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Abstract 
 
Pricing greenhouse gases is widely understood as the most efficient approach for mitigating 
climate change, yet distributional effects hamper political acceptance. These distributional 
effects are especially important in transport, the fastest growing sector for greenhouse gas 
emissions. Using rich data covering the entire population of vehicles and households in 
Denmark, this study uncovers an important feature of driving demand: two groups of much 
more responsive households in the lower and upper tails of the work distance distribution. We 
further estimate the causal effect of public transport–a critical determinant of the upper tail–and 
show how public transport access can both reconcile differences in fuel price elasticities 
between the United States and Europe, and considerably influence the distributional effects of 
fuel pricing. 
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“Relocation is part of the solution to a serious problem. That growth and jobs are too
unevenly distributed between country and city. It creates a risk of Denmark being ripped
apart.” - Lars Løkke Rasmussen, Prime Minister of Denmark, 19 October 2016 (on the
government’s plan to relocate public sector jobs)

1 Introduction

Greenhouse gas emissions from transportation amount to a quarter or more of all anthro-
pogenic emissions in many countries around the world, and this share is rapidly growing.
From 1990 to 2015, the share of greenhouse gas emissions from transport has increased from
15 percent to 26 percent in Europe and from 23 percent to 27 percent in the United States
(EEA, 2017; EPA, 2017). With continued declines in the cost of renewables and continued
decarbonization of the electricity sector, this trend is likely to continue and perhaps even
accelerate. Thus, policymakers worldwide have become increasingly attentive to the trans-
port sector. Economists are uniformly in support of pricing greenhouse gases as the first-best
approach to mitigate greenhouse gas emissions. Yet, political acceptance of pricing policies
is often hampered by concerns about the distributional effects of such policies, and this is
especially true for pricing transportation fuel consumption (Borenstein, 2017). A common
concern is that pricing policies will disproportionately affect less-wealthy households outside
of urban areas.

This study uses millions of vehicle-level odometer readings matched to individual-level
demographic information from the Danish registers to ask several questions. How do house-
holds across the population respond to fuel price changes? How is this response influenced
by access to public transport? And what does the heterogeneity in response mean for the
distributional effects of fuel price changes? We uncover a new finding to the literature: two
groups of households who are much more responsive to changing fuel prices than most of the
population. These households are in the tails of the work distance distribution; one group
has the longest commutes and the other has the very short commutes. Our mean medium-
run (one-year) elasticity estimate of -0.30 is considerably influenced by these two groups of
tail households, each of which are much more elastic. We show that these findings can be
rationalized with a model of switching costs incurred when substituting from driving to other
modes of transport, such as public transport. Danes have almost universal access to public
transport and we posit that our results hold in similar settings around the world.

Our results have direct policy implications. We show that the two groups of tail house-
holds face substantially reduced impacts from fuel price increases. This is especially im-
portant because the roughly 15% of the population in the upper tail–households with the
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longest commutes–face a heavy burden from fuel price increases and thus are likely to be
more opposed to pricing greenhouse gases. This is a politically salient point in Denmark as
the Danish government pays particularly close attention to rural voters who tend to have
longer commutes. The Danish government is even going as far as moving 3,900 governmental
jobs to outside the capital region at a cost of over 400 million DKK ($61 million at the
July 9, 2017 exchange rate).1 These issues are by no means isolated to Denmark, with the
impact on groups of voters outside of cities playing a key role in policy debates about pricing
greenhouse gases throughout the developed world.

Indeed, our findings also have implications for other countries where access to public
transport is less universal. Our results suggest that access to public transport is a prerequisite
for the existence of the upper tail. Without adequate access to public transport, households
with long commutes are less able to substitute away from driving when fuel prices rise.
Intuitively, previous work from countries with more limited access to public transport, such
as the United States, show no evidence of the upper tail of responsiveness from households
with longer commutes. Such previous work does however routinely find that households in
cities (who would be expected to have shorter commutes) tend to be more responsive (e.g.,
Kayser, 2000; Gillingham, 2013, 2014; Gillingham, Jenn, and Azevedo, 2015), consistent with
our lower tail, which we show is also primarily driven by households in the cities in Denmark.
By identifying the upper tail in the work distance distribution in Denmark, we show that
there is a group of more-responsive households in Europe that is not likely to exist in countries
like the United States where public transport provision is lower. This directly impacts the
effectiveness of fuel pricing in reducing driving and emissions and may crucially affects the
political acceptability of pricing greenhouse gases.

This research contributes to several strands of literature. First, there is a growing lit-
erature on the distributional effects of policies to reduce greenhouse gas emissions from the
transportation sector. Economists have worked on this issue for decades, primarily focusing
on the vertical distributional effects (i.e., distributional effects over income) of gasoline taxes
(Poterba, 1989, 1991). More recently, Borenstein and Davis (2016) estimate the distribu-
tional effects of U.S. Clean Energy Tax Credits (including subsidies for hybrid and electric
vehicles) and find them to be quite regressive. Levinson (2016), Jacobsen (2013), and Davis
and Knittel (2016) compare the vertical distributional impacts of fuel economy standards to
gasoline taxes in the United States, generally finding that fuel economy standards are more

1See the Danish factsheet: https://www.regeringen.dk/aktuelle-dagsordener/
udflytning-af-statslige-arbejdspladser/se-status-paa-udflytning/.
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regressive than gasoline taxes.2 There is much less work on the geographic distributional
consequences, despite its importance for policy. Bento et al. (2009) use survey data to es-
timate the efficiency and distributional consequences of gasoline taxes across states in the
United States and show that households in more rural states face a much higher burden.
Our study is the first to identify the two tails of more responsive drivers, link them to geo-
graphic location, shed light on the mechanisms creating them, and show how they influence
the short-run distributional effects of policies affecting fuel prices.

This study also uses rich data to provide a new point estimate for the fuel price elasticity
of driving, which is a dominant component in the modeling of gasoline or diesel demand.
Understanding the price responsiveness of fuel prices is a first-order question in economics.
Not only is it valuable for anticipating responses to future swings in oil prices, it is also useful
for measuring the macroeconomic effects of oil price fluctuations (e.g., Edelstein and Kilian,
2009) and providing insight into the role of speculators during oil price shocks (Hamilton,
2009; Kilian and Murphy, 2014). Not surprisingly, there is a vast literature aiming to estimate
the price elasticity of gasoline demand (e.g., for some recent studies see Coglianese et al.,
2016; Davis and Kilian, 2011; Hughes, Knittel, and Sperling, 2008; Li, Linn, and Muehlegger,
2014; Hymel and Small, 2015; Small and van Dender, 2007; Levin, Lewis, and Wolak, 2017).
Most of these studies use aggregate data at the regional or national level.3 More recently,
several studies have estimated the elasticity of vehicle-miles-traveled with respect to the price
of gasoline using disaggregated micro-level data, either from surveys or inspection odometer
reading data (e.g., Linn, 2016; Bento et al., 2009; Knittel and Sandler, 2013; Gillingham,
2013, 2014; Munk-Nielsen, 2015; De Borger, Mulalic, and Rouwendal, 2016b). In a notable
contrast, estimates for drivers in the United States tend to be in the range of -0.05 to -0.30,
while similar benchmark estimates for European drivers tend to show a much more elastic
response. For example, Frondel and Vance (2013) estimate a medium-run driving elasticity
with respect to the gasoline price of -0.45 in Germany.4 Similarly, in contemporaneous work,
De Borger, Mulalic, and Rouwendal (2016a) focus on a subsample of two-vehicle households
in Denmark and find the medium-run fuel price elasticity of driving to range between -0.32
and -0.45. We demonstrate how the removal of the upper tail–or the removal of adequate
access to public transport–can reconcile these differing estimates between the United States
and Europe.

2There is a substantial literature on the distributional effects of gasoline taxes and carbon taxes, including
Hausman and Newey (1995), West (2004), West and Williams (2004), Bento et al. (2009), Sterner (2012),
Williams et al. (2015).

3Review articles cover dozens of studies going back decades, most using aggregate data. For example, see
Dahl and Sterner (1991), Espey (1998), Graham and Glaister (2004), and Brons et al. (2008).

4-0.45 is the fixed effects estimate, which we believe is better identified than other estimates in the paper,
which are closer to -0.6.
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Our results also contribute to a third vein of literature on the complex relationships
between household location, public transport availability, gasoline prices, and consumer deci-
sions about how much to drive. Since at least McFadden (1974), it has long been recognized
that access to public transport is an important mediator of travel choices, with clear environ-
mental implications (e.g., Glaeser and Kahn, 2010). Our work contributes to this literature
by using an instrumental variables strategy to identify the causal effect of public transport
on the responsiveness of driving to fuel price changes. Further, there is growing evidence that
urban form and the spatial structure of commuting demand can affect travel mode choices
(Bento et al., 2005; Grazi, van den Bergh, and van Ommeren, 2008; Brownstone and Golob,
2010). Our paper follows the literature estimating short-run and medium-run driving elastic-
ities by holding the household location fixed, but shows how long-run equilibrium commute
distances influence the short-run response to fuel prices.5 These results are important for land
use and transport policy, as they clarify the implications of policies that encourage shorter
commute times (e.g., some smart growth policies) or greater access to public transport.

The remainder of this paper is organized as follows. The next section lays out a simple
theoretical model to provide an economic explanation for the existence of the tail households.
Section 3 describes the rich Danish register data and provides descriptive evidence on the
primary features of the data relevant to estimating the driving responsiveness. Section 4
describes our empirical strategy, while section 5 presents the results and a set of robustness
checks. Section 6 discusses implications for policy, including an illustrative distributional
effects analysis. Section 7 concludes.

2 A Simple Model of Travel Decisions

This section develops an simple model of the travel decision of a car-owning agent in order to
build intuition for the economics underlying our empirical results. The focus of this model is
on the economics of the short-run price responsiveness of driving and how it varies with the
work distance of the household. For clarity of exposition, we abstract from other decisions
that may influence driving in the long-run, such as where to live and what employment to
accept. Our model is well-suited for a setting where the decision-maker has access to public
transport. Such a setting is relevant to nearly all of Denmark, as well as much of Europe
and many other areas in the world. For example, in 2014, 87% of Danes live within one
kilometer (km) of a public transport stop and nearly all the remainder are served by on-call

5We also run a series of robustness checks where we exploit data on household residence and work locations
and changes in these over time, finding that both our mean elasticity and tail results are quite robust.
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buses (“telebusser”).6 We model a static setting for a given finite amount of time, such as
one week.

