed by Fischbacher and

Föllmi-Heusi (2013) and the meta study by Abeler, Nosenzo and Raymond (forth-

coming): a) the fraction of people reporting a payo¤of 0 is positive, b) the fraction

of people reporting 5 is above 1/6; c) the fraction of people reporting 4 is above

1/6. Moreover, the model can replicate the observed di¤erence in behavior once

the experimenter is able to verify lying ex-post (as in Gneezy, Kajackaite and

Sobel, 2018).

Overall, our model provides a useful workhorse for the analysis of empirical

data from cheating experiments. The model may of course be extended in several

directions. However, with only two components, i.e., �xed costs of lying and

image concerns, our model attains already a reasonably good �t to the actually

observed distribution of lies in cheating games. Future experiments may further

verify the predictions of the model for instance by exogenously manipulating the

strength of image concerns by varying the audience of outside observers (as in

Ariely, Bracha and Meier, 2009), or by exogenously changing the costs of lying

through imposition of random monitoring and punishments for liars.
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Appendix A: Adverse E¤ect of Reputational Con-

cerns

In this section, we consider an example where an increase in the agent�s reputa-

tional concerns � may back�re for a receiver of the agent�s message. Assume that

the receiver is a potential buyer of a credence good (say di¤erent types of surgery,
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or di¤erent types of investment products), who can choose a product out of K+1

options from 0 to K. He also has an outside option of abstainment from pur-

chase. Thus, his action space is f0; 1; ::; Kg [A, where a number denotes buying
a speci�c product variety, while A denotes abstainment. Before the game, Nature

randomly chooses one option to be pro�table with each option being chosen with

probability 1=(K + 1). The pro�table option is denoted as y 2 f0; 1; ::; Kg. The
buyer�s payo¤ is

�R =

8><>:
0 if a = A;

y if a = y;

�L if a =2 fy; Ag:

Thus, the buyer obtains a positive payo¤ if and only if he buys the pro�table

option (larger than zero), while di¤erent options yield di¤erent potential pro�ts.

We also assume that L is su¢ ciently large, i.e., the buyer su¤ers a severe loss in

case he buys a nonpro�table option.

Then, assume that the buyer observes a report x made by an agent prior to

buying. The agent observes y and has preferences as speci�ed in our model such

that she bene�ts from reporting higher numbers but her payo¤ does not depend

on the buyer�s choice (for instance, the agent is an �expert�with reputational

concerns who does not sell the product but has a preference for giving speci�c

recommendations beyond its true value for the buyer) .

In this case, if L is su¢ ciently large, the buyer would avoid buying the product

if there is a positive likelihood that the agent has lied, i.e., the buyer�s optimal

strategy would be (assuming without loss of generality that the buyer prefers

buying over A in case of indi¤erence):

a� =

(
A if x � xL
y if x < xL;

where xL is as de�ned in our model. Consequently, the buyer�s ex-ante payo¤ is

E[�R] =

xL�1X
z=0

(Pr[x = z] � z) :

This implies that E[�R] > 0 if and only if xL > 1. Hence, by Propositions 5

and 6, the buyer is better o¤ when image concerns � are not too big (such that

xL > 1) as for large enough � we have that xL = 1.

In other words, too strong reputational concerns make it attractive to lie even

towards very low reports that are unattractive for the agent. In turn, even after
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observing an unattractive recommendation in this case (as long as it is not the

most unattractive one), the buyer cannot be sure that such a report comes from

an honest agent, in which case he prefers to abstain from decision. Hence, the

advice becomes e¤ectively useless. If, however, agents have weak reputational

concerns, they would never report unattractive options �thus any such advice

must come from honest agents, and hence can be followed without risk.

Appendix B: Numerical Simulation of the E¤ect

of the Monetary Stakes on xL

When we substitute l and � according to a shift in the stake size to s�x, equilibrium
condition (23) becomes

� (�; s) =

xL(�;s)�1X
y=0

Fs (�� y)�
KX

x=xL(�;s)

x� �
�+ �

s
� x = 0; (54)

where Fs(z) is given by (52) (see Section 4.3). The equilibrium is characterized

by a unique value �� 2 (maxf0; K � �=sg; K) solving the equation.
Consider an example withK = 5; � = 3:65, and F being a normal distribution

left-truncated at 0, where the underlying (nontruncated) distribution has mean �

and standard deviation � = 1, so that Fs(z) = F (zj�=s; �=s). Then, if � = 0 and
s increases from 1 to 2, the value of �� 2 (maxf0; K � �=sg; K) solving equation
(54) changes from 2:681 to 3:584, and hence xL increases from 3 to 4. At the

same time, if � = 5, then the same increase in s leads to a decrease in �� from

4:237 to 3:840 so that xL drops from 5 to 4.
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