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Abstract 
 
We study the role of endogenous healthcare choices by households to extend their expected 
lifetimes on economic growth and welfare in a decentralized overlapping generations economy 
with the realistic feature that households’ savings are held in annuities. We characterize 
healthcare spending in the decentralized market equilibrium and its effects on economic growth. 
We identify the moral-hazard effect in healthcare investments when annuity rates are 
conditioned on average mortality and explain the conditions under which this leads to over-
investment in healthcare. Moreover, we specify the general equilibrium effects and 
macroeconomic repercussions associated with this moral-hazard effect. In a numerical 
simulation of our model with OECD data, we find that the moral-hazard effect may be 
substantial and implies sizeable welfare losses of approximately 1.5%. At a more general level, 
our study suggests that welfare improvements from longevity increases may be lower than 
suggested when considered in planner economies. 
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1 Introduction

In recent decades, nearly all countries have experienced a substantial increase in human longevity.

At least in the developed world, higher expected lifetimes have been accompanied by a significant

increase in healthcare expenditures. For example, life expectancy in the U.S. rose from 69.8 to

78.6 years between 1960 and 2010, while health expenditures, as a share of GDP, surged from

5.2% to 16.4% (according to OECD data).

How does this increased longevity translate into welfare gains? While the existing literature

has approached this question by suggesting extended welfare measures that include longevity,

varying exogenous longevity in growth models and discussing endogenous healthcare choices in

macroeconomic social planner models, this paper introduces a new perspective. We develop

and analyze an endogenous growth model in which longevity is endogenously determined by

households’ demand for healthcare services in a decentralized market economy.1 This perspective

allows us to study the general equilibrium effects and macroeconomic repercussions on economic

growth – and, consequently, the comprehensive welfare effects – of individual healthcare choices.

As we will show, these individual healthcare choices are not necessarily efficient. We partic-

ularly focus on an effect that – while important and most likely involving substantial macroe-

conomic repercussions – has not yet received much attention in the macroeconomic literature:

the moral-hazard effect in healthcare investments arising from annuities. Its importance arises

from the fact that nearly all social security systems crucially depend on (mandatory) annu-

itization, where the annuity premium is not conditional on individual healthcare choices, but

only on average mortality rates. As “Public annuity programs are thus large and growing: in

OECD countries they constitute about one-tenth of the gross domestic product, make up more

than three-quarters of all social insurance, and have contributed to a quarter of the growth in

total public expenditures since 1960” (Philipson and Becker, 1998, p. 552), the properties of

annuities have recently received considerable attention (e.g., Hosseini, 2015 focuses on adverse se-

lection, while Reichling and Smetters, 2015 consider the role of mortality-related medical costs).

While Davies and Kuhn (1992) and Philipson and Becker (1998) provide seminal microeconomic

(partial equilibrium) analyses of the moral-hazard effect of longevity-increasing healthcare in-

vestments, we are, to the best of our knowledge, the first to examine the general equilibrium

effects and its macroeconomic repercussions.

In addition, we use our model to discuss the role of technological progress in healthcare

technology for economic growth and welfare. Finally, we simulate our model using OECD data

to illustrate the sizes of the growth and welfare effects associated with moral hazard in healthcare

spending, as well as the effects of technological improvements in the healthcare sector.

From a methodological perspective, our model combines the household side of overlapping

generations perpetual youth models in the tradition of Blanchard (1985) with the production side

of an endogenous growth model in the style of Romer (1986) amended by a healthcare sector. We

1There is a substantial empirical literature on the relationship between health expenditures and life expectancy
that argues that expected lifetime is not given per se but can be influenced by investments in healthcare, such as
improving sanitation, buying medication and inoculations, consulting a physician, etc. (Lichtenberg, 2004; Cutler
et al., 2006; Hall and Jones, 2007; Caliskan, 2009).
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first demonstrate the existence of a unique market equilibrium in the steady-state economy and

discuss the general equilibrium and growth effects of varying healthcare sector sizes. Then, we

characterize and solve the problem of a social planner maximizing the sum of individual lifetime

utilities to identify three inefficiencies in the decentralized market equilibrium: the standard

learning-by-investing externality (Romer, 1986), a spillover effect of healthcare investments on

the productivity of consumption good production and the moral-hazard effect associated with

annuities with returns that are conditioned on average mortality.

We then show how the sign and size of the moral-hazard effect in healthcare investments

depends on the relative changes in the households’ expected consumption paths and expected

lifetime wealth. In the steady-state equilibrium, the result ultimately depends on the difference

in the growth rate of individual household consumption and the growth rate of the economy as

a whole. The difference between the two growth rates originates from the finite lifetimes of the

individuals, thereby leading to the corresponding generations turnover term in the growth rate

of the economy. We show that if the consumption growth rate of the household is positive and

larger than the growth rate of the economy, then individuals over-invest in healthcare in the

decentralized market equilibrium with annuities conditioned on average mortality rather than

individual health status.

What are the macroeconomic implications of over-investment in healthcare? On the one

hand, when households live longer, their propensity to consume out of expected lifetime wealth

declines, as saving for old age becomes more valuable. This increases the economy’s growth rate.

On the other hand, shifting labor from the more capital-intensive consumption good production

into the healthcare sector reduces the marginal return on capital. A lower interest rate decreases

incentives to save and, as a consequence, implies lower economic growth. We show that the first

direct and positive effect of higher longevity on economic growth dominates if the healthcare

sector is rather small; however, given a larger health sector, the indirect and negative effect,

working through the change in the interest rate, prevails. Accordingly, the households’ welfare

is affected by over-investments in healthcare, not only by an imbalance between the enjoyment

of a longer life and its associated direct healthcare costs, as emphasized in the microeconomic

literature, but also by changes to the return on the underlying fundamental of the annuities,

i.e., the return on capital, as well as the wage rate and the economy’s growth rate.

While the theoretical rationale for the importance of examining the general equilibrium ef-

fects and macroeconomic implications of moral hazard associated with annuities unconditioned

on individual healthcare investment is conclusive, are the implications also quantitatively sig-

nificant? Simulating our model to OECD data, we argue that most likely they are. We find

overall welfare losses due to overspending in healthcare of approximately 1.5%. Decomposing

the overall welfare effect into its different components, we find that the direct impacts due to

individual household behavior are rather small while the general equilibrium effects and the

effect on the economy’s growth rate dominate.

Finally, we investigate the implications of technological improvements in the healthcare sec-

tor. We consider two different types of healthcare improvements. The first type decreases base-

line mortality, which is independent of individual investments in healthcare. One could think

2



of improvements in the sanitary infrastructure or behavioral changes such as reduced smoking.

The second type increases the marginal productivity of healthcare expenditures. Examples in-

clude better medication or therapeutic breakthroughs, such as new diagnostic tools or surgeries.2

We show that in our model framework, both types of health technology improvements increase

households’ healthcare investments. The resulting increased life expectancy exerts a direct pos-

itive effect on the economy’s growth rate via a higher incentive to save. However, an associated

increase in healthcare spending will have the indirect negative effect of reducing the interest rate.

Similar to the growth consequences of overspending in healthcare due to moral hazard with un-

conditioned annuities, as discussed previously, technological improvements in health increase the

growth rate when the healthcare sector is very small but have negative growth effects when the

healthcare sector is sufficiently large. To illustrate the welfare effects from improved technology,

we calibrate our model such that it reflects the increase in healthcare investments in the average

OECD country between 1980 and 2005. While our numerical calculations suggest a substantial

welfare gain of approximately 4.5% due to better healthcare technology, we also find that the

moral-hazard effect becomes larger if the healthcare technology improves. Thus, our analysis of

the macroeconomic repercussions of moral hazard due to unconditioned annuity claims suggests

that welfare benefits due to increased longevity may be lower than is often suggested.

The remainder of the paper is organized as follows. In the next section, we relate our

paper to the existing literature. In Section 3, we introduce the model and provide a detailed

discussion of the household’s maximization problem with respect to healthcare. In Section 4,

we characterize the market equilibrium and derive the dynamics of the aggregate economy. We

identify the inefficiencies in the decentralized market equilibrium in Section 5 by analyzing the

social planner’s solution. In addition, we explain in detail the moral-hazard effect in healthcare

spending due to annuities when their return is not conditioned on the individual household’s

health status. We discuss the role of technological progress in healthcare technology in Section

6 before we provide a numerical simulation of our model using OECD data in Section 7. Finally,

we discuss several aspects of our model in relation to the real world in Section 8 and conclude

in Section 9. The proofs of all propositions are relegated to the Appendix.

2 Related Literature

Our main contribution is to develop an endogenous growth model with endogenous lifetime,

in which households determine their healthcare investments in a decentralized market econ-

omy. This innovation provides us with the tools to analyze the general equilibrium effects and

macroeconomic repercussions of distortions in healthcare investments due to annuitized wealth,

as identified in the microeconomics literature. Thus, our paper is related to the following strands

of the literature.

In a model that has similarities with our framework, Kuhn and Prettner (2016) examine the

2Our model emphasizes that increases in healthcare expenditures and longevity are driven primarily by the
availability of better healthcare technologies, a view supported, for example, by Newhouse (1992), Cutler et al.
(2006), Suen (2006) and Fonseca et al. (2009).
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channels through which an expanding healthcare sector affects economic growth and welfare.

They build on the R&D-based endogenous growth model with horizontal innovation of Prettner

(2013) by adding a productive healthcare sector. They find that R&D increases in response to

healthcare investments due to a general equilibrium effect that reduces the interest rate and,

thus, facilitates financing additional research projects. This positive growth effect may outweigh

the negative effect of diverting labor from final goods production when the healthcare sector is

small, but for larger health sectors, economic growth will decline in response to higher healthcare

investments. In this paper, we find a similar growth reaction to an expanding healthcare sector

in a model in which growth is driven by capital accumulation. However, the broader mechanism

in our model could be interpreted as resulting from a more detailed underlying production side

that explicitly includes R&D activities. The main difference between our paper and Kuhn and

Prettner (2016) is our endogenous modeling of individual households’ healthcare choices that

allows us to endogenously determine the size of the healthcare sector and the households’ life

expectancies. This innovative feature also distinguishes our paper from a large body of other

papers considering the growth effects of exogenous variations in longevity, including Kalemli-

Ozcan et al. (2000), Azomahou et al. (2009), de la Croix and Licandro (1999), Boucekkine et al.

(2002), Echevarŕıa and Iza (2006) and Irmen (forthcoming).3

Chakraborty (2004), Chakraborty and Das (2005), Bhattacharya and Qiao (2007) and Le-

ung and Wang (2010) analyze a neoclassical growth model with endogenous longevity, which

is determined by either household or government investments in health. While savings and

healthcare expenditures compete for the same resources, they are complements in equilibrium.

Thus, higher economic development is accompanied by a longer average lifetime. Combining

endogenous growth with endogenous longevity, van Zon and Muysken (2001) and Aı́sa and

Pueyo (2006) find non-monotonic relationships between longevity and growth. In these papers,

longevity is endogenous but determined via aggregate spending in healthcare by a government

or a social planner. In contrast, we develop an endogenous growth model, in which each house-

hold’s average life expectancy directly depends on the household’s investments in healthcare.

Jones (2016) develops a growth model with R&D in both the consumption goods sector and the

healthcare sector and considers the optimal allocation of investment resources from a planner’s

perspective in an infinitely lived agent framework neglecting any externalities. Our paper, by

contrast, purposefully includes several realistic features, such as a population structure with

overlapping generations and old-age retirement saving in annuities that reflects the properties

of typical social security systems to examine their effects on endogenous healthcare choices and

economic growth.

3More remotely, our paper is also related to the literature on demographic transitions and the literature on
the growth effects of epidemics such as AIDS. The former analyzes the relationship among fertility, mortality
and growth. Longevity is either exogenous (Doepke, 2004; Soares, 2005; Hashimoto and Tabata, 2010; Prettner,
2013), endogenously determined via an externality of aggregate variables such as average income or human
capital (Blackburn and Cipriani, 2002; Kalemli-Ozcan, 2002; Lagerloef, 2003; Cervellati and Sunde, 2005; Hazan
and Zoabi, 2006) or endogenously determined by the healthcare investments of the parents (de la Croix and
Licandro, 2013). Within the latter, Young (2005) concludes that the AIDS epidemic in South Africa, despite
being a humanitarian disaster, has rather positive effects on long-run growth. Bell et al. (2006) and Bell and
Gersbach (2009) are less optimistic and emphasize that epidemics may lead to poverty traps.
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A central focus of our paper is on the moral-hazard effect in healthcare spending associ-

ated with old-age-mortality-contingent claims such as annuities that are conditioned on average

mortality rather than the individual household’s health status. This moral-hazard effect is

identified in partial equilibrium frameworks by Davies and Kuhn (1992), Philipson and Becker

(1998), Sheshinsky (2008) and Kuhn et al. (2015), but – to the best of our knowledge – we are

the first to examine how it percolates through the economy. We argue that this is of utmost im-

portance, as on the one hand, healthcare expenditures represent a substantial fraction of GDP,

with corresponding implications on the aggregate economy, and on the other hand, old-age sav-

ing is, to a large extent, held in annuities. It is also for these two reasons that Reichling and

Smetters (2015) study optimal annuitization with correlated medical costs. As large shares of

retirement wealth are held in mandatory annuities, Hosseini (2015) examines the welfare bene-

fits of this obligation by avoiding adverse selection in the annuity market. We emphasize that

such mandatory annuities entail another distortion, namely the moral-hazard effect in healthcare

spending, which we focus on in our paper, with particular emphasis on its general equilibrium

effects and macroeconomic repercussions. While the macroeconomic implications of unfairly

priced annuities relative to fairly priced annuities are studied in Heijdra and Mierau (2012), we

shift the focus to the macroeconomic implications of annuities when healthcare spending and

longevity are endogenous. Taking the moral hazard effect of annuities on healthcare spending

into account together with several other factors, a recent literature (Zhao, 2014; Zhang et al.,

2006; Yew and Zhang, 2017) argued that the expansion of social security can explain a large

part of the surge in healthcare spending over the last few decades. Rather than quantifying

the effects of expanded social security on healthcare spending, our focus lies on the effects of

healthcare spending on the aggregate economy.

Moreover, our paper relates to the literature on the welfare consequences of increased

longevity, for example, Becker et al. (2005) and Jones and Klenow (2010). As in these papers,

we employ the utility of a representative individual to derive a welfare measure that includes

human longevity. However, we use a comprehensive general equilibrium framework, which is

absent from those models. This allows us to identify further channels through which longevity

affects welfare.

Finally, there is also a literature which tries to explain the sources of the large increase

in health spending over the last decades, with many papers attributing a dominant role to

technological change in the healthcare sector (a good overview can be found in, e.g., Chernew

and Newhouse, 2012). A recent contribution by Hall and Jones (2007) argues that preferences

represented by widely assumed utility functions with constant relative risk aversion can drive

the increase in healthcare spending as well. In contrast to these contributions, our paper focuses

on the efficiency of healthcare spending and our general results allow for both types of drivers

of increased healthcare expenditures.
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3 The Model

The model comprises a continuum of households. As in Blanchard (1985), households born at

time s ∈ (−∞,∞) face a hazard rate p(s) of dying that is constant throughout the lifetime

of each household. In our model, however, the hazard rate may vary across households from

different cohorts, as it is determined by the level of medical treatment that the household receives

throughout its lifetime. At any time t, a new cohort is born. We abstract from household fertility

decisions and assume that cohort size grows at the constant and exogenously given rate ν.4 We

normalize the cohort size at time t = 0 to unity.

There are two production sectors in the economy: the consumption good sector and the

healthcare sector. We assume that both sectors operate under perfect competition. In addition,

there is a financial sector comprising competitive insurance providers offering annuities. A

central aspect of the paper is the discussion of the implications of annuity premia being (un-

)conditioned on individual households’ mortality rates.

3.1 Healthcare sector

We consider a representative firm in the healthcare sector that provides medical treatment by

solely employing labor.5 Without loss of generality, we assume that one unit of labor produces

one unit of medical treatment. Assuming a competitive healthcare sector, medical treatment

will be offered at the marginal cost w(t). We further assume that households choose a level of

medical treatment h(s), which is fixed over the entire lifetime and determines the hazard rate

of dying p(s) via a healthcare technology H
(
h(s)

)
:

p(s) = H
(
h(s)

)
≡ pmax − ψ[h(s)]β . (1)

Without medical treatment (h = 0) households face the hazard rate p(s) = pmax of dying.

The hazard rate p(s) decreases with (weakly) diminishing returns in the level of medical treat-

ment h(s), the degree of which is determined by the parameter β ∈ (0, 1). While we preclude a

linear healthcare technology with β = 1 in our definition, we will refer to the linear case when-

ever this yields interesting additional results. The parameter ψ < pmax reflects the productivity

of (a given level of) healthcare investment and may be interpreted as the quality level of the

health system or the state of the art in medical treatment. It denotes the maximum amount

by which a household could reduce its hazard rate against pmax by spending all wage income

4The parameter ν can be mapped onto the economy’s fertility rate, which specifies the average number of
children born by each woman (or by our abstract genderless individual). The fertility rate is independent of the
size of the actual population.

5According to OECD (2015a), the health sector is a highly labor-intensive sector (and has traditionally been
highly labor intensive in the past). “On average, OECD countries invested around 0.45% of their GDP in 2013 in
terms of capital spending in the health sector. This compares with 8.9% of GDP on average across the OECD for
current spending on healthcare services and medical goods.” (OECD, 2015a, p. 174). There is also a literature that
empirically demonstrates that due to the healthcare sector’s high labor intensity, costs for healthcare services will
increase strongly in response to increases in labor productivity in other sectors, for example, due to technological
progress or capital accumulation (Hartwig, 2008; Bates and Santerre, 2013). This phenomenon is often referred
to as Baumol’s cost disease. Our model also reflects this feature.
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on healthcare. While pmax reflects, for example, the sanitary infrastructure of the economy, ψ

increases with the human capital of physicians, the efficiency of hospitals and so forth.

The specification of the healthcare technology (1) implies that improvements in the health-

care technology may come in two qualitatively different ways. First, the maximal hazard rate

pmax may decrease, implying that all households, independent of their levels of healthcare spend-

ing, experience a lower hazard rate of dying. In fact, a decrease in pmax offers higher life ex-

pectancy for free (at least for the individual household). Historical examples in this respect

include new knowledge about germ theory leading to better hygienic standards and a change in

personal behavior. We also interpret the introduction of most vaccines and drugs as a decrease

in pmax because these drugs are usually not very expensive. As an example, consider penicillin,

which led to substantial declines in mortality in the last century.6 Second, the state of the art in

medical treatment ψ may increase, implying that the same amount of healthcare spending leads

to a higher life expectancy. However, only households with positive healthcare spending benefit

from the improved healthcare technology. Consider improvements such as magnetic resonance

imaging, coronary heart bypass grafting, and transplantation.7

The way we model the healthcare sector is general enough to encompass different theories

about the determinants of survival. First, from a macroeconomic point of view differentiating

between pmax and ψ allows to distinguish between longevity increases due to improvements

into public health and improvements of medical treatment, two of the historical main factors in

driving improvements in longevity (see, e.g., Cutler et al., 2006). Second, from an individual

perspective the costs of healthcare may include direct healthcare costs, such as paying for medical

treatment, but may also include indirect or opportunity costs such as long sleep, physical exercise

and a healthy diet which are time consuming and often associated with a higher probability of

better health.

3.2 Consumption good production

We consider a representative firm in the consumption good sector that produces a homogeneous

consumption good via a Cobb-Douglas production technology Y (t) ≡ K(t)α
(
A(t)LF (t)

)1−α
,

where α ∈ (0, 1) and K(t) and LF (t) denote the aggregate amount of capital and labor employed

in consumption good production, respectively. A(t) denotes total factor productivity (TFP),

respectively the technological level of the economy, regarding consumption good production and

is taken as given by the representative firm. Capital depreciates at a constant rate δ. Profit

maximization of the representative firm yields factor prices equal to their marginal productivities:

r(t) = α
(
A(t)LF (t)/K(t)

)1−α
− δ , (2a)

6Historically, other factors like work safety regulations and better nutrition have certainly contributed to lower
mortality rates as well, next to progress in medical knowledge.

7Although it makes perfect sense to conceptually distinguish the two different channels of improvements in the
healthcare technology, we wish to emphasize that most real-world improvements simultaneously affect pmax and
ψ. For example, knowledge about germ theory led to better hygienic standards not only in every day life, thereby
decreasing pmax, but also in medical treatment, which increased ψ.
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w(t) = (1− α)A(t)1−α
(
K(t)/LF (t)

)α
. (2b)

We specify total factor productivity A(t) as follows:

A(t) ≡
K(t)

LF (t) + (1− η)LH(t)
, η ∈ [0, 1), (3)

where LH(t) represents labor employed in the healthcare sector, reflecting total healthcare

expenditures in the economy at time t. Our specification implies a standard “learning-by-doing”

or “learning-by-investing” externality similar to Romer (1986), where the factor productivity

depends on aggregate capital per worker K(t)/LF (t).8 The term (1 − η)LH(t) captures the

importance of a healthy workforce for productivity. According to (3), consumption good pro-

duction is more productive the higher aggregate healthcare expenditures are. The magnitude

of this spillover effect from health is reflected by the parameter η. The larger η is, the greater

the importance of healthcare for TFP, while the effect vanishes altogether when η = 0. We

assume η ∈ [0, 1). For η = 1, re-assigning labor from consumption good production into the

healthcare sector would have no effective costs in terms of consumption good output, and η > 1

would even imply that the reduction of output by a marginal decrease in the work force in

consumption good production will be overcompensated by the corresponding marginal increase

of labor in healthcare services, thereby even increasing output in the manufacturing sector. As

this is rather unrealistic, we restrict parameter values to η < 1. However, we provide the results

for the special case of η = 1 whenever insightful.9

3.3 The financial sector

The financial sector of the economy comprises a representative, fully competitive insurance firm

offering actuarial notes as in Yaari (1965). An actuarial note is a “note that consumers can buy

or sell and that stays on the books until the consumer dies, at which time it is automatically

cancelled” (Yaari, 1965, p. 140). A household buying an actuarial note is effectively buying an

annuity that pays a return a. With respect to the annuities’ returns, we distinguish two cases.

8Romer (1986) assumes that A(t) ≡ K(t). Specifying TFP to depend on capital per worker allows us to avoid
a strong scale effect in the economy’s growth rate. The specification is similar to that introduced by Frankel
(1962).