Let the total number of kilometers traveled by the agent be given by T . The agent can
travel by personal vehicle or by other modes of transport, including public transport, biking,
or walking. Let the kilometers traveled by personal vehicle be denoted by v, so the remaining
kilometers traveled is T − v. Consider two types of travel. The first type is repeated travel
that occurs several times a week, such as for a commute to work. The second is discretionary,
shopping, or leisure travel. Let dw ∈ [0, 1] be the fraction of commuting (work) trips driven.
dw = 1 if all of commuting is accomplished by driving and dw = 0 if all of commuting is
done by other modes of transport. Similarly, let dl ∈ [0, 1] be the fraction for non-commuting
(leisure) trips.

Let w be the kilometers traveled for the commute and gw(dw, w) be the additional utility
from commuting to work by driving rather than other forms of transport. Similarly, let l be
the kilometers traveled for non-work trips and gl(dl, l) be the utility from driving for non-work
trips. In the short-run, w can reasonably be assumed to be fixed, so gw(dw, w) ≡ gw(dw),
while l is a choice variable. As driving is a more flexible form of transport, assume ∂gl(dw)

∂dw > 0
and ∂gl(dl)

∂dl > 0. However, there is an important difference between commuting trips and other
trips that motivates our specification of these functions. While trips for shopping or leisure
involve travel to a diverse set of locations, commute trips are very homogenous, from the same
origin to the same destination and usually at the same time of day. Thus, for a given set of
commute trips in a given time period, we would expect the marginal utility from commuting
by personal car to be constant, regardless of the amount of driving. This allows us to define
gw(dw) ≡ γwdw, where γw is a constant. In contrast, there is inherent heterogeneity in the
ability to bike, walk, or take public transport for non-commute trips. For some shopping or
leisure trips, public transport or biking are very attractive modes of travel; for others, they
are highly unappealing due to the distance or destination.

Consider an agent who maximizes utility subject to a budget constraint:

max
dw∈[0,1],dl∈[0,1],l

u(x) + gw(dw) + gl(dl, l)

s.t. y ≥ pvv + pb(T − v) + x,

where x is the outside good (whose price is normalized to 1), y is total income, pv is the price
per kilometer of driving a personal vehicle (hence “v”), and pb is the price per kilometer of
the non-driving mode such as a bus (hence “b”).

6See http://passagerpulsen.taenk.dk/file/68/download?token=fy19yEeh, Accessed June 16, 2015.
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Inserting the assumed form of gw, the Lagrangian for this problem can be written as

max
dw∈[0,1],dl∈[0,1],l

u(x) + γwdw + gl(dl, l) + λ
[
y − (pv − pb)v − pbT − x

]
,

where λ is the shadow price or marginal utility of income.
Assuming standard regularity conditions and using v = dww + dll, the optimal dl can be

characterized by the following first-order condition:

∂g(dl, l)
∂dl

= λ(pv − pb)l.

This condition indicates that the household will choose the fraction of non-commute driving,
dl ∈ [0, 1], so that the marginal utility of an additional kilometer traveled by car is equal to
the marginal cost (converted to be in terms of utility). In other words, because shopping and
leisure trips are heterogenous, the household will shift the least inconvenient trips to public
transport, walking, or biking when fuel prices increase. Of course, corner solutions at 0 and
1 are possible if the marginal cost is sufficiently high or low. Otherwise, ∂2gl(dl,l)

∂(dl)2 6= 0 and
the monotonicity of gl(·) assures an interior solution, as one would expect. Similarly, the
first order condition for l is ∂gl(dl,l)

∂l
= λ

[
(pv − pb)(dl − dw)− pb

]
, which indicates that the

marginal benefits of additional non-commute driving are equal to the marginal costs.
The setting is different for commuting, as ∂gw(dw)

∂dw = γw. Given this, as long as we do not
have exact indifference (i.e., γw = λ(pv − pb)w), a utility-maximizing household would never
choose an interior solution. Instead, we obtain the following discrete solution for the choice
of mode for commute travel:

dw =

1 if γw ≥ λ(pv − pb)w

0 else.
(1)

If the marginal utility from driving is greater than marginal cost (converted to be in terms
of utility), then dw = 1 and all commute trips are done by driving. Otherwise, all commute
trips are taken using other forms of transport, such as public transport, cycling, or walking.
We can think of γw intuitively as a type of switching cost that prevents a change in commute
driving unless there is a sufficiently large change in the marginal cost.7 It can be thought of
as the marginal utility of driving instead of using other forms of transport, and it includes
such factors as the effort in planning transport trips or the psychological cost of changing

7Note that this is a static, rather than dynamic model, so our preferred interpretation of γw is as the
threshold level of savings required for a substitution rather than as a classic switching cost in a dynamic
model.
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habits.
This framework has important implications for our empirical setting. We are not inter-

ested in dw, dl, l per se, but we are interested in the overall fuel price sensitivity of driving ( ∂v
∂pv )

and the heterogeneity in this sensitivity. Differentiating, we have ∂v
∂pv = ∂dw

∂pv w + ∂dl

∂pv l + ∂l
∂pv d

l.
From the first order conditions and the implicit function theorem we also know that at the
optimal values of l and dl, ∂dl

∂pv = λl
∂2gl

∂(dl)2
and ∂l

∂pv = λ(dl−dw)
∂2gl

∂(l)2
.

For commute driving, the discontinuity in the optimal mode choice implies a discontinuity
in the response so that the derivative is zero (almost) everywhere. We thus consider a change
in gasoline prices leading to a change from pv0 to pv1. Consumers will switch from driving to
other modes of transport at the threshold pv = pb + γw

λw
. So the change in commute driving

with the given change in fuel prices is

∆dw =


1 if dw = 0 and pv1 < pb + γw

λw
< pv0,

−1 if dw = 1 and pv1 > pb + γw

λw
> pv0,

0 otherwise.

This expression highlights when substitution might occur with a fuel price rise. For example,
in order for there to be a switch away from driving for commutes, the increase in the marginal
cost of driving must be sufficient to overcome the marginal cost of the other option pb plus
the marginal utility of driving above other sources, scaled by the distance of the commute
and put in monetary terms. Thus, for households with very long commutes (i.e., a large
w), a fuel price change sufficiently large to induce a switch in modes would imply a more
substantial decrease in driving, leading to our first hypothesis:8

Hypothesis 1. (Upper Tail) With sufficient gasoline price variation, households with
a longer work distances are more responsive to changes in gasoline prices than the average
household.

This first tail has a clear intuition in that households with long work distances spend
proportionately more on fuel for commuting when fuel prices increase, so there would be a
strong incentive to reduce driving. However, there must be other available modes of travel
for a change in driving to be possible–such as public transport.

For drivers with the shortest work distances, there is a very different decision problem.
In order to live so close to work, we would expect these households to live in the city or right
in town. Thus, walking and public transport would be particularly attractive modes. There

8This can be seen using ∂v
∂pv = ∂dw

∂pv w + ∂dl

∂pv l + ∂l
∂pv d

l. These drivers have large w and for a large-enough
fuel price increase ∆dw = −1. With this major shift away from work driving, the signs of the changes in l
and dl are ambiguous. Relative to drivers with an average w, l and dl are also ambiguous. Combining these
observations with the large effect of ∆dw suggests that the other terms would be unlikely to fully offset ∆dw.
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is no discrete switching behavior, but rather a continuous substitution from a diverse array
of non-work trips. With more attractive other options, the marginal trip for these drivers
would be expected to be more likely to switch away from driving when fuel prices rise.9

Hypothesis 2. (Lower Tail) Households with very short work distances are more respon-
sive to changes in gasoline prices than the average household.

This second hypothesis stems naturally from our model, but is also consistent with pre-
vious empirical evidence from the United States indicating that households residing in cities
are some of the most responsive to fuel price changes (Kayser, 2000; Gillingham, 2013, 2014;
Gillingham, Jenn, and Azevedo, 2015).

To be clear, we do not claim that these two hypotheses hold under all conditions (e.g.,
without adequate public transport, the upper tail is much less likely). However, they hold
under reasonable assumptions and provide empirically testable implications for the hetero-
geneity in the fuel price elasticity of driving in our empirical setting. We intentionally de-
veloped a simple static model to build intuition for the shorter-run driving decisions. In a
dynamic setting, we would expect to see similar substitution behavior, whereby households
could “invest” in switching if the discounted savings from doing so outweigh the switching
cost.10 Because the savings equal w times the travel cost differential, households with longer
w will switch for smaller changes in the fuel price. Such a mechanism could also be included
in our model by allowing γw to be heterogeneous and increasing in w. For a longer-run
analysis, the work distance could be endogenized, but this is outside the scope of our paper,
which follows the literature in focusing on the short-run driving decision.

9This can also be seen more formally using ∂v
∂pv = ∂dw

∂pv w + ∂dl

∂pv l+ ∂l
∂pv d

l. For households with a negligible
w, but a diverse array of attractive mode choices for a diverse array of non-work trips, we would expect the
optimal l and dl to be larger than similar households with a larger w (recall that these are households that own
a car despite a short w). This would follow naturally from utility maximization under a budget constraint.
Further, assume λ is constant or larger for those with very small w, which would follow if households with
greater w are at least as wealthy as those with small w (e.g., households in the suburbs may be wealthier
than those in the city). From the implicit function theorem, ∂dl

∂pv = λl/ ∂2gl

∂(l)2 and thus with concavity of gl(·),
∂dl

∂pv l is more negative with a negligible w. Again using the implicit function theorem, the same is true for
∂l

∂pv d
l. Finally, we would expect households with very short work distances to have l and dl sufficiently larger

than those with average w (due to the diversity of trips and ability to use different modes of travel) that
the more negative values of ∂dl

∂pv l+ ∂l
∂pv d

l will outweigh ∂dw

∂pv w being close to zero, implying that ∂v
∂pv becomes

more negative.
10The intuition is similar to the intuition in an (S, s)-model of portfolio choice; for small changes in the

fuel prices, most households will stick with their baseline mode choice and avoid paying the switching cost.
For larger changes, however, they will be forced to re-optimize.
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3 Data

3.1 Data Sources

We use data from the Danish registers on the population of both households and vehicles
in Denmark from 1998 to 2011. There are three main sources. The first is the vehicle
license plate register, which contains the vehicle identification number, gross vehicle weight
rating (i.e., maximum operating weight including passengers and cargo), fuel type, date of
registration, owner identification number, and whether the vehicle type is a personal car or
a van.11

The second data source is the vehicle inspection database. Starting on July 1, 1998,
all vehicles in Denmark have been required to undertake a mandatory safety inspection at
periodic intervals after the first registration of the vehicle. In Denmark, the first inspection
is roughly four years out, and subsequent inspections are every other year.12 Only a small
number of used vehicles are imported into Denmark, in part because they pay a large vehicle
registration fee and value-added tax that are assessed based on similar new vehicle prices. The
fee and tax schedule are based on the value of the vehicle for all vehicles new to Denmark.13

The inspection database contains odometer readings, which can be used to determine the
kilometers driven between two inspections.

