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Abstract 

 
Ranking algorithms are the information gatekeepers of the Internet era. We develop a stylized 
model to study the nterplay between a ranking algorithm and individual clicking behavior. We 
consider a search engine that uses an algorithm based on popularity and on personalization. The 
analysis shows the presence of a feedback effect, whereby individuals clicking on websites 
indirectly provide information about their private signals to successive searchers through the 
popularity-ranking algorithm. Accordingly, when individuals provide sufficiently positive 
feedback to the ranking algorithm, popularity-based rankings tend to aggregate information 
while personalization acts in the opposite direction. Moreover, we find that, under fairly general 
conditions, popularity-based rankings generate an advantage of the fewer effect: fewer websites 
reporting a given signal attract relatively more traffic overall. This highlights a novel, ranking-
driven channel that can potentially explain the diffusion of misinformation, as websites 
reporting incorrect information may attract an amplified amount of traffic precisely because they 
are few. 
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1 Introduction

Search engines are among the most important information gatekeepers of the Internet era. Google

alone receives over 3.5 billion search queries per day, and, according to some estimates, 80% of them

are informational, dwarfing navigational and transactional searches (Jansen et al., 2008). Individuals

increasingly use search engines to look for information on a vast array of topics such as science (Horri-

gan, 2006), birth control and abortion (Kearney and Levine, 2014), or the pros and cons of alternative

electoral outcomes (e.g., the Brexit referendum in the UK; see Google Trends). Remarkably, what deter-

mines the ranking of any website to be displayed for any given search query are automated algorithms.

Such algorithms are also used by social media—such as Facebook and Twitter—to rank their posts

or tweets. They are so fundamental in establishing what is relevant information or what are relevant

information sources, that they necessarily convert search engines and social media platforms into de

facto “algorithmic gatekeepers” (Introna and Nissenbaum, 2000; Rieder, 2005; Granka, 2010; Napoli,

2015; Tufekci, 2015). Despite the importance of such ranking algorithms for a wide variety of online

platforms, opinion dynamics via algorithmic rankings is largely understudied.

This paper aims to fill this gap by developing a dynamic framework that studies the interaction

between individual searches and a stylized ranking algorithm. Specifically, we focus on two key aspects

of ranking algorithms: (a) rankings may be based on the popularity of the different websites, and (b)

rankings may be personalized and may depend on individuals’ characteristics. These two aspects drive

the ranking of the available websites provided to individuals by a search engine.

Individuals use the search engine to look for information on the state of the world (e.g., whether or

not a specific vaccine is safe). Their choices over websites are modeled by means of a stochastic choice

model (Luce, 1959; Block and Marschak, 1960; Gül et al., 2014). Each individual derives value from

reading the content of a website, which comes from two sources or attributes, namely, (i) from reading

news that confirms the individual’s prior on the state of the world, and (ii) from reading majoritarian

news. At the same time, individuals have an attention bias that translates in a propensity to choose

websites that are higher-ranked (De Cornière and Taylor, 2014; Taylor, 2013; Hagiu and Jullien, 2014;

Burguet et al., 2015). Accordingly, individuals may trade off content and ranking as a result of their

stochastic choices. This yields probabilities of reading the different websites that depend on both the

website content and on the ranking.

Website rankings are endogenous, meaning that individuals’ choices feed back into the search en-

gine’s ranking, thereby affecting future searches (Demange, 2014a). It is important to point out that

individuals are näıve with respect to the search engine’s algorithm in the sense that they do not make
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any inference from the websites’ ranking per se. This last assumption—apart from making the model

tractable—reflects informational and behavioral limitations of individuals in understanding the working

of ranking algorithms (Granka, 2010; Eslami et al., 2016).1

The model looks at the implications of ranking algorithms on clicking dynamics, under the implicit

assumption that this also reflects individuals’ opinion dynamics (that is, the contents of the websites

read implicitly affect the opinions of the individuals).2 The analysis provides three main insights deriv-

ing from the interaction of the ranking algorithm with sequential individual searches. First, it shows

the presence of a feedback effect, whereby individuals clicking on websites indirectly provide infor-

mation about their private signals to successive searchers through the popularity-ranking algorithm.

The ranking algorithm thus acts as a mechanism for aggregating information dispersed across agents.

Importantly, we provide conditions under which a popularity-based ranking can effectively aggregate

information. We compare asymptotic learning under a popularity-based ranking and under uniform

random ranking. We find that a popularity-based ranking does better as long as individuals generate

sufficiently positive feedback through their searches (their private signals are not too noisy and the

desirability of reading confirmatory news is sufficiently low (high) when majoritarian opinion is ex-ante

more (less) informative than the individual prior on the state of the world).

Second, the model shows that popularity-based rankings induce what we call an advantage of the

fewer (AOF ) effect. It says that, all else equal, fewer websites carrying a given signal may attract more

traffic overall, than if there were more of them. Popularity-based rankings amplify the static effect

of simply concentrating audiences on fewer websites, since they induce relatively higher rankings for

the fewer websites, which makes them more attractive for subsequent individuals, further raising their

ranking and so on, generating a “few get richer” dynamic with a potentially sizeable effect in the limit.

To the best of our knowledge, this property of popularity-based rankings has not yet been pointed out in

the literature. We show that AOF holds under fairly broad assumptions. Importantly, AOF highlights

a further, ranking-driven, channel for why “alternative-facts” websites may thrive and gain in authority

in the current information environment, dominated by algorithmic gatekeepers, such as search engines

and social media (Allcott and Gentzkow, 2017; Allcott et al., 2018).3

1While popularity and personalization are well-established components of ranking algorithms, exact details of the
algorithms are typically kept secret (Dean, 2013; MOZ, 2013; Vaughn, 2014; Kulshrestha et al., 2018). As Eslami et al.

(2016), p. 1, point out, the “operation of these algorithms is typically opaque to users.”
2 Epstein and Robertson (2015) provide empirical evidence on the ranking of webpages affecting individual choices over

websites and, in turn, their voting preferences.
3Allcott and Gentzkow (2017) provide an economic model of fake-news and also document that, in the run-up to the

2016 US presidential election, more than 60% of traffic of fake news websites in the US came from referrals by algorithmic
gatekeepers (i.e., search engines and social media). See also Azzimonti and Fernandes (2018) for a model on the diffusion
of fake-news in social networks.
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Third, we study whether personalized rankings can contribute to information aggregation. We com-

pare asymptotic learning under both personalized and non-personalized rankings. We find that there

is a close relationship between the conditions under which non-personalized rankings outperform per-

sonalized rankings with the ones under which popularity-based rankings outperform random rankings.

For the common-value searches of our model, personalization limits the feedback among individuals in

the opinion dynamic, making it better not to personalize the ranking when individuals’ choices over

websites generate a positive feedback. As a consequence, personalized rankings are often dominated in

terms of asymptotic learning either by non-personalized rankings or by random rankings. Finally, we

also show that personalized rankings can induce relatively similar individuals to read different websites,

which can lead to belief polarization. At the same time, if individuals observe different (personalized)

rankings but such personalization is not based on ex-ante differences across individuals (e.g., different

values of reading confirmatory news), belief polarization might only be a short-run phenomenon. In the

long run, asymptotic clicking dynamics would not be affected by personalized rankings.

We conclude with three caveats. The results of our model provide some first insights on opinion

dynamics via an endogenous ranking used by näıve individuals. A similar model with more sophisticated

individuals who can observe the evolution of the ranking sufficiently accurately may well predict that

such individuals are likely to always learn the true state of the world in the limit (see Section 5.2).

As emphasized above, the näıveté in our model reflects informational and behavioral limitations of

individuals in assessing the working of the ranking algorithm and provides a natural benchmark for

understanding online misinformation. Second, as actual algorithms used by platforms such as Google

or Facebook are highly complex (Dean, 2013; MOZ, 2013; Vaughn, 2014), we do not aim to pin down

the exact pattern of website traffic or opinion dynamic generated by any specific algorithm, nor do

we pursue a mechanism design approach.4 Rather, our aim is to isolate few essential components of

ranking algorithms (popularity and personalization) and to study their interplay with individual clicking

behavior. Finally, while our results suggest that personalization may often be sub-optimal in the context

of individuals looking for information on common value issues (e.g., whether or not to vaccinate a child),

when individuals care differently about the objects of their searches (e.g., where to have dinner) an

appropriately personalized search algorithm might clearly outperform a non-personalized one.

Related Literature. To our knowledge, ours is the first paper in economics to analyze opinion dynam-

ics via endogenous algorithmic rankings and the informational gate-keeping role of search engines.5 The

4Section 2.7 provides some background information on the working of ranking algorithms.
5The existing economics literature on search engines has focused on the important case where search engines have an

incentive to distort sponsored and organic search results in order to gain extra profits from advertising and product markets
(Taylor, 2013; De Cornière and Taylor, 2014; Hagiu and Jullien, 2014; Burguet et al., 2015). See also Grimmelmann (2009)
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paper is broadly related to the economics literature on the aggregation of information dispersed across

various agents (Bikhchandani et al., 1998; Piketty, 1999; Acemoglu and Ozdaglar, 2011; Golub and

Sadler, 2016; provide surveys on information aggregation, respectively, through observation of behavior

of others, through voting, and through learning in social networks). We share with this literature the

focus on understanding the conditions under which information that is dispersed among multiple agents

might be efficiently aggregated. Our framework differs from this literature in a simple and, yet, crucial

aspect: we are interested in investigating the role played by a specific (yet extensively used) “tool”

of information diffusion/aggregation, namely, the ranking algorithm, which represents the backbone of

many online platforms. Another feature we have in common with a subset of this literature is that we

take a non-Bayesian approach and consider individuals who are näıve with respect to some key aspects

of their choice situation (i.e., the ranking algorithm). In this sense, our model is closer to the papers on

non-Bayesian belief formation (DeGroot, 1974; DeMarzo et al., 2003; Acemoglu et al., 2010; Golub and

Jackson, 2010). Moreover, although our individuals perform only one search, “learning” occurs through

the individuals’ clicking behavior and the ranking algorithm that aggregates the information reflected

in the clicking behavior and passes it on to subsequent individuals.

Our focus on search engines as information gatekeepers is close in spirit to the economic literature on

news media (see DellaVigna and Gentzkow, 2010; Prat and Strömberg, 2013, for surveys). At the same

time, the presence of an automated ranking algorithm makes search engines—and other algorithmic

gatekeepers—fundamentally different from news media, where the choice of what information to gather

and disclose is made on a discretionary, case-by-case basis. In the case of search engines the gate-keeping

is unavoidably the result of automated algorithms (Granka, 2010; Tufekci, 2015).6 Therefore, whatever

bias might originate from search engines, its nature is intrinsically different from one arising in, say,

traditional news media. As a result, studying the effects of search engines on the accuracy of individuals’

beliefs, requires a different approach from the ones used so far in theoretical models of media bias (e.g.,

Strömberg, 2004; Mullainathan and Shleifer, 2005; Gentzkow and Shapiro, 2006).

Finally, the paper is also related to the literature outside economics discussing the possible implica-

tions of the search engines’ architecture (or, more generally, of algorithmic gatekeeping) on democratic

outcomes. This literature encompasses communication scholars (Hargittai, 2004; Granka, 2010), legal

scholars (Goldman, 2006; Grimmelmann, 2009; Sunstein, 2009), media activists (Pariser, 2011), psychol-

ogists (Epstein and Robertson, 2015), political scientists (Putnam, 2001; Hindman, 2009; Lazer, 2015),

and Hazan (2013) for a legal perspective on the issue.
6Put differently, “While humans are certainly responsible for editorial decisions, these [search engine] decisions are

mainly expressed in the form of software which thoroughly transforms the ways in which procedures are imagined, discussed,
implemented and managed. In a sense, we are closer to statistics than to journalism when it comes to bias in Web search”;
Rieder and Sire (2013), p.2.
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sociologists (Tufekci, 2015) and, last but not least, computer scientists (Cho et al., 2005; Menczer et al.,

2006; Pan et al., 2007; Glick et al., 2014; Flaxman et al., 2013; Bakshy et al., 2015).

The paper is structured as follows. Section 2 describes the framework. Section 3 presents benchmark

results on opinion dynamics with rational (and näıve) individuals. Section 4 discusses our main results

on opinion dynamics with behavioral individuals. Specifically, Section 4.1 presents our basic result on

the the advantage of the fewer (AOF ), Section 4.2 studies the implications of the model in terms of

asymptotic learning, also providing a comparison with a fully randomized ranking, and Section 4.3

studies the effects of personalization of search results on belief polarization and asymptotic learning.

Section 5 discusses some extensions, including the case of sophisticated learning. Section 6 concludes.

All the proofs and some formal definitions are relegated to the Appendix.

2 The Model

We present a stylized model of a search environment where individuals use a search engine to look for

information on a fixed issue (e.g., whether or not to vaccinate a child). At the center of the model is a

search engine characterized by its ranking algorithm, which ranks and directs individuals to the different

websites, using, among other things, the popularity of individuals’ choices. To simplify the analysis,

we assume that individuals are näıve and perform exactly one search, one after the other, without

knowing who searched before them and without updating prior beliefs after observing the ranking. We

also assume websites simply report their own private signal, assumed to be constant throughout. We

describe the formal environment.

2.1 Information Structure

There is a binary state of the world ω, which is a
(
1
2 ,

1
2

)
Bernoulli random variable which takes one of

two values from the set {0, 1}. There are M information sources (websites) and N individuals, where,

by slight abuse of notation, we let M = {1, . . . ,M}, N = {1, . . . , N} also denote the set of websites and

individuals, respectively. For convenience, we assume M is an odd number (unless otherwise noted).

Each website m ∈ M receives a private random signal, correlated with the true state ω,

ym ∈ {0, 1} with P(ym = ω | ω = ξ) = q ∈
(
1
2 , 1

)
, for any ξ ∈ {0, 1}.

This determines the website majority signal, denoted yK ∈ {0, 1}, which is the signal that is carried by

a majority of websites; let K = {m ∈ M | ym = yK} denote the set (and number) of websites carrying
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the signal yK . Similarly, each individual n ∈ N receives two private random signals:

xn ∈ {0, 1} with P(xn = ω | ω = ξ) = p ∈
(
1
2 , 1

)
, for any ξ ∈ {0, 1},

which reflects the individual’s prior on the true state of the world, and

zn ∈ {0, 1} with P(zn = yK | yK = ζ) = µ ∈
(
1
2 , 1

]
, for any ζ ∈ {0, 1},

which is independent of xn, when conditioned on (ω, yK), and reflects the individual’s prior about what

the majority of websites (e.g., mainstream or “authoritative” websites) are reporting. We assume all

signals to be conditionally independent across individuals and websites, when conditioned on (ω, yK).

From the onset, we emphasize that the case µ ≤ 1 is meant to capture the intrinsic noise faced by

individuals in identifying the ex-ante more informative website majority signal (yK). Accordingly, (1−µ)

represents the probability that an individual incorrectly identifies the minority signal as the majority

one (e.g., looking at a website reporting “alternative facts” believing that it is reporting mainstream or

“authoritative” news). All the main conclusions remain unchanged if we assume µ = 1, meaning that

individuals can perfectly identify the majority signal (e.g., individuals know which are the mainstream

websites appearing in the search result pages).

2.2 Information sources

Each of the M websites represents an information source. A website is characterized by a signal

ym ∈ {0, 1} as described above, which is posted and held constant throughout. Absent any ranking

effect, websites with the same signal (with ym = ym′) are seen as equivalent (hence, they are perfect

substitutes from the individuals’ perspective). This allows us to naturally partition the set of websites

M into two classes, namely, websites with signal 0 and ones with signal 1. Websites can be seen as

articles or documents posted on the web that contain pertinent information to a given search query.