9We emphasize that the spillover of health on productivity in consumption good production plays no crucial
role for our theoretical results. That is, our results hold for the case of η = 0. We nevertheless incorporate the
possibility of an effect of health on manufacturing productivity as a spillover effect for the following reasons: First,
it is very plausible that better health increases productivity in goods production and including such an effect gives
us greater flexibility with respect to the costs of healthcare in terms of consumption good output. For our analysis,
we focus on the households’ incentives to invest in healthcare to extend their expected lifetime rather than to
increase their labor productivities to obtain higher wages. This focus is preserved by incorporating health as a
spillover on production rather than as an increase in a worker’s human capital which would increase the worker’s
wage. The latter approach is reflected when the spillover effect is fully internalized. Then the households would
be able to privately reap the productivity increases from their healthcare investments which would increase their
effective wage rates. We discuss this approach in Section A.2. Note however that while increases in productivity
reflected via the wage rate add another motive to invest in healthcare, by this motive alone the households would
never invest in their health without an additional longevity benefit if η < 1. Indications of spillover effects of
health can be found in, e.g., Isaksson, 2007).
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In the first case, the insurance company can learn, at no cost, the average probability of

dying p(s) of each cohort but will not be able to observe individual households’ healthcare

investments. Consequently, annuity payments may depend on the cohort and will hence be

written as a function of time t and cohort birth date s: a(t, s).10 Throughout the paper, we

refer to this case as annuity claims that are unconditioned on healthcare expenditures or simply

unconditioned annuities.

In the second case, the insurance company can observe healthcare investments and individual

households’ resulting hazard rates of dying. This allows the insurance company to condition the

annuity rate on the healthcare investments of individual households, and we can write a(t, h),

where h reflects the household’s level of healthcare spending. While this scenario is unrealistic,

it provides an important benchmark scenario in which moral hazard with respect to healthcare

investments is absent.11 We call this case annuity claims conditioned on healthcare investments

or, for short, conditioned annuities.

In our standard model framework, we assume that insurance companies can only observe

average cohort mortality rates, while we consider the case of annuity claims conditioned on

individual households’ healthcare investments in Section 5.3.

3.4 The households’ optimization problems

Households exhibit identical ex ante preferences and face equal hazard rates for the same levels

of medical treatment. Households born at time s maximize expected discounted lifetime utility

derived from consumption:

U(s) ≡

∫ ∞

s
V
(
c(t, s)

)
exp

[
−
(
ρ+ p(s)

)
(t− s)

]
dt , (4)

where V
(
c(t, s)

)
denotes the instantaneous utility derived from consumption c(t, s) at time t of

the household born at time s, and ρ is the constant rate of time preference. We impose standard

curvature properties on the instantaneous utility function (V ′ > 0 and V ′′ < 0), as well as the

Inada conditions limc→0 V
′(c) = ∞ and limc→∞ V ′(c) = 0. Our definition of lifetime utility (4)

normalizes instantaneous utility of being dead to zero. Hence, we additionally assume a utility

representation with V (c) > 0 for all c > 0, which avoids the possibility of households wishing to

be dead rather than alive.12 At any time when alive, each household is endowed with one unit

10As we consider large cohort sizes (technically represented by a continuum of households in each cohort), such
that insurance companies can offer risk-free annuities, perfect competition among insurance companies will lead
to fair annuity payments a(t, s) = r(t) + p(s).

11We are aware that there exist so-called ‘enhanced annuities’ that pay a higher rate if the annuitant is over-
weight or smokes regularly (which is self-certified). However, this conditionality of the return depends on some
negative health behaviors and serious conditions but does not account for positive measures to improve health
and longevity.

12Rosen (1988) showed that optimal investments in healthcare crucially depend on two characteristics of the in-
stantaneous utility function: (i) the intertemporal elasticity of substitution and (ii) the difference in instantaneous
utility between being alive and dead. One way to ensure positive utility levels is to employ an instantaneous utility
function with an intertemporal substitution elasticity σ > 1. Rosen (1988), Hall and Jones (2007) and Becker

et al. (2005) use V
(

c(t, s)
)

= c(t, s)1−
1

σ /(1− 1/σ) + λ with some positive constant λ. This allows them either to
employ intertemporal substitution elasticities of σ < 1 (Hall and Jones, 2007) or to calibrate the model to differ-
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of labor that is supplied inelastically to the labor market at wage w(t). In addition, households

may save and borrow assets b(t, s) at the interest rate r(t). Households are born without assets

and may contract against the risk of leaving unanticipated bequests on a perfectly competitive

life insurance market, as described previously. In line with Philipson and Becker (1998) and

Eeckhoudt and Pestieau (2008), among others, we assume that households take a(t, s) as given

and will contrast it with the case in which insurance companies can condition the annuity premia

on a household’s health status in Section 5.3. As negative bequests are prohibited, households

hold their entire wealth in fair annuities. Denoting the costs of healthcare by M
(
h(s)

)
, the

household’s budget constraint reads

ḃ(t, s) = a(t, s)b(t, s) + w(t)− c(t, s)−M
(
h(s)

)
, t ≥ s , (5)

with b(s, s) = 0. InsertingM
(
h(s)

)
= h(s)w(t) into the household’s budget constraint (5) yields

the following:

ḃ(t, s) = a(t, s)b(t, s) +
(
1− h(s)

)
w(t) − c(t, s) . t ≥ s . (6)

Thus, we can interpret the level of medical treatment h(s) as the fraction of labor income that a

household spends throughout its entire life on healthcare services. This implies that h(s) ∈ [0, 1],

as households are born without assets and must not be indebted when dying.

Households maximize expected intertemporal utility (4) subject to conditions (6) and b(s, s) =

0 by choosing an optimal level of medical treatment h(s) and an optimal consumption path

c(t, s). As detailed in the Appendix, the necessary conditions for the household’s optimum are

summarized by the standard consumption Euler equation:

ċ(t, s) = −
V ′(c(t, s))

V ′′(c(t, s))
[a(t, s)− (ρ+ p(s))], (7)

and by the necessary condition for optimal healthcare spending

−

∫ ∞

s
V (c(t, s))H ′(h(s))(t− s) exp[−(ρ+ p(s)))(t− s)]dt

=

∫ ∞

s
V ′(c(t, s))w(t) exp[−(ρ+ p(s))(t− s)]dt .

(8)

These two conditions, together with the budget constraint (6), the initial condition b(s, s) = 0

and the transversality condition for the stock of assets limt→∞ b(t, s) exp [−a(s)(t− s)] = 0,

characterize the households’ optimal choices. The left-hand side of condition (8) represents the

additional utility derived from the increment in expected lifetime associated with a marginal

increase in healthcare spending. The right-hand side reflects the marginal costs of such a higher

expected lifetime, namely less consumption due to higher healthcare expenses. As the instanta-

neous utility function satisfies the Inada conditions, as does the health-production function for

ent values of a statistical life without changing the intertemporal elasticity of substitution (Becker et al., 2005;
Hall and Jones, 2007). In our equilibrium analysis, we will use the functional form (11) representing homothetic

preferences, which allow for a balanced-growth path: V
(

c(t, s)
)

= c(t, s)1−
1

σ /(1− 1/σ), σ > 1 .
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h(s) → 0, the optimal amount of h(s) will be an interior solution on (0, 1).13 Note that h(s) = 1

is precluded, as this would imply that the household spent its entire labor income on healthcare,

leading to zero consumption at all times it is alive. In this case, the marginal costs in terms of

consumption would be infinite while the expected marginal benefit of healthcare expenditures

is bounded from above.

4 Decentralized Market Equilibrium and Dynamics

We now analyze the decentralized market equilibrium. We will demonstrate the existence and

uniqueness of the decentralized market equilibrium in the steady state. Then, we discuss the

resulting steady-state dynamics of the economy. We conclude with results on the effects of an

enlarged health sector on the equilibrium prices and the economy’s growth rate. These insights

will be important for the subsequent discussions on the growth and welfare consequences of

moral hazard in health spending and the effects of improvements in the healthcare technology.

We begin by introducing aggregate household variables per capita derived by integrating

over all living individuals and dividing by the population size of the economy:

z(t) ≡

∫ t
−∞ z(t, s)N(t, s) ds

N(t)
, (9)

where z(t) and z(t, s) denote aggregate per capita, respectively individual household, variables

and N(t, s) = exp[νs] exp[−p(s)(t−s)] reflects the size of the cohort born at s at time t. Abusing

notation slightly, we obtain the population size at time t and hence the labor supply at t by

N(t) =
∫ t
−∞N(t, s)ds.

The economy consists of five markets: the labor market, the capital market, the consump-

tion good market, the market for annuities and the market for healthcare. Accordingly, an

equilibrium in this economy is defined as follows:

Definition 1 (Market equilibrium)

A market equilibrium is an allocation {{c(t, s), b(t, s), h(s)}∞s=−∞ ,K(t), LF (t), LH(t)}∞t=−∞ and

prices {pc(t) = 1, w(t), r(t), {a(t, s)}∞s=−∞}∞t=−∞ such that profits of the firms (consumption

good, healthcare, annuity) and utilities of the households are maximized and all markets clear

at any time t, i.e.:

K(t) =

∫ t

−∞
b(t, s)N(t, s)ds (capital market) , (10a)

LF (t) + LH(t) = N(t) (labor market) , (10b)
∫ t

−∞
h(s)N(t, s)ds = LH(t) (healthcare market) , (10c)

∫ t

−∞
(a(t, s)− r(t))b(t, s)N(t, s)ds = −

∫ t

−∞
b(t, s)Ṅ (t, s)ds (annuity market) , (10d)

13If the health-production function had a finite slope at h = 0, the corner solution h = 0 might occur.
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∫ t

−∞
[c(t, s) + ḃ(t, s)]N(t, s)ds = Y (t) (consumption good market) . (10e)

The left-hand side of the market clearing conditions reflects demand, while the right-hand

side represents the supply of the respective good. Our focus will be on the economy’s steady

state. We refer to a steady state of the economy by the standard definition:

Definition 2 (Steady state)

The economy is in a steady state if consumption per capita, capital per capita and wages grow

at constant rates and the interest rate is constant.

In our equilibrium analysis of the decentralized economy, we use the following functional

form for the individuals’ instantaneous utilities:

V
(
c(t, s)

)
≡
c(t, s)1−

1
σ

1− 1
σ

, σ > 1 , (11)

which allows for a balanced-growth path.

We are now in a position to establish the following result:

Proposition 1 (Unique Steady-state Equilibrium)

There exists a unique steady-state equilibrium in which

1. all households choose the same level of healthcare h̄, implying mortality rate p̄ = H(h̄),

2. interest rate r̄(h̄) = α
[

1−h̄
1−ηh̄

]1−α
− δ,

3. wage rate w̄(h̄, t) = k(t)1−α
1−h̄

[
1−h̄
1−ηh̄

]1−α
, and

4. insurance premium: p̄, i.e. ā(h̄, p̄) = r̄(h̄) + p̄.

The unique optimal interior level of healthcare expenditures in the steady-state equilibrium h̄

is implicitly given by the equation

σ

1− σ

H ′(h̄)

x(h̄, p̄)
−

1

(1− h̄)
= 0 , (12)

with x(h̄, p̄) ≡ (1− σ)ā(h̄, p̄) + σ(ρ+ p̄).

The proofs of all propositions are given in the Appendix. The crucial step in the proof is to

derive the households’ optimal healthcare expenditures, provided that the economy is in steady

state, and then to show that these healthcare expenditures lead to the presumed steady state.

Uniqueness follows from the uniqueness of the prices and allocation for a given level of healthcare

expenditures and the fact that given a constant interest rate and constantly growing wage rate,

the households’ healthcare investments are unique.

In the proposition and throughout the paper, we indicate steady-state values by a bar.

Moreover, we will give both h and p as arguments if appropriate rather than just h, as this allows

us to separate the effects of h via longevity p from other channels. It enables us to identify and
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clearly illustrate the different ways that healthcare investments affect the economy. In equation

(12), we use the abbreviation x(h̄, p̄) ≡ (1− σ)ā(h̄, p̄) + σ(ρ+ p̄) = r̄(h̄) + p̄− σ(r̄(h̄)− ρ) > 0,14

which represents the household’s propensity to consume out of expected lifetime wealth. Using

the utility specification (11), the Euler equation (7) identifies the equilibrium growth rate of

the household’s consumption profile in steady state as ghh(h̄) ≡ σ(r̄(h̄)− ρ). Consequently, the

second way of writing x(h̄, p̄) shows that the propensity to consume x(h̄, p̄) reflects the difference

between the return on annuities r̄(h̄) + p̄ and the growth rate of the household’s consumption

ghh(h̄).

Note that Ṅ(t, s) = −p(s)N(t, s), and consequently, we obtain from (10d) the actuarily fair

premium a(t, s) = r(t) + p(s). Focusing on the steady state, in which the equilibrium interest

rate is constant, we can neglect the time argument and write ā(h̄, p̄). Moreover, as households

are free to choose between working in the healthcare sector and working in consumption good

production, each household must earn the same equilibrium wage w(t), as given by equation

(2b). Given the consumption good firm’s capital demand, as given by (2a), the allocation and

prices are determined via the households’ supply of capital and demand for healthcare services.

4.1 Equilibrium dynamics

The following proposition characterizes the resulting steady state dynamics of the economy:

Proposition 2 (Steady state dynamics)

The dynamics of the aggregate economy in the steady-state equilibrium

(i) is characterized by:

ċ(t) = σ [r̄(h)− ρ] c(t) − x(h̄, p̄)(p̄ + ν)k(t) , (13a)

k̇(t) =

[
r̄(h̄)

α
+

1− α

α
δ − ν

]

k(t)− c(t) , (13b)

(ii) is governed by a unique balanced-growth path growing at the following rate:

ḡ(h̄, p̄) =
1

2

{
r̄(h̄)

α
+

1− α

α
δ − ν + σ

[
r̄(h̄)− ρ

]
}

−
1

2

√
{
r̄(h̄)

α
+

1− α

α
δ − ν − σ

[
r̄(h̄)− ρ

]
}2

+ 4x(h̄, p̄)(p̄ + ν) .

(14)

Besides providing a precise description of the economy’s balanced-growth path, Proposition 2

conveys two important insights. First, as on the balanced-growth path ċ(t)/c(t) = k̇(t)/k(t) =

ḡ(h̄, p̄), the first equation, showing the evolution of aggregate consumption per capita, reveals

that the growth rate of the household’s consumption profile must be higher than the economy’s

growth rate on the balanced-growth path. This is evident, as the first term of (13a) reflects ghh,

from which a second positive term is subtracted. This latter term, which is the difference in

14Note that x(h̄, p̄) > 0 is necessary for the household’s maximization problem to be well-defined.
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consumption levels at any time t between the households just born and the households just dying,

reflects the underlying overlapping generations structure of the economy. Second, the economy’s

growth rate on the balanced-growth path is affected by the size of healthcare investments via

two different channels: life expectancy p̄ and the equilibrium interest rate r̄(h̄). In the following

subsection, we examine how these two channels of changes in the size of the healthcare sector

influence equilibrium prices and the economy’s growth rate.

4.2 Equilibrium and growth effects of an expansion of the health sector

The following proposition states how a marginal increase in healthcare expenditures impacts the

steady-state equilibrium and balanced-growth path of the economy:

Proposition 3 (Equilibrium and growth effects of healthcare investments)

(i) An increase in steady-state healthcare investments h̄ increases the equilibrium wage rate

and decreases the equilibrium interest rate.

d w̄(h̄, t)

d h̄
> 0, and

d r̄(h̄)

d h̄
< 0.

(ii) If α < 1/σ, the growth rate of the economy increases with the interest rate, while the dif-

ference between the growth rate of the households’ consumption profiles and the economy’s

growth rate decreases with the interest rate.

d ḡ(h̄, p̄)

d r̄(h̄)
> 0,

d
(
ghh(h̄)− ḡ(h̄, p̄)

)

d r̄(h̄)
< 0.

(iii) If α < 1/σ, the direct effect of a larger healthcare sector on the economy’s growth rate is

positive (via increased longevity), while the general equilibrium effect via the interest rate

is negative.
d ḡ(h̄, p̄)

d h̄
=

∂ḡ(h̄, p̄)

∂p̄

d p̄

d h̄
︸ ︷︷ ︸

>0 dir. effect

+
∂ḡ(h̄, p̄)

∂r̄(h̄)

d r̄(h̄)

d h̄
︸ ︷︷ ︸

<0 indir. effect

An increase in healthcare increases the growth rate if the healthcare sector is sufficiently

small and decreases the growth rate if the healthcare sector is sufficiently large.

A rise in healthcare expenditures re-assigns labor from consumption good production to the

health sector. This contraction of labor supply in manufacturing increases the equilibrium wage

rate. In turn, the marginal productivity of capital declines, as labor is shifted away from the more

capital-intensive sector. Note that this characteristic also stems from our realistic assumption

that the spillover effects of healthcare investments on the productivity of consumption good

production cannot fully compensate for the output loss due to the decline in the workforce

employed in the latter sector.

In part (ii), we examine what such a change in the interest rate implies for economic growth.

In line with economic intuition, we find that an increase in the interest rate positively affects
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economic growth by increasing households’ savings. Consequently, a lower interest rate due to

higher healthcare expenditures implies a negative effect on economic growth. Moreover, the

growth rate of the household’s consumption profile is positively related to the interest rate.

Hence, both the consumption growth rate of the households and the economy’s growth rate

decline in response to an expansion of the healthcare sector, and we find that the difference

between the two growth rates widens as a result. That is, the economy’s growth rate has a

steeper slope in r than does the household’s consumption growth rate. The qualifier α < 1/σ

constitutes a sufficient but not necessary condition for the result to hold. In our case, the

coefficient of relative risk aversion is between one and two, which implies an upper bound on

the capital share in consumption good production of between 1/2 and one. Typical values for

α range from 1/3 to 1/2 and do not challenge the condition.

Finally, part (iii) of Proposition 3 describes the growth effects of a larger healthcare sector,

which operate via two channels: (i) longevity and (ii) the equilibrium effects due to changes in the

interest rate. With respect to the former channel, we find that the propensity to consume declines

when households expect to live longer. This implies an increase in savings and, thereby, exerts a

positive effect on the economy’s growth rate. This channel is represented by the term x(h̄, p̄)(p̄+

ν) (see Appendix A.5), which is sometimes referred to in the literature as the “generations

turnover” term. The second channel via the interest rate has already been discussed in parts (i)

and (ii) of the proposition.

The relative sizes of these two effects with opposite signs drive the last result stated in

Proposition 3. When the healthcare sector is small, the increase in longevity from a marginal

increase in healthcare spending is very high according to our specification of the health pro-

duction function, but the effect on the interest rate is rather small and bounded from above.

Due to diminishing returns in health production, the direct effect of longevity and growth de-

creases when health investments are already substantial. However, shifting additional labor from

manufacturing to healthcare implies huge costs in terms of capital productivity when only few

households are employed in consumption-good production.

5 Inefficiency of the Market Equilibrium

Thus far, we have characterized the decentralized, steady-state market equilibrium and identi-

fied how increasing healthcare expenditures affect the equilibrium prices and the steady state

dynamics of the economy. Yet, a central innovation in our model is that healthcare invest-

ments are endogenously determined by the households’ choices on healthcare expenditures. In

the following, we analyze whether these household choices are efficient and discuss the general

equilibrium and macroeconomic consequences of such inefficiencies.

5.1 The Social Planner’s Solution

To identify potential market failures associated with the households’ choice of healthcare ex-

penditures, we compare the decentralized equilibrium allocation to the allocation that a social
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planner maximizing utilitarian welfare would choose.15 Welfare is defined as the weighted sum

of the utilities of all households alive from time t = 0 to infinity. The social planner’s weight on

the lifetime utilities of different cohorts is equal to the time preference rates of the households.

This implies that the lifetime utility of a household born at time s will be discounted to time 0

with the time preference rate ρs = ρ.16

Then the planner’s problem is given by:

max
{{c(t,s)}∞t=0,h(s)}

∞
s=0

∫ ∞

0
V(t)dt,

where V(t) =

∫ t

−∞
V (c(t, s)) exp[−(ρ+ p(s))(t− s)] exp[νs] exp[−ρss]ds,

s.t. p(s) = H(h(s)),

N(t) =

∫ t

−∞
exp[νs− p(s)(t− s)]ds,

LH(t) =

∫ t

−∞
h(s) exp[νs− p(s)(t− s)]ds,

LF (t) = N(t)− LH(t),

C(t) =

∫ t

−∞
c(t, s) exp[νs− p(s)(t− s)]ds,

K̇(t) = F (K(t), LF (t), LH(t))− δK(t) − C(t),

and initial conditions specifying {h(s)}s=0
−∞ and K(0) and N(0).

V(t) represents aggregate welfare at time t, i.e., the sum of instantaneous utilities of all

households alive at time t. Despite assuming ρs = ρ, we include the planner’s time preference

rate ρs in the welfare specification for clarity of expression. The first constraint represents

the healthcare technology, while the second reflects the economy’s population size at time t by

summing the still living individuals of all cohorts born at the different birth dates s ≤ t. For

reasons of comparability with the decentralized solution, the planner determines one unique

level of healthcare h(s) for the households in the cohort born at time s that is fixed throughout

their lifetimes. Consequently, the demand for healthcare at time t, LH(t), sums the individual

healthcare demands of all households alive at time t. The remaining share of the population

works in the consumption good sector. The last two constraints specify aggregate consumption

and the equation of motion of the aggregate capital stock.

To solve the planner’s problem we apply a two-step procedure. First, we solve the “in-

ner problem,” in which the social planner allocates a given amount of consumption across all

15As our focus is on moral hazard originating from unconditioned annuities, we could simply identify their
effect at the macro level by including annuities conditioned on individual household mortality in the decentralized
equilibrium. While not trivial, we nevertheless solve the social planner’s problem to be transparent with respect to
all market inefficiencies and potential interactions of other inefficiencies with the moral-hazard effect. Moreover,
it allows us to provide simulation results on the size of the moral-hazard effect with and without correction of the
other market failures.

16For a discussion of the effects of the relationship between individual time preference rates and that of the
social planner on the allocation of consumption across different age cohorts, see for example, Schneider et al.
(2012).
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generations alive in a period t. Our assumption ρs = ρ implies that it is optimal for the so-

cial planner to distribute consumption equally such that every household enjoys consumption

c(t, s) = ĉ(t) = C(t)/N(t), ∀s. Second, by inserting this into the objective function, we obtain

the “outer problem” of finding the optimal path C(t) and h(t). We solve this outer problem

by setting up the Lagrangian and interchanging the order of integration of the constraints such

that we are able to use the calculus of variations to derive necessary conditions for an optimum.