The third primary data source is the household register, which contains detailed demo-
graphic data at the calendar year-level. These data include the number of members of the
household, ages and sex of these members, municipality of the household, income of the
household members (including transfers), and a measure of work distance used to calculate
the tax deduction for work travel.14 This last variable is a very useful measure of work dis-
tance, as it is the product of the reported work distance and the reported number of days
that work travel occurred (regardless of mode of transport). So a household that lives very
far away from work but rarely ever commutes (e.g., teleworks most of the time) would have
a low work distance by this measure. Moreover, because the address of the work place is
known to the tax authorities, this number is subject to auditing and thus is highly reliable.

11Company cars are not in our database and are not linked to a person but rather to the firm. However,
individuals with access to a company car must pay a tax for this, and we observe that 3.7% of our households
have at least one member paying this tax.

12This is a very similar schedule to inspections in states in the United States, such as California. Details
about the driving period lengths are in Appendix A.1.2. We control for the length of the period and perform
robustness checks subsampling on the period length.

13After 2007, the vehicle registration fee assessed at the time of the transaction is also adjusted based on
the fuel economy of the vehicle.

14For couples, there is a separate work distance variable for the male and female of the couple. In these
cases, we use the maximum work distance of the two members but have also performed robustness checks to
confirm that this does not appreciably change the primary results.
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The individual is only eligible for a deduction if the distance is greater than 12 km but there
is no minimum requirement on the number of days that travel to work occurred. The work
distance measure will therefore be equal to zero if the individual lives closer than 12 km from
the work place or if the individual does not travel to their workplace.

For 2000 to 2008, we also have data on the actual work distance for 79.6% of the households
measured using a door-to-door shortest-path algorithm and provided by Statistics Denmark.15

This second measure provides a useful check on our first measure, especially for households
with commutes under 12 km (See Appendix A.3.3). However, the actual work distance
measure is a flawed measure for understanding the commute length of long work distance
households, for some of these households may work from home or in nearby locations, and
thus rarely travel the full commute. Fortunately, our robustness checks suggest that our
results hold regardless of which measure we use.

In addition to the register data, we also bring in daily price data for 95 octane gasoline
and diesel fuel from the Danish Oil Industry Association.16 Similarly, we also bring in daily
West Texas Intermediate crude oil price data for a robustness check.17 Finally, we use data
from Journey Planner on all bus and train stops in Denmark in 2013.18 This is a single
cross-section, but there were no substantial Denmark-wide changes in public transport over
our time period; there were only minor extensions of certain lines and other tweaks to the
system, as will be discussed further below.

We also have access to some additional car characteristics, including fuel economy in km/l
and the manufacturer suggested retail price (MSRP). These data comes from the Danish
Automobile Dealer Association (DAF). However, these variables are not available for car
vintages older than 1997. Finally, we bring in historical municipality-level population data
from 1916 from Statistics Denmark.

3.2 Development of the Final Dataset

We combine the data from the various sources to create a final dataset where the unit
of observation is a vehicle driving period between two inspections. So if a driver has a
first inspection of her vehicle on June 1, 2004 and the next inspection on June 6, 2006,
the driving period will be the 735 days between these two tests. We use the difference in
odometer readings between these two inspections to calculate the total kilometers driven and
the kilometers driven per day over the driving period. Similarly, we calculate the average

15Statistics Denmark has access to the actual addresses of individuals. This information, however, is
anonymized in our dataset so we cannot perform any operations based on GIS information.

16See www.eof.dk, Accessed June 17, 2015.
17See www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RWTC&f=D, Accessed June 15, 2015.
18See www.journeyplanner.dk, Accessed April 19, 2013.
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gasoline, diesel, and oil price over the same driving period. If a car changes owners during a
driving period, we include an observation for both households that have contributed to the
driving and a variable for the fraction of the driving period the car is held by each owner.

To match our calendar year demographic data with driving periods, we construct a
weighted average of the values of the demographic variables over the years covered by the
driving period. For example, if a driving period covers half of 2001, all of 2002, and half of
2003, the values of the demographic variables would be given a weight of 0.25 for 2001, 0.5
for 2002, and 0.25 for 2003. The density of public transport stops is added to the data at
the municipality level.

The final dataset after cleaning consists of 5,855,446 driving period observations covering
nearly all driving periods by Danish drivers over the period from 1998 to 2011. Table 1
presents summary statistics for the final dataset. For our estimations, we demean all of the
variables in order to facilitate interactions. Appendix A provides further details on the data
sources and cleaning process.

3.3 Descriptive Evidence

There has been considerable variation in both gasoline and diesel prices in Denmark from
1998 to 2011. Figure 1 shows average gasoline and diesel prices over time in our dataset. The
x-axis denotes the time of the inspection at the beginning of the driving period. Figure 1 also
plots the average daily vehicle-kilometers-traveled (VKT) over the driving period, illustrating
a negative relationship between fuel prices and driving.19

The rich Danish register data allow us to explore the relationship between fuel prices and
driving in greater detail. Figure 2 divides the sample into ten groups based on the percentiles
of driving in each year. The vehicles in each group may change over time, as we recalculate
the percentiles in each year. The figure illustrates that for most groups there appears to be
very little change in driving over time, even as fuel prices change significantly. However, the
1 percent of drivers who drive the most show a noticeable decrease in VKT during driving
periods that begin between 2003 and 2005, just as gasoline prices are rising. Even though this
figure is based on VKT rather than work distance, we view this as initial suggestive evidence
of the existence of an upper tail of more responsive drivers, as suggested in Hypothesis 1.

One would expect a high correlation between driving and work distance. Figure 3 uses a
binned scatterplot to show the nonparametric relationship between per-vehicle driving and
work distance. This plot shows that drivers exhibit remarkable heterogeneity over work
distance. Longer commutes translate into more driving. There is a point mass at zero, which

19See Appendix A for a figure showing the unconditional distribution of VKT.
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accounts for households with a work distance less than 12 km. After this point mass driving
is a monotonically increasing function of work distance. The general concavity suggests that
there is likely to be more non-commute driving for households with shorter work distances
since households with much longer commutes drive only slightly more than households with
much shorter commutes.

We can further explore our data by examining the characteristics of households stratified
by their work distance. Table 2 compares households with zero work distance to households
with a work distance over 30 km.20 Not surprisingly, the drivers in the upper tail of work
distance have a higher income, have more vehicles, have larger families, and drive more. They
also tend to drive younger cars that are more likely to be driving a diesel car. They also have
only slightly less access to public transport than the rest of the population.

To visualize where the high-work distance households live, Panel (a) of Figure 4 shows a
map of Denmark where each municipality is shaded according to the average work distance
of the households living in that municipality (darker means shorter work distance). The
figure shows that, conditional on owning a car, the high-work distance households tend to
be in rural areas or on the outskirts of the major urban areas, while lowest-work distance
households are in the urban areas. The regions of high-work distance municipalities also tend
to be the municipalities with most driving (see Appendix).

As was discussed section 2, an important way for a driver who lives further from work
to be able to reduce driving is by switching to public transport. Panel (b) of Figure 4
illustrates the prevalence of public transport access throughout Denmark by showing each
train or bus stop as a dot. There are bus or train stops nearly everywhere in Denmark.
Moreover, there is on-call public transport available in rural municipalities where the stops
are sparser, as mentioned above. This pervasiveness of public transport–which contrasts with
other countries such as the United States–makes switching behavior possible for those with
long commutes.

4 Empirical Approach

4.1 Empirical Specification

A first goal of this paper is to investigate the fuel price elasticity and explore how this elasticity
varies with work distance. We follow a vast literature on estimating fuel price elasticities in
using a linear log-log specification for driving and the fuel price. This specification not only

20We choose 30 km simply because it captures a small percentage–about 15%–of the population and because
our results will show that this threshold is roughly where the upper tail elasticity becomes greater. We could
choose another cut-off without changing the qualitative insights here.
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provides for a ready interpretation of the coefficient of interest, but we find that it also fits the
data well. A less common, but also intuitive, specification would use the price per kilometer
of driving (i.e., the fuel price divided by the fuel economy) rather than the fuel price. We
opt not to use this specification both because we do not observe fuel economy for a sizable
portion of the sample and because the variation identifying the elasticity would stem from
fuel price changes regardless.21

Consider the demand for driving for vehicle i in household h during a driving period t,
which may cover several years y. Recall that a driving period is simply the period in between
two odometer readings. We model the demand for driving as follows:

log VKTiht = γ log piht + xihtβ +
2011∑
y=1998

∑
f=gas,diesel

δfyω(i, t, y)1(gasi) + ηh + εiht. (2)

VKTiht is the average daily driving in kilometers and piht is the average daily fuel price over
the driving period for vehicle i (gasoline or diesel price depending on the car type) and xiht
denotes a vector of controls. The coefficient γ is our primary coefficient of interest–the fuel
price elasticity for vehicle i in driving period t. The controls in xiht include variables for
work distance, age of members of the household, gross income of members of the household,
whether the household lives within one of the five major urban areas of Denmark, number
of children, whether the vehicle is a company car, whether the household has at least one
self-employed individual, and the density of bus or train stops in the municipality. The vector
xiht also includes variables for whether and by how much the driving period overlaps with
other driving periods by the same household.22

The variable ω(i, t, y) denotes time controls, which vary by the vehicle fuel type f ∈
{gas, diesel}, year y, and driving period t in order to capture fuel type-specific factors that
change over time. Our specification of these controls is motivated by the fact that a vehicle
driving period is not exclusively in a single year, but generally covers two years and up to five
years. This prevents us from using traditional year fixed effects. Instead, we allow ω(i, t, y)
to denote the fraction of a driving period t that falls within the year y ∈ {1998, ..., 2011}.
For example, if a driving period starts on July 1st 2001 and ends on June 30th 2003, ω(i, t, y)
will be 0.25 for y ∈ {2001, 2003} and 0.5 for y = 2002. The coefficients δfy will therefore

21We also include household-vehicle fixed effects in a robustness check, and these fixed effects remove
any vehicle-specific time-invariant factors, such as fuel economy. Our resulting elasticity is nearly identical.
Further, we examine specifications where all covariates are included in logs, and again find very similar
results.

