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Abstract 

 
We consider campaign competition in which candidates compete for votes among a continuum 
of voters by engaging in persuasive efforts that are targetable. Each individual voter is 
persuaded by campaign effort and votes for the candidate who targets more persuasive effort to 
this voter. Each candidate chooses a level of total campaign effort and allocates their effort 
among the set of voters. We completely characterize equilibrium for the majoritarian objective 
game and compare that to the vote-share maximizing game. If the candidates are symmetric ex 
ante, both types of electoral competition dissipate the rents from office in expectation. However, 
the equilibria arising under the two electoral objectives qualitatively differ. In majoritarian 
elections, candidates randomize over their level of total campaign effort, which provides support 
for the puzzling phenomenon of the emergence of supermajorities in majoritarian systems. Vote-
share maximization leads to an equilibrium in which both candidates make deterministic budget 
choices and reach a precise fifty-fifty split of vote shares. We also study how asymmetry 
between the candidates affects the equilibrium. If some share of the voters is loyal to one of the 
candidates, then both candidates expend the same expected efforts in equilibrium, but the 
advantaged candidate wins with higher probability for majoritarian voting or a higher share of 
voters for vote-share maximization. 
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1 Introduction

Campaign spending is an important aspect of electoral competition.1 Recent years have

seen a change of paradigm with the introduction of new technologies that allow for large-

scale micro-targeting of campaign activities: candidates increasingly target their cam-

paign effort towards individual voters with individualized messages instead of addressing

the whole electorate, or even large groups of voters.2 This paper presents a formal anal-

ysis that examines the implications that this change of paradigm will have on electoral

competition in a modern democracy.

We consider persuasive campaign competition in majoritarian elections with two can-

didates and a continuum of, ex-ante homogenous, voters and compare that with a pro-

portional, or vote-share maximizing, system in which each party’s representation in a

legislature is proportional to the share of votes received by that party. We assume that

candidates (or parties) may anonymously target campaign spending at individual voters

by employing a (general, non-decreasing) distribution of costly campaign spending. Each

voter observes each candidate’s voter-specific campaign effort provided to them and, then,

votes for the candidate that provides them with the higher level of persuasive campaign

effort.

In this setting, we show that there exists a unique Nash equilibrium and find that

the problem of constructing a best-response can be decomposed into two distinct compo-

nents: a budget choice problem and a budget allocation problem. Our model of campaign

competition in which targeted spending is a sunk cost, provides a non-constant-sum ex-

tension of Myerson’s (1993) constant-sum model of political competition. In the standard

zero-sum formulation of the game, the majoritarian and vote-share maximizing objective

games share the same unique equilibrium which features micro-targeting, i.e., candidates

have an incentive to “cultivate favored minorities”: some voters are the subject of much

campaign effort, others receive very little. In our model with endogenous campaign

spending, the equilibria arising in the games under each of the two objectives qualita-

tively differ. We find that the discontinuity in the definition of winning in a majoritarian

1The amount of money being spent in electoral campaigns is sizeable, and seemingly increasing.

For instance, Barack Obama and Mitt Romney spent $985.7m and $992.0m, respectively, in 2012 (see

http://elections.nytimes.com/2012/campaign-finance, as viewed on May 27, 2014). As Meirowitz (2008)

points out, precise policy statements play a minor role in this type of persuasive campaign spending.
2The increasing availability and usage of micro-targeting in US presidential elec-

tions was highlighted in a feature story of the MIT Technology Review in 2012 (see

http://www.technologyreview.com/featuredstory/509026/how-obamas-team-used-big-data-to-rally-

voters, as viewed on July 21, 2014), as well as in Kenski, Hardy and Jamieson (2010) and Ridout, Franz,

Goldstein, and Feltus (2012). See also Jamieson (2013), who envisions a change in electoral competition

from a focus on swing states to swing individuals, and Hersh and Schaffner (2013).
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system creates an incentive for candidates to increase the level of uncertainty in the way

that they allocate campaign spending.

Because in a majoritarian system each politician’s payoff has a sharp discontinuity

at 50% of the votes, candidates have incentive to target the smallest possible majori-

ties. However, as noted by Groseclose and Snyder (1996), supermajorities are frequently

observed in majoritarian systems.3 We find that in the unique simultaneous-move equi-

librium supermajorities arise with certainty. Because the unique equilibrium features

non-degenerate mixed strategies, supermajorities arise from the uncoordinated choices

with regards to the sizes of the budgets chosen by the candidates, and unequal budgets

translate into unequal vote shares. Hence, the analysis offers a new explanation for the

emergence of supermajorities as an electoral outcome in majoritarian systems.

Our analysis can also be extended to deal with the case that each voter’s evaluation

of a candidate may depend upon the combination of the candidate’s targeted campaign

spending and the candidate’s identity. We introduce this possibility in our framework

by allowing voters to either be of the loyal, or partisan, type — in which case they

are loyal to a single candidate and vote for that candidate regardless of the candidates’

targeted campaigning — or of the swing type — in which case the voter votes for the

candidate that targets them with the higher level of campaign effort, regardless of that

candidate’s identity. We consider the case of coarse information in which candidates

know the aggregate share of loyal voters but do not know whether any specific voter

is a loyal voter or a swing voter, and of perfect information in which candidates know

each individual voter’s type. In comparing the possible combinations of an electoral

system, majoritarian or proportional, and an information level, coarse or perfect, we find

that, holding constant the electoral system, the level of information has no effect on the

equilibrium expected expenditures. Because the majoritarian system generates a larger

discouragement effect for the disadvantaged candidate, equilibrium expected expenditures

are higher in the proportional system than in the majoritarian system, and, as a result,

the advantaged candidate has a higher equilibrium expected payoff in a majoritarian

system than in a proportional system, regardless of the information structure.

We proceed as follows. The next section reviews the related literature. Section 3

describes the formal framework. Section 4 solves for the Nash equilibrium. Section 5

extends our model to examine the role of private information and loyalty in political

campaigns. The last section contains concluding remarks. We relegate all proofs to the

Appendix.

3Iaryczower and Mattozzi (2013) discuss the importance of this discontinuity for electoral competition

in majoritarian systems and compare it with proportional systems.
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2 Related literature

Within the literatures on electoral competition and multi-dimensional strategic resource

allocation, our paper is most closely related to three specific strands of the literature:

(i) models of redistributive politics that feature a variation of the Colonel Blotto game,

(ii) models of campaign spending that feature the all-pay auction (henceforth APA), and

(iii) non-constant-sum versions of the Colonel Blotto/General Lotto games and multi-

dimensional APAs. First, our contribution is related to the literature that models redis-

tributive politics as a variation of the Colonel Blotto game4 known as the General Lotto

game.5 A seminal contribution in this literature is Myerson (1993), in which candidates

simultaneously choose binding promises of how they will allocate an exogenous budget

across a homogeneous electorate in the event that they win the election. Candidates

may target individual voters by employing an (anonymous) distribution of transfer of-

fers.6 Each voter makes an independent draw from each candidate’s effort distribution

and votes for the candidate that makes the higher offer to that voter. The expected

transfer from each candidate’s offer distribution satisfies the budget in expectation, and

the exogenous budget is the amount of tax revenue or surplus that can be distributed

among the voters after the election. Myerson’s and our problem have in common that

each candidate wins if he attracts a majority of a continuum of voters. In his frame-

work a voter casts his vote for the candidate who promises him a higher payment. In

our framework voters cast their vote for the candidate who allocates a higher persuasive

effort to that voter during the campaign.

Our formulation features campaign expenditures that are paid for by the candidates,

whereas in the Myerson framework the binding campaign promises of the winning can-

didate are taken from an exogenous government budget. Thus, the point of departure in

our framework is that the candidates endogenously choose, and pay, their overall expen-

ditures, and this budget choice and the choice of how to allocate the budget are made

simultaneously.7 Note, however, that in our model the campaign spending targeted to

4For early contributions to this literature see Gross and Wagner (1950) and Shubik (1970). Recent

contributions include Roberson (2006), Hart (2008), Kovenock and Roberson (2008), Barelli, Govindan

and Wilson (2014), and Magnani (2015). For a survey see Kovenock and Roberson (2012).
5Note that in the General Lotto game budgets are satisfied on average, instead of holding with

certainty as in the Colonel Blotto game.
6Lizzeri and Persico (2001) broaden this perspective by allowing candidates to use the tax revenue

to target voters with or to spend it on public goods. Kovenock and Roberson (2009), and Crutzen and

Sahuguet (2009) allow for inefficiencies in this process of reallocating or collecting resources. Bierbrauer

and Boyer (2016) extend the analysis of Lizzeri and Persico (2001) to an environment where voters have

private information about their preferences.
7With exogenous campaign budgets our setup reduces to the Myerson framework and reproduces the

equilibrium results in Myerson (1993).
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voters entails an explicit cost for the candidate and these efforts are received by the

voters, regardless of who wins the election. Conversely, in Myerson (1993) the transfer

promised by a candidate is paid only by the winning candidate. To summarize, our anal-

ysis can be seen as an extension of Myerson (1993) which allows for the candidates to

endogenously choose their level of campaign spending, with the caveat that voters receive

both candidates’ targeted campaign efforts regardless of who wins the election.

Myerson (1993) has spurred a large literature on redistributive politics, including Ueda

(1998) and Lizzeri (1999) that both deal with endogenous budget choice. Ueda (1998)

allows candidates to choose not only the cumulative distribution of promises, but also

the amount that they can take from the economy and use for making promises. This is

equivalent to giving politicians the possibility of choosing their budget, but requires that

the voters (rather than the politicians or parties) pay for the cost of the budget chosen by

the winning candidate. He shows that Myerson’s arguments on the incentives to produce

favored minorities are not directly generalizable to this model.

In our model, contrary to Ueda (1998), the budget choice has an all-pay nature:

campaign expenditures entail an explicit cost that directly lowers candidates’ payoffs.

These expenditures have to be paid for whether the candidate is elected or not, and

the budgets are not generated through taxation of voters. Lizzeri (1999) extends Myer-

son’s (1993) setup to a two-period model of “divide-the-dollar” electoral competition. In

Lizzeri (1999) the budget is endogenous because politicians may increase the first-period

resources available for redistributive transfers by running public debt.8 As a main result,

Lizzeri (1999) shows that candidates will always raise the maximal debt, because it allows

them to better target the pool of resources to voters.