The detailed solution to the planner’s problem is provided in the Appendix. For the necessary

conditions for a welfare maximum, we obtain the familiar expressions for the optimal path of

consumption and capital:

˙̂c(t) = −
V ′(ĉ(t))

V ′′(ĉ(t))

(
∂F (K(t), LH(t), LF (t))

∂K(t)
− δ − ρ

)

, (15)

k̇(t) = F (k(t), lH (t), lF (t))− δk(t) −
Ṅ(t)

N(t)
k(t)− ĉ(t), (16)

where lF (t) = LF (t)
N(t) and lH(t) denote the shares of labor in manufacturing and healthcare,

respectively. The main novelty of our approach lies in the characterization of the optimal levels

of healthcare. We obtain the following necessary condition that the level of healthcare of any

generation born at time s ≥ 0 satisfies in the social planner’s optimum:

−

∫ ∞

s
V (ĉ(t))H ′(h(s))(t − s) exp[−(ρ+ p(s))(t− s)]dt

−

∫ ∞

s
wH(t)V ′(ĉ(t)) exp[−(ρ+ p(s))(t− s)]dt

= −

∫ ∞

s
V ′(ĉ(t))ĉ(t)H ′(h(s))(t − s) exp[−(ρ+ p(s))(t− s)]dt (17)

−

∫ ∞

s
wH(t)V ′(ĉ(t))h(s)H ′(h(s))(t − s) exp[−(ρ+ p(s))(t− s)]dt

+

∫ ∞

s
w(t)V ′(ĉ(t))H ′(h(s))(t − s) exp[−(ρ+ p(s))(t− s)]dt,

where wH(t) = ∂F
∂LF (t)

− ∂F
∂LH (t)

reflects the effective marginal opportunity costs of an additional

unit of labor in healthcare. We denote by w(t) the marginal product of labor in the consump-

tion good sector, which reflects the wage rate in the decentralized market equilibrium.17 In

addition to the planner’s uniform distribution of consumption, conditions (15)–(17) reveal three

differences from their counterparts in the decentralized market economy, which we discuss in

the following.

17Specifically, writing F (K(t), LH(t), LF (t)) = A(t)1−αK(t)αLF (t)1−α with A(t) = K(t)/(N(t) − ηLH(t)),
where we use the definition of A(t) as in Section 3.2 and the fact that N(t) = LF (t) + LH(t), we obtain for
the partial derivative with respect to LF (t) the expression ∂F/∂LF (t) = (1− α)A(t)1−αK(t)αLF (t)−α[= w(t)],
while we obtain for the partial derivative with respect to LH(t), ∂F/∂LH(t) = ηK(t)/[N(t) − ηLH(t)]2(1 −
α)A(t)−αK(t)αLF (t)1−α. Consequently, we can write wH(t) = w(t)(1− η)N(t)/(N(t)− ηLH(t)).
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5.2 Externalities in the Market Equilibrium

Comparing the social planner’s solution to the decentralized market equilibrium, as defined in

Definition 1, we identify three market failures: the “learning-by-investing” externality (Romer,

1986), a spillover effect of health on consumption good production and moral hazard in health-

care investments.

We identify the standard ‘learning-by-investing’ externality by comparing the consumption

Euler equation of the social planner (15) with the household’s (7) in equilibrium, where a(t, s) =

r(t) + p(s), according to equilibrium condition (10d). Consequently, the difference between the

consumption path of the households in the decentralized equilibrium relative to that in the social

planner’s optimum originates from the difference in the return on capital: The social rate of

return ∂F (K(t), LH (t), LF (t))/∂K(t)− δ =
(
A(t)LF (t)/K(t)

)1−α
− δ is larger than the private

return r(t) = α
(
A(t)LF (t)/K(t)

)1−α
− δ because firms take the technological level A(t) of the

economy as given, neglecting the positive spillovers that the employment of capital exerts on

the economy’s manufacturing output Y (t) via an increase in the technological level.18 As is

well known, this leads to an inefficiently low level of asset holdings that could be corrected, for

example, by subsidizing household savings.

The other two inefficiencies are associated with healthcare expenditures. The two expressions

on the left-hand side of equation (17) are familiar from the household’s first-order condition (8).

They reflect the additional utility obtained directly from a higher expected lifetime and the

direct healthcare costs arising from higher labor input in the healthcare sector at the expense

of labor in consumption good production. Comparing the social planner’s optimality condition

(17) and the household’s first-order condition (8), we notice two important differences: First,

there is a wedge between the social marginal costs of healthcare wH(t) and the private marginal

costs of healthcare w(t) that results from households’ inability to directly reap the benefits of

the positive spillover of health investments on productivity in manufacturing. Thus, healthcare

investments in the decentralized economy are, ceteris paribus, lower than socially optimal. This

market failure could be corrected by subsidizing healthcare investments in the amount of the

difference between w(t) and wH(t).

Second, the terms on the right-hand side of the social planner’s optimality condition with

respect to healthcare investments (17) do not appear in the corresponding first-order condition

(8) of the household in the decentralized economy. This represents the moral-hazard effect with

respect to healthcare spending, as households take annuity rates as given. This effect comprises

three parts, as indicated by the three integrals on the right-hand side of (17). The first term

represents the utility loss from lower consumption at each point in time, as consumption has to

18Note that ĉ(t) in the planner’s solution reflects each household’s consumption level at time t and, thus,
also the level of aggregate consumption per capita. The two consumption levels would differ if the planner’s
intragenerational distribution of consumption were not uniform, as is the case in the decentralized economy,
where the disparity between c(t, s) and c(t) reflects the difference between the high consumption levels of those
dying at t and the low consumption levels of those born at t. As ĉ(t) reflects aggregate consumption per capita,
the law of motion of the aggregate per capita capital stock in the social planner’s solution (16) is equivalent to
that in the decentralized equilibrium, which can be derived by applying (9) to (5) while considering equilibrium
condition (10a).
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be spread out over a longer expected lifetime. The second term captures the additional costs

of healthcare that accrue during the expected additional lifetime of the individual. Third, the

additional expected lifetime also allows an individual to earn additional labor income, thereby

increasing total labor wealth. Consequently, the sign of the moral-hazard effect depends on

the relative sizes of the marginal losses due to lower consumption and increased healthcare

expenditures and the marginal benefits from higher labor wealth. Although the sign of the

moral-hazard effect is generally ambiguous, in the steady-state equilibrium, the moral-hazard

effect leads to over-investments in healthcare, as we show below.

While we believe that, in reality, the two spillover effects of capital investment and health-

care investments on the economy’s productivity in manufacturing are present and important

in decentralized market economies, our focus in this paper is on the inefficiency resulting from

moral hazard in healthcare spending when annuity rates are not conditioned on individual mor-

tality rates, as in typical social security systems in most developed countries. Therefore, we

now contrast the outcome of the decentralized equilibrium without conditioned annuities with

its hypothetical counterpart when annuities conditioned on health status can be supplied by the

insurance firm and, thus, no moral-hazard effect arises.

5.3 Market Equilibrium without Moral Hazard

We now assume that insurance companies can observe and condition annuity rates a(t, h) on

the individual household’s healthcare investment. As a consequence, a household increasing its

healthcare investments will face a lower annuity rate. As all households of the same cohort s

face the identical optimization problem, all households of a given cohort s will choose the same

level of healthcare investments h(s). Thus, we can still represent the cohort born at time s by a

representative household. To minimize notation, we again write the annuity rate as a function of

s, a(t, s), with the difference being that now ∂a(t, s)/∂h(s) is no longer zero but negative. Given

fair annuity rates, as will arise in the market equilibrium with perfect competition, ∂a(t, s)/∂h(s)

will amount to the marginal productivity of the healthcare technology H ′(h(s)).

For the representative household’s optimization problem, this implies that a marginal in-

crease in healthcare investments affects the budget constraint not only via the direct costs but

also via changes in the annuity rate. The household’s forward budget constraint (see Appendix

A.1) reveals that the household’s lifetime consumption stream must be financed by the expected

lifetime labor income:

b(s, s) =

∫ ∞

s
[c(t, s)− (1− h(s))w(t)] exp

[

−

∫ t

s
a(t′, s)dt′

]

dt. (18)

A decline in the annuity rate a(t, s) due to a reduction of p(s) will increase the expected net

present value of both the consumption stream to be financed and the wealth from lifetime labor

income. This reflects the additional consumption needed for the additional expected lifetime and

the extra labor income from an longer expected work life, resembling the respective expressions

in the social planner’s solution. Whether a decline in a(t, s) places additional pressure on the
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budget constraint or relaxes it depends on the trajectories of consumption and wage rates over

time t and, hence, on their initial values at birth date s and their growth rates over time

t. Consequently, the sign of the effect depends on the equilibrium dynamics of the economy,

which, as shown in Proposition 3, are also influenced by aggregate health expenditures.

To determine the sign and size of the moral-hazard effect, we begin by deriving the house-

hold’s necessary conditions for a utility maximum. While the optimality conditions with respect

to savings and consumption take the same form as presented in Section 3.4, the first-order

condition with respect to healthcare (8) becomes the following:

−

∫ ∞

s
V (c(t, s))H ′(h(s))(t − s) exp[−(ρ+ p(s)))(t − s)]dt

−

∫ ∞

s
V ′(c(t, s))w(t) exp[−(ρ+ p(s))(t− s)]dt

= −

∫ ∞

s
V ′(c(t, s)) c(t, s)

∂a(t, s)

∂h(s)
(t− s) exp[−(ρ+ p(s))(t− s)]dt

+

∫ ∞

s
V ′(c(t, s))(1 − h(s))w(t)

∂a(t, s)

∂h(s)
(t− s) exp[−(ρ+ p(s))(t− s)]dt .

(19)

The left-hand side of equation (19) is identical to the first-order condition when households

take the annuity rate as given. The right-hand side of (19) presents the additional terms reflect-

ing the consequences of health investments that reduce the annuity rate. It reflects the influence

on the household’s budget constraint, as discussed above, evaluated in terms of marginal utility.

As noted above, given fair annuity rates a(t, s) = r(t)+p(s) we obtain ∂a(t, s)/∂h(s) = H ′(h(s)),

thereby resembling the right-hand side of the social planner’s optimality condition for health-

care investments (17). Note that the difference from the social planner’s necessary condition

for healthcare investments is that the marginal costs of healthcare are higher than the social

marginal costs due to the positive spillovers of healthcare onto consumption good production,

which has not been internalized here.19 As already conjectured, the expression on the right-hand

side of (19) reveals that the sign of the first term is positive, while the sign of the second term

is negative. Consequently, the effect of conditioned annuity contracts on healthcare investments

is, in general, ambiguous. Relative to the solution in which annuity rates are taken as given, an

individual will spend more (less) on healthcare if the additional labor income wealth exceeds (is

smaller than) the additional consumption requirements.

We define the market equilibrium analogously to Definition 1, with the sole difference being

that the insurance firm can now verify healthcare investments at the individual household level.

Again, perfect competition in the financial sector ensures fair annuity rates.20 In the following

19When internalizing the healthcare spillover, the first-order condition (19) will resemble the social planner’s
optimality condition (17) with the difference being that the consumption path {c(t, s)}∞t=s differs from the social
planner’s solution due to the “learning-by-investing” externality and the social planner’s uniform intra-temporal
distribution of consumption across all generations alive (resulting from the pure time preference rate of the planner
being identical to those of the households).

20Fair annuity rates result from perfect competition, as a lower than fair annuity rate leading to profits for
an insurance firm can profitably be overbid by competitors. Offering higher than fair rates for some levels of
healthcare spending means cross-subsidization is necessary from households with other healthcare levels. Cross-
subsidization will not be possible, as other firms can profitably overbid the excessively low annuity rate at a

20



proposition, we show that when the households’ utilities take the form as in (11), there exists

a steady-state equilibrium with conditioned annuity contracts that is unique under a plausible

condition.

Proposition 4 (Steady-state equilibrium without moral hazard)

Suppose that annuity rates can be conditioned on individual healthcare investments. Then, there

exists a steady-state market equilibrium in which all prices are characterized as in Proposition 1,

2.–4., and all households invest the same amount in healthcare. The interior level of healthcare

expenditures in the steady-state equilibrium h̄ is implicitly given by the equation

σ

1− σ

H ′(h̄)

x(h̄, p̄)
−

1

(1− h̄)
= −H ′(h̄)

(
1

x(h̄, p̄)
−

1

y(h̄, p̄)

)

. (20)

The equilibrium is unique if dx(h̄,p̄)
y(h̄,p̄)

/dh̄ < 0.

We employ the abbreviation y(h̄, p̄) = r̄(h̄)+ p̄− ḡ(h̄, p̄) to denote the difference between the

equilibrium annuity rate ā(h̄, p̄) = r̄(h̄) + p̄ and the economy’s steady-state growth rate. The

condition for uniqueness of the steady-state equilibrium given in the proposition is a sufficient but

not necessary condition. More generally, the steady-state equilibrium is unique if the increase in

the relationship between the households’ propensity to consume out of wealth and the difference

between the annuity rate and the economy’s growth rate with respect to h̄ is sufficiently small.

In the following, we assume a unique equilibrium.21

The right-hand side of (20) collects the additional terms entering the first-order condition

due to conditioned annuity claims and, thus, is the steady-state equivalent of the right-hand

side of equation (19). In fact, computing the integrals using steady-state values, the right-hand

side of (19) yields

−c(s, h̄, p̄)−1/σH ′(h̄)

[
c(s, h̄, p̄)

[x(h̄, p̄)]2
−

(1− h̄)w(s, h̄)

[y(h̄, p̄)]2

]

, (21)

where c(s, h̄, p̄)−1/σ is the marginal utility of consumption at birthdate s and −H ′(h̄) denotes

the increase in longevity and, simultaneously, the reduction in the annuity rate for a marginal

increase in healthcare expenditures. The term in brackets is the difference between the additional

consumption needed for the additional lifetime and the additional wealth in terms of labor income

net of extra healthcare costs. Thus, the term in brackets echoes the increased pressure (or release

of pressure) on the budget constraint (18) from a marginal increase in longevity increasing

healthcare investments. The sign and size of this effect is determined by the difference between

x(h̄, p̄) and y(h̄, p̄), which reflects the difference between the growth rate of the household’s

consumption profile ghh(h̄) = σ(r̄(h̄) − ρ) and the growth rate of the economy in steady state

ḡ(h̄, p̄), as well as by the relationship between the level of initial consumption by the household

c(s, h̄, p̄) and the level of net labor income at date s (1 − h̄)w(s, h̄). In addition to x(h̄, p̄) and

particular healthcare spending level.
21Over the whole parameter range of the sensitivity analyses of our numerical illustration (see Section 7 and

Appendices A.9 and A.10, we obtain unique equilibria.
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y(h̄, p̄), the equilibrium level of initial consumption c(s, h̄, p̄) is also affected by the equilibrium

interest rate and the economy’s growth rate, as it depends on the household’s net present lifetime

wealth. As a consequence, both the size and sign of the moral-hazard effect in general equilibrium

is ex ante ambiguous.

The solution to the household’s utility maximization problem provides a link between the

initial wage rate and initial consumption c(s, h̄, p̄). In steady state, we obtain c(s, h̄, p̄) =

(1− h̄)W (s, h̄, p̄)x(h̄, p̄), where W (s, h̄, p̄) = w(s, h̄)/y(h̄, p̄) denotes the net present value of the

household’s lifetime labor income. Inserting into (21) yields, after some transformations, the

right-hand side in the household’s first-order condition (20) in the steady-state equilibrium. This

indicates that the sign of the moral-hazard effect is determined by the relationship between the

growth rate of the household’s consumption profile, which is part of x(h̄, p̄), and the growth

rate of the economy, as in y(h̄, p̄). As we have shown, ghh(h̄) > ḡ(h̄, p̄) and, consequently,

y(h̄, p̄) > x(h̄, p̄), implying that the right-hand side of (20) is positive. Therefore, in the steady-

state market equilibrium with conditioned annuity rates, households’ healthcare spending is

lower than in the steady-state equilibrium with unconditioned annuity rates. This result is

summarized in the following proposition.

Proposition 5 (Over-investment in healthcare)

In the steady-state equilibrium with mortality contingent annuity claims, the households invest

less in healthcare than in the steady-state equilibrium where annuity rates cannot be conditioned

on individual healthcare investments.

6 Improvements in the Healthcare Technology

One central reason for the increase in healthcare spending is technological progress in the health-

care sector (Chernew and Newhouse, 2012). Therefore, we are interested in how improvements

in the healthcare technology affect healthcare spending, the size of the moral-hazard effect, wel-

fare and economic growth. While we examine these questions numerically in the next section,

we now discuss theoretically how the aggregate economy is affected by changes in the healthcare

technology.

Recall that the healthcare technology (1) exhibits two parameters that influence the hazard

rate p of households. A decline in the parameter pmax reduces the hazard rate that households

face without investments in healthcare. An increase in the parameter ψ increases the reduction

of the hazard rate that is purchased for any given healthcare investment h. As stated in the

following proposition, an improvement in the healthcare technology either via a decrease in pmax

or an increase in ψ leads to higher equilibrium healthcare investments, independent of whether

annuity rates are conditioned on healthcare expenditures. The resulting effect on economic

growth depends, once more, on the size of the healthcare sector.

Proposition 6 (Improvements in the healthcare technology)

In the steady-state market equilibrium,
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(i) the following conditions hold:

dh̄

dpmax
< 0 ,

dp̄

dpmax
> 0 ,

dh̄

dψ
> 0 ,

dp̄

dψ
< 0 ,

(ii) improvements in the healthcare technology increase the economy’s growth rate if h̄ is small

and decrease it if h̄ is sufficiently large.

In the special case of η = 1, improvements in the healthcare technology increase economic

growth:
dḡ(h̄, p̄)

dpmax
< 0 ,

dḡ(h̄, p̄)

dψ
> 0 .

A better healthcare technology affects the equilibrium hazard rate of dying p̄ in two ways.

First, there is a direct effect. Ceteris paribus, a decrease in pmax or an increase in ψ lowers the

hazard rate p̄. Second, an improvement in the healthcare technology induces higher healthcare

expenditures. This is also the case for a decrease in pmax, although pmax enters p in an additively

separable way. The reason is that the marginal effect of a decrease in p is proportional to the

discount factor exp[−p(t− s)]. As a consequence, any decrease in p – for whatever reason – will

trigger higher healthcare expenditures.22 Note that in our model, the direct effect of a marginal

decrease in pmax, reflected by the partial derivative ∂p/∂pmax, is equal to one. A marginal

increase in the productivity of healthcare spending ψ implies a direct effect of hβ . Because

hβ < 1, the increase in expected lifetime that comes for “free” is larger when pmax marginally

declines compared to a marginal increase in ψ. As a consequence, if a marginal decrease in pmax

and a marginal increase in ψ lead to the same reduction in the hazard rate of dying, the decline

via the increase in the productivity of health spending ψ is accompanied by higher healthcare

expenditures.

By increasing longevity for given healthcare investments h̄, technological improvements in

the healthcare sector increase the economy’s growth rate. As better technology in the health-

care sector also increases health spending, it further involves the equilibrium and growth effects

of an expansion of the healthcare sector, as discussed in Proposition 3. Therefore, relative to

the results provided in Proposition 3, technological improvements in healthcare exert an addi-

tional positive, but limited in size, effect on longevity in addition to that operating through an

increase in healthcare investments. Consequently, when the healthcare sector is small, techno-

logical improvements in the healthcare sector positively affect economic growth. However, the

negative effects on economic growth stemming from a declining marginal productivity of capital,

as labor is re-assigned to the healthcare sector, will dominate when the healthcare sector is suf-

ficiently large. Thus, technological improvements in healthcare increase economic growth when

the healthcare sector is small and decrease growth when the healthcare sector is large. In the

special case in which the spillovers from healthcare on productivity in manufacturing are very

22This is a standard feature of life-cycle models (see, e.g., Murphy and Topel (2006)).
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large, i.e., η = 1, the costs in consumption good output from shifting labor from manufacturing

to healthcare are fully compensated by the spillover on productivity. Then, only the positive

effect on economic growth via increased longevity remains, as indicated in Proposition 6.23

7 Numerical Simulations

In the following, we illustrate our theoretical findings via a numerical simulation. To abstract

from country-specific peculiarities in the healthcare system to the greatest extent possible, we use

the OECD average of healthcare expenditures and life expectancy for our simulations. Among all

OECD countries for which data were available in 1980, average lifetime at birth increased from

73.1 years in 1980 to 79.4 years in 2005.24 Over the same time horizon, the average healthcare

spending as a percentage of GDP increased from 6.1% to 8.7% while GDP per capita grew at

an average rate of 2.05%.

For all other parameters in our model economy, we choose plausible real-world values. For

the intertemporal elasticity of substitution σ, we follow Murphy and Topel (2003), who suggest

a value of ε = (u′(c)c)/u(c) = 0.346, which is also used by Becker et al. (2005). For our

instantaneous utility function (11), this translates to σ = 1.529, which we round to σ = 1.5.

The utility discount rate is set to ρ = 2%. Employing a broad definition of capital, we set

the capital share α = 0.5 and the capital depreciation rate δ = 7.5%. Yet, we also perform

sensitivity analyses with α ranging between 0.35 and 0.65 and δ varying between 5% and 10%.

In addition, we abstract from population growth, i.e., ν = 0, as we employ data on GDP per

capita.

Crucial parameters in our model are the positive externality from healthcare spending on

total factor productivity measured by the spillover parameter η and the healthcare technology

characterized by pmax, ψ and β. Here we apply the following procedure. We fix η and β and

then choose pmax and ψ to match observed lifetime expectancy and healthcare spending rates.

Unfortunately, there is no easy way to observe the spillover parameter η and the curvature

parameter β of the healthcare technology. As a consequence, we perform a sensitivity analysis

with a broad value range for both parameters. For η, we employ a range between 0 and 0.3

and for β a range between 0.5 and 1, where we consider η = 0.15 and β = 0.75 as the reference

scenario. Finally, we derive the level of healthcare expenditures h in our model by dividing

observed healthcare expenditures as a percentage of GDP by 2(1 − α): On the one hand, h

in our model is the share of labor income spent on healthcare rather than the share of total

GDP. Assuming a labor share of 1 − α, we divide the data on health expenditures per GDP

by this number. On the other hand, not all health expenditures are effective in prolonging life.

23It would also be interesting to know how the size of the moral-hazard effect is affected by improvements in
the healthcare technology. However, from a theoretical perspective, the effect is ambiguous, and thus, the answer
to this question depends on the values of the exogenous parameters of the model. We will, however, examine the
change in the size of the moral-hazard effect in our numerical simulations in the next section.

24We average life expectancy at birth and healthcare expenditures for all OECD countries for which data are
available both in 1980 and 2005. In particular, this excludes Chile, the Czech Republic, Estonia, Greece, Hungary,
Israel, Italy, Luxembourg, Mexico, Poland, the Slovak Republic, Slovenia and Sweden. See also Appendix A.9 for
details on the numerical illustration.
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Symbol Description Value Range

ρ Time preference rate 2%
σ Intertemporal elasticity of substitution 1.5
ν Growth rate of cohort size 0%
α Value share of capital 0.35 . . .0.5 . . . 0.65
δ Capital depreciation rate 5% . . .7.5% . . . 10%
η Positive spillover of healthcare spending on TFP 0 . . .0.15 . . . 0.3
β Curvature parameter of healthcare technology 0.5 . . .0.75 . . . 1

pmax Hazard rate of dying without healthcare Calibrated to match data
ψ Marginal impact of healthcare spending on longevity Calibrated to match data
h Share of labor income spend on healthcare Taken from data
T Life expectancy Taken from data

Table 1: Summary of the model parameters used in the numerical illustration. In cases of value
ranges, a sensitivity analysis is employed, where the reference case is denoted in bold.