22Recall that if the car changes owner mid-way through the driving period, the driving period is included as
an observation by both households and we add a control for the percent of the driving period each household
owns the car. We also add controls for ownership of other vehicles that do not admit driving observations
such as motorcycles, mopeds, trailers, etc.
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act similarly to fuel type-specific year fixed effects, but since ω are continuous variables they
afford the extra flexibility depending on the degree to which a driving period overlaps with
year y. Since the weights sum to unity, we omit year 2003 as the reference year. In our
robustness checks, we also examine alternative specifications for our time controls. We also
control for the length of the driving period and include a dummy for whether it is the first
driving observation for the car. Finally, ηh are household fixed effects.23

4.2 Identification

Of primary interest in this paper is discerning whether there is important heterogeneity in
the relationship between driving and fuel price that influences the short-run distributional
impacts of price changes. Our gasoline and diesel fuel price variables are time series variables,
as there is negligible cross-sectional variation in fuel prices across Denmark. The primary
source of the time series variation in these refined fuel price variables is variation in oil
prices, as oil is the feedstock for gasoline and diesel production. Any remaining variation in
the refined fuel prices may be due to Denmark-specific shocks to refining or fuel demand. The
oil price is determined on the global market and Denmark is a small market, so it reasonably
follows that Denmark-specific shocks are not likely to affect the global oil price. However,
localized shocks may influence the non-oil price-related variation in the refined fuel prices. In
addition, there may be correlated demand shocks across countries. For example, a common
demand shock in Northern Europe due to a macroeconomic shock would be represented in
the refined fuel price time-series variation.

These localized shocks and correlated demand shocks are likely to be a small part of the
fuel price variation. Nevertheless, we consider each carefully. We address common regional
demand shocks that may influence both driving and oil prices with our flexible time controls,
and we perform a series of robustness checks with different time controls. We address the
possibility of endogeneity due to localized shocks by performing a robustness check in which
we instrument for the refined fuel price with the global oil price. Specifically, we use the
WTI oil price index, which is based in the United States and captures variation in global oil
prices that is quite removed from localized shocks in Denmark.

Our specification includes household fixed effects to nonparametrically address time-
invariant unobserved household heterogeneity. These household fixed effects are particularly
important for identification because they allow us to focus on within-household variation
(deviations from the mean) in driving over time. Any sorting into different locations based
on time-invariant unobserved preferences will be captured by the fixed effects, as will any

23Note that over 85% of households in Denmark own one or no vehicles, so household fixed effects are
nearly the same as household-vehicle fixed effects.
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time-invariant unobserved household heterogeneity relating to the car choice decision. This
means that the variation we use in the work distance variable is purged of longer-term issues
of consumer preferences about where to live and where to work.

In using these household fixed effects, we are identifying our work distance-related coef-
ficients largely from households that moved or had their workplace move. The identifying
assumption for these coefficients is that households move for a variety of reasons (e.g., for
a better job, to be closer to family, to reduce their commute, to buy a house, etc.), but
they do not move because of a change in unobserved preferences for driving, and similarly,
workplaces change for exogenous reasons to the household (e.g., the company moves or the
worker gets a new job). For this identification strategy to be problematic one must believe
that households have a time-varying unobserved preference for driving that happens to be
correlated with the choices to move or change jobs. While this seems unlikely, it may be
possible. Thus, we run a series of robustness checks exploring different sources of variation
using subsamples. For example, a firm relocation should be an exogenous shifter of work
distance from the household perspective and we find that our basic results still hold on a
subsample of households where only firms relocate.24 We also find similar results when we
explore a subsample of only households that choose to relocate. The fact that we get similar
results when we utilize these very different sources of variation in the work distance over time
provides further evidence supporting the validity of our identifying assumption.

Another possible identification concern is that our variable for public transport access,
the density of bus and train stops, is simultaneously determined with driving. For this to
be an issue, the Danish government would have to set public transport access based at least
in part on the expected responsiveness to fuel price in an area. If the Danish government
set public transport access based on the level of driving, this would be fully addressed by
the household fixed effects. However, it may be possible that the Danish government set
public transport access based in part on responsiveness, perhaps due to a desire to alleviate
congestion during times of lower fuel prices. To address any possible endogeneity concern
relating to our variable for public transport access, we also examine a specification where
we instrument for public transport access with municipality-level population data from 1916,
which is the earliest year complete municipality-level population data are available.25 This
approach follows Durantan and Turner (2011), Mulalic, Pilegaard, and Rouwendal (2015),
and other recent papers using historical data that determine the location of rail and road

24We do not use this as our primary specification because of the unusual sample selection (people who
have their firm relocate are not the same as the broader population) and because we lose power from using
the much smaller sample. The details are in Appendix C.8.

25See http://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=19910&sid=byersfolk1801,
Accessed June 12, 2017.
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lines, but otherwise should not influence outcomes today.
A further possible concern is that urban amenities might change over time, and these

changes could be correlated with both work distance and driving. While most urban amenities
take decades to develop and can be safely considered constant in our empirical setting, it
is possible that some amenities occasionally change. Public transport is an example. We
researched this possibility carefully. In general, we find that there were few changes to
urban amenities over our time period, and public transport also did not change much. Any
Denmark-wide changes would be addressed directly with our time controls, so any concern
would have to be a region-specific change that is correlated with work distance. The only
meaningful change we uncovered was the addition of a line to the Copenhagen metro between
2002 and 2007 (Mulalic, Pilegaard, and Rouwendal, 2015). This would not be captured in
our variable for public transport access. If households or firms happened to move in the
2007-2011 period because of this expansion of the metro line, this could bias our coefficient
on the work distance. Thus, we perform a robustness check in which we remove the Greater
Copenhagen area from our estimation sample, and again find similar results.

A final possible identification concern could be that we are not including controls for
vehicle characteristics, such as fuel economy. Given our household fixed effects addressing
time-invariant household preferences for vehicles and the fact that we are using time series
variation in fuel prices, this is unlikely to be an issue. This is especially true because in
Denmark only a small percentage of households have more than one car (less than 15%),
so household fixed effects are extremely similar to vehicle fixed effects. However, we also
examine a robustness check with household-vehicle fixed effects to address any unobserved
heterogeneity at the vehicle (rather than household) level, which again provides similar results
only on a smaller subsample and with somewhat less power. Regarding multi-car households,
we observe and control for the number of cars, motorcycles, mopeds, campers, vans, and
trailers.

5 Results

5.1 The Mean Elasticity of Driving

Table 3 shows the results from estimating the linear fixed effects model in equation (2). A rich
set of controls are included in the estimation, but for brevity, we report selected coefficients.
Column (1) is the most parsimonious specification, which only controls for seasonality (%
of the driving period covering each month), the driving period, and car characteristics. The
coefficient on the log fuel price indicates a fuel price elasticity of driving of -0.87. When
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we add year controls and demographics in column (2), the elasticity drops to -0.30. This
indicates the importance of controlling for individual-level demographics as well as using
time controls. In columns (3) and (4), we add household fixed effects with and without time
controls. Without the time controls, the elasticity is -0.51. Adding time controls reduces
the elasticity to -0.30, which is our preferred estimate and can be interpreted as a medium-
run or one-year elasticity. It may not be surprising that the elasticity moves closer to zero
when we nonparametrically control for general time trends in driving since larger economic
trends could be correlated with both driving and fuel prices.26 The ability to simultaneously
control for household fixed effects and time controls is a unique advantage of our data, which
combines full population data with a over a decade time horizon.

It is worth noting that we find the same fuel price elasticity in columns (2) and (4), which
are identical except for the addition of household fixed effects. We take this as an indication
that our rich set of controls are capturing the most important determinants of the fuel price
elasticity. In particular, we expect that the variables for work distance, company cars, and
income capture key components of driving demand.

As was also seen in our descriptive analysis, Table 3 shows that driving is increasing in
work distance. Even the dummy for whether the work distance is non-zero (recall that it
is censored at 12 km based on how the data are collected) has a positive and statistically
significant coefficient. The results indicate that increasing the work distance by one additional
km can be interpreted as increasing daily driving by approximately 0.6%–an economically
significant effect.

The statistically significant coefficients on income suggest that increasing income lowers
driving demand for couples, while it increases driving demand for singles. This may be due
to wealthier couples being able to afford to live in more geographically advantageous areas,
while singles cannot. However, this effect is economically relatively small, which is important
because it indicates that factors such as work distance are more economically significant than
even income. This provides initial evidence supporting the focus of the stylized model on
commuting.

The coefficient on the density of bus/train stops per km2 is statistically significant and
negative in columns (2) and (3), which might be expected: better access to public transport
should reduce driving. However, because access to public transport is so universal in Denmark
(recall Figure 4) and public transport access changes so rarely, there is limited variation in this
variable and no time-series variation. Thus, it may not be surprising that the effect in column
(3) is fairly close to zero and in column (4), the effect becomes statistically indistinguishable

26In Appendix Table 15 we show that the elasticity is robust to the exact functional form of the time
controls. In fact, even in a specification with just a linear time trend in the starting year of the period, the
elasticity is -0.31.
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from zero. As discussed above, a possible concern with this specification is that the public
transport variable is endogenous. As we will see shortly, the estimated fuel price elasticity
does not change in our IV specification, further supporting our identification approach here.