Second, the endogenous choice of campaign spending in an electoral contest with

persuasive efforts has been carefully studied for the case in which voters cannot be treated

individually.9 This approach focuses on the choice of the total amount of spending, and

on how the equilibrium choice of spending depends on issues such as legal spending limits

or asymmetries between the candidates. From a structural point of view many of the

analyses can then be interpreted as variants of the canonical models of all-pay contests,

such as Tullock (1980) contest, or the all-pay auction without noise as considered by

Hillman and Riley (1989) and Baye, Kovenock and deVries (1996). Hart (2016) examines

the relationship between all-pay auctions and a General Lotto game with the proportional,

8See Boyer and Esslinger (2016) for an extension of Lizzeri’s model where politicians also have the

possibility to implement a beneficial reform.
9Seminal contributions include Snyder (1989), Che and Gale (1998), Erikson and Palfrey (2000),

and Meirowitz (2008). The all-pay contest nature of electoral competition has also been stressed in

many other important contributions. Examples include Skaperdas and Grofman (1995), Diermeier and

Myerson (1999), Pastine and Pastine (2012), Denter and Sisak (2015), and Siegel and Olszewski (2016).
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or vote-share maximizing, objective10 and extensively studies the implications of caps on

spending.11 In particular Hart (2016, Theorem 6) shows that the equilibrium of a two-

player all-pay auction coincides with the equilibrium of a corresponding General Lotto

game.

Empirically, the set of voters in many elections is quite large, and recent technologi-

cal advances facilitate large-scale micro-targeting of campaign resources. Some observers

claim that micro-targeting of campaign spending at the level of individual voters is be-

coming the norm. One reading of our results is that the focus in the campaign competition

literature on a single voter, or on a monolithic mass of voters is not necessarily mislead-

ing. This literature makes appropriate predictions about the overall campaign efforts,

at least as long as the voter population is fully homogenous. However, that approach

does not describe how and why candidates may choose different levels of voter-specific

campaign spending to ex ante symmetric voters. We find that they do, and that this

leads to electoral outcomes that are systematically characterized by unequal treatment

and, in majoritarian systems, by supermajorities. In contrast to Groseclose and Snyder

(1996, 2000) and Banks (2000) who address the problem of supermajorities in majori-

tarian systems in models with sequential choices by two asymmetric candidates, we find

that supermajorities will also arise for ex-ante symmetric candidates and simultaneous

campaigning choices.

One interpretation of our set-up is that we consider an all-pay auction without noise

between two contestants for an infinite number of identical objects, and where each

contestant’s objective is to win at least 50% of the objects. A variant of this problem with

a finite number of objects has been studied by Szentes and Rosenthal (2003a, 2003b).12

They examine majority auction games, which are simultaneous sealed-bid auctions of

identical objects among identical bidders who each want to win a majority (or possibly a

supermajority) of the objects. In the all-pay majority auction case, their setup is a finite

battlefield version of our game. A key insight from Szentes and Rosenthal (2003a, 2003b)

is the use of mixtures whose supports are surfaces of tetrahedra and whose best-response

sets are the tetrahedra themselves. However, except in the pure chopstick case,13 they

have no equilibrium constructions when only two candidates compete. Our contribution

is to derive the Nash equilibrium with two candidates in an environment with a continuum

10This relationship is also examined in Sahuguet and Persico (2006) and Kovenock and Roberson

(2008).
11For more on the issue of caps in this environment, see Amir (2015).
12See also Ewerhart (2016) who provides a new “fractal” solution to the chopsticks auction.
13This game consists of two players who compete in three simultaneous all-pay auctions for three

identical objects. Each auction assigns one object. Owning one single object yields a benefit of zero.

Owning two or three of the objects yields a benefit of 2.
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of objects.

Our analysis is also related to generalized or non-constant-sum Colonel Blotto and

General Lotto games as in Roberson and Kvasov (2012), Washburn (2013), Amir (2015),

Kovenock and Roberson (2015), and Hart (2016). In these games, the two contestants

typically have exogenous budgets (or expected budgets in the General Lotto variant),

simultaneously allocate their resources among the different fronts, and receive a payoff

that is proportional to the number, or share, of battlefields won. In the case of the

majority objective, our framework can be seen as a non-constant-sum version of this type

of competition with an infinite number of fronts, a majoritarian objective function with

a discontinuity at winning 50% of the battle fronts, and where players simultaneously

choose both the amount of the costly resource to be mobilized and the allocation of this

resource among the different fronts.

The theoretical literature on electoral competition14 includes a number of conceptual

frameworks (including Downsian models of platform choice, policy motivated candidates

with commitment problems, and citizen-candidate models) and several potential sources

of voter heterogeneity (including access to information, preferences and other dimensions).

In addition, campaign contributions and campaign expenditures clearly play an important

role in elections. Jacobson (2015) provides a survey addressing the issues of “where,

when, for what, and for whom” campaigns matter. For example, campaign expenditures

may be informative (see, e.g., Austen-Smith, 1987; Prat, 2002; Coate, 2004; Schultz,

2007).15 In this context, micro-targeting technologies that allow the candidates to send

personalized informational content to different types of voters are important tools. An

analysis of this issue is provided by Schippers and Woo (2014). In contrast, we adapt

the contest-theoretic perspective in the tradition of the seminal papers by Skaperdas and

Grofman (1995), Che and Gale (1998), and Meirowitz (2008), in which campaign effort

is persuasive, to allow for campaign efforts to also be targetable, i.e. each voter simply

reacts to the amounts of persuasive campaign efforts targeted at them by each of the

candidates. Micro-targeting in this context means that voters need not be heterogenous,

but competing candidates may campaign for each voter separately and independently,

which is, as we find, particularly important in majoritarian electoral systems.

14For a recent survey see Dewan and Shepsle (2011).
15Herrera et al. (2008) instead focus on the mobilization aspect of campaign spending rather than

on the persuasion in order to understand why campaign spending has increased at the same time that

politics has become more polarized in the US.
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3 The model

There are two candidates, or players, A and B and a large but finite number of voters

which may be approximated by an infinite-population, of unit measure. The two play-

ers compete in an election using persuasive effort and voters are homogenous in their

preferences and sensitive only to persuasive efforts. As will become clear, our model is

structurally similar to the majoritarian election model in Myerson (1993), but with two

major differences. In the Myerson framework candidates compete by making distribution

promises that are kept if a candidate is elected. Here candidates compete with persuasive

effort that is sunk and needs to be paid for also if the candidate loses the election. Fur-

ther, candidates do not rely on an exogenous ‘spend-it-or-lose-it’ budget, but they chose

their overall persuasive efforts and pay the cost of it. We also compare this majoritarian

competition with a framework in which candidates maximize vote shares.

Each candidate’s choice of persuasive effort per voter is described as follows. For each

player i ∈ {A,B}, a pure strategy, which we term an effort distribution, is a distribution

function Gi of a nonnegative random variable Xi with finite mean EGi
(x). If player i has

chosen Gi, then each voter receives an amount of persuasive effort that is an independent

draw from player i’s effort distribution Gi, where Gi(x) denotes the probability that an

arbitrary voter receives persuasive effort less than x from player i. Let S denote player

i’s set of pure strategies, i.e. the set of univariate distribution functions with nonnegative

support and finite mean. Let Σ denote the set of probability distributions over S.16

For each player i, a mixed strategy in this game is a probability distribution function

σi ∈ Σ over the set of pure strategies S. Let Supp(σi) denote the support of σi (i.e. the

complement of the union of all open sets of S with σi-volume 0).

Each voter casts his vote for the candidate who expends more persuasive effort on this

voter. The voter votes for i if this voter receives a higher draw from Gi than from Gj.

In the event of a tie we assume that the voter uses fair randomization.17 Thus, player i’s

vote share given that player i uses the pure strategy Gi for the random variable Xi and

player −i uses G−i for the random variable X−i is

Pr [Xi > X−i] +
1

2
Pr [Xi = X−i] .

16Note that a random function, or stochastic process, is a special case of a random element. Addition-

ally, because Σ is a separable complete metric space, every probability distribution on Σ is tight. For

further details, see Parthasarathy (1967) and Kallenberg (1997).
17As is common in the literature on contests featuring the all-pay auction contest-success function,

this assumption is not critical for our results which hold for a range of tie-breaking rules, and ties do not

arise in equilibrium.
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In the vote-share maximizing game, player i’s payoff is given by

πV Si (Gi, G−i) = Pr [Xi > X−i] +
1

2
Pr [Xi = X−i]− EGi

(x). (1)

In the majoritarian objective game, player i wins if Pr [Xi > X−i]+
1
2
Pr [Xi = X−i] > 1/2,

ties if Pr [Xi > X−i] + 1
2
Pr [Xi = X−i] = 1/2, and loses otherwise. Let wi(Gi, G−i) denote

if player i wins, given that player i uses the pure strategy Gi and player −i uses G−i,

where

wi(Gi, G−i) =


1 if Pr [Xi > X−i] + 1

2
Pr [Xi = X−i] > 1/2,

1
2

if Pr [Xi > X−i] + 1
2
Pr [Xi = X−i] = 1/2,

0 if Pr [Xi > X−i] + 1
2
Pr [Xi = X−i] < 1/2.

Player i’s payoff in the majoritarian game is given by

πMi (Gi, G−i) = wi(Gi, G−i)− EGi
(x). (2)

We define the majoritarian game with endogenous budgets as the two-player, simultaneous-

move, one-shot game in which each player i ∈ {A,B} chooses, possibly randomizing

according to a mixed-strategy σi, an effort distribution Gi and each player i’s payoff is

πMi (Gi, G−i).

The vote-share maximizing game with endogenous budgets is the two-player, simultaneous-

move, one-shot game in which each player i ∈ {A,B} chooses, possibly randomizing ac-

cording to a mixed-strategy σi, distribution Gi of persuasive effort and each player i’s

payoff is πV Si (Gi, G−i).

4 Equilibrium characterization

We begin with the characterization of equilibrium, in what turns out to be the simpler

case, of the vote-share maximizing game with endogenous budgets. Next, we character-

ize equilibrium in the majoritarian game with endogenous budgets. Then, this section

concludes with a comparison of the equilibria arising under these two objectives. Before

stating our main results, it is useful to introduce some additional notation to help describe

a mixed strategy in this game. Let ηi(b|σi) = {Gi ∈ Supp(σi)|EGi
(x) = b} denote the set

of pure strategies in the support of σi that have the same expected cost b. Then, define

Fi(b) as player i’s budget distribution function, which is defined as the probability that

the random effort distribution G̃i drawn from the mixed strategy σi has a mean EG̃i
(x)

that is less than or equal to b. A key distinction between the equilibria arising under

the two objectives is that in the unique equilibrium of the vote-share maximizing game,

each player i’s budget distribution, Fi(b), is degenerate, whereas in any equilibrium of the

majoritarian objective game, each player i’s budget distribution, Fi(b), is non-degenerate.
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4.1 Vote-Share Maximizing Game

Recall that in the vote-share maximizing game each player i’s payoff is given by equation

(1).