Assuming that half of the expenditures affect the individuals’ life expectancy leads to the factor

of 1/[2(1 − α)] given above. Table 1 summarizes the model parameters used in the numerical

simulation.

In line with our endogenous growth model, we assume that increases in average lifetime stem

from the interplay of improvements in the healthcare technology and the endogenous choice of

healthcare spending. This implies that the growth and interest rates of the economy depend on

the healthcare technology and the healthcare expenditures. We now calculate these rates and

the expected lifetime utility of an individual household in a steady-state economy in two different

scenarios: (i) with the healthcare technology of 1985 and (ii) with the healthcare technology

of 2005. To concentrate on the effects of the healthcare technology, we assume that all other

aspects of the economy, such as the consumption good production technology and the initial

capital endowment per capita, are the same.25 We analyze two different annuity regimes. In

regime (a), we assume that annuity payments cannot be conditioned on healthcare choices, which

we consider the status quo. As a consequence, we calibrate the healthcare technologies of 1985

and 2005 to match observed healthcare expenditures and life expectancy. In regime (b), which

we consider the counterfactual scenario, we assume that annuity payments are conditioned on

healthcare expenditures.

To compare the expected lifetime utilities of two individuals under two different scenarios,

we calculate the compensating variation, i.e. the percentage increase in consumption that an

individual under the first regime had to enjoy to experience the same expected lifetime utility as

the individual would under the second regime. The difference ∆U in expected lifetime utilities

is either due to the improvement in the healthcare technology if we compare scenarios (i) and

(ii) or due to the moral hazard induced by unconditioned annuity claims if we compare scenarios

(a) and (b).

The results for our reference specification are shown in Table 2. In scenario (i), the health-

care technology has been calibrated to resemble the life expectancy (73.1 years) and healthcare

25Note, however, that steady-state population size depends on the expected lifetime, as the cohorts’ initial sizes
when born are fixed and constant.
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Scenario (i) Scenario (ii)
T = 73.1 [a] h = 6.1 [%] T = 79.4 [a] h = 8.7 [%]

Regime (a)

pmax [%] 1.4420 1.3662

ψ [%] 0.6028 0.6664

r [%] 3.61 3.38

g [%] 2.14 1.96

∆U(i)→(ii) [%] 4.55

Regime (b)

h [%] 5.54 8.04

T [a] 72.83 79.02

r [%] 3.64 3.51

g [%] 2.18 2.01

∆U(i)→(ii) [%] 4.86

Comparison regime (a) → (b)

∆U(a)→(b) [%] 1.29 1.58

∆Udirect [%] 0.011 0.013

∆Uequil [%] −0.22 −0.27

∆Ugrowth [%] 1.50 1.84

Table 2: Utility gains (compensating variation) for a hypothetical average OECD country from
improvements in the healthcare technology and switching from an unconditioned to a conditioned
annuity claims regime.

expenditures (6.1% of GDP) of the average OECD country in 1985, while in scenario (ii),

the healthcare technology mimics the life expectancy (79.4 years) and healthcare expenditures

(8.7% of GDP) of the average OECD country in 2005. Comparing the calibrated healthcare

technologies, we observe that the hazard rate for mortality without healthcare treatment pmax

has declined and the marginal productivity of the healthcare technology ψ has improved. This

implies that in scenario (ii), individuals live – on average – longer than in scenario (i) even with-

out any healthcare expenditures, and each percentage point of wage income spent on healthcare

in scenario (ii) reduces mortality to a greater extent than in scenario (i). As a result of the

improved healthcare technology, individuals spend a higher percentage of their wage income

on healthcare in scenario (ii): h increases from 6.1% to 8.7%. This has implications for the

steady-state equilibrium of the economy. The interest rate decreases from 3.61% to 3.38%, and

the growth rate declines from 2.14% to 1.96%. Despite a lower interest and growth rate, the

expected lifetime utility of individuals has increased by 4.55%.26

First, we now analyze what would have happened in scenarios (i) and (ii) if annuity claims

were conditioned on healthcare expenditures while all other fundamentals of the economy (in-

cluding the healthcare technology) remained unchanged. We find that steady-state healthcare

expenditures in both scenarios decrease while the interest and growth rates increase. In scenario

26Recall that according to our metric, an increase of 4.55% means that we had to give an individual in scenario
(i) a consumption increase of 4.55% over the entire lifetime to enjoy the same expected lifetime utility as an
individual in scenario (ii).
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(i), healthcare investments are reduced from 6.1% to 5.54%, resulting in a lower life expectancy

of 72.83 years (a decrease of approximately 3 months). However, the interest rate increases

from 3.61% to 3.64%, and the growth rate rises from 2.14% to 2.18%. Similarly, healthcare

expenditures in scenario (ii) decline from 8.7% to 8.04%, resulting in a decline in life expectancy

from 79.4 to 79.02 years (a decrease of approximately 4.5 months). The interest rate increases

from 3.38% to 3.51%, and the growth rate of the economy rises from 1.96% to 2.01%. More-

over, under regime (b) individuals benefit from an improvement in the healthcare technology:

Expected lifetime utility increases by 4.86%.

Second, we compare regimes (a) and (b). We find that expected lifetime utility levels are

higher under regime (b) with conditioned annuity claims. Individuals under regime (a) would

have to enjoy a 1.29% (1.58%) higher consumption level throughout their entire lifetime in

scenario (i) ((ii)) to reach the expected lifetime utility under regime (b). To understand how

conditioned annuity claims affect the expected lifetime utility, we first write expected lifetime

utility in the steady state as follows (see also Appendix A.9):

U(s) =
σ

σ − 1
c(s, h̄, p̄)

σ−1
σ

1

x̄(h̄, p̄)
, (22)

where x̄(h̄, p̄) denotes the propensity to consume in the steady-state equilibrium and c(s, h̄, p̄)

is a household’s consumption at birth, which is given by

c(s, h̄, p̄) =W (s, h̄, p̄)x̄(h̄, p̄)(1− h̄) . (23)

Differentiating with respect to the steady-state healthcare expenditures h̄ yields the following:

dU(s)

dh̄
= U(s)

{
σ − 1

σ

[

−
1

1− h̄
+
dx̄(h̄, p̄)/dh̄

x̄(h̄, p̄)
+
dW (s, h̄, p̄)/dh̄

W (s, h̄, p̄)

]

−
dx̄(h̄, p̄)/dh̄

x̄(h̄, p̄)

}

. (24)

Thus, changes in steady-state healthcare spending h̄ affect utility either via a change in the

growth rate of individual consumption (last term) or via the initial consumption level at birth

(first three terms), which itself depends on the direct costs and benefits of healthcare expen-

ditures (first and second terms in brackets) and changes in the net present value of lifetime

earnings W (s, h̄, p̄) (third term in brackets).

We further decompose the difference in expected lifetime utility into three components. The

first component ∆Udirect consists of all changes in expected lifetime utility on the microeconomic

level of the individual due to a direct change in healthcare spending h̄ or a corresponding change

in the mortality rate p̄. Thus, ∆Udirect is the difference in expected lifetime utilities due to

switching from regime (a) to regime (b) if the individual’s h̄ changes from 6.1% (8.7%) to 5.54%

(8.04%) and, as a consequence, the life expectancy decreases from 73.1 (79.8) to 72.83 (79.02)

years but the wage, interest rate and the growth rate of the economy remain at regime (a)

values. The second component ∆Uequil isolates the effect of changes in the equilibrium wage

rate and interest rate but leaves the healthcare spending, the expected lifetime and the economy’s

growth rate at the levels of regime (a). The last component ∆Ugrowth elicits the difference in

27



expected lifetime utilities that stems from the change in the economy’s growth rate while leaving

healthcare spending, life expectancy and wage and interest rates unchanged.27

We find that the direct effect at the individual household level of a change from the annuity

regime (a) to regime (b) is positive. This is to be expected, as regime (b) eliminates the moral

hazard incentive for individual households to over-invest in healthcare because they do not take

into account the repercussions of higher healthcare spending, respectively higher life expectancy,

on the equilibrium annuity rate. This effect is well understood and documented in the literature

(see, e.g., Philipson and Becker, 1998). Yet, we find that this direct effect at the individual

household level is very small (0.011% in scenario (i) and 0.013% in scenario (ii)).

The isolated effect on the wage and interest rate ∆Uequil is negative. This implies that with

respect to wage and interest rates, households are better off under regime (a) with moral hazard

than under regime (b) without moral hazard. The reason is that the wage rate increases with

increasing healthcare spending, while the interest rate decreases (see Proposition 3 (i)). This

leads to a higher net present value of lifetime earnings. In Appendix A.9, we show that the

effect on the initial consumption level at birth, as given by equation (23), is unambiguously

positive. However, the propensity to consume x̄(h̄, p̄) increases, and thus, the total effect on

lifetime utility, as given by equation (22), is ambiguous. Over the whole range of our sensitivity

analyses, we find that the positive effect on initial consumption outweighs the negative effect on

the growth rate of individual consumption, rendering the total effect of an increase in healthcare

spending on lifetime utility positive. As healthcare investments are lower in regime (b), this

leads to the observed decrease in expected lifetime utility of −0.22% in scenario (i) and −0.27%

in scenario (ii).

Finally, a change in healthcare expenditures also affects the growth rate of the economy.

According to Proposition 3 (iii), an increase in h̄ leads to an increase in the growth rate for

small values and to a decrease for high values of h̄. ∆Ugrowth isolates the impact of a change

in the growth rate on expected lifetime utility. We find that in both scenarios a switch from

regime (a) to regime (b) reduces healthcare expenditures and increases the economy’s growth

rate. Accordingly, we observe an increase in expected lifetime utility of 1.50% in scenario (i)

and 1.84% in scenario (ii). In fact, for both scenarios and throughout the whole range of our

sensitivity analyses, we find that an increase in healthcare expenditures leads to a decrease in

the growth rate and an according expected utility loss by reducing the net present value of

lifetime income.

To check the qualitative and quantitative robustness of our reference simulation, we perform

a series of sensitivity analyses, the results of which we discuss in detail in Appendix A.9. We find

clear evidence that the moral hazard incentives of unconditioned annuity claims have a sizable

effect on individual expected lifetime utility. Throughout the parameter range of our sensitivity

analyses, we find that expected lifetime utility would increase by approximately between 1–3%

27Note that the decomposition of the total effect is somewhat arbitrary. We select this particular (hypothetical)
decomposition to clearly distinguish among the different channels by which increased longevity impacts expected
lifetime utility and to clearly identify the magnitude of each of these channels. Obviously, other decompositions
of the different channels, for example incremental or hierarchical decompositions, are conceivable.
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if annuity claims could be conditioned on healthcare expenditures.28 Interestingly, the direct

microeconomic effect of moral hazard in our model is rather small. In fact, the negative effect of

moral hazard is predominated by a macroeconomic repercussion of healthcare expenditures on

the economy’s growth rate. In addition, we find that the negative effect of moral hazard is larger

under a healthcare technology that resembles the average OECD country in 2005 compared to

a healthcare technology consistent with the average OECD country in 1985. Thus, if healthcare

technology continues improving, the negative effect of moral hazard due to unconditioned annuity

claims may increase further in the future.

8 Discussion

In the following, we relate our model framework and the obtained results to the real world.

First, the most important argument for the relevance of our analysis stems from the prevalence

of unconditioned annuity claims throughout the developed world. In fact, the typical pension

system within OECD countries rests on three pillars: The first pillar is a public pension sys-

tem, the second is a funded system that recipients and employers pay into, and the third is

voluntary privately funded accounts. Typically, the first two pillars comprise mandatory an-

nuities. According to OECD data (OECD, 2015b), in 2011 public pension expenditures in the

OECD amounted on average to approximately 10% of GDP and to 18% of total government

spending. Between 1990 and 2011, the increase in public pension expenditures outpaced the

increase in GDP by 28%. Furthermore, in 2014, mandatory social insurance contributions and

mandatory private pension contribution rates for employees and employers for a private sector

worker earning the average wage were approximately 20% (OECD, 2015b).

Rusconi (2008) provides an overview of the annuity markets and pension systems across

OECD countries and classifies countries into two categories: (i) ‘life-long annuity predominated’

versus (ii) those predominated by ‘alternative forms of income’. While a number of countries,

such as Germany, the UK, the Netherlands and Italy, predominantly employ life-long annuities,

some countries, such as the U.S., use predominantly ‘alternative forms of income’. Nevertheless,

even in the U.S., the average fraction of retirement wealth that is annuitized is approximately

50% for individuals older than 60 years, as reported in Hosseini (2015).

Depending on the country, the types of annuities in the pension system and those offered in

the private market can differ. The OECD categorizes them into immediate, deferred and other

annuities. Cannon and Tonks (2008) provide a good overview of different annuity types. In

essence, they all share the central characteristics captured by the actuarial notes we employ in

our analysis. Furthermore, the fair rate of return of the annuity depends on average individual

longevity, but annuity contracts do not typically condition on health factors: The overwhelming

share of annuitized wealth from the public pension system and mandatory second-pillar contri-

28As an additional robustness check, we calculate the implied value of a statistical life under regime (a) in
scenario (ii). As the yearly wage in 2005 we take the average full-time employed yearly wage (in 2015 PPP USD)
of the OECD countries that we employ in our numerical simulation, which amounts to 41’598 USD. Across the
whole range of our sensitivity analysis this yields approx. 4.5 mil. USD for the value of a statistical life which
lies very well within the empirically determined range for OECD countries (see, e.g., OECD, 2012).

29



butions does not condition on the health status of the annuitant. There are so-called ‘enhanced

annuities’, which pay higher rates when a person has some particular health conditions or is a

regular smoker. However, they only play a marginal role in overall annuitized retirement wealth

and only condition on very specific health characteristics.

Second, in our model, we find that whether the moral-hazard effect in healthcare investments

leads to over- or under-investment depends on whether the expected additional consumption

exceeds the expected additional wealth for a marginal increase in the household’s life expectancy

due to increased healthcare investments. It is rather intuitive that a longer life implies financing

a stream of consumption over a longer time horizon. Yet, it is less obvious how it might lead

to higher expected labor income wealth, as in reality, the average person no longer works at

the age of average life expectancy of approximately 80 years. However, life-extending healthcare

measures not only play a role at the very end of life, but they also extend an individual’s expected

working life via three different channels: (i) later death during the regular working life, (ii) later

or no early retirement based on health issues and (iii) fewer unemployment spells due to poor

health. In fact, ill health was the most commonly cited reason for early retirement among both

men and women according to several studies.29 In addition to the expected extension of the

household’s working life, the expected additional labor income wealth also depends on the wage

rate. In our model, the positive spillover effect that health expenditures exert on consumption

good production and, ceteris paribus, leads to higher wages captures that a healthier workforce is

also more productive. In addition, the wage rate is affected by the growth rate of wages (which,

in steady state, is also the growth rate of the economy). As we have shown, the growth rate

of the economy is either positively or negatively affected by a marginal increase in healthcare

investments, depending on the initial size of the healthcare sector.

Third, we have shown that in the steady-state equilibrium, the moral-hazard effect leads to

over-investment in healthcare relative to the case in which annuity rates are conditioned on health

status. A crucial assumption for this result is that either there is no spillover effect of health on

aggregate productivity or it is not internalized. We show in Appendix A.10 that if the spillover

effect is internalized, the moral-hazard effect may indeed lead to under-investment in healthcare.

Internalizing the spillover effect is essentially a wage subsidy conditioned on healthcare spending.

Households, anticipating this increase in wage associated with higher healthcare investments,

thus have an additional motive to increase healthcare expenditures. If this wage increase is

sufficiently large, then the increase in the wealth component in the budget constraint can be

strong enough to overcompensate for the additional consumption to be financed. Then, the

moral-hazard effect would lead to under-investment in healthcare.

To test the robustness of our over-investment result, we re-run our numerical simulation,

as detailed in Section 7 and Appendix A.9, with the only difference being that we internalize

the spillover effect of healthcare investments on consumption good production (see Appendix

29See, for example, Disney et al., 2006 and the references therein. In addition, Dwyer and Mitchell (1999)
report that men in poor health are expected to retire one to two years earlier. Further evidence for substantial
effects of health on labor market participation are reported by Garcia-Gomez et al. (2010), van den Berg et al.
(2010) and Brown et al. (2010).
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A.10). We find that there is an additional incentive to invest in healthcare, yet it is rather

small. As a consequence, the result that households over-invest in healthcare remains robust

throughout the whole parameter range of our sensitivity analyses. In fact, healthcare investments

decrease slightly less when switching from regime (a) with unconditioned annuity claims to

regime (b) under which annuities are conditioned on healthcare spending, and compared to the

standard case without internalizing the spillovers of healthcare investments to consumption good

production, the welfare losses decrease from 1.29% to 1.23% in scenario (i) and from 1.58% to

1.42% in scenario (ii). In Appendix A.9, we also simulate the scenario in which both the

learning-by-investing externality and the health investment spillover are internalized. We find

that this substantially increases the size of the welfare losses associated with the moral-hazard

effect relative to the scenario in which neither of these two externalities are internalized.

Fourth, in our model, we assume that households inelastically supply one unit of labor as long

as they are alive. Thus, we abstract from a retirement phase at the end of a household’s lifetime.

How would the explicit consideration of a retirement phase change our results concerning under-

or over-investment in healthcare due to moral-hazard effects from unconditioned annuity claims?

As outlined above, over-investment occurs if the costs to finance consumption over a longer life

expectancy outweigh the increase in the net present value of expected lifetime labor income due

to a marginal increase in healthcare expenditures. While a retirement phase has little impact

on the need to finance consumption over a longer time horizon, it clearly limits the possibilities

for increases in lifetime labor income.30 As a consequence, we expect that, in reality, over-

investment in health is even larger than suggested by our model.31 Thus, we interpret the loss in

expected lifetime utility due to moral hazard of 1–3%, as suggested by our numerical illustration

in Section 7, as a conservative estimate. To better estimate the size of the moral-hazard effect,

a quantitative exercise with richer detail on retirement and age-dependent mortality and health

status over the life-cycle would be a desirable next step.

Finally, we note that our general model framework and the solution to the households’

maximization problem for given prices and the social planner’s solution do include preference

specifications as suggested by Hall and Jones (2007). It is only with respect to the steady-state

equilibrium that we employ an intertemporal elasticity of substitution larger than one. With

an intertemporal elasticity of substitution smaller than one, the equilibrium dynamics would

change such that the healthcare sector would grow either to dominate the entire economy, with

consumption good production growing positively but more slowly, or to bring consumption

growth to a halt, leading to a stationary economy without growth. Similarly, we would obtain

30Yet, it is certainly true that people in good health expecting to live longer might consider extending their
working life if doing so were to positively affect their wealth. In fact, Kuhn et al. (2015) examine the relationship
between the endogenous choices of healthcare and retirement age in a partial equilibrium analysis and find that
moral hazard due to unconditioned annuities leads to both excessive healthcare expenditures and an excessive
duration of the working life. In addition, the official retirement age might also increase with higher average life
expectancy.

31This is particularly true if pension systems rely on unconditioned annuity claims. Zhao (2014) shows in a
quantitative general equilibrium neoclassical growth model calibrated to US data that one third of the increase
in US healthcare expenditures between 1950 and 2000 can be attributed to the increase in social securities over
the same time horizon.
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equilibrium dynamics with an ever-growing healthcare sector if we included continuous tech-

nological improvements in healthcare (see, e.g., Jones, forthcoming). However, such changes

to our model will not negate the channels identified in this paper through which endogenous

healthcare expenditures affect the economy and the determinants of the sign and the size of the

moral-hazard effect from annuities unconditioned on individual household mortality but would

affect the dynamics of the economy and likely the quantitative results.

9 Conclusion

In this paper, we examined the role of households’ endogenous healthcare choices to extend their

expected lifetimes in economic growth and welfare in a decentralized, overlapping generations

economy with the realistic feature that households’ savings are held in annuities. While it is well

known that annuities that do not fully condition their returns on individual households’ health

statuses induce moral-hazard effects in health spending, how this effect plays out in general

equilibrium and the macroeconomic repercussions it implies for the economy’s growth prospects

have yet to be analyzed. This is the central focus of our analysis.

An increase in healthcare spending that causes households to live longer will reduce the

equilibrium return on annuities. We find that this lowers the discount rate in the household’s

budget constraint on future consumption and future labor income, the latter of which is typically

neglected in the literature. Another interpretation is that the increase in healthcare spending

implies, on the one hand, that additional consumption needs to be financed for the increase in

lifetime but, on the other hand, that additional income may also be earned during the additional

lifetime. Neglecting the effect of healthcare spending on annuity rates by taking the latter as

given leads households to over-invest in healthcare if the extra lifetime consumption exceeds the

extra lifetime income and vice versa. We show that households will over-invest in the steady-

state equilibrium. Under-investment may only occur if the health investment has an additional

large and positive (side-)effect of increasing the households’ wage rates.

We further show that in macroeconomic terms, increased health investments boost economic

growth when the healthcare sector is small but curtail growth when the healthcare sector is

already sizable. The latter case additionally amplifies the neglect of the quality of life in terms

of consumption in favor of the quantity of life resulting from over-investment in healthcare, as

emphasized in the microeconomic literature. In fact, our simulations using OECD data suggest

that the growth effect of over-investment in healthcare is negative. Moreover, we find that

the welfare losses resulting from over-investment in healthcare are substantial and throughout

various scenarios between 1–3%. In particular, the numerical results highlight the importance of

the general equilibrium effects and, especially, the growth effects for the welfare impacts of the

moral-hazard effect. In addition, our simulations suggest that while technological improvements

in the healthcare sector involved large welfare gains over the last two decades with increases

of approximately 5%, they also tended to increase the welfare losses from moral hazard in

healthcare investments.

The policy implications that can be drawn from our analysis clearly indicate that attempts
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should be made to condition annuity payments in social security systems to a far greater extent

on health status than is currently done. In practice this might be a difficult task in terms of

measurement, and it might also be a contentious issue politically. Yet, the rewards in the event

of success are sizable gains in expected lifetime utility.

This paper analyzes the complex interplay among endogenous longevity, endogenous eco-

nomic growth and welfare in a model that abstracts from various issues that deserve further

scrutiny. To be able to analytically investigate the aggregate economy, we employ a rather

simplistic household model. Interesting extensions in this direction include age-dependent mor-

tality, retirement decisions or endogenous fertility. At the level of the aggregate economy, we

have shown that the decentralized market solution exhibits several externalities that call for gov-

ernment action. Augmenting the model with realistic features of national health systems would

allow future researchers to examine their effects on growth and welfare and to evaluate poten-

tial policy interventions. Finally, we only considered exogenous improvements in the healthcare

technology. Endogenizing these improvements is a further challenge for future research.
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Appendix

A.1 Households’ utility maximization problems

In this section we derive the households’ necessary conditions for an optimum and show that

they are also sufficient. We first derive the household’s forward budget constraint and then use

it to establish the first-order conditions. Finally, we show that the first-order conditions are also

sufficient in the steady state.