A natural question that arises when using the price elasticity for policy analysis is how
well the functional form of the demand curve follows a constant elasticity assumption. To
explore non-linearities further, Figure 5 plots the non-parametric relationship between log
VKT and log fuel price, where both variables have been residualized in a first stage to account
for partial correlations with remaining regressors.27 A key finding is that over a broad range
of fuel prices, the functional form in the log-log scale is approximately linear. This supports
both the use of the log-log specification, as well as the use of the elasticity over a relatively
broad range of fuel price changes. Only at the extremes of fuel price in our data, which are
identified from fewer observations, do we observe a nonlinear relationship. Note that the
extremes in fuel price are not the extremes in work distance or VKT, so these extremes are
entirely unrelated to our tails. Having a slightly different relationship at very high and very
low fuel prices accords with intuition and underscores that the estimates in this paper should
be used with caution when the fuel price is much lower or higher than has been typically
observed in our dataset.

5.2 Exploring the Two Tails with Interactions

To provide evidence of the two tails of responsiveness, we explore a similar specification to
our primary model in equation (2) that includes interactions between the log of the fuel price
and a subset of controls. We denote this subset with x1

iht. The linear model with interactions
is given by

log VKTiht = γ0 log pit+γ1x1
iht× log pit+xihtβ+

2011∑
y=1998

∑
f=gas,diesel

δfyω(i, t, y)1(gasi)+ηih+εiht.

In x1
iht, we include variables of interest for our interactions, including work distance and

public transport variables. A virtue of this approach is the simplicity of estimation using
a standard fixed effects estimator. One feature of this approach is that the model places
no restrictions on the values of γ0 or γ1, so it is possible to find positive values of the price

27Note that this is different from a partially linear semi-parametric model. The literature includes a
number of estimators for doing this (e.g., Robinson, 1988; Blundell, Horowitz, and Parey, 2012) but standard
approaches do not permit fixed effects, which is key to our setting. This is why we focus on the non-parametric
relationship between orthogonalized regressors instead.
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elasticity of driving for certain groups of households.28

Table 4 shows the results from estimating the above equation. Column (1) repeats our
primary results with no interactions. Column (2) adds work distance interactions. Column
(3) further adds the public transport density interaction (estimated on the slightly smaller
sample for which the data including the IV are complete). Column (4) is the same as our
primary specification in column (1), only it instruments for public transport density with
municipality population in 1916. The first-stage F-statistic is 49.5, demonstrating that we
do not have a weak instrument concern. Column (5) instruments for public transport density,
as well as the interaction of public transport density with the fuel price. Comparing across
columns demonstrates the robustness of our results. Most notably, the elasticity at the mean,
presented near the bottom of the table, does not substantially change across columns.

We first focus on the work distance interaction variables. In column (2) in Table 4, we
include interactions with a quadratic in work distance. All three work distance coefficients
are statistically significant. They are also particularly useful for better understanding the
patterns of responsiveness over work distance. Figure 6 illustrates this relationship. To
develop this figure, we first calculated the individual-level predicted elasticities (γ̂it = γ̂0 +
x1
itγ̂). Then we divided the work distance into bins and calculated the average predicted

elasticity within each of these bins. Recall that due to the censoring of the work distance
variable, nearly half of our sample falls in the zero bin.

We observe what perhaps can be described as an inverted-V shape in Figure 6. For the
shortest work distances (< 12 km), the fuel price elasticity is relatively high in absolute
value at nearly -0.40.29 For slightly longer work distances (long enough where walking and
biking are less viable options), the elasticity decreases in absolute value around -0.05 (a value
comparable to some estimates in the United States). But then it increases in absolute value
again, reaching roughly -0.6 for work distances over 70 km (note the data begins to become
sparser by this point). Figure 6 visually demonstrates the two tails based on work distance,
as hypothesized by our stylized model in section 2. Recall the economic intuition: For drivers
with very long commutes, smaller increases in fuel prices lead to much larger expenditures
on driving, providing a strong incentive to consider substitutes. For drivers with very short
commutes, most driving will by definition be due to non-commute trips, which are more

28Blundell, Horowitz, and Parey (2012) formulate a nonparametric estimator that imposes negative elas-
ticities, arguing that their findings of an upward sloping demand curve without this restriction must be due
to a small sample size. Our sample size is very large and set of controls extensive, so we prefer to not to
impose any non-negativity constraints on the elasticity. Of course, it is also theoretically possible that some
people respond to rising fuel prices by increasing their driving (e.g., if driving is a complement to an activity
that is strongly positively correlated with fuel prices).

29This result is robust to using the shortest path measure of work distance, which reassures us that the
coding at zero is not the reason for our finding of the lower tail. Furthermore, the shape is robust to using a
log specification in work distance. The details are in Appendix C.9.
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diverse and thus it is likely that the drivers can substitute from driving to biking, walking,
or using public transport.

Moving to public transport, Columns (3) and (5) in Table 4 both show that the coefficient
on the public transport interaction with fuel price is statistically significant and negative,
indicating that increased public transport access increases the responsiveness to fuel price
changes. In column (5), we are instrumenting for public transport density in both the main
effect and interaction with a valid and strong instrument, and thus we interpret this result as
the causal effect of public transport density on the fuel price responsiveness. The coefficient
indicates that an increase of one more bus or train stop per square kilometer will change
the fuel price elasticity by -0.01 (recall the mean number of stops per square kilometer is
just under 16, with a standard deviation of just over 18). Thus, subtracting one standard
deviation from the mean can change the price elasticity by -0.18, which is an economically
large difference in responsiveness when the mean elasticity is -0.30. This result is not only to
the best of our knowledge new to the literature, but it also underscores that public transport
access is a key factor influencing the fuel price responsiveness–a result we will discuss further
in section 6.

5.3 Geographic Heterogeneity in the Elasticity of Driving

The results thus far indicate two tails, the first of which involves households with long
commutes (upper tail) and the second households with short commutes (lower tail). One
might expect to see further evidence of the upper tail in a particularly high responsiveness
to fuel price changes in the outskirts of cities, where households have the longest commutes.
Similarly, a high responsiveness to fuel price changes in urban areas would build further
evidence supporting our hypothesized mechanism for the lower tail. Figure 7 presents the
results of a geographical analysis, illustrating the spatial location of the most responsive
households. The shading in the figure indicates the predicted elasticity for each observation
averaged over the municipalities (darker is more responsive). The three largest cities are
labeled.

Two key findings emerge from Figure 7. First, some of the most responsive municipalities
are in the largest cities. This aligns with Hypothesis 2 and the above evidence suggesting
that there is a tail of more responsive drivers with shortest commutes. Second, many of the
other most responsive municipalities are in the outskirts of cities. For example, the region
just north of Copenhagen has some of the most elastic drivers. These areas tend to have
wealthy, high-educated households who often drive for their commute to jobs in Copenhagen.
Access to public transport is excellent (recall Figure 4). Similar findings emerge for other
areas in the outskirts of urban areas, further building evidence in support of Hypothesis 1.
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5.4 Robustness Checks

We perform an extensive set of robustness checks to confirm our primary results. They are
summarized briefly here and discussed in more detail in the Appendix. They broadly confirm
our preferred point estimate of the fuel price elasticity, -0.30. Moreover, in our tests, we have
found that the result of the two tails generally continues to hold. Table 5 provides an overview
of the different robustness checks, showing the highest and lowest elasticities that came out
in each case; in many cases, the extreme elasticities are perfectly expectable, so we discuss
them in the text below, going through each case in turn.

Our first robustness check examines the time window of our sample. Rather than using
driving periods that start between July 1998 and December 2007 (which run through 2011),
we estimate the same model either starting the sample as late as 2001 or ending the sample
as early as 2004. The results bound our preferred estimate in a relatively narrow window:
-0.40 to -0.28. The differences may be due to a time-varying elasticity as much as to a lack of
robustness. Our second check examines a subsample of of the data either controlling for or
restricting the sample to driving periods that are of a typical length, which in our setting is
two years or four years, plus or minus three months. Our estimated elasticity is quite robust
and demonstrates that timing of the inspections is not an identification concern.

The empirical design in this study models both gasoline and diesel car users. This essen-
tially imposes the restriction that drivers of the two different types of cars respond similarly
to the fuel price regardless of whether it is gasoline or diesel. The resulting mean elasticity
is more useful from a policy perspective, but it masks differences in how diesel and gaso-
line vehicles are driven. We thus perform a third robustness check where we estimate the
same model in equation (2) separately for diesels and gasoline vehicles. We also examine
a specification with an interaction between the log fuel price and a diesel dummy. The in-
teraction shows that the gasoline price elasticity is -0.26, while for the diesel segment it is
-0.39. Estimating on separate samples yields corresponding elasticities of -0.27 and -0.54.
These findings demonstrate that the elasticity is not primarily identified by the differential
between gasoline and diesel fuel prices. They also highlight that the diesel segment is more
price sensitive, which is consistent with the theoretical model since diesel drivers tend to
have longer commutes. We perform a similar robustness check for a couples subsample and
a singles subsample, finding elasticities of -0.32 and -0.25 respectively. These underscore the
robustness of our primary estimated elasticity to the inclusion of either subsample.

The year controls employed in equation (2) are highly flexible, which is important for
controlling for potentially correlated time-varying factors, but is also demanding on the data.
We thus run robustness checks where we examine alternative time controls. We find that the
results are robust to removing our seasonality controls (the % of each month controls) and
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even removing the year controls for diesel vehicles. When we reduce the time controls to a
single linear trend we find estimated elasticity of -0.31.

Next, we consider carefully the possibility that fuel prices are endogenous. Denmark is
a small country buying both gasoline and diesel on the larger European market, so it is
not likely that Denmark-specific demand shocks lead to a simultaneity issue. However, it is
possible that such an issue may occur. Thus, our robustness check instruments the fuel price
using the WTI crude oil price, which is not only physically located in the United States, but
is determined by global oil market movements. It is hard to imagine a small localized demand
shock in Denmark possibly affecting the WTI crude oil price. At the same time, the first
stage regression indicates that it is a strong instrument, since oil is the primary feedstock
for refined fuel (see the Appendix). The 2SLS fuel price elasticity estimate is a statistically
significant -0.37. This estimate is close to our preferred estimate of -0.30, and we view this as
confirming our estimate. Given the standard errors, these two estimates are not statistically
significantly different.

