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Abstract 
 
I examine the impact of risk preferences on efforts and winning probabilities in generalised 
Tullock contests between two players. The theoretical analysis yields two main results. First, I 
specify a sufficient condition on the agents’ comparative prudence under which a higher 
common level of risk aversion leads to lower aggregate effort in symmetric contests. Second, I 
show that for a certain range of parameters in asymmetric contests, higher risk-aversion will be 
a disadvantage if the agent is comparatively prudent. 
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1 Introduction

Contests are situations in which participants compete for some exogenous rent
(prize) by spending non-refundable effort which increases their likelihood of win-
ning. Examples from business, politics, sports, and many other areas of life
abound (see e.g. Konrad, 2009). As some element of luck or uncertainty is in-
herent in contests, the question how individual attitudes towards risk affect the
contestants’ behaviour suggests itself.

In this paper, I study the influence of individual risk preferences on the equi-
librium behaviour in the model of a general two-person Tullock contest under
perfect information. The contestants simultaneously choose their effort levels
(investments) in order to maximise their expected utility.

First, I compare aggregate efforts across two symmetric contests in one of
which the common level of risk aversion is higher than in the second. I show that
an increase in the common level of risk aversion will reduce aggregate efforts if
it comes along with a sufficiently high measure of comparative prudence. This
generalises the result that, in a symmetric contest, effort will be lower under
risk aversion than under risk neutrality if the risk averse individuals are prudent
(Treich, 2010).

Second, I analyse individual efforts and odds within an asymmetric contest
between two agents one of which is more risk averse than the second. For a wide
range of parameters, I show that the more risk averse agent will exert less effort
and have a smaller chance of winning if she is sufficiently prudent compared to
the second player.

To gain some intuition for these results, notice for a start that the impact of
risk aversion on the behaviour in contests is generally ambiguous (see e.g. Konrad
and Schlesinger, 1997). Since participation in the contest comes along with an
uncertain payment, it may be regarded as a lottery. The general ambiguity then
arises because risk aversion induces two opposing effects (see e.g. Skaperdas and
Gan, 1995). On the one hand, there is the so called gambling effect : The more risk
averse the agents are, the fewer lottery tickets they buy since this reduces their
safe payment. On the other hand, there is the so called effect of self-protection:
Buying more lottery tickets, the players can reduce their probability of losing.
Therefore, the more risk averse they are, the more they invest. However, a
prudent agent is downside risk averse, i.e. the agent prefers some lottery at a
higher wealth level over the same lottery at a lower wealth level (Menezes et al.,
1980). Thus, as higher investment lowers the wealth level and increases downside
risk, the gambling effect will dominate the self-protection effect if the agent is
comparatively prudent.

The remainder of this paper is organised as follows: In Section 2, I review
the related literature. Section 3 introduces the model. In Section 4, I consider
symmetric contests, and in Section 5 contests with asymmetric risk preferences.
Section 6 concludes.

2



2 Related Literature

Relatively few papers explicitly address the role of risk preferences in contests.
Most of them assume homogeneous players and focus on aggregate effort (rent
dissipation). In general, the influence of risk aversion on aggregate effort in sym-
metric contests with a finite number of players and general contest success func-
tions is ambiguous (Konrad and Schlesinger, 1997). Hillman and Katz (1984)
consider a Tullock contest with linear technologies and a large number of ho-
mogeneous contestants with a common degree of constant relative risk aversion
(CRRA). They show that rent dissipation decreases as the common degree of
CRRA increases. Millner and Pratt (1991) present a qualified extension of this
result to symmetric Tullock contests with linear technologies and two homoge-
neous participants: If the agents are risk averse, rent dissipation will be lower
than in the case of risk neutral players if and only if the agents are also pru-
dent.Treich (2010) extends the result of Millner and Pratt (1991) to symmetric
contests with general contest success functions and any finite number of players
showing that aggregate rent seeking efforts of risk averse agents will be lower than
in the risk neutral case if the agents are also prudent. As Cornes and Hartley
(2012) demonstrate, this result will also hold in asymmetric Tullock contests with
linear technologies if no single agent has an equilibrium probability of winning
greater than one half. Moreover, they show that in a large symmetric Tullock
contest with general technologies rent dissipation is the smaller the higher the
common level of risk aversion thereby generalising the original result in Hillman
and Katz (1984).