Theorem 1 (Hillman and Riley (1989) and Baye, Kovenock, and de Vries (1996))

In the unique Nash equilibrium (σ∗A, σ
∗
B) of the vote-share maximizing game with endoge-

nous budgets, each player i’s budget distribution, F ∗i (b), is degenerate with all mass placed

on b = 1/2 and each player i’s effort distribution is G∗i (x) = x for x ∈ [0, 1].

As noted in Hart (2016),18 the vote-share maximizing game in which each player’s

payoff function is given by equation (1) — that is, each player maximizes his vote-share

and both players pay their expected effort — is strategically equivalent to a symmetric

two-player all-pay auction with complete information, in which each player has a payoff

of 1 from winning the auction. Thus, equilibrium is characterized by19 Hillman and

Riley (1989) and Baye, Kovenock, and de Vries (1996). In the unique pure-strategy Nash

equilibrium (G∗A, G
∗
B) of the vote-share maximizing game with endogenous budgets, each

player i’s effort distribution is G∗i (x) = x for x ∈ [0, 1].

For intuition on this result, assume for a moment that the set of voters is finite with

n identical voters.20 Vote-share maximization then means that candidates attribute the

same fixed value to winning the vote of each of these voters, and this value is independent

of how many of the other votes they win. This implies that the game may be interpreted

as a contest between two players who compete for n identical prizes in n identical and

independent all-pay auctions. Suppose that a value of 1/n is attributed to winning any

single of these votes. We know from Baye et al. (1996) that the unique equilibrium in

each of the n parallel all-pay auctions is in mixed strategies with G∗i (x) = x for x ∈ [0, 1
n
].

This has implications for the equilibrium vote share and for the players’ equilibrium

persuasive campaign efforts. For each player, the sum of the average efforts across the n

all-pay auctions is 1
2

1
n
n = 1

2
. Similarly, for each player, the sum of the expected winnings

across the n all-pay auctions, which corresponds to the sum of the expected votes won

by the player, is 1
2

1
n
n = 1

2
.

For the case of a continuum of voters, we follow the convention of the redistributive

politics literature originating with Myerson (1993) in which it is assumed that each player

chooses a one-dimensional effort distribution, possibly according to a mixed strategy. In

18See Section 3 of Hart (2016).
19See Theorem 6, and its corresponding proof, of Hart (2016) for a new method of characterizing

equilibria.
20Note that this corresponds to a version of the (endogenous-budget) non-constant-sum Colonel Blotto

Game examined in Roberson and Kvasov (2012) in which neither player has a cap on resource expendi-

tures.
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the context of targetable, persuasive campaign effort, the effort that a player allocates to

any given voter is an independent draw from that player’s effort distribution. As noted in

Myerson (1993), and emphasized in Hart (2008, 2016), this continuum voter convention

may be interpreted as competition over a single, representative, voter but where each

player pays their expected effort. That is, let n = 1 in the example given above with n

identical voters and have each player pay their expected bid rather than the bid drawn

from their distribution of bids. Because the costs of bids are linear and each player is

risk-neutral, it follows directly that the payoff function given in equation (1) is equivalent

to the expected payoff in a single all-pay auction with prize value 1 where each player i

pays the random bid drawn from their bid distribution G∗i (x).

4.2 Majoritarian Game: Main Results

Theorem 2 completely characterizes the properties of the equilibrium budget distribution

F ∗i (b) and equilibrium parametric family of effort distributions {η∗i (b|σi)|b ∈ Supp(F ∗i )}
that hold in any Nash equilibrium (σ∗A, σ

∗
B).

Theorem 2 In any Nash equilibrium (σ∗A, σ
∗
B) of the majoritarian game with endogenous

budgets, each player i’s budget distribution is F ∗i (b) = b for b ∈ [0, 1] and each player i’s

family of effort distributions is, for almost every b ∈ [0, 1], η∗i (b|σ∗i ) = {G∗i (x|b)} where

G∗i (x|b) = x/2b for x ∈ [0, 2b].

The proof of Theorem 2 is given in the Appendix. From Theorem 2 we see that

equilibrium in the majoritarian game with endogenous budgets builds upon the intuition

of the multidimensional strategic resource allocation competition of Myerson (1993) —

in which budgets are exogenous and use-it-or-lose-it — combined with the strategic re-

source expenditure competition of the all-pay auction with complete information as in

Baye, Kovenock and de Vries (1996). That is, one element is the equilibrium parametric

family of effort distributions {η∗i (b|σi)|b ∈ [0, 1]}, which is related to the literature on

Colonel Blotto games (Gross and Wagner 1950; Shubik 1970; Myerson 1993; Roberson

2006). The second element is the budget distribution F ∗i (b), which coincides with the

unique equilibrium strategy in a two-player, symmetric, all-pay auction with complete in-

formation in which each player has a value of one for the object being auctioned (Hillman

and Riley 1989; Baye, Kovenock, de Vries 1996; Siegel 2009).

For intuition on why any pair of mixed strategies (σA, σB) that satisfies the conditions

in Theorem 2 forms an equilibrium, suppose that player −i is using a mixed strategy σ−i

that satisfies the conditions of Theorem 2. Player i’s expected payoff from any pure

12



strategy Gi with finite mean EGi
(x) is,

Eσ−i

(
πMi (Gi, G−i)

)
= Eσ−i

(wi(Gi, G−i))− EGi
(x). (3)

To calculate Eσ−i

(
wi(Gi, G

∗
−i)
)
, it is useful to first establish a fact, formally stated below,

that provides insight into the problem of calculating a best-response when your opponent

is using a strategy that satisfies the conditions in Theorem 2. In the statement of Fact 1,

we restrict our focus to any arbitrary effort distribution Gi(x) with EGi
(x) ≤ 1. Because

there exists a Gi(x) with EGi
(x) = 1 — namely Gi(x) = x/2 for x ∈ [0, 2] — such that

player i wins a majority of the votes against almost every G∗i (x|b), b ∈ [0, 1], player i has

no incentive to choose a Gi(x) with EGi
(x) > 1.

Fact 1 If player −i uses a strategy σ∗−i that satisfies the conditions in Theorem 2 and

player i uses an arbitrary effort distribution Gi with EGi
(x) ≤ 1, then there exists a

budget level b̂ ≤ EGi
(x) such that Eσ∗−i

(
wi(Gi, G

∗
−i)
)

= F ∗−i(b̂).

Fact 1 is a fairly straightforward consequence of player −i using a strategy σ∗−i that

satisfies the conditions in Theorem 2, but it is useful to provide a sketch of the argument.

It consists of two parts: a single-crossing condition with regards to budgets — that is,

there exists a single-crossing point b̂ such that player i wins a majority of votes if player

−i’s random budget b̃−i satisfies b̃−i < b̂ — and a condition on where the single crossing

point occurs.

We begin with part 1, or the single-crossing condition. Note that player −i’s para-

metric family of effort distributions {G∗−i(x|b)|b ∈ [0, 1]} satisfies the property that for

each b′ > b it is the case that G∗−i(x|b′) < G∗−i(x|b) for all strictly positive points in

Supp(G∗−i(x|b)) and G∗−i(0|b′) = G∗−i(0|b) — i.e. G∗−i(x|b′) first-order stochastically dom-

inates G∗−i(x|b)). We therefore know that for any pure strategy Gi player i’s vote share21

satisfies the following property

Pr
[
Xi > X−i|Gi, G

∗
−i(x|b′)

]
= 1−

∫
Gi(x)dG∗−i(x|b′) ≤

1−
∫
Gi(x)dG∗−i(x|b) = Pr

[
Xi > X−i|Gi, G

∗
−i(x|b)

]
, (4)

where Gi(x) is weakly increasing because it is a cumulative distribution function. It

follows from equation (4) that Pr
[
Xi > X−i|Gi, G

∗
−i(x|b)

]
is weakly decreasing in b. We

define b̂ as22

b̂ ≡ max
{
b ∈ [0, 1]

∣∣Pr [Xi > X−i|Gi, G
∗
−i(x|b)

]
≥ 1/2

}
. (5)

21Because G∗−i(x|b) does not place strictly positive mass on any point x ∈ [0, 2b],

Pr
[
Xi = X−i|Gi, G

∗
−i(x|b)

]
= 0. That is, ties in persuasive effort arise with probability zero.

22In the case that Pr[Xi > X−i|Gi, G
∗
−i(x|b)] < 1/2 for all b ∈ [0, 1], let b̂ = 0.
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Clearly, there exists such a b̂, and it follows that Eσ−i

(
wi(Gi, G

∗
−i)
)

= F ∗−i(b̂). We now

show that the point b̂ satisfies b̂ ≤ EGi
(x). By way of contradiction suppose that b̂ >

EGi
(x). Because

b̂ > EGi
(x) =

∫ ∞
0

xdGi(x) =

∫ 2b̂

0

xdGi(x) +

∫ ∞
2b̂

xdGi(x), (6)

it follows that

b̂−
∫ ∞

2b̂

xdGi(x) >

∫ 2b̂

0

xdGi(x). (7)

Next, recall that

Pr
[
Xi > X−i|Gi, G

∗
−i(x|b)

]
=

∫ ∞
0

G−i(x|b)dGi(x) (8)

=
1

2b

∫ 2b

0

xdGi(x) +

∫ ∞
2b

dGi(x). (9)

Then, inserting equation (7) into equation (9), it follows that

Pr
[
Xi > X−i|Gi, G

∗
−i(x|b̂)

]
=

1

2b̂

∫ 2b̂

0

xdGi(x) +

∫ ∞
2b̂

dGi(x) (10)

<
1

2
+

∫ ∞
2b̂

(
1− x

2b̂

)
dGi(x). (11)

Because 1− x

2b̂
< 0 for all x > 2b̂, it follows from equation (11) that Pr[Xi > X−i|Gi, G

∗
−i(x|b̂)]

is strictly less than 1/2, which is a contradiction to the definition of b̂ in equation (5). It,

therefore, follows that b̂ ≤ EGi
(x).