One possible concern with our study is that we use the work distance variable reported
on tax returns and households with work distances less than 12 km are not eligible for the
deduction, so are coded to zero. While we are very confident that this coding is done correctly
(due to the threat of random audits) our primary results do not have variation between zero
and 12 km. Thus, we also estimate our model using the 79.6% subsample for which we have
the actual distance between the home and workplace using a shortest-distance algorithm.
The estimated elasticity is -0.37 and again is not statistically significantly different than our
preferred estimate of -0.30, confirming our estimate on the larger sample using the better
measure that captures intensity of commuting. Equally importantly, the result of the two
tails again holds using this alternative work distance measure.

We also perform a series of robustness checks examining the possibility of selection into
different vehicles that may lead car characteristics to be endogenous (e.g., see Gillingham
(2013) or Munk-Nielsen (2015)). We find our results quite robust to the exact choice of
vehicle characteristics that are included. More importantly, we also run a specification with
household-vehicle fixed effects, which would address any concern about the inclusion or ex-
clusion of any particular vehicle characteristic, such as fuel economy. The estimated elasticity
is -0.31 and the tail story continues to hold, confirming that our results are robust, albeit
with some loss of statistical significance due to the smaller sample.

Finally, we consider the source of variation over time in the work distance measure. We
explore different sources of variation, estimating the model on subsamples of only households
that choose to relocate or only households where the firm of at least one spouse relocates at
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some point during the sample.30 These are much smaller subsamples, so they are not useful for
an estimation of the population-level elasticity. However, they are useful for understanding
the variation driving our results. Using the 49,074 observation subsample where only the
firm relocates, we find a mean elasticity of -0.36. Using the 3,244,793 observation subsample
where a household moves, we find a mean elasticity of -0.41. In both cases, the two tails
based on work distance are still present and the original mean elasticity is within the 95%
confidence interval (due to the substantially higher standard error on the estimates). The
details are in Appendix C.8.

6 Implications for Policy

In this section, we discuss the implications for policy of our results. The finding of the two
tails is particularly important in light of discussions in Europe about carbon taxation. An
economy-wide carbon tax would raise the price of fossil fuels in all sectors, including transport.
Perhaps the most challenging political obstacle to carbon pricing is potentially perverse
distributional consequences. Vertical distributional consequences (i.e., across income) are
clearly important, but what we emphasize here is that distributional consequences across
geography due to differences in work distance can also be very important. As has been well-
documented in the news, in many countries around the world–including Denmark–there is
political discontent in areas outside of the large cities. For example, most of the votes for
Brexit in the United Kingdom were from areas outside of London and other large cities. There
is similar discontent in Denmark, with the anti-immigration party receiving the most votes
in areas outside of the largest cities. Politicians in Denmark have been acutely aware of this
discontent and have gone to great lengths to provide support for these areas. For example,
they have moved thousands of government jobs away from the capital region urban center,
at a cost of millions of dollars. Thus, the differing distributional effects over geography are
directly relevant for the political acceptability of any policy that disproportionately impacts
rural regions more, including carbon pricing.

The tails have clear implications for the differing distributional effects. The upper tail
(Hypothesis 1) is especially important for it tends to consist of drivers who live outside of the
major urban areas and who drive relatively more (just under 15% of the population). These
upper tail households face a high burden from fuel prices and a disproportionately higher
burden when fuel prices rise. Thus, we perform a simple set of illustrative calculations to

30A relocation is defined by Statistics Denmark based on a change in address for the firm or one of the
firm’s work locations, or if the work location of all workers in one location changed to a different location
within the same firm.
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demonstrate the importance of our finding of the upper tail. The focus here is on short-run
equilibria; the much longer-run relationships between location choice, labor markets, and
driving responsiveness are outside the scope of this analysis.

For illustrative purposes, we focus our analysis around the short-run effects of an increase
in fuel taxes that leads the fuel price to rise by 1 DKK/l for both gasoline and diesel.31 The
average gasoline price over the 1998 to 2008 period is 9.01 in 2005 DKK, so this represents
a substantial price increase, but it is within the range of the variation in our data.32 With
a fuel price elasticity of driving of -0.30, the proposed increase of 1 DKK/l translates into
a 3.3% short-run reduction in driving (it could be expected to be larger in the long-run).
If this occurred due to a tax policy, then fuel tax revenue would increase by 13.2%.33 We
abstract from externalities in this analysis in order to focus on the primary question at hand:
distributional effects.

6.1 Distributional Effects

To examine the distributional effects, we focus on the impacts on consumers, calculating
both the transfers from consumers to the government (i.e., government revenue, calculated
as (p1 − p0)V KT (p1)) and the direct loss in consumer surplus from reducing the amount
driven (

∫ p1
p0
V KT (p)− V KT (p1)dp).34 Ignoring externalities, these two quantities combined

amount to the change in consumer surplus (∆ CS) prior to any redistribution of revenues.
In Denmark, the revenues from fuel taxes are added to the general fund, for use on all
government spending. For illustrative purposes, we assume that the funds are redistributed
(or provided in equivalently-valued services) on an equal basis to households, an assumption
that is reasonable for the Danish setting. See Appendix D for a graphical presentation of the
two areas being calculated.

Table 6 shows the effects of the increase in fuel prices due to the fuel tax broken down by
work distance group. Two key findings emerge from this analysis. First, households in the
upper tail of the work distance distribution are more able to substitute away from driving to
reduce their tax burden, as shown by the greater direct change in consumer surplus. They

31This construction sidesteps issues of passthrough; this equal a 1 DKK/l tax if the passthrough rate was
100%.

32This maps to an increase in gasoline prices of $0.57 per gallon based on the June 18, 2015 exchange rate
of 6.54 DKK per dollar.

33At 9 DKK/l, the increase of 1 DKK/l is 11.1%, which at an elasticity of -0.30 translates to a change in
driving of 3.33%. Over the sample period, taxes make up 64.87% of the gasoline price, corresponding to 5.84
DKK/l at 9 DKK/l. An increase in 1 DKK/l thus corresponds to an increase of 17.13% in taxes, giving a
total relative change in taxes of (1 + 0.1713)× (1− 0.0333) = 13.2%.

34This direct loss in consumer surplus is the Harberger triangle or deadweight loss assuming that Danes
are price-takers for fuel and that any externalities have already been internalized from previous taxes.
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drive much more (compare the the upper tail to the full sample in column (2)), but can
substitute away from driving to a greater degree, consistent with a larger discrete shift to
public transport. This comes about from a flatter demand curve, implying a larger direct loss
in consumer surplus, but a greater ability to avoid the tax by changing behavior. Second,
after a uniform redistribution, those in the upper tail face a much larger burden from the
fuel tax policy than average (-15 DKK per household per day), while those in the lowest
tail receive a gain (5.82 DKK per household per day). Quantifying these effects is crucial
for understanding the political acceptability of carbon taxes. Compensatory policies, such as
a policy that redistributes more of the revenue to the upper tail, would be necessary if the
policy goal is an an equal distributional effects by group.

In contrast to the above results, we can see in Figure 8 that this illustrative policy is
actually quite progressive from a vertical equity standpoint, with a higher burden faced by
wealthier households. This underscores the usefulness of focusing on more than just vertical
distributional equity.

A natural question, is how the Danes have come to accept taxes in excess of 50% of the
price at the pump? We posit that public transport may play a key role. Our causal estimate
of the effect of public transport on price sensitivity indicates that while the average elasticity
is -0.30, if we reduce the public transport density by one standard deviation, the average
elasticity becomes -0.13. Thus, public transport is instrumental in providing households
with options for avoiding the large fuel taxes. A second implication though is that fuel taxes
are especially distorting for households in the upper tail in leading to changes behavior (which
may be a positive characteristic to the extent that there are uninternalized externalities).

6.2 Public Transport and Reconciling Elasticities

Our results are also insightful for reconciling elasticities between Europe and the United
States (recall the literature reviewed in section 1). First, note that in Figure 6 the average
elasticity outside of the two tails is closer to zero than -0.3 and for much of the sample,
closer to zero than -0.2. this squarely puts the elasticity in the range of elasticities commonly
estimated in the United States. Our estimate of the causal impact of public transport provides
a insight into why.

When we perform a simulation that reduces the density of public transport by one stan-
dard deviation, which is roughly in the range of levels common in the United States, we
noted above that the average elasticity drops to -0.13. This is a common value for the United
States. In this way, our analysis helps to bridge a gap in the literature by helping to reconcile
the differences between elasticity estimates that are an important input to policy.
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7 Conclusion

This paper uncovers two tails of more responsive drivers than most of the population in
Denmark. The first tail is a small group of consumers living in the outskirts of cities with
long commutes, but adequate access to public transport. The second tail is a group living
in cities with very short commutes. These two tails are consistent with a simple economic
model in which households with long commutes can readily switch to public transport, while
households in the city largely use their vehicles for a diverse set of non-work trips, many of
which can easily be switched to other modes of transport. Households that are not in these
two tails tend to be much more inelastic in their response to fuel price changes.

This finding is important for two reasons. First, it is particularly relevant for the political
economy of carbon pricing. Those in the upper tail face the largest burden from a rise in
fuel prices, but access to public transport allows them to more readily substitute away from
driving, thereby reducing their burden. Our illustrative calculations quantify the importance
of this effect, showing how ample access to public transport reduces the burden on the upper
tail.