2.3 Individuals

Individuals in N enter in a random order, sequentially, such that, at any point in time t, there is a unique

individual t ≡ n ∈ N , who performs exactly one search, faces the ranking rn, and chooses a website

to read, based on his preferences and the information contained in his private signal (xn, zn) ∈ {0, 1}2

as specified above. Importantly, individuals do not update their information nor derive value from

observing the headlines (or “snippets”) of the ranked websites, even if they identify the websites’ signals
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(ym). The idea is that, while it easy to identify a website’s signal (pro/against vaccines) from the headline

provided in the search result page—as it is easy to identify the content of a newspaper article from its

title—individuals need to read the posted website to learn and be informed of its content (ym) and to

derive utility from that. At the same time, individuals are also näıve as they do not update their beliefs

from observing the ranking per se.

Website content. To focus on the content, suppose for a moment that individuals see the websites

ranking-free. We model clicking behavior by means of a stochastic choice rule accounting for the fact that

two websites with the same signal are perfect substitutes in our model.7 We assume each individual n

derives value from reading the content of a website, which comes from two sources or attributes, namely,

(i) from reading news that confirms the individual’s prior on the state of the workd — this happens

when xn = ym and gives value vx > 0, and gives value 0 otherwise (when xn 6= ym);8 and (ii) from

reading majoritarian news — this happens when zn = ym and gives value vz > 0, and gives value 0

otherwise (when zn 6= ym). We defer to Section 3 a discussion of a when a rational individual, interested

in reading ex ante most informative websites, may find it optimal to read websites that confirm his prior

or report the majoritarian opinion.

Letting c ∈ {0, 1} denote the class type of a website, we can write individual n’s desirability value

from reading a website from class c as:

Vc(xn, zn) = I{xn=c} · vx + I{zn=c} · vz. (1)

Clearly, if c = ∅, then Vc(xn, zn) = 0. Denoting the complement of class c by ¬c ≡ 1− c, we can write

the Luce choice rule of choosing a website from class c as:

ρc(xn, zn) =
Vc(xn, zn)

Vc(xn, zn) + V¬c(xn, zn)
. (2)

Accordingly, consider the class of websites with signal 1 (c = 1). Then, an individual n with signal

(xn, zn) = (1, 1) has desirability V1(1, 1) = vx + vz from reading any website from that class, while

if the signal is (1, 0), (0, 1), or (0, 0) the desirability is, respectively, vx, vz or 0. The corresponding

choice probabilities of choosing a website from that class are ρ1(1, 1) = 1 for individuals with signal

(1,1), vx
vx+vz

for signal (1,0), vz
vx+vz

for signal (0,1) and 0 for signal (0,0). Analogous choice probabilities

can be computed for choosing websites from the opposite class. Let γ ≡ vx
vx+vz

∈ (0, 1) calibrate the

7See Luce (1959) and Block and Marschak (1960) for early papers on stochastic choice rules (or Luce rules) and Gül
et al. (2014) on attribute rules allowing for duplicate alternatives; Agranov and Ortoleva (2017) provide empirical evidence.

8Mullainathan and Shleifer (2005); Gentzkow and Shapiro (2010) study individual preference for confirmatory news;
Yom-Tov et al. (2013); Flaxman et al. (2013); White and Horvitz (2015) provide evidence in the context of search engines.
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desirability for reading confirmatory news, and let 1− γ (= vz
vx+vz

) calibrate the desirability for reading

the majoritarian news. Then, dividing by the number of websites in the relevant class to keep track of

what in our model are equivalent or duplicate websites, we can write individual n’s ranking-free choice

function for website m as:

ρ∗n,m =





0 if xn 6= ym 6= zn
γ
[m] if xn = ym 6= zn

1−γ
[m] if xn 6= ym = zn

1
[m] if xn = ym = zn

, (3)

where [m] = #{m′ ∈ M |ym′ = ym} is the number of all websites with the same signal as website m.9,10

Website rankings and stochastic choice function. Let rn ∈ ∆(M) be the ranking of the M

websites seen by individual n. The ranking is provided by the search engine (as discussed in the next

subsection, as the ranking evolves endogenously accordingly to the stochastic individual choices over

websites, it represents a distribution over websites). As mentioned, individuals ignore who searched

before them and do not update their beliefs about the true state of the world ω after observing the

ranking. Moreover, we assume they can process the ranked list, subject to limitations of attention,

meaning they implicitly favor higher ranked websites due to attention bias.11 Given that the ranking

(rn) is modeled as a probability distribution over the websites, a natural way to incorporate the attention

bias is by writing final clicking probabilities as ranking-weighted probabilities.12 This yields the choice

function for website m defined by:

ρn,m =
(rn,m)α · ρ∗n,m∑

m′∈M (rn,m′)α · ρ∗n,m′

, (4)

where the parameter α ≥ 0 calibrates the intensity of the individual’s attention bias.13 Here α = 1

is a neutral benchmark in that it maintains the weight differences already present in the entries of

the ranking rn; α > 1 magnifies the differences in the entries of rn; α < 1 reduces the differences in

9The division by [m] reflects that all websites with the same signal are perfect substitutes and also avoids the usual
Luce effect or “duplicate problem” when dealing with such duplicate alternatives (see, e.g., Gül et al., 2014).

10To simplify notation, we omit the arguments (xn, zn; ym) of functions like ρ∗n,m or ρn,m and keep track of them through
just the subscripts n,m.

11As shown by Pan et al. (2007); Glick et al. (2014); Yom-Tov et al. (2013); Epstein and Robertson (2015), keeping all
other things equal (e.g., the fit of a given website with respect to the individual’s preferences), highest ranked websites
tend to receive significantly more “attention” by users than lower ranked ones. More generally, when faced with ordinal
lists, individuals often show a disproportionate tendency to select options at the top (Novarese and Wilson, 2013).

12Another (equivalent) alternative of deriving our choice rules is to include the ranking as a weight discounting the
desirability values obtained from the content, and write the choice rule as a new Luce rule over the ranking-weighted
values; see Cerigioni and Galperti (2019) for such an approach of modeling frame-order effects on desirability levels.

13Fortunato et al. (2006) and Demange (2014a) use related models of individuals’ choices over ranked items.
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the entries of rn; so that, in the limit, as α → 0, all entries have the same weight, which represents

the case with no attention bias, where all websites that provide the same signal yield the same value.

Specifically, when α = 0, ρn,m implies that choices coincide with the ranking-free choices ρ∗n,m, since all

websites have the same weight (rn,m)0 = 1.

Overall, the ρn,m’s summarize the following properties of website clicking behavior, namely, indi-

viduals tend to choose websites that (i) reflect their own prior information, (ii) report their perceived

majoritarian opinion, (iii) are higher ranked and hence (iv) may also trade off content and ranking.

2.4 Search Engine and Ranking Algorithm

The ranking algorithm used by the search engine is at the center of our model. Whenever individual

n makes a search, she sees the ranking rn ∈ ∆(M) of the M websites, where an element rn,m is the

probability that the individual n is directed to website m in the absence of other factors.14

Concretely, we assume that, given an initial ranking r1 ∈ ∆(M), the ranking rn seen by subsequent

individuals, n = 2, 3, . . . , N , for website m is defined by:

rn,m = (1− ν)rn−1,m + νρn−1,m, (5)

where ν ∈ (0, 1) calibrates the popularity aspect of the ranking.15 The larger ν, the larger the weight

placed on the individual’s website search in the previous period and the less persistent is the search

engine’s ranking. Such ranking dynamic reflects the algorithm used by search engines to update their

rankings according to how “popular” a webpage is (Dean 2013; MOZ 2013; Vaughn 2014, Section 2.7

presents background information on the working of ranking algorithms). Accordingly, we refer to such

a ranking as popularity-based or simply popularity ranking.

2.5 Search Environments

A search environment is an ex ante notion that fixes the ranking algorithm, information structure and

characteristics of individuals and websites, before they receive their signals and before they perform

their search. More formally, we define a search environment E as a list of variables,

E = 〈(p, q, µ); (N, γ, α);M ; ν〉 , (6)

14The ranking here assigns a cardinal score to each website in each period and, as in Demange (2014b, p. 918), measures
the “relative strength of [M ] items, meaning that the values taken by the scores matter up to a multiplicative constant.”

15See Demange (2012) for a similar specification of the popularity-ranking algorithm. Notice that, for simplicity, we
let the choice probabilities rather than their realizations enter the ranking. Since by construction, the two have the same
expectations, using the choice probabilities does not change the limits of the stochastic process, as shown in Appendix A,
and hence does not affect any of our main results.
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where (p, q, µ) describes the information structure, (N, γ, α) describes the individuals, M describes the

websites, and ν describes the ranking algorithm. Given a search environment E , we refer to an (interim)

realization of E as to the tuple 〈ω; (L, (ym)m∈M ) ; ((xn)n∈N ; (zn)n∈N )〉, where the true state of the world

and the signals of the websites are fixed; L denotes the set and the number of websites with the correct

signal ym = ω; individuals with signals (xn; zn) enter sequentially, one at a time, in a random order.

We let r1 denote the initial ranking. Unless otherwise specified, we assume that r1 is interior, that is,

r1,m > 0 for all m ∈ M . For J ⊂ M , let rn,J =
∑

m∈J rn,m and ρn,J =
∑

m∈J ρn,m denote respectively

total ranking and total clicking probability at time n on all websites in J ; we will be particularly

interested in the case where J = L. We also talk about the expected probability of individual n accessing

website m, ρ̂n,m = E[ρn,m], where the expectation is taken over the private signals of agent n that enters

to perform the search. (These expected probabilities are discussed in more detail in Appendix A.)

2.6 Asymptotic Learning

To assess the effect of algoritmic gatekeepers on opinion dynamics, we consider search environments

from an interim and an ex-ante perspective. Since our model endogenizes both ranking and individual

clicking probabilities, it seems natural to evaluate efficiency in terms of asymptotic probability of clicking

on a website carrying the correct signal. We interpret this notion of efficiency as asymptotic learning

under the implicit assumption that individuals näıvely update their beliefs by only relying on the content

of the website they read.16

Consider the probability of individual n choosing a website reporting a signal corresponding to the

true state of the world (ym = ω). At the interim stage, we can write this as the probability ρn,L

(=
∑

m∈L ρn,m) of individual n clicking on any website m ∈ L. We can also define a measure of interim

efficiency (PL), conditional on interim realizations, where the total number of websites reporting the

correct signal is L, as:

PL(α, γ, µ, p) = ρ∞,L = lim
N→∞

ρN,L. (7)

This implies the following measure of ex ante efficiency (P):

P(α, γ, µ, p, q) =
M∑

L=0

(
M

L

)
qL(1− q)M−LPL(α, γ, µ, p), (8)

which uses the accuracy of websites’ signals (q) to weigh the different interim levels (PL).

16In a series of experiments on voters’ opinions and preferences, Epstein and Robertson (2015) show how changing the
ranking of websites may have a large impact on the website individuals read and, in turn, on political preferences over
alternative candidates.
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Throughout the paper, when studying asymptotic behavior, to guarantee that the stochastic dy-

namics is well-behaved in the limit, we set the popularity-ranking parameter ν = O( 1
N ) such that ν → 0

as N → ∞, ensuring that the effect of an individual’s search on the ranking becomes vanishingly small

in the limit, and we also restrict the ranking probabilities to always be interior, that is, rt,m ≥ ǫ for some

arbitrarily small ǫ > 0. This ensures that the dynamic process converges to its unique limit. Moreover,

to better highlight the role of popularity ranking on asymptotic learning, we will use as benchmark of

comparison, the case where ranking is random and uniform throughout (rn,m = 1
M for all n,m), which

we refer to simply as random ranking.

As explained in Appendix A, we compute the limit ranking and limit clicking probabilities using the

mean dynamics approximation (Norman, 1972; Izquierdo and Izquierdo, 2013). This involves fixing an

interim search environment (essentially characterized by the number of websites L carrying the correct

signal) and approximating the stochastic clicking probabilities ρn,m in Eq. (4) for m ∈ M by their

expectations ρ̂n,m = E[ρn,m]. This leads to deterministic recursions that are easily computed in the

limit by means of ordinary differential equations. To obtain the ex ante efficiency, we take expectations

over all interim environments as specified in Eq. (8).

2.7 Discussion

Before presenting the implications of the model, we briefly discuss and provide some background infor-

mation regarding the two main building blocks, namely, the individuals’ stochastic choices over websites

and the ranking algorithm.

Stochastic choice over websites. The stochastic choice rules presented in Section 2.3 are derived

from certain desirability values. Specifically, we follow Gül et al. (2014) and consider each website has

having a bundle of subjective attributes which depend on the individual private signals (xn and zn)

that generate the desirability values (respectively, vx and vz). This leads to the Luce-type choice rules

defined in Eq. (3). Block and Marschak (1960) shows that every Luce model might be derived from a

random utility model (see also Becker et al. (1963) for a related discussion). Such a model might also

be derived by an (additively) perturbed utility model with appropriately defined costs (Anderson et al.,

1992; Fudenberg et al., 2015). Furthermore, Theorem 3 in Gül et al. (2014) extends the result of Block

and Marschak (1960) by showing that every attribute rule (such as the one in Eq. (3)) is a random

utility maximizer.

Ranking algorithm. There are two main challenges in constructing a formal model providing a stylized

representation of a search engine’s algorithm. First, search algorithms are complex: Google uses around
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200 signals in determining the ranking of search results for a given query (Dean, 2013; MOZ, 2013;

Vaughn, 2014). Second, the exact features of the algorithms actually used by search engines typically

represent a commercial secret.17 Nevertheless, while the exact details on these ranking algorithms are

kept secret, certain key features constitute “common wisdom” among folk-tech experts (Dean, 2013;

MOZ, 2013; Vaughn, 2014). Most importantly, the main components of search algorithms are well

known and studied by computer scientists.

A first set of signals used by search engines to decide the ranking of a webpage (for a given query)

are based on ex-ante parameters, such as PageRank, that the algorithm uses to establish the initial

rank of that webpage.18 A second set of parameters of search engines’ algorithms is instead referring to

the popularity of a websites which is captured via users-interaction (e.g., click-through-rate) and social

signals (e.g., webpage likes on Facebook, tweets linking to the webpage). That is, search algorithms

exploit usage data to analyze how individuals actually choose among the results displayed in the search

engine’s result page for a given query. Accordingly, search engines update the initial ranking of a

webpage according to how “popular” the webpage is.19 Finally, search engines’ algorithms personalize

search results according to individual characteristics such as, for example, her geographical location

(e.g., IP address) and her past search and browsing behavior (Pariser 2011; Dean 2013; MOZ 2013;

Vaughn 2014; Hannak et al. 2013; Xing et al. 2014; Kliman-Silver et al. 2015).20

In our model, to simplify and preserve tractability, we consider the initial ranking r1 as reflecting

the first set of ex-ante parameters used by algorithms to establish the initial authority or rank of a

webpage. The ranking dynamic then reflects the second set of parameters, as specified in Eq. (5). That

is, the ranking algorithm updates the initial ranking (r1) and every subsequent ranking of webpages (rt)

according to how “popular” the different webpages are. In our model, this is captured by the popularity

parameter (ν), whereby the popularity of the webpages is determined by the clicking probabilities (ρn).

17As exemplified by Google “No company wants to share its secret recipes with its competitors.” Search engines are
secretive about their algorithm also to prevent the abusive use of it. Knowing the exact features of a search engine, websites
may try to manipulate their ranking in the search results page by exploiting the components of the algorithm.