We now utilize Fact 1 to examine player i’s problem of calculating a best-response

when player −i is using a strategy σ∗−i that satisfies the conditions in Theorem 2. Com-

bining Fact 1 with equation (3) player i’s expected payoff from any pure strategy Gi is

given by

Eσ∗−i

(
πMi (Gi, G

∗
−i)
)

= F ∗−i(b̂)− EGi
(x). (12)

where b̂ is defined in equation (5). Note that because F ∗−i(b̂) = b̂ and b̂ ≤ EGi
(x), player

i’s maximum payoff from any pure strategy Gi is 0. Next, it follows from equation

(10), together with the definition of b̂ in equation (5), that if Supp(Gi) ⊆ [0, 2EGi
(x)],

then b̂ = EGi
(x) and player i’s expected payoff, see equation (12), is 0. To summarize,

if player −i is using a strategy σ∗−i that satisfies the conditions in Theorem 2, then

any effort distribution Gi with finite mean EGi
(x) ≤ 1 and Supp(Gi) ⊆ [0, 2EGi

(x)]

provides player i with his maximal expected payoff of zero. Because the Theorem 2

condition that for all b ∈ [0, 1], G∗i (x|b) = x/2b for x ∈ [0, 2b] implies that EG∗i (x) ≤ 1

and Supp(G∗i ) ⊆ [0, 2EG∗i (x)] for all G∗i ∈ σi, any strategy σi satisfying the conditions in

Theorem 2 is a best response for player i.
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One important insight that follows from Fact 1 is that in the majoritarian game

with endogenous budgets the problem of constructing a best-response to an equilibrium

strategy, characterized in Theorem 2, can be decomposed into two distinct components:

a budget choice problem and a budget allocation problem.

To illustrate this point, consider first the following game which eliminates the budget

choice problem and focuses solely on the budget allocation problem. We define the

majoritarian game with incomplete information regarding the players’ exogenous use-it-

or-lose-it budgets as the two-player simultaneous-move game in which each player i’s

use-it-or-lose-it budget bi is private information and assumed to be drawn according to

a common distribution function F — satisfying Supp(F ) = [0, 1], F (0) = 0, and with

strictly positive and continuously differentiable probability density function f — each

player chooses an effort distribution Gi with mean EGi
(x) ≤ bi, and each player i’s payoff

is wi(Gi, G−i). The equilibrium of this version of the majoritarian game is provided in

Corollary 1.

Corollary 1 There exists a unique pure-strategy Bayesian-Nash equilibrium of the ma-

joritarian game with incomplete information regarding the players’ exogenous use-it-or-

lose-it budgets in which for each bi ∈ [0, 1] each player i’s effort distribution is G∗i (x|bi) =

x/2bi for x ∈ [0, 2bi].

From Fact 1, we know that if player i’s budget type is bi, then the maximum payoff that

player i can achieve – given that player −i is using a family of distributions that satisfies

the conditions in Corollary 1 — is E(wi(Gi(x|bi), G∗−i(x|b−i))) = F (bi). Furthermore,

a family of distributions that satisfies the conditions in Corollary 1 is a best-response

for player i that achieves this maximum payoff. Thus, the proof that a combination of

strategies (G∗A(x|b), G∗B(x|b)) satisfying the conditions in Corollary 1 forms an equilibrium

follows directly from Fact 1. Given the common distribution F of each player’s private

level of use-it-or-lose-it resources, the proof of uniqueness can be directly constructed

from the Theorem 2 proof of uniqueness in the Appendix (see Lemmas 8-13).

Returning to the problem of constructing a best-response to an equilibrium strategy in

the majoritarian game with endogenous budgets and given Corollary 1’s characterization

of equilibrium in the budget allocation component of the best-response problem, we now

examine the budget choice component. Given that each player is using a family of effort

distributions that satisfy the conditions in Theorem 2, player i wins against player −i
whenever player i’s budget exceeds that of −i by an arbitrarily small but positive ε.

Moreover, player i’s expected payoff from any budget level bi ∈ [0, 1] is, from equation

(12), equal to 0. Thus, player i is indifferent between all budget levels bi ∈ [0, 1], and

strictly prefers any such budget level to bi > 1. This provides intuition for why the
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equilibrium budget distributions F ∗i and F ∗−i coincide with the equilibrium strategies

in the symmetric two-player all-pay auction, and, thus, why any strategy σi satisfying

the conditions in Theorem 2 provides a best response for player i in both the budget

allocation and budget choice components of his problem.

4.3 Comparison of Equilibria Across Electoral Systems

Theorems 1 and 2 have a number of interesting implications. First, they reveal that

in the equilibrium of both the vote-share maximizing and majoritarian games the two

candidates fully dissipate, in expectation, the rent from winning office. That is, under

each objective, each of the players chooses a budget that is, on average, equal to 1/2 the

value of the prize of winning office, and each of them wins with probability 1/2.

Theorems 1 and 2 are also important for the large literature that looks at campaigning

as an all-pay contest. Much of this literature either considers a black-box voting mecha-

nism in which campaign budget choices turn into winning probabilities or it applies the

assumption that each candidate’s campaign expenditure must be the same for each voter

or, at least, be the same for each voter within each identifiable group of voters. In our

framework, candidates have an incentive to “cultivate favored minorities” as in Myerson

(1993). That is, the candidates have incentive to randomly target their persuasive cam-

paign efforts at individual voters by allocating their efforts via a non-degenerate effort

distribution function, G∗i (·|·), such that different voters receive different levels of effort,

or attention, with some voters receiving high levels of persuasive campaign effort, or at-

tention, and others receiving low levels. Despite the ability to randomly target campaign

efforts across an otherwise homogeneous electorate (i.e. G∗i (·|·) is non-degenerate), we

find that under the majoritarian objective the equilibrium budget distribution functions,

F ∗i , are remarkably similar to those arising in an environment in which expenditures must

be symmetric across voters.

In the unique equilibrium of the vote-share maximizing game each player wins, with

probability one, exactly half of the votes. Thus, supermajorities do not arise in the

vote-share maximizing game. Conversely, supermajorities are an important and puzzling

phenomenon in majoritarian systems. If 50.1 percent of the votes is enough to win,

if it is expensive to campaign and acquire votes, and if candidates have the ability to,

stochastically, treat different voters differently, why would the equilibrium outcome often

be characterized by one party receiving far more than half of the votes? The following

proposition shows the implications of Theorem 2 for the emergence of supermajorities.

In the statement of Proposition 1, it will be convenient to use βi to denote player i’s vote

share Pr[Xi > X−i|Gi, G
∗
−i(x|b̂)].
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Proposition 1 In any equilibrium (σ∗A, σ
∗
B) of the majoritarian game, the probability of

the winner’s vote share, denoted βA and βB, being greater than or equal to β̄ ∈ (1/2, 1) is

prob(max{βA, βB} ≥ β̄) = 2(1− β̄). (13)

From Theorem 2’s characterization of equilibrium, it, intuitively, follows that the

uncoordinated mixed-strategies of A and B yield unequal budgets, and these translate

into unequal vote shares.

Our result offers a new solution to the puzzle described by Groseclose and Snyder

(1996, 2000) and Banks (2000), but for the case of simultaneous budget choices by the two

candidates. Groseclose and Snyder offer a possible solution that relies on the assumption

that the two candidates move sequentially, i.e., for a situation in which the challenger

commits to his own expenditure level after the incumbent chooses his expenditure level.

Our results provide a new answer to this question.

5 Loyalty, micro-targeting, and private information

Now we examine the case that each voter’s evaluation of a candidate may depend upon

the combination of the transfer from the candidate and the candidate’s identity. We

introduce this possibility in our framework by allowing voters to either be of the loyal,

or partisan, type — in which case they are loyal to a single candidate and vote for

that candidate regardless of the candidates’ persuasive efforts — or of the swing, or

independent, type — in which case the voter votes for the candidate that provides him

with the higher persuasive effort, regardless of that candidate’s identity. For simplicity,

we assume that each voter is either loyal to candidate A, or a swing voter.23 Loyalty

for party A is independently and identically distributed across voters and each voter is

a loyal voter for party A with probability ∆ ∈ [0, 1
2
).24 The targetability of persuasive

campaign effort depends upon the level of information available to candidates regarding

voters’ types, or characteristics. We examine this issue at two points on the spectrum of

available information: coarse information and perfect information.

23For simplicity, we consider the case in which only candidate A has loyal voters. But the analysis

can be extended, with some notational effort, to allow both candidates to have strictly positive shares of

loyal voters.
24If ∆ ≥ 1

2 the problem degenerates and becomes uninteresting. The pivotal voter would be loyal in

this case, and any vote-buying effort would be fully wasted. Vote buying and budget choices would be

inconsequential for the majority game.
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5.1 Coarse information of voter loyalty

With coarse information, candidates know the aggregate share ∆ of loyal voters, but

whether a specific voter is a loyal voter or a swing voter is unobservable to each of the

candidates. Thus, each candidate i chooses, possibly randomizing according to a mixed

strategy σi, an effort distribution Gi and each voter (loyal or swing) makes an independent

draw from Gi. Given the presence of voter partisanship, let wPA(GA, GB) denote if player

A wins a majority of the votes, given that player A uses the pure strategy GA and player

B uses GB, where

wPA(GA, GB) =


1 if ∆ + (1−∆)Pr [XA > XB] + 1−∆

2
Pr [XA = XB] > 1

2
,

1
2

if ∆ + (1−∆)Pr [XA > XB] + 1−∆
2
Pr [XA = XB] = 1

2
,

0 if ∆ + (1−∆)Pr [XA > XB] + 1−∆
2
Pr [XA = XB] < 1

2
.

and let wPB(GB, GA) be defined as 1−wPA(GA, GB). Player i’s payoff in the majoritarian

game with endogenous budgets, partisan voters, and coarse information is given by

πMC
i (Gi, G−i) = wPi (Gi, G−i)− EGi

(x). (14)

The following proposition shows how the combination of partisanship that generates an

advantage for candidate A and coarse information regarding this advantage translates

into equilibrium vote-buying budgets and distributions of payments.

Proposition 2 In any Nash equilibrium (σ∗A, σ
∗
B) of the majoritarian game with endoge-

nous budgets, partisan voters, and coarse information player A’s budget distribution is

F ∗A(b) =


b

1−2∆
1−∆

for b ∈ [0, 1−2∆
1−∆

)

1 for b ≥ 1−2∆
1−∆

, (15)

and player A’s family of effort distributions is, for almost every b ∈ [0, 1−2∆/1−∆], η∗A(b|σ∗A) =

{G∗A(x|b)} where

G∗A(x|b) =

 1− 1−2∆
1−∆

+ 1−2∆
1−∆

x
2b 1−∆

1−2∆

for x ∈ [0, 2b 1−∆
1−2∆

]

1 for x > 2b 1−∆
1−2∆

, (16)

Similarly, player B’s budget distribution is

F ∗B(b) =

 1− 1−2∆
1−∆

+ b
1−∆
1−2∆

for b ∈ [0, 1)

1 for b ≥ 1
(17)

and player B’s family of effort distributions is, for almost every b ∈ [0, 1], η∗B(b|σ∗B) =

{G∗B(x|b)} where

G∗B(x|b) =

{
x
2b

for y ∈ [0, 2b]

1 for x > 2b
. (18)
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Expected campaign budgets are the same for the two candidates and given by

1− 2∆

2(1−∆)
. (19)

Expected payoffs in equilibrium are

πA =
∆

1−∆
and πB = 0. (20)

There are different ways in which having loyal voters may be advantageous: it could

increase A’s equilibrium winning probability, it could reduce the amount of campaign

spending that is needed by candidate A to win, or it could affect both the winning prob-

ability and the persuasive campaign expenditure. Proposition 2 shows that, with coarse

information, the advantaged candidate benefits in terms of winning probability. Candi-

date A wins with a higher probability, but both candidates choose the same expected

budget size. This equilibrium outcome is characterized by candidates with a stronger

electoral base winning more often, and with a campaign budget that does not necessarily

exceed the campaign budget of the underdog candidate. Note also that the presence of

a loyalty advantage for player A makes the electoral competition less competitive, and,

thus, both players spend less than in the symmetric game without partisanship.