Second, the finding of the two tails helps to reconcile the results of studies in Europe and
the United States that estimate fuel price elasticities. Most studies in the United States show
fuel price elasticities in the range of -0.10 to -0.30, while those in Europe over the same time
frame generally tend to be higher in absolute value. Our preferred mean price elasticity value
is -0.30, but we show that if we remove ample access to public transport, this elasticity changes
to -0.13, which is much more in line with recent estimates from the United States for short-
run fuel price elasticities of driving. One implication of these results is that if the United
States improved its public transport opportunities, the upper tail of responsiveness could
emerge there as well, potentially reducing some of the political challenges to fuel taxation
and carbon pricing.
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Tables

Table 1: Summary Statistics

Mean Std dev
Panel A: Vehicle Characteristics
Vehicle-km-traveled (km/day) 46.6 (40.2)
Vehicle Weight (kilograms) 1,671 (331)
Car age at start of period (years) 6.97 (5.17)
1(Diesel vehicle) 0.14 (0.35)
1(Van) 0.08 (0.27)
Driving period length (years) 2.34 (0.89)
% of period owned by this owner 0.79 (0.30)
# additional cars owned 0.34 (0.60)
# vans owned 0.05 (0.24)
# motorcycles owned 0.05 (0.27)
# mopeds owned 0.03 (0.16)

Panel B: Household Characteristics
Reported work distance (km) 12.2 (19.7)
1(Work distance > 12km) 0.50 (0.50)
Actual work distance (km)a 23.4 (35.6)
Gross income (DKK) 574,056 (627,921)
Gross income-couples (DKK) 646,638 (628,011)
Gross income-singles (DKK) 320,975 (558,098)
1(Couple) 0.78 (0.42)
Age (oldest household member) 49.8 (14.4)
Number of children 0.76 (1.02)
1(Urban municipality) 0.16 (0.36)
Bus/train stops per km2 15.9 (18.4)
1(Access to company car) 0.03 (0.18)
1(Self-employed) 0.10 (0.30)
Observations 5,855,446
An observation is a vehicle driving period between two odometer readings.
All Danish kroner (DKK) are inflation-adjusted to 2005 DKK. We are not
permitted to present the min and max due to Statistics Denmark rules. a:
The actual work distance is available for 79.6% of the sample.
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Table 2: Means of Selected Variables Stratified by Work Distance

WD=0 WD∈ [0; 30] WD>30
Vehicle-kilometers-traveled 39.90 51.19 62.87
Gross income (DKK) 508,542 638,515 692,646
Gross income-couples (DKK) 589,690 690,251 739,434
Gross income-couples (DKK) 304,080 350,612 389,282
Couple dummy 0.72 0.85 0.8664
Reported work distance (km) 0.00 16.95 49.45
Work distance > 12 km dummy 0.00 1.00 1.00
Work distance (door-to-door)a 12.66 24.38 49.44
Number of children 0.58 0.99 1.00
Urban dummy 0.19 0.13 0.10
Self employed dummy 0.12 0.07 0.05
Bus/train stops per km2 17.45 14.14 13.29
Diesel dummy 0.11 0.16 0.25
Car age at start of period 7.33 6.68 6.22
# additional cars owned 0.26 0.39 0.51
Observations 3,253,413 1,762,952 839,081
WD denotes the work distance.
An observation is a vehicle driving period between two odometer readings.
a: The door-to-door work distance is available for 79.6% of the sample.
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Table 3: Estimations of Driving Demand

OLS Household FE
(1) (2) (3) (4)

log pfuel -0.87∗∗∗ -0.30∗∗∗ -0.51∗∗∗ -0.30∗∗∗
(0.028) (0.016) (0.012) (0.016)

Work Distance (WD) controls
WD 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.0004) (0.0001) (0.0001)
WD squared -0.00002∗∗∗ -0.00002∗∗∗ -0.00002∗∗∗

(0.000003) (0.000001) (0.000001)
WD non-zero 0.076∗∗∗ 0.010∗∗∗ 0.015∗∗∗

(0.0062) (0.0016) (0.0016)

Other controls
log gross income-couple -0.03∗∗∗ -0.03∗∗∗ -0.03∗∗∗

(0.005) (0.002) (0.002)
log gross income-single 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗

(0.002) (0.003) (0.003)
Bus/train stops per km2 -0.002∗ -0.0003∗∗ 0.00004

(0.0006) (0.0001) (0.0001)
Year controls No Yes No Yes
Number of children No Yes Yes Yes
Self-employed No Yes Yes Yes
Access to company car No Yes Yes Yes
Household FE No No Yes Yes
R2 0.20 0.34 0.18 0.18
N 5,855,446 5,855,446 5,855,446 5,855,446
Dependent variable is the log VKT. An observation is a driving period. All specifications
include driving period controls, % of each month controls, a quadratic in age of both the
male and female of the household, and some car characteristics (a quadratic in weight,
diesel dummy, van dummy, a quadratic in vehicle age, and number of vehicles of each
type owned by the household). The within R2 is reported for the household fixed effects
specifications. Robust standard errors clustered at the municipality level in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 4: Effect of Work Distance and Public Transport on Responsiveness

(1) (2) (3) (4) (5)
OLS OLS OLS IV IV

log pfuel -0.30∗∗∗ -0.36∗∗∗ -0.47∗∗∗ -0.31∗∗∗ -0.47∗∗∗
(0.02) (0.02) (0.01) (0.01) (0.01)

Work Distance (WD) interactions
WD × log pfuel -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.0006) (0.0005) (0.0004)
WD squared × log pfuel 0.00001∗∗ 0.00001∗∗∗ 0.00001∗∗∗

(0.000005) (0.000003) (0.000003)
WD non-zero=1 × log pfuel 0.37∗∗∗ 0.36∗∗∗ 0.32∗∗∗

(0.02) (0.01) (0.01)

Public transport interaction
Bus/train stops per km2 × log pfuel -0.004∗∗ -0.011∗∗∗

(0.001) (0.001)
Household FE Yes Yes Yes Yes Yes
Mean elasticity -0.30∗∗∗ -0.29∗∗∗ -0.31∗∗∗ -0.30∗∗∗ -0.32∗∗∗
R2 0.18 0.18 0.18 0.17 0.17
N 5,855,446 5,855,446 4,773,953 4,773,953 4,773,953
Dependent variable is log VKT. An observation is a driving period. All specifications include the main effects
for each interaction. All specifications have a year controls, public transport density, driving period controls,
% of each month controls, a quadratic in age of both the male and female of the household, and some car
characteristics (a quadratic in weight, diesel dummy, van dummy, a quadratic in vehicle age, and number of
vehicles of each type owned by the household). Column (4) instruments for public transport density with the
municipality population in 1916. Column (5) does the same and also instruments for the public transport
interaction with the municipality population in 1916 interacted with fuel prices. The mean elasticity takes the
mean of the elasticity predicted over all observations. The within R2 is reported for the household fixed effects
specifications. Robust standard errors clustered at the municipality level in parentheses. ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.

Table 5: Overview of Robustness Checks: Ranges of Elasticity Estimates

Name Elasticity Range
Years in the sample [-0.40;-0.28]
Length of driving periods [-0.30;-0.28]
Fuel type [-0.54;-0.26]
Singles or couples [-0.32; -0.25]
Time controls [-0.31;-0.30]
Instrumenting with oil price -0.37
Using actual work distance -0.37
Household-vehicle fixed effects -0.31
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Table 6: Distributional Effects By Work Distance (per Household)

(1) (2) (3) (4)
Observations ∆CS Transfer DWL Net ∆CS

Full Sample 4,773,953 -43.1 -42.4 -0.70 -0.70
Lower Tail 2,666,643 -36.6 -35.9 -0.70 5.82
Upper Tail 683,347 -57.5 -56.2 -1.28 -15.08
Notes: WD denotes the work distance. ‘Lower Tail’ refers to households
with WD<12 km; ‘Upper Tail’ refers to households with WD>30km. ‘∆CS’
denotes the uncompensated total change in consumer welfare. ‘Transfers’
refers to the tax revenues; the (negative) payment from the household to
the government (given by (p1 − p0)V KT (p1)). ‘DWL’ is the direct change
in consumer surplus (the deadweight loss if Danes are price-takers and ex-
ternalities have been internalized). ‘Net ∆CS’ is the change in consumer
welfare after the tax revenue is returned uniformly to all consumers. All
numbers indicate the mean within the relevant sub-population and are daily
numbers.
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Figures

Figure 1: Vehicle Kilometers Traveled (VKT) and Fuel Price
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Note: Local polynomial average smoothed by start date.

Figure 2: VKT Percentiles Over Time
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Figure 3: Nonparametric Relationship Between Driving and Work Distance
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Figure 4: Average Work Distance by Municipality (Panel (a)) and Public Transport Stops
(Panel (b))
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Figure 5: Nonparametric Demand Curve
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Figure 6: Relationship Between the Fuel Price Elasticity and Work Distance (in kilometers)
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Figure 7: The Average Elasticity by Municipality
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(b) Net ∆CS relative to income
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the x-axis, the change in consumer surplus is measured relative to household income.
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ONLINE APPENDIX

A Data Appendix

Given the comprehensiveness and richness of the dataset used in this study, we include this
online appendix to describe the data in more detail and elaborate on the sample selection.

A.1 Development of the Final Dataset

As a general rule, we focused our data cleaning efforts on avoiding dropping observations
to maximize our dataset coverage. Our data cleaning proceeded as follows. First, we con-
verted the dataset into one where the observation is a driving period and all negative driving
observations or other observations with critical missing data are dropped. This dataset has
10,994,333 observations. We further restrict the data to have driving periods that began
after July 1, 1998 (since tests were not mandatory prior to this date) and before January 1,
2008 (this ensures that our sample is not biased away from new vehicles). These restrictions
leave us with 7,254,893 observations. After this, we delete observations where the length
of the driving period, which we call years to test, is not either between 1 and 2.5 years or
between 3.5 and 4.5 years. This is chosen to balance not getting too many observations with
unexplained lengths of the driving periods while also accounting for early phase-in, which
led to a number of 1-year periods in 1999 and 2000. This leaves us with 6,877,185 driving
periods. We have missing demographic variables for 277,294 observations, which brings us
to 6,599,891 observations. We drop 178 outlier observations with VKT greater than 10,000
km/day. Finally, because we use household fixed effects, we drop 744,267 households that
are only observed once in the dataset. This brings us to our final sample size of 5,855,446.

To clarify how these observations are distributed over time, Table 9 shows a histogram of
the start year of the driving period. The low number in the first year is due to the sample
selection criterion keeping only periods starting after July 1, 1998.

The following sections provide more detail on the sources and cleaning of the data.

