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Abstract 
 
We develop an efficient and easy-to-use computational method for solving a wide class of 
general equilibrium heterogeneous agent models with aggregate shocks, together with an open 
source suite of codes that implement our algorithms in an easy-to-use toolbox. Our method 
extends standard linearization techniques and is designed to work in cases when inequality 
matters for the dynamics of macroeconomic aggregates. We present two applications that 
analyze a two-asset incomplete markets model parameterized to match the distribution of 
income, wealth, and marginal propensities to consume. First, we show that our model is 
consistent with two key features of aggregate consumption dynamics that are difficult to match 
with representative agent models: (i) the sensitivity of aggregate consumption to predictable 
changes in aggregate income and (ii) the relative smoothness of aggregate consumption. Second, 
we extend the model to feature capital-skill complementarity and show how factor-specific 
productivity shocks shape dynamics of income and consumption inequality. 
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1 Introduction

Over the last thirty years, tremendous progress has been made in developing models that

reproduce salient features of the rich heterogeneity in income, wealth, and consumption

behavior across households that is routinely observed in micro data. These heterogeneous

agent models often deliver strikingly different implications of monetary and fiscal policies

than do representative agent models, and allow us to study the distributional implications

of these policies across households.1 In principle, this class of models can therefore incorpo-

rate the rich interaction between inequality and the macroeconomy that characterizes our

world: on the one hand, inequality shapes macroeconomic aggregates; on the other hand,

macroeconomic shocks and policies also affect inequality.

Despite providing a framework for thinking about these important issues, heterogeneous

agent models are not yet part of policy makers’ toolbox for evaluating the macroeconomic

and distributional consequences of their proposed policies. Instead, most quantitative anal-

yses of the macroeconomy, particularly in central banks and other policy institutions, still

employ representative agent models. Applied macroeconomists tend to make two excuses

for this abstraction. First, they argue that the computational difficulties involved in solving

and analyzing heterogeneous agent models render their use intractable, especially compared

to the ease with which they can analyze representative agent models using software pack-

ages like Dynare. Second, there is a perception among macroeconomists that models which

incorporate realistic heterogeneity are unnecessarily complicated because they generate only

limited additional explanatory power for aggregate phenomena. Part of this perception stems

from the seminal work of Krusell and Smith (1998), who found that the business cycle prop-

erties of aggregates in a baseline heterogeneous agent model are virtually indistinguishable

from those in the representative agent counterpart.2,3

Our paper’s main message is that both of these excuses are less valid than commonly

1For examples studying fiscal policy, see McKay and Reis (2013) and Kaplan and Violante (2014); for
monetary policy, see McKay, Nakamura and Steinsson (2015), Auclert (2014), and Kaplan, Moll and Violante
(2016).

2More precisely, in Krusell and Smith (1998)’s baseline model, which is a heterogenous agent version of a
standard Real Business Cycle (RBC) model with inelastic labor supply, the effects of technology shocks on
aggregate output, consumption and investment are indistinguishable from those in the RBC model.

3Lucas (2003) succinctly captures many macroeconomists’ view when he summarizes Krusell and Smith’s
findings as follows: “For determining the behavior of aggregates, they discovered, realistically modeled
household heterogeneity just does not matter very much. For individual behavior and welfare, of course,
heterogeneity is everything.” Interestingly, there is a discrepancy between this perception and the results in
Krusell and Smith (1998): they show that an extension of their baseline model with preference heterogeneity,
thereby implying a more realistic wealth distribution, “features aggregate time series that depart significantly
from permanent income behavior.”
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thought. To this end, we make two contributions. First, we develop an efficient and easy-to-

use computational method for solving a wide class of general equilibrium heterogeneous agent

macro models with aggregate shocks, thereby invalidating the first excuse. Importantly, our

method also applies in environments that violate what Krusell and Smith (1998) have termed

“approximate aggregation”, i.e. that macroeconomic aggregates can be well described using

only the mean of the wealth distribution.

Second, we use the method to analyze the time series behavior of a rich two-asset het-

erogeneous agent model parameterized to match the distribution of income, wealth, and

marginal propensities to consume (MPCs) in the micro data. We show that the model is

consistent with two features of the time-series of aggregate consumption that have proven to

be a challenge for representative agent models: consumption responds to predictable changes

in income but at the same time is substantially less volatile than realized income. We then

demonstrate how a quantitatively plausible heterogeneous agent economy such as ours can

be useful in understanding the distributional consequences of aggregate shocks, thus paving

the way for a complete analysis of the transmission of shocks to inequality. These results

invalidate the second excuse: not only does macro matter for inequality, but inequality also

matters for macro. We therefore view an important part of the future of macroeconomics

as the study of distributions – the representative-agent shortcut may both miss a large part

of the story (the distributional implications) and get the small remaining part wrong (the

implications for aggregates).

In Section 2, we introduce our computational methodology, which extends standard lin-

earization techniques, routinely used to solve representative agent models, to the heteroge-

neous agent context.4 For pedagogical reasons, we describe our methods in the context of

the Krusell and Smith (1998) model, but the methods are applicable much more broadly.

We first solve for the stationary equilibrium of the model without aggregate shocks (but with

idiosyncratic shocks) using a global non-linear approximation. We use the finite difference

method of Achdou et al. (2015) but, in principle, other methods can be used as well. This ap-

proximation gives a discretized representation of the model’s stationary equilibrium, which

includes a non-degenerate distribution of agents over their individual state variables. We

then compute a first-order Taylor expansion of the discretized model with aggregate shocks

around the stationary equilibrium. This results in a large, but linear, system of stochas-

tic differential equations, which we solve using standard solution techniques. Although our

4As we discuss in more detail below, the use of linearization to solve heterogeneous agent economies is
not new. Our method builds on the ideas of Dotsey, King and Wolman (1999), Campbell (1998), Veracierto
(2002), and Reiter (2009), and is related to Preston and Roca (2007). In contrast to these contributions, we
cast our linearization method in continuous time. While discrete time poses no conceptual difficulty, working
in continuous time has a number of numerical advantages that we heavily exploit.
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solution method relies on linearization with respect to the economy’s aggregate state vari-

ables, it preserves important non-linearities at the micro level. In particular, the response of

macroeconomic aggregates to aggregate shocks may depend on the distribution of households

across idiosyncratic states because of heterogeneity in the response to the shock across the

distribution.

Our solution method is both faster and more accurate than existing methods. Of the

five solution methods for the Krusell and Smith (1998) model included in the Journal of

Economic Dynamics and Control comparison project (Den Haan (2010)), the fastest takes

around 7 minutes to solve. With the same calibration our model takes around a quarter of

a second to solve. The most accurate method in the comparison project has a maximum

aggregate policy rule error of 0.16% (Den Haan (2010)’s preferred accuracy metric). With

a standard deviation of productivity shocks that is comparable to the Den Haan, Judd and

Julliard (2010) calibration, the maximum aggregate policy rule error using our method is

0.05%. Since our methodology uses a linear approximation with respect to aggregate shocks,

the accuracy worsens as the standard deviation of shocks increases.5

However, the most important advantage of our method is not its speed or accuracy for

solving the Krusell and Smith (1998) model. Rather, it is the potential for solving much

larger models in which approximate aggregation does not hold and existing methods are

infeasible. An example is the two-asset model of Kaplan, Moll and Violante (2016), where

the presence of three individual state variables renders the resulting linear system so large

that it is numerically impossible to solve. In order to be able to handle larger models such

as this, in Section 3 we develop a model-free reduction method to reduce the dimensionality

of the system of linear stochastic differential equations that characterizes the equilibrium.

Our method generalizes Krusell and Smith (1998)’s insight that only a small subset of the

information contained in the cross-sectional distribution of agents across idiosyncratic states

is required to accurately forecast the variables that agents need to know in order to solve

their decision problems. Krusell and Smith (1998)’s procedure posits a set of moments that

capture this information based on economic intuition, and verifies its accuracy ex-post using

a forecast-error metric; our method instead leverages advances in engineering to allow the

computer to identify the necessary information in a completely model-free way.6

To make these methods as accessible as possible, and to encourage the use of heteroge-

5See Table 16 of Den Haan (2010). See Section 2 for a description of this error metric and how we compare
our continuous-state, continuous-time productivity process with the two-state, discrete-time productivity
process in Den Haan (2010)

6More precisely, we apply tools from the so-called model reduction literature, in particular Amsallem and
Farhat (2011) and Antoulas (2005). We build on Reiter (2010) who first applied these ideas to reduce the
dimensionality of linearized heterogeneous agent models in economics.
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neous agent models among researchers and policy-makers, we are publishing an open source

suite of codes that implement our algorithms in an easy-to-use toolbox.7 Users of the codes

provide just two inputs: (i) a function that evaluates the discretized equilibrium conditions;

and (ii) the solution to the stationary equilibrium without aggregate shocks. Our toolbox

then solves for the equilibrium of the corresponding economy with aggregate shocks – lin-

earizes the model, reduces the dimensionality, solves the system of stochastic differential

equations and produces impulse responses.8

In Sections 5 and 6 we use our toolbox to solve a two-asset heterogeneous agent economy

inspired by Kaplan and Violante (2014) and Kaplan, Moll and Violante (2016), in which

households can save in liquid and illiquid assets. In equilibrium, illiquid assets earn a higher

return than liquid assets because they are subject to a transaction cost. This economy natu-

rally generates “wealthy hand-to-mouth” households – households who endogenously choose

to hold all their wealth as illiquid assets, and to set their consumption equal to their dispos-

able income. Such households have high MPCs, in line with empirical evidence presented in

Johnson, Parker and Souleles (2006), Parker et al. (2013) and Fagereng, Holm and Natvik

(2016). Because of the two-asset structure and the presence of the wealthy hand-to-mouth,

the parameterized model can match key features of the joint distribution of household port-

folios and MPCs - properties that one-asset models have difficulty in replicating.9 Matching

these features of the data leads to a failure of approximate aggregation, which together with

the model’s size, render it an ideal setting to illustrate the power of our methods. To the

best of our knowledge, this model cannot be solved using any existing methods.

In our first application (Section 5) we show that inequality can matter for macro aggre-

gates. We demonstrate that the response of aggregate consumption to an aggregate produc-

tivity shock is larger and more transitory than in either the corresponding representative

7The codes are initially available as a Matlab toolbox at https://github.com/gregkaplan/phact, but
we hope to make them available in other languages in future releases. Also see the Heterogeneous Agent
Resource and toolKit (HARK) by Carroll et al. (2016, available at https://github.com/econ-ark/HARK) for
another project that shares our aim of encouraging the use of heterogeneous agent models among researchers
and policy-makers by making computations easier and faster.

8We describe our methodology in the context of incomplete markets models with heterogeneous house-
holds, but the toolbox is applicable for a much broader class of models. Essentially any high dimensional
model in which equilibrium objects are a smooth function of aggregate states can be handled with the
linearization methods.

9One-asset heterogeneous agent models models, in the spirit of Aiyagari (1994) and Krusell and Smith
(1998), endogenize the fraction of hand-to-mouth households with a simple borrowing constraint. Standard
calibrations of these models which match the aggregate capital-income ratio feature far too few high-MPC
households relative to the data. In contrast when these models are calibrated to only liquid wealth, they are
better able to match the distribution of MPCs in the data. Such economies, however, grossly understate the
level of aggregate capital, and so are ill-suited to general equilibrium settings. They also miss almost the
entire wealth distribution, and so are of limited use in studying the effects of macro shocks on inequality.
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agent or one-asset heterogeneous agent economies, whereas a shock to productivity growth

is substantially smaller and more persistent in the two-asset economy than in either the cor-

responding representative agent or one-asset heterogeneous agent economies. Matching the

wealth distribution, in particular the consumption-share of hand-to-mouth households, drives

these findings – since hand-to-mouth households are limited in their ability to immediately

increase consumption in response to higher future income growth, their impact consumption

response is weaker, and their lagged consumption response is stronger, than the response of

non hand-to-mouth households. An implication of these individual-level consumption dy-

namics is that the two-asset model outperforms the representative agent models in terms

of its ability to match the smoothness and sensitivity of aggregate consumption.10 Jointly

matching these two features of aggregate consumption dynamics has posed a challenge for

many benchmark models in the literature (Campbell and Mankiw (1989),Christiano (1989),

Ludvigson and Michaelides (2001)).

In our second application (Section 6) we show that macro shocks can additionally matter

for inequality, resulting in rich interactions between inequality and the macroeconomy. To

clearly highlight how quantitatively realistic heterogeneous agent economies such as ours can

be useful in understanding the distributional consequences of aggregate shocks, in Section

6 we relax the typical assumption in incomplete market models that the cross-sectional

distribution of labor income is exogenous. We adopt a nested CES production function

with capital-skill complementarity as in Krusell et al. (2000), in which high skilled workers

are more complementary with capital in production than are low skilled workers. First, we

show how a negative shock to the productivity of unskilled labor generates a recession that

disproportionately hurts low-skilled workers, thus also leading to an increase in income and

consumption inequality. Second, we show how a positive shock to the productivity of capital

generates a boom that disproportionately benefits high-skilled workers, thus leading to an

increase in income and consumption inequality. The response of aggregate consumption to

both of these aggregate shocks differs dramatically from that in the representative agent

counterpart, thereby providing a striking counterexample to the main result of Krusell and

Smith (1998). These findings illustrate how different aggregate shocks shape the dynamics

of inequality and may generate rich interactions between inequality and macroeconomic

aggregates.

10“Sensitivity” is a term used to describe how aggregate consumption responds more to predictable changes
in aggregate income than implied by benchmark representative agent economies. “Smoothness” is a term
used to describe how aggregate consumption growth is less volatile, relative to aggregate income growth,
than implied by benchmark representative agent economies.
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2 Linearizing Heterogeneous Agent Models

We present our computational method in two steps. First, in this section we describe our

approach to linearizing heterogeneous agent models. Second, in Section 3 we describe our

model-free reduction method for reducing the size of the linearized system. We separate the

two steps because the reduction step is only necessary for large models.

We describe our method in the context of the Krusell and Smith (1998) model. This

model is a natural expository tool because it is well-known and substantially simpler than

the two-asset model in Section 5. As we show in Section 5, our method is applicable to a

broad class of models.

Continuous Time We present our method in continuous time. While discrete time poses

no conceptual difficulty (in fact, Campbell (1998), Dotsey, King and Wolman (1999), Ve-

racierto (2002), and Reiter (2009) originally proposed this general approach in discrete time),

working in continuous time has three key numerical advantages that we heavily exploit.

First, it is easier to capture occasionally binding constraints and inaction in continuous

time than in discrete time. For example, the borrowing constraint in the Krusell and Smith

(1998) model below is absorbed into a simple boundary condition on the value function and

therefore the first-order condition for consumption holds with equality everywhere in the

interior of the state space. Occasionally binding constraints and inaction are often included

in heterogeneous agent models in order to match features of micro data.

Second, first-order conditions characterizing optimal policy functions typically have a

simpler structure than in discrete time and can often be solved by hand.

Third, and most importantly in practice, continuous time naturally generates sparsity

in the matrices characterizing the model’s equilibrium conditions. Intuitively, continuously

moving state variables like wealth only drift an infinitesimal amount in an infinitesimal

unit of time, and therefore a typical approximation that discretizes the state space has the

feature that households reach only states that directly neighbor the current state. Our two-

asset model in Section 5 is so large that sparsity is necessary to store and manipulate these

matrices.11

11As Reiter (2010) notes in his discussion of a related method “For reasons of computational efficiency,
the transition matrix [...] should be sparse. With more than 10,000 state variables, a dense [transition
matrix] might not even fit into computer memory. Economically this means that, from any given individual
state today (a given level of capital, for example), there is only a small set of states tomorrow that the
agent can reach with positive probability. The level of sparsity is usually a function of the time period.
A model at monthly frequency will probably be sparser, and therefore easier to handle, then a model at
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2.1 Model Description

Environment There is a continuum of households with fixed mass indexed by j ∈ [0, 1]

who have preferences represented by the expected utility function

E0

∫ ∞
0

e−ρt
c1−θ
jt

1− θ
dt,

where ρ is the rate of time preference and θ is the coefficient of relative risk aversion. At

each instant t, a household’s idiosyncratic labor productivity is zjt ∈ {zL, zH} with zL < zH .

Households switch between the two values for labor productivity according to a Poisson

process with arrival rates λL and λH .12 The aggregate supply of efficiency units of labor is

exogenous and constant and denoted by N̄ =
∫ 1

0
zjtdj. A household with labor productivity

zjt earns labor income wtzjt. Markets are incomplete; households can only trade in productive

capital ajt subject to the borrowing constraint ajt ≥ 0.

There is a representative firm which has access to the Cobb-Douglas production function

Yt = eZtKα
t N

1−α
t ,

where Zt is (the logarithm of) aggregate productivity, Kt is aggregate capital and Nt is

aggregate labor. The logarithm of aggregate productivity follows the Ornstein-Uhlenbeck

process

dZt = −ηZtdt+ σdWt, (1)

where dWt is the innovation to a standard Brownian motion, η is the rate of mean reversion,

and σ captures the size of innovations.13

Equilibrium In equilibrium, household decisions depend on individual state variables,

specific to a particular household, and aggregate state variables, which are common to all

households. The individual state variables are capital holdings a and idiosyncratic labor

annual frequency.” We take this logic a step further by working with a continuous-time model. As Reiter’s
discussion makes clear, discrete-time models can also generate sparsity in particular cases. However, this
will happen either in models with very short time periods (as suggested by Reiter) which are known to be
difficult to solve because the discount factor of households is close to one; or the resulting matrices will be
sparse but with a considerably higher bandwidth or density than in the matrices generated by a continuous
time model. A low bandwidth is important for efficiently solving sparse linear systems.