Integrating the flow budget constraint (5) with respect to t and using the initial condition

b(s, s) = 0 and the transversality condition limt→∞ b(t, s) exp[−
∫ t
s a(t

′, s)dt′] = 0, we obtain the

household’s forward budget constraint:

b(t, s) =

∫ ∞

t

[
c(t′, s)−

(
1− h(s)

)
w(t′)

]
exp

[

−

∫ t′

t
a(t′′, s)dt′′

]

dt′ . (A.1)

Then, we can write the household’s problem as

max
{c(t,s)}ts,h(s)

∫ ∞

s
V (c(t, s)) exp[−(ρ+ p(s))(t− s)]dt

s.t. b(s, s) =

∫ ∞

s
[c(t, s)− (1− h(s))w(t)] exp

[

−

∫ t

s
a(t′, s)dt′

]

dt .

As b(s, s) = 0, we can set-up the Lagrangian

L =

∫ ∞

s
V (c(t, s)) exp[−(ρ+ p(s))(t− s)]

− λ[c(t, s) − (1− h(s))w(t)] exp

[

−

∫ t

s
a(t′, s)dt′

]

dt .

(A.2)

Taking the (Volterra) derivative with respect to c(t, s), equating it with zero and solving for the

Lagrange multiplier yields:

λ = V ′(c(t, s)) exp

[ ∫ t

s
a(t′, s)dt′ − (ρ+ p(s))(t− s)

]

. (A.3)

Then, taking the derivative with respect to t of the logarithm of both sides of (A.3) yields the

Euler equation, as shown in equation (7).

When the households take the annuity rate a(t, s) as given, the derivative of the Lagrangian

with respect to h(s) together with equation (A.3) yields the first-order condition with re-

spect to healthcare investments (8). In the case where annuity contracts are conditioned on

healthcare investments, the households additionally consider the change in the annuity rate

a(t, s) = r(t)+p(s) when deciding on their healthcare levels. In this case the respective derivative

of the Lagrangian combined with (A.3) gives the first-order condition for healthcare investments

presented in equation (19).

The first-order conditions are not only necessary but also sufficient for an interior household

optimum in the steady state. In case of annuity claims that are conditioned on healthcare
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expenditures the Lagrangian (A.2) is jointly concave in c(t, s) and h(s) in the steady state

whenever the first-order conditions hold. As a consequence, any local extremum is a local

maximum. As the Lagrangian is continuously differentiable this implies that there is only one

local maximum, and, as corner solutions cannot be optimal, the local maximum is also the global

maximum.

In case of unconditioned annuity claims we interpret the household problem as a two-step

maximization problem. In the first step, we seek the optimal consumption paths in the steady

state for a given healthcare expenditure h̄. In the second step, we insert the optimal consumption

paths in the household’s lifetime utility function and maximize with respect to healthcare ex-

penditures h̄. Given the utility function (11), the Euler equation characterizing the household’s

optimal consumption path (7) reads

ċ(t, s)

c(t, s)
= σ

[
ā(h̄, p̄)− ρ− p̄

]
, t ≥ s . (A.4)

For given h̄, saving and consumption by a household born at time s is uniquely characterized

by the system of differential equations (6) and (A.4), the initial condition b(s, s) = 0 and the

transversality condition for the stock of assets limt→∞ b(t, s) exp
[
−ā(h̄, p̄)(t− s)

]
= 0. Under the

assumptions that the propensity to consume out of wealth x(h̄, p̄) = (1−σ)ā(h̄, p̄)+σ
(
ρ+ p̄

)
> 0

and the long-run growth rate of wages w̄(h̄, t) is smaller than ā(h̄, p̄),32 we obtain for the optimal

paths of consumption c(t, s, h̄, p̄) and assets b(t, s, h̄, p̄)

c(t, s, h̄, p̄) = c(s, h̄, p̄) exp
[
σ
(
ā(h̄, p̄)− ρ− p̄

)
(t− s)

]
, (A.5a)

b(t, s, h̄, p̄) =
c(t, s, h̄, p̄)

x(h̄, p̄)
−
(
1− h̄

)
W (t, h̄, p̄) , (A.5b)

c(s, h̄, p̄) = x(h̄, p̄)
(
1− h̄

)
W (s, h̄, p̄) . (A.5c)

where W (t, h̄, p̄) ≡
∫∞
t w̄(h̄, t′) exp

[
−ā(h̄, p̄)(t′ − t)

]
dt′ = w̄(h̄, t)/y(h̄, p̄) denotes the expected

net present value of the household’s future labor income at time t. As in steady state the

wage rate grows at a constant rate ḡ(h̄, p̄), we can write W (t, h̄, p̄) = w̄(h̄, t)/y(h̄, p̄), where

y(h̄, p̄) = ā(h̄, p̄)− ḡ(h̄, p̄). Inserting the optimal consumption path into the household’s lifetime

utility function (4) and differentiating with respect to healthcare spending h(s) yields:

FOC
(
h̄
)
≡ −

c(s, h̄, p̄)1−
1
σ

x(h̄, p̄)

[

σ

σ − 1

H ′
(
h̄
)

x(h̄, p̄)
+

1

1− h̄

]

. (A.6)

Then, the necessary condition for an interior household optimum is given by FOC
(
h̄
)
= 0. Note

that the corner solutions h̄ = 1 and h̄ = 0 cannot be optimal solutions. For h̄ = 1, consumption

and lifetime utility would drop to zero, while both are positive for any value h̄ ∈ [0, 1). Regarding

the corner solution h̄ = 0, we recall that H ′(h̄) = −βψh̄β−1 which will approach infinity when

32If these assumptions do not hold, the household’s problem is not well defined. We shall see in Section A.4 that
the condition that the long-run growth rate of wages w̄(h̄, t) is smaller than ā(h̄, p̄) always holds in the market
equilibrium.
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h̄ → 0. Thus, the benefits of a marginal investment in healthcare diverges while the costs in

terms of lifetime utility stay finite. Hence only interior solutions h̄ ∈ (0, 1) can be optimal.

Taking the limits of FOC
(
h̄
)
for h̄→ 0 and h̄→ 1, we obtain:

lim
h̄→0

FOC
(
h̄
)
= +∞ , lim

h̄→1
FOC

(
h̄
)
= −∞ . (A.7)

As FOC
(
h̄) is continuously differentiable on h̄ ∈ [0, 1], there exists at least one h̄, which is

also a local maximum, that satisfies FOC
(
h̄
)
= 0. However, there may be any odd number of

h(s) ∈ [0, 1] that satisfy the first-order condition. To show that there exists a unique solution

to FOC
(
h̄
)
= 0 and, thus, the first-order condition is also sufficient for a household optimum,

we re-arrange it to yield:

ψ[1 + h(s)(β + σ − 1)] =
σ

σ − 1
xmaxh(s)

1−β , (A.8)

where xmax = (1−σ)ā(h̄, p̄)+σ(ρ+pmax) is the propensity to consume in case h̄ = 0. Thus, the

first-order condition requires the intersection of a linear function with a power function, which

can only have zero, one or two solutions h̄ ∈ [0, 1]. As we already know that FOC
(
h̄
)
= 0 can

only have an odd number of solutions, this implies that FOC
(
h̄
)
= 0 has a unique solution,

which is also local maximum and, because corner solution cannot be optimal, is also the global

maximum.

A.2 Social planner’s welfare maximization problem

We consider a social planner that maximizes the welfare of all generations alive from time 0 to

infinity. V(t) reflects aggregate welfare at time t and comprises the utilities of all persons alive

at this time. The planner discounts the different generations’ utilities with the rate ρs which we

assume to be equal to the households’ pure time preference rates ρ.33

max
{{c(t,s)}∞t=0,h(s)}

∞
s=0

∫ ∞

0
V(t)dt,

where V(t) =

∫ t

−∞
V
(
c(t, s)

)
exp

[
−
(
ρ+ p(s)

)
(t− s)

]
exp[νs] exp[−ρss]ds,

s.t. p(s) = H
(
h(s)

)
,

N(t) =

∫ t

−∞
exp[νs− p(s)(t− s)]ds,

LH(t) =

∫ t

−∞
h(s) exp[νs− p(s)(t− s)]ds,

N(t) = LF (t) + LH(t),

K̇(t) = F (K(t), LF (t), LH(t)) − δK(t) − C(t),

33See, for example, Schneider et al. (2012) for a detailed discussion on the role of the relation of the households’
time preference rates and the generational discount rate of the social planner.
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C(t) =

∫ t

−∞
c(t, s) exp[νs− p(s)(t− s)]ds,

together with the initial conditions {h(s)}0−∞ and K(0) = K0 > 0.

In our context the planner’s welfare maximization problem bears some particular difficulties

that do not allow to use the standard set of tools from optimal control theory directly.34 The first

difficulty is that we have a double integral in the objective function: one integrating over time

t and another over the households’ birth-dates s. Second, we have integral constraints in the

maximization problem that cannot be transformed into constraints without integrals via taking

derivatives. The latter is mostly due to the assumption that healthcare investment decisions

have to be taken at the beginning of an individual’s life and adhered to throughout lifetime.

With respect to the double integral in the objective function, we can perceive the problem as

one with two parts.35 One part, the “inner problem”, is concerned with maximizing welfare at

each point in time t by choosing the intratemporal distribution of consumption c(t, s) across the

different cohorts of size N(t, s) taking as given aggregate consumption C(t) and the cohort sizes.

The other part, the “outer problem”, uses the optimal intratemporal distribution of consumption

from the solution to the inner problem and determines the paths of aggregate consumption C(t),

aggregate capital K(t) and the healthcare levels of the generations born at time t, and therefore

the path of each cohort’s size.

Using the definition of N(t, s) = exp[νs − p(s)(t − s)], we can re-write the social planner’s

objective function

∫ ∞

0

∫ t

−∞
V
(
c(t, s)

)
N(t, s) exp[(ρ− ρs)s] ds

︸ ︷︷ ︸

objective of inner problem

exp[−ρt] dt. (A.9)

We observe that the social planner’s weight on the different generations’ consumption at any

time t, depends on the sizes of the generations and the difference between the households’ time

preference rate, ρ, and the generational weight of the social planner, ρs. As mentioned previously,

we assume that ρs = ρ. In this case, the social planner optimally distributes consumption equally

among all households alive in each period, i.e. c(t, s) = c̄(t) ∀s ≤ t. A proof of this result will

be provided upon request and can also be found – together with a general discussion of optimal

intratemporal consumption profiles including the cases ρs 6= ρ – in Schneider et al. (2012).

With this result of the inner problem, we now turn to the outer problem with the difficulty

that the integrals in the constraints cannot be eliminated. The outer problem can be written as

follows:

max
{{C(t)}∞t=0,h(s)}

∞
s=0

∫ ∞

0
V
(
c̄(t)
)
N(t) exp[−ρt] dt

34Our approach to the problem is based on chapter 22 in Kamien and Schwartz (1991) and chapters 7.3 and
9.1 in Chiang (1992).

35This split is typically used in welfare analysis of continuous-time overlapping generations models (see, e.g.,
Calvo and Obstfeld (1988) or Schneider et al. (2012)).
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s.t. p(s) = H
(
h(s)

)
,

N(t) = N0(t) +

∫ t

0
exp[νs− p(s)(t− s)]ds,

LH(t) = LH0 (t) +

∫ t

0
h(s) exp[νs− p(s)(t− s)]ds,

N(t) = LF (t) + LH(t),

K(t) = K(0) +

∫ t

0
F (K(ŝ), LF (ŝ), LH(ŝ))− δK(ŝ)− C(ŝ) dŝ,

C(t) = c̄(t)N(t).

This problem differs from the initial statement of the planner’s problem in two respects.

First, we have included the solution to the inner maximization problem and we have written the

constraints on the stock variables to isolate the part fixed by the initial conditions from the one

that can be influenced by the control variables. Note that N0(t) is the number of households

born before time 0 and still alive at time t. These cohort sizes cannot be influenced by the

planners control {h(s)}∞0 but are given via the initial condition {h(s)}0−∞. Similarly for LH0 ,

which characterizes the labor demand in healthcare by the individuals born before time 0.

We can now set up the Lagrangian:

Ls =

∫ ∞

0
V

(
C(t)

N(t)

)

N(t) exp[−ρt]dt

+

∫ ∞

0
ϕ(t)

[

N0(t)−N(t) +

∫ t

0
exp[νs− p(s)(t− s)]ds

]

dt

+

∫ ∞

0
µ(t)

[

LH0 (t)− LH(t) +

∫ t

0
h(s) exp[νs− p(s)(t− s)]ds

]

dt

+

∫ ∞

0
γ(t)

[
LF (t) + LH(t)−N(t)

]
dt

+

∫ ∞

0
ξ(t)

[

K(0)−K(t) +

∫ t

0
F (K(ŝ), LF (ŝ), LH(ŝ))− δK(ŝ)− C(ŝ) dŝ

]

dt

The constraints in the Lagrangian, for example the one with µ as the Lagrangian multiplier,

comprise a double integral that sums the healthcare labor employed at time t to satisfy the

healthcare demand of all generations born after time 0 to time t. The outer integral sums the

healthcare labor demand in each period t, weighted by the shadow price for healthcare labor,

over the social planner’s planning horizon from 0 to infinity. However, by the assumption that

healthcare levels are decided upon at the beginning of life and fixed at this level from then

onwards, the planner is less concerned about the aggregate healthcare labor costs at time t but

rather about the entire healthcare labor costs of fixing a certain healthcare level at time t for

the generation born at this point in time. To obtain these healthcare costs incurred by the

generation born in t, we can exchange the order of integration in the respective constraints.
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This allows us to re-write the Lagrangian as follows:

Ls = lim
T→∞

∫ T

0
H
(
C(t), h(t),K(t), N(t), LH (t), LF (t)

)

+ ϕ(t) [N0(t)−N(t)] + µ(t) [LH0 (t)− LH(t)] + γ(t)
[
LF (t) + LH(t)−N(t)

]

+ ξ(t) [K(0) −K(t)] dt

where

H
(
C(t), h(t),K(t), N(t), LH (t), LF (t)

)
=

V

(
C(t)

N(t)

)

N(t) exp[−ρt] +

∫ ∞

t
ϕ(s)N(s, t) ds +

∫ ∞

t
µ(s)h(t)N(s, t) ds

+

∫ ∞

t
ξ(s)

[
F (K(t), LF (t), LH(t))− δK(t)− C(t)

]
ds .

We now approach the planner’s problem with the tools from the calculus of variations,

seeking the optimal paths of the variables h(t), C(t),K(t), N(t), LH (t) and LF (t). We indicate

the optimal paths by a star and define the perturbations from the optimal paths by z(t) =

z⋆(t) + ε oz(t). In this definition, z stands for the respective variable and oz is an arbitrary

function. For example, C(t) = C⋆(t) + ε oC(t) and similarly for the other control and state

variables. In particular, we also define T = T ⋆+ε∆T , which we need to derive the transversality

conditions.36 Both of our control variables C(t) and h(t) are bounded from below, as they must

be non-negative.37 However, corner solutions in the sense that C(t) = 0 or h(t) = 0 for at

least some t ∈ [0,∞) cannot be optimal, as both marginal instantaneous utility and marginal

healthcare productivity diverge for C(t) → 0, respectively h(t) → 0. As a consequence, we know

that the social planner’s optimum must satisfy the condition ∂Ls(ε)/∂ε = 0. Combined with

some mathematical transformations, this yields the necessary conditions for a welfare maximum

as depicted in equations (15) and (17).

We obtain the transversality conditions from the terms generated via the derivative of T

with respect to ε:

lim
T→∞

H(T ) = 0, lim
T→∞

ϕ(T )N(T ) = 0, lim
T→∞

µ(T )LH(T ) = 0, lim
T→∞

ξ(T )K(T ) = 0 .

A.3 Proof of Proposition 1

The proof comprises two steps: First we show that given a fixed level of healthcare spending of

all households, h̄, there is a unique equilibrium allocation supported by the prices stated in the

proposition. Second, given these prices there exists a unique optimal choice of h̄ ∈ (0, 1) by the

36See, for example, Chiang (1992).
37Note that in the social planner problem h(t), which indicates the healthcare spending of the cohort born at

time t, is not bounded from above. In fact, as the social planner equally distributes aggregate consumption among
all households alive, it is feasible to choose h(t) > 1 at least for some t ∈ [0,∞). However, aggregate healthcare
spending

∫ t

−∞
h(s)N(t, s)ds must not exceed aggregate wage income w(t)N(t). We do not have to explicitly check

for this condition, as this would imply aggregate consumption to go to zero, which cannot be optimal because
Inada conditions hold for the instantaneous utility function (11).
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households.

Uniqueness of equilibrium prices given uniform healthcare investments

Assume that all households invest a share h̄ of their labor income in healthcare. Then,

the labor demand in the healthcare sector amounts to LH(t) = h̄
∫ t
−∞N(t, s) ds = h̄N(t).

According to the labor market clearing condition, the supply of labor for consumption-good

production is given by LF (t) =
(
1 − h̄

)
N(t). This supply will only match the demand of

the consumption-good production firms for the equilibrium wage rate given in Proposition 1,

which reflects the marginal productivity of labor in consumption-good production at the point
(
LF (t), LH(t)

)
=
(
(1− h̄)N(t), h̄N(t)

)
.

With the unique split of labor between healthcare and consumption-good production, the

marginal return on capital is then given by the interest rate, as stated in the Proposition.

This expression can be derived from evaluating equation (2a) at the point
(
LF (t), LH(t)

)
=

(
(1− h̄)N(t), h̄N(t)

)
.

Next, we turn to the equilibrium in the annuity market. With all households choosing

healthcare level h̄, their hazard rate of dying will be p̄ = H(h̄). This implies that Ṅ(t, s) =

−p̄N(t, s). Using this together with the constant interest rate r̄(h̄), as established previously,

we can re-write the market clearing condition in the insurance market as

∫ t

−∞
a(t, s)b(t, s)N(t, s)ds =

∫ t

−∞
(r̄(h̄) + p̄)b(t, s)N(t, s)ds. (A.10)

It follows directly that the unique steady-state equilibrium annuity rate must be ā(h̄, p̄) =

r̄(h̄) + p̄.

Finally, by virtue of Walras’ law, also the consumption good market must clear given all

other market clear. As already noted in the main text, we choose the consumption good as

the numeraire. Consequently, for any given h̄ ∈ (0, 1) we obtain a unique market equilibrium

supported by the prices provided in items 2–4 of Proposition 1.

Uniqueness of healthcare investments given equilibrium prices

We will now show that there is a unique household choice h̄ given the previously derived

equilibrium prices. Inserting the household’s optimal consumption and saving paths as described

by equations (A.5) into the necessary condition with respect to healthcare investments (8), we

obtain the expression (12) in Proposition 1. As already discussed in Appendix A.1, the corner

solutions h̄ = 1 and h̄ = 0 cannot be optimal solutions. As only an interior solution is possible,

we can re-arrange (12) to yield

G(h̄) :=
σ

1− σ
H ′(h̄)(1− h̄)− x(h̄,H(h̄)) = 0. (A.11)

Note that regarding the second argument of x we used the definition p̄ = H(h̄). We will now

show that G(h̄) is strictly decreasing in its argument, implying that there must be a unique h̄

satisfying G(h̄) = 0.
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When taking the derivative G(h̄) with respect to h̄, we obtain

dG(h̄)

dh̄
=

σ

1− σ
H ′′(h̄)(1− h̄)−

σ

1− σ
H ′(h̄)− (1− σ)

dr̄(h̄)

dh̄
−H ′(h̄)

︸ ︷︷ ︸

dx(h̄,H(h̄))/dh̄

. (A.12)

The last summand in (A.12), −H ′(h̄) is the only one that is positive. However, since σ > 1 by

assumption, it is smaller in magnitude than the second summand − σ
1−σH

′(h̄) and consequently,

we obtain dG(h̄)

dh̄
< 0. Therefore, there is a unique healthcare investment level h̄ which maximizes

the households utilities given the equilibrium prices as derived previously.

�

A.4 Proof of Proposition 2

In this section we will show that with the unique equilibrium prices and healthcare choices

derived in the Proof of Proposition 1, the economy’s steady state dynamics are governed by

a unique balanced-growth path where aggregate consumption per capita and aggregate capital

per capita grow at the same constant rate.

(i) Aggregate dynamics: To derive the aggregate system dynamics, we evaluate equation

(A.5b) in the market equilibrium, aggregate according to equation (9) and differentiate with

respect to t:

ċ(t) = x(h̄, p̄)
[

k̇(t) + (1− h̄)Ẇ (t, h̄, p̄)
]

. (A.13)

Recall that W (t, h̄, p̄) =
∫∞
t w̄(h̄, t′) exp[−(r̄(h̄) + p̄)(t′ − t)] dt′ denotes the net present value of

the household’s future lifetime labor income in the steady-state equilibrium at time t. Evaluating

the budget constraint in the market equilibrium and aggregating according to equation (9), we

obtain

ḃ(t) =
[
r
(
h̄
)
− ν
]
b(t) + (1− h̄)w̄(h̄, t)− c(t) . (A.14)

Inserting Ẇ (t, h̄, p̄) and equation (A.14) into equation (A.13) yields equation (13a). We derive

(13b) by inserting the equilibrium wage rate given in Proposition 1 into equation (A.14).

(ii) Balanced growth path: By contradiction, we prove that the dynamics of the economy is

governed by a unique balanced-growth path (BGP) given a fixed healthcare level h̄ implying a

constant hazard rate p̄.

We start by asserting two facts: First, there is a unique economically feasible ratio c(t)/k(t)

such that ċ(t)/c(t) ≡ gc(t) = gk(t) ≡ k̇(t)/k(t). This follows from solving the equations of

motion for c(t)/k(t) given that gc(t) = gk(t). As x(h̄, p̄)(p̄ + ν) > 0 for all p̄ > 0, there is only

one economically feasible solution (with c(t)/k(t) > 0)

c(t)

k(t)
= ζ ≡

1

2

{
r̄(h̄)

α
+

1− α

α
δ − ν − σ

[
r̄(h̄)− ρ

]
}

+
1

2

√
{
r̄(h̄)

α
+

1− α

α
δ − ν − σ

[
r̄(h̄)− ρ

]
}2

+ 4x(h̄, p̄)(p̄+ ν) .

(A.15)
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Second, we observe in equations (13a) and (13b) that gc(t) is increasing in c(t)/k(t) while gk(t)

is decreasing in c(t)/k(t).