18PageRank is a recursive algorithm proposed by the founders of Google (Brin and Page, 1998). The basic idea behind
it is to assign a rank to a website based on the number and quality of inbound links that it receives (i.e., each inbound link
is considered as a “vote” in favor of the website by the other website). Other ex-ante parameters include domain factors;
page-level factors; site-level factors; back-link factors; and brand-signals. See Dean (2013), MOZ (2013), Vaughn (2014),
for a detailed description of these components.

19This updating algorithm via the “popularity” of a website may be interpreted both in a strict sense (e.g., direct effect
of the actual clicks on the website in the search result page) and in a broad sense (e.g., a website that receives more clicks
is also more likely to be more popular in other online platforms and vice versa). See Kulshrestha et al. (2018) for empirical
evidence on the relevance of the popularity component of algorithmic rankings.

20For example, Hannak et al. (2013) run an experiment employing two hundred web users via Amazon Mechanical Turk
(AMT) and then had their computers run automatic Google searches on a vast array of topics. By comparing the extent of
the personalization of search results in the AMT sample with respect to the one obtained in a control one (i.e., by running
an automatic script), the authors document the presence of extensive personalization of search results. See also Xing et al.

(2014) for empirical evidence on search results personalization based on the Booble extension of Chrome.
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In Section 4.3 we formalize and discuss personalized rankings.

Overall, given the complexity of ranking algorithms, as pointed out in the introduction, our theo-

retical framework cannot pin down the exact pattern of website traffic or opinion dynamic generated by

any specific algorithm, nor it is meant to design an optimal mechanism.21 Hence, the analysis simply

aims to study two main components of ranking algorithms (popularity and personalization) to asses

their interplay with individual clicking behavior.

3 Opinion Dynamics with Rational Individuals

This section provides some benchmarks for opinion dynamics with individuals who have no behavioral

preference over website content or ranking, but who are nonetheless näıve in the sense that they do

not update their information upon observing the ranking (rn).
22 To better identify the implications of

relaxing each behavioral assumption present in our model of Section 2, we discuss separately the cases,

where individuals: (i) derive value only from reading a website carrying the ex ante most informative

signal (i.e., they have no behavioral preference over website content); and (ii) make stochastic choices

that do not depend on the website ranking (i.e., they have no attention bias). We find that when

shutting down the behavioral biases, the website ranking becomes inconsequential to opinion dynamics.

That is, either the ranking does not affect the class of websites read by individuals (case (i)) or the class

of websites chosen by any individual is as if the website rankings were a uniformly random (case (ii)).

3.1 Absence of Behavioral Preferences

Suppose individuals derive value only from reading a website carrying the ex ante most informative

signal. Let wn denote such signal. Rational individuals in this case will click only on websites with

ym = wn. Their ranking-free choice function for website m reduces to:

ρ∗n,m =





0 if ym 6= wn

1
[m] if ym = wn,

21Kremer et al. (2014) solve for an optimal disclosure policy in the context of a dynamic recommendation system.
Palacios-Huerta and Volij (2004) and Altman and Tennenholtz (2008) study axiomatizations of static ranking systems.
See Tennenholtz and Kurland (2019) for a recent survey.

22In Section 5.2, we briefly discuss the case where rational individuals are also sophisticated in the sense that they
observe the whole ranking history and may update their beliefs accordingly. This leads us to distinguish a third source of
value, namely, from reading websites carrying the ex ante most informative signal. This distinction is redundant in this
section and the next, since agents are assumed to be näıve so that their ex ante most informative signal always coincides
with one or both of the signals xn and zn.

14



which implies a choice function for website m of:

ρn,m =





0 if ym 6= wn

(rn,m)α∑
m′∈M I{y

m′=wn}·(rn,m′ )α
if ym = wn.

It is immediate to see that, in our framework where individuals have just two signals, the ex-ante

most informative signal wn will correspond to either xn and zn. In particular:

wn =





zn if p ≤ p

xn otherwise,

where

p = µ
∑

K>M
2

(
M

K

)
qK(1− q)M−K + (1− µ)

∑

K>M
2

(
M

K

)
qM−K(1− q)K (9)

is the value of p (as a function of µ, q and M) that ensures that xn and zn are equally informative of ω.

It follows that, when p < p, rational individuals behave as agents that derive value only from reading

majoritarian news (vz > 0 and vx = 0, and hence γ = 0). Instead, when p > p, rational individuals

behave as agents that derive value only from reading confirmatory news (vx > 0 and vz = 0, and hence

γ = 1). Accordingly, depending on the value of p (in relation to (as a µ, q and M), two cases may arise:

1. If p < p, rational individuals ignore their signal xn and follow their ex ante most informative

signal zn thus clicking only on websites reporting (perceived) majoritarian news (i.e., with ym =

zn). Hence, if p < p and agents are rational (γ = 0), each individual reads a website that

reports the signal that coincides with that individual’s majority signal, regardless of his prior

information on the state of the world and regardless of the ranking. Ex ante efficiency is given

by P = µ
∑

K>M
2

(
M
K

)
qK(1− q)M−K + (1− µ)

∑
K>M

2

(
M
K

)
qM−K(1− q)K while interim efficiency

is given by PL = µ if the majority signal is correct (L = K and hence yK = ω) and PL = 1 − µ

if it is incorrect (L 6= K and hence yK 6= ω). Since µ > 1/2 there are more clicks on websites

with ym = yK , implying that, in the limit, a website from the (majority) class c = yK will be

top-ranked. In particular, there are feedback effects to the ranking, but because individuals click

exclusively on websites carrying the signal ym = zn, the ranking does not affect the class of website

they read, and popularity ranking is irrelevant for asymptotic learning.

2. If p > p, rational individuals ignore their signal zn and follow their ex ante most informative

signal xn thus clicking only on websites reporting confirmatory news (i.e., with ym = xn). Hence,

if p > p and agents are rational (γ = 1), each individual reads a website that reports the signal
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that coincides with that individual’s signal on the true state of the world. Ex ante efficiency P

and interim efficiency PL are both equal to p (excepting cases L = 0,M). Since p > 1/2 there are

more clicks on websites with ym = ω, implying that, in the limit, a website from the class with

the correct signal, c = ω, will be top-ranked. Thus again, while there are feedback effects to the

ranking, individuals click exclusively on websites carrying the signal ym = xn, so that the ranking

does not affect the class of website they read, and popularity ranking is irrelevant for asymptotic

learning.23

3.2 Absence of Attention Bias

Suppose now individuals have no attention bias (α = 0) but may derive value both from reading

confirmatory and majoritarian news (vx ≥ 0, vz ≥ 0, and 0 ≤ γ ≤ 1). Then the website ranking

becomes irrelevant (since all weights (rn,m)α are equal), and it is easy to see that individuals’ website

choices coincide with their original ranking-free choices given in Eq. (3). As a result individuals choose

websites based on their signals (xn and zn) and their desirability levels (vx and vz) but independently

of the ranking. Again, popularity ranking does not contribute to aggregating private information, and

while the intensity of the desirability for reading confirmatory news (γ) as well as the parameters p, µ, q

do affect the probability with which the individuals click on websites with the correct signal, the latter

probability does not change over time. Hence, it is easy to see that P is increasing in p, µ and q and

decreasing in γ for p not too large, and PL is increasing in p and L, and is increasing or decreasing in

µ depending on whether the majority have the correct signal or not (L = K or L 6= K).24

Such an environment with popularity ranking and no attention bias (α = 0) is of particular interest,

since it is outcome-equivalent in terms of clicking probabilities to an environment with random ranking—

a ranking satisfying rn,m = 1
M , for all n,m. This follows because, when there is popularity ranking

with zero attention bias (α = 0), all websites receive equal weights in the choice probabilities (ρn,m),

and when there is random ranking, then, regardless of the attention bias (α), all websites also receive

equal weights in the website choice probabilities. As a result, website choice probabilities (ρn,m) always

coincide in the two cases and do not change as individuals enter to perform their searches. We now

turn to our main results characterizing asymptotic learning in the presence of behavioral (and näıve)

individuals.

23Clearly, in a different model where all individuals but N have γ = 1, and individual N näıvely clicks on the top-ranked
website, asymptotic learning (by that N ’th individual) will always be achieved with probability 1. In Section 5.2, we briefly
discuss learning with sophisticated individuals.

24Throughout the paper, we use the term decreasing (and increasing) in the weak sense, that is, we say a function f is
decreasing (increasing) if x ≥ y implies f(x) ≤ f(y) (f(x) ≥ f(y)). When x ∈ N, we say f is decreasing (increasing) at x
if f(x+ 1) ≤ f(x) (f(x+ 1) ≥ f(x+ 1).
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4 Opinion Dynamics with Behavioral Individuals

The key contribution of our model is to combine endogenous ranking of websites with sequential clicking

behavior of behaviorally biased and näıve individuals. We now study the general case where vx ≥ 0

and vz ≥ 0 and hence 0 ≤ γ ≤ 1 and α ≥ 0. Before discussing the overall implications of our model in

terms of asymptotic learning, we first discuss some implications on website traffic.

4.1 Popularity Ranking and the Advantage of the Fewer (AOF )

The following proposition states our first main result. It illustrates a rather general phenomenon induced

by popularity ranking, which we refer to as the advantage of the fewer (AOF ), whereby a set of websites

with the same signal can get a greater total clicking probability by individuals sufficiently far up in the

sequence, if the set contains fewer websites than if it contains more of them (as long as it does not

switch from being a set of majority to a set of minority websites).25

Proposition 1. Fix a search environment E with uniform initial ranking r1, and consider interim

realizations of E that vary in the number of websites with correct signal. Then, the limit clicking

probability (ρ∞,J) on all websites (J ⊂ M) carrying a given signal in {0, 1}, is decreasing in the number

of those websites (#J), provided the parameters satisfy α > 0, 0 < γ < 1, and #J /∈ {0, M−1
2 ,M − 1}.

This suggests that having fewer websites reporting a given signal enhances their overall traffic.26

The intuition behind the AOF effect is straightforward. When there are fewer websites with a given

signal, the flow of individuals interested in reading about that signal are concentrated on fewer web-

sites, thus leading to relatively more clicks per website. This (trivial) static effect transforms into a

dynamic, amplified one through the interaction of the popularity ranking with individuals’ stochastic

choices: popularity ranking induces relatively higher rankings for those fewer websites, making them

more attractive for subsequent individuals, inducing more trade-offs in favor of those fewer higher

ranked websites, leading to even more clicks, and so on. The process, which can be seen as embodying a

“few get richer” dynamic, gets repeated until it stabilizes in the limit, generating a potentially sizeable

amplification of total traffic on all websites with the given signal.27

The amplification effect generated by the AOF hinges upon four basic assumptions underlying our

framework: (i) the ranking is based on popularity (ν > 0), (ii) websites are partitioned into equivalence

25Recall that, unless otherwise stated, our search environments always have popularity-based rankings (see Section 2.4).
26It is important to note that, while, for 0 < α ≤ 1, the unique limit always satisfies AOF ; for α > 1, depending on the

initial condition (i.e., the initial ranking; see also Section 5.1), there can be multiple limits, of which the asymptotically
stable ones, that is, the only ones that can be reached by the process ρn, also always satisfy AOF .

27Figure A.1 in the Online Appendix, provides a graphical illustration of the amplification effect.
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classes (there are two classes, c ∈ {0, 1}), (iii) preferences are such that some individuals only click

on websites from a given class (this happens when xn = zn), while some individuals make stochastic

choices trading off content as a function of the rank of the websites (this happens when xn 6= zn and

when 0 < γ < 1, α > 0, and the numerator of ρn,m is homogeneous of degree > 1 in rn,m and ρ∗n,m),

(iv) preferences are constant on the equivalence classes and do not depend on the numbers of websites

in each class (Vc is constant on class c and does not depend on the numbers of websites in c). The

following result—summarizing some of the cases where AOF does not apply—follows from the proof of

Proposition 1.

Corollary 1. Fix a search environment E, then AOF does not apply whenever:

1. ν = 0.

2. α = 0.

3. γ = 0 or γ = 1.

4. α ≥ 0, β ≥ 0, but α+ β < 1, for clicking probabilities defined by ρ̃n,m =
(rn,m)α·(ρ∗n,m)β∑

m′∈M (rn,m′ )α·(ρ∗
n,m′ )

β .

Points 1–3 are self-explanatory. In particular, AOF does not apply when individuals are rational.

As discussed in Section 3, when individuals do not have any behavioral preferences over website content

(γ = 0 or γ = 1, depending on whether p is below or above p̄) they do not face any trade-off in their

choice over websites, and all website traffic goes to websites of the same class. Also, when there is no

attention bias (α = 0), ranking does not matter and there is no amplification effect.

Finally, point 4 considers a slight generalization of the choice function defined in Eq. (4). In particular

it allows to show that taking arbitrary positive monotonic transformations may be of consequence for

AOF . In fact, when the effect of both the ranking (rn,m) and the ranking-free choice probabilities

(ρ∗n,m) are sufficiently small (0 ≤ α + β < 1) then the trade off between content and ranking induces

an opposite effect, whereby fewer outlets in a class attract less traffic. Given our definition of ρn,m

with ρ∗n,m representing ranking-free choice probabilities, we view our benchmark model with β = 1 as

particularly natural since it allows ρn,m to coincide with ρ∗n,m when α = 0 (i.e., β < 1 would violate

the interpretation of ρn,m and ρ∗n,m both being clicking probabilities that moreover coincide when the

ranking is irrelevant).

We conclude with two final remarks regarding AOF .

1. While Corollary 1 highlights some essential assumptions for AOF to work, we would also like

to stress that several other assumptions implicit in our framework are not necessary for AOF
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to hold.28 To show this, the online appendix provides examples illustrating cases, where: (i)

parameters are outside the assumed range, for example, when individual signals are uninformative

(p = µ = 1/2), (ii) individuals need not distinguish between majority and minority websites and

simply choose based on independent cues (xn and zn) that can be interpreted as general desirable

attributes of the different websites; (iii) rankings are not stochastic but rather a list of 1st to M th

ranked website , as a function of total traffic received up to individual n, (iv) individual choices

are pure realizations of the choice functions (ρn,m), or (v) where the total number of websites is

not necessarily fixed, thus allowing for cases, where two or more websites can merge and thereby

reduce the number of overall websites (M).29 These examples further suggest that AOF is a

potentially robust phenomenon. Importantly, as already pointed out, in our setting AOF applies

only if individuals have both attention bias and behavioral preferences over website content. Yet,

it is easy to see that the mechanism generating such an effect may apply to settings with rational

agents as long as individuals face a trade-off in choosing alternative news sources and they have

some cognitive or economic cost which is increasing in the amount of news that they read.

2. AOF can contribute to the understanding of the spread of misinformation, in the sense that a

signal that is carried by few websites, for example, a controversial or “fake news” report, may

paradoxically receive amplified traffic precisely because it is carried by few websites.30 This is

consistent with various claims that the algorithms used by Google and Facebook have apparently

promoted websites reporting “fake news”.31 Indeed, even in queries with a clear factual truth,

28In a follow-up paper, Germano et al. (2019) also obtain an AOF effect within a related framework, where majority
signals are absent, individual clicks are realizations of the clicking probabilities and where the ranking is deterministic
and based on the total number of clicks received by a website. They also conduct a proof of concept experiment with
participants from Amazon Mechanical Turk.