12The assumption that idiosyncratic shocks follow a Poisson process is for simplicity of exposition; the
method can also handle diffusion or jump-diffusion shock processes.

13This process is the analog of an AR(1) process in discrete time.
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productivity z. The aggregate state variables are aggregate productivity Zt and the cross-

sectional distribution of households over their individual state variables, gt (a, z).

For notational convenience, we denote the dependence of a given equilibrium object

on a particular realization of the aggregate state (gt (a, z) , Zt) with a subscript t. That

is, we use time-dependent notation with respect to those aggregate states. In contrast,

we use recursive notation with respect to the idiosyncratic states (a, z). This notation

anticipates our solution method which linearizes with respect to the aggregate states but

not the idiosyncratic states.14 An equilibrium of the model is characterized by the following

equations:

ρvt (a, z) = max
c

u (c) + ∂avt (a, z) (wtz + rta− c)

+ λz (vt (a, z′)− vt (a, z)) +
1

dt
Et [dvt (a, z)] , a ≥ 0

(2)

dgt (a, z)

dt
= −∂a [st (a, z) gt (a, z)]− λzgt (a, z) + λz′gt (a, z′) , (3)

dZt = −ηZtdt+ σdWt, (4)

wt = (1− α) eZtKα
t N̄

−α, (5)

rt = αeZtKα−1
t N̄1−α − δ, (6)

Kt =

∫
agt(a, z)dadz. (7)

and where st(a, z) = wtz+ rta− c is the optimal saving policy function corresponding to the

household optimization problem (2).

For detailed derivations of these equations, see Achdou et al. (2015). The household’s

Hamilton-Jacobi-Bellman equation (2) is the continuous-time analog of the discrete time

Bellman equation. The flow value of a household’s lifetime utility is given by the sum of

four terms: the flow utility of consumption, the marginal value of savings, the expected

change due to idiosyncratic productivity shocks, and the expected change due to aggregate

productivity shocks. Due to our use of time-dependent notation with respect to aggregate

states, Et denotes the conditional expectation with respect to aggregate states only.15 The

Kolmogorov Forward Equation (3) describes the evolution of the distribution over time. The

flow change in the mass of households at a given point in the state space is determined by

their savings behavior and idiosyncratic productivity shocks. Equation (4) describes the

14Appendix A.1 writes the equilibrium conditions using fully recursive condition and shows how to obtain
the system here by evaluating these conditions “along the characteristic” (gt (a, z) , Zt).

15The borrowing constraint only affects (2) through the boundary condition u′ (wtzi) ≥ ∂avt (0, z) for
i = L,H. We impose this condition in our numerical computations, but for the ease of exposition suppress
the notation here.
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evolution of aggregate productivity. Finally, equations (5) to (7) define prices given the

aggregate state.

We define a steady state as an equilibrium with constant aggregate productivity Zt = 0

and a time-invariant distribution g(a, z). The steady state system is given by

ρv (a, z) = max
c

u (c) + ∂av (a, z) (wz + ra− c) + λz (v (a, z′)− v (a, z)) , a ≥ 0 (8)

0 = −∂a [s (a, z) g (a, z)]− λzg (a, z) + λz′g (a, z′) , (9)

w = (1− α)KαN̄−α, (10)

r = αKα−1N̄1−α − δ, (11)

K =

∫
ag(a, z)dadz. (12)

2.2 Linearization Procedure

Our linearization procedure consists of three steps. First, we solve for the steady state of

the model without aggregate shocks but with idiosyncratic shocks. Second, we take a first-

order Taylor expansion of the equilibrium conditions around the steady state, yielding a

linear system of stochastic differential equations. Third, we solve the linear system using

standard techniques. Conceptually, each of these steps is a straightforward extension of

standard linearization techniques to the heterogeneous agent context. However, the size of

heterogeneous agent models leads to a number of computational challenges which we address.

Step 1: Approximate Steady State Because households face idiosyncratic uncertainty,

the steady state value function varies over individual state variables v(a, z), and there is a

non-degenerate stationary distribution of households g(a, z). To numerically approximate

these functions we must represent them in a finite-dimensional way. We use a non-linear

approximation in order to retain the rich non-linearities and heterogeneity at the individual

level. In principle, any approximation method can be used in this step; we use the finite

difference methods outlined in Achdou et al. (2015) because they are fast, accurate, and

robust.

We approximate the value function and distribution over a discretized grid of asset hold-

ings a = (a1 = 0, a2, ..., aI)
T. Denote the value function and distribution along this discrete

grid using the vectors v = (v (a1, zL) , ..., v (aI , zH))T and g = (g (a1, zL) , ..., g (aI , zH))T;

both v and g are of dimension N × 1 where N = 2I is the total number of grid points in the

individual state space. We solve the steady state versions of (2) and (3) at each point on

9



this grid, approximating the partial derivatives using finite differences. Achdou et al. (2015)

show that if the finite difference approximation is chosen correctly, the discretized steady

state is the solution to the following system of matrix equations:

ρv = u (v) + A (v; p) v

0 = A (v; p)T g

p = F (g) .

(13)

The first equation is the approximated steady state HJB equation (8) for each point on the

discretized grid, expressed in our vector notation. The vector u (v) is the maximized utility

function over the grid and the matrix multiplication A (v; p) v captures the remaining terms

in (8). The second equation is the discretized version of the steady state Kolmogorov Forward

equation (9). The transition matrix A (v; p) is simply the transpose of the matrix from the

discretized HJB equation because it encodes how households move around the individual

state space. Finally, the third equation defines the prices p = (r, w)T as a function of

aggregate capital through the distribution g.16

Since v and g each have N entries, the total system has 2N + 2 equations in 2N + 2

unknowns. In simple models like this one, highly accurate solutions can be obtained with as

little as N = 200 grid points (i.e., I = 100 asset grid points together with the two income

states); however, in more complicated models, such as the two-asset model in Section 5, N

can easily grow into the tens of thousands. Exploiting the sparsity of the transition matrix

A (v; p) is necessary to even represent the steady state of such large models.

Step 2: Linearize Equilibrium Conditions The second step of our method is to com-

pute a first-order Taylor expansion of the model’s discretized equilibrium conditions around

steady state. With aggregate shocks, the discretized equilibrium is characterized by

ρvt = u (vt) + A (vt;pt) vt +
1

dt
Etdvt

dgt
dt

= A (vt;pt)
T gt

dZt = −ηZtdt+ σdWt

pt = F (gt;Zt) .

(14)

16 The fact that prices are an explicit function of the distribution is a special feature of the Krusell and
Smith (1998) model. In general, market clearing conditions take the form F(v,g,p) = 0. Our solution
method also handles this more general case.
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The system (14) is a non-linear system of 2N + 3 stochastic differential equations in 2N + 3

variables (the 2N+2 variables from the steady state, plus aggregate productivity Zt). Shocks

to TFP Zt induce fluctuations in marginal products and therefore prices pt = F (gt;Zt).

Fluctuations in prices in turn induce fluctuations in households’ decisions and therefore in

vt and the transition matrix A (vt; pt).
17 Fluctuations in the transition matrix then induce

fluctuations in the distribution of households gt.

The key insight is that this large-dimensional system of stochastic differential equations

has exactly the same structure as more standard representative agent models which are

normally solved by means of linearization methods. To make this point, Appendix A.2

relates the system (14) to the real business cycle (RBC) model. The discretized value

function points vt are jump variables, like aggregate consumption Ct in the RBC model.

The discretized distribution gt points are endogenous state variables, like aggregate capital

Kt in the RBC model. TFP Zt is an exogenous state variable. Finally, the wage and real

interest rate are statically defined variables, just as in the Krusell and Smith (1998) model.

As already anticipated, we exploit this analogy and solve the non-linear system (14)

by linearizing it around the steady state. Since the dimension of the system is large it is

impossible to compute derivatives by hand. We use a recently developed technique called

automatic (or algorithmic) differentiation that is fast and accurate up to machine precision.

It dominates finite differences in terms of accuracy and symbolic differentiation in terms of

speed. Automatic differentiation exploits the fact that the computer represents any function

as the composition of various elementary functions, such as addition, multiplication, or

exponentiation, which have known derivatives. It builds the derivative of the original function

by iteratively applying the chain rule. This allows automatic differentiation to exploit the

sparsity of the transition matrix A (vt;pt) when taking derivatives, which is essential for

numerical feasibility in large models.18

17We have written the price vector pt as a function of the state vector to easily exposit our methodology
in a way that directly extends to models with more general market clearing conditions (see footnote 16).
However, this approach is not necessary in the Krusell and Smith (1998) model because we can simply
substitute the expression for prices directly into the households’ budget constraint and hence the matrix
A(vt; pt).

18To the best of our knowledge, there is no existing open-source automatic differentiation package for
Matlab which exploits sparsity. We therefore wrote our own package for the computational toolbox.
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The first-order Taylor expansion of (14) can be written as:19

Et


dv̂t

dĝt

dZt

0

 =


Bvv 0 0 Bvp

Bgv Bgg 0 Bgp

0 0 −η 0

0 Bpg BpZ −I




v̂t

ĝt

Zt

p̂t

 dt (15)

The variables in the system, v̂t, ĝt, Zt and p̂t, are expressed as deviations from their steady

state values, and the matrix is composed of the derivatives of the equilibrium conditions

evaluated at steady state. Since the pricing equations are static, the fourth row of this

matrix equation only has non-zero entries on the right hand side.20 It is convenient to

plug the pricing equations p̂t = Bpgĝt + BpZZt into the remaining equations of the system,

yielding

Et

dv̂t

dĝt

dZt

 =

Bvv BvpBpg BvpBpZ

Bgv Bgg + BgpBpg BgpBpZ

0 0 −η


︸ ︷︷ ︸

B

v̂t

ĝt

Zt

 dt. (16)

Step 3: Solve Linear System The final step of our method is to solve the linear system

of stochastic differential equations (16). Following standard practice, we perform a Schur

decomposition of the matrix B to identify the stable and unstable roots of the system. If

the Blanchard and Kahn (1980) condition holds, i.e., the number of stable roots equals the

19To arrive at (15), we first rearrange (14) so that all time derivatives are on the left-hand side. We then
take the expectation of the entire system and use the fact that the expectation of a Brownian increment is
zero Et[dWt] = 0 to write (14) compactly without the stochastic term as

Et


dvt
dgt
dZt
0

 =


u (vt; pt) + A (vt;pt) vt − ρvt

A (vt;pt)
T

gt
−ηZt

F (gt;Zt)− pt

dt.

Finally, we linearize this system to arrive at (15). Note that this compact notation loses the information
contained in the stochastic term dWt. However, since we linearize the system, this is without loss of generality
– as we discuss later linearized systems feature certainty equivalence.

20The special structure of the matrix B involving zeros is particular to the Krusell and Smith (1998) model
and can be relaxed. In addition, the fact that we can express prices as a static function of ĝt and Zt is a
special feature of the model; more generally, the equilibrium prices are only defined implicitly by a set of
market clearing conditions.
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number of state variables ĝt and Zt, then we can compute the solution:

v̂t = Dvgĝt + DvZZt,

dĝt
dt

= (Bgg + BgpBpg + BgvDvg)ĝt + (BgpBpZ + BgvDvZ)Zt,

dZt = −ηZtdt+ σdWt,

p̂t = Bpgĝt + BpZZt.

(17)

The first line of (17) sets the control variables v̂t as functions of the state variables ĝt and

Zt, i.e. the matrices Dvg and DvZ characterize the optimal decision rules as a function

of aggregate states. The second line plugs that solution into the system (16) to compute

the evolution of the distribution. The third line is the stochastic process for the aggregate

productivity shock and the fourth line is the definition of prices p̂t.

2.3 What Does Linearization Capture and What Does It Lose?

Our method uses a mix of nonlinear approximation with respect to individual state variables

and linear approximation with respect to aggregate state variables. Concretely, from the

first line of (17), the approximated solution for the value function is of the form

vt(ai, zj) = v(ai, zj) +
I∑

k=1

2∑
`=1

Dvg[i, j; k, l](gt(ak, z`)− g(ak, z`)) + DvZ [i, j]Zt, (18)

where Dvg[i, j; k, l] and DvZ [i, j] denote the relevant elements of Dvg and DvZ , and v(a, z)

and g(a, z) are the steady state value function and distribution. Given the value function

vt(ai, zj), optimal consumption at different points of the income and wealth distribution is

then given by

ct(ai, zj) = (∂avt(ai, zj))
−1/θ. (19)

Certainty Equivalence Expressions (18) and (19) show that our solution features cer-

tainty equivalence with respect to aggregate shocks; the standard deviation σ of aggregate

TFP Zt does not enter households’ decision rules.21 This is a generic feature of all lineariza-

tion techniques.

However, our solution does not feature certainty equivalence with respect to idiosyncratic

shocks, because the distribution of idiosyncratic shocks enters the HJB equation (2) as well

21Note that σ does not enter the matrix B characterizing the linearized system (16) and therefore also
does not enter the matrices characterizing the optimal decision rules Dvg and DvZ .
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as its linearized counterpart in (16) directly. A corollary of this is that our method does

capture the effect of aggregate uncertainty to the extent that aggregate shocks affect the

distribution of idiosyncratic shocks. For example, Bloom et al. (2014) and Bayer et al.

(2015) study the effect of “uncertainty shocks” that result in an increase in the dispersion

of idiosyncratic shocks and can be captured by our method.22

Our solution method may instead be less suitable for various asset-pricing applications in

which the direct effect of aggregate uncertainty on individual decision rules is key. In future

work we hope to encompass such applications by extending our first-order perturbation

method to higher orders, or by allowing the decision rules to depend non-linearly on relevant

low-dimensional aggregate state variables (but not the high-dimensional distribution). Yet

another strategy could be to assume that individuals are averse to ambiguity so that risk

premia survive linearization (Ilut and Schneider, 2014).

Distributional Dependence of Aggregates A common motivation for studying hetero-

geneous agent models is that the response of macroeconomic aggregates to aggregate shocks

may depend on the distribution of idiosyncratic states. For example, different joint distribu-

tions of income and wealth g(a, z) can result in different impulse responses of aggregates to

the same aggregate shock. Our solution method preserves such distributional dependence.

To fix ideas, consider the impulse response of aggregate consumption Ct to a productivity

shock Zt, starting from the steady-state distribution g(a, z). First consider the response of

initial aggregate consumption C0 only. We compute the impact effect of the shock on the

initial value function v0(a, z) and initial consumption c0(a, z) from (18) and (19). Integrate

this over households to get aggregate consumption

C0 =

∫
c0(a, z)g(a, z)dadz ≈

I∑
i=1

2∑
j=1

c0(ai, zj)g(ai, zj)∆a∆z.

The impulse response of C0 depends on the initial distribution g0(a, z) because the elasticities

of individual consumption c0(a, z) with respect to the aggregate shock Z0 are different for

individuals with different levels of income and/or wealth. These individual elasticities are

then aggregated according to the initial distribution. Therefore, the effect of the shock

depends on the initial distribution g0(a, z).

To see this even more clearly, it is useful to briefly work with the continuous rather than

22McKay (2017) studies how time-varying idiosyncratic uncertainty on aggregate consumption dynamics.
Terry (2017) studies how well discrete-time relatives of our method capture time-variation in the dispersion
of productivity shocks in a heterogeneous firm model.
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discretized value and consumption policy functions. Analogous to (18), we can write the

initial value function response as v̂0(a, z) = DvZ(a, z)Z0 where DvZ(a, z) are the elements

of DvZ in (17) and where we have used the fact that the initial distribution does not move

(i.e. ĝ0(a, z) = 0) by virtue of g being a state variable. We can use this to show that

the deviation of initial consumption from steady state satisfies ĉ0(a, z) = DcZ(a, z)Z0 where

DcZ(a, z) captures the responsiveness of consumption to the aggregate shock.23 The impulse

response of initial aggregate consumption is then

Ĉ0 =

∫
DcZ(a, z)g(a, z)dadz × Z0. (20)

It depends on the steady-state distribution g(a, z) since the responsiveness of individual

consumption to the aggregate shock DcZ(a, z) differs across (a, z).

Size- and Sign-Dependence Another question of interest is whether our economy fea-

tures size- or sign-dependence, that is, whether it responds non-linearly to aggregate shocks

of different sizes or asymmetrically to positive and negative shocks.24 In contrast to state

dependence, our linearization method eliminates any potential sign- and size-dependence.

This can again be seen clearly from the impulse response of initial aggregate consumption

in (20) which is linear in the aggregate shock Z0. This immediately rules out size- and

sign-dependence in the response of aggregate consumption to the aggregate shock.25

In future work we hope to make progress on relaxing this feature of our solution method.