Now suppose that gc(t) > gk(t). According to the two facts above, this can only hold if

c(t)/k(t) > ζ. The condition gc(t) > gk(t) then implies that c(t)/k(t) further increases which in

turn will increase the future gap between gc and gk, leading to limt→∞ gk(t) = −∞. By the same

line of argument, the economy’s dynamics imply for gk(t) > gc(t) that limt→∞ gc(t) = −∞. As

both cases yield economically infeasible solutions the only remaining possibility is gc(t) = gk(t)

implying c(t)/k(t) = ζ. Since the latter ratio does not depend on time t and is unique, the

economy must be on a unique BGP gc(t) = gk(t) at all times. The BGP growth rate can be

calculated by inserting (A.15) into gk(t) =
r̄(h̄)
α + 1−α

α δ − ν − c(t)/k(t):

ḡ(h̄, p̄) =
1

2

{
r̄(h̄)

α
+

1− α

α
δ − ν + σ

[
r̄(h̄)− ρ

]
}

−
1

2

√
{
r̄(h̄)

α
+

1− α

α
δ − ν − σ

[
r̄(h̄)− ρ

]
}2

+ 4x(h̄, p̄)(p̄ + ν) .

(A.16)

After some minor manipulations, we obtain that the growth rate on the BGP, ḡ(h̄, p̄), is positive

if and only if x(h̄, p̄)(p̄+ν) < σ(r̄(h̄)−ρ)
( r̄(h̄)

α + 1−α
α δ−ν

)
. Consequently, ḡ(h̄, p̄) < 0 if x(h̄, p̄)(p̄+

ν) > σ(r(h̄)−ρ)
( r̄(h̄)

α + 1−α
α δ−ν

)
and ḡ(h̄, p̄) = 0 if x(h̄, p̄)(p̄+ν) = σ(r̄(h̄)−ρ)

( r̄(h̄)
α + 1−α

α δ−ν
)
.

�

A.5 Proof of Proposition 3

(i) Taking the derivative of the equilibrium interest rate yields

d r̄(h̄)

d h̄
= α(1− α)

[
1− h̄

1− ηh̄

]−α
η − 1

(1− ηh̄)2
< 0 . (A.17)

Differentiating the equilibrium wage rate with respect to h̄, we obtain

d w̄(h̄, t)

d h̄
= w(h̄, t)

[
α(1− ηh̄) + (1− α)(1 − h̄)η

(1− ηh̄)(1 − h̄)

]

> 0 . (A.18)

(ii) Aiming for concise yet clear notation, in the next two paragraphs we highlight the

growth rates’ dependence on the interest rate and on longevity while not explicitly indicating

their dependence on h̄. We can then re-write the steady state growth rate in the form

ḡ(r̄, p̄) = z(r̄)−
√

z(r̄)2 +m(r̄, p̄) + ghh(r̄) ,

where z(r̄) = 1
2

(
r̄
α + 1−α

α δ − ν − ghh(r̄)
)
, m(r̄, p̄) = x(r̄)(p̄ + ν) and ghh(r̄) = σ(r̄ − ρ).

Taking the derivative with respect to r̄, we obtain

d ḡ(r̄, p̄)

d r̄
=
∂ḡ(r̄, p̄)

∂z(r̄)

d z(r̄)

d r̄
+
∂ḡ(r̄, p̄)

∂m(r̄, p̄)

dm(r̄)

d r̄
+
d ghh
d r̄

, (A.19)
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where

∂ḡ(r̄, p̄)

∂z(r̄)
= 1−

z(r̄)
√

z(r̄)2 +m(r̄, p̄)
> 0 ,

d z(r̄)

d r̄
=

1

2

(
1

α
− σ

)

> 0 if α < 1/σ ,

∂ḡ(r̄, p̄)

∂m(r̄, p̄)
= −

1
√

z(r̄)2 +m(r̄, p̄)
< 0 ,

dm(r̄, p̄)

d r̄
= (1− σ)(p̄ + ν) < 0 ,

d ghh(r̄)

d r̄
= σ > 0 .

Note that if z(r̄) > 0, the condition for ∂ḡ(r̄,p̄)
∂z(r̄) > 0 reduces to m(r̄, p̄) > 0, which must be the

case as x > 0. From the signs of the different terms in d ḡ(r̄,p̄)
d r̄ , together with the assumption

α < 1
σ , it follows that the steady state growth rate of the economy increases with the interest

rate.

According to the previous paragraph, we obtain

d
(
ghh(r̄)− ḡ(r̄, p̄)

)

d r̄
= −

∂ḡ(r̄, p̄)

∂z(r̄)

d z(r̄)

d r̄
−
∂ḡ(r̄, p̄)

∂m(r̄, p̄)

dm(r̄, p̄)

d r̄
. (A.20)

By virtue of the signs of the different derivatives, as derived above, we conclude that d (ghh(r̄)−ḡ(r̄,p̄))d r̄ <

0.

(iii) For the direct effect of increased healthcare investments via higher life expectancy, which

implies lower p̄, we obtain
∂ḡ(r̄, p̄)

∂m(r̄, p̄)

dm(r̄, p̄)

d p̄

d p̄

d h̄
> 0 , (A.21)

as

∂ḡ(r̄, p̄)

∂m(r̄, p̄)

d m(r̄, p̄)

d p̄
= −

1
√

z(r̄)2 +m(r̄, p̄)

(
(ν + p̄) + x(r̄, p̄)

)
< 0 ,

d p̄

d h̄
=

dH(h̄)

d h̄
= −βψh̄β−1 < 0 .

With respect to the indirect effect via the equilibrium interest rate, we know from (i) that d r̄
d h̄

< 0

and from (ii) that d ḡ(r̄,p̄)d r̄ > 0. Consequently, the indirect effect of an increasing healthcare sector

on economic growth must be negative.

Inspecting the derivatives of p̄ and r̄ with respect to h̄,

d p̄

d h̄
=

dH(h̄)

d h̄
= −βψh̄β−1 < 0 ,

d r̄(h̄)

d h̄
= α(1 − α)

[
1− h̄

1− ηh̄

]−α
η − 1

(1− ηh̄)2
< 0 ,

we find that limh̄→0
d p̄
d h̄

= −∞ and limh̄→1
d p̄
d h̄

< 0 but finite. By contrast, limh̄→0
d r̄(h̄)

d h̄
< 0 but
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finite and limh→1
d r̄(h̄)
d h̄

= −∞. The claim of the Proposition then follows from the limits h→ 0

and h → 1 of both dḡ(r̄,p̄)
dp̄ and dḡ(r̄,p̄)

dr̄ being finite. This is the case as p̄ and r̄(h̄) are finite and

consequently the expressions x(r̄, p̄), z(r̄) and m(r̄, p̄) must be finite, which implies that dḡ(r̄,p̄)
dp̄

and dḡ(r̄,p̄)
dr̄ are finite. �

A.6 Proof of Proposition 4

Existence of the equilibrium will be shown as follows. First, for any given level of h < 1 we obtain

an equilibrium in the labor market, capital market, the annuity market and the market for the

consumption good with prices as given by Proposition 1. The equilibrium level of healthcare is

pinned down by equation (20). As shown in the Proof of Proposition 5, for every h the function

Ĝ(h) defined via (20),

Ĝ(h) =
σ

1− σ

H ′(h)

x(h,H(h))
−

1

(1− h)
+H ′(h)

(
1

x(h,H(h))
−

1

y(h,H(h))

)

must be strictly lower than the function G(h) representing the equilibrium condition on health-

care spending with unconditioned annuities,

G(h) =
σ

1− σ

H ′(h)

x(h,H(h))
−

1

(1− h)
.

We know from Proposition 1, that there is a unique h̄ satisfying G(h̄) = 0. At this h̄, we must

then have Ĝ(h̄) < 0. By continuity of Ĝ(h) and limh→0 Ĝ(h) → ∞, there exists a 0 < h̃ < h̄

satisfying Ĝ(h̃) = 0. Note that limh→0 Ĝ(h) → ∞ follows from limh→0H
′(h) → −∞ and

σ

1− σ

1

x(h,H(h))
+

1

x(h,H(h))
−

1

y(h,H(h))
< 0.

The interior solution h̃ constitutes a steady-state equilibrium in the economy with condi-

tioned annuities.

Multiplying Ĝ(h) = 0 by x(h,H(h)) and (1 − h), with h ∈ (0, 1), and taking the derivative

with respect to h yields

1

1− σ
H ′′(h)(1 − h)−

2− σ

1− σ
H ′(h)− (1− σ)

d r̄(h)

dh

−
(
H ′′(h)(1 − h)−H ′(h)

)x(h,H(h))

y(h,H(h))
−H ′(h)(1 − h)

d x(h,H(h))
y(h,H(h))

dh
.

We obtain uniqueness of h̃ if above’s expression is negative. Given σ < 2, all summands are

negative except for the last one where the sign is determined by the sign of d x(h,H(h))
y(h,H(h))/dh. Hence,

a sufficient condition for uniqueness is that x(h,H(h))/y(h,H(h)) declines in h. Unfortunately,

we cannot generally show that this must be the case, as it depends on the particular parameter

values. �
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A.7 Proof of Proposition 5

The argument in this proof is that the additional term on the right-hand side of (20), which

comes in when annuities are conditioned on healthcare investments, must be positive. This

implies that the first-order condition with conditioned annuity rates is everywhere lower than

that with unconditioned annuity rates. Consequently, any root of the first-order condition with

conditioned annuity rates must be lower than that of its unconditioned annuity counterpart.

It is, thus, sufficient to show that

−H ′(h̄)

(
1

x(h̄, p̄)
−

1

y(h̄, p̄)

)

> 0 ,

⇔ y(h̄, p̄)− x(h̄, p̄) > 0 ,

⇔ ḡ(h̄, p̄)− ghh(h̄) < 0 .

When transforming the first into the second condition, we used that x(h̄, p̄), y(h̄, p̄) > 0. Us-

ing the expression ḡ(h̄, p̄) = z(h̄) −
√

z(h̄)2 +m(h̄, p̄) + ghh(h̄) as introduced in the Proof of

Proposition 3, we obtain

ḡ(h̄, p̄)− ghh(h̄) = z(h̄)−
√

z(h̄)2 +m(h̄, p̄) < 0

⇔ m(h̄, p̄) > 0 .

As m(h̄, p̄) = x(h̄, p̄)(p̄ + ν) > 0, we conclude that −H ′(h̄)
(

1
x(h̄,p̄)

− 1
y(h̄,p̄)

)
> 0, and hence there

is over-investment in healthcare with unconditioned annuities. �

A.8 Proof of Proposition 6

(i) The equilibrium levels of healthcare expenditures are characterized by the first-order condi-

tions (12) and (20). For the derivatives of the equilibrium healthcare level with respect to the

technological parameters ψ and pmax, we obtain via the implicit function theorem

dh̄

dχ
= −

∂FOC
∂χ

∂FOC
∂h

, (A.22)

where χ stands for either ψ or pmax and FOC for either the first-order condition in the case

with unconditioned annuities (12) or the one with conditioned annuities (20).

We will now go through each of the four cases to determine the sign of the effect of improve-

ments in the healthcare technology. Note that in each case, ∂FOC∂h < 0 according to the proof of

the uniqueness of the steady-state equilibrium (see section A.1). Consequently, the sign of the

derivatives of h̄ with respect to the parameters z will be determined by the partial derivatives

of the FOCs with respect to these parameters.

We start with the first order conditions in the case with unconditioned annuities, where the
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FOC takes the form as in (12).

∂FOC

∂ψ
=

σ

1− σ

∂H′(h̄)
∂ψ x(h̄, p̄)−H ′(h̄)∂x(h̄,p̄)∂ψ

x(h̄, p̄)2
.

With ∂H′(h̄)
∂ψ = −βh̄β−1 and ∂x(h̄,p̄)

∂ψ = −h̄β, we obtain ∂FOC
∂ψ > 0 (note that σ > 1 and H ′(h̄) < 0)

and consequently, dh̄
dψ > 0.

∂FOC

∂pmax
= −

σ

1− σ

H ′(h̄)∂x(h̄,p̄)∂pmax

x(h̄, p̄)2
.

As ∂x(h̄,p̄)
∂pmax

= 1, we can conclude that dh̄
dpmax

< 0.

Now we turn to the case where annuities can be conditioned on healthcare investments and

we use

FOC =
σ

1− σ

H ′(h̄)

x(h̄, p̄)
−

1

(1− h̄)
+H ′(h̄)

(
1

x(h̄, p̄)
−

1

y(h̄, p̄)

)

=
1

1− σ

H ′(h̄)

x(h̄, p̄)
−

1

(1− h̄)
−H ′(h̄)

1

y(h̄, p̄)

For the derivatives with respect to ψ and pmax, we obtain

∂FOC

∂ψ
=

1

1− σ

∂H′(h̄)
∂ψ ∗ x(h̄, p̄)−H ′(h̄)∂x(h̄,p̄)∂ψ

x(h̄, p̄)2
−

∂H′(h̄)
∂ψ ∗ y(h̄, p̄)−H ′(h̄)∂y(h̄,p̄)∂ψ

y(h̄, p̄)2
.

We have ∂y(h̄,p̄)
∂ψ = ∂p̄

∂ψ − ∂ḡ(h̄,p̄)
∂p̄

∂p̄
∂ψ . As we show below under (ii), ∂ḡ(h̄,p̄)

∂p̄ < 0. With ∂p̄
∂ψ = −h̄β,

we infer ∂y(h̄,p̄)
∂ψ < 0. It follows that ∂FOC

∂ψ > 0 and dh̄
dψ > 0.

∂FOC

∂pmax
= −

1

1− σ

H ′(h̄)∂x(h̄,p̄)∂pmax

x(h̄, p̄)2
+
H ′(h̄)∂y(h̄,p̄)∂pmax

y(h̄, p̄)2
.

As ∂p̄
∂pmax

= 1 and consequently ∂y(h̄,p̄)
∂pmax

> 0, we can conclude that dh̄
dpmax

< 0.

(ii) For the growth rate ḡ(h̄, p̄), we obtain

dḡ(h̄, p̄)

dψ
=
∂ḡ(h̄, p̄)

∂p̄

∂p̄

∂ψ
+

[
∂ḡ(h̄, p̄)

∂p̄

d p̄

d h̄
+
∂ḡ(h̄, p̄)

∂r̄(h̄)

d r̄(h̄)

d h̄

]
d h̄

dψ
. (A.23)

The first summand reflects the direct effect of an increase of the productivity of healthcare

investments without effects on healthcare spending. The second expression in brackets summa-

rizes the effects of higher healthcare spending on economic growth multiplied by the increase

in healthcare investments caused by the improvement in the healthcare technology. The direct

effect of healthcare spending is positive and finite. To see this, recall from the Proof of Propo-

sition 3 that ∂ḡ(h̄,p̄)
∂p̄ < 0 and finite. Further we get ∂p̄

∂ψ = −h̄β < 0 if h̄ > 0 and with limit 0 for

h̄→ 0.

Regarding the second summand, we know that d h̄
d ψ > 0 from part (i) in this proof. The term
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in brackets represents how the economy’s growth rate responds to an increase in the healthcare

sector, which is described in Proposition 3. As shown there, an increase in healthcare investments

increases the growth rate at low levels of h̄ but decreases it when h̄ is sufficiently large, as

limh̄→1
dr̄(h̄)
dh̄

= −∞. Here we obtain that for h̄ very close to zero, the first term representing

the direct effect of healthcare improvements on the growth rate will vanish. Inferring from part

(i) in this proof that d h̄
dψ will not become 0, as h̄ approaches 0, we conclude that the term in

brackets imposes that the effect of an increase in ψ will be positive for h̄ sufficiently small, but

negative if h̄ is sufficiently large.

We argue in a similar way regarding a change in pmax:

dḡ(h̄, p̄)

dpmax
=
∂ḡ(h̄, p̄)

∂p̄

∂p̄

∂pmax
+

[
∂ḡ(h̄, p̄)

∂p̄

d p̄

d h̄
+
∂ḡ(h̄, p̄)

∂r̄(h̄)

d r̄(h̄)

d h̄

]
d h̄

d pmax
. (A.24)

The only difference is that ∂p̄
∂pmax

= 1, which does not vanish for h̄ approaching 0. This implies

that there is also a positive direct effect of a decreasing pmax on the growth rate if h̄ is small.

But ultimately if h̄ is sufficiently large, the overall effect of a decrease of pmax on the growth

rate will turn negative. �

A.9 Details on the numerical simulations

We use OECD data on life expectancy at birth for the total population (females and males) and

healthcare expenditures in % of GDP for the years 1980 and 2005. Data on GDP also stems from

the OECD. We use GDP per capita at constant prices and constant purchasing power parity

(OECD indicator HVPVOB) for the years 1980 to 2005. Out of the sample of all OECD countries

we discard all countries for which any of this data is not available. The remaining sample consists

of 21 OECD countries namely Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Iceland, Ireland, Japan, Korea, The Netherlands, New Zealand, Norway, Portugal,

Spain, Switzerland, Turkey, UK and USA. To construct our “average” OECD country, we take

the unweighted average for life expectancy at birth, healthcare expenditures in % of GDP and

GDP per capita for both years 1980 and 2005. We then calculate the average growth rate of

GDP per capita over these 26 years, which equals 2.05%.

In line with our endogenous growth model, we assume that increases in average lifetime stem

from the interplay of improvements of the healthcare technology and the endogenous choice of

healthcare spending. This implies that also the growth rate of the economy depends on the

healthcare technology and the healthcare spending. For our steady state model to produce

life expectancy and healthcare expenditures observed in the data in 1985 and 2005, we employ

the following procedure: Assuming that from 1985 to 1997 the economy was in a steady state

consistent with 1985 data and from 1998 to 2005 the economy experienced steady state growth

consistent with 2005 data, we specify a scaling parameter φ for the production function in our

model such that the average growth rate of the economy over the 26 years equals the observed

average GDP growth rate per capita of 2.05% per year.

For regime (a) for which we suppose that annuity claims cannot be conditioned on life
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expectancy and which we consider to be the observable status quo, we then calibrate the pa-

rameters pmax and ψ of the healthcare technology (1) by fixing η and β and assuming that

observed healthcare expenditures in the steady-state equilibrium are given by equation (12) and

observed lifetime expectancy is due to the healthcare technology and the healthcare expendi-

tures. Given the observed healthcare expenditures and life expectancy, we also calculate the

interest and the growth rates of the economy. Finally, we calculate the expected lifetime utility

of an individual born at time s = 0 under regime (i) and (ii). To this end, we insert (A.5a),

(A.5c), ā(h̄, p̄) = r̄(h̄) + p̄ and w̄(h̄, t) = w0 exp[ḡ(h̄, p̄)t] into the household’s expected utility

function (4):

Ū(k(0), h̄, p̄) =
σ

σ − 1

[
w̄(h̄, 0)(1 − h̄)x̄(h̄, p̄)

ȳ(h̄, p̄)

]σ−1
σ 1

x̄(h̄, p̄)
. (A.25)

Comparing expected utilities between scenario (i) and (ii), we seek for the relative change

in consumption θ at all times alive for which the household’s expected utility in scenario (i)

coincided with the household’s expected utility in scenario (ii):38

σ

σ − 1

[

(1 + θ)
w̄(h̄(i), 0)(1 − h̄(i))x̄(h̄(i), p̄(i))

ȳ(h̄(i), p̄(i))

]σ−1
σ 1

x̄(h̄(i), p̄(i))
=

σ

σ − 1

[

w̄(h̄(ii), 0)(1 − h̄(ii))x̄(h̄(ii), p̄(ii))

ȳ(h̄(ii), p̄(ii))

]σ−1
σ

1

x̄(h̄(ii), p̄(ii))

(A.26)

Solving for θ yields

θ =
w̄(h̄(ii), 0)(1 − h̄(ii))ȳ(h̄(i), p̄(i))

w̄(h̄(i), 0)(1 − h̄(i))ȳ(h̄(ii), p̄(ii))

[

x̄(h̄(i), p̄(i))

x̄(h̄(ii), p̄(ii))

] 1
σ−1

− 1 (A.27)

For regime (b) in which we suppose that annuity claims are contingent on life expectancy

respectively healthcare expecnditures and which we consider the hypothetical regime, we employ

the same healthcare technology employed under regime (a) and calculate the resulting healthcare

expenditures in the steady-state equilibrium according to equation (20) and the corresponding

expected lifetime. The steady state growth and interest rates follow from inserting h̄ and p̄ into

ḡ(h̄, p̄) and r̄(h̄). Again we calculate the difference in lifetime utility betwenn scenario (i) and

(ii) according to equation (A.27).

To compare regimes (a) and (b), we decompose the difference in lifetime utility in three

parts. To this end, we first differentiate expected lifetime utility (A.25) with respect to h̄.

Taking into account that w̄(h̄, 0) = k(0)1−α
1−h̄

[
1−h̄
1−ηh̄

]1−α
, x̄(h̄, p̄) = (1 − σ)r̄(h̄) + p̄ − σρ and

ȳ = r̄(h̄) + p̄− ḡ(h̄, p̄) we obtain:39

dŪ(k(0), h̄, p̄)

dh̄
=

{
σ − 1

σ

1

ȳ

dḡ

dh̄
(A.28a)

38See also Jones and Klenow (2010), who use a similar approach.
39For presentational convenience we drop the arguments of x̄, ȳ, ḡ and r̄.
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+

[

σ − 1

σ

(
1− (1− α) 1−η

1−ηh̄

1− h̄
−

[
1

ȳ
+
σ − 1

x̄

]
dr̄

dh̄

)

+
σ − 1

x̄

dr̄

dh̄

]

(A.28b)

+

[
σ − 1

σ

([
1

x̄
−

1

ȳ

]
dp̄

dh̄
−

1

1− h̄

)

−
1

x̄

dp̄

dh̄

]}

. (A.28c)

Thus, the first line (A.28a) corresponds to changes in utility due to a change in h̄ which stem

from a change in the growth rate. The second line (A.28b) denotes changes in utility stemming

from changes in the wage and interest rates, and the third line (A.28c) denote changes in utility

corresponding to changes in mortality and the direct effect of higher healthcare spendings.

We denote the effects in the third line as the direct microeconomic effects stemming from the

individual behavior of the household, the effects in the second line as general equilibrium effects

stemming from changes in the market equilibria of capital and labor and the first line as the

growth effect induced by a change in the economy’s growth rate.

Allowing for non-marginal changes in h̄ we re-write equation (A.28) to yield:

Ū(k(0), h̄, p̄)(ii) − Ū(k(0), h̄, p̄)(i) =

{
σ − 1

σ

1

ȳ
∆ḡ

+

[

σ − 1

σ

(
1− (1− α) 1−η

1−ηh̄

1− h̄
∆h̄−

[
1

ȳ
+
σ − 1

x̄

]

∆r̄

)

+
σ − 1

x̄
∆r̄

]

+

[
σ − 1

σ

([
1

x̄
−

1

ȳ

]

∆p̄−
1

1− h̄
∆h̄

)

−
1

x̄
∆p̄

]}

.