29One might expect that allowing for free entry would tend to weaken the AOF . However, while addressing free entry of
websites and even modeling the strategic choices of websites is outside the scope of this paper, it is worth noting that the
effect of allowing free entry on the AOF may be limited, especially in those cases where the “fewer websites” are minority
websites carrying “dubious” information. Indeed, it may not be in the interest of mainstream websites (which are likely
to also care about their reputation) to report such information. Also, new minority websites may not necessarily be able
to “steal” much traffic from the existing ones due to their lower ranking (as explained by the rich-get-richer dynamic, see
Section 5.1). Hence, we believe the result may be particularly relevant for dubious information, carried by relatively few
websites and that “resonates” with a significant fraction of individuals. More generally, the AOF might also be interpreted
as a mechanism ensuring that minority websites will always be present in a market equilibrium. Indeed, if too may websites
reporting a majoritarian opinion enter the market, then AOF ensures that at some point it might be better (i.e., more
profitable in terms of expected website traffic) to enter as a website reporting a minority opinion. At the same time, if
too many websites reporting the minority opinion were to enter, at some point it might be better to enter as a website
reporting a majoritarian opinion.

30The case of µ = 1 mentioned above may be such a case. Concretely, if there was a single minority “fake news” website
(so that M − L = 1), then the probability that that website would be visited by an individual in the limit is (assuming

µ = 1 and γ not too small) ρ∞,fake = 1 − γp(M−1)
γM−1

. Moreover, such a “fake news” website will be the top ranked one if

γ > 1
M(1−p)

.
31On Google’s search algorithm prioritizing websites reporting false information, see: “Harsh truths about fake news for

Facebook, Google and Twitter”, Financial Times, November 21, 2016; “Google, democracy and the truth about internet
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Figure 1: Interim efficiency (PL) as a function of the number of websites with correct signal (L) for γ = 0.33 (black line)
and other values of γ (dashed lines) for the cases of popularity ranking (left) and random ranking (right). In both panels,
M = 20, p = 0.55, µ = 0.9, and r1 is uniform.

such as yes-no questions within the medical domain, top-ranked results of search engines provide

a correct answer less than half of the time (White, 2013). Importantly, empirical evidence shows

that websites reporting misinformation may acquire a large relevance in terms of online traffic and

in turn may affect individuals’ opinions and behavior (Carvalho et al., 2011; Kata, 2012; Mocanu

et al., 2015; Shao et al., 2016). By the same token, “authoritative” or mainstream websites that

are relatively numerous will receive less traffic overall, the more numerous they are.

4.2 Popularity Ranking and Asymptotic Learning

4.2.1 Non-monotonicity of Interim Efficiency

Before analyzing ex-ante efficiency, we first study interim efficiency. The following result follows from

Proposition 1 and illustrates how interim efficiency is a non-monotonic function of the number of websites

carrying the correct signal (L) due to the advantage of the fewer effect (AOF ).

Corollary 2. Fix a search environment E with uniform initial ranking r1, and consider interim realiza-

tions of E that vary only in the number of websites with correct signal (L). Then PL is non-monotonic

in L. In particular, when α and γ are interior (α > 0 and 0 < γ < 1), then PL is increasing in L at

L ∈ {0, M−1
2 ,M − 1}, but is decreasing in L otherwise.

The non-monotonicity in L follows from three basic facts: (i) small majorities (or minorities) of

websites with a correct signal result in higher interim efficiency (PL) than large majorities (or minorities),

resulting in a decreasing effect of L on PL induced by AOF , (ii) when L increases from M−1
2 to M+1

2 ,

then interim efficiency increases, since the correct signal (yL) switches from being a minority to being

search”, The Observer, December 4, 2016. On Facebook showing websites reporting false information in the top list of its
trending topics, see: “Three days after removing human editors, Facebook is already trending fake news,” The Washington

Post, August 29, 2016.
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Figure 2: Ex ante efficiency (P) as a function of the accuracy of websites’ signals (q) (right) with popularity-ranking (black
line) and random-ranking (red dashed). The figure also shows net ex ante efficiency (gray dashed) with popularity-ranking.
M = 20, p = 0.55, µ = 0.9, γ = 0.33 and r1 is uniform.

a majority signal, (iii) when L increases from 0 to 1 or from M − 1 to M , interim efficiency obviously

increases.

Figure 1 shows the non-monotonicity of interim efficiency PL in L, as stated in Corollary 2, as

well as the AOF effect as discussed in Section 4.1, in the presence of the popularity ranking when the

desirability for reading confirmatory news is interior (γ = 0.33), (black line, left panel), and shows that

interim efficiency is monotonic and AOF is absent when γ = 0, 1 (left panel, dashed lines) or when the

ranking is random (and therefore popularity ranking is switched off), (right panel).

4.2.2 Ex Ante Efficiency

Comparative statics and informational feedback effects. Our notion of ex ante efficiency (P)

is a measure of asymptotic learning that obtains in our popularity-ranking based search environments.

The following proposition describes comparative statics of P with respect to basic parameters of the

model.

Proposition 2. Let E be a search environment with a uniform initial ranking r1. Then:

1. (Individual accuracy) P is increasing in p and, if p < µq, also in µ.

2. (Website accuracy) P can be both increasing or decreasing in q.

3. (Behavioral preference & attention bias) P can be both increasing or decreasing in γ and in α.

We briefly discuss these effects.

1. (Individual accuracy) Higher levels of p and µ always increase interim hence also ex ante efficiency.

This is not just the consequence of the direct effect of more accurate private signals. The direct

effect is increased by the dynamic one, since more individuals receiving a correct signal, increases
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the number of clicks on websites reporting that signal, which in turn increases their ranking. This

further increases the probability that subsequent individuals will also choose websites reporting

a correct signal so that, even though individuals are assumed to be näıve, the higher p and µ

are, the more effective popularity ranking is in aggregating information and creating a positive

externality that enhances asymptotic learning.

2. (Website accuracy) A higher q may increase or decrease ex ante efficiency. This is a consequence

of the non-monotonicity of the interim efficiency (Corollary 2), driven by AOF . Higher values of q

make it more likely that the number of websites with correct signal is large. Hence, due to AOF ,

a higher q decreases the clicking probability on websites with a correct signal, thus reducing ex

ante efficiency for intermediate values of γ. If one could switch off AOF , then a higher q would

always increase ex-ante efficiency (i.e., efficiency “net of AOF” is always increasing in q).32 This

stark difference is illustrated in Figure 2.

3. (Behavioral preferences & attention bias) Since a higher value of γ leads to more weight put on

signal xn relative to signal zn, when the former is more informative (p > p̄), it is not difficult to see

that P may be increasing in γ, whereas, when it is less informative (p < p̄), P may be decreasing

in γ. Similarly with the attention bias. Because popularity ranking can generate an externality

from individual clicking to subsequent clicking, which increases with attention bias, an increase

in α can increase ex-ante efficiency, when externalities are positive, and decrease them otherwise.

This is illustrated in Figures 2 and 3 for the case p < p̄, where ex-ante efficiency is plotted for

α = 0 (Prandom) and α = 1 (P). Recall that, as pointed out in Section 3.2, the case of α = 0 is

outcome-equivalent to the case of uniform random ranking throughout.

Popularity-Ranking Effect (PoR). We turn to the key question of how well popularity ranking

performs in terms of asymptotic learning. To simplify the analysis, we focus on the case p < p, where

for each individual n, the majority signal (zn) is the ex ante most informative signal. The complementary

case (p > p) is analogous and leads to similar conclusions regarding asymptotic learning and popularity

ranking. The following definition uses random ranking as a comparison benchmark.

32Specifically, one can define ex ante efficiency “net of AOF” (Pnet) as ex ante efficiency calculated with weighted
constant “average” minority and majority traffic levels, respectively, P⌈M

4
⌉ and P⌈ 3M

4
⌉, formally:

Pnet =

M−1

2∑

k=1

P⌈M
4

⌉

(
M

k

)

qk(1− q)M−k +

M−1∑

k=M+1

2

P⌈ 3M
4

⌉

(
M

k

)

qk(1− q)M−k + qM .

While, in principle, it would be possible to correct the ranking algorithm for the AOF effect, we are unaware of any such
correction undertaken in practice, nor have we seen the effect mentioned in the computer science or machine learning
literature.
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Definition 1. Let E be a search environment with a uniform initial ranking r1, and let E ′ be another

search environment that differs from E only in that the ranking is always a uniform random ranking.

Let P and P ′ denote ex ante efficiency of E and E ′ respectively, then we define the popularity ranking

effect of E (PoR(E)) as the difference:

PoR(E) = P − P ′.

The following result compares popularity ranking and random ranking.

Proposition 3. Let E be a search environment with uniform initial ranking r1 and p < p. Then there

exists µ < 1 such that, for any µ ∈ [µ, 1], there exist 0 < γ < γ̂ ≤ 1, and a threshold function for q,

φ : [0, 1] → [12 , 1], that is decreasing in γ, with φ(γ) = 1, for γ ∈ [0, γ], such that:

1. PoR(E) ≥ 0 for γ ∈ [0, γ̂], provided q ∈ [ pµ , φ(γ)].

2. PoR(E) ≤ 0 for γ ∈ [γ, 1], provided q ∈ [φ(γ), 1].

In other words, assuming the case where the majority signal is the ex ante most informative signal

(p < p) and is sufficiently high (µ ∈ [µ, 1]), we have that, when the desirability of reading confirmatory

news is sufficiently low (γ ∈ [0, γ]), then popularity ranking does better than random ranking. That

is, when individual clicking behavior generates sufficiently positive information externalities, popularity

ranking aggregates information and increases the probability of asymptotic learning relative to random

ranking. Moreover, this continues to hold for higher values of the desirability of reading confirmatory

news (γ ∈ [γ, γ̂], for γ̂ that could go up to 1), provided website accuracy is not too high (q ≤ φ(γ))

(due to AOF ). Put differently, due to AOF , an increase in the ex-ante informativeness of websites (q),

may lead to a negative popularity ranking effect.33 By contrast, when externalities generated are not

sufficiently positive (γ ∈ [γ, 1]), then popularity ranking decreases the probability of asymptotic learning

relative to random ranking, provided website accuracy is sufficiently high (q ≥ φ(γ)). Figures 2 and 3

illustrate Proposition 3: popularity ranking dominates random ranking in terms of ex-ante efficiency

provided q and γ are not too large, and is dominated by random ranking otherwise. A symmetric result

holds in the complementary case, where the private signal (xn) is the ex-ante more informative signal

(p > p). In this case, when both the desirability of reading confirmatory news (γ) and the accuracy on

the private signal (p) are sufficiently high, then popularity ranking does better than random ranking,

again provided the the website accuracy parameter (q) is sufficiently low. This is illustrated in the

Online Appendix.

33By contrast, ex ante efficiency “net of AOF” (Pnet) is above random ranking even for large values of q.
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Figure 3: Ex ante efficiency (P) as a function of the desirability of reading confirmatory news (γ) with popularity-
ranking (black line) and random-ranking (red dashed). The figure also shows net ex ante efficiency (gray dashed) with
popularity-ranking. The plot is drawn for M = 20, p = 0.55, µ = 0.9, q = 0.7, and r1 is uniform.

4.3 Personalized Ranking

Another important question for a ranking algorithm concerns whether it should keep track of, and use,

information it has available concerning the individuals’ identity and past searches. A search engine may

want its algorithm to condition the outcomes of searches on the geographic location of the individuals

(e.g., using the individual’s IP address) or other individual characteristics (e.g., using the individual’s

search history). Accordingly, a personalized search algorithm may output different search results to

the same query performed by individuals living in different locations and/or with different browsing

histories.34

Suppose the set of individuals N is partitioned into two nonempty groups A,B ⊂ N , such that

A ∪B = N and A ∩B = ∅. Suppose the two groups differ in terms of the individuals’ desireability for

reading confirmatory news (γA 6= γB). In any period an individual is randomly drawn from one of the

two groups, that is, from A with probability NA

N and from B with probability NB

N , where NA = #A > 0

and NB = #B > 0. A personalized ranking algorithm then consists of two parallel rankings, namely,

rAn for individuals in A and rBn for individuals in B. Each one is updated as in the non-personalized

case, with the difference that the weight on past choices of individuals from the own group are possibly

different than those from the other one. Set, for any n and m, and for ℓ = A,B, such that n ∈ ℓ,

rℓn,m = (1− νℓ)rℓn−1,m + νℓρℓn−1,m , (10)

where νℓ now depends on whether or not the individual searching at time n− 1 was in the same group

34See Pariser (2011); Dean (2013); MOZ (2013); Vaughn (2014); Kliman-Silver et al. (2015). Hannak et al. (2013)
document the presence of extensive personalization of search results. In particular, while they show that the extent of
personalization varies across topics, they also point out that “politics” is the most personalized query category. See also
Xing et al. (2014) for empirical evidence on personalization based on the Booble extension of Chrome.
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as n (n− 1 ∈ ℓ), and where the weight νℓ, for ℓ = A,B, is given by:

νℓ =
(1− λn)ν

1− λnν
, where λn =





0 if n− 1 ∈ ℓ

λ else ,
(11)

with ν ∈ (0, 1) and λ ∈ [0, 1] parameters of the personalized ranking algorithm. This algorithm now

gives different weights to past choices over websites, depending on whether these choices were taken

by individuals in the same group (weights 1 − ν, ν) or in the other group (weights 1−ν
1−λν ,

(1−λ)ν
1−λν ). In

particular, when λ = 1, the ranking algorithm is fully personalized, whereas, when λ = 0, it coincides

with the non-personalized one previously defined. We implicitly assume that the personalized algorithm

partially separates individuals according to the individual characteristics (i.e., according to the different

parameters γ). We will refer to a personalized search environment Eλ when considering the generaliza-

tion of a search environment E , defined in Section 2.5, to the case where the ranking is described by

Equations (10) and (11) with λ ∈ [0, 1].

Comparative statics and belief polarization. By introducing personalization in our model, we

allow the ranking of websites to be conditioned on (observable) characteristics of the individuals such

that searches performed by individuals in different groups can have different weights. When λ = 0,

there is no difference in the ranking of websites for the two groups, while as λ increases the groups start

observing potentially different rankings which may further trigger different website choices, thus leading

to different opinions. In other words, increased personalization may lead to increased belief polarization.

Definition 2. Fix a personalized search environment Eλ with nonempty groups of individuals A and

B. Let K denote the set of websites carrying the website-majority signal, then we define the degree of

belief polarization of Eλ as:

BP(Eλ) = lim
N→∞

∣∣ρ̂AN,K − ρ̂BN,K

∣∣ .

We say environment Eλ exhibits more belief polarization than E ′
λ, if BP(Eλ) > BP(E ′

λ).

Proposition 4. Let Eλ be a personalized search environment with personalization parameter λ. Suppose

there are two groups of individuals A and B of equal size, then BP(Eλ) is zero if either λ = 0 or γA = γB,

and is otherwise increasing in λ and |γA − γB| .

Non-trivial personalization (λ > 0) can lead to different information held by relatively similar groups

of individuals and thus to polarization of opinions.35 This suggests that individuals might end up into an

35If individuals in different groups were to face also different initial rankings, (rA1 6= rB1 ), then this different rankings
would clearly contribute to further accentuating the evolution of rankings seen by the two groups.
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algorithmically-driven echo chamber. This is in line with Flaxman et al. (2013), who show that search

engines can lead to a relatively high level of ideological segregation, due to web search personalization

embedded in the search engine’s algorithm and to individuals’ preference for confirmatory news. It

is also in line with existing claims and empirical evidence suggesting that the Internet—together with

the online platforms embedded in it—generally contributes towards increasing ideological segregation

(Putnam, 2001; Sunstein, 2009; Pariser, 2011; Halberstam and Knight, 2014; Bessi et al., 2015; Bar-Gill

and Gandal, 2017).