Extending our first-order perturbation method to higher orders would again help in this

regard. Another idea is to leverage the linear model solution together with parts of the

full non-linear model to simulate the model in a way that preserves these nonlinearities. In

particular one could use the fully nonlinear Kolmogorov Forward equation in (14) instead

of the linearized version in (16) to solve for the path of the distribution for times t > 0:

dgt/dt = A (vt;pt)
T gt. This procedure allows us to preserve size-dependence after the initial

impact t > 0 because larger shocks potentially induce non-proportional movements in the

individual state space, and therefore different distributional dynamics going forward.26

23In particular DcZ(a, z) = (∂av(a, z))−
1
θ−1∂aDvZ(a, z). To see this note that ĉ0(a, z) =

(∂av(a, z))−
1
θ−1∂av̂0(a, z) = (∂av(a, z))−

1
θ−1∂aDvZ(a, z)Z0 := DcZ(a, z)Z0.

24Note that this is separate from the state dependence we just discussed which is concerned with how the
distribution may affect the linear dynamics of the system.

25Note that expression (20) only holds at t = 0. At times t > 0, the distribution also moves ĝt(a, z) 6= 0.

The generalization of (20) to t > 0 is Ĉt ≈
∫
ĉt(a, z)g(a, z)dadz +

∫
c(a, z)ĝt(a, z)dadz. Since both ĉt(a, z)

and ĝt(a, z) will be linear in Zt, so will be Ĉt, again ruling out size- and sign-dependence.
26An open question is under what conditions this procedure would be consistent with our use of linear

approximations to solve the model. One possible scenario is as follows: even though the time path for the
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Small versus Large Aggregate Shocks Another generic feature of linearization tech-

niques is that the linearized solution is expected to be a good approximation to the true

non-linear solution for small aggregate shocks and less so for large ones. Section 2.4 below

documents that our approximate dynamics of the distribution is accurate for the typical

calibration of TFP shocks in the Krusell and Smith (1998) model, but breaks down for very

large shocks.27

2.4 Performance of Linearization in Krusell-Smith Model

In order to compare the performance of our method to previous work, we solve the model

under the parameterization of the JEDC comparison project Den Haan, Judd and Julliard

(2010). A unit of time is one quarter. We set the rate of time preference ρ = 0.01 and the

coefficient of relative risk aversion θ = 1. Capital depreciates at rate δ = 0.025 per quarter

and the capital share is α = 0.36. We set the levels of idiosyncratic labor productivity zL

and zH following Den Haan, Judd and Julliard (2010).

One difference between our model and Den Haan, Judd and Julliard (2010) is that

we assume aggregate productivity follows the continuous-time, continuous-state Ornstein-

Uhlenbeck process (1) rather than the discrete-time, two-state Markov chain in Den Haan,

Judd and Julliard (2010). To remain as consistent with Den Haan, Judd and Julliard (2010)’s

calibration as possible, we choose the approximate quarterly persistence corr(logZt+1, logZt) =

e−η ≈ 1− η = 0.75 and the volatility of innovations σ = 0.007 to match the standard devia-

tion and autocorrelation of Den Haan, Judd and Julliard (2010)’s two-state process.28

In our approximation we set the size of the individual asset grid I = 100, ranging from

a1 = 0 to aI = 100. Together with the two values for idiosyncratic productivity, the total

number of grids is N = 200 and the total size of the dynamic system (16) is 400.29

distribution might differ substantially when computed using the non-linear Kolmogorov Forward equation,
the time path for prices may still be well approximated by the linearized solution. Hence, the error in the
HJB equation from using the linearized prices may be small.

27Related, our linearization method obviously rules out nonlinear amplification effects that result in a
bimodal ergodic distribution of aggregate states as in He and Krishnamurthy (2013) and Brunnermeier and
Sannikov (2014).

28Another difference is that Den Haan, Judd and Julliard (2010) allows the process for idiosyncratic shocks
to depend on the aggregate state. We set our idiosyncratic shock process to match the average transition
probabilities in Den Haan, Judd and Julliard (2010). We have solved the model with time-varying transition
probabilities and obtained quantitatively similar results. Details are available from the authors upon request.

29In this calculation, we have dropped one grid point from the distribution using the restriction that the
distribution integrates to one. Hence there are N = 200 equations for v̂t, N − 1 = 199 equations for ĝt and
one equation for Zt.
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Table 1: Run Time for Solving Krusell-Smith Model

Full Model

Steady State 0.082 sec

Derivatives 0.021 sec

Linear system 0.14 sec

Simulate IRF 0.024 sec

Total 0.27 sec

Notes: Time to solve Krusell-Smith model once on MacBook Pro 2016 laptop with 3.3 GHz processor and
16 GB RAM, using Matlab R2016b and our code toolbox. “Steady state” reports time to compute steady
state. “Derivatives” reports time to compute derivatives of discretized equilibrium conditions. “Linear
system” reports time to solve system of linear differential equations. “Simulate IRF” reports time to
simulate impulse responses reported in Figure 1. “Total” is the sum of all these tasks.

Table 1 shows that our linearization method solves the Krusell and Smith (1998) model

in approximately one quarter of one second. In contrast, the fastest algorithm documented

in the comparison projection by Den Haan (2010) takes over seven minutes to solve the

model – more than 1500 times slower than our method (see Table 2 in Den Haan (2010)).30

In Section 3 we solve the model in approximately 0.1 seconds using our model-free reduction

method.

Accuracy of Linearization The key restriction that our method imposes is linearity

with respect to the aggregate state variables Zt and ĝt. We evaluate the accuracy of this

approximation using the error metric suggested by Den Haan (2010). The Den Haan error

metric compares the dynamics of the aggregate capital stock under two simulations of the

model for T = 10, 000 periods. The first simulation computes the path of aggregate capital

Kt from our linearized solution (17). The second simulation computes the path of aggregate

capital K∗t from simulating the model using the nonlinear dynamics (3) as discussed in

Section 2.3. We then compare the maximum log difference between the two series,

εDH = 100× max
t∈[0,T ]

|logKt − logK∗t | .

30As discussed by Den Haan (2010), there is one algorithm (Penal) that “is even faster, but this algorithm
does not solve the actual [Krusell-Smith] model specified.”
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Table 2: Maximum den Haan Error in %

St. Dev Productivity Shocks (%) Maximum den Haan Error (%)

0.01 0.000

0.1 0.001

0.7 0.049

1.0 0.118

5.0 3.282

Notes: Maximum percentage error in accuracy check suggested by Den Haan (2010). The error is the
percentage difference between the time series of aggregate capital under our linearized solution and a
nonlinear simulation of the model, as described in the main text. The bold face row denotes the calibrated
value σ = 0.007.

Den Haan originally proposed this metric to compute the accuracy of the forecasting rule

in the Krusell and Smith (1998) algorithm; in our method, the linearized dynamics of the

distribution gt are analogous to the forecasting rule.

When the standard deviation of productivity shocks is 0.7%, our method gives a max-

imum percentage error εDH = 0.049%, implying that households in our model make small

errors in forecasting the distribution. Our method is three times as accurate as the Krusell

and Smith (1998) method, which is the most accurate algorithm in Den Haan (2010) and

gives εDH = 0.16%. Table 2 shows that, since our method is locally accurate, its accuracy

decreases in the size of the shocks σ. However, with the size of aggregate shocks in the

baseline calibration, it provides exceptional accuracy.

3 Model Reduction

Solving the linear system (16) is extremely efficient because the Krusell and Smith (1998)

model is relatively small. However, the required matrix decomposition becomes prohibitively

expensive in larger models like the two-asset model that we will study in Section 5. We must

therefore reduce the size of the system to solve these more general models. Furthermore,

even in smaller models like Krusell and Smith (1998), model reduction makes likelihood-

based estimation feasible by reducing the size of the associated filtering problem.31

31Mongey and Williams (2016) use a discrete-time relative of our method without model reduction to
estimate a small heterogeneous firm model. Winberry (2016) provides an alternative parametric approach
for reducing the distribution and also uses it to estimate a small heterogeneous firm model.
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In this section, we develop a model-free reduction method to reduce the size of the

linear system while preserving accuracy. Our approach projects the high-dimensional dis-

tribution ĝt and value function v̂t onto low-dimensional subspaces and solves the resulting

low-dimensional system. The main challenge is reducing the distribution, which we discuss

in Sections 3.1, 3.2, and 3.3. Section 3.4 describes how we reduce the value function. Section

3.5 puts the two together to solve the reduced model and describes the numerical implemen-

tation. Finally, Section 3.6 shows that our reduction method performs well in the Krusell

and Smith (1998) model.

In order to simplify notation, for the remainder of this section we use vt,gt and pt to

denote the deviations from steady state in the value function, distribution, and prices. In

Section 2, we had denoted these objects using v̂t, ĝt and p̂t. This change of notation applies

to Section 3 only, and we will remind the reader whenever this change could cause confusion.

3.1 Overview of Distribution Reduction

The basic insight that we exploit is that only a small subset of the information in gt is

necessary to accurately forecast the path of prices pt. In fact, in the discrete time version of

this model, Krusell and Smith (1998) show that just the mean of the asset distribution gt

is sufficient to forecast pt according to a forecast-error metric. However, the success of their

reduction strategy relies on the economic properties of the model, so it is not obvious how

to generalize it to other environments. We use a set of tools from the engineering literature

known as model reduction to generalize Krusell and Smith (1998)’s insight in a model-free

way, allowing the computer to compute the features of the distribution that are necessary

to accurately forecast pt.
32

It is important to note that the vector pt does not need to literally consist of prices; it

is simply the vector of objects we wish to accurately describe. In practice, we often also

include other variables of interest, such as aggregate consumption or output, to ensure that

the reduced model accurately describes their dynamics as well.

32The following material is based on lecture notes by Amsallem and Farhat (2011), which in turn build
on a book by Antoulas (2005). Lectures 3 and 7 by Amsallem and Farhat (2011) and Chapters 1 and 11 in
Antoulas (2005) are particularly relevant. All lecture notes for Amsallem and Farhat (2011) are available
online at https://web.stanford.edu/group/frg/course_work/CME345/ and the book by Antoulas (2005)
is available for free at http://epubs.siam.org/doi/book/10.1137/1.9780898718713. Also see Reiter
(2010) who applies related ideas from the model reduction literature in order to reduce the dimensionality
of a linearized discrete-time heterogeneous agent model.
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3.1.1 The Distribution Reduction Problem

We say that the distribution exactly reduces if there exists a kS-dimensional time-invariant

subspace S with kS << N such that, for all distributions gt which occur in equilibrium,

gt = γ1tx1 + γ2tx2 + ...+ γkS txkS ,

where XS = [x1, ...,xkS ] ∈ RN×kS is a basis for the subspace S and γ1t, ..., γkS t are scalars. If

we knew the time-invariant basis XS , we could decrease the dimensionality of the problem

by tracking only the kS−dimensional vector of coefficients γt.

Typically exact reduction as described above does not hold, so we instead must estimate

a trial basis X = [x1, ...,xk] ∈ RN×k such that the distribution approximately reduces, i.e.,

gt ≈ γ1tx1 + γ2tx2 + ...+ γktxk,

or, in matrix form, gt ≈ Xγt. Denote the resulting approximation of the distribution by

g̃t = Xγt and the approximate prices by p̃t = Bpgg̃t + BpZZt.

Our model maps directly into the prototypical problem considered by the model reduction

literature if the decision rules are exogenous, i.e. the matrices Dvg and DvZ in (17) are

exogenously given.33 This case assumes away a crucial part of the economics we are interested

in studying but nevertheless has pedagogical use in connecting to the existing literature. In

this case, using the second and fourth equations of (17) and recalling our convention in this

section to drop hats from variables, our dynamical system becomes

dgt
dt

= Cgggt + CgZZt

pt = Bpggt + BpZZt,
(21)

where Cgg = Bgg + BgpBpg + BgvDvg and CgZ = BgpBpZ + BgvDvZ . This system maps

a low-dimensional vector of “inputs” (aggregate productivity Zt) into a low-dimensional

vector of “outputs” (prices pt), intermediated through the high-dimensional distribution

gt.
34 The model reduction literature provides an off-the-shelf set of tools to replace the high-

33Exogenous decision rules usually relate the value function to prices, i.e. vt = Dvppt. But prices
pt = Bpggt + BpZZt in turn depend on the distribution gt and productivity Zt. Hence so do the decision
rules: vt = Dvggt + DvZZt, with Dvg = DvpBpg and DvZ = DvpDpZ .

34The system (21) is called a linear time invariant (LTI) system. Zt is an input into the system and pt
is an output. If both inputs and outputs are scalars, the system is called a single-input-single-output (SISO)
system. If both inputs and outputs are vectors, it is called a multiple-input-multiple-output (MIMO) system.
Instead of assuming that decision rules are exogenous, we could have assumed that there is no feedback
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dimensional “intermediating variable” gt with a low-dimensional approximation γt while

preserving the mapping from inputs to outputs.

Of course, our economic model is more complicated than this special case because the

distribution reduction feeds back into agents’ decisions through the endogenous value func-

tion vt. It is helpful to restate the system with endogenous vt in a form closer to that in the

model reduction literature:[
Et[dvt]

dgt

]
=

[
Bvv BvpBpg

Bgv Bgg + BgpBpg

][
vt

gt

]
dt+

[
BvpBpZ

BgpBpZ

]
Ztdt

pt = Bpggt + BpZZt,

(22)

given the exogenous stochastic process for productivity (4). This system still maps the

low-dimensional input Zt into the low-dimensional output pt. However, the intermediating

variables are now both the distribution gt and the forward-looking decisions vt.

3.1.2 Deriving The Reduced System Given Basis X

Model reduction involves two related tasks: first, given a trial basis X, we must compute the

dynamics of the reduced system in terms of the distribution coefficients γt; and second, we

must choose the basis X itself. In this subsection, we complete the first step of characterizing

the reduced system given a basis X, which is substantially easier than the second step of

choosing the basis. Sections 3.2 and 3.3 discuss how we choose the basis.

Mathematically, we project the distribution gt onto the subspace spanned by the basis

X ∈ RN×k. Write the requirement that gt ≈ Xγt as

gt = Xγt + εt, (23)

where εt ∈ RN is a residual. The formulation (23) is a standard linear regression in which the

distribution gt is the dependent variable, the basis vectors X are the independent variables,

and the coefficients γt are to be estimated.

Just as in ordinary least squares, we can estimate the projection coefficients γt by im-

posing the orthogonality condition XTεt = 0, giving the familiar formula

γt = (XTX)−1XTgt. (24)

from individuals’ decisions to the distribution Bgv = 0. In that case the system (16) again becomes a
backward-looking system of the LTI form (21), now with Cgg = Bgg + BgpBpg and CgZ = BgpBpZ .
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A sensible basis will be orthonormal, so that (XTX)−1 = I, further simplifying (24) to

γt = XTgt.
35 We can compute the evolution of this coefficient vector by differentiating (24)

with respect to time and using (23) to get

dγt
dt

= XT dgt
dt

= XTBgvvt + XT (Bgg + BgpBpg) (Xγt + εt) + XTBgpBpgZt

≈ XTBgvvt + XT (Bgg + BgpBpg) Xγt + XTBgpBpgZt.

The hope is that the residuals εt are small and so the last approximation is good. Assuming

this is the case, we have the reduced version of (22)[
Et[dvt]

dγt

]
=

[
Bvv BvpBpgX

XTBgv XT (Bgg + BgpBpg) X

][
vt

γt

]
dt+

[
BvpBpZ

XTBgpBpZ

]
Ztdt,

p̃t = BpgXγt + BpZZt.

(25)

Summing up, assuming we have the basis X, this projection procedure takes us from the

system of differential equations involving the N -dimensional vector gt in (22) to a system

involving only the k-dimensional vector γt in (25).36

3.2 Choosing the Basis X with Exogenous Decision Rules

We now turn to choosing a good basis X. In this section we explain how to choose a basis in

a model with exogenous decision rules, allowing us to use preexisting tools from the model

reduction literature. In Section 3.3 we extend the strategy to the case with endogenous

decision rules.

Mechanically increasing the size of the basis X will improve the approximation of the

distribution gt; in the limit where X spans RN , we will not reduce the distribution at all. The

goal of the model reduction literature is to provide a good approximation of the mapping

from inputs Zt to outputs pt with as small a basis X as possible. We operationalize the

notion of a “good approximation” by matching the impulse response function of pt to a

35The assumption that X is orthonormal is not necessary to derive our results but makes the exposition
transparent. Appendix A.3 derives our results using non-normalized projection matrices.

36The model reduction literature also presents alternatives to our “least squares” approach to computing
the coefficients γt. In particular, one can also estimate γt using what amounts to an instrumental variables
strategy: one can define a second subspace spanned by the columns of some matrix Z and impose the
orthogonality condition ZTεt = 0. This yields an alternative estimate γt = (ZTX)−1ZTgt. Mathematically,
this is called an oblique projection (as opposed to an orthogonal projection) of gt onto the k-dimensional
subspace spanned by the columns X along the kernel of ZT. See Amsallem and Farhat (2011, Lecture 3)
and Antoulas (2005) for more detail on oblique projections.
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shock to Zt up to a specified order k.37

3.2.1 Choosing the Basis in a Simplified Deterministic Model

To transparently motivate our choice of basis X, we begin with a simplified version of the

system (21). In particular, we make two simplifying assumptions. First, we assume that there

are no aggregate shocks, so that Zt = 0 for all t. This allows us to focus on deterministic

transition paths starting from an exogenously given initial distribution g0; because certainty

equivalence with respect to aggregate shocks holds in our linear setting, these transition paths

are intimately related to impulses responses driven by shocks to Zt. Our second simplifying

assumption is that pt = pt is a scalar. This emphasizes that the price vector we are trying to

approximate is a low-dimensional object. Under these assumptions, we obtain the following

simplified version of the system (21)

dgt
dt

= Cgggt

pt = bpggt,
(26)

where bpg is a 1×N vector. The reduced version of this system is

dγt
dt

= XTCggXγt

p̃t = bpgXγt,
(27)

where p̃t denotes the reduced path of prices. Since the system (26) is linear, it has a simple

solution. The solution of the first equation is gt = eCggtg0 where eCggt is a matrix exponential.