For intuition regarding the equilibrium strategies characterized in Proposition 2, we

begin by noting that Fact 1 and Corollary 1, can be extended, as described below, to

the case of partisan voters and coarse information. Recall that Corollary 1 examined a

related game — an incomplete information version of the majoritarian game in which

each player has private information regarding his exogenous use-it-or-lose-it budget —

that removes the endogenous budget choices of the original game and establishes that the

Theorem 1 effort distributions are the unique equilibrium of this incomplete information

version of the game. Corollary 2 extends this result to the case of partisan voters and

coarse information and shows that the Proposition 2 effort distributions are the unique

equilibrium of this incomplete information version of the game.

Corollary 2 Suppose that each player i’s exogenous use-it-or-lose-it budget bi is drawn

according to his Proposition 2 budget distribution F ∗i . There exists a unique pure-strategy

Bayesian-Nash equilibrium of the majoritarian game with incomplete information regard-

ing the players’ exogenous use-it-or-lose-it budgets and coarse information regarding voter

loyalty in which for each bi ∈ [0, 1] each player i’s effort distribution is his Proposition 2

effort distribution G∗i (x|bi).

The key step in modifying Corollary 1 to allow for voter loyalty is extending Fact 1

to allow for voter loyalty, which we denote as Fact 2.
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Fact 2 If player A uses a strategy σ∗A that satisfies the conditions in Proposition 2 and

player B uses any effort distribution GB with EGB
(x) ≤ 1, then there exists a budget

level b̂B ≤ (1−2∆)EGB
(x)/(1−∆) such that Eσ∗A

(
wPB(GB, G

∗
A)
)

= F ∗A(b̂B). Similarly, if player

B uses a strategy σ∗B that satisfies the conditions in Proposition 2 and player A uses

any effort distribution GA with EGA
(x) ≤ (1−2∆)/(1−∆), then there exists a budget level

b̂A ≤ (1−∆)EGA
(x)/(1−2∆) such that Eσ∗B

(
wPA(GA, G

∗
B)
)

= F ∗B(b̂A).

The single-crossing portion of Fact 2 follows along the same lines as for Fact 1. Be-

ginning with player B and his point b̂B at which crossing occurs, define b̂B as

b̂B ≡ max
{
b ∈ [0, 1]

∣∣(1−∆)Pr [XB > XA|GB, G
∗
A(x|b)] ≥ 1/2

}
. (21)

To show that b̂B ≤ (1−2∆)EGB
(x)/(1−∆), by way of contradiction suppose that

b̂B >
(1− 2∆)EGB

(x)

(1−∆)
. (22)

Then, because

EGB
(x) =

∫ ∞
0

xdGi(x) =

∫ 2(1−∆)b̂B
1−2∆

0

xdGB(x) +

∫ ∞
2(1−∆)b̂B

1−2∆

xdGB(x), (23)

it follows from equations (22) and (23) that

(
1−∆

1− 2∆

)
b̂B −

∫ ∞
2(1−∆)b̂B

1−2∆

xdGB(x) >

∫ 2(1−∆)b̂B
1−2∆

0

xdGB(x). (24)

Next, recall that

(1−∆)Pr [XB > XA|GB, G
∗
A(x|b)] = (1−∆)

∫ ∞
0

G∗A(x|b)dGB(x)

=

∫ 2(1−∆)b
1−2∆

0

[
∆ +

(1− 2∆)2

(1−∆)

x

2b

]
dGB(x) + (1−∆)

∫ ∞
2(1−∆)b

1−2∆

dGB(x). (25)

Then, inserting equation (24) into the second line of equation (25), it follows that

(1−∆)Pr
[
XB > XA|GB, G

∗
A(x|b̂B)

]
<

1

2
−∆ + ∆

∫ 2(1−∆)b̂B
1−2∆

0

dGB(x) +

∫ ∞
2(1−∆)b̂B

1−2∆

(
1−∆− (1− 2∆)2

(1−∆)

x

2b̂B

)
dGB(x). (26)

Because 1 −∆ − (1−2∆)2

(1−∆)
x

2b̂B
< ∆ for all x > 2(1−∆)b̂B

(1−2∆)
, it follows from equation (26) that

(1 − ∆)Pr[XB > XA|GB, G
∗
A(x|b̂B)] is strictly less than 1/2, which is a contradiction to

the definition of b̂B in equation (21). Thus, it follows that b̂B ≤ (1−2∆)EGB
(x)/(1−∆).
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Combining equation (21) with equation (14) player B’s expected payoff from any pure

strategy GB is given by

Eσ∗A
(
πMC
B (GB, G

∗
A)
)

= F ∗A(b̂B)− EGB
(x). (27)

In addition, for any effort distribution GB with finite mean EGB
(x) ≤ 1 − ∆ and

Supp(GB) ⊆ [0, 2EGB
(x)] it follows that b̂B = (1−2∆)EGB

(x)/(1−∆) and player B’s expected

payoff, from equation (27), is

Eσ∗A
(
πMC
B (GB, G

∗
A)
)

= F ∗A ((1−2∆)EGB
(x)/(1−∆))− EGB

(x), (28)

which is equal to 0 because F ∗A(b) = b(1−∆)/(1−2∆) for b ∈ [0, (1−2∆)/(1−∆)].

To summarize, if player A is using a strategy σA that satisfies the conditions in Propo-

sition 2, then any effort distribution GB with finite mean EGB
(x) ≤ 1 and Supp(GB) ⊆

[0, 2EGB
(x)] – which is satisfied for each of player B’s Corollary 2 effort distributions

G∗B(x|b) – provides player B with his maximal expected payoff of zero and is a best re-

sponse for player B. The case for player A and b̂A follows along similar lines. The proof

of uniqueness in the majoritarian game with incomplete information follows along the

same lines as that for Theorem 2, i.e. Lemmas 8-13 in the Appendix.

For intuition on the Proposition 2 equilibrium budget distributions, it is useful to

briefly consider a special case of an unfair all-pay auction between players A and B. If

player A bids bA and player B bids bB, then player A wins the all-pay auction if bA > γbB

where γ ≤ 1 corresponds to an effectiveness of bids advantage for player A. In the case

of a tie we assume that the winner is randomly chosen. From Konrad (2002), we have

the following result.

Result 1 (Konrad, 2002) For a prize value of V and γ ≤ 1 the unique mixed-strategy

Nash equilibrium is characterized as follows,

F ∗A(b) =

 b
γV

for b ∈ [0, γV ) ,

1 for b ≥ γV,

and

F ∗B(b) =

1− γ + γx
V

for b ∈ [0, V ) ,

1 for b ≥ V.

Player A’s expected payoff and expected bid are (1−γ)V and γV/2, respectively. Similarly,

player B’s expected payoff and expected bid are 0 and γV/2, respectively.

From Result 1, it is clear that the Proposition 2 budget distributions F ∗A and F ∗B corre-

spond to the equilibrium in an unfair all-pay auction in which player A is the advantaged
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player, V = 1 and γ = 1−2∆
1−∆

. That is, although the presence of partisanship that favors

player A provides A with a head-start advantage of ∆ in terms of votes (i.e. regardless

of the strategy profile (σA, σB) player A’s minimal vote share is at least ∆ ∈ [0, 1/2)),

partisanship, ultimately, provides player A with an effectiveness advantage in the budget

distribution component of the majoritarian game of γ = (1−2∆)/(1−∆).

Note that the presence of partisanship leads to the introduction of a mass point at

zero in the budget distribution F ∗B of the disadvantaged player, B, but not in the budget

distribution F ∗A of the advantaged player, A. The interpretation of player B’s mass

point at zero (of size F ∗B(0)) is that player B, the disadvantaged player, stays out of the

competition with probability F ∗B(0) but with probability 1−F ∗B(0) enters the competition

and for each budget level b uses the corresponding effort distribution G∗B(x|b), which for

each budget level b allocates a strictly positive level of campaign effort to each voter.

That is, the disadvantaged candidate chooses, in equilibrium, to fight for the vote of each

voter, i.e. G∗B(0|b) = 0. However, for each budget level b the advantaged player’s, A’s,

effort distribution G∗A(x|b) features a mass point at zero. That is, player A, knowing

that with probability ∆ an arbitrary voter is loyal to A, chooses, in equilibrium, to rely

on his advantage and allocate zero effort to a stochastic subset of the electorate of size

G∗A(0|b) > 0 for budget level b, which, thereby, allows the advantaged candidate to more

aggressively target the remaining subset of the electorate with a higher level of expected

effort per voter.

Now, we consider the case of a partisan electorate and vote-share maximizing compe-

tition. Player A’s payoff in the vote-share maximizing game with endogenous budgets,

partisan voters, and coarse information is given by

πV SCA (GA, GB) = ∆ + (1−∆)Pr [XA > XB] +
1−∆

2
Pr [XA = XB]− EGA

(x), (29)

and player B’s payoff is given by

πV SCB (GB, GA) = (1−∆)Pr [XB > XA] +
1−∆

2
Pr [XA = XB]− EGB

(x). (30)

From equations (29) and (30) and Theorem 2, it, again, follows from lines drawn by

Hart (2016), that this game is strategically equivalent to a symmetric two-player all-pay

auction with complete information in which each player has a value of 1−∆ for winning

the auction. The consideration of a finite set of n voters is instructive again. If a share of

∆ of them are loyal, the sum of independent prizes consists of the remaining 1−∆ voters.

As opposed to the discouragement effect arising in the majoritarian objective game, the

presence of a loyalty advantage for player A lowers the players’ valuations of the swing

voter segment (as there are fewer).

Corollary 3 In the unique Nash equilibrium (σ∗A, σ
∗
B) of the vote-share maximizing game
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with endogenous budgets, partisan voters, and coarse information, each player i’s budget

distribution, F ∗i (b), is degenerate with all mass placed on b = (1−∆)/2 and each player i’s

effort distribution is G∗i (x) = x/(1−∆) for x ∈ [0, 1 − ∆]. Expected payoffs in equilibrium

are πA = ∆ and πB = 0.