The result of Proposition 4 would also apply if individuals in groups A and B were to differ in other

ex-ante parameters like p or µ. Belief polarization would also be present if the personalized algorithm

were to distinguish individuals according to the realization of their private signals (e.g., individuals in

A and B differing in terms of xn’s or zn’s). At the same time, if individuals in A and B had the same

ex-ante parameters and were not distinguished according to the realization of their private signals, then

belief polarization, if present, would only be a short-run phenomenon driven by interim realization of

individual signals. In the long run, the two groups would exhibit the same probability of clicking on

the given classes of websites.

Next, we study how personalization may actually hinder asymptotic learning.

Personalized-Ranking Effect (PeR). We turn to the effect of personalization on ex-ante efficiency.

Personalization here can be seen as progressively “separating” two groups of individulas by uncoupling

their rankings and thereby switching off potential externalities from one group to the other. To the

extent that the group with weaker behavioral bias exerts a positive externality on the groups’ rankings

and overall ex ante efficiency (which occurs under conditions related to the ones yielding PoR ≥ 0 in

Proposition 3), increasing the personalization may inhibit total ex ante efficiency. Again, to simplify

the analysis, we focus on the case, where the majority signal is the individual’s ex ante most informative

signal (p < p). Parallel conclusions concerning personalization and asymptotic learning can be drawn

for the complementary case (p > p). The following definition uses (standard) popularity ranking

(0 < ν < 1) with no personalization (λ = 0) as a comparison benchmark.

Definition 3. Let E be a non-personalized and Eλ be a personalized search environment with personal-

ization parameter λ, and both with a uniform initial ranking r1. Let P and Pλ denote ex ante efficiency

of E and Eλ respectively, then we can define the personalized ranking effect of Eλ (PeR(Eλ)) as the

difference:

PeR(Eλ) = Pλ − P.

Proposition 5. Let Eλ be a personalized search environment with personalization parameter λ, and
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with a uniform initial ranking r1 and p < p. Suppose there are two nonempty groups of individuals

A and B with 0 ≤ γA < γB ≤ γ. Then there exists µ < 1 such that, for any µ ∈ [µ, 1], there exists

0 < γ < γ̂ ≤ 1, and a threshold function for q, φ : [0, 1] → [12 , 1], that is decreasing in γ, with φ(γ) = 1,

for γ ∈ [0, γ], such that:

1. PeR(E) ≤ 0 for γA, γB ≤ γ for γ ∈ [0, γ̂], provided q ∈ [ pµ , φ(γ)].

2. PeR(E) ≥ 0 for γA, γB ≤ γ for γ ∈ [γ, 1], provided q ∈ [φ(γ), 1].

Although the exact cutoff values for the parameters need not coincide, the parallels between the

popularity ranking effect and the personalized ranking effect are stark. That is, when the desirability

for reading confirmatory news is sufficiently low (γ ∈ [0, γ]) and the accuracy on the majority signal is

sufficiently high (µ ∈ [µ, 1]), then personalized ranking does worse than non-personalized (popularity)

ranking; moreover, this continues to hold for higher values of the desirability for reading confirmatory

news (γ ∈ [γ, γ̂]), provided the accuracy of websites is not too high (q ≤ φ(γ)) (due to AOF ); on the

other hand for the higher values of desirability for reading confirmatory news (γ ∈ [γ, 1]) personalized

ranking will perform better than non-personalized (popularity) ranking, provided accuracy of websites

is sufficiently high (q ≥ φ(γ)). In other words, the forces that lead to a positive (negative) popularity

effect are similar to the ones that lead to a negative (positive) personalization effect. Again, a symmetric

result holds when the private signal (xn) is the ex ante more informative one (p > p) and the desirability

for reading confirmatory news (γ) is sufficiently high, as illustrated in the Online Appendix.

The intuition for the negative relation between the popularity ranking and the personalized ranking

effects (PoR and PeR) is due to the fact that a positive popularity ranking effect occurs when individ-

uals’ parameters generate positive feedback into the dynamics (high accuracy µ and low desirability for

reading confirmatory news γ in the case p < p̄); the same forces favor non-personalization and hence

tend to generate a negative personalized ranking effect. This is because personalization can be seen

as limiting the feedback between individuals in the dynamics, and so, when individuals’ signals tend

to generate positive feedback, it is better not to limit the feedback and hence not to personalize the

ranking, and vice versa when individuals’ signals generate negative feedback. The similarity also with

respect to the website accuracy parameter (q) is due to the AOF effect that is present with or without

personalization.

Figure 4 illustrates the negative relationship between PoR and PeR . Personalized ranking (green

dashed) tends to be dominated (in terms of asymptotic learning) by either non-personalized ranking

(black) or by random ranking (gray dashed). The right-hand panel indicates that when AOF is switched

off, the corresponding “net” PeR effect tends to be negative for any level of ex-ante accuracy of websites.
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Figure 4: Ex ante efficiency with no personalization (Pλ=0) (black) and with personalization w.r.t. γ (Pλ=1) (green
dashed); and with random ranking (gray dashed). The right panel illustrates the same for ex-ante efficiency “net of AOF”.
In both panels, M = 20, q = 0.7, p = 0.55, µ = 0.9, γ = 0.33, and r1 uniform.

Finally, it is important to note that our searches are common value searches such that asymptotic

learning obtains when individuals read websites that carry the (same) correct signal. When individuals

have private and non-common values, then personalization may be relevant for enhancing asymptotic

learning of typically multiple and distinct signals.

5 Robustness and Extensions

5.1 Non-Uniform Initial Ranking and the Rich Get Richer

Many of the propositions stated in the paper assumed a uniform initial ranking. We now study this

assumption in more detail, looking at environments with general attention bias (α ≥ 0). As it turns

out, the expected limit clicking probabilities ρ̂∞,m only depend on the initial ranking when α > 1. In

this case, there is also a “rich-get-richer” effect.

Proposition 6. Let E be a search environment with attention bias parameter α ≥ 0 and with interim

realization 〈ω; (L, (ym))〉, with interior initial ranking r1,m > 0 for all m. Then, if attention bias satisfies

0 ≤ α ≤ 1, then the expected limit clicking probabilities ρ̂∞,m do not depend on r1. This is not true if

α > 1.

The evolution of a website’s ranking based on its “popularity,” interacted with a sufficiently large

attention bias (α > 1) exhibits a rich-get-richer dynamic, whereby the ratio of the expected clicking

probabilities of two websites m,m′, with r1,m > r1,m′ > 0 increases over time as more agents perform

their search. The effect is further magnified, the larger α is. Importantly, the differences in the ranking

probabilities (rn) and in the expected website choice probabilities (ρ̂n), are driven by the initial ranking

(r1) and are amplified by the attention bias. We define this more formally.
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Definition 4. Fix a search environment E with attention bias parameter α ≥ 0 and with interim

realization 〈ω; (L, (ym))〉. We say that E exhibits the rich-get-richer dynamic if, for two websites m,m′ ∈

M with the same signal, ym = ym′ , and different initial ranking, r1,m > r1,m′ > 0, we also have

ρ̂n,m

ρ̂n,m′
>

ρ̂n−1,m

ρ̂n−1,m′
, for any n > 0.

When an environment exhibits a rich-get-richer dynamic, then the ratio of the expected probability

of two websites (with the same signal but different initial ranking) being visited not only persists over

time (this follows from κ > 0), but actually increases. We can state the following.

Proposition 7. Let E be a search environment with attention bias parameter α ≥ 0 and with interim

realization 〈ω; (L, (ym))〉. Then we have, for any two websites m,m′ ∈ M with ym = ym′ and r1,m >

r1,m′ > 0, and n > 1:

ρ̂n,m
ρ̂n,m′





<

=

>





ρ̂n−1,m

ρ̂n−1,m′





if α < 1

if α = 1

if α > 1 .

(12)

In particular, if the attention bias is large enough (α > 1), then E exhibits the rich-get-richer dynamic.

This proposition shows that the attention bias plays a crucial role in the evolution of website traffic.

When 0 ≤ α < 1, initial conditions do not matter in the limit (as N → ∞), in the sense that websites

with the same signal will tend to be visited with the same probability in the limit. When α = 1 the ratios

of the expected clicking probabilities remain constant for websites with the same signal. When α > 1,

initial conditions matter and the evolution of website traffic follows a rich-get-richer dynamic. Traffic

concentrates on the websites that are top ranked in the initial ranking. The rich-get-richer dynamic is

in line with the “Googlearchy” suggested by Hindman (2009), who argues that the dominance of popular

websites via search engines is likely to be self-perpetuating. Most importantly, the rich get richer pattern

of website ranking (and traffic) via search engines is consistent with established empirical evidence (Cho

and Roy, 2004).36

5.2 Opinion Dynamics with Sophisticated Individuals

We here briefly discuss opinion dynamics with sophisticated individuals and consider two separate cases.

In Section 5.2.1, we consider sophisticated and rational individuals that can fully observe the history of

the ranking and can therefore deduce the signals of the individuals entering before them. In Section 5.2.2,

36Indeed, even if some scholars have argued that the overall traffic induced by search engines is less concentrated than it
might appear due to the topical content of user queries (Fortunato et al., 2006), the rich-get-richer dynamic is still present
within a specific topic.
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we further allow such sophisticated and rational individuals to also derive some value from reading

confirmatory or majoritarian news (besides having attention bias), so that with some probability (1−η)

they may make non-rational choices. In both cases, we consider individuals maximizing the probability

of reading a website carrying the correct signal. The two cases predict rather different outcomes in

terms of information aggregation. When individuals do not have any behavioral bias (η = 1) herding

occurs, and relatively little information aggregation takes place. Conversely, when individuals have even

a small amount of behavioral bias (η < 1 but η → 1) full information aggregation may occur.

5.2.1 Asymptotic Learning with Rational Individuals

Suppose as in Section 3 that individuals are rational in the sense that they only derive value from

reading a website that carries the ex ante most informative signal. Suppose moreover that they are also

sophisticated in the sense that, besides the two signals xn and zn, they also know the parameters of

the ex ante environment, (E) and can observe the whole evolution of the ranking up to n (rt, t ≤ n).

Again, their decision problem reduces to identifying which class of websites carries the ex ante most

informative signal. Initially, for small n, the ex ante most informative signal is given by wn = zn if

p < p and by wn = xn if p > p, where p is defined by Eq. (9). Now, under a basic genericity assumption

on the parameters vx and vz (vx 6= vz), since the ranking (rn) is cardinal, as the agents enter and learn

the evolution of the ranking, the first ones can also compute what signal each individual before them

obtained and therefore effectively also has access to the history of signals (xt, zt) for t ≤ n. This happens

until, after few observations, herding behavior follows and all individuals ignore their own private signals

(xn, zn) and instead click on the websites from the same class. This leads to very limited learning from

clicking behavior and to an overall very low level of ex ante and interim efficiency.

5.2.2 Asymptotic Learning with Behavioral Individuals

On the other hand, if we consider a slight variation of this model, and hence also of the one used

throughout the paper, and assume that individuals all derive value from three sources, namely, (i) from

reading news that confirms their prior — again, this happens when xn = ym and gives value vx > 0, and

gives value 0 otherwise (when xn 6= ym); (ii) from reading majoritarian news — again, this happens

when zn = ym and gives value vz > 0, and gives value 0 otherwise (when zn 6= ym), and (iii) from

reading news that is ex-ante most informative, that is, that has the highest probability of covering

the true state of the world — this happens when wn = ym and gives value vw > 0, and gives value 0

otherwise (when wn 6= ym), where wn is determined from the individual’s information at time n. Then,

again under a generic assumption on the parameters vx, vz and vw (vx 6= vz, vx 6= vw, vz 6= vw as well
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as vx + vz 6= vw, vx + vw 6= vz and vz + vw 6= vx), and if individuals are sophisticated, then they will

continue to learn from observing the ranking as more and more individuals enter, such that there can

be asymptotic learning in the limit. We briefly sketch this.

Let c ∈ {0, 1} denote again the class type of a website , then we can write individual n’s desirability

value from reading website from class c as:

Vc(xn, zn, wn) = I{xn=c} · vx + I{zn=c} · vz + I{wn=c} · vw. (13)

and can also write the Luce choice rule of choosing a website from class c as:

ρc(xn, zn, wn) =
Vc(xn, zn, wn)

Vc(xn, zn, wn) + V¬c(xn, zn, wn)
. (14)

It can be shown that under the mentioned genericity assumption on vx, vz and vw, again because the

ranking is cardinal and updated via clicking probabilities, as individuals enter and learn the evolution

of the ranking, they can compute the individuals’ signals (xt, zt, wt) for each individual with t < n.

Since p > 1
2 , this implies that just from the signals xt, t < n, individual n’s ex-ante most informative

signal wn will in the limit converge to being an arbitrarily precise signal of the true state ω. Hence,

in the limit, individuals will click on websites that carry the signal ym = ω with probability at least

η ≡ vw
vx+vz+vw

. In particular, if individuals are arbitrarily close to being rational (η → 1), but always

have some arbitrarily small desirability from reading confirmatory news (vx > 0), then both ex ante

and interim efficiency will be arbitrarily close to 1. Clearly, the assumption that individuals can observe

the whole evolution of the ranking is a strong one. It is worth exploring the possibility of weakening

this, without going to the other extreme, assumed throughout the paper, that individuals not only do

not observe the evolution of the ranking but that, moreover, they do not learn anything from observing

rn. We leave this for future work. We note however, that under the assumption that individuals do not

learn anything from observing the ranking, the case where vx, vz, vw > 0 is equivalent to the one studied

in the rest of the paper, where vx, vz > 0 and vw = 0 since wn will either coincide with xn and/or zn so

that individuals always ultimately only care about xn and zn.

6 Conclusions

Several decades after the introduction of the Internet and the World Wide Web, there is still a vivid

and growing popular and academic debate on the possible impact of digital platforms on public opinion

(e.g., Introna and Nissenbaum, 2000; Hargittai, 2004; Rieder, 2005; Hindman, 2009; Sunstein, 2009;
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Granka, 2010; Pariser, 2011; Bakshy et al., 2015; Lazer, 2015; Tufekci, 2015). Even among regulators

and policymakers, misinformation online ranks high as a key concern, leading some even to call for the

direct regulation of online content (e.g., Germany and France have recently proposed laws to combat

“fake news”).37

Unfortunately, to understand and address these issues, it is not enough to just obtain access to the

algorithm code used by digital platforms, as the interplay between ranking algorithms and individual

behavior “yields patterns that are fundamentally emergent” (Lazer, 2015, p. 1090). In this sense, the

theoretical framework we develop seeks to inform and provide some formal guidance to the above debate,

by focusing on the interaction between users’ search behavior and basic and well-established aspects of

ranking algorithms (popularity and personalization). Our results point out that popularity rankings can

have an overall positive effect on asymptotic learning by fostering information aggregation, as long as

individuals can, on average, provide sufficiently positive feedback to the ranking algorithm. At the same

time, we uncover a rather general property of popularity-based rankings, we call the advantage of the

fewer (AOF ) effect. Roughly speaking, it suggests that the smaller the number of websites reporting

a given information, the larger the share of traffic directed to those fewer websites. Because dubious

or particularly controversial information is often carried by a (relatively) small number of websites, the

AOF effect may help explain the spread of misinformation, since it shows how being small in number

may actually boost overall traffic to such websites. The model also provides insights on a controversial

component of the ranking algorithm, namely personalization. While personalized rankings can clearly

be efficient for search queries on private value issues (e.g., where to have dinner), we find that for queries

on common value issues (e.g., whether or not to vaccinate a child) they can hinder asymptotic learning

besides also deepening belief polarization.

Understanding the role and effects of ranking algorithms, directly or indirectly used by billions of

individuals daily, is a top priority for understanding the functioning of our information society. We view

this paper as contributing a first step in this direction.