While all these papers examine how changes in common risk preferences in-
fluence aggregate behaviour and rent dissipation across contests, I also ask how
differing risk preferences affect individual behaviour and winning probabilities
within a given contest. This question has not yet been addressed in the literature
for general risk preferences but only for the specific cases of constant absolute
risk aversion (CARA, Skaperdas and Gan, 1995, Cornes and Hartley, 2003) and
CRRA (Bozhinov, 2006) both of which imply prudence. The authors show that,
for such preferences, the less risk averse (and thus less prudent) of any two agents
exerts more effort and, therefore, has the better chance of winning.

Hence, the contribution of my paper is twofold. First, I specify a sufficient
condition on relative prudence under which a higher common level of risk aver-
sion leads to lower aggregate effort in symmetric contests, thereby generalising
the result of Treich (2010). Second, I find that comparative prudence plays an
important role for risk aversion to decrease relative individual effort and thus
winning probabilities within a certain contest, thereby extending the analysis of
asymmetric risk preferences from the CARA and CRRA cases to general utility
functions.

Despite the ambiguous theoretical predictions, most of the experimental stud-
ies on the impact of risk preferences in contests find that risk aversion significantly
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reduces mean individual effort; see e.g. Millner and Pratt (1991), Anderson and
Freeborn (2010), or Sheremeta (2011). As there usually is a positive correlation
between prudence and risk aversion (Noussair et al., 2014, Ebert and Wiesen,
2014), my theoretical analysis suggests that these results may be driven indi-
rectly by prudence.

3 The Model

Consider a contest between two agents which are identical except for possibly
differing risk preferences. Each agent i ∈ {1, 2} has an initial wealth endowment
I and can spend some resources xi ≥ 0 in order to improve her probability
pi of winning some exogenously given rent R > 0. The winning probability is
determined by the following contest success function (CSF): If x1 = x2 = 0 then
pi := 1/2, else

pi :=
f(xi)

f(x1) + f(x2)
, (1)

where f : R+
0 → R

+
0 is a twice continuously differentiable function of xi satisfying

f ′′

i ≤ 0 < f ′ and fi(0) = 0.
The agents are weakly risk averse. The utility ui(z) agent i ∈ {1, 2} derives

from a certain wealth level z can be expressed be means of some three times
continuously differentiable function ui : R → R with u′′

i ≤ 0 < u′

i.
The contest is organised as a simultaneous move game with complete informa-

tion. The players choose their effort levels xi in order to maximise their expected
utility Eui from wealth zi, which will equal Wi := I − xi +R if agent i wins the
contest and Li := I − xi otherwise. Hence, for i, j ∈ {1, 2}, i 6= j,

Eui = piui(Wi) + (1− pi)ui(Li)

=
f(xi)

f(x1) + f(x2)
ui(I − xi +R) +

f(xj)

f(x1) + f(x2)
ui(I − xi).

Cornes and Hartley (2012, Theorem 3.1) show that under these assumptions
a Nash equilibrium in pure strategies always exists. Moreover, they derive some
regularity condition on the curvature of the utility functions ui under which the
Nash equilibrium is unique (Cornes and Hartley, 2012, Theorem 4.2). Yamazaki
(2009) shows that, under the assumptions made, the Nash equilibrium in pure
strategies will be unique if the Arrow-Pratt measure of absolute risk aversion

RA(ui, z) = −
u′′

i
(z)

u′

i
(z)

is non-increasing in the wealth level z for all agents i. All

these results hold even for the more general case of a contest between an arbitrary
number n ∈ N of participants and includes the possibility that some of them might
be inactive in equilibrium, i.e. exert zero effort. However, in any equilibrium
of a two-player contest, both players will obviously exert positive effort. The
corresponding effort levels will hence be fully characterised by the two first order
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conditions for maximum expected utilities:

∂pi
∂xi

=
piu

′

i(Wi) + (1− pi)u
′

i(Li)

ui(Wi)− ui(Li)
. (2)

4 Symmetric Contests

In this subsection, I suppose that contestants are homogeneous, i.e. ui = u for
i ∈ {1, 2}. The contest then has a unique symmetric Nash equilibrium in pure
strategies (Cornes and Hartley, 2012, Theorem 4.1). In order to analyse how a
change in the common risk preferences influences (aggregate) effort, I compare
the symmetric equilibria of two symmetric contests A and B which are identical
but with respect to the participants’ risk preferences: In contest A, both agents
i ∈ {1, 2} have identical preferences described by ui = uA and in contest B, both
have identical preferences described by ui = uB.