Hence

pt = bpge
Cggtg0. (28)

Similarly, we can derive an analogous solution for the reduced prices which satisfy (27)

p̃t = bpgXe
XTCggXtγ0 (29)

The goal is then to choose X such that pt in (28) is “close” to p̃t in (29). The key idea is

to choose X such that the kth-order Taylor series approximation of pt in (28) around t = 0

exactly matches that of p̃t in (29).

37Our approach for choosing the basis X is a simplified version of what the model reduction literature
calls “moment matching.” See Amsallem and Farhat (2011, Lecture 7) and Antoulas (2005, Chapter 11). It
is also the continuous-time analogue of what Reiter (2010) terms “conditional expectation approach” (see
his Section 3.2.2).
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The Taylor-series approximation of the time path of prices (28) around t = 0 is38

pt ≈ bpg

[
I + Cggt+

1

2
C2
ggt

2 + . . .+ 1
(k−1)!

Ck−1
gg tk−1

]
g0 (30)

where we have used that eCggt ≈ I + Cggt+ 1
2
C2
ggt

2 + .... Similarly, the Taylor-series approx-

imation of reduced prices is

p̃t ≈ bpgX

[
I + (XTCggX)t+

1

2
(XTCggX)2t+ . . .+ 1

(k−1)!
(XTCggX)k−1tk−1

]
γ0. (31)

We want to choose X so that the first k terms of the two Taylor series expansions are identical.

With γ0 = XTg0, this means that we require bpg = bpgXXT, bpgCgg = bpgXXTCggXXT,

and so on. If γt has the same dimensionality as gt (k = N , i.e., we are not reducing the

distribution at all), then X has to be orthogonal, i.e. XXT = I, and the conclusion trivially

follows. But once we have proper reduction, this equality does not hold, and the problem

of Taylor series coefficient matching becomes non-trivial. Fortunately, the model reduction

literature gives us a systematic way for choosing X such that (30) matches (31). This

systematic way builds upon what is known as the order-k observability matrix of the system

(26):39

O(bpg,Cgg) :=



bpg

bpgCgg

bpgC
2
gg

...

bpgC
k−1
gg


. (32)

It turns out that if the basis X spans the subspace generated by the transpose of the observ-

ability matrix O(bpg,Cgg), then the kth-order Taylor-series approximation of reduced prices

(31) exactly matches that of unreduced prices (30), even though it only uses information

on the reduced state vector γt. Showing this just requires a few lines of algebra, which we

present in Appendix A.3.1.

38In this simple deterministic model, (30) can also be derived in a simpler fashion: the Taylor-series

approximation around t = 0 is pt ≈ p0 + ṗ0t + 1
2 p̈0t

2 + ... + 1
(k−1)!p

(k−1)
0 tk−1. This is equivalent to (30)

because the derivatives are given by ṗt = bpgġt = bpgCgggt, p̈t = bpgC
2
gggt and so on. This strategy no

longer works in the full model with aggregate productivity shocks. In contrast, the derivation in terms of
the matrix exponential eCggt can be easily extended to the stochastic case.

39Observability of a dynamical system is an important concept in control theory introduced by Rudolf
Kalman, the inventor of the Kalman filter. It is a measure of how well a system’s states (here gt) can be
inferred from knowledge of its outputs (here pt). For systems like ours observability can be directly inferred
from the observability matrix O(bpg,Cgg) with k = N . Note that some texts refer only to O(bpg,Cgg) with
k = N as “observability matrix” and to the matrix with k < N as “partial observability matrix.”
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To gain some intuition why the observability matrix (32) makes an appearance, note that

the Taylor-series approximation (30) can be written more compactly using matrix notation

as

pt ≈
[
1, t, 1

2
t2, ..., 1

(k−1)!
tk−1

]
O(bpg,Cgg)g0

Related, O(bpg,Cgg)gt is simply the vector of time derivatives of pt, i.e. ṗt, p̈t and so on (see

footnote 38).

3.2.2 Choosing the Basis in The Stochastic Model

The deterministic case makes clear that the observability matrix O(bpg,Cgg) plays a key

role in model reduction. The logic of this simple case carries through the stochastic model,

but the full derivation is more involved and details can be found in Appendix A.3. Because

the model is now stochastic, the correct notion of “matching the path of prices” is to match

the impulse response function of prices.

Proposition 1. Consider the stochastic model with exogenous decision rules (21). Let X

be a basis which spans the subspace generated by the observability matrix O(bpg,Cgg)
T with

Cgg = Bgg+Bgpbpg+BgvDvg. Then the impulse response function of prices p̃t to an aggregate

productivity shock Zt in the reduced model equals the impulse response function of prices pt

in the unreduced model up to order k.

Proof. See Appendix A.3.2

The impulse response function in the stochastic model combines the impact effect of an

aggregate shock Zt together with the transition back to steady state. We do not reduce

the exogenous state variable Zt, so the reduced model captures the impact effect of a shock

exactly. The role of the observability matrix is to approximate the transition back to steady

state analogously to the deterministic case.

Finally, note that in this section we have assumed pt is a scalar to emphasize that it is

a low-dimensional object. In general pt is an ` × 1 vector. One can extend the argument

above to show that the correct basis X spans the subspace generated by O(Bpg,Cgg)
T for

Cgg = Bgg+BgpBpg+BgvDvg where now Bpg is an `×N matrix. Matching impulse response

functions of pt up to order k, requires matching `k terms in the corresponding Taylor-series

approximation and hence the observability matrix O(Bpg,Cgg) is now of dimension kg ×N ,

where kg = `k < N .
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3.3 Choosing the Basis X with Endogenous Decision Rules

Section 3.2 shows that if decision rules Dvg are exogenously given, then choosing the basis X

to span the subspace generated by O(Bpg,Cgg)
T guarantees that the impulse response of the

reduced price p̃t matches the unreduced model up to a pre-specified order k. However, when

decision rules are endogenous, the choice of basis impacts agents’ decisions and therefore the

evolution of the distribution. In this case, the results of Section 3.2 do not apply.

However, the choice of basis in Section 3.2 was only dictated by the concern of efficiently

approximating the distribution with as small a basis as possible; it is always possible to

improve accuracy by adding additional orthogonal basis vectors. In fact, in the finite limit

when k = N , any linearly independent basis spans all of RN so the distribution is not

reduced at all and the reduced model is vacuously accurate. Therefore, setting the basis X

to the subspace generated by O(Bpg,Bgg+BgpBpg)
T, i.e. ignoring feedback from individuals’

decisions to the distribution by effectively setting Dvg = 0, will not be efficient but may still

be accurate. In practice, we have found in both the simple Krusell and Smith (1998) model

and the two-asset model in Section 5 that this choice leads to accurate solutions for high

enough order k of the observability matrix.

In cases where choosing the basis to span the subspace O(Bpg,Bgg + BgpBpg)
T is not

accurate even for as high an order k as numerically feasible, we suggest an iterative procedure.

First, we solve the reduced model (25) based on the inaccurate basis choice for the subspace

O(Bpg,Bgg + BgpBpg)
T. This yields decision rules Dvγ defining a mapping from the reduced

distribution γt to the value function. We then use these to construct an approximation

to the true decision rules Dvg (which map the full distribution to the value function), i.e.

D̃vg = DvγX
T.40 Next we choose a new basis of the subspace generated by O(Bpg,Bgg +

Bgg + BgpBpg + BgvD̃vg)
T and solve the model again based on the new reduction. If the

second reduction gives an accurate solution, we are done; if not, we continue the iteration.

Although we have no theoretical guarantee that this iteration will converge, in practice we

have found that it does.

Choosing k and Internal Consistency with Endogenous Decision Rules A key

practical step in reducing the distribution is choosing the order of the observability matrix

k, which determines the size of the basis X. With exogenous decision rules, we showed that

a basis of order k implies that the path of reduced prices p̃t matches the k-th order Taylor

40Recall from (24) that the projection of gt onto X defines the reduced distribution as γt = XTgt. Hence

the optimal decision rule can be written as ṽt = Dvγγt = DvγX
Tgt = D̃vggt where D̃vg = DvγX

T.
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expansion of the path of true prices pt, providing a natural metric for assessing accuracy.41

However, this logic does not carry through with endogenous decision rules, leaving unclear

what exactly a basis of order k captures.

In the finite limit when k = N , any linearly independent basis spans all of RN so the

distribution is not reduced at all and the reduced model is vacuously accurate. Hence,

a natural procedure is to increase k until the dynamics of reduced prices converge. In

practice, this convergence is often monotonic. However, we cannot prove convergence is

always monotonic, still leaving open the question of what exactly the reduced model captures

for a given order k.

We suggest an internal consistency metric to assess the extent to which the reduced

model satisfies the model’s equilibrium conditions. The spirit of our internal consistency

check is similar to Krusell and Smith (1998)’s R2 forecast-error metric and Den Haan (2010)’s

accuracy measure discussed in Section 2: if agents make decisions based on the price path

implied by the reduced distribution, but we aggregate those decisions against the true full

distribution, do the prices generated by the true distribution match the forecasts?

Concretely, our internal consistency check consists of three steps. First, we compute

households’ decisions based on the reduced distribution, ṽt = Dvγγt. Second, we use these

decisions to simulate the nonlinear dynamics of the full distribution g∗t – not the reduced

version γt – and its implied prices p∗t for a given path of aggregate shocks Zt

p∗t = Bpgg
∗
t + BpZZt

dg∗t
dt

= A(ṽt,p
∗
t )g
∗
t ,

where A(ṽt, p
∗
t ) is the nonlinear transition matrix implied by the decision rules ṽt and price

p∗t . The third step of our internal accuracy check is to assess the extent to which the dynamics

of p∗t matches the dynamics implied by the reduced system p̃t. If the two paths are close,

households in the reduced model could not significantly improve their forecasts by using

additional information about the distribution. Once again, we compare the maximum log

deviation of the two paths

ε = max
i

max
t≥0
|log p̃it − log p∗it| ,

where i denotes an entry in the price vector.

41Recall that in general pt includes both prices and other observables of interest to the researcher.
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Computing The Basis X Following the discussion above, we choose the basis X to span

the subspace generated by O(Bpg,Bgg + BgpBpg)
T. However, using O(Bpg,Bgg + BgpBpg)

T

directly is numerically unstable due to approximate multicollinearity; as in standard regres-

sion, high degree standard polynomials are nearly collinear due to the fact that, for large

k, Bpg(Bgg + BgpBpg)
k−2 ≈ Bpg(Bgg + BgpBpg)

k−1, leaving the necessary projection of the

distribution onto X numerically intractable.

We overcome this challenge by relying on a Krylov subspace method, an equivalent but

more numerically stable class of methods.42 For any N ×N matrix A and N × 1 vector b,

the order-k Krylov subspace is

Kk(A,b) = span
({

b,Ab,A2b, ...,Ak−1b
})
.

From this definition it can be seen that the subspace spanned by the columns of O(Bpg,Bgg+

BgpBpg)
T is simply the order-k Krylov subspace generated by (Bgg + BgpBpg)

T and BT
pg,

i.e. Kk(BT
gg + BT

gpB
T
pg,B

T
pg). Therefore, the projection of gt on O(Bpg,Bgg + BgpBpg)

T is

equivalent to the projection of gt onto this Krylov subspace.

There are many methods for projecting onto Krylov subspaces in the literature. One

important feature of all these methods is that they take advantage of the sparsity of the

underlying matrices.43 We have found that one particular method, deflated block Arnoldi

iteration, is a robust procedure. Deflated block Arnoldi iteration has two advantages for

our application. First, it is a stable procedure to orthogonalize the columns of the basis X

and eliminate the approximate multicollinearity. Second, the deflation component handles

multicollinearity that can arise even with non-deflated block Arnoldi iteration.

3.4 Value Function Reduction

After reducing the dimensionality of the distribution gt, we are left with a system of di-

mension N + kg with kg << N (recall kg = ` × k where ` is the number of prices and k is

the order of the approximation according to which the basis X is chosen). Although this is

considerably smaller than the original system which was of size 2N , it is still large because

it contains N equations for the value function – one for each point in the individual state

42See Antoulas (2005, Chapter 11) and Amsallem and Farhat (2011, Lecture 7).
43Even though Bgg is sparse and Bgp and Bpg are only `×N , the matrix Bgg + BgpBpg which actually

enters the system (22) is N × N and not sparse (because BgpBpg is N × N not sparse). In the two-asset
model in Section 5, N = 66, 000, and even storing this matrix is not feasible. Fortunately it is never actually
necessary to compute this full matrix; instead, it is only necessary to compute Bpg(Bgg + BgpBpg) which
involves the action of BgpBpg on a thin `×N matrix Bpg and can be computed as (BpgBgp)Bpg.
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space. In complex models, this leaves the linear system too large for matrix decomposition

methods to be feasible.44

We therefore also reduce the dimensionality of the distribution vt. Just like in our

method for reducing the distribution gt, we project the (deviation from steady state of the)

value function vt onto a lower-dimensional subspace. As before, an important question

is how to choose the basis for this projection. We choose it by appealing to the theory

for approximating smooth functions and approximate vt using splines. In most models,

the value function is sufficiently smooth that a low-dimensional spline provides an accurate

approximation. In particular, any spline approximation can be written as the projection

vt ≈ Xvνt,

where Xv is a N × kv matrix defining the spline knot points and νt are the kv coeffi-

cients at those knot points.45 Given this linear projection the coefficients are given by

νt = (XT
v Xv)

−1XT
v vt = XT

v vt, where we have used that we typically choose an orthonormal

Xv so that XT
v Xv = I.

It is worth emphasizing the symmetry with our distribution reduction method, the pro-

jection (23). In order to do so we add a g-subscript to the basis in the distribution reduction

for the remainder of the paper and write (23) as gt ≈ Xgγt. Hence from now on Xg denotes

the basis in the reduction of the distribution gt and Xv denotes the basis in the reduction of

the value function vt. It is also important to note that we are approximating the deviation

of the value function from its steady state value, not the value function itself (the reader

should recall our convention in the present section to drop hat subscripts from variables that

are in deviation from steady state for notational simplicity).

We have found that non-uniformly spaced quadratic splines work well for three reasons.

First, the non-uniform spacing can be used to place more knots in regions of the state space

with high curvature, allowing for an efficient dimensionality reduction. Second, the quadratic

spline preserves monotonicity and concavity between knot points, which is important in com-

puting first-order conditions. Third, and related, the local nature of splines implies that they

avoid creating spurious oscillations at the edges of the state space (Runge’s phenomenon)

which often occurs with global approximations like high-degree polynomials.

44One way to overcome this challenge is to use sparse matrix methods to find just the k eigenvalues
associated with the stable eigenvectors. This is much faster than computing the full matrix decomposition
necessary to obtain the full set of eigenvectors. However, it is slower than the approach we pursue in this
subsection.

45Note that, in general, the number of coefficients is different from the number of knot points.
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It is also important to note the difference between approximating the deviations of the

value function from steady state using quadratic splines – which we do – versus solving for

the steady state value using quadratic splines – which we do not do. The finite difference

method we use to compute the steady state does not impose that the value function is

everywhere differentiable, which is potentially important for capturing the effects of non-

convexities. However, after having computed the steady state value functions, it is typically

the case that they have kinks at a finite number of points and are well-approximated by

smooth functions between these points. It is then straightforward to fit quadratic splines

between the points of non-differentiability.

3.5 Putting It All Together: A Numerical Toolbox

Summarizing the previous sections, we have projected the distribution gt onto the subspace

spanned by Xg and the value function vt onto the subspace spanned by Xv. Now we simply

need to keep track of the kv × 1 coefficient vector νt for the value function and the kg × 1

coefficient vector γt for the distribution. Because knowledge of these coefficients is sufficient

to reconstruct the full value function and distribution, we will also sometimes refer to νt as

the reduced value function and to γt as the reduced distribution. Our original system (16)

is now reduced to

Et

dνt

dγt

dZt

 =

XT
v BvvXv XT

v BvpBpgXg XT
v BvpBpZ

XT
g BgvXv XT

g (Bgg + BgpBpg)Xg XT
g BgpBpZ

0 0 −η


νtγt
Zt

 dt. (33)

We have provided a numerical toolbox implementing the key steps in our computational

method at the github page associated with this project.46 Broadly, the user provides two

files: one which solves for the steady state and another which evaluates the model’s equilib-

rium conditions. Our toolbox then implements the following algorithm (we here revert back

to denoting deviations from steady state with hat superscripts):

1. Compute the steady state values of v,g and p.

2. Compute a first-order Taylor expansion of the equilibrium conditions (14) around

steady state using automatic differentiation, yielding the system (16) in terms of devi-

ations from steady state v̂t, ĝt, p̂t and Zt.

46Currently at: https://github.com/gregkaplan/phact.
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3. If necessary, reduce the model, yielding the system (33) in terms of (νt, γt, Zt).

(a) Distribution reduction: compute the basis Xg = O(Bpg,Bgg + BgpBpg)
T using

deflated Arnoldi iteration and project ĝt on Xg to obtain the reduced distribution

γt.