37See “How do you stop fake news? In Germany, with a law.” Washington Post, April 5 2017. “Emmanuel Macron
promises ban on fake news during elections.” The Guardian, January 3, 2018.
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APPENDIX

A Mean Dynamics Approximation

In order to evaluate the actions taken by an agent in the limit as n → ∞, we use some techniques

of stochastic approximation from Norman (1972) as exposed in Izquierdo and Izquierdo (2013), which

we refer to as the mean dynamics approximation. We here give a brief outline in order to follow our

calculations and proofs, but we refer to the latter two sources for more details. The basic idea of the

approach is to use the expected increments to evaluate the long run behavior of a dynamic process with

stochastic increments. The key result we use allows us to relate our discrete stochastic process (rn and

hence ρn for large enough n) with points on a trajectory converging to an asymptotically stable point

that solves an ordinary differential equation (ẋ = g(x)) to be defined below. To make the connection,

we begin by rewriting the ranking probabilities using Equation (4) as,

rn,m = (1− ν)rn−1,m + νρn−1,m

= rn−1,m + ν(ρn−1,m − rn−1,m)

= rn−1,m + ν

(
(rn−1,m)α · ρ∗n−1,m∑
m′(rn−1,m′)α · ρ∗n−1,m′

− rn−1,m

)
.

It is clear that the only stochastic term is given by the expressions ρ∗n−1,m. Replacing these with their

expectations yields the deterministic recursion in r̂n,m,

r̂n,m = r̂n−1,m + ν (ρ̂n−1,m − r̂n−1,m) ,

where

ρ̂n−1,m = E[ρn−1,m] = pµ
(r̂n−1,m)α · ρ̂∗

00
m∑

m′(r̂n−1,m′)α · ρ̂∗
00
m′

+ p(1− µ)
(r̂n−1,m)α · ρ̂∗

01
m∑

m′(r̂n−1,m′)α · ρ̂∗
01
m′

+ (1− p)µ
(r̂n−1,m)α · ρ̂∗

10
m∑

m′(r̂n−1,m′)α · ρ̂∗
10
m′

+ (1− p)(1− µ)
(r̂n−1,m)α · ρ̂∗

11
m∑

m′(r̂n−1,m′)α · ρ̂∗
11
m′

(A.1)

is the expected clicking probability of the individual entering in period n− 1, and where the expected

ranking-free values ρ̂∗
00
m , ρ̂∗

01
m , ρ̂∗

10
m , ρ̂∗

11
m are given by the following table, for L 6= 0,M :38

ρ̂∗
00
m ρ̂∗

01
m ρ̂∗

10
m ρ̂∗

11
m

m ∈ L, yL 6= yK γ/L 1/L 0 (1− γ)/L

m ∈ L, yL = yK 1/L γ/L (1− γ)/L 0

m /∈ L, yL 6= yK (1− γ)/(M − L) 0 1/(M − L) γ/(M − L)

m /∈ L, yL = yK 0 (1− γ)/(M − L) γ/(M − L) 1/(M − L)

Here ρ̂∗
00
m represents the expected probability of an individual choosing a website m, contingent on

having received two correct signals xn = ω and zn = yK , when α = 0 (i.e., absent attention bias);

38In the extreme cases, L = 0 or L = M , clearly, ρ̂∗
00

m = ρ̂∗
01

m = ρ̂∗
10

m = ρ̂∗
11

m = 0 (= 1) if m ∈ L,L = 0 or m /∈ L,L = M
(if m ∈ L,L = M or m /∈ L,L = 0).
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ρ̂∗
01
m represents the expected probability of an individual choosing a website m, contingent on having

received a correct signal on the state of the world, xn = ω, and an incorrect signal on the majority,

zn 6= yK , when α = 0, and analogously for ρ̂∗
10
m and ρ̂∗

11
m . Importantly, ρ̂∗

00
m , ρ̂∗

01
m , ρ̂∗

10
m , and ρ̂∗

11
m are

fixed coefficients that do not vary with t. In order to apply the basic approximation theorem we assume

ν is of the order O( 1n) so that, ν → 0 as n → ∞, and, to guarantee smoothness and avoid boundary

problems, we assume there exists ǫ > 0 such that, each r̂n,m ≥ ǫ for all n,m. Moreover, replacing

r̂n−1,m with xm (and hence the vector r̂n−1 with the vector x = (x1, . . . , xM )), we obtain a function

g : ∆ǫ(M) → R
M , defined, for m = 1, 2, . . . ,M , by,

gm(x) = E [ρn−1,m − rn−1,m | rn−1,m = xm for m = 1, . . . ,M ] = θm(x)− xm,

where θ : ∆ǫ(M) → R
M is defined by,

θm(x) = pµ
(xm)α · ρ̂∗

00
m∑

m′(xm′)α · ρ̂∗
00
m′

+ p(1− µ)
(xm)α · ρ̂∗

01
m∑

m′(xm′)α · ρ̂∗
01
m′

+

+(1− p)µ
(xm)α · ρ̂∗

10
m∑

m′(xm′)α · ρ̂∗
10
m′

+ (1− p)(1− µ)
(xm)α · ρ̂∗

11
m∑

m′(xm′)α · ρ̂∗
11
m′

.

Given that the function g is smooth in x on ∆ǫ(M), it can be shown that the expected limit of our

stochastic process can be obtained by solving the ordinary differential equation

ẋ = g(x), (A.2)

for some initial condition x0 ∈ ∆ǫ(M). In particular, for any given initial condition r0, there is a unique

limit, and for small enough values of ν the stochastic process rn (and hence also ρn) tends to follow

the unique solution trajectory and linger around the asymptotically stable limit point of the differential

equation ẋ = g(x). More formally, after verifying that our process rn satisfies Assumptions 1–4 on

p. 261, we apply the following result of Izquierdo and Izquierdo (2013) (summarizing points (i)–(iv) on

pp. 261–262):39

• For any x0 ∈ ∆ǫ(M), the ordinary differential equation ẋ = g(x) with initial condition x(t = 0) =

x0 has a unique solution with trajectory x(t, x0) ∈ ∆(M).

• For finite t, as ν → 0, the stochastic process rn in time step n = [t/ν] converges in probability to

the point x(t, x0) of the trajectory.

• If, for increasing t, the trajectory x(t, x0) approaches an asymptotically stable point, say x∞, then,

for any δ > 0, there exists Nδ < ∞ such that, for any n > Nδ, the probability that the process rn
in time-step n = [t/ν] is in a small neighborhood Bδ of x∞, goes to 1, as ν goes to 0.

• For fixed ν, the process rn eventually approaches its asymptotic behavior.

Roughly put, studying the asymptotically stable solution(s) of the differential equation ẋ = g(x), allows

us to characterize the limit points of the stochastic processes rn and ρn of our search environments

defined in Section 2.
39The assumptions are straightforward to verify in our relatively simple setting, after making the following change of

notation with respect to the notation of Izquierdo and Izquierdo (2013): γ ←→ ν, Xγ
n ←→ rn for given ν, ∆Xγ

n = γY γ
n ←→

∆rn = ν(ρn − rn), and I ←→ ∆ǫ.
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B Proofs

Proof of Proposition 1. We begin by characterizing the limit ranking probabilities using the differen-
tial equation from Appendix A. Since the initial ranking is uniform, we have that the expected ranking
probabilities are equal for websites with the same signal, that is, r̂n,m = r̂n,m′ for any two websites
m,m′ with ym = ym′ . Since we consider partitions of M into sets J and M\J , and ρn,J + ρn,M\J = 1,
it suffices to check the case J = L. To simplify notation, let x = r̂n,L = L · r̂n,m for m ∈ L be the
total expected ranking probability for the websites in L, so that 1 − x is the total expected ranking

probability for the remaining websites in M \ L. Using the expressions for ρ̂∗
00
m , ρ̂∗

01
m , ρ̂∗

10
m , ρ̂∗

11
m from

the table in Appendix A, and assuming that 0 ≤ x ≤ 1, we have that the equations defining the limit
probabilities can be reduced to two equations of the form:

Hminority
L (x;α, µ, γ, p) ≡ θminority

L (x;α, µ, γ, p)− x = 0, for 1 ≤ L ≤
M − 1

2
(B.1)

Hmajority
L (y;α, µ, γ, p) ≡ θmajority

L (y;α, µ, γ, p)− y = 0, for
M − 1

2
≤ L ≤ M − 1, (B.2)

where θminority
L and θmajority

L are defined as:

θminority
L (x;α, µ, γ, p) = p(1− µ) +

pµγ
(
x
L

)α

γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α +
(1− p)(1− µ)(1− γ)

(
x
L

)α

(1− γ)
(
x
L

)α
+ γ

(
1−x
M−L

)α (B.3)

and

θmajority
L (y;α, µ, γ, p) = pµ+

p(1− µ)γ
(
y
L

)α

γ
(
y
L

)α
+ (1− γ)

(
1−y
M−L

)α +
(1− p)µ(1− γ)

(
y
L

)α

(1− γ)
(
y
L

)α
+ γ

(
1−y
M−L

)α (B.4)

It is easy to check that at x = 0 and x = 1, we have, respectively,

0 ≤ p(1− µ) = θminority
L (0;α, µ, γ, p) < θminority

L (1;α, µ, γ, p) = p+ (1− p)(1− µ) < 1,

and similarly, at y = 0 and y = 1,

0 < pµ = θmajority
L (0;α, µ, γ, p) < θmajority

L (1;α, µ, γ, p) = p+ (1− p)µ ≤ 1.

In particular, θminority
L starts at or above the x-function at x = 0 and ends below the x-function at

x = 1. Similarly, θmajority
L starts above the y-function at y = 0 and ends below the y-function at

y = 1. In Figure B.1, we plot θmajority
L for different values of L and for α = 1 on the panel on

the left and for α = 4 on the panel on the right. For most parameter values of interest (i.e., while
α not too large) there is a unique interior solution to both Equations (B.1) and (B.2); this is the
situation depicted on the left panel. However, in general there can be multiple solutions; as depicted

in the right panel. Importantly, the solutions of interest are the ones where the functions θminority
L and

θmajority
L intersect the x- and y-functions from above.40 This is because, the process can only converge

to those due to the fact that while clicking probabilities (θminority
L or θmajority

L ) are above the respective
ranking probabilities (x or y) then the ranking probabilities will tend to increase and this will continue
until the solution (at the intersection) is reached. Similarly, when clicking probabilities are below the
respective ranking probabilities, then the ranking probabilities will tend to decrease until the solution

40As α→∞, the stable solutions converge to the bounds p(1−µ) and p+(1−p)(1−µ) for θminority
L and to p(1−µ) and

p+ (1− p)µ for θmajority
L , where both functions, θminority

L and θmajority
L , become arbitrarily flat. Because these solutions

do not depend on L, this implies that the AOF effect tends to zero in the limit. On the other hand, the unstable solutions
converge to L

M
, where both θminority

L and θmajority
L become arbitrarily steep.

40
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Figure B.1: Limit clicking probability (θmajority
L ) as a function of the limit ranking probability (y) for different values

of L and for α = 1 (left) and α = 4 (right). In both panels, M = 20, µ = 0.9, γ = 0.33, p = 0.55, and r1 is uniform.

is reached. In particular, only the two solutions with arrows are relevant in the panel on the right. The
other interior solutions without an arrow (where the x- and y-functions are intersected from below) are
unstable and are never reached by our dynamic process.41 The key part of the proof is to show that

the (stable) solutions x = xminority
L and y = ymajority

L to the two equations just above are decreasing

in L in the corresponding ranges. Since at the solutions we have Hminority
L (xminority

L ;α, µ, γ, p) = 0 and

Hmajority
L (ymajority

L ;α, µ, γ, p) = 0, we can write the first derivatives with respect to L as:

dxminority
L

dL
= −

∂Hminority
L (xminority

L ;α, µ, γ, p)/∂L

∂Hminority
L (xminority

L ;α, γ, p)/∂x
=

∂θminority
L /∂L

1− ∂θminority
L /∂x

,

dymajority
L

dL
= −

∂Hmajority
L (ymajority

L ;α, µ, γ, p)/∂L

∂Hmajority
L (ymajority

L ;α, γ, p)/∂y
=

∂θmajority
L /∂L

1− ∂θmajority
L /∂y

.

To see that both are negaitive, we need to check that
∂θminority

L

∂L ≤ 0,
∂θmajority

L

∂L ≤ 0 and
∂θminority

L

∂x < 1,
∂θmajority

L

∂y < 1. Straighforward computations yield:

∂θminority
L

∂L
= −

αγ(1− γ)M
(

x(1−x)
L(M−L)

)α

L(M − L)




pµ
(
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α)2
+

(1− p)(1− µ)
(
(1− γ)

(
x
L

)α
+ γ

(
1−x
M−L

)α)2




∂θmajority
L

∂L
= −

αγ(1− γ)M
(

y(1−y)
L(M−L)

)α

L(M − L)




p(1− µ)
(
γ
( y
L

)α
+ (1− γ)

(
1−y
M−L

)α)2
+

(1− p)µ
(
(1− γ)

(
x
L

)α
+ γ

(
1−y
M−L

)α)2




∂θminority
L

∂x
=

αγ(1− γ)
(

x(1−x)
L(M−L)

)α

x(1− x)




pµ
(
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α)2
+

(1− p)(1− µ)
(
(1− γ)

(
x
L

)α
+ γ

(
1−x
M−L

)α)2




∂θmajority
L

∂y
=

αγ(1− γ)
(

y(1−y)
L(M−L)

)α

y(1− y)




p(1− µ)
(
γ
( y
L

)α
+ (1− γ)

(
1−y
M−L

)α)2
+

(1− p)µ
(
(1− γ)

( y
L

)α
+ γ

(
1−y
M−L

)α)2


 ,

where the first two are clearly non-positive always, and negative for interior values α > 0 and 0 < γ < 1
and 0 < x < 1. The last two are also clearly non-negative. However, we now show that they are strictly

41Even if the process were to start at such a solution, any extra click by an individual will move the ranking probability
to the left (or to the right) thereby leading to a situation where the clicking probability is below the ranking probability,
leading the ranking probability to decrease and move further to the left, again until a stable solution with an arrow is
reached (or similarly, if the extra click increases the ranking probability, this will lead to a situation where the clicking
probability is above the ranking probability, leading the ranking probability to increase and move further right until it also
reaches a stable solution with an arrow).
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less than one for the stable solutions. First, it can be checked that, for any limit clicking probability
(0 ≤ x (or y) ≤ 1) and for any other parameter values of the model,

0 ≤
γ
(
x
L

)α

γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α ,
(1− γ)

(
1−x
M−L

)α

γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α ,
γ(1− γ)

(
x(1−x)
L(M−L)

)α

(
(1− γ)

(
x
L

)α
+ γ

(
1−x
M−L

)α)2 ≤ 1,

which, as already seen in Figure B.1 above, implies that for values of α ≥ 1 there may be more than

one solution to Equations (B.1) and (B.2). Moreover, some of the solutions may have a slope greater or

equal to one. However, as explained above, only those solutions are stable which intersect the functions

x (or y) from above. Since both x and y clearly have slope equal to 1 everywhere this implies that

both θminority
L and θmajority

L must have a slope less than one at the stable solutions and hence must

satisfy
∂θminority

L

∂x < 1 and
∂θmajority

L

∂y < 1. This then implies that the respective solutions xminority
L and

ymajority
L will satisfy

∂r̂∞,L

∂L ≤ 0 as well as
∂ρ̂∞,L

∂L ≤ 0 on the relevant ranges, which will also be negative

for interior values of the parameters. This shows AOF for both minority and majority websites with

correct signal. To see that AOF also applies to websites J ⊂ M with incorrect signal, notice that, if

increasing L, decreases ρ̂∞,L, then, since the total number of websites M is fixed and ρ̂∞,L+ρ̂∞,M\L = 1,

this readily implies that decreasing M − L, increases ρ̂∞,M\L. Therefore, given AOF for websites L

with the correct signal and taking J = M\L also shows that AOF applies to minority and majority

websites with incorrect signal. This concludes the proof of Proposition 1. ✷

Proof of Corollary 1. The cases of points 1, 2, and 3 are straightforward. To see 4, consider again

the slightly generalized equation defining the clicking proabilities:

ρ̃n,m =
(rn,m)α · (ρ∗n,m)β∑

m′∈M (rn,m′)α · (ρ∗n,m′)β
, for α ≥ 0, β ≥ 0.