In general, there is ambiguity whether a rising level of risk aversion ceteris
paribus decreases the contestant’s effort due to the gambling-effect or increases
it due to the effect of self-protection (Skaperdas and Gan, 1995, Konrad and
Schlesinger, 1997). However, Treich (2010, Proposition 2) shows that if all agents
are risk neutral in contest A but risk averse in contest B, efforts will be lower
in contest B if the agents in contest B are prudent, i.e. if u′′′

B > 0.1 I will
generalise this result to the case in which agents are more risk averse in contest
B than A with respect to their Arrow-Pratt measure of absolute risk aversion,
i.e. RA(uB, z) > RA(uA, z) for all possible wealth levels z. In this case, there
exists a function φ : R → R with φ′′ < 0 < φ′ and uB(z) = φ(uA(z)) for all
possible wealth levels z, i.e. uB is a concave transformation of uA (Mas-Colell
et al., 1995, Proposition 6.C.2). I will call such a transformation prudent, if
φ′′′ > 0. Note that a prudent transformation preserves the prudence property of
risk preferences: If uB(z) = φ(uA(z)) and φ′′′ > 0 then u′′′

A ≥ 0 will imply

u′′′

B = φ′′′(uA)(u
′

A)
3 + 3φ′′(uA)u

′

Au
′′

A + φ′(uA)u
′′′

A > 0.

Proposition 1 Suppose that contests A and B differ only in the participants’

common risk preferences such that agents are more risk averse in contest B,

i.e. uB = φ(uA) with φ′′ < 0 < φ′. If uB is a prudent transformation of uA, i.e. if

φ′′′ > 0, then efforts will be lower in contest B.

The proof can be found in the Appendix. Proposition 1 includes the special case
of players in contest A being risk neutral as discussed by Treich (2010, Proposition

1In the case of two players, prudence is even necessary for efforts to be lower (Treich, 2010,
Corollary 1).
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2) and Cornes and Hartley (2012, Proposition 6.1), respectively.2 In this case,
u′′

A ≡ 0 ≡ u′′′

A and φ′′′ > 0 then implies u′′′

B > 0, i.e. the prudence of players in
contest B. Note, however, that Proposition 1 will hold even for the players in
contest A not being prudent. In this case, the condition φ′′′ > 0 neither implies
the prudence of players in contest B. Just as little, the condition φ′′′ > 0 generally
implies that agents in contest B are more prudent (less imprudent) than in contest

A with respect to the coefficient of absolute prudence PA(u, z) = −
u′′′

i
(z)

u′′

i
(z)

. In fact,

the condition is weaker in the sense that it only assures that players in contest B
are comparatively prudent, i.e. sufficiently prudent (not too imprudent) compared
to players in contest A. These considerations show that rather a relative measure
of prudence than prudence per se drives the result.

5 Contests with Asymmetric Risk Preferences

In order to analyse how differences in the agents’ risk preferences influence in-
dividual efforts and odds within a certain contest, I assume agent 1 to be more
risk averse than agent 2 with respect to the Arrow-Pratt measure of absolute risk
aversion, i.e. RA(u1, z) > RA(u2, z) for all possible wealth levels z. As above,
there exists a function φ : R → R with φ′′ < 0 < φ′ and u1(z) = φ(u2(z)) for all
possible wealth levels z, i.e. u1 is a concave transformation of u2.

If players exhibit CARA, the less risk averse will exert higher effort and there-
fore have a better chance of winning (Skaperdas and Gan, 1995, Cornes and Hart-
ley, 2003). The following example shows, however, that this result does not hold
in general.3

Example 1 Assume u1(z) = −(1 − z)2, u2(z) = z, f(x) = x, and I + R < 1,
i.e. a lottery contest between some risk averse agent 1 and some risk neutral agent

2. Straightforward calculations show that the game has a Nash equilibrium in pure

strategies in which both agents choose the same effort level x1 = x2 = R/4 and,

hence, have the same winning probability p1 = p2 = 1/2.

The example is instructive in explaining why an agent’s risk aversion alone will
not necessarily induce a behaviour that is different form the one of a risk neutral
opponent. While the latter only cares about the mean of the lottery associated
with the contest, quadratic risk preferences imply that the former only cares

2For contests with an arbitrary number n of participants, Cornes and Hartley (2012, Corol-
lary 6.1) show that the effort of the more risk averse players in contest B will be smaller than
the effort of the less risk averse players in contest A if n is sufficiently large. Under the addi-
tional condition that uB is a prudent transformation of uA, Proposition 1 extends their finding
to the case of n = 2.