(b) Value function reduction: compute the spline basis Xv and project v̂t on Xv to

obtain the reduced value function νt.

4. Solve the system (16) or, if reduced, (33).

5. Simulate the system to compute impulse responses and time-series statistics.

3.6 Model Reduction in Krusell-Smith Model

The Krusell and Smith (1998) is a useful environment for evaluating our model reduction

methodology because it is possible to solve the full unreduced model as a benchmark. We

are able to substantially reduce the size of the system: projecting the distribution on an

observability matrix of order k = 1 and approximating the value function at 24 spline knot

points provides an extremely accurate approximation of the model’s dynamics.47 Figure

1 shows that the impulse responses of key aggregate variables in the reduced model are

almost exactly identical to the full, unreduced model, despite approximating the N = 400

dimensional dynamic system with a 30-dimensional system.48

The fact that we can reduce the distribution with an observability matrix of order k = 1

is consistent with Krusell and Smith (1998)’s finding of “approximate aggregation” using

a computationally distinct procedure and accuracy measure. In fact, as Figure 2 shows, a

k = 1 order approximation of the distribution returns precisely the mean. The top left panel

of the figure plots the basis vector associated with k = 1, split into two 100-dimensional

vectors corresponding to the two values for idiosyncratic productivity. It shows that indeed

the first basis vector xg,1 = [ aa ], implying that γt = xT
g,1gt = [ aa ]T gt = K̂t, the (deviation

from steady state of the) mean of the distribution. The remaining panels plot the higher-

order elements of Xg, which quickly converge to constants that do not add information to

47More precisely, we choose the observability matrix so as to forecast ` = 5 equilibrium objects (namely the
wage and the interest rate, plus the three equilibrium aggregates we are most interested in: aggregate output,
consumption, investment) to order k = 1 resulting in a reduced distribution γt of dimension kg = `× k = 5,
and we approximate the value function at 12 spline knot points in the wealth dimension resulting in a reduced
value function νt of dimension kv = 2× 12 = 24.

48There are kv = 12×2 = 24 points for the value function, kg = k×` = 1×5 = 5 points for the distribution
because we are tracking five elements of the pt vector, and 1 point for TFP Zt.
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Figure 1: Impulse Responses to TFP Shock in Krusell-Smith Model
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Notes: impulse responses to an instantaneous positive unit standard deviation size shock (Dirac delta
function) to aggregate TFP. We simulate the model by discretizing the time dimension with step size
dt = 0.1. “Full model” refers to model solved without model reduction and “reduced model” with
reduction, using kg = 2 (forecasting ` = 5 objects, of which two are linearly independent, with a
k = 1-order Taylor series approximation) and kv = 24.
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Figure 2: Basis Vectors in Distribution Reduction
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Notes: The columns of Xg = O(Bpg,Bgg + BgpBpg)
T, here displayed for the capital stock, up to order

k = 4. These correspond to the basis vectors in the approximated distribution gt ≈ γ1txg,1 + ...+ γ4txg,4.

the approximation. Hence, our model-free reduction method confirms Krusell and Smith

(1998)’s approximate aggregation result in this simple model.

With or without dimensionality reduction, our method solves and simulates the model in

less than 0.3 seconds. Table 3 reports the running time of using our Matlab code suite on a

desktop PC. Although reduction is not necessary to solve this simple model, it nevertheless

reduces running time by more than 50% and takes approximately 0.1 seconds.49 In the

two-asset model in Section 5, model reduction is necessary to even solve the model.

Our internal consistency check confirms the fact that the distribution reduction is accu-

rate; the maximum log deviation is 0.065%, which is twice as small as the most accurate

algorithm in the JEDC comparison Den Haan (2010). Recall that in the unreduced model

that the maximum log deviation is 0.049%, capturing the error due to linearization. Hence,

the additional error due to our model reduction is extremely small. Figure 3 plots the

two series for a random 400-quarter period of simulation and shows that the two series are

extremely close to each other.50

49Recall that the fastest algorithm in the JEDC comparison Den Haan (2010) is more 7 minutes, or 3500
times longer.

50Den Haan (2010) refers to this type of figure as the “fundamental accuracy plot.”
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Table 3: Run Time for Solving Krusell-Smith Model

Full Model Reduced Model

Steady State 0.082 sec 0.082 sec

Derivatives 0.021 sec 0.021 sec

Dim reduction × 0.007 sec

Linear system 0.14 sec 0.002 sec

Simulate IRF 0.024 sec 0.003 sec

Total 0.267 sec 0.116 sec

Notes: Time to solve Krusell-Smith model once on MacBook Pro 2016 laptop with 3.3 GHz processor and
16 GB RAM, using Matlab R2016b and our code toolbox. “Full model” refers to solving model without
model reduction and “reduced model” with reduction, using kg = 1 and kv = 12. “Steady state” reports
time to compute steady state. “Derivatives” reports time to compute derivatives of discretized equilibrium
conditions. “Dim reduction” reports time to compute both the distribution and value function reduction.
“Linear system” reports time to solve system of linear differential equations. “Simulate IRF” reports time
to simulate impulse responses reported in Figure 1. “Total” is the sum of all these tasks.

Figure 3: Internal Consistency Check
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Notes: Two series for aggregate capital that enter the internal consistency check ε. “Reduced model
forecast” computes the path K̃t implied by the reduced linear model. “Nonlinear model forecast” computes
the path K∗t from updating the distribution according to the nonlinear KFE (3).
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4 Two-Asset Incomplete Markets Model

While the Krusell and Smith (1998) model is a useful pedagogical tool for explaining our

computational method, it does not reproduce key features of the distribution of household-

level income, wealth, and consumption in the micro data. In this section, we apply our

method to solve a two-asset incomplete markets model in the spirit of Kaplan and Violante

(2014) and Kaplan, Moll and Violante (2016), which is explicitly parameterized to match

key features of these distributions. Accurately reproducing these features leads to a failure

of approximate aggregation which, together with the model’s size, render it an ideal setting

to illustrate the power of our method. In Sections 5 and 6, we use the model to illustrate a

rich interaction between inequality and macroeconomic dynamics.

4.1 Model

The household side of the model is a simplified version of Kaplan, Moll and Violante (2016),

so we refer to the interested reader to that paper for full details. The firm side follows the

standard real business cycle model with aggregate productivity shocks.

4.1.1 Environment

Households There is a unit mass of households indexed by j ∈ [0, 1]. At each instant

of time, households hold liquid assets bjt, illiquid assets ajt, and have labor productivity

zjt. Households die with an exogenous Poisson intensity ζ and upon death give birth to an

offspring with zero wealth ajt = bjt = 0 and labor productivity drawn from its ergodic distri-

bution. There are perfect annuity markets, implying that the wealth of deceased households

is distributed to other households in proportion to their asset holdings.51 Each household

has preferences over consumption cjt represented by the expected utility function

E
∫ ∞

0

e−(ρ+ζ)t log cjtdt.

A household with labor productivity zjt earns labor income wtzjt and pays a linear

income tax at rate τ . Each household also receives a constant lump-sum transfer from the

government, T . Labor productivity follows a discrete state Poisson process, taking values

51We implement perfect annuity markets by making an adjustment to the asset returns faced by households.
In order to save on notation, we do not explicitly display these adjustments here, so throughout asset returns
should be interpreted as inclusive of annuity payments.
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from the set zjt ∈ {z1, ..., zJ}. Households switch from state z to state z′ with Poisson

intensity λzz′ .

The liquid asset bjt pays a rate of return rbt . Households can borrow in liquid assets up

to an exogenous limit b. The interest rate on borrowing is r
b−
t = rbt + κ where κ > 0 is a

wedge between borrowing and lending rates. Define rbt (bt) to be the interest rate function

which takes both of these cases into account.

The illiquid asset ajt pays a rate of return rat . It is illiquid in the sense that households

must pay a flow cost χ(djt, ajt) to transfer assets at rate djt from the illiquid to liquid account.

The transaction cost function is given by52

χ(d, a) = χ0|d|+ χ1

∣∣∣∣da
∣∣∣∣χ2

a.

The linear component χ0 > 0 generates inaction in households’ optimal deposit decisions.

The convex component (χ1 > 0, χ2 > 1) ensures that deposit rates d/a are finite, so that

households’ asset holdings never jump. Scaling the convex term by illiquid assets a ensures

that marginal transaction costs χd(d, a) are homogenous of degree zero in the deposit rate

d/a, which implies that the marginal cost depends on the fraction of illiquid assets transacted

rather than the raw size of the transaction.

The laws of motion for liquid and illiquid assets are

dbjt
dt

= (1− τ)wtzjt + T + rbt (bjt)bjt − χ(djt, ajt)− cjt − djt
dajt
dt

= rat ajt + djt.

Firms There is a representative firm with the Cobb-Douglas production function

Yt = eZtKα
t L

1−α
,

where as before Zt is the logarithm of aggregate productivity, Kt is aggregate capital, and

L is aggregate labor supply which is constant by assumption. The logarithm of aggregate

productivity again follows the Ornstein-Uhlenbeck process

dZt = −ηZtdt+ σdWt,

52Because the transaction cost at a = 0 is infinite, in computations we replace the term a with max{a, a},
where the threshold a > 0 is a small value (2% of quarterly GDP per household, which is around $500). This
guarantees that costs remain finite even for households with a = 0.
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where dWt is the innovation to a standard Brownian motion, η is the rate of mean reversion,

and σ captures the size of innovations.

Government There is a government which balances its budget each period. Since the

labor tax rate τ and lump-sum transfer rate T are constant, we assume that government

spending Gt adjusts each period to satisfy the government budget constraint∫ 1

0

τwtzjtdj = Gt +

∫ 1

0

Tdj. (34)

Government spending Gt is not valued by households.

Asset Market Clearing The aggregate capital stock is the total amount of illiquid assets

in the economy,

Kt =

∫ 1

0

ajtdj.

The market for capital is competitive, so the return on the illiquid asset rat is simply the

rental rate of capital.

The supply of liquid assets is fixed exogenously at Bt = B∗, where B∗ is the steady state

demand for liquid assets given r∗b = 0.005 (discussed below). For simplicity, we assume that

interest payments on the liquid assets come from outside the economy.

4.1.2 Equilibrium

The household-level state variables are illiquid asset holdings a, liquid asset holdings b, and

labor productivity z. The aggregate state variables are aggregate productivity Zt and the

cross-sectional distribution of households over their individual state gt(a, b, z). As in Section

2, we denote an equilibrium object conditional on a particular realization of the aggregate

state (gt(a, b, z), Zt) with a subscript t.

Households The household’s Hamilton-Jacobi-Bellman equation is given by

(ρ+ ζ)vt(a, b, z) = max
c,d

log c+ ∂bvt(a, b, z)(T + (1− τ)wte
z + rbt (b)b− χ(d, a)− c− d) (35)

+ ∂avt(a, b, z)(rat a+ d) +
∑
z′

λzz′(vt(a, b, z
′)− vt(a, b, z)) +

1

dt
Et[dvt(a, b, z)].
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The cross-sectional distribution gt(a, b, z) satisfies the Kolmogorov forward equation

dgt(a, b, z)

dt
=− ∂a (sat (a, b, z)gt(a, b, z))− ∂b

(
sbt(a, b, z)gt(a, b, z)

)
−
∑
z′

λzz′gt(a, b, z) +
∑
z′

λz′zgt(a, b, z)

− ζgt(a, b, z) + ζδ(a)δ(b)g∗(z),

(36)

where sat and sbt are the optimal drifts in illiquid and illiquid assets implied by (35), g∗(z) is

the ergodic distribution of z, and δ is the Dirac delta function with δ(a)δ(b) capturing birth

at a = b = 0.

Firms The equilibrium conditions for the production side are the firm optimality condi-

tions, together with the process for aggregate productivity:

rat = αeZtK
α−1
t L

1−α − δ

wt = (1− α)eZtKα
t L
−α

dZt = −ηZtdt+ σdWt.

Market Clearing Capital market clearing is given by

Kt =

∫
agt(a, b, z)dadbdz.

Liquid asset market clearing is given by

B =

∫
bgt(a, b, z)dadbdz.

Given these conditions, as well as the government budget constraint (34), the market for

output clears by Walras’ law.

4.2 Calibration

We calibrate the steady state of the model without aggregate shocks to match key features

of the cross-sectional distributions of household income and balance sheets. Our calibration

closely follows Kaplan, Moll and Violante (2016).
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Exogenously Set Parameters We choose the quarterly death rate ζ = 1/180 so that

households live 45 years on average. We set the tax rate τ = 30% and set the lump sum

transfer T to 10% of steady-state output. Given our labor productivity process, this policy

implies that in steady state around 35% of households receive a net transfer from the gov-

ernment, consistent with the Congressional Budget Office (2013). We interpret borrowing

in the liquid asset as unsecured credit and therefore set the borrowing limit b at one times

average quarterly labor income.

We set the capital share in production α = 0.4 and the annual depreciation rate on

capital δ = 0.075. With an equilibrium steady-state ratio of capital to annual output of 3.0

(see below) this implies an annual return on illiquid assets ra of 5.8%.

Labor Productivity Shocks Following Kaplan, Moll and Violante (2016), we assume

that the discrete-state process for labor productivity is a discretized version of the following

continuous-state process. The logarithm of idiosyncratic labor productivity is the sum of

two independent components

log zjt = z1,jt + z2,jt, (37)

where each process is follows the jump-drift process

dzi,jt = −βizi,jtdt+ dJi,jt. (38)

Jumps arrive for component i at Poisson arrival rate λi. Conditional on a jump, a new

log-earnings state zj,it is drawn from a normal distribution with mean zero and variance σ2
j .

Between jumps, the process drifts toward zero at rate βi.
53 The parameters σi govern the

size of the shocks, the parameters βi govern the persistence of the shocks, and the parameters

λi govern the frequency of arrival of shocks.

Jump-drift processes of this form are closely related to discrete-time AR(1) processes,

with the modification that shocks arrive at random, rather than deterministic, dates. Al-

lowing for the random arrival of shocks is important for matching the leptokurtic nature

of annual income growth rates, which we discuss below. It is also important for matching

observed household portfolio choices of liquid and illiquid assets. If the majority of earnings

shocks are transitory and frequent (high β high λ), households would accumulate a buffer

stock of liquid assets to self-insure. On the other hand, if earnings shocks are persistent and

53See Kaplan, Moll and Violante (2016) for a formal description of these processes.
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Table 4: Targeted Labor Income Moments

Moment Data Model Model

Estimated Discretized

Variance: annual log earns 0.70 0.70 0.76

Variance: 1yr change 0.23 0.23 0.21

Variance: 5yr change 0.46 0.46 0.46

Kurtosis: 1yr change 17.8 16.5 17.3

Kurtosis: 5yr change 11.6 12.1 10.9

Frac 1yr change < 10% 0.54 0.56 0.64

Frac 1yr change < 20% 0.71 0.67 0.70

Frac 1yr change < 50% 0.86 0.85 0.86

Notes: Moments of the earning process targeted in the calibration. “Data” refers to SSAA data on male
earnings from Guvenen et al. (2015). “Model Estimated” refers to the continuous process (37) and (38).
“Model Discretized” refers to discrete Poisson approximation of the process used in model computation.

infrequent (low β, low λ), households would prefer to save in high-return illiquid assets and

pay the transaction costs to rebalance their portfolio when shocks occur.

Recent work by Guvenen et al. (2015) shows that changes in annual labor income are

extremely leptokurtic, meaning that most absolute annual income changes are small but a

small number are very large. We use the extent of this leptokurtosis, together with standard

moments on the variance of log earnings and log earnings growth rates, to estimate the

parameters of the earnings process (37) and (38). The moments we match, together with

the fit of the estimated model, are shown in Table 4.

The estimated parameters in Table 5 indicate that the two jump-drift processes can be

broadly interpreted as a transitory and a persistent component. The transitory component

(j = 1) arrives on average once every three years and has a half-life of around one quarter.

The persistent component (j = 2) arrives on average once every 38 years and has a half-life

of around 18 years. In the context of an infinite-horizon model the persistent component

can be interpreted as a “career shock.” We discretize the continuous process (38) using 10

points for the persistent component and 3 points for the transitory component. The fit of

the discretized process for the targeted moments is shown in Table 4.
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Table 5: Estimated Labor Income Process

Parameter Component Component

j = 1 j = 2

Arrival rate λj 0.080 0.007

Mean reversion βj 0.761 0.009

St. Deviation of innovations σj 1.74 1.53

Notes: Parameters of the income process (37) and (38) estimated to match the moments in 4. The j = 1
component arrives on average once every three years with half-life approximately one quarter. The j = 2
component arrives once every 38 years with half-life approximately 18 years.

Adjustment Costs and Discount Factor The five remaining parameters on the house-

hold side of the model – the discount rate ρ, the borrowing wedge κ, and the parameters of

the adjustment cost function χ0, χ1, and χ2 – jointly determine the incentives of households

to accumulate liquid and illiquid assets. We choose these parameters to match five moments

of household balance sheets from the Survey of Consumer Finances 2004: the mean of the

illiquid and liquid wealth distributions, the fraction of poor hand-to-mouth households (with

b = 0 and a = 0), the fraction of wealthy hand-to-mouth households (with b = 0 and a > 0),

and the fraction of households with negative assets. We match mean illiquid and liquid

wealth so that the model is consistent with the aggregate wealth in the U.S. economy. We

match the fraction of hand-to-mouth households because these households have higher than

average marginal propensities to consume. See Kaplan, Moll and Violante (2016) for details

on the classification of liquid and illiquid assets.