For such clicking probabilities define the limit clicking probabilities with equations of the form (B.1)

and (B.2), but where now θminority
L and θmajority

L are defined by:

θminority
L (x;α, β, µ, γ, p) = p(1− µ) +

pµL
(
x
L

)α ( γ
L

)β

L
(
x
L

)α ( γ
L

)β
+ (M − L)

(
1−x
M−L

)α (
1−γ
M−L

)β
+

(1− p)(1− µ)L
(
x
L

)α (
1−γ
L

)β

L
(
x
L

)α (
1−γ
L

)β
+ (M − L)

(
1−x
M−L

)α (
γ

M−L

)β

θmajority
L (y;α, β, µ, γ, p) = pµ+

p(1− µ)L
( y
L

)α ( γ
L

)β

L
( y
L

)α ( γ
L

)β
+ (M − L)

(
1−y
M−L

)α (
1−γ
M−L

)β
+

(1− p)µL
( y
L

)α (
1−γ
L

)β

L
( y
L

)α (
1−γ
L

)β
+ (M − L)

(
1−y
M−L

)α (
γ

M−L

)β
,

for which we can compute:

∂θminority
L

∂L
= (1− α− β)




pµM
(
x
L

)α (
1−x
M−L

)α ( γ
L

)β (
1−γ
M−L

)β

(
L
(
x
L

)α ( γ
L

)β
+ (M − L)

(
1−x
M−L

)α (
1−γ
M−L

)β
)2

+
(1− p)(1− µ)M

(
x
L

)α (
1−x
M−L

)α (
1−γ
L

)β (
γ

M−L

)β

(
L
(
x
L

)α (
1−γ
L

)β
+ (M − L)

(
1−x
M−L

)α (
γ

M−L

)β
)2




∂θmajority
L

∂L
= (1− α− β)




(1− p)µM
( y
L

)α (
1−y
M−L

)α (
1−γ
L

)β (
γ

M−L

)β

(
L
( y
L

)α ( γ
L

)β
+ (M − L)

(
1−y
M−L

)α (
1−γ
M−L

)β
)2

+
p(1− µ)M

( y
L

)α (
1−y
M−L

)α (
1−γ
L

)β (
γ

M−L

)β

(
L
( y
L

)α (
1−γ
L

)β
+ (M − L)

(
1−y
M−L

)α (
γ

M−L

)β
)2


 .

To see that AOF does not hold, we check that
dxminority

L

dL =
∂θminority

L /∂L

1−∂θminority
L /∂x

≥ 0 and
dymajority

L

dL =
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∂θmajority
L /∂L

1−∂θmajority
L /∂y

≥. This follows, if
∂θminority

L

∂L ≥ 0,
∂θmajority

L

∂L ≥ 0 and
∂θminority

L

∂x < 1,
∂θmajority

L

∂y < 1.

Clearly
∂θminority

L

∂L ≥ 0,
∂θmajority

L

∂L ≥ 0 holds for α + β ≤ 1 and both are positive for interior values

α + β < 1, 0 < γ < 1 and 0 < y < 1. Finally,
∂θminority

L

∂x < 1,
∂θmajority

L

∂y < 1 follow from the same

arguments as in the case β = 1 given in the proof of Proposition 1. ✷

Proof of Corollary 2. Consider Equation (4). Then, when α = 0 it is easy to see that:

ρn,L =





0 if L = 0

(1− µ)p+ (1− µ)(1− p)(1− γ) + µpγ if 1 ≤ L = M−1
2

µp+ µ(1− p)(1− γ) + (1− µ)pγ if M+1
2 ≤ L ≤ M − 1

1 if L = M ,

which can be checked is monotonically increasing in L for µ ≥ 1
2 for any n. Now suppose α > 0. To

see the non-monotonicity, notice again that at L = 0, we have ρn,L = 0, and at L = M − 1, we have
ρn,L = 1, for all n, so that ρn,L and hence ρ∞,L can only increase at L = 0,M − 1. For the case

L = M−1
2 , (M −L = M+1

2 ) note that the difference θmajority
M+1

2

(y;α, µ, γ, p)− θminority
M−1

2

(x;α, µ, γ, p) can be

written as:

θmajority
M−L − θminority

L = (2µ− 1)



p



1−
γ
(
x
L

)α

γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α



+ (1− p)
(1− γ)

(
x
L

)α

(1− γ)
(
x
L

)α
+ γ

(
1−x
M−L

)α





+ p(1− µ)




γ
(

y
M−L

)α

γ
(

y
M−L

)α
+ (1− γ)

(
1−y
L

)α −
γ
(
x
L

)α

γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α





+(1− p)µ




(1− γ)

(
y

M−L

)α

(1− γ)
(

y
M−L

)α
+ γ

(
1−y
L

)α −
(1− γ)

(
x
L

)α

(1− γ)
(
x
L

)α
+ γ

(
1−x
M−L

)α



 ,

where, at the relevant solutions, x = xmajority
L and y = ymajority

M−L , we have y ≥ x, such that the expres-

sions in the second and third lines are both non-negative. And since µ > p
q > 1

2 , the overall difference

(θmajority
M−L − θminority

L ) is non-negative. In all other cases, that is, interior values L /∈ {0, M−1
2 ,M − 1},

ρ∞,L and hence PL are decreasing in L by Proposition 1. ✷

Proof of Proposition 2. From the definition of P in Equation (8), we have:

∂P

∂z
=

M∑

L=0

(
M

L

)
qL(1− q)M−L∂PL

∂z
,

for any given variable z. Hence, we can evaluate the comparative statics by looking at the effects on the
interim efficiency, (∂PL

∂z ). So, for point 1, to see that P is weakly increasing in p, since the initial ranking
is uniform, we can use the same reasoning as in the proof of Proposition 1. In particular, it suffices

to consider the following derivatives for θminority
L and θmajority

L defined respectively in Equations (B.3)
and (B.4) above:

∂θminority
L

∂p
= (1− µ)



1−
(1− γ)

(
x
L

)α

γ
(

1−x
M−L

)α
+ (1− γ)

(
x
L

)α



+ µ
γ
(
x
L

)α

γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α ≥ 0 ,

∂θmajority
L

∂p
= µ



1−
(1− γ)

( y
L

)α

γ
(

1−y
M−L

)α
+ (1− γ)

(
x
L

)α



+ (1− µ)
γ
( y
L

)α

γ
( y
L

)α
+ (1− γ)

(
1−y
M−L

)α ≥ 0 .
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This implies that ρ∞,L = PL is increasing in p for all values of L and hence so is P. To see that P is
increasing in µ, notice that:

∂θminority
L

∂µ
= −p



1−
γ
(
x
L

)α

γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α



− (1− p)
(1− γ)

(
x
L

)α

γ
(

1−x
M−L

)α
+ (1− γ)

(
x
L

)α ≤ 0 ,

∂θmajority
L

∂µ
= p



1−
γ
( y
L

)α

γ
( y
L

)α
+ (1− γ)

(
1−y
M−L

)α



+ (1− p)
(1− γ)

( y
L

)α

γ
(

1−y
M−L

)α
+ (1− γ)

( y
L

)α ≥ 0 .

It can be further checked that for µq > p > 1
2 , the positive effect of when the websites in L form a

majority outweighs the negative effect of when they form a minority. To see this, we can rewrite the
above derivatives as:

∂θminority
L

∂µ
= −θminority

L|µ=1
+ θminority

L|µ=0
,

∂θmajority
L

∂µ
= θmajority

L|µ=1
− θmajority

L|µ=0
.

Moreover, it can be checked that, at the relevant solutions x = xminority
L and y = ymajority

M−L , taking again

as the relevant number of websites with correct signal, L and M −L for the minority and majority case

respectively, we have,

θmajority
M−L|µ=1

(y)− θminority
L|µ=1

(x) ≥ 0, θmajority
M−L|µ=0

(y)− θminority
L|µ=0

(x) ≤ 0.

Together with the above equations, we can obtain the sign of ∂P
∂µ from:

M−1

2∑

L=1

(M
L

)
qL(1− q)M−L ∂θminority

L

∂µ
+

M−1∑

L=M+1

2

(M
L

)
qL(1− q)M−L ∂θmajority

L

∂µ

=

M−1

2∑

L=1

(M
L

)
qL(1− q)M−L(−θminority

L|µ=1
+ θminority

L|µ=0
) +

M−1∑

L=M+1

2

(M
L

)
qL(1− q)M−L(θmajority

L|µ=1
− θmajority

L|µ=0
)

=

M−1

2∑

L=1

(M
L

)
qL(1− q)M−L(−θminority

L|µ=1
+ θminority

L|µ=0
) +

M−1

2∑

L=1

( M

M − L

)
qM−L(1− q)L(θmajority

M−L|µ=1
− θmajority

M−L|µ=0
)

≥

M−1

2∑

L=1

(M
L

)
qL(1− q)M−L

(
(θmajority

M−L|µ=1
− θminority

L|µ=1
)− (θmajority

M−L|µ=0
− θminority

L|µ=0
)
)
≥ 0,

for 1
2 < p < q, which in turn implies that ∂P

∂µ ≥ 0.

To see points 2 and 3, that P is both increasing and decreasing in q, γ, and α, it suffices to check this by

means of examples. As illustrated in Figure 2, P is increasing in q for low values of q and decreasing for

high values of q. Figure 3 shows that P is increasing in α for low values of γ and high values of µ and

decreasing in α for high values of γ and low values of µ. This is also discussed further in Proposition 3.

Finally, to see that P is also both increasing and decreasing in γ, notice that in Figure 3 (drawn for

p = 0.55 and µ = 0.9), P is clearly decreasing in γ. Here we have that p is relatively small and µ

relatively large. It is not difficult to see that, in the opposite case, where p is relatively large and µ

relatively small, then P can be increasing in γ. The Online Appendix illustrates a case of this (with

p = 0.75 and µ = 0.6). Basically, whether or not P is increasing or decreasing in γ depends on which

of the two signals is ex-ante more informative. ✷

Proof of Proposition 3 Assume first that µ = 1. Using the proof of Proposition 1, it can be checked
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that, for α = 0, the solutions to Equations (B.3) and (B.4) take the form, respectively, xminority
L|α=0 =

γp, ymajority
L|α=0 = 1− γ(1− p), whereas, for α = 1, they take the form:

xminority

L|α=1 =

{
(1−γ)L−γp(M−L)

γM−L
if L < γpM

1−(1−γ)p

0 if L ≥ γpM
1−(1−γ)p

, ymajority

L|α=1 =

{
1 if L ≤ (1−γ)M

1−γp
γpL

L−(1−γ)M if L > (1−γ)M
1−γp

.

It is easy to see that, for γ = 1
p+(1−p)M > 0, we have that, for γ ∈ [0, γ], the solution for α = 1 is

always ymajority
L|α=1 = 1, for M+1

2 ≤ L ≤ M −1, which is greater than the corresponding solution for α = 0,

which is ymajority
L|α=0 = 1 − γ(1 − p), for any M+1

2 ≤ L ≤ M − 1. Also, for γ ∈ [0, γ], the corresponding

difference between the solutions xminority
L|α=1 and xminority

L|α=0 is bounded below by −γp. Recall that the

solutions coincide with our interim notion of efficiency for the given number of websites with correct

signal, L, so that from the definition of P in Equation (8), we can write:

P ′ = 0 +

M−1
2∑

L=1

(
M

L

)
qL(1− q)M−Lxminority

L|α=0 +
M−1∑

L=M+1
2

(
M

L

)
qL(1− q)M−Lymajority

L|α=0 + qM ,

P = 0 +

M−1
2∑

L=1

(
M

L

)
qL(1− q)M−Lxminority

L|α=1 +
M−1∑

L=M+1
2

(
M

L

)
qL(1− q)M−Lymajority

L|α=1 + qM ,

Since µq > p > 1
2 , this is enough to imply that, for q > p

µ , while γ ∈ [0, γ], we have, P ≥ P ′ and hence

PoR ≥ 0.

Suppose now γ ≥ γ. Again, for the given γ, there are two parts to the solution ymajority
L|α=1 for α = 1,

namely, a part which is 1 and therefore above the solution for α = 0 (for M+1
2 ≤ L ≤ (1−γ)M

1−γp ) and a

part which is below the solution for α = 0 (for (1−γ)M
1−γp < L ≤ M − 1). In particular, while γ ≤ γ̂ =,

there will be L ≥ M+1
2 for which the solution at α = 1 is above the one at α = 0. Hence, there exists a

level q such that, when q ≤ q, then the cases where L ≤ (1−γ)M
1−γp and hence where the solution ymajority

L|α=1

for α = 1 is above the solution ymajority
L|α=0 for α = 0 will obtain sufficiently large weight, such that ex ante

efficiency for α = 1 (P) is greater or equal to ex ante efficiency for α = 0 (P ′), such that PoR ≥ 0. At

the same time, when q > q , then the cases where L > (1−γ)M
1−γp and hence where the solution ymajority

L|α=1

for α = 1 is below the solution ymajority
L|α=0 for α = 0 will obtain sufficiently large weight, such that ex ante

efficiency for α = 1 (P) is less or equal to ex ante efficiency for α = 0 (P ′), such that PoR ≤ 0. This

gives the function φ, which is equal to 1 on [0, γ] and which is decreasing in γ on [γ, 1], since the set of

interim realizations, where the solution ymajority
L|α=1 for α = 1 is above the solution ymajority

L|α=0 , is determined

by the cutoff (1−γ)M
1−γp , which is decreasing in γ. This shows points 1 and 2 for the case µ = 1. Figure B.2

(left panel) illustrates the case PoR ≥ 0 for µ = 1.

To see that there exists µ < 1, such that points 1 and 2 hold for µ ∈ [µ, 1], consider again the functions

θminority
L and θmajority

L defining the Equations (B.3) and (B.4). These are linear in µ and it can be

checked that the solutions are arbitrarily close to the ones computed for µ = 1. More specifically, it

can be checked that, for general µ, the solutions to Equations (B.3) and (B.4) for α = 0 take the form,

xminority
L|α=0 = (1 − µ)(1 − γ) + γp, ymajority

L|α=0 = µ(1 − γ) + γp). At the same time, while the solutions for

α = 1 no longer have a simple closed form, it can be checked that, for any given L, they are above

the corresponding solutions for α = 0, for L < ((1 − µ)(1 − γ) + γp)M , if L is minority, and for
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Figure B.2: Interim efficiency (PL,P
′
L) for α = 0 (black) and α = 1 (red dashed) as a function of L for µ = 1 (left) and

µ = 0.9 (right). In both panels, M = 20, γ = 0.33, p = 0.55, and r1 is uniform. The left panel also shows the density
function for the binomial distribution for q = 0.7 < φ(γ) (light gray dashed) at which PoR > 0, while the right panel
shows the density function for the binomial distribution for q = 0.9 > φ(γ) at which PoR < 0.