3In a model of optimal prevention, Eeckhoudt and Gollier (2005, Propositon 1) find that,
when the optimal probability of loss of the risk neutral agent is 1/2, adding risk aversion but not
prudence has no effect on the optimal level of effort. The example illustrates that this result
may hold even in (asymmetric) situations of strategic interaction.
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about the mean and variance which equals p(1 − p)R2. Hence, for p = 1/2 a
marginal change in the winning probability induced by a marginal investment in
effort has no effect on the variance of the lottery, i.e. the marginal calculus is
identical for both agents.

The crucial difference between this example and the CARA-case is the fact
that CARA-preferences imply that the respective agent is not only risk averse
but also prudent. Prudent agents are downside risk averse and, therefore, prefer
some lottery at a higher wealth level over the same lottery at a lower wealth
level. Hence, even in a situation like in the example above in which the marginal
investment has no impact on the variance, a prudent contestant has, ceteris
paribus, an incentive to invest less than a risk neutral agent in order to increase
the wealth level I − x at which the lottery takes place.

These considerations provide some intuition for why the comparative level of
prudence plays an important role for the agents’ relative efforts. The following
Lemma states that, unlike in the example above, the asymmetric contest will
never have a symmetric equilibrium if u1 is a prudent transformation of u2.

Lemma 1 Suppose that the contestants differ only in their risk preferences such

that agent 1 is more risk averse than agent 2, i.e. u1 = φ(u2) with φ′′ < 0 < φ′.

If u1 is a prudent transformation of u2, i.e. if φ
′′′ > 0, then equilibrium efforts

and odds will differ, i.e. x1 6= x2 and p1 6= p2.

The proof can be found in the Appendix. Proposition 1 and the CARA-case
suggest that the more risk averse agent will exert less effort and have a smaller
chance of winning if her preferences are a prudent transformation of the second
player’s preferences. The proof that this conjecture holds for a wide range of pa-
rameters (R, I, f, u, φ) specifying the contest is based on the following idea. Start
from a contest (R0, I0, f0, u0, φ0) for which the parameters satisfy the conditions
of Lemma 1 and the more risk averse agent indeed exerts less effort in equilib-
rium, i.e. x1(R0, I0, f0, u0, φ0) < x2(R0, I0, f0, u0, φ0), like e.g. for some case with
CARA-preferences. Then, any continuous change to the parameters (R, I, f, u, φ)
within the class satisfying the conditions of Lemma 1, which leads to some con-
tinuous shift of the equilibrium,4 preserves x1(R, I, f, u, φ) < x2(R, I, f, u, φ) by
Lemma 1 and the intermediate value theorem.

Formalising this idea in Proposition 2 requires some further notation. Denote
by Ck(X) the set of all k-times continuously differentiable real functions on some
compact X ⊂ R

+
0 and define

A := {f ∈ C
2(X) | f(0) = 0, f ′(x) > 0 ≥ f ′′(x) for all x ∈ X},

B := {u ∈ C
3(X) | u′(x) > 0 ≥ u′′(x) for all x ∈ X},

C := {φ ∈ C
3(X) | φ′(x) > 0 > φ′′(x), φ′′′(x) > 0 for all x ∈ X}.

4By the implicit function theorem, this is the case e.g. whenever the parameter-functions f ,
u, and φ can be parameterised by finitely many real parameters and the considered change in
these parameters is sufficiently small.
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Note that X , A, B, and C are connected topological spaces and so is the product
space P = X × X × A × B × C. Let M be a connected subset of P for which
the contest has a unique equilibrium in pure strategies.5 For each element of M ,
denote this equilibrium by (x∗

1(R, I, f, u, φ), x∗

2(R, I, f, u, φ)).

Proposition 2 Let S be a connected subset of M on which

∆x(R, I, f, u, φ) := x∗

2(R, I, f, u, φ)− x∗

1(R, I, f, u, φ)

is continuous. If there is some (R0, I0, f0, u0, φ0) ∈ S with

∆x(R0, I0, f0, u0, φ0) > 0, then ∆x(R, I, f, u, φ) > 0 for all (R, I, f, u, φ) ∈ S.