Table 6 shows that our calibrated model matches these five moments well. The implied

annual discount rate is 5.8% annually and the annual borrowing wedge is 8.1% annually.

Figure 4 plots the calibrated adjustment cost function together with the steady state dis-

tribution of quarterly deposits. The transaction cost is less than 1% of the transaction for

small transactions and rises to around 10% of the transaction for a quarterly transaction

that is 2% of illiquid assets. The function has a kink at d = 0, which generates a mass of

households who neither deposit nor withdraw.

The calibrated distributions of liquid and illiquid wealth are displayed in Figure 5. Ap-

proximately 28% of households are hand-to-mouth (i.e. have zero liquid wealth) and another

14% have negative liquid wealth. Roughly two-thirds of the hand-to-mouth households are

“wealthy hand-to-mouth,” i.e. have positive illiquid assets, while the remaining one-third
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Table 6: Targeted Wealth Distribution Moments

Target Model

Mean illiquid assets (multiple of annual GDP) 3.000 3.000

Mean liquid assets (multiple of annual GDP) 0.375 0.375

Frac. with b = 0 and a = 0 0.100 0.105

Frac. with b = 0 and a > 0 0.200 0.172

Frac. with b < 0 0.150 0.135

Notes: Moments of asset distribution targeted in calibration. Data source: SCF 2004. Liquid assets are
revolving consumer debt, deposits, corporate bonds, and government bonds. Illiquid assets are net housing,
net durables, corporate equity, and private equity.

Figure 4: Calibrated Adjustment Cost Function

Notes: Solid line plots adjustment costs as a fraction of the amount being transacted d, χ(d, a)/d, where
χ(d, a) = χ0|d|+ χ1

∣∣ d
a

∣∣χ2
a. Histogram displays the steady state distribution of deposit rates d/a.
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Figure 5: Liquid and Illiquid Wealth Distribution in Steady State

(a) Liquid assets b (b) Illiquid assets a

Notes: Steady state distributions of liquid and illiquid wealth in the calibrated model.

are “poor hand-to-mouth,” i.e. have zero illiquid assets. Both distributions are extremely

skewed; 3% of households have more than $2, 000, 000 in illiquid assets and the top 10 percent

hold 85% of total illiquid wealth in the economy.

The presence of hand-to-mouth households generates a distribution of marginal propen-

sities to consume in line with empirical evidence. The average quarterly MPC out of a $500

cash windfall is 22.5%, in line with the empirical estimates of Johnson, Parker and Souleles

(2006) and Parker et al. (2013). The average number is composed of high MPCs for hand-to-

mouth households (around 0.4) and small MPCs for non-hand-to-mouth households. This

bimodality can be seen in Figure 6(a) and is consistent with recent work Fagereng, Holm

and Natvik (2016).54 Figure 6(b) shows that only households with zero (or very negative)

liquid wealth have substantial MPCs, even for households with positive illiquid assets.

Aggregate Shocks As in Section 2, we set the rate of mean reversion of aggregate pro-

ductivity shocks η to ensure that their quarterly autocorrelation e−η ≈ 1− η = 0.75, and we

set the volatility of innovations σ = 0.007.

54Fagereng, Holm and Natvik (2016) study consumption responses to lottery winnings using Norwegian
administrative data. They find that MPCs are high for households with nearly zero liquid assets, even if the
household has positive illiquid assets.
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Figure 6: Heterogeneity in MPCs Across Households
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Notes: Quarterly MPCs out of a $500 windfall in steady state. The MPC over a period τ is

MPCτ (a, b, z) = ∂Cτ (a,b,z)
∂b , where Cτ (a, b, z) = E

[∫ τ
0
c(at, bt, zt)dt|a0 = a, b0 = b, z0 = z

]
.

4.3 Performance of Computational Method

Our discretization of the individual state space (a, b, z) contains N = 60, 000 points, implying

that the total unreduced dynamic system contains more than 120, 000 equations in 120, 000

variables.55 We reduce the value function v̂t using the spline approximation discussed in

Section 3.4, bringing the size of the value function down from N = 66, 000 gridpoints to

kv = 2, 145 knot points.

Failure of Approximate Aggregation We reduce the distribution ĝt using a k = 300

order observability matrix to form the basis X. In the finite limit where k is equal to the

size of the unreduced state space, the reduced model converges to the true unreduced model.

Figure 7 shows that the impulse responses of the three prices in the model – liquid return,

the illiquid return, and the wage – appear to have converged by k = 300.

The fact that the distribution reduction step requires k > 1 suggests that “approximate

aggregation” does not hold in the two-asset model.56 Figure 7 shows that using k = 2

55The two-asset model is so much larger than the simple Krusell and Smith (1998) model because the
individual state space is three-dimensional. To ensure an accurate approximation of the steady state, we use
30 grid points for labor productivity, 40 points for the illiquid asset, and 50 points for the liquid asset. The
total number of grid points is therefore N = 30× 40× 50 = 60, 000.

56Recall that k = 1 does provide an accurate approximation in the simple Krusell and Smith (1998) model.
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Figure 7: Impulse Responses for Different Orders of Distribution Reduction
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Notes: impulse responses to an instantaneous positive unit standard deviation size shock (Dirac delta
function) to aggregate TFP. “k = 2” corresponds to distribution reduction based on an order 2
observability matrix. “k = 300” corresponds to distribution reduction based on an order 300 observability
matrix. “k = 325” corresponds to distribution reduction based on an order 325 observability matrix. We
simulate the model by discretizing the time dimension with step size dt = 0.1.

provides a poor approximation of the model’s dynamics, particularly for the liquid return rbt .

This result suggests that approximating the distribution with a small number of moments

using Krusell and Smith (1998)’s procedure would be infeasible in this model.57

There are two main reasons why approximate aggregation does not hold in the two-asset

model. First, recall that the reason for approximate aggregation in the Krusell and Smith

(1998) model is that consumption functions are approximately linear in wealth, except for

hand-to-mouth households near the borrowing constraint. However, in the one-asset model

these households do not contribute very much to the aggregate capital stock (by virtue

of holding very little capital) and hence their consumption dynamics are not important

for the dynamics of aggregate capital. In contrast, in the two-asset model, there are a

substantial number of wealthy hand-to-mouth households who have both highly non-linear

consumption functions (by virtue of holding very little liquid wealth) and constitute a non-

trivial contribution to the dynamics of aggregate capital (by virtue of holding substantial

quantities of illiquid wealth).

Consistent with this intuition, the basis X of our distribution reduction places weight

57As discussed in Section 3.3, with endogenous decision rules our method does not necessarily provide
the most efficient choice of basis X. It is possible that by following the iterative procedure outlined in that
section, one could obtain an accurate reduced model with k < 300.
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Figure 8: Basis Vectors for Approximating Distribution in Two-Asset Model

-2000

40

0

200020
1500

2000

10000
500

-20 0

-100

40

-50

200020

0

1500

50

10000
500

-20 0

0

40

10

2000

10
4

20
1500

20

10000
500

-20 0

-2

40

-1

2000

10
9

20

0

1500

1

10000
500

-20 0

Notes: columns of the observability matrix O(Bpg,Bgg + BgpBpg)
T corresponding to aggregate capital Kt.

The four panels plot the first four columns of the observability matrix over liquid and illiquid assets
conditional on the median realization of labor productivity z.

on regions of the state space which have a significant fraction of hand-to-mouth households.

Figure 8 plots the first four column vectors of the observability matrix associated with

forecasting the aggregate capital stock Kt.
58 Each panel plots a given column of the matrix

over liquid and illiquid assets, conditional on the median realization of labor productivity

z. The first column captures exactly the mean of the illiquid asset distribution, which

corresponds to aggregate capital. The next three columns focus on regions of the state space

in which households have low liquid assets – and so are hand-to-mouth – as well as high

illiquid assets – and so contribute substantially to aggregates capital.

The second reason why approximate aggregation breaks down in the two-asset model is

that households must track the liquid return rbt in addition to the aggregate capital stock

Kt.
59 The dynamics of rbt feature stronger distributional dependence than the dynamics of

Kt because the liquid asset is in fixed supply B∗; an increase in savings in one region of the

state space must be met with a decrease in savings elsewhere in the state space. Indeed,

Figure 7 shows that the liquid return is the most poorly approximated variable in a k = 2

order approximation.60

58Recall that our basis X spans the subspace generated by the columns of the observability matrix.
59Note that the aggregate capital stock is sufficient to compute the wage wt and illiquid return rat .
60We have also computed a version of the model in which we drop the liquid asset market clearing condition,

and instead assume that the liquid return rbt is fixed and that the bond supply adjusts perfectly elastically to
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Table 7: Run Time for Solving Two-Asset Model

k = 300 k = 150

Steady State 56.64 sec 56.64 sec

Derivatives 13.97 sec 13.97 sec

Dim reduction 199.71 sec 67.48 sec

Linear system 12.89 sec 7.70 sec

Simulate IRF 3.03 sec 2.31 sec

Total 286.24 sec 148.10 sec

Notes: Time to solve the two-asset model on a MacBook Pro 2016 laptop with 3.3 GHz processor and 16

GB RAM, using Matlab R2016b and our code toolbox. k refers to order of the observability matrix used to
compute basis X. “Steady state” reports time to compute steady state. “Derivatives” reports time to
compute derivatives of discretized equilibrium conditions. “Dim reduction” reports time to compute both
the distribution and value function reduction. “Linear system” reports time to solve system of linear
differential equations. “Simulate IRF” reports time to simulate impulse responses reported. “Total” is the
sum of all these tasks.

Run Time Our numerical toolbox solves and simulates the two-asset model in 4 mins, 46

secs. Table 7 decomposes the total runtime into various tasks and show that over two-thirds

of the time is spent in the model reduction step. In order to illustrate how the method scales

with k, Table 7 also reports the runtime for a smaller k = 150 order observability matrix.

With this smaller approximation of the distribution, the total runtime falls to 2 mins, 28

secs.

4.4 Impulse Response to TFP Shock Zt

Figure 9 plots the impulse responses of aggregate output and consumption to a positive

aggregate productivity shock Zt. Higher productivity directly increases output Yt through

the production function. It also increases the return on capital rat , which encourages capital

accumulation and further increases output over time. The marginal product of labor also

rises, increasing the real wage wt. Both of these price increases lead to an increase in

household income.

The increase in household income has differential effects on the consumption of hand-to-

mouth and non-hand-to-mouth households. Non-hand-to-mouth households respond primar-

the meet the demand. In this version of the model, a k = 100 order observability matrix appears sufficient
to reduce the distribution.
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Figure 9: Aggregate Impulse Responses to Aggregate Productivity Shock Zt
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Notes: impulse responses to an instantaneous positive unit standard deviation size shock (Dirac delta
function) to aggregate TFP. “Two-asset” refers to the two-asset model developed in Section 4.1.
“Representative agent” refers to the representative agent version of the model, in which the households are
replaced by a representative household who can only save in aggregate capital; see Appendix A.5 for
details. We simulate the model by discretizing the time dimension with step size dt = 0.1 using an implicit
updating scheme.

ily to the change in their permanent income. The change in permanent income is relatively

small (because the productivity shock Zt is transitory) but is persistent (because of the

dynamics of the capital stock). In contrast, hand-to-mouth households respond primarily

to the change in their current income. The change in current income is larger than the

change in permanent income and is less persistent. Consistent with this logic, Figure 10

shows that the consumption of the hand-to-mouth households responds twice as much as

average consumption upon impact, but dies out more quickly. Due to the presence of these

hand-to-mouth households, the impulse response of aggregate consumption to a productivity

shock is very different in the two-asset model compare with a representative agent model.

5 Aggregate Consumption Dynamics in Two-Asset Model

In this section, we use the two-asset model developed in Section 4 to illustrate how inequality

shapes the dynamics of macroeconomic aggregates. Specifically, we show that although the

model is parameterized to match household-level data, it also matches key features of the

joint dynamics of aggregate consumption and income.
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Figure 10: Consumption Response by Hand-to-Mouth Status
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Notes: impulse responses to an instantaneous positive unit standard deviation size shock (Dirac delta
function) to aggregate TFP. “Wealthy hand-to-mouth” refers to households with b = 0 and a > 0. “Poor
hand-to-mouth” refer to households with b = 0 and a = 0. “Average consumption” is aggregate
consumption. “Non hand to mouth” is computed as the residual. We simulate the model by discretizing
the time dimension with step size dt = 0.1 using an implicit updating scheme.
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Table 8: Targeted Moments of Real GDP Growth

Data Model

σ (∆ log Yt) 0.89 0.89

Corr(∆ log Yt,∆ log Yt−2) 0.21 0.20

Notes: targeted moments of per capita real GDP per capita growth, 1953q1 - 2016q2.

5.1 Model With Growth Rate Shocks

Following a long line of work in the consumption dynamics literature, such as Campbell and

Mankiw (1989), we compare the predictions of our model to data on aggregate consump-

tion and aggregate income growth. However, the Ornstein-Uhlenbeck process for aggregate

productivity we have been working with so far implies that aggregate income growth is nega-

tively autocorrelated, which is at odds with the data. Therefore, we modify the shock process

so that aggregate productivity growth, rather than the level, follows an Ornstein-Uhlenbeck

process. In addition, we assume that the liquid interest rate rbt is fixed at its steady state

value r∗b = 0.005 and that the liquid asset supply adjusts perfectly elastically at this price,

as in a small open econonomy. This simplifying assumption ensures that the only time-

varying interest rate is the return on capital, making the comparison with representative

agent models more transparent. Both of these modifications apply to this section only.

Production and Aggregate Shock Process The production function with growth rate

shocks is

Yt = Kα
t

(
QtL

)1−α
,

where Qt is aggregate productivity. Aggregate productivity growth follows the process

d logQt = Ztdt

dZt = −ηZtdt+ σdWt,

where dWt is an innovation to a standard Brownian motion. Hence, aggregate productivity

growth is subject to the Ornstein-Uhlenbeck process Zt.

Given the other calibrated parameters from Section 4, we choose the parameters of the

TFP growth process Zt so that equilibrium dynamics of aggregate income growth ∆ log Yt
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match two key features of the data: the standard deviation of income growth σ (∆ log Yt)

and the second-order autocorrelation of income growth Corr(∆ log Yt,∆ log Yt−2).61 These

moments in the data and the model’s fit are reported in Table 8.

Model Computation Many equilibrium objects in the model are nonstationary due to the

nonstationarity of aggregate productivity Qt. We cannot directly apply our computational

methodology in this setting, which relies on approximating the model’s dynamics around a

stationary equilibrium. Therefore, we detrend the model to express the equilibrium in terms

of stationary objects; for details, see Appendix A.4.

5.2 Comparison to the Data

We focus our analysis on two sets of facts about the joint dynamics of aggregate consumption

and income. The first set of facts, known as sensitivity, describe how aggregate consumption

growth co-moves with predictable changes in aggregate income growth. The second set of

facts, known as smoothness, refer to the extent of the time-series variation in aggregate

consumption growth.

Sensitivity We present several measures of sensitivity in the top panel of Table 9. These

measures all compute how predictable changes in income pass through to changes in con-

sumption, but differ in two key respects. The first two measures of sensitivity are coefficients

from ordinary least squares regressions, whereas the second two measures are coefficients

from instrumental variables regressions. The second and fourth measures include real inter-

est rates in the conditioning set, whereas the first and third measures do not. We present

this range of measures to represent the range of approaches in the existing literature.

We measure aggregate income growth as the quarterly change in log real GDP per capita

during the period 1953q1 to 2016q2. We measure aggregate consumption growth as the

quarterly change in log real nondurables plus durable services consumption per capita during

the same period. Finally, we measure the real interest rate as the real return on 90-day

Treasury bills, adjusted for realized inflation.

In the data, all measures of sensitivity indicate that a substantial portion of aggregate

income growth passes through to consumption growth. Consistent with the arguments in

Campbell and Mankiw (1989) and Ludvigson and Michaelides (2001), among others, the

61We match the second-order autocorrelation, rather than the first, due to potential time aggregation
issues, as discussed in Campbell and Mankiw (1989).
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Table 9: Joint Dynamics of Consumption and Income

Sensitivity to Income

Data Models

Two-Asset Rep Agent Sp-Sa

∆ logCt = β0 + β1∆ log Yt−2 + εt 0.12 0.14 0.12 0.16

(0.03)

∆ logCt = β0 + β1∆ log Yt−2 + β2rt−2 + εt 0.12 0.09 0.04 0.11

(0.03)

IV(∆ logCt on ∆ log Yt| ∆ log Yt−2) 0.55 0.70 0.54 0.78

(0.15)

Campbell-Mankiw IV 0.49 0.40 0.004 0.50

(0.15) (calibrated)

Smoothness

Data Models

Two-Asset Rep Agent Sp-Sa

σ(∆ logCt)
σ(∆ log Yt)

0.52 0.70 0.80 0.70

Corr(∆ logCt,∆ logCt−2) 0.33 0.24 0.16 0.27

Notes: measures of sensitivity of aggregate consumption to income and the smoothness of aggregate
consumption. In the data, aggregate consumption Ct is measured as the sum of real nondurable plus
durable services, per capita, and aggregate income Yt is real GDP per capita. Both series are quarterly
1953q1 - 2016q2. “Rep agent” refers to the representative agent model described in Appendix A.5.
“Two-asset” refers to the full two-asset model. “Sp-Sa” refers to the spender-saver model described in
Appendix A.5. “∆ logCt = β0 + β1∆ log Yt−2 + εt” refers to β1 in the regression.
“∆ logCt = β0 + β1∆ log Yt−2 + β2rt−2 + εt” refers to the coefficient β1 in the regression.
“IV(∆ logCt on ∆ log Yt|∆ log Yt−2)” refers to β1 in the instrumental variables regression
∆ logCt = β0 + β1∆ log Yt + εt, using ∆ log Yt−2 to instrument for ∆ log Yt. “Campbell-Mankiw IV” refers
to the β1 in the instrumental variables regression ∆ logCt = β0 + β1∆ log Yt + β2rt + εt, using ∆ log Yt−2,
∆ log Yt−3, ∆ log Yt−4, rt−2, rt−3, and rt−4 to instrument for the right hand side. We time-aggregate our
continuous time model to the quarterly frequency by computing the simple average within a quarter.
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representative agent model generates too little sensitivity once we condition on the real

interest rate.62 In contrast, the two-asset heterogeneous agent model generates substantial

sensitivity of consumption growth to predictable changes in income growth.