L < (µ(1 − γ) + γp)M , if L is majority. In particular, for such µ ∈ [µ, 1] there will be corresponding

variables γ, γ̂ as well as decreasing cutoff levels for q as a function of γ, such that PoR ≥ 0 or PoR ≤ 0

depending on wehther q is above or below the cutoff. Figure B.2 (right panel) illustrates the case

PoR ≥ 0 for µ < 1. ✷

Proof of Proposition 4. For simplicity, we consider the case, where one half of the population has γA
and the other half has γB, and where γA 6= γB. Recall the equation defining the ranking probabilities

in the case of personalization (Equations (10) and (11)), for any n and m, and for ℓ = A,B:

rℓn,m = (1− νℓ)rℓn−1,m + νℓρℓn−1,m ,

where:

νℓ =
(1− λn)ν

1− λnν
and where λn =

{
0 if n− 1 ∈ ℓ

λ else .

We can apply the mean dynamics approximation and obtain the deterministic recursions:

r̂An,m = r̂An−1,m + ν
(
ρ̂An−1,m − r̂An−1,m

)
+

(1− λ)ν

1− λν

(
ρ̂Bn−1,m − r̂An−1,m

)

r̂Bn,m = r̂Bn−1,m + ν
(
ρ̂Bn−1,m − r̂Bn−1,m

)
+

(1− λ)ν

1− λν

(
ρ̂An−1,m − r̂Bn−1,m

)
, (B.5)

where, following Equation (A.1), we can write, for ℓ = A,B:

ρ̂ℓn−1,m = E[ρℓn−1,m] = pµ
(r̂ℓn−1,m)α · v̂∗

00
m (γℓ)

∑
m′(r̂ℓn−1,m′)α · v̂∗

00
m′(γℓ)

+ p(1− µ)
(r̂ℓn−1,m)α · v̂∗

01
m (γℓ)

∑
m′(r̂ℓn−1,m′)α · v̂∗

01
m′(γℓ)

+ (1− p)µ
(r̂ℓn−1,m)α · v̂∗

10
m (γℓ)

∑
m′(r̂ℓn−1,m′)α · v̂∗

10
m′(γℓ)

+ (1− p)(1− µ)
(r̂ℓn−1,m)α · v̂∗

11
m (γℓ)

∑
m′(r̂ℓn−1,m′)α · v̂∗

11
m′(γℓ)

.

Taking the limit ν → 0 in the equation system (B.5) with r̂ℓn,m = r̂ℓn−1,m, for ℓ = A,B, yields the

equations determining the limit clicking probabilities with personalization, which take the form:

1

2− λ
ρ̂An−1,m +

1− λ

2− λ
ρ̂Bn−1,m − r̂An−1,m = 0 and

1

2− λ
ρ̂Bn−1,m +

1− λ

2− λ
ρ̂An−1,m − r̂Bn−1,m = 0.
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Replacing r̂An−1 with x = (x1, . . . , xM ) and replacing r̂Bn−1 with y = (y1, . . . , yM ), we can study the

function g : ∆ǫ(M)×∆ǫ(M) → R
2M , defined, for ℓ = A,B, m = 1, . . . ,M , by:

gAm(x, y) = θAm(x, y)− xm and gBm(x, y) = θBm(x, y)− ym

where θℓ : ∆ǫ(M)×∆ǫ(M) → R
M , ℓ = A,B, is defined by,

θAm(x, y) =
1

2− λ

(
pµ · (xm)α · v̂∗

00
m (γA)

∑
m′ (xm′ )α · v̂∗

00
m′ (γA)

+
p(1− µ) · (xm)α · v̂∗

01
m (γA)

∑
m′ (xm′ )α · v̂∗

01
m′ (γA)

+
(1− p)µ · (xm)α · v̂∗

10
m (γA)

∑
m′ (xm′ )α · v̂∗

10
m′ (γA)

+
(1− p)(1− µ) · (xm)α · v̂∗

11
m (γA)

∑
m′ (xm′ )α · v̂∗

11
m′ (γA)

)

+
1− λ

2− λ

(
pµ · (ym)α · v̂∗

00
m (γB)

∑
m′ (ym′ )α · v̂∗

00
m′ (γB)

+
p(1− µ) · (ym)α · v̂∗

01
m (γB)

∑
m′ (ym′ )α · v̂∗

01
m′ (γB)

+
(1− p)µ · (ym)α · v̂∗

10
m (γB)

∑
m′ (ym′ )α · v̂∗

10
m′ (γB)

+
(1− p)(1− µ) · (ym)α · v̂∗

11
m (γB)

∑
m′ (ym′ )α · v̂∗

11
m′ (γB)

)
,

θBm(x, y) =
1− λ

2− λ

(
pµ · (xm)α · v̂∗

00
m (γA)

∑
m′ (xm′ )α · v̂∗

00
m′ (γA)

+
p(1− µ) · (xm)α · v̂∗

01
m (γA)

∑
m′ (xm′ )α · v̂∗

01
m′ (γA)

+
(1− p)µ · (xm)α · v̂∗

10
m (γA)

∑
m′ (xm′ )α · v̂∗

10
m′ (γA)

+
(1− p)(1− µ) · (xm)α · v̂∗

11
m (γA)

∑
m′ (xm′ )α · v̂∗

11
m′ (γA)

)

+
1

2− λ

(
pµ · (ym)α · v̂∗

00
m (γB)

∑
m′ (ym′ )α · v̂∗

00
m′ (γB)

+
p(1− µ) · (ym)α · v̂∗

01
m (γB)

∑
m′ (ym′ )α · v̂∗

01
m′ (γB)

+
(1− p)µ · (ym)α · v̂∗

10
m (γB)

∑
m′ (ym′ )α · v̂∗

10
m′ (γB)

+
(1− p)(1− µ) · (ym)α · v̂∗

11
m (γB)

∑
m′ (ym′ )α · v̂∗

11
m′ (γB)

)
.

Given that the function g is smooth in x, y on ∆ǫ(M)2, it can be shown that the expected limit of

our stochastic process can be obtained by solving the system of ordinary differential equations (ẋ, ẏ) =

g(x, y) (or (ẋ, ẏ) = (gA(x, y), gB(x, y))) as done above in the case of λ = 0. We have that if λ = 0, then it

is as if there were a single group with the same (common) ranking algorithm and where the desirability

for reading confirmatory news is γ = γA+γB
2 . As λ increases, then the rankings of the two groups move

apart and it is as if group A had parameter 1
2−λγA+ 1−λ

2−λγB and group B had parameter 1−λ
2−λγA+ 1

2−λγB
until, when λ = 1, it is as if there were two separate rankings of two groups with accuracy γA and

γB respectively. It is then immediate to see that the difference in the levels of desirability for reading

confirmatory news of the two groups ( λ
2−λ · |γA − γB|) is increasing in λ when γA 6= γB, and is increasing

in |γA − γB| when λ 6= 0. Finally, since clicking and ranking probabilities coincide in the limit, this

translates to increasingly different probabilities of clicking on any given majority website in the two

groups and hence, given the definition of BP , also to a measure BP(Eλ) that is increasing in λ when

γA 6= γB, and is increasing in |γA − γB| when λ 6= 0. ✷

Proof of Proposition 5. Let Pλ and Pλ
L denote respectively ex ante and interim efficiency as a

function of the personalization parameter λ. Because the initial ranking is uniform we can look again at
the solutions to the Equations (B.3) and (B.4) in the proof of Proposition 1, where we recall again that

xminority
L = ρ̂∞,L = Pλ

L when websites in L have minority signal and ymajority
L = ρ̂∞,L = Pλ

L when they

have majority signal. Hence to show that Pλ is weakly decreasing in λ we can use these solutions to
study the interim efficiency levels Pλ

L for λ ∈ [0, 1] and 1 < L < M . As in the proof of Proposition 3, we
have that, for α = 1 and µ = 1, the solutions to Equations (B.3) and (B.4) take the form, respectively:

xminority
L =

{
(1−γ)L−γp(M−L)

γM−L
if L < γpM

1−(1−γ)p

0 if L ≥ γpM
1−(1−γ)p

, ymajority
L =

{
1 if L ≤ (1−γ)M

1−γp
γpL

L−(1−γ)M if L > (1−γ)M
1−γp

.

Fix a realization of E , say, parametrized by L. From the proof of Proposition 4, we have that when
λ = 0, it is as if there were a single group with a common ranking algorithm, with γ = γA+γB

2 . As λ
increases, then the rankings of the two groups move apart and are as if group A had desirability for
reading confirmatory news 1

2−λγA + 1−λ
2−λγB and group B had 1−λ

2−λγA + 1
2−λγB, until, when λ = 1, it

is as if there were two separate rankings of two groups with accuracy γA and γB, respectively. As a
result interim efficiency can be written as the average of the interim efficiency of two groups, one with
γλA = 1

2−λγA + 1−λ
2−λγB and another with γλB = 1−λ

2−λγA + 1
2−λγB. Therefore, in the case of intermediate
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Figure B.3: Interim efficiency with no personalization Pλ=0
L (black) and with full personalization Pλ=1

L (green dashed)
as a function of L for µ = 1 (left) and µ = 0.9 (right). In both panels, M = 20, γA = 0, γB = 0.66, p = 0.55, and r1 is
uniform. Both panels also show (gray dashed) the function L

M
as comparison benchmark as well as the density function

for the binomial distribution for q = 0.7 < φ(γ) at which PeR> 0.

values of λ interim efficiency can be seen as the average of two levels of interim efficiency corresponding
to two different signal accuracies that are increasingly apart as λ increases (that is, go from both signals
corresponding to γA+γB

2 when λ = 0 to being γA and γB respectively when λ = 1). Since we can always

take γA, γB to be, respectively, γλA, γ
λ
B, it suffices to consider directly the case of λ = 1. In this case, the

interim efficiency levels can be computed from the solutions evaluated at the corresponding levels of γ:

Pλ=0
L =

(
xminority
L

(
γA + γB

2

)
, ymajority

L

(
γA + γB

2

))
,

for the non-personalized case (λ = 0), and from:

Pλ=1
L =

(
xminority
L (γA) + xminority

L (γB)

2
,
ymajority
L (γA) + ymajority

L (γB)

2

)
,

for the fully personalized case (λ = 1). Since the reasoning is very similar to that of the proof of
Proposition 3, we focus on the case where the websites with correct signal are a majority. For λ = 0 we

have, as the level of interim efficiency, directly ymajority
L

(γA+γB
2

)
from above, while for λ = 1, recalling

0 ≤ γA < γB ≤ 1, and since the cutoff for L ( γpM
1−(1−γ)p) is decreasing in γ, we can write this as:

ymajority
L (γA) + ymajority

L (γB)

2
=





1 if M+1
2 ≤ L ≤ (1−γB)M

1−γBp
1
2 + γBpL

2(L−(1−γB)M) if (1−γB)M
1−γBp

< L ≤ (1−γA)M
1−γAp

γApL
2(L−(1−γA)M) +

γBpL
2(L−(1−γB)M if (1−γA)M

1−γAp
< L ≤ M − 1

.

Tedious calculations show that, when ymajority
L

(γA+γB
2

)
≥ L

M , we also have:

ymajority
L

(
γA + γB

2

)
≥

ymajority
L (γA) + ymajority

L (γB)

2
,

and hence Pλ=0
L ≥ Pλ=1

L .42 Using the same reasoning as in the proof of Proposition 3, we can show

42To get more intuition for the proof, notice that Pλ=0
L for majority values of L is a concave function of γ, when solutions

satisfy y ≥ L
M
, and becomes convex when y ≤ L

M
. Interim efficiency being concave implies ex ante efficiency is concave in

γ such that ex ante efficiency of an average γ = γA+γB

2
will be above the average ex ante efficiency of γA and γB (which

in turn implies PeR ≤ 0, provided q < q). On the other hand, the opposite holds (PeR ≥ 0), when the function becomes
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that y (or also x) ≥ L
M occurs, when µ is sufficiently large and γ sufficiently small, and when q is below

a given threshold q(γ). It can further be shown that the reverse inequality holds for the same values of

µ and γ if q is above the threshold q(γ). Finally, a similar argument as in the proof of Proposition 3

allows to extend to the case where µ > µ for some µ < 1. Figure B.3 illustrates the cases µ = 1 (left

panel) and µ < 1 (right panel). ✷

Proof of Proposition 6 and Proposition 7. We prove directly the case with γ ≥ 0. The expected

ranking probabilities are then given by:

r̂n,m = νr̂n−1,m + (1− ν)ρ̂n−1,m

= νr̂n−1,m + (1− ν)

(
pµ(r̂t−1,m)α · v̂∗

00
m∑

m′(r̂t−1,m′)α · v̂∗
00
m′

+
p(1− µ)(r̂t−1,m)α · v̂∗

01
m∑

m′(r̂t−1,m′)α · v̂∗
01
m′

+

+
(1− p)µ(r̂t−1,m)α · v̂∗

10
m∑

m′(r̂t−1,m′)α · v̂∗
10
m′

+
(1− p)(1− µ)(r̂t−1,m)α · v̂∗

11
m∑

m′(r̂t−1,m′)α · v̂∗
11
m′

)

= νr̂n−1,m + (1− ν)

(
pµ · v̂∗

00
m∑

m′(r̂t−1,m′)α · v̂∗
00
m′

+ . . .+
(1− p)(1− µ) · v̂∗

11
m∑

m′(r̂t−1,m′)α · v̂∗
11
m′

)
· (r̂n−1,m)α ,

where v̂∗
00
m , v̂∗

01
m , v̂∗

10
m and v̂∗

11
m are defined in Appendix A. Let m,m′ ∈ K with m 6= m′ and r1,m >

r1,m′ > 0. Fix n > 1, we first show that the rich-get-richer dynamic applies to the ranking probabilities.

To simplify notation, let x ≡ r̂n−1,m and y ≡ r̂n−1,m′ . Because 0 < ν < 1 we always have x > y > 0 for

any n > 2, and because the two websites have the same signal they also have the equal coefficients on

(r̂n−1,m)α and r̂n−1,m, say, a and b respectively, where a, b > 0. Hence we can write:

r̂n,m = axα + bx and r̂n,m′ = ayα + by.

But then it follows that:

r̂n,m
r̂n,m′

>
r̂n−1,m

r̂n−1,m′
⇐⇒

axα + bx

ayα + by
>

x

y
⇐⇒ axαy + bxy > axyα + bxy ⇐⇒

(
x

y

)α

>
x

y
⇐⇒ α > 1

and similarly

r̂n,m
r̂n,m′

(=)
<

r̂n−1,m

r̂n−1,m′
⇐⇒

axα + bx

ayα + by

(=)
<

x

y
⇐⇒ axαy + bxy

(=)
< axyα + bxy ⇐⇒

(
x

y

)α (=)
<

x

y
⇐⇒ α

(=)
< 1

Finally, to see the claim, notice that ρ̂n,m = a
1−ν (r̂n,m)α and ρ̂n,m′ = a

1−ν (r̂n,m′)α, where again a
1−ν > 0,

so that:

ρ̂n,m
ρ̂n,m′

>
ρ̂n−1,m

ρ̂n−1,m′
⇐⇒

a
1−ν (r̂n,m)α

a
1−ν (r̂n,m′)α

>
a

1−ν (r̂n−1,m)α

a
1−ν (r̂n−1,m′)α

⇐⇒

(
r̂n,m
r̂n,m′

)α

>

(
r̂n−1,m

r̂n−1,m′

)α

⇐⇒
r̂n,m
r̂n,m′

>
r̂n−1,m

r̂n−1,m′
⇐⇒ α > 1,

and correspondingly for α < 1 and α = 1. ✷

convex. This shows why larger levels of q (> q) can reverse the result.
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