Note that the equilibrium campaign budget for each candidate is (1−∆)/2. In comparing

this with the equilibrium expected campaign budget under the majoritarian objective,

given by (1−2∆)/2, we see that for all ∆ ∈ [0, 1
2
) campaign spending is higher under vote-

share maximizing competition than under majoritarian.

5.2 Perfect information of voter loyalty

We, now, examine the case of perfect information in which both candidates are able to

perfectly identify voters by type, and, thereby, partition loyal voters and swing voters

into two identifiable segments of voters. Candidates choose segment-specific distributions

of persuasive effort, denoted GI
i for player i’s effort distribution for the swing, or inde-

pendent, voter segment and GL
i for i’s effort distribution for the loyal voter segment, and

let Xk
i denote the corresponding random variable for candidate i in segment k ∈ {I, L}.

Within each segment k of voters, each voter receives effort as an independent draw from

each candidate i’s effort distribution Gk
i . Thus, a pure-strategy for player i is a pair of

effort distributions {Gk
i }k=I,L. A mixed strategy in this game is a bivariate probability

distribution σi ∈ Σ2 over the set of pure strategies S for loyal voters and the set of pure

strategies S for swing voters, where σki ∈ Σ, k ∈ {I, L}, denotes the marginal distribution

function of σi that specifies player i’s randomization over the set of pure strategies S for

voter segment k. For each k ∈ {I, L}, let ηki (bk|σki ) = {Gk
i ∈ Supp(σki )|EGi

(x) = bk}
denote the set of pure strategies in the support of σki that have the same expected cost

bk. We define player i’s budget distribution function Fi(b) as the probability that for the

random effort distributions G̃L
i and G̃I

i drawn from the mixed strategy σi the sum of the

means25 EG̃L
i
(x) +EG̃I

i
(x) is less than or equal to b. Player i’s payoff in the majoritarian

game with endogenous budgets and perfect information regarding voter loyalty is given

by

πMP
i ({Gk

i }k=I,L, {Gk
−i}k=I,L) = wPi (GI

i , G
I
−i)−∆EGL

i
(x)− (1−∆)EGI

i
(x). (31)

The key difference in moving from coarse to perfect information, as can been in seen

comparing equations (14) and (31), is that with perfect information the players have the

ability to more efficiently target their campaign spending, thereby lowering the effective

cost of campaign spending.

25Note that that to calculate the expected cost the means must be weighted by the mass of the voter

segment that they are targeted to, as in equation (31).
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Proposition 3 In any Nash equilibrium (σ∗A, σ
∗
B) of the majoritarian game with endoge-

nous budgets, partisan voters, and perfect information each player i’s effort distribution

for the loyal voters GL∗
i (x) is degenerate with all mass placed at 0. Player A’s budget

distribution is

F ∗A(b) =


b

1−2∆

(1−∆)2

for b ∈ [0, 1−2∆
(1−∆)2 )

1 for b ≥ 1−2∆
(1−∆)2

, (32)

and player A’s family of offer distributions for the swing voter segment is, for almost

every b ∈ [0, 1−2∆/1−∆], η∗A(b|σ∗A) = {GI∗
A (x|b)} where

GI∗
A (x|b) =

 1− 1−2∆
1−∆

+ 1−2∆
1−∆

x
2b 1−∆

1−2∆

for x ∈
[
0, 2b 1−∆

1−2∆

]
1 for x > 2b 1−∆

1−2∆

, (33)

Similarly, player B’s budget distribution is

F ∗B(b) =

 1− 1−2∆
1−∆

+ b
1

1−2∆

for b ∈
[
0, 1

1−∆

)
1 for b ≥ 1

1−∆

(34)

and player B’s family of offer distributions for the swing voter segment is, for almost

every b ∈ [0, 1], η∗B(b|σ∗B) = {GI∗
B (x|b)} where

GI∗
B (x|b) =

{
x
2b

for y ∈ [0, 2b]

1 for x > 2b
. (35)

Expected campaign budgets are the same for the two candidates and given by

1− 2∆

2(1−∆)
. (36)

Expected payoffs in equilibrium are

πA =
∆

(1−∆)2
and πB = 0. (37)

The proof of Proposition 3 relies on the same forces as the proof of Proposition 2.

For the budget distribution component of the problem, note that perfect information’s

increased targeting efficiency/lower effective costs of voter-specific campaign spending

in equation (31) are equivalent to lowering the costs of campaign spending from 1 to

1 −∆. Furthermore, the equilibrium budget distributions, F ∗A and F ∗B, in Proposition 2

correspond to the unique equilibrium of an unfair all-pay auction in which each player

has a value of V = 1/(1−∆) for winning the object26 and player A has an effectiveness

26Note that in the unfair all-pay auction defined above each player has a constant marginal cost of

effort of 1. In the case of voter loyalty, the independent voters make up 1−∆ of the electorate, and an

average effort of 1 for the indpendent voters implies a total cost of effort of 1 −∆. To map this game

into the unfair all-pay auction, it is necessary to normalize the cost of effort to 1.
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advantage of γ = (1−2∆)/(1−∆). Because nothing has changed in the effort distribution

component of the problem, Fact 2 applies with the caveat that EGB
(x) ≤ 1 is replaced

by EGB
(x) ≤ 1/(1−∆) and EGA

(x) ≤ (1−2∆)/(1−∆) is replaced by EGA
(x) ≤ (1−2∆)/(1−∆)2.

Finally, consider the case of a partisan electorate and vote-share maximizing compe-

tition with perfect information. Player A’s payoff is given by

πV SPA ({Gk
A}k=I,L, {Gk

B}k=I,L) = ∆ + (1−∆)Pr
[
XI
A > XI

B

]
+

1−∆

2
Pr
[
XI
A = XI

B

]
−∆EGL

A
(x)− (1−∆)EGI

A
(x), (38)

and player B’s payoff is given by

πV SPB ({Gk
B}k=I,L, {Gk

A}k=I,L) = (1−∆)Pr
[
XI
B > XI

A

]
+

1−∆

2
Pr
[
XI
A = XI

B

]
−∆EGL

B
(x)− (1−∆)EGI

B
(x). (39)

From equations (38) and (39) and Theorem 2, it, again, follows from lines drawn by

Hart (2016), that this game is strategically equivalent to a symmetric two-player all-pay

auction with complete information in which each player has a value of 1 for winning the

auction. Here again, we see that the presence of a loyalty advantage for player A lowers

the players’ valuations of the swing voter segment which has decreased in size from a

measure of 1 to a measure of 1−∆.

Corollary 4 In the unique Nash equilibrium (σ∗A, σ
∗
B) of the vote-share maximizing game

with endogenous budgets, partisan voters, and perfect information, each player i’s budget

distribution, F ∗i (b), is degenerate with all mass placed on b = 1/2, each player i’s effort

distribution for the loyal voters, GL∗
i (x) is degenerate with all mass placed at 0 and each

player i’s effort distribution for the swing voters is GI∗
i (x) = x for x ∈ [0, 1]. Expected

payoffs in equilibrium are πA = ∆ and πB = 0.

5.3 Comparison of Equilibria Across Electoral Systems and In-

formation Levels

The following table provides the equilibrium expected expenditures and payoffs for each

of the four possible combinations of an electoral system, majoritarian or proportional,

and an information level, coarse or perfect. The last column, from the left, in Table 1

provides the equilibrium expected expenditures and payoffs for both the majoritarian and

proportional systems when there is no voter loyalty (∆ = 0).

Maj. Coarse Prop. Coarse Maj. Perf. Prop. Perf. No Loyalty

Budget 1−2∆
2(1−∆)

1−∆
2

1−2∆
2(1−∆)

1−∆
2

1
2

Payoffs ∆
1−∆

, 0 ∆, 0 ∆
(1−∆)2 , 0 ∆, 0 0, 0

25



Table 1: Equilibrium Expected Budgets and Payoffs

From Table 1, we see that holding constant the electoral system, the level of informa-

tion has no effect on the equilibrium expected budget. Equilibrium expected expenditures

are higher in the proportional system than in the majoritarian system. The advantaged

player’s, A’s, equilibrium expected payoffs are ranked from highest to lowest as follows:

majoritarian with perfect information, majoritarian with coarse information, and then

the two proportional systems. This follows from the fact that the majoritarian system

generates a larger discouragement effect for the disadvantaged player, B and that with

perfect information the advantaged candidate is able to more efficiently exploit his voter

loyalty advantage.

The level-playing field effect – i.e. equilibrium expenditures increase as the playing

field becomes more level and the contest becomes more competitive – is common in all-

pay contests. For example, in the unfair all-pay auction examined above the equilibrium

expenditures are γV/2 which are increasing as the size of player A’s effectiveness of bids

advantage decreases, i.e. γ → 1.27 Intuitively, the vote-share maximizing game’s lack of a

discontinuity (at a majority of voters) in the benefit part of each player’s payoff function

is less discouraging for the disadvantaged player, B. Thus, A’s loyalty advantage has less

of a discouragement effect under vote-share maximizing competition.

Switching from coarse to perfect information about loyalty allows candidates to target

their persuasive efforts to only the swing voters. If the loyalty status of a voter can be

observed by the candidates, only swing voters are targeted with effort in equilibrium, and

the expected attention given to each swing voter is higher with perfect information.28 In

terms of the potential role of campaign finance reforms and regulation of information

gathering by political parties, one implication of privacy of information about loyalty is

that it makes campaign spending more inclusive in the sense that all voters can expect

to get positive attention from the two candidates without affecting the expected total

27See also Che and Gale (1998) and Baye, Kovenock, and de Vries (1993) who examine this issue in

the context of political lobbying.
28This ‘swing voter’ outcome commonly arises in models of redistributive competition. For example

this arises in classic models of redistributive politics with imperfect targeting such as Cox and McCubbins

(1986), Lindbeck and Weibull (1987), and, when parties are equally effective in targeting resources across

voter segments, Dixit and Londregan (1996). See also the more closely related literature in which voters

may be perfectly sorted into segments by their level of attachment to a party and the parties may target

resources to each identifiable segment, such as Kovenock and Roberson (2008, 2009). For a recent survey

of empirical work that exmines these, and related, issues in (re)distributive politics, see Golden and Min

(2013).
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budget or winning probabilities.29

6 Concluding remarks

In this paper, we characterized Nash equilibrium in a game that is of increasing practical

importance: simultaneous persuasive campaigning in majoritarian electoral systems with

voter-specific campaign spending. We focused on campaign expenditures that target

voters and are of an all-pay nature: expenditures are made prior to the election and

cannot be recovered by a candidate, whether or not he wins. The candidates compete in

either a majoritarian election or a proportional election and simultaneously choose how

much to spend and how to allocate their expenditure among the voters. We also allow for

a partisan electorate with a segment of “loyal” voters who vote for a particular candidate

regardless of the voter-specific campaign spending that they receive, and compare the

outcomes across regimes with either the majoritarian or proportional objectives and with

either coarse or perfect information.