(A.29)

Then, we obtain:

U
(ii)
direct − U

(i)
direct =

σ − 1

σ

([
1

x̄
−

1

ȳ

]

∆p̄−
1

1− h̄
∆h̄

)

−
1

x̄
∆p̄ , (A.30a)

∆U
(ii)
equil −∆U

(i)
equil =

σ − 1

σ

(
1− (1− α) 1−η

1−ηh̄

1− h̄
∆h̄−

[
1

ȳ
+
σ − 1

x̄

]

∆r̄

)

+
σ − 1

x̄
∆r̄ , (A.30b)

∆U
(ii)
growth −∆U

(i)
growth =

σ − 1

σ

1

ȳ
∆ḡ . (A.30c)

By switching from regime (a) to regime (b), Udirect unambiguously increases. The reason is

that in regime (b) the household chooses h̄ such as to maximize Udirect. By definition, any

deviation from this optimum can only result in lower expected lifetime utility levels. Uequil

may either increase or decrease by a switch from regime (a) to regime (b). While the term

in parenthesis in equation (A.30b), which equals the initial consumption at the time of birth,

is unambiguously positive, the last term, denoting the growth rate of individual household

consumption, is unambiguously negative. As a consequence the total effect may be either positive

or negative. According to Proposition 6 (iii) Ugrowth increases by a switch from regime (a) to

regime (b) for small levels of healthcare expenditures and increases for large levels. Expressing

changes in utility according to equation (A.27) yields ∆Udirect, ∆Uequil and ∆Ugrowth as shown

in Tables 2–4.

To check the qualitative and quantitative robustness of our baseline simulation, the results
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of which are shown in Table 2, we run a series of sensitivity analysis. In particular the spillover

parameter η and the curvature parameter β of the healthcare technology cannot be observed

directly, yet they may crucially influence the results. The spillover parameter η can be approx-

imately interpreted as a reduction in the labor costs of healthcare due to productivity increases

of increased longevity in the consumption good sector. While we do believe there are some

positive spillovers from better healthcare to consumption production, for example, because em-

ployees are less often ill, we do not believe that these spillovers can be arbitrarily large.40 As

an educated guess we employ η = 0.15 in our baseline scenario and run a sensitivity analysis

between 0 and 0.3. Table 3 shows the results. We observe that a variation in η has very little

influence on the calibration of the healthcare technology and also hardly changes the steady

state interest and growth rates. However, the utility gain from switching from scenario (i) to

scenario (ii) and switching from regime (a) to regime (b) do modestly depend on the choice

of η. We find that depending on the scenario and the parameter value of η eliminating moral

hazard due to contingent annuity claims induces an expected lifetime utility gain between 1%

and 2%. The parameter β of the healthcare technology determines the degree of diminishing

returns to investments in healthcare. Table 4 shows the results of a sensitivity analysis were β

covers the range between 0.5 and 1. We observe that for increasing β healthcare improvements

between scenarios (i) and (ii) increasingly stem from changes in pmax and less and less from

improvements in ψ. As a consequence, healthcare expenditures become more and more ineffi-

cient with respect to improving life expectancy. As a consequence, the reduction in healthcare

expenditures and, thus, also the utility gain from switching between regime (a) and regime (b)

becomes increasingly larger amounting to over 4% in the case of a linear healthcare technology

(β = 1).

Changes in the depreciation rate of capital in the range of 5% to 10% shows very little

impact on our results, as can be seen in Table 5. The main impact is on the expected lifetime

utility gain by switching to the better healthcare technology (switch from scenario (i) to scenario

(ii)). The impact on the expected lifetime utility by switching from regime (a) to regime (b),

however, is rather modest. Values range, depending on the scenario and the parameter value

of δ, between 1.41% and 1.85%. Finally, we run a sensitivity analysis over reasonable vales for

the income share of capital α ranging between 0.35 and 0.65. As we employ data on healthcare

expenditures in percentage of GDP but in our model healthcare expenditures are measured in

percentage of labor income, an increase in α also increases the observed healthcare expenditures

h. In order to match observed life expectancy, the calibration of the healthcare technology

results in higher values of pmax and lower values of ψ for increasing capital income share α.

However, the effects on interest and growth rates and the expected utility gain from switching

to a better healthcare technology are very small. Depending on the scenario and the parameter

value of α, the expected utility gains from eliminating moral hazard due to contingent annuity

claims induces an expected lifetime utility gain between 0.87% and 1.90%.

To further scrutinize the moral-hazard effect of annuity claims that cannot be conditioned

40Recall that in our model a spillover parameter of η = 1 implies that shifting labor from production to
healthcare is without any loss in consumption-good production, which is obviously an unrealistic assumption.
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η 0 0.05 0.1 0.15 0.2 0.25 0.3

Regime (a)

(h(i), h(ii)) (6.10, 8.70) 6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4418, 1.3664) (1.4419, 1.3664) (1.4419, 1.3663) (1.4420, 1.3662) (1.4420, 1.3661) (1.4421, 1.3660) (1.4421, 1.3660)

ψ(i), ψ(ii)) [%] (0.6015, 0.6678) (0.6019, 0.6674) (0.6023, 0.6669) (0.6028, 0.6664) (0.6032, 0.6659) (0.6036, 0.6654) (0.6041, 0.6649)

(r(i), r(ii)) [%] (3.62, 3.47) (3.62, 3.47) (3.61, 3.47) (3.61, 3.48) (3.61, 3.48) (3.60, 3.48) (3.60, 3.49)

(g(i), g(ii)) [%] (2.15, 1.95) (2.15, 1.95) (2.14, 1.96) (2.14, 1.96) (2.13, 1.97) (2.13, 1.97) (2.12, 1.98)

∆U(i)→(ii) [%] 3.01 3.52 4.03 4.55 5.08 5.62 6.16

Regime (b)

(h(i), h(ii)) [%] (5.56, 8.06) (5.55, 8.06) (5.55, 8.05) (5.54, 8.04) (5.54, 8.04) (5.53, 8.03) (5.53, 8.02)

(T (i), T (ii)) [a] (72.84, 79.03) (72.83, 79.03) (72.83, 79.02) (72.83, 79.02) (72.82, 79.01) (72.82, 79.01) (72.82, 79.00)

(r(i), r(ii)) [%] (3.65, 3.50) (3.65, 3.51) (3.64, 3.51) (3.64, 3.51) (3.63, 3.51) (3.63, 3.52) (3.62, 3.52)

(g(i), g(ii)) [%] (2.20, 2.00) (2.20, 2.01) (2.19, 2.01) (2.18, 2.01) (2.17, 2.02) (2.16, 2.02) (2.16, 2.02)

∆U(i)→(ii) [%] 3.34 3.84 4.35 4.86 5.38 5.90 6.43

Comparison regime (a) → (b)

∆U(a)→(b) [%] (1.57, 1.90) (1.48, 1.80) (1.38, 1.69) (1.29, 1.58) (1.19, 1.47) (1.09, 1.36) (0.98, 1.24)

∆Udirect [%] (0.011, 0.013) (0.011, 0.013) (0.011, 0.013) (0.011, 0.013) (0.011, 0.013) (0.011, 0.014) (0.011, 0.014)

∆Uequil [%] (−0.154,−0.193) (−0.176,−0.219) (−0.199,−0.245) (−0.221,−0.273) (−0.245,−0.301) (−0.269,−0.330) (−0.293,−0.359)

∆Ugrowth [%] (1.72, 2.08) (1.64, 2.00) (1.57, 1.92) (1.50, 1.84) (1.42, 1.76) (1.34, 1.67) (1.26, 1.58)

Table 3: Sensitivity analysis with respect to the spillover parameter η.
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β 0.5 0.6 0.7 0.75 0.8 0.9 1

Regime (a)

(h(i), h(ii)) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4790, 1.4196) (1.4605, 1.3929) (1.4473, 1.3738) (1.4420, 1.3662) (1.4374, 1.3595) (1.4296, 1.3484) (1.4235, 1.3395)

ψ(i), ψ(ii)) [%] (0.4493, 0.5429) (0.4953, 0.5775) (0.5615, 0.6319) (0.6028, 0.6664) (0.6499, 0.7059) (0.7641, 0.8010) (0.9097, 0.9203)

(r(i), r(ii)) [%] (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48)

(g(i), g(ii)) [%] (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96)

∆U(i)→(ii) [%] 4.55 4.55 4.55 4.55 4.55 4.55 4.55

Regime (b)

(h(i), h(ii)) [%] (5.77, 8.29) (5.71, 8.22) (5.61, 8.12) (5.54, 8.04) (5.45, 7.95) (5.14, 7.65) (4.11, 6.91)

(T (i), T (ii)) [a] (72.94, 79.16) (72.91, 79.12) (72.86, 79.06) (72.83, 79.02) (72.78, 78.96) (72.63, 78.79) (72.15, 78.37)

(r(i), r(ii)) [%] (3.63, 3.50) (3.63, 3.50) (3.64, 3.51) (3.64, 3.51) (3.64, 3.52) (3.66, 3.53) (3.71, 3.57)

(g(i), g(ii)) [%] (2.16, 1.99) (2.17, 2.00) (2.18, 2.01) (2.18, 2.01) (2.19, 2.02) (2.21, 2.04) (2.29, 2.10)

∆U(i)→(ii) [%] 4.78 4.81 4.84 4.86 4.88 4.87 4.26

Comparison regime (a) → (b)

∆U(a)→(b) [%] (0.76, 0.98) (0.91, 1.15) (1.13, 1.41) (1.29, 1.58) (1.50, 1.81) (2.23, 2.54) (4.68, 4.39)

∆Udirect [%] (0.006, 0.008) (0.008, 0.009) (0.010, 0.012) (0.011, 0.013) (0.014, 0.016) (0.022, 0.024) (0.054, 0.047)

∆Uequil [%] (−0.133,−0.172) (−0.158,−0.202) (−0.195,−0.244) (−0.221,−0.273) (−0.256,−0.309) (−0.371,−0.423) (−0.713,−0.684)

∆Ugrowth [%] (0.89, 1.14) (1.06, 1.35) (1.31, 1.64) (1.50, 1.84) (1.74, 2.10) (2.58, 2.94) (5.34, 5.03)

Table 4: Sensitivity analysis with respect to the curvature β of the healthcare technology.
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δ [%] 5 6 7 7.5 8 9 10

Regime (a)

(h(i), h(ii)) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4416, 1.3650) (1.4418, 1.3655) (1.4419, 1.3660) (1.4420, 1.3662) (1.4420, 1.3664) (1.4421, 1.3668) (1.4422, 1.3671)

ψ(i), ψ(ii)) [%] (0.5997, 0.6591) (0.6012, 0.6623) (0.6023, 0.6651) (0.6028, 0.6664) (0.6032, 0.6676) (0.6038, 0.6700) (0.6043, 0.6721)

(r(i), r(ii)) [%] (3.64, 3.53) (3.62, 3.51) (3.61, 3.49) (3.61, 3.48) (3.61, 3.47) (3.60, 3.45) (3.60, 3.43)

(g(i), g(ii)) [%] (2.11, 1.99) (2.12, 1.98) (2.13, 1.97) (2.14, 1.96) (2.14, 1.96) (2.15, 1.95) (2.16, 1.94)

∆U(i)→(ii) [%] 6.61 5.77 4.96 4.55 4.16 3.38 2.61

Regime (b)

(h(i), h(ii)) [%] (5.41, 7.87) (5.47, 7.95) (5.52, 8.01) (5.54, 8.04) (5.57, 8.07) (5.61, 8.12) (5.64, 8.17)

(T (i), T (ii)) [a] (72.76, 78.92) (72.79, 78.96) (72.82, 79.00) (72.83, 79.02) (72.84, 79.03) (72.86, 79.06) (72.88, 79.09)

(r(i), r(ii)) [%] (3.66, 3.57) (3.65, 3.54) (3.64, 3.52) (3.64, 3.51) (3.64, 3.50) (3.63, 3.48) (3.63, 3.47)

(g(i), g(ii)) [%] (2.15, 2.04) (2.16, 2.03) (2.17, 2.02) (2.18, 2.01) (2.19, 2.01) (2.20, 2.00) (2.21, 1.99)

∆U(i)→(ii) [%] 6.92 6.09 5.27 4.86 4.46 3.67 2.89

Comparison regime (a) → (b)

∆U(a)→(b) [%] (1.14, 1.44) (1.21, 1.51) (1.26, 1.56) (1.29, 1.58) (1.31, 1.60) (1.34, 1.63) (1.37, 1.65)

∆Udirect [%] (0.017, 0.020) (0.014, 0.017) (0.012, 0.014) (0.011, 0.013) (0.011, 0.012) (0.009, 0.011) (0.008, 0.010)

∆Uequil [%] (−0.286,−0.356) (−0.257,−0.318) (−0.232,−0.287) (−0.221,−0.273) (−0.211,−0.260) (−0.193,−0.237) (−0.177,−0.217)

∆Ugrowth [%] (1.41, 1.78) (1.45, 1.81) (1.48, 1.84) (1.50, 1.84) (1.51, 1.85) (1.52, 1.85) (1.54, 1.85)

Table 5: Sensitivity analysis with respect to the capital depreciation rate δ.
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α 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Regime (a)

(h(i), h(ii)) (4.69, 6.69) (5.08, 7.25) (5.55, 7.91) (6.10, 8.70) (6.78, 9.67) (7.62, 10.87) (8.71, 12.43)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4249, 1.3409) (1.4296, 1.3479) (1.4352, 1.3562) (1.4420, 1.3662) (1.4503, 1.3786) (1.4607, 1.3944) (1.4743, 1.4151)

ψ(i), ψ(ii)) [%] (0.5644, 0.6194) (0.5757, 0.6331) (0.5884, 0.6486) (0.6028, 0.6664) (0.6194, 0.6873) (0.6391, 0.7125) (0.6630, 0.7437)

(r(i), r(ii)) [%] (3.54, 3.41) (3.56, 3.43) (3.58, 3.45) (3.61, 3.48) (3.64, 3.51) (3.68, 3.54) (3.72, 3.58)

(g(i), g(ii)) [%] (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96)

∆U(i)→(ii) [%] 4.42 4.47 4.51 4.55 4.59 4.62 4.62

Regime (b)

(h(i), h(ii)) [%] (4.43, 6.37) (4.74, 6.84) (5.11, 7.39) (5.54, 8.04) (6.07, 8.84) (6.72, 9.82) (7.56, 11.08)

(T (i), T (ii)) [a] (72.97, 79.22) (72.93, 79.16) (72.89, 79.10) (72.83, 79.02) (72.75, 78.91) (72.66, 78.78) (72.53, 78.60)

(r(i), r(ii)) [%] (3.55, 3.43) (3.58, 3.45) (3.61, 3.48) (3.64, 3.51) (3.68, 3.55) (3.72, 3.59) (3.77, 3.63)

(g(i), g(ii)) [%] (2.17, 1.99) (2.17, 2.00) (2.18, 2.01) (2.18, 2.01) (2.19, 2.02) (2.19, 2.03) (2.20, 2.04)

∆U(i)→(ii) [%] 4.62 4.70 4.78 4.86 4.93 4.98 5.00

Comparison regime (a) → (b)

∆U(a)→(b) [%] (0.87, 1.06) (1.01, 1.24) (1.15, 1.41) (1.29, 1.58) (1.41, 1.74) (1.50, 1.85) (1.54, 1.90)

∆Udirect [%] (0.003, 0.004) (0.005, 0.006) (0.008, 0.009) (0.011, 0.013) (0.017, 0.020) (0.025, 0.030) (0.038, 0.044)

∆Uequil [%] (−0.082,−0.101) (−0.115,−0.142) (−0.160,−0.197) (−0.221,−0.273) (−0.307,−0.377) (−0.427,−0.525) (−0.601,−0.737)

∆Ugrowth [%] (0.94, 1.16) (1.12, 1.38) (1.30, 1.60) (1.50, 1.84) (1.70, 2.09) (1.90, 2.35) (2.10, 2.60)

Table 6: Sensitivity analysis with respect to the income share of capital α.
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Scenario (i) Scenario (ii)
T = 73.1 [a] h = 6.1 [%] T = 79.4 [a] h = 8.7 [%]

Regime (a)

pmax [%] 1.4228 1.3387

ψ [%] 0.4462 0.4949

r [%] 4.31 4.17

g [%] 2.10 2.00

∆U(i)→(ii) [%] 6.61

Regime (b)

h [%] 4.15 6.32

T [a] 72.37 78.35

r [%] 4.42 4.30

g [%] 2.24 2.18

∆U(i)→(ii) [%] 8.10

Comparison regime (a) → (b)

∆U(a)→(b) [%] 5.22 6.69

∆Udirect [%] 0.434 0.534

∆Uequil [%] 0.731 0.887

∆Ugrowth [%] 4.05 5.27

Table 7: Utility gains for a hypothetical average OECD country for improvements in the health-
care technology and switching from unconditioned to a contingent annuity claims regime in case
of internalized learning-by-investing externality and spillovers from healthcare to consumption-
good production.

on healthcare investments we run an additional numerical simulation in which we internalize the

Romer (1986) learning-by-investing externality and the spillover effect from healthcare invest-

ments on consumption-good production. This hypothetical scenario illustrates the quantitative

effect of the moral-hazard effect of unconditioned annuities without any interactions with the two

other externalities. Table 7 shows the results for the reference parameter values, i.e., α = 0.5,

δ = 7.5%, β = 0.75 and η = 0.15. We find that the welfare loss due to the moral-hazard effect

of unconditioned annuities is substantially larger compared to the results in Table 2 where we

did not internalize the other two externalities: 5.22% in scenario (i) and 6.69% in scenario (ii).

The reason is that the return on capital is more sensitive to changes in healthcare investments

if the learning-by-investing externality is internalized. As a consequence, the opportunity costs

of healthcare investments in terms of reducing the return on capital are higher than without

internaliziation of the learning-by-investing externality. We also find that now the direct effect

∆Udirect is higher and of comparable size to the equilibrium effect ∆Uequil, which itself is now

negative. Again, we find that the results are very robust over the whole parameter range of our

sensitivity analyses.

Running a sensitivity analysis over the same range of parameter values as in the reference

specification, we find that – again – results are qualitatively and quantitatively robust, as shown

in Tables 8–11.
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η 0 0.05 0.1 0.15 0.2 0.25 0.3

Regime (a)

(h(i), h(ii)) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4317, 1.3517) (1.4287, 1.3474) (1.4258, 1.3431) (1.4228, 1.3387) (1.4197, 1.3343) (1.4167, 1.3299) (1.4136, 1.3254)

ψ(i), ψ(ii)) [%] (0.5188, 0.5762) (0.4948, 0.5493) (0.4706, 0.5222) (0.4462, 0.4949) (0.4216, 0.4674) (0.3969, 0.4398) (0.3719, 0.4119)

(r(i), r(ii)) [%] (4.32, 4.16) (4.32, 4.16) (4.32, 4.17) (4.31, 4.17) (4.31, 4.18) (4.31, 4.18) (4.30, 4.18)

(g(i), g(ii)) [%] (2.12, 1.98) (2.11, 1.99) (2.11, 1.99) (2.10, 2.00) (2.10, 2.00) (2.09, 2.01) (2.08, 2.02)

∆U(i)→(ii) [%] 4.94 5.49 6.05 6.61 7.18 7.77 8.35

Regime (b)

(h(i), h(ii)) [%] (4.13, 6.28) (4.13, 6.30) (4.14, 6.31) (4.15, 6.32) (4.16, 6.34) (4.17, 6.35) (4.18, 6.37)

(T (i), T (ii)) [a] (72.25, 78.16) (72.29, 78.22) (72.33, 78.29) (72.37, 78.35) (72.42, 78.41) (72.46, 78.48) (72.50, 78.54)

(r(i), r(ii)) [%] (4.45, 4.31) (4.44, 4.31) (4.43, 4.31) (4.42, 4.30) (4.41, 4.30) (4.40, 4.29) (4.39, 4.29)

(g(i), g(ii)) [%] (2.29, 2.19) (2.27, 2.19) (2.26, 2.18) (2.24, 2.18) (2.23, 2.17) (2.22, 2.17) (2.20, 2.16)

∆U(i)→(ii) [%] 6.63 7.12 7.61 8.10 8.60 9.11 9.62

Comparison regime (a) → (b)

∆U(a)→(b) [%] (6.24, 7.95) (5.89, 7.53) (5.55, 7.11) (5.22, 6.69) (4.88, 6.27) (4.55, 5.86) (4.22, 5.44)

∆Udirect [%] (0.166, 0.207) (0.256, 0.316) (0.345, 0.426) (0.434, 0.534) (0.523, 0.643) (0.612, 0.751) (0.700, 0.858)

∆Uequil [%] (1.252, 1.506) (1.077, 1.297) (0.903, 1.091) (0.731, 0.887) (0.561, 0.684) (0.394, 0.484) (0.228, 0.286)

∆Ugrowth [%] (4.82, 6.24) (4.56, 5.91) (4.30, 5.59) (4.05, 5.27) (3.80, 4.94) (3.54, 4.62) (3.29, 4.30)

Table 8: Sensitivity analysis with respect to the spillover parameter η in case of internalized externalities.
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β 0.5 0.6 0.7 0.75 0.8 0.9 1

Regime (a)

(h(i), h(ii)) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4501, 1.3784) (1.4365, 1.3585) (1.4267, 1.3444) (1.4228, 1.3387) (1.4193, 1.3338) (1.4136, 1.3255) (1.4091, 1.3189)

ψ(i), ψ(ii)) [%] (0.3326, 0.4032) (0.3667, 0.4289) (0.4157, 0.4693) (0.4462, 0.4949) (0.4811, 0.5242) (0.5657, 0.5949) (0.6734, 0.6835)

(r(i), r(ii)) [%] (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.31, 4.17)

(g(i), g(ii)) [%] (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.10, 2.00)

∆U(i)→(ii) [%] 6.61 6.61 6.61 6.61 6.61 6.61 6.61

Regime (b)

(h(i), h(ii)) [%] (4.89, 7.17) (4.68, 6.92) (4.36, 6.56) (4.15, 6.32) (3.87, 6.02) (2.94, 5.05) (0.00, 2.30)

(T (i), T (ii)) [a] (72.64, 78.72) (72.56, 78.61) (72.45, 78.45) (72.37, 78.35) (72.27, 78.22) (71.95, 77.82) (70.97, 76.74)

(r(i), r(ii)) [%] (4.38, 4.26) (4.39, 4.27) (4.41, 4.29) (4.42, 4.30) (4.43, 4.32) (4.48, 4.37) (4.64, 4.52)

(g(i), g(ii)) [%] (2.19, 2.11) (2.21, 2.13) (2.23, 2.16) (2.24, 2.18) (2.27, 2.20) (2.33, 2.27) (2.54, 2.47)