Sensitivity in the two-asset model is driven by the presence of hand-to-mouth consumers

who do not smooth their consumption over time. In the representative agent model, con-

sumption jumps upon impact of the growth shock Zt because permanent income immedi-

ately jumps to a new level. However, in the two-asset model, consumption of hand-to-mouth

households jumps less upon impact – because the change in current income is smaller than

the change in permanent income – but is more persistent. The persistence generates au-

tocorrelation in consumption which allows the model to match the fact that consumption

responds even to predictable changes in income.

Table 9 also reports the predictions of a simple spender-saver model in the spirit of

Campbell and Mankiw (1989). It extends the representative agent model to include an

exogenous fraction λ of households who are permanently hand-to-mouth. We calibrate the

fraction of spenders λ to match the Campbell-Mankiw IV measure of consumption sensitivity.

This reverse engineered model is also consistent with the degree of sensitivity in the data

by construction. In contrast, our two-asset model has only been parameterized to match

micro-level behavior, not aggregate sensitivity.

Smoothness We present two measures of smoothness in the bottom panel of Table 9.

The first is the standard deviation of consumption growth relative to the standard devia-

tion of income growth. In the data, consumption growth is about half as volatile as income

growth. The second measure of smoothness is the second-order autocorrelation of consump-

tion growth.

The two-asset heterogeneous agent model, the representative agent model, and the spender-

saver model all over-predict the volatility of consumption growth relative to income growth.

Consistent with the degree of sensitivity discussed above, both the two-asset model and the

spender-saver model generate significant autocorrelation of consumption growth.

62In the special case of the representative agent model in which the interest rate is constant and income
growth is a random walk, these sensitivity measures are exactly zero. The representative agent version of
our model does not satisfy this special case, generating nonzero measures of sensitivity.
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6 Business Cycle Dynamics of Inequality

The previous section explored how inequality shapes the joint dynamics of aggregate con-

sumption and income. In this section, we briefly explore how aggregate shocks themselves

shape the dynamics of inequality across households. However, with the Cobb-Douglas pro-

duction function we have used so far, the distribution of labor income is given exogenously

by the distribution of labor productivity shocks z. Therefore, we first extend the production

side of the economy to include high- and low-skill workers which are not perfect substitutes

with each other or with capital. We then explore the effects of shock to the productivity

of unskilled labor, and a shock to the productivity of capital. By construction, this shock

has differential effects across workers, generating substantial movements in income and con-

sumption inequality. In addition, the resulting dynamics of aggregate variables are different

from the representative agent counterpart of the model.

6.1 Model with Imperfect Substitutability Among Workers

Following Krusell et al. (2000), we modify the production function to feature two types of

workers and capital-skill complementarity.

Production Structure The production function is

Yt =
[
µ(ZU

t Ut)
σ + (1− µ)

(
λ(ZK

t Kt)
ρ + (1− λ)Sρt

)σ
ρ

] 1
σ
, (39)

where ZU
t is an unskilled labor-specific productivity shock, ZK

t is capital-specific productivity

shock, Ut is the amount of unskilled labor, and St is the amount of skilled labor (all described

in more detail below). The elasticity of substitution between unskilled labor and capital,

which is equal to the elasticity between unskilled and skilled labor, is 1
1−σ . The elasticity

of substitution between skilled labor and capital is 1
1−ρ . If, as in our calibration, σ > ρ,

high-skill workers are complementary with capital.63

We posit a simple mapping from labor productivity z into skill. Recall that we modeled

the logarithm of labor productivity as the sum of two components, log z = z1 + z2. We

estimated that z1 is a transitory component and z2 is a persistent component. With our

estimated parameters, shocks to the persistent component arrive on average once every 38

63Krusell et al. (2000) assume that only equipment capital features capital-skill complementarity while
structures capital has unitary elasticity of substitution. We omit structures capital for simplicity.
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years. Hence, a natural interpretation of the persistent component in an infinite-horizon

model is a “career shock.” We therefore map workers into skills based on the realization of

the persistent component – we label the top 50% of workers as high-skill and the bottom

50% as low-skill.

We assume that both aggregate productivity shocks follows Ornstein-Uhlenbeck process

d logZU
t = −ηU logZU

t dt+ σUdWU
t

d logZK
t = −ηK logZK

t dt+ σKdWK
t .

where ηU and ηK control the rate of mean reversion and σU and σK control the size of

innovations.

Calibration We set the elasticities of substitution in production to the estimated values

in Krusell et al. (2000): σ = 0.401 and ρ = −.495. Since σ > ρ, the production function

features capital-skill complementarity, i.e., capital-specific productivity shocks dispropor-

tionately favor skilled labor.

Given the values for these elasticities, and all the other calibrated parameters from Section

4.2, we choose the factor shares µ and λ to match two steady state targets. First, we target

a steady state labor share of 60%, as in Section 4.2. Second, we target a steady state skill

premium – the ratio of the average skilled worker’s earnings to the average unskilled workers’

earnings – of 1.97, which is the value of the college skill premium reported in Acemoglu and

Autor (2011). This yields µ = 0.52 and λ = 0.86.

We set the process for the unskilled-labor productivity shock to be equivalent to our

factor-neutral productivity shock process in the case of Cobb-Douglas production. Therefore,

as in Section 4.2, we set the rate of mean reversion to ηU = 0.25. We set the standard

deviation of innovations σU so that they generate the same impact effect on output as the

factor-neutral shocks in Section 4.2.

6.2 Inequality Dynamics Following Unskilled-Labor Specific Shock

Figure 11 plots the impulse responses of key features of the distribution of income across

households. The wage rate of unskilled workers falls fives times more than the wage rate

of skilled workers, due to the fact that the shock directly affects the marginal product of

unskilled workers and these workers are not perfect substitutes with skilled workers. Hence,
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Figure 11: Impulse Responses to Unskilled Labor-Specific Productivity Shock
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Notes: impulse responses to an instantaneous positive unit standard deviation size shock (Dirac delta
function) to unskilled labor-specific productivity. “Unskilled wage” is the wage rate per efficiency unit of
labor for unskilled workers. “Skilled wage” is the wage rate per efficiency unit of labor for skilled workers.
“Log income dispersion” is the cross-sectional standard deviation of log pre-tax labor income across
households. “90-10 Ratio” is the ratio of the 90th percentile of pre-tax labor income to the 10th percentile.
We simulate the model by discretizing the time dimension with step size dt = 0.1 using an implicit
updating scheme.
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Figure 12: Impulse Responses to Unskilled Labor-Specific Productivity Shock
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Notes: impulse responses to an instantaneous negative unit standard deviation size shock (Dirac delta
function) to unskilled labor-specific productivity. “Unskilled” is the average consumption of unskilled
workers. “Skilled” is the average consumption of skilled workers. “Average” is aggregate consumption.
“Log consumption dispersion” is the cross-sectional standard deviation of log consumption across
households. We simulate the model by discretizing the time dimension with step size dt = 0.1 using an
implicit updating scheme.

the dispersion of pre-tax labor income across households increases by nearly 0.2% and the

90-10 percentile ratio increases by nearly 1%.64

Figure 12 plots the impulse responses of features of the distribution of consumption across

workers. The average consumption of low-skill workers falls more than twice the amount of

high-skill workers. This differential effect reflects the combination of two forces. First,

the shock decreases unskilled workers’ wages more than skilled workers, so the permanent

income of unskilled workers is lower. Second, unskilled workers are over 30% more likely to

be hand-to-mouth, making them more sensitive to changes in income.

6.3 Aggregate Dynamics Following Unskilled-Labor Specific Shock

Figure 13 plots the impulse responses of aggregate output and consumption following the

unskilled-specific shock, and compares the responses to the representative agent version of

the model. Although the output responses are very similar across the two models, the trough

in consumption is more than twice as low in the two-asset model than in the representative

agent model.

64Recall that with Cobb-Douglas the dispersion of pre-tax labor income is constant.
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Figure 13: Impulse Responses to Unskilled Labor-Specific Productivity Shock
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Notes: impulse responses to an instantaneous negative unit standard deviation size shock (Dirac delta
function) to unskilled labor-specific productivity. “Two-asset” refers to the two-asset model. “Rep agent”
refers to the representative agent version of the model, described in Appendix A.5. We simulate the model
by discretizing the time dimension with step size dt = 0.1 using an implicit updating scheme.

The severity of the consumption response in the two-asset model reflects the combination

of two forces. First, the two-asset model features a substantial fraction of hand-to-mouth

households that respond more strongly to income changes than the representative house-

hold. The presence of hand-to-mouth households also changed the consumption response to

factor neutral shocks, as discussed in Section 4. Second, the unskilled labor-specific shock

is concentrated among low-skill workers who are more likely to be hand-to-mouth. This

concentration is absent in the factor-neutral shock case, and in that case, the difference be-

tween the two-asset and representative agent models is 25% smaller. Hence, the fact that the

unskilled labor-specific shock is concentrated among a particular region of the distribution

shapes aggregate business cycle dynamics of the model.

6.4 Inequality Dynamics Following Capital-Specific Shock

We close this section with a brief example to show that, due to capital-specific complementar-

ity, a shock to capital-specific productivity ZK
t can generate dynamics of income inequality.

We set the rate of mean reversion ηK = 0.25 and calibrate the standard deviation of innova-

tions σK so that it generates the same impact effect on output as the factor-neutral shocks

in Section 4.2.
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Figure 14: Impulse Responses to Capital-Specific Productivity Shock
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Notes: impulse responses to an instantaneous positive unit standard deviation size shock (Dirac delta
function) to capital-specific productivity. “Unskilled wage” is the wage rate per efficiency unit of labor for
unskilled workers. “Skilled wage” is the wage rate per efficiency unit of labor for skilled workers. “Log
income dispersion” is the cross-sectional standard deviation of log pre-tax labor income across households.
We simulate the model by discretizing the time dimension with step size dt = 0.1 using an implicit
updating scheme.

Figure 14 shows that the capital shock increases labor income inequality. The left panel

shows that high-skill wages increase by more than low-skill wages due to capital-skill com-

plementarity; in response to the capital-specific shock, the representative firm substitutes

toward skilled labor. Hence, the dispersion of labor income across households increases as

well.

7 Conclusion

Our paper’s main message is that two of the most common excuses that macroeconomists

make for employing representative agent models are less valid than commonly thought.

First, we develop an efficient and easy-to-use computational method for solving a wide class

of general equilibrium heterogeneous agent macro models with aggregate shocks, thereby

invalidating the excuse that these models are subject to extreme computational difficulties.

Second, our results in Sections 5 and 6 show that inequality may matter greatly for the

dynamics of standard macroeconomic aggregates. These results invalidate the excuse that

heterogeneous agent models are unnecessarily complicated because they generate only limited

additional explanatory power for aggregate phenomena.
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Due to its speed, our method opens up the door to estimating macroeconomic mod-

els in which distributions play an important role with micro data. Existing attempts to

bring macroeconomic models to the data, typically use either only aggregate time-series to

discipline aggregate dynamics (in the case of representative agent models); or they use cross-

sectional micro data at a given point in time to discipline a stationary equilibrium without

aggregate shocks (in the case of heterogeneous agent models). Instead, future research should

use micro data capturing distributional dynamics over time, i.e. panel data or repeated cross-

sections. An important hurdle in this endeavour is that micro data, especially from surveys,

are often inconsistent with national accounts data on macroeconomic aggregates (see e.g.

Deaton, 2005). Attempts to produce time-series on distributional variables that capture 100

percent of national income like the Distributional National Accounts of Piketty, Saez and

Zucman (2016) are welcome in this regard.
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A Appendix

A.1 Fully Recursive Formulation of Krusell-Smith (1998)

When writing the equilibrium conditions (2) to (7), we used recursive notation with respect

to the idiosyncratic states (a, z) but time-dependent notation with respect to the aggregate

states (g, Z). For completeness, this Appendix shows how to write the corresponding equa-

tions using fully recursive notation, and how to obtain the hybrid-notation conditions in the

main text from the equations using fully recursive notation.

To this end, define the wage and interest rate as a function of the state variables (g, Z)

w(g, Z) = (1− α)eZK(g)α, (40)

r(g, Z) = αeZK(g)α−1 − δ, (41)

where K(g) =

∫
ag(a, z)dadz (42)

is the aggregate capital stock as a function of the distribution. Furthermore, define the

“Kolmogorov Forward operator” KZ that operates on distributions g as

(KZg)(a, z) := −∂a[s(a, z, g, Z)g(a, z)]− λzg(a, z) + λz′g(a, z′)

where s(a, z, g, Z) is the optimal saving policy function (determined below). This operator

maps distribution functions g into time derivatives of that distribution. Using this tool, one

can for example write the Kolmogorov Forward equation (3) compactly as

dgt(a, z)

dt
= (KZgt)(a, z).

With this machinery in hand, the fully recursive, infinite-dimensional HJB equation is:

ρV (a, z, g, Z) = max
c

u(c) + ∂aV (a, z, g, Z)(w(g, Z)z + r(g, Z)a− c)

+ λz(V (a, z′, g, Z)− V (a, z, g, Z))

+ ∂ZV (a, z, g, Z)(−ηZ) +
1

2
∂ZZV (a, z, g, Z)σ2

+

∫
δV (a, z, g, Z)

δg(a, z)
(KZg)(a, z)dadz

(43)

The first and second lines in this infinite-dimensional HJB equation capture the evolution

of the idiosyncratic states (a, z) (just like in (2)). The third and fourth lines capture the
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evolution of the aggregate states (g, Z). The third line captures the evolution of aggregate

TFP Z with standard “Ito’s Formula terms” involving the first and second derivatives of the

value function with respect to Z. The fourth line captures the evolution of the distribution

g. Since g is a function, it involves the functional derivative of V with respect to g at point

(a, z), which we denote by δV/δg(a, z). The equilibrium in fully recursive notation is then

characterized by (43) together with (40), (41) and (42).

To understand the last term in (43), assume momentarily that the distribution is an

N -dimensional vector g = (g1, ..., gN) rather than a function (i.e. an infinite-dimensional

object). Then the HJB equation would be

ρV (a, z,g, Z) = max
c

u(c) + ∂aV (a, z,g, Z)(w(g, Z)z + r(g, Z)a− c)

+ λz(V (a, z′,g, Z)− V (a, z,g, Z))

+ ∂ZV (a, z,g, Z)(−ηZ) +
1

2
∂ZZV (a, z,g, Z)σ2

+
N∑
i=1

∂V (a, z,g, Z)

∂gi
ġi

Since a functional derivative δV/δg(a, z) is the natural generalization of the partial derivative

∂V/∂gi to the infinite-dimensional case, if g is a function rather than a vector we get (43).

The equilibrium conditions (2) to (7) in the main text can be obtained from this system

by evaluating “along the characteristic” (gt, Zt) that satisfies (3) and (4). In particular the

value function vt(a, z) in (2) is obtained from evaluating (43) at (gt, Zt), i.e.

vt(a, z) = V (a, z, gt, Zt).

In particular by Ito’s Formula

dvt(a, z) =

(
∂ZV (a, z, gt, Zt)(−ηZt) +

1

2
∂ZZV (a, z, gt, Zt)σ

2

)
dt + σ∂ZV (a, z, gt, Zt)dWt

+

∫
δV (a, z, gt, Zt)

δgt(a, z)
(KZgt)(a, z)dadz dt

and hence using that Et[dWt] = 0

1

dt
Et[dvt(a, z)] = ∂ZV (a, z, gt, Zt)(−ηZt)+

1

2
∂ZZV (a, z, gt, Zt)σ

2+

∫
δV (a, z, gt, Zt)

δgt(a, z)
(KZgt)(a, z)dadz

Similarly, the prices and capital stock in (5) to (7) are obtained by evaluating (40) to (42)
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at (gt, Zt), i.e.

wt = w(gt, Zt), rt = r(gt, Zt), Kt = K(gt).

A.2 Connection to Linearization of Representative Agent Models

This Appendix develops the relationship between our linearization of heterogeneous agent

models and standard linearization of representative agent business cycle models. For illus-

tration, consider a simple real business cycle model. As in our heterogeneous agent models

in the main text, the equilibrium of this representative agent model is characterized by a

forward-looking equation for controls, a backward-looking equation for the endogenous state,

several static relations and an evolution equation for the exogenous state.