From a structural/theoretical point of view, two seminal contributions are nested in

this model. One is Myerson’s (1993) model of two-candidate (re)distributive political

competition that is based on a variation of the Colonel Blotto game. The other is the

standard all-pay auction in which each player chooses a level of sunk effort. Both prob-

lems have been studied in detail, allowing for many departures from various aspects of

symmetry. We characterize equilibrium in a model that combines aspects of both prob-

lems, and elements of the solutions of each of these two frameworks show up in our

equilibrium. We find that homogenous voters receive different amounts of attention in

the equilibrium. We also find that the equilibrium budget distributions coincide with the

equilibrium distributions of bids in the standard all-pay auction, and full dissipation of

rents occurs in the case of symmetric candidates. A further finding is that supermajorities

are likely to occur under majority rule but not in a proportional system. This provides

a new hypothesis for this phenomenon.

Appendix

Proof of Theorem 2

This Appendix contains the characterization of the unique equilibrium budget distribution and

the unique parametric family of effort distributions, for each player i ∈ {A,B}. The proof

29It is interesting to notice that Schipper and Woo (2014) obtain that micro-targeting based on com-

plete information about voters’ preferences yields desirable implications for the electoral outcomes in a

very different setup.
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consists of two parts. First, we establish that in all equilibria each player i has the same unique

budget distribution, denoted by Fi(b). This portion of the proof consists of Lemmas 1-7. Next,

we show that in all equilibria each player i has a unique effort distribution Gi(x|b) for each

budget level b ∈ Supp(Fi). This portion of the proof consists of Lemmas 8-13.

Beginning with Lemmas 1 and 2, Lemma 1 establishes that each player i’s mixed strategy σi

satisfies the property that if there exists a pair Gi, G
′
i ∈ Supp(σi) such that EGi(x) = EG′i(x),

then it must almost surely30 be the case that Eσ−i(wi(Gi, G−i)) = Eσ−i(wi(G
′
i, G−i)). Recall

that ηi(bi|σi) = {Gi ∈ Supp(σi)|EGi(x) = bi} denotes the set of pure strategies in the support

of σi that have the same expected cost bi.

Lemma 1 In any equilibrium (σA, σB), there exist constants kbi ≥ 0, one for each bi such that

ηi(bi|σi) 6= ∅, such that if Gi ∈ ηi(bi|σi) then Eσ−i(wi(Gi, G−i)) = kbi almost surely.

Lemma 1, which implies that all effort distributions with the same expenditure win the

contest with the same probability, follows directly from the fact that in equilibrium no player i

has a payoff increasing deviation. Let bi and bi denote the upper and lower bounds, respectively

of the support of player i’s budget distribution (Fi).

Let ŵi(Gi, G−i) be defined as follows

ŵi(Gi, G−i) =


1 if EGi(x) > EG−i(x),

1
2 if EGi(x) = EG−i(x),

0 if EGi(x) < EG−i(x).

Lemma 2 establishes that if (σ1, σ2) is an equilibrium, then it must be the case that for almost

every Gi ∈ Supp(σi), Eσ−i(wi(Gi, G−i)) = Eσ−i(ŵi(Gi, G−i)), where — in the absence of a tie

occurring at EGi(x) with a strictly positive probability — Eσ−i(ŵi(Gi, G−i)) = F−i(EGi(x)).

Lemma 2 In any equilibrium (σA, σB), it must almost surely be the case that for Gi ∈ Supp(σi),
Eσ−i(wi(Gi, G−i)) = Eσ−i(ŵi(Gi, G−i)).

Proof There are two parts of the proof. First, we show that forGi ∈ Supp(σi), Eσ−i(wi(Gi, G−i)) ≥
Eσ−i(ŵi(Gi, G−i)) almost surely. Then, we show that for Gi ∈ Supp(σi), Eσ−i(wi(Gi, G−i)) ≤
Eσ−i(ŵi(Gi, G−i)) almost surely. The combination of these two parts yields the desired result.

Beginning with part 1 and by way of contradiction, suppose that there exists an equilibrium

in which for a player i and a set Gi ⊂ Supp(σi) occurring with strictly positive probability

under σi it is the case that Eσ−i(wi(Gi, G−i)) < Eσ−i(ŵi(Gi, G−i)) for all Gi ∈ Gi. A feasible

deviation for player i is to hold Fi(b), and thus expected costs, constant, but at each Gi ∈ Gi
to deviate to the effort distribution Gi(x) = x/2b for x ∈ [0, 2b], where b = EGi(x). Under this

expected-cost invariant deviation, player i ensures that Eσ−i(wi(Gi, G−i)) = Eσ−i(ŵi(Gi, G−i)).

30Because the support of a distribution function is the complement of the union of all open sets of S

with σi-volume 0, it is possible that there may exist points Gi ∈ Supp(σi) where Gi yields less than the

equilibrium payoffs. However, such points must occur with probability zero.
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This is clearly a payoff increasing deviation, which creates a contradiction to the assumption

that there exists an equilibrium in which for a player i and a set Gi ⊂ Supp(σi) occurring with

strictly positive probability it is the case that Eσ−i(wi(Gi, G−i)) < Eσ−i(ŵi(Gi, G−i)) for all

Gi ∈ Gi. This concludes the proof of part 1.

Moving on to part 2 and by way of contradiction, suppose that there exists an equilibrium

in which for a player i and a set Gi ⊂ Supp(σi) occurring with strictly positive probability

under σi it is the case that Eσ−i(wi(Gi, G−i)) > Eσ−i(ŵi(Gi, G−i)) for all Gi ∈ Gi. From

part 1 we know that for Gi ∈ Supp(σi), Eσ−i(wi(Gi, G−i)) ≥ Eσ−i(ŵi(Gi, G−i)) almost surely.

Combining this with the assumption that Eσ−i(wi(Gi, G−i)) > Eσ−i(ŵi(Gi, G−i)) for allGi ∈ Gi,
it follows that Eσi(Eσ−i(wi(Gi, G−i))) > Eσi(Eσ−i(ŵi(Gi, G−i))) for player i. Next, note that

Eσi(Eσ−i(wi(Gi, G−i))) + Eσ−i(Eσi(w−i(G−i, Gi))) = 1 and thus,

Eσ−i(Eσi(w−i(G−i, Gi))) = 1− Eσi(Eσ−i(wi(Gi, G−i))) < 1− Eσi(Eσ−i(ŵi(Gi, G−i))). (40)

Noting that Eσi(Eσ−i(ŵi(Gi, G−i)))+Eσ−i(Eσi(ŵ−i(G−i, Gi))) = 1 it follows that equation (40)

may be written as

Eσ−i(Eσi(w−i(G−i, Gi))) < Eσ−i(Eσi(ŵ−i(G−i, Gi))). (41)

Because part 1 implies that Eσi(Eσ−i(wi(Gi, G−i))) ≥ Eσi(Eσ−i(ŵi(Gi, G−i))) for each player i,

equation (41) yields a contradiction to the assumption that there exists an equilibrium in which

for a player i and a set Gi ⊂ Supp(σi) occurring with strictly positive probability it is the case

that Eσ−i(wi(Gi, G−i)) > Eσ−i(ŵi(Gi, G−i)) for all Gi ∈ Gi.
It follows from part 1 — for Gi ∈ Supp(σi), Eσ−i(wi(Gi, G−i)) ≥ Eσ−i(ŵi(Gi, G−i)) almost

surely — and part 2 — for Gi ∈ Supp(σi), Eσ−i(wi(Gi, G−i)) ≤ Eσ−i(ŵi(Gi, G−i)) almost

surely — that it must almost surely be the case that for Gi ∈ Supp(σi), Eσ−i(wi(Gi, G−i)) =

Eσ−i(ŵi(Gi, G−i)). This concludes the proof of Lemma 2.

It follows from Lemma 2 that if (σA, σB) is an equilibrium, then player i’s expected payoff

from any pure strategy Gi ∈ Supp(σi) with expected cost EGi(x) may be written as

Eσ−i(ŵi(Gi, G−i))− EGi(x). (42)

Note that in the absence of a tie occurring with a strictly positive probability in the equilibrium

(σ1, σ2), Eσ−i(ŵi(Gi, G−i)) = F−i(EGi(x)) for Gi ∈ Supp(σi).
The proofs of Lemmas 3-6 follow from equation (42) and standard arguments from the

proof of uniqueness for the two-player all-pay auction. Together with equation (42), Lemmas

3-6 establish the uniqueness of the equilibrium budget distribution functions (F1, F2).

Lemma 3 In any equilibrium (σA, σB), b1 = b2 = 0.

Lemma 4 In any equilibrium (σA, σB), (i) there is no point in the budget distribution function

Fi at which both players place strictly positive mass and (ii) neither player places strictly positive

mass on any strictly positive point in the support of Fi.
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Lemma 5 In any equilibrium (σA, σB), each player’s budget distribution function is strictly

increasing over its support.

Lemma 6 In any equilibrium (σA, σB), b1 = b2 = 1.

To summarize, equation (42) and Lemmas 1-6 establish that in all equilibria each player i

has the same unique distribution of expected costs, F ∗i (b) = b for b ∈ [0, 1].

Lemma 7 In any equilibrium (σA, σB), each player i’s distribution of expected costs is given

by F ∗i (b) = b for b ∈ [0, 1].

Lemmas 8-13 examine the remaining portion of the proof, that in all equilibria each player

i has a unique effort distribution Gi(x|b) for each level of expected costs b ∈ [0, 1], i.e. a unique

parametric family of effort distributions {Gi(x|b)|b ∈ [0, 1]}.
We begin with Lemma 8 which establishes that all equilibria are interchangeable with the

equilibrium stated in Theorem 2. Let Eσi(x) denote the expected cost of the mixed strategy σi,

and note that in any equilibrium strategy σi, it follows from equation (42) and Lemma 7 that

Eσi(x) = EF ∗i (x) = 1/2.

Lemma 8 If (σA, σB) is an equilibrium, then (σA, σB) is interchangeable with (σ∗A, σ
∗
B).