∆U(i)→(ii) [%] 7.69 7.83 8.00 8.10 8.22 8.45 8.21

Comparison regime (a) → (b)

∆U(a)→(b) [%] (3.20, 4.25) (3.78, 4.96) (4.63, 5.99) (5.22, 6.69) (5.98, 7.58) (8.61, 10.48) (17.41, 19.17)

∆Udirect [%] (0.265, 0.337) (0.313, 0.395) (0.384, 0.478) (0.434, 0.534) (0.499, 0.607) (0.722, 0.842) (1.483, 1.535)

∆Uequil [%] (0.431, 0.534) (0.515, 0.635) (0.641, 0.783) (0.731, 0.887) (0.851, 1.023) (1.282, 1.493) (2.935, 3.108)

∆Ugrowth [%] (2.51, 3.37) (2.95, 3.94) (3.60, 4.73) (4.05, 5.27) (4.63, 5.95) (6.60, 8.14) (12.99, 14.53)

Table 9: Sensitivity analysis with respect to the curvature β of the healthcare technology in case of internalized externalities.
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δ [%] 5 6 7 7.5 8 9 10

Regime (a)

(h(i), h(ii)) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4229, 1.3385) (1.4229, 1.3386) (1.4228, 1.3387) (1.4228, 1.3387) (1.4227, 1.3388) (1.4226, 1.3389) (1.4226, 1.3390)

ψ(i), ψ(ii)) [%] (0.4477, 0.4932) (0.4471, 0.4939) (0.4465, 0.4946) (0.4462, 0.4949) (0.4459, 0.4953) (0.4453, 0.4960) (0.4447, 0.4966)

(r(i), r(ii)) [%] (4.30, 4.19) (4.30, 4.18) (4.31, 4.17) (4.31, 4.17) (4.32, 4.17) (4.32, 4.16) (4.33, 4.16)

(g(i), g(ii)) [%] (2.08, 2.02) (2.09, 2.01) (2.10, 2.00) (2.10, 2.00) (2.11, 1.99) (2.12, 1.98) (2.12, 1.98)

∆U(i)→(ii) [%] 8.56 7.77 7.00 6.61 6.23 5.46 4.70

Regime (b)

(h(i), h(ii)) [%] (4.09, 6.22) (4.12, 6.26) (4.14, 6.30) (4.15, 6.32) (4.16, 6.34) (4.18, 6.38) (4.21, 6.42)

(T (i), T (ii)) [a] (72.35, 78.31) (72.36, 78.32) (72.37, 78.34) (72.37, 78.35) (72.38, 78.36) (72.39, 78.38) (72.40, 78.39)

(r(i), r(ii)) [%] (4.38, 4.29) (4.40, 4.30) (4.41, 4.30) (4.42, 4.30) (4.42, 4.30) (4.44, 4.31) (4.45, 4.31)

(g(i), g(ii)) [%] (2.19, 2.16) (2.21, 2.17) (2.23, 2.17) (2.24, 2.18) (2.26, 2.18) (2.28, 2.18) (2.30, 2.19)

∆U(i)→(ii) [%] 9.83 9.14 8.45 8.10 7.75 7.04 6.33

Comparison regime (a) → (b)

∆U(a)→(b) [%] (3.91, 5.13) (4.44, 5.77) (4.96, 6.39) (5.22, 6.69) (5.47, 6.98) (5.97, 7.56) (6.47, 8.13)

∆Udirect [%] (0.443, 0.554) (0.439, 0.546) (0.436, 0.538) (0.434, 0.534) (0.432, 0.530) (0.429, 0.523) (0.425, 0.516)

∆Uequil [%] (0.310, 0.388) (0.479, 0.592) (0.648, 0.790) (0.731, 0.887) (0.814, 0.982) (0.979, 1.168) (1.142, 1.349)

∆Ugrowth [%] (3.16, 4.19) (3.52, 4.63) (3.88, 5.06) (4.05, 5.27) (4.22, 5.47) (4.57, 5.87) (4.90, 6.26)

Table 10: Sensitivity analysis with respect to the capital depreciation rate δ in case of internalized externalities.
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α 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Regime (a)

(h(i), h(ii)) (4.69, 6.69) (5.08, 7.25) (5.55, 7.91) (6.10, 8.70) (6.78, 9.67) (7.62, 10.87) (8.71, 12.43)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4094, 1.3189) (1.4131, 1.3243) (1.4175, 1.3308) (1.4228, 1.3387) (1.4293, 1.3486) (1.4377, 1.3613) (1.4487, 1.3783)

ψ(i), ψ(ii)) [%] (0.4110, 0.4520) (0.4212, 0.4643) (0.4328, 0.4785) (0.4462, 0.4949) (0.4619, 0.5144) (0.4805, 0.5381) (0.5035, 0.5677)

(r(i), r(ii)) [%] (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.31, 4.17) (4.32, 4.17)

(g(i), g(ii)) [%] (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.10, 2.00) (2.11, 1.99)

∆U(i)→(ii) [%] 6.83 6.77 6.70 6.61 6.51 6.37 6.19

Regime (b)

(h(i), h(ii)) [%] (3.15, 4.78) (3.42, 5.21) (3.75, 5.71) (4.15, 6.32) (4.64, 7.08) (5.27, 8.05) (6.08, 9.31)

(T (i), T (ii)) [a] (72.53, 78.57) (72.49, 78.51) (72.43, 78.44) (72.37, 78.35) (72.30, 78.25) (72.21, 78.12) (72.09, 77.96)

(r(i), r(ii)) [%] (4.42, 4.31) (4.42, 4.30) (4.42, 4.30) (4.42, 4.30) (4.42, 4.30) (4.42, 4.30) (4.42, 4.29)

(g(i), g(ii)) [%] (2.25, 2.19) (2.25, 2.18) (2.25, 2.18) (2.24, 2.18) (2.24, 2.17) (2.24, 2.16) (2.24, 2.16)

∆U(i)→(ii) [%] 8.54 8.42 8.28 8.10 7.89 7.64 7.31

Comparison regime (a) → (b)

∆U(a)→(b) [%] (5.80, 7.51) (5.64, 7.27) (5.44, 7.00) (5.22, 6.69) (4.94, 6.31) (4.60, 5.84) (4.18, 5.27)

∆Udirect [%] (0.342, 0.426) (0.368, 0.457) (0.398, 0.493) (0.434, 0.534) (0.477, 0.583) (0.528, 0.642) (0.592, 0.713)

∆Uequil [%] (1.226, 1.521) (1.087, 1.341) (0.924, 1.132) (0.731, 0.887) (0.499, 0.594) (0.216, 0.239) (−0.138,−0.201)

∆Ugrowth [%] (4.23, 5.56) (4.18, 5.48) (4.12, 5.38) (4.05, 5.27) (3.96, 5.13) (3.86, 4.96) (3.72, 4.76)

Table 11: Sensitivity analysis with respect to the income share of capital α in case of internalized externalities.
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A.10 Internalizing the Spillover Effect of Healthcare Investments on Con-

sumption Good Production

The over-investment result of Proposition 5 rests on the assumption that either the spillover-

effect of healthcare on manufacturing is not present, i.e. η = 0, or it is not internalized by

subsidizing healthcare investments. Yet, when this market distortion is internalized by a corre-

sponding subsidy, financed, for example, via a lump-sum or labor tax,41 the equilibrium condition

(20) originating from the households’ first-order condition changes to42

σ

1− σ

H ′(h̄)

x(h̄, p̄)
−

1

(1− h̄)

1− η

1− ηh̄
= −H ′(h̄)

(
1

x(h̄, p̄)
−

1

y(h̄, p̄)

1

1− ηh̄

)

(A.31)

As the subsidy lowers the costs of healthcare, we observe that the second term in (A.31) reflecting

the household’s healthcare costs becomes smaller, while the last term on the right-hand side

reflecting the extra wealth obtained over the additional expected lifetime becomes larger (as

a smaller part of labor income wealth needs to be spent on health). The latter results from
1

1−ηh̄
> 1 for η > 0 and h > 0, which implies that the right-hand side of (A.31) may now become

negative and as a consequence under-investment in healthcare in the decentralized equilibrium

without annuity rates conditioned on individual healthcare investments will be possible. We also

directly observe that under-investment is more likely if the spillover effect is strong implying a

stronger increase in labor income wealth by investing in healthcare.

To quantify the strength of the spillover externality, we run an additional simulation in

which we internalize the positive spillover effect of healthcare investments on consumption-

good production (but leave the learning-by-investing externality untouched). As this implies an

additional incentive for households to invest in healthcare – beyond increases in longevity –, as

better healthcare increases the households’ wage, one expects that that households would not

overspend in healthcare to the same extent as we had found without internalizing the spillover

effect (see Table 2). The results shown in Table 12 confirm this conjecture. In fact, we observe

less overspending in regime (a) compared to regime (b). Accordingly, the welfare loss due

to the moral-hazard effect of unconditioned annuity claims is lower. However, the effects are

rather small. Compared to the standard case without internalizing the spillovers of healthcare

investments to consumption-good production, the welfare losses decrease from 1.29% to 1.23%

in scenario (i) and from 1.58% to 1.42% in scenario (ii).

To investigate the qualitative and quantitative robustness of the numerical simulations, we

41Note that in our model a tax on labor income is not distortionary, as labor supply is inelastic.
42This condition is derived by inserting the social cost of healthcare wH(t), as defined in Section 5 and specifically

spelled out in footnote 17, into the household’s optimisation problem, as described in Appendix A.1 (possibly also
including a tax that does not depend on the individual household’s choices to finance the subsidy). Solving the
household’s utility maximization problem yields the first-order condition regarding healthcare investments as in
the social planner’s problem (17). Yet, for any given h(s), the household’s consumption path is still characterized
by the standard Euler equation (A.4). Appreciating that when all households invest the same amount h in
healthcare in steady state the interest rate r(t), the wage rate w(t) and the annuity return a(t, s) must be the
same as in Proposition 4 and LH(t) = hN(t), we obtain wH(t) = w(t) 1−η

1−ηh
and the first-order condition (A.31).

Existence of a steady-state equilibrium can be shown by following the same line of argument, as in the proof of
Proposition 4. However, for a unique steady-state equilibrium a stronger condition than the corresponding one
given in Proposition 4 is necessary.
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Scenario (i) Scenario (ii)
T = 73.1 [a] h = 6.1 [%] T = 79.4 [a] h = 8.7 [%]

Regime (a)

pmax [%] 1.4315 1.3514

ψ [%] 0.5171 0.5739

r [%] 3.61 3.48

g [%] 2.14 1.96

∆U(i)→(ii) [%] 4.55

Regime (b)

h [%] 5.60 8.15

T [a] 72.89 79.12

r [%] 3.64 3.51

g [%] 2.18 2.01

∆U(i)→(ii) [%] 4.75

Comparison regime (a) → (b)

∆U(a)→(b) [%] 1.23 1.42

∆Udirect [%] 0.084 0.094

∆Uequil [%] −0.199 −0.231

∆Ugrowth [%] 1.35 1.56

Table 12: Utility gains for a hypothetical average OECD country for improvements in the
healthcare technology and switching from unconditioned to a conditioned annuity claims regime
in case of internalizes spillovers from healthcare to consumption-good production.

also run an extensive sensitivity analysis over the whole range of parameter values for η, β, δ

and α. The results are shown in Tables 13–16. Again, we find that the results are very robust

over the whole parameter range of our sensitivity analyses.
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η 0 0.05 0.1 0.15 0.2 0.25 0.3

Regime (a)

(h(i), h(ii)) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4418, 1.3664) (1.4384, 1.3615) (1.4349, 1.3564) (1.4315, 1.3514) (1.4280, 1.3463) (1.4244, 1.3412) (1.4209, 1.3360)

ψ(i), ψ(ii)) [%] (0.6015, 0.6678) (0.5736, 0.6368) (0.5454, 0.6055) (0.5171, 0.5739) (0.4885, 0.5422) (0.4597, 0.5102) (0.4307, 0.4779)

(r(i), r(ii)) [%] (3.62, 3.47) (3.62, 3.47) (3.61, 3.47) (3.61, 3.48) (3.61, 3.48) (3.60, 3.48) (3.60, 3.49)

(g(i), g(ii)) [%] (2.15, 1.95) (2.15, 1.95) (2.14, 1.96) (2.14, 1.96) (2.13, 1.97) (2.13, 1.97) (2.12, 1.98)

∆U(i)→(ii) [%] 3.01 3.52 4.03 4.55 5.08 5.62 6.16

Regime (b)

(h(i), h(ii)) [%] (5.56, 8.06) (5.57, 8.09) (5.59, 8.12) (5.60, 8.15) (5.62, 8.18) (5.63, 8.20) (5.65, 8.23)

(T (i), T (ii)) [a] (72.84, 79.03) (72.85, 79.06) (72.87, 79.09) (72.89, 79.12) (72.91, 79.15) (72.93, 79.18) (72.94, 79.20)

(r(i), r(ii)) [%] (3.65, 3.50) (3.65, 3.51) (3.64, 3.51) (3.64, 3.51) (3.63, 3.51) (3.62, 3.51) (3.62, 3.51)

(g(i), g(ii)) [%] (2.20, 2.00) (2.19, 2.00) (2.18, 2.00) (2.18, 2.01) (2.17, 2.01) (2.16, 2.01) (2.15, 2.01)

∆U(i)→(ii) [%] 3.34 3.80 4.27 4.75 5.24 5.74 6.25

Comparison regime (a) → (b)

∆U(a)→(b) [%] (1.57, 1.90) (1.46, 1.73) (1.34, 1.58) (1.23, 1.42) (1.13, 1.28) (1.02, 1.14) (0.92, 1.01)

∆Udirect [%] (0.011, 0.013) (0.037, 0.043) (0.061, 0.070) (0.084, 0.094) (0.106, 0.116) (0.126, 0.136) (0.145, 0.152)

∆Uequil [%] (−0.154,−0.193) (−0.170,−0.208) (−0.185,−0.221) (−0.199,−0.231) (−0.211,−0.240) (−0.222,−0.246) (−0.232,−0.250)

∆Ugrowth [%] (1.72, 2.08) (1.59, 1.90) (1.47, 1.73) (1.35, 1.56) (1.23, 1.40) (1.12, 1.25) (1.01, 1.11)

Table 13: Sensitivity analysis with respect to the spillover parameter η.
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β 0.5 0.6 0.7 0.75 0.8 0.9 1

Regime (a)

(h(i), h(ii)) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70) (6.10, 8.70)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4632, 1.3974) (1.4473, 1.3744) (1.4360, 1.3580) (1.4315, 1.3514) (1.4275, 1.3456) (1.4209, 1.3361) (1.4156, 1.3284)

ψ(i), ψ(ii)) [%] (0.3855, 0.4676) (0.4249, 0.4974) (0.4817, 0.5443) (0.5171, 0.5739) (0.5575, 0.6079) (0.6555, 0.6898) (0.7804, 0.7926)

(r(i), r(ii)) [%] (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48) (3.61, 3.48)

(g(i), g(ii)) [%] (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96)

∆U(i)→(ii) [%] 4.55 4.55 4.55 4.55 4.55 4.55 4.55

Regime (b)

(h(i), h(ii)) [%] (5.80, 8.35) (5.75, 8.29) (5.66, 8.21) (5.60, 8.15) (5.52, 8.07) (5.26, 7.83) (4.44, 7.28)

(T (i), T (ii)) [a] (72.98, 79.23) (72.95, 79.20) (72.92, 79.15) (72.89, 79.12) (72.86, 79.08) (72.75, 78.97) (72.42, 78.70)

(r(i), r(ii)) [%] (3.63, 3.50) (3.63, 3.50) (3.63, 3.50) (3.64, 3.51) (3.64, 3.51) (3.65, 3.52) (3.69, 3.55)

(g(i), g(ii)) [%] (2.16, 1.99) (2.16, 1.99) (2.17, 2.00) (2.18, 2.01) (2.18, 2.01) (2.20, 2.03) (2.26, 2.07)

∆U(i)→(ii) [%] 4.72 4.73 4.75 4.75 4.75 4.70 4.09

Comparison regime (a) → (b)

∆U(a)→(b) [%] (0.73, 0.89) (0.87, 1.05) (1.08, 1.27) (1.23, 1.42) (1.43, 1.62) (2.10, 2.24) (4.17, 3.71)

∆Udirect [%] (0.050, 0.059) (0.060, 0.069) (0.074, 0.084) (0.084, 0.094) (0.098, 0.108) (0.144, 0.149) (0.289, 0.248)

∆Uequil [%] (−0.120,−0.147) (−0.143,−0.172) (−0.176,−0.208) (−0.199,−0.231) (−0.229,−0.261) (−0.329,−0.354) (−0.609,−0.558)

∆Ugrowth [%] (0.80, 0.98) (0.96, 1.15) (1.19, 1.39) (1.35, 1.56) (1.56, 1.77) (2.29, 2.45) (4.49, 4.02)

Table 14: Sensitivity analysis with respect to the curvature β of the healthcare technology.
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δ [%] 5 6 7 7.5 8 9 10

Regime (a)

(h(i), h(ii)) (4.69, 6.69) (5.08, 7.25) (5.55, 7.91) (6.10, 8.70) (6.78, 9.67) (7.62, 10.87) (8.71, 12.43)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4167, 1.3294) (1.4208, 1.3355) (1.4256, 1.3427) (1.4315, 1.3514) (1.4386, 1.3622) (1.4477, 1.3760) (1.4596, 1.3943)

ψ(i), ψ(ii)) [%] (0.4831, 0.5318) (0.4931, 0.5440) (0.5043, 0.5579) (0.5171, 0.5739) (0.5319, 0.5928) (0.5495, 0.6156) (0.5710, 0.6442)

(r(i), r(ii)) [%] (3.54, 3.41) (3.56, 3.43) (3.58, 3.45) (3.61, 3.48) (3.64, 3.51) (3.68, 3.54) (3.72, 3.58)

(g(i), g(ii)) [%] (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96)

∆U(i)→(ii) [%] 4.42 4.47 4.51 4.55 4.59 4.62 4.62

Regime (b)

(h(i), h(ii)) [%] (4.46, 6.44) (4.78, 6.91) (5.16, 7.48) (5.60, 8.15) (6.14, 8.96) (6.82, 9.98) (7.68, 11.29)

(T (i), T (ii)) [a] (73.00, 79.27) (72.97, 79.23) (72.94, 79.18) (72.89, 79.12) (72.83, 79.04) (72.76, 78.94) (72.66, 78.81)

(r(i), r(ii)) [%] (3.55, 3.42) (3.58, 3.45) (3.60, 3.47) (3.64, 3.51) (3.67, 3.54) (3.71, 3.58) (3.76, 3.63)

(g(i), g(ii)) [%] (2.16, 1.99) (2.17, 1.99) (2.17, 2.00) (2.18, 2.01) (2.18, 2.01) (2.19, 2.02) (2.19, 2.03)

∆U(i)→(ii) [%] 4.53 4.61 4.68 4.75 4.82 4.87 4.89

Comparison regime (a) → (b)

∆U(a)→(b) [%] (0.79, 0.90) (0.94, 1.07) (1.08, 1.25) (1.23, 1.42) (1.37, 1.59) (1.49, 1.73) (1.56, 1.81)

∆Udirect [%] (0.038, 0.042) (0.050, 0.055) (0.065, 0.073) (0.084, 0.094) (0.110, 0.123) (0.143, 0.160) (0.188, 0.209)

∆Uequil [%] (−0.072,−0.082) (−0.102,−0.118) (−0.143,−0.166) (−0.199,−0.231) (−0.276,−0.322) (−0.385,−0.449) (−0.541,−0.630)

∆Ugrowth [%] (0.82, 0.94) (0.99, 1.13) (1.16, 1.34) (1.35, 1.56) (1.54, 1.79) (1.73, 2.02) (1.91, 2.24)

Table 15: Sensitivity analysis with respect to the capital depreciation rate δ.
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α 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Regime (a)

(h(i), h(ii)) (4.69, 6.69) (5.08, 7.25) (5.55, 7.91) (6.10, 8.70) (6.78, 9.67) (7.62, 10.87) (8.71, 12.43)

(T (i), T (ii)) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40) (73.10, 79.40)

(p
(i)
max, p

(ii)
max) [%] (1.4249, 1.3409) (1.4296, 1.3479) (1.4352, 1.3562) (1.4420, 1.3662) (1.4503, 1.3786) (1.4607, 1.3944) (1.4743, 1.4151)

ψ(i), ψ(ii)) [%] (0.5644, 0.6194) (0.5757, 0.6331) (0.5884, 0.6486) (0.6028, 0.6664) (0.6194, 0.6873) (0.6391, 0.7125) (0.6630, 0.7437)

(r(i), r(ii)) [%] (3.54, 3.41) (3.56, 3.43) (3.58, 3.45) (3.61, 3.48) (3.64, 3.51) (3.68, 3.54) (3.72, 3.58)

(g(i), g(ii)) [%] (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96) (2.14, 1.96)

∆U(i)→(ii) [%] 4.42 4.47 4.51 4.55 4.59 4.62 4.62

Regime (b)

(h(i), h(ii)) [%] (4.43, 6.37) (4.74, 6.84) (5.11, 7.39) (5.54, 8.04) (6.07, 8.84) (6.72, 9.82) (7.56, 11.08)

(T (i), T (ii)) [a] (72.97, 79.22) (72.93, 79.16) (72.89, 79.10) (72.83, 79.02) (72.75, 78.91) (72.66, 78.78) (72.53, 78.60)

(r(i), r(ii)) [%] (3.55, 3.43) (3.58, 3.45) (3.61, 3.48) (3.64, 3.51) (3.68, 3.55) (3.72, 3.59) (3.77, 3.63)

(g(i), g(ii)) [%] (2.17, 1.99) (2.17, 2.00) (2.18, 2.01) (2.18, 2.01) (2.19, 2.02) (2.19, 2.03) (2.20, 2.04)

∆U(i)→(ii) [%] 4.62 4.70 4.78 4.86 4.93 4.98 5.00

Comparison regime (a) → (b)

∆U(a)→(b) [%] (0.87, 1.06) (1.01, 1.24) (1.15, 1.41) (1.29, 1.58) (1.41, 1.74) (1.50, 1.85) (1.54, 1.90)

∆Udirect [%] (0.003, 0.004) (0.005, 0.006) (0.008, 0.009) (0.011, 0.013) (0.017, 0.020) (0.025, 0.030) (0.038, 0.044)

∆Uequil [%] (−0.082,−0.101) (−0.115,−0.142) (−0.160,−0.197) (−0.221,−0.273) (−0.307,−0.377) (−0.427,−0.525) (−0.601,−0.737)

∆Ugrowth [%] (0.94, 1.16) (1.12, 1.38) (1.30, 1.60) (1.50, 1.84) (1.70, 2.09) (1.90, 2.35) (2.10, 2.60)

Table 16: Sensitivity analysis with respect to the income share of capital α.
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