Defining the representative household’s marginal utility Λt := C−γt , the equilibrium con-

ditions can be written as

1

dt
Et[dΛt] = (ρ− rt)Λt

dKt

dt
= wt + rtKt − Ct

dZt = −ηZtdt+ σdWt

rt = αeZtKα−1
t − δ

wt = (1− α)eZtKα
t

(44)

and where Ct = Λ
−1/γ
t . The first equation is the Euler equation. Marginal utility Λt is the

single control variable; we could have alternatively written the Euler equation in terms of

consumption Ct, but working with marginal utility is more convenient. The second equation

is the evolution of the aggregate capital stock, which is the single endogenous state vari-

able. The third equation is the stochastic process for aggregate productivity, which is the

exogenous state variable. The last two equations define equilibrium prices.

The equilibrium conditions (14) of the simple Krusell and Smith (1998) model have the

same structure as the representative agent model above. The discretized value function vt is

the endogenous control vector, analogous to marginal utility Λt (or aggregate consumption

Ct) in the representative agent model. The distribution gt is the endogenous state variable,

analogous to aggregate capital Kt. Finally, TFP Zt is the exogeneous state variable, just as

in the representative agent model.

The representative agent model’s equilibrium conditions can be linearized and the re-

sulting linear system solved exactly as the heterogeneous agent model in the main text. Let
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hatted variables denote deviations from steady state. Then we have the control variable Λ̂t,

the endogenous state K̂t, the exogenous state Zt, and the prices p̂t = (r̂t, ŵt). We can thus

write

Et


dΛ̂t

dK̂t

dZt

0

 =


BΛΛ 0 0 BΛp

BKΛ BKK 0 BKp

0 0 −η 0

0 BpK BpZ −I




Λ̂t

K̂t

Zt

p̂t

 dt

Note that our linearized heterogeneous agent model (15) has the same form as this system.

A.3 Model Reduction and Proof of Proposition 1

This Appendix proves the results cited in the main text regarding our distribution reduction

method. We also show that, in discrete time, our approach corresponds to matching the first

k periods of the impulse response function.

A.3.1 Deterministic Model

As in the main text consider first the simplified model (26) which we briefly restate here:

ġt = Cgggt,

pt = bpggt.

Solving this for pt gives

pt = bpge
Cggtg0

= bpg

[
I + Cggt+

1

2
C2
ggt

2 +
1

6
C3
ggt

3 + . . .

]
g0

We consider a reduced model obtained by means of projection. That is, we project the distri-

bution gt on a lower-dimensional space, and then analyze the dynamics of the corresponding

reduced system. Of course, all that ultimately matters for the dynamics of the reduced

system is that projection space itself, and not the particular basis chosen for the purpose of

projection. Thus, for ease of presentation, we in the main text consider a semi-orthogonal

basis XT, i.e. a matrix X that satisfies XTX = I. Under this assumption, the reduced

distribution is given by γt = (XTX)−1XTgt = XTgt. For the proofs in this Appendix,

however, it will turn out to be more convenient to work with a non-normalized (non-semi-
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orthogonal) basis. Specifically, we consider a pair of matrices V, WT such that WTV = I.

This formulation nests our analysis from the main text with X = V and XT = WT.

We then approximate the distribution gt through γt = (WTV)−1WTgt = WTgt. Con-

versely, up to projection error, we have that gt = Vγt.
65 Differentiating with respect to time

thus gives the reduced-system dynamics

γ̇t = WTCggVγt

p̃t = bpgVγt

Note that, with V = X, WT = XT, this system simply collapses to the formulation in the

main text. From here, we then get

p̃t = bpgVe
(WTCggV)tWTg0

= bpgV

[
I + (WTCggV)t+

1

2
(WTCggV)2t2 +

1

6
(WTCggV)3t3 + . . .

]
WTg0

We choose the projection matrices V, WT to ensure that the dynamics of the reduced p̃t

match as closely as possible those of the unreduced pt. Following insights from the model

reduction literature, we take this to mean that Taylor series expansions of pt and p̃t around

t = 0 share the first k expansion coefficients. As argued before, the dynamics of the system

– and so these expansion coefficients – do not depend on the projection matrices V, WT

themselves, but only on the subspaces associated with them.66 It is in this sense that we

can first focus on general V, WT, and then simply conclude that all results will extend

to semi-orthogonal matrices X that span the same subspace of RN . To match the first k

expansion coefficients, it is useful to consider what is known as the order-k observability

matrix O(bpg,Cgg):

O(bpg,Cgg) :=



bpg

bpgCgg

bpg(Cgg)
2

...

bpg(Cgg)
k−1


65Formally, Π := VWT is a projection, and we have that Πgt = Vγt.
66For a detailed discussion of this, see Amsallem and Farhat (2011, Lecture 7). The intuition is that, for

the dynamics of a reduced system, only the space on which we project the large-dimensional state variable
matters. A sketch of the formal argument goes as follows. V and X are bases of the same space, so there exists
an invertible matrix Z such that VZ = X, so Z−1 = XTV and Z = (XTV)−1. Similarly, there exists an

invertible matrix Z̃ such that Z̃WT = XT, so Z̃−1 = WTX and Z̃ = (WTX)−1. But WTX = WTVZ = Z,

so Z̃ = Z−1. Then VWT = XZ−1WT = XZ̃WT = XXT and the projections are identical.
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We propose to consider the pair V,WT with WT = O(bpg,Cgg) and V chosen such that

WTV = I. To see that this works, let us consider each term separately in the Taylor series

expansions derived above. In all of the following, ei denotes the ith standard unit vector

and WT
i denotes the ith submatrix of WT (corresponding to bpg(Cgg)

i−1). First of all we

have

bpgVWT = WT
1 VWT

= e1W
T = WT

1 = bpg

where we have used the fact that, by construction, WTV = I. Next we have

bpgVWTCggVWT = WT
1 VWTCggVWT

= WT
2 VWT = e2W

T = WT
2 = bpgCgg

where again we have used that WTV = I, together with the definition of WT. All higher-

order terms then follow analogously. Putting things together in the notation of the main text,

we see that picking XT to be a semi-orthogonal basis of the space spanned by O(bpg,Cgg)

is sufficient to ensure that the Taylor series expansion coefficients are matched.

A.3.2 Stochastic Model: Proof of Proposition 1

Solving out prices and the decision rules for the controls vt, we get the system

ġt = (Bgg + Bgpbpg + BgvDvg︸ ︷︷ ︸
Cgg

)gt + (BgvDvZ︸ ︷︷ ︸
CgZ

)Zt

pt = bpggt + bpZZt

The dynamics of this stochastic system are characterized by the impulse response function

h(t) = bpge
CggtCgZ + δ(t)bpZ

where δ(t) is the Dirac delta function. This impulse response function induces the following

dynamic behavior:

pt = bpge
Cggtg0︸ ︷︷ ︸

det. part

+

∫ t

0

h(t− s)Zsds︸ ︷︷ ︸
stoch. part
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As before, we consider the projection γt = WTgt and (up to projection error) gt = Vγt.

This gives

γ̇t = WTCggVγt + WTCgZZt

p̃t = bpgVγt + bpZZt

This model induces the impulse response function

h̃(t) = bpgVe
(WTCggV)tWTCgZ + δ(t)bpZ

and so the dynamics

p̃t = bpgVe
(WTCggV)tWTg0 +

∫ t

0

h̃(t− s)Zsds

We now proceed exactly as before and consider the order-k observability matrixO(bpg,Cgg):

O(bpg,Cgg) :=



bpg

bpgCgg

bpg(Cgg)
2

...

bpg(Cgg)
k−1


We again set WT and V such that WT = O(bpg,Cgg) and WTV = I. Showing that

all terms in the deterministic part are matched is exactly analogous to the argument given

above. For the stochastic part, we also do not need to change much. The impact impulse

response bpZ is matched irrespective of the choice of projection matrix. Next we have

bpgVWTCgZ = WT
1 VWTCgZ

= e1W
TCgZ = WT

1 CgZ = bpgCgZ

As before we exploit the definition of WT as well as the fact that WTV = I. And finally

bpgVWTCggVWTCgZ = WT
1 VWTCggVWTCgZ

= WT
2 VWTCgZ = e2W

TCgZ = WT
2 CgZ = bpgCggCgZ

again exactly analogous to the derivation for the deterministic part above. We are thus

matching both the deterministic and the stochastic part of the dynamics up to order k in
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a Taylor series expansion around time t = 0. Finally returning to the notation of the main

body of the text, we see that letting XT be a semi-orthogonal basis of the space spanned by

O(bpg,Cgg) is again sufficient for the impulse response matching.

A.3.3 Discrete Time

As we have seen, in continuous time, our model reduction procedure ensures that the co-

efficients of a Taylor series expansion around t = 0 are matched. In discrete time, this

procedure guarantees that we match the first k periods of the impulse response functions.

The stochastic discrete-time model is

gt = Cgggt−1 + CgZZt

pt = bpggt−1 + bpZZt

The impulse responses of this system are bpZ on impact and bpgC
h−1
gg CgZ for horizons h =

1, 2, . . .. As before, we consider the reduced system

γt = WTCggVγt−1 + WTCgZZt

pt = bpgVγt−1 + bpZZt

Equality of the induced impulse responses for impact h = 0 is immediate. For all higher

horizons, we proceed exactly as before and show that

bpgVWTCgz = bpgCgz

as well as

bpgVWTCggVWTCgz = bpgCggCgz

A.4 Detrending the Nonstationary Model

Many equilibrium objects in the version of the model described in Section 5 are nonstationary.

In this appendix, we develop a normalized version of the equilibrium involving only stationary

objects. In addition to the production side of the model described in the main text, we

make three modifications to the two-asset model in the presence of nonstationary shocks.

First, the borrowing constraint for liquid assets is b > bQt, where Qt is the level of aggregate

productivity. Second, the transaction cost for accessing the illiquid account is now χ(d, a)Qt.

Third, the lump-sum transfer from the government is now TQt.
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The equilibrium of this model can be equivalently represented by a set of normalized

objects v̂t(â, b̂, z), gt(â, b̂, z), K̂t, r
a
t , ŵt, r

b
t , and Zt such that

1. Transformed HJB : v̂t(â, b̂, z) solves

(ρ+ ζ−(1− θ)Zt)v̂t(â, b̂, z) = max
ĉ,d̂

ĉ1−θ

1− θ

+ ∂b̂v̂t(â, b̂, z)(T + (1− τ)ŵte
z + rbt (b̂)b̂− χ(d̂, â)− ĉ− d̂− b̂Zt) (45)

+ ∂âv̂t(â, b̂, z)(r
a
t â+ d̂− âZt) +

∑
z′

λzz′(v̂t(â, b̂, z
′)− v̂t(â, b̂, z)) +

1

dt
Et[dv̂t(â, b̂, z)].

The fact that TFP growth is permanent changes the effective discount factor in the

households’ HJB equation.

2. Transformed KFE : gt(â, b̂, z) evolves according to

dgt(â, b̂, z)

dt
=− ∂â

(
sat (â, b̂, z)gt(â, b̂, z)

)
− ∂b̂

(
sbt(â, b̂, z)gt(â, b̂, z)

)
−
∑
z′

λzz′gt(â, b̂, z) +
∑
z′

λz′zgt(â, b̂, z) (46)

− ζgt(â, b̂, z) + ζδ(â)δ(b̂)g∗(z), where

sbt(â, b̂, z) =T + (1− τ)ŵte
z + rbt (b̂)b̂− χ(d̂, â)− ĉ− d̂− b̂Zt and

sat (â, b̂, z) =rat â+ d̂− âZt.

Permanent TFP shocks change the effective depreciation rate of assets.

3. Transformed firm conditions : rat , ŵt, and Zt satisfy

rat =αK̂α−1
t L

1−α − δ

ŵt =(1− α)K̂α
t L
−α

dZt =− νZtdt+ σdWt.

4. Transformed asset market clearing conditions

B∗ =

∫
b̂gt(â, b̂, z)db̂dâdz

K̂t =

∫
âgt(â, b̂, z)db̂dâdz
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To derive this normalized equilibrium we detrend the model’s original equilibrium objects

by aggregate productivity Qt. Almost all variables in the model naturally scale with the level

of productivity Qt; for any such variable xt, let x̂t = xt
Qt

denote its detrended version. The

one exception to this scheme is the households’ value function vt(a, b, z), which scales with

Q1−θ
t .

HJB Equation First define an intermediate detrended value function ṽt(a, b, z) = vt(a,b,z)

Q1−θ
t

.

Divide both sides of the HJB (35) by Q1−θ
t to get

(ρ+ ζ)ṽt(a, b, z) = max
c,d

ĉ1−θ

1− θ
+ ∂bṽt(a, b, z)

(
TQt + (1− τ)wte

z + rbt (b)b− χ(d, a)Qt − c− d
)

+ ∂aṽt(a, b, z)(rat a+ d) +
∑
z′

λzz′(ṽt(a, b, z
′)− ṽt(a, b, z))

+
1

Q1−θ
t

× 1

dt
Et[dvt(a, b, z)]. (47)

Next, to replace the 1
dt
Et[dvt(a, b, z)] term, note that by the chain rule

d

dt
ṽt(a, b, z) =

d
dt
vt(a, b, z)

Q1−θ
t

+ (θ − 1)
d logQt

dt
ṽt(a, b, z),

which implies that

1

Q1−θ
t

× 1

dt
Et[dvt(a, b, z)] =

1

dt
Et[dv̂t(a, b, z)] + (1− θ)d logQt

dt
v̂t(a, b, z).

Plug this back into (47) and rearrange to get

(ρ+ ζ + (θ − 1)
d logQt

dt
)ṽt(a, b, z) = max

c,d

ĉ1−θ

1− θ
+ ∂bṽt(a, b, z)(TQt + (1− τ)wte

z + rbt (b)b− χ(d, a)Qt

− c− d) + ∂aṽt(a, b, z)(rat a+ d) +
∑
z′

λzz′(ṽt(a, b, z
′)− ṽt(a, b, z))

+
1

dt
Et[dṽt(a, b, z)]. (48)

The formulation in (48) is still not stationary because there are permanent changes in the

state variables a and b, the wage wt, and transaction cost on the right hand side. To address

this we characterize the value function in terms of â and b̂, rather than a and b themselves.

Define the final detrended value function v̂t(â, b̂, z) as v̂t(â, b̂, z) = ṽt(a, b, z).
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We guess that this function v̂t(â, b̂, z) does not depend on the nonstationary variable Qt

and now verify that indeed it does not. Note that

∂bṽt(a, b, z) =∂bv̂t

(
a

Qt

,
b

Qt

, z

)
=

1

Qt

∂b̂v̂t(â, b̂, z),

∂aṽt(a, b, z) =∂av̂t

(
a

Qt

,
b

Qt

, z

)
=

1

Qt

∂âv̂t(â, b̂, z),

1

dt
Et[dṽt(a, b, z)] =

1

dt
Et
[
dv̂t

(
a

Qt

,
b

Qt

, z

)]
=

1

dt
Et
[
dv̂t

(
â, b̂, z

)]
− ∂âv̂t(â, b̂, z)â

d logQt

dt
− ∂b̂v̂t(â, b̂, z)b̂

d logQt

dt
.

These equations then imply

∂bṽt(a, b, z)(TQt + (1− τ)wte
z + rbt (b)b− χ(d, a)Qt − c− d)

= ∂b̂v̂t(â, b̂, z)(T + (1− τ)ŵte
z + rb̂t (b̂)b̂− χ(d̂, â)− ĉ− d̂)

and that

∂aṽt(a, b, z)(rat a+ d) = ∂âv̂t(â, b̂, z)(r
a
t â+ d̂).

Putting all these results together, and using the definition d logQt
dt

= Zt, we get the final

detrended HJB equation (45).

KFE The cross-sectional distribution of households over â, b̂, z is stationary. We will di-

rectly construct the KFE for the distribution over this space. Analogously to (36), this is

given by

dgt(â, b̂, z)

dt
=− ∂â

(
˙̂at(a, b, z)gt(â, b̂, z)

)
− ∂b̂

(
˙̂
bt(â, b, z)gt(â, b̂, z)

)
−
∑
z′

λzz′gt(â, b̂, z) +
∑
z′

λz′zgt(â, b̂, z)

− ζgt(â, b̂, z) + ζδ(â)δ(b̂)g∗(z).

The modified HJB (45) gives the evolution ȧ
Qt

= rat â+ d̂. Note that by the product rule,

˙̂at =
ȧt
Qt

− d logQt

dt
ât,
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so that ˙̂at = rat â + d̂ − d logQt
dt

â. Using this result, and the analogous one for
˙̂
bt, we get the

detrended KFE (46).

Other Equilibrium Conditions Detrending the remaining equilibrium conditions is sim-

ple:

rat =αK̂α−1
t L

1−α − δ

ŵt =(1− α)K̂α
t L
−α

dZt =− νZtdt+ σdWt.

A.5 Representative Agent and Spender-Saver Models

Representative Agent The representative agent model is identical to the RBC model

described in Appendix A.2.

Spender-Saver The spender-saver model extends the household side of the representative

agent model above to two types of households. First, there is a fraction λ of hand-to-mouth

households who simply consume their income each period. Second, the remaining fraction

1−λ of households make an optimal consumption-savings decision like in the representative

agent model.
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