Proof Because (σA, σB) and (σ∗A, σ
∗
B) are both equilibria we know that in each equilibrium

neither player has a payoff increasing deviation. Hence, we have the four following inequalities:

Pr(1 wins|σ1, σ2)− Eσ1(x) ≥ Pr(1 wins|σ∗1, σ2)− Eσ∗1 (x), (43)

Pr(1 wins|σ∗1, σ∗2)− Eσ∗1 (x) ≥ Pr(1 wins|σ1, σ
∗
2)− Eσ1(x), (44)

1− Pr(1 wins|σ1, σ2)− Eσ2(x) ≥ 1− Pr(1 wins|σ1, σ
∗
2)− Eσ∗2 (x), (45)

1− Pr(1 wins|σ∗1, σ∗2)− Eσ∗2 (x) ≥ 1− Pr(1 wins|σ∗1, σ2)− Eσ2(x). (46)

Recall that from Lemma 7 any equilibrium strategy σi necessarily has the unique equilibrium

distribution of expected costs, F ∗i (b) = b for b ∈ [0, 1]. Thus, for each player i, Eσ∗i (x) =

Eσi(x) = EF ∗i (x) = 1/2. Then, taking the sum of equations (43) to (46), we have 0 ≥ 0 which

implies that (43)-(46) all hold with equality. But, if (43)-(46) all hold with equality, then this

implies that σA and σ∗B are best-responses to each other, and that σ∗A and σB are best-responses

to each other. Thus, the two equilibria (σA, σB) and (σ∗A, σ
∗
B) are interchangeable.

In Lemma 9 we show that if (σA, σB) is an equilibrium, then from Lemma 8’s result on

the interchangeability of equilibria, we can use the fact that σ∗B is a best-response to σA to

provide a necessary condition that holds for almost every effort distribution in any equilibrium

parametric family of effort distributions.

Note that because each effort distribution Gi(x|b) is monotonic, each Gi(x|b) is differentiable

almost everywhere, where gi(x|b) denotes the derivative of Gi(x|b). Note also that because

{G∗i (x|b)|b ∈ [0, 1]} satisfies the property that for each b′ > b it is the case that G∗i (x|b′)
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first-order stochastically dominates G∗i (x|b) we know that for all b′′ ∈ (0, 1] and b′ > b that∫
G−i(x|b′′)gi(x|b′)dx ≥

∫
G−i(x|b′′)gi(x|b)dx. Let FSD denote the set of parametric families

of effort distributions that satisfy first-order stochastic dominance with respect to the expected

cost, b.

Lemma 9 In any equilibrium (σA, σB) and for almost every b ∈ [0, 1], gi(x|b) is equal to a

constant for almost every x ∈ [0, 1] and for each player i.

Proof By way of contradiction, suppose that there exists an equilibrium (σA, σB) such that

for at least one player i there exists a measurable set of expected costs b ∈ [0, 1] such that

g−i(x|b) is not equal to a constant for almost every x ∈ [0, 1]. From Lemma 8, (σ∗i , σ−i) is

also an equilibrium, and it must be the case that the parametric family of effort distributions

{G∗i (x|b)|b ∈ [0, 1]} is a best response to {G−i(x|b)|b ∈ [0, 1]}. If we restrict our attention to

possible deviations in the set FSD, i.e. parametric families of effort distributions that satisfy

the first-order stochastic dominance property, then for almost every b ∈ [0, 1] player i’s problem

is

min
Gi(x)

∫
xgi(x)dx

subject to the constraint31 that
∫
G−i(x|b)gi(x)dx ≥ 1

2 . The first variation provides a necessary

condition for this problem, and, hence, letting λ ≥ 0 denote the multiplier on the constraint, it

must be the case that G−i(x|b) satisfies the condition that

1− λg−i(x|b) = 0 (47)

for almost every x ∈ [0, 1] such that gi(x) > 0. Because, g∗i (x|b) > 0 for all x ∈ [0, 1] and

G∗i (x|b) is a solution to this problem, equation (47) is a contradiction to the assumption that

there exists an equilibrium (σA, σB) such that for at least one player i there exists a measurable

set of expected costs in [0, 1] such that g−i(x|b) is not equal to a constant. This completes the

proof of Lemma 9.

Lemmas 10-12, which establish properties of the equilibrium effort distributions that parallel

Lemmas 3, 4, and 6 for the equilibrium budget distributions, follow from an argument along

the lines of the proof of Lemma 9, again featuring Lemma 8’s interchangeability of equilibria.

Let xi(bi) and xi(bi) denote the upper and lower bounds, respectively of the support of player

i’s effort distribution for a budget of bi, denoted Gi(x|bi).

Lemma 10 In any equilibrium (σA, σB) and for almost every bi ∈ [0, 1], xi(bi) = 0.

Lemma 11 In any equilibrium (σA, σB) and for almost every bi ∈ [0, 1], (i) there is no point

in the effort distribution function Gi(x|bi) at which both players place strictly positive mass and

(ii) neither player places strictly positive mass on any strictly positive point in the support of

Gi(x|bi).
31Note that because

∫
G−i(x|b)gi(x|b)dx ≥ 1

2 and {Gi(x|b)|b ∈ [0, 1]} ∈ FSD it follows that∫
G−i(x|b)gi(x|b′)dx > 1

2 for all b′ > b.
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Lemma 12 In any equilibrium (σA, σB) and for almost every bi ∈ [0, 1], xi(bi) = 2bi.

To summarize, Lemmas 8-12 together with budget balance establish that in all equilibria

each player has the unique parametric family of effort distributions identified in Theorem 2.

Lemma 13 If (σA, σB) is an equilibrium, then each player i’s parametric family of effort distri-

butions {Gi(x|b)|b ∈ [0, 1]} arising in σi coincide, almost everywhere, with Theorem 2’s unique

parametric family of equilibrium effort distributions {G∗i (x|b)|b ∈ [0, 1]}.

Proof of Proposition 1

We use the equilibrium strategy (σ∗i , σ
∗
−i) from Theorem 2 to calculate the share of voters who

vote for i. For G∗i (x|b) and G∗−i(x|b′), for given (b, b′) the electoral vote share voting for i is

βi(b, b
′) =


Pr[Xi > X−i] = b

2b′ for b < b′,

Pr[Xi > X−i] = 1
2 for b = b′,

Pr[Xi > X−i] = 1− b′

2b for b > b′,

and analogously for β−i(b, b
′). Conditional on b > b′, the probability that the vote share

βi exceeds some given threshold β̄ ∈ (1
2 , 1) is equal to the probability that 1 − b′

2b > β̄, or,

equivalently,

b >
b′

2(1− β̄)
.

Using F ∗i (b) = b, this implies that

Pr[max{βi(b, b′), β−i(b, b′)} ≥ β̄] = 2− 2β̄.

Proof of Proposition 2

We now extend the Theorem 2 characterization of equilibrium to the majoritarian game with

endogenous budgets, partisan voters, and coarse information. As this proof follows along the

same lines as Theorem 2, we only provide an outline of the changes in the proof of Theorem

2. First, recall that wPA(GA, GB) denotes if player A wins a majority of the votes, given that

player A uses the pure strategy GA and player B uses GB, where

wPA(GA, GB) =


1 if ∆ + (1−∆)Pr [XA > XB] + 1−∆

2 Pr [XA = XB] > 1
2 ,

1
2 if ∆ + (1−∆)Pr [XA > XB] + 1−∆

2 Pr [XA = XB] = 1
2 ,

0 if ∆ + (1−∆)Pr [XA > XB] + 1−∆
2 Pr [XA = XB] < 1

2 ,

and let wPB(GB, GA) be defined as 1−wPA(GA, GB). Player i’s payoff in the majoritarian game

with endogenous budgets, partisan voters, and coarse information is given by

πMC
i (Gi, G−i) = wPi (Gi, G−i)− EGi(x). (48)
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To show that Fact 2 — player A can ensure a win if EGA
(x) >

(1−2∆)EGB
(x)

1−∆ — applies in any

equilibrium, note that if we define ŵPA(Gi, G−i) as

ŵPA(Gi, G−i) =


1 if EGA

(x) >
(1−2∆)EGB

(x)

1−∆ ,

1
2 if EGA

(x) =
(1−2∆)EGB

(x)

1−∆ ,

0 if EGA
(x) <

(1−2∆)EGB
(x)

1−∆ ,

where ŵPB(GB, GA) is defined as 1− ŵPA(GA, GB), then, a straightforward extension of Lemma

2 establishes that if (σA, σB) is an equilibrium, then it must be the case that for almost

every Gi ∈ Supp(σi), Eσ−i(w
P
i (Gi, G−i)) = Eσ−i(ŵ

P
i (Gi, G−i)), where EσA(ŵA(GA, GB)) =

FB

(
(1−∆)EGA

(x)

1−2∆

)
and EσB (ŵB(GB, GA)) = FA

(
(1−2∆)EGB

(x)

1−∆

)
.

Partisanship provides player A with an effectiveness advantage in the budget distribution

component of each player’s best-response problem. More specifically, player A has an effective-

ness advantage of (1−2∆)/(1−∆). Next, note that the maximum amount that player B is willing

to spend in the electoral competition is 1. Given player A’s effectiveness advantage, it fol-

lows that the maximum amount that player A is willing to spend in the electoral competition is

((1−2∆)/(1−∆)). Thus, a straightforward extension of Lemma 6 establishes that bA = (1−2∆)/(1−∆)

and bB = 1. From equation (48) and Lemmas 1, 3-5, and the extensions of Lemmas 2 and 6,

Lemma 7 can be extended to show that the equilibrium budget distributions, F ∗A and F ∗B, in

Proposition 2 correspond to the unique equilibrium of an unfair all-pay auction in which each

player has a value of 1 for winning the object and player A has an effectiveness advantage of

(1−2∆)/(1−∆).

For the effort distribution component, the proof of Proposition 2 follows along the same

lines as that of Theorem 2. First, note that from the extension of Lemma 2 discussed above, it

follows that in any equilibrium the point at which ties occur is EGA
(x) =

(1−2∆)EGB
(x)

1−∆ . That is,

in any equilibrium, if player B is using an effort distribution GB(x|b), then there is a tie when

player A uses the effort distribution GA

(
x| (1−2∆)b

1−∆

)
. A straightforward extension of Lemma 12

establishes that xA

(
(1−2∆)b

1−∆

)
= xB(b) = 2b. Then Lemmas 8-11 and the extension of Lemma

12, together with budget balance, yield the desired result.

Proof of Proposition 3

First, both politicians focus their expenditures only on the swing voters. The reason is that the

loyal voters vote for politician A regardless of the campaign expenditures: any dollar spent on

a loyal voter will be wasted since it has a budgetary cost without increasing the probability of

winning votes for any politician. This implies that only swing voters are targeted with strictly

positive expenditures.

The proof of equilibrium distributions and their implication for expected budgets, and ex-

pected payoffs follows the same steps as the proof of Proposition 2. The reasoning, however,

applies to the share 1−∆ of swing voters. This share is deterministic and candidates know the

identity of the swing voters.
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