Proof. Applying the intermediate value theorem to ∆x on S, the statement
follows immediately from Lemma 1.

�

6 Concluding Remarks

In this paper, I have examined the impact of risk preferences on efforts and win-
ning probabilities in generalised Tullock contests between two players. I have
specified a sufficient condition on the agents’ comparative prudence under which
a higher common level of risk aversion leads to lower aggregate effort in sym-
metric contests. Moreover, I have shown that in asymmetric contests, higher
risk-aversion will be a disadvantage for an abstract range of parameters if the
agent is comparatively prudent. Future work may further specify this range of
parameters by characterising the (maximum) subset S on which Proposition 2
applies.

Lemma 1 implies that the effort levels or winning probabilities of two agents,
one of which is more risk averse and sufficiently prudent, may coincide only if they
differ also in some other characteristic besides risk preferences. Put differently,
whenever Proposition 2 applies, keeping up with the less risk averse requires,
ceteris paribus, an advantage in a second dimension, e.g. higher ability (March
and Sahm, 2017).
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Appendix: Proofs

Proof of Proposition 1.

Remember that the symmetric contest C ∈ {A,B} has a unique symmetric
equilibrium (xC , xC) satisfying condition (2). Define

px :=
∂pi(x, x)

∂xi

=
1

4

f ′(x)

f(x)

for i ∈ {1, 2} and

FC(x) := px[uC(W )− uC(L)]−
1

2
[u′

C(W ) + u′

C(L)]

for all x > 0. By definition, FC is continuous in x, has a unique zero at xC , and
satisfies limx→0 FC(x) > 0 as well as limx→∞ FC(x) < 0 due to the properties of
f . The intermediate value theorem then implies that FC(x) > 0 if and only if
x < xC . In particular, xB < xA ⇔ FA(xB) > 0. In what follows, I will show
the validity of the latter inequality.

With uB = φ(uA), the identity FB(xB) = 0 implies

pxB
=

1

2

φ′(uA(WB))u
′

A(WB) + φ′(uA(LB))u
′

A(LB)

φ(uA(WB))− φ(uA(LB))
.

Using this equation, FA(xB) > 0 is equivalent to

[φ′(u(W ))u′(W ) + φ′(u(L))u′(L)][u(W )− u(L)]

[φ(u(W ))− φ(u(L))][u′(W ) + u′(L)]
> 1 (3)

with u = uA, W = WB = I−xB+R, and L = LB = I−xB . To show the validity
of inequality (3), first note that

φ′(u(W ))u′(W ) + φ′(u(L))u′(L)

u′(W ) + u′(L)
≥

1

2
[φ′(u(W )) + φ′(u(L))]

⇔ [φ′(u(W ))− φ′(u(L))][u′(W )− u′(L)] ≥ 0,

which is true due to the concavity of φ and u since u is increasing and W > L.
Hence, it is sufficient to show that

1

2
[φ′(u(W )) + φ′(u(L))]

u(W )− u(L)

φ(u(W ))− φ(u(L))
> 1

⇔
1

2
[φ′(u(W )) + φ′(u(L))]−

φ(u(W ))− φ(u(L))

u(W )− u(L)
> 0.

However, this last inequality follows from Eeckhoudt and Gollier (2005, Lemma
1) and the strict convexity of φ′.

�
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Proof of Lemma 1.

The proof is by contradiction. I write u2 = u and u1 = φ(u) as well as Wi =
I − xi +R and Li = I − xi for short. Note that

∂pi
∂xi

=
f ′(xi)f(xj)

[f(xi) + f(xj)]2

for i, j ∈ {1, 2} with i 6= j. Dividing the first order condition (2) for agent 1 by
the one for agent 2 yields

f ′(x1)f(x2)

f ′(x2)f(x1)
=

[p1φ
′(u(W1))u

′(W1) + p2φ
′(u(L1))u

′(L1)][u(W2)− u(L2)]

[φ(u(W1))− φ(u(L1))][p2u′(W2) + p1u′(L2)]
(4)

Now suppose that there is an equilibrium with x1 = x2 = x and, hence, W1 =
W2 = W , L1 = L2 = L, as well as p1 = p2 = 1/2. Then, obviously the left hand
side of equation (4) equals 1. However, the right hand side of equation (4) is
equal to the term on the left hand side of inequality (3) and, hence, larger than
1 as show in the proof of Proposition 1.

�
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