A.1.1 Car Ownership

The data we use on car ownership comes from the Danish Central Motor Register. This
register contains the license plate, vehicle identification number (VIN), and personal identi-
fication number (i.e., CPR numbers, which allow us to merge these data in with other public
registers). In the raw data, we observe some problematic observations. When we observe
a car with a car ownership period for one owner that does not end and a car ownership
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Figure 9: Observations by start year
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period for a different owner at a later date, we know that the transaction was not properly
recorded. In this case, we assign the ending of the ownership period for the first owner at the
date when the second owner is first observed with the vehicle. We also do the same for the
reverse scenario. We also occasionally see problematic observations where there is an overlap
of owners. In that case, we have no way of discerning which person truly owns the car and
according to the data documentation such an observation should be impossible so we drop
them from the dataset.

A.1.2 Driving Periods

The data on driving periods come from the Ministry of Transportation (MOT) tests that
were introduced in 1997. These inspections are mandatory and must be performed at car
ages 4, 6, 8, 10, 12, etc. This means that we have two types of driving periods; The first
driving period is 4 years long (that is, it has 4 years to test) and any subsequent driving
period will be only 2 years long. The inspection date is set based on the date of the first
registration of the car in Denmark. In practice, the years to test may deviate with plus or
minus three months around these designated years. A person may choose to take the car in
for inspection earlier than the set date if he or she wishes.

MOT tests were originally performed by public authorities directly but in more recent
years, they have been performed by private companies approved by the MOT. The goal of
the test is to verify taht the car is in safe condition for driving on the roads. As a part of
the test, the odometer of the car is recorded. A test may have four outcomes; 1) The car can
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be approved. 2) The car can be conditionally approved, meaning that certain repairs must
be performed for the car to be in legal driving order but that no extra test will be required.
3) The car can be approved after a re-inspection, implying that repairs must be made and
then the car must return for another test before 33 calendar days. Finally, 4) the car can
be declared not approved in which case it will be illegal to drive the car and the police will
withdraw the license plates. Some drivers may take their vehicle in for an inspection early
prior to selling the car in order to give the buyer a signal that the car is in proper working
order. Figure 10 shows the distribution of the driving period length. The vertical lines mark
the sample selection described above.

Figure 10: Years to Test Distribution
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Note: Years to test is the time between two odometer readings. New cars come in for inspection around 4
years and used cars around 2 years.

The sample selection criteria mentioned above for the timing of the driving periods can
also be seen in Figure 11. We have selected the sample for a period when the years to test is
relatively constant, thus helping to alleviate any concerns of sample selection bias based on
this variable.

A.2 Detailed Variable Description

Table 7 lists of all the variables used in this paper with details on each.

Table 7: Variables used in the paper

Variable Description
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VKT Vehicle-kilometers-traveled in km per day. The variable is constructed by taking first-differences
of the odometer readings from the dataset with vehicle inspections. For the first inspection we
observe for a car, we assume that the odometer was zero at the time of the car’s first registration
in Denmark. This will be incorrect if the car was imported from abroad. However, then the car
must have had a toll inspection, which we observe, so we can run a robustness check on this
assumption. We find that this does not impact our results.

Couple Dummy for there being two members of the household (married or co-habiting, of opposite
genders and having at less than 15 years of age difference).

Real gross income The sum of gross incomes for the member(s) of the household. The variable comes from the
income tax registers. The variable includes all government transfers such as pension payments,
unemployment benefits, etc.

Real gross income (couples) As above but equal to zero for singles.

Real gross income (singles) As above but equal to zero for couples.

WD Work distance. The variable is based on the Danish deduction for work distance. Any working
household having further than 12 km each way to work can deduct a fixed amount per km.
Thus, the measure will be equal to zero if the individual lives closer than 12 km from his or
her work. Between 12 and 25 km, there is a rate and above 25 km, the rate drops to half.
The rate changes over the period. The total deduction is the daily rate times the number of
days worked. The variable is self-reported but the tax authorities have access to both the home
and work addresses for the individual. The deduction is the rate times the distance times the
number of days worked. We do not observe the number of days worked so we assume 225 work
days, which corresponds to the number of days in a typical Danish work year. For example,
the official number of work days were 224 in 2007, 226 in 2008, 225 in 2009 and 228 in 2010.
Most unions follows these, as do most public sector employees. Figure 15 shows the density of
the work distance variable. Note that there is a positive mass on the interval (0; 12) km even
though the deduction is only given if the actual work distance is above 12 km; this is due to the
assumption about 225 work days per year. If an individual works part-time, say 110 days, but
has a distance of 20 km to work, then the variable will be equal to 10. The positive mass will
therefore contain many part time employees. For validity, we can compare it to the continuous
WD measure, available for a subset of the period (see Appendix A.3.3).

WD non-zero Dummy for the WD measure being observed. Thus, this is essentially a dummy for the individual
living further than 12 km from the work place.

WD (actual distance) This is the actual distance from home to work. The variable comes from the Danish Technical
University’s Department of Transportation. It is calculated using a shortest-path algorithm and
the National Transport model with GIS data on households and their work places. The variable
is only observed for households where the work place is observed and not for 1998 or 1999. In
total, it is observed for 76.17% of our estimation sample (79.61% of the observations between
2000 and 2008). We use this measure to validate the tax-based WD variable.

# of children The number of children aged less than 18 years living with the household.

Urban (dummy) Dummy equal to one if the household lives in either Copenhagen, Frederiksberg, Aarhus, Aalborg
og Odense municipalities, which constitute the major Danish urban areas.

Company car Dummy equal to one if at least one member of the household has paid the tax penalty for having
access to a company car. The use of company cars is restricted to avoid making it an alternative
to buying your own car privately. The size of the tax depends on the value of the car. We
collapse the variable to a dummy for having any car available to any of the members of the
household. Individuals may have access to a company car and not pay this tax if the car is a
“yellow license plate” car. These cars can have at most two seats and are typically vans used by
craftsmen. The police enforce this very strictly and an individual caught using a company car
privately and not paying the penalty is fined and some times forced to pay the registration tax.
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Self employed Dummy equal to one if the household has at least one self employed individual. This information
comes from the tax registers.

# of periods observed The number of driving periods observed for the household. Note that the other driving periods
may be with different cars and that our sample selects only households with at least two driving
periods.

Bus/Train stops per km2 The number of public transport stops in the municipality in 2013 divided by the area of the
municipality of residence at the start of the driving period in km2. The data for this comes from
the Travel Planner (http://rejseplanen.dk), which is a search engine for planning trips using
public transportation. The data are only available for a cross-section in 2013. The highest num-
ber of stops is 79.9 stops per km2 for Odense municipality and the lowest is Aaskov municipality
with 0.3 stops per km2.

Weight (ton) The gross weight of the car in metric tonnes. This is the maximum allowed weight of the vehicle
including cargo. The variable comes from the vehicle type approval documents.

Diesel Dummy equal to one if the car uses diesel fuel. Note that the fuel price will then be based on
the diesel price.

Van Dummy equal to one if the vehicle is a van.

Percent owned of period The fraction of the driving period where the car was owned by this household. That is, if the
driving period starts on Jan 1st, 2001 and ends on Jan 1st 2003, but the car changed owner on
Jan 1st 2002, this variable will be equal to 0.5 for both the observations of the two households
driving the car.

Driving period length The length of the driving period in years. For new cars, this will be 4 years and for older cars,
it will be 2 years, both plus or minus 3 months and with some exceptions. Note that our sample
selects on driving periods being either 1.0 to 2.5 years long or 3.5 to 4.5 years long.

Car age Car age in years at the start of the driving period. Car age is defined as the time since the car’s
first registration in Denmark since we do not observe the actual production year of the vehicle.
This will be very close to the number of years since the model year for most vehicles, but will
be off for the small number of imported vehicles.

# cars / vans / motorcycles /
mopeds / trailers owned

Continuous measure of the number of vehicles of the given type owned by the household. For
example, if for a given household i and driving period t, the household owns another car for
the entire duration of the period, then # of cars owned will be 2.0. If that other car is only
purchased half-way through the driving period t, then it is equal to 1.5. That is, the variable is
equal to the fraction of this driving period overlapping with the ownership of other vehicles.

First driving period Dummy equal to one if it is the car’s first driving period, i.e., the driving period’s start date is
equal to the first registration date of the car.

Fraction owned For household i and driving period t, this is the percent of the driving period where houseohld i
is the owner. That is, if the car changes owner midway through, there will be an observation in
the dataset for each of the two households owning the car and they will both have this variable
set to 0.5.

Years to test The length of the driving period in years (continuous variable). Due to our sample selection,
this will be in [1.0; 2.5] or in [3.5; 4.5].

% of each month This is a set of variables for each month equal to the % of the driving period taking place in
each of the 12 months. Thus, if a driving period is precisely 2 or 4 years long, these will all be
equal to 1

12 . We omit April as the reference group in regressions since the fractions will always
sum to 1.

Year controls These are variables for each year, 1998, ..., 2011, each equal to the % of the driving period
falling in that year. In the preferred specification, we exclude year 2003 as the reference year
and include an additional full set of year controls interacted with the diesel dummy to allow a
separate time trend for diesels.
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A.3 Additional Descriptives

A.3.1 Driving and Demographics

Figure 12 shows the distribution of vehicles kilometers traveled (VKT). The figure is cut at
200 km/day for clarity. Note that there is still positive mass for very low VKT. This may be
explained by vehicles such as vintage or specialty cars.

A.3.2 Additional Spatial Descriptives

Figure 13 shows the number of observations (i.e., driving periods) by municipality. The four
major urban areas clearly stand out: Copenhagen (east), Odense (center, on the island of
Fyn), Aarhus (midway up on the eastern side of Jutland) and Aalborg (Northern part of
Jutland).

Figure 14 shows a map of Denmark where municipalities are colored by the average VKT
of the households. We see that the households with high driving tend to be in the outskirts of
the major urban areas with a few exceptions. Note that this figure plots observations in the
estimation sample, so it should be interpreted recognizing that it conditions on households
owning a car. Note that the car ownership rate is 40% in the five largest urban municipalities
and 67% elsewhere in Denmark, so a map of the per capita driving would show even lower
driving in the urban areas relative to rural areas.

A.3.3 Work Distance

In this subsection, we discuss the validity of the work distance variable. Table 8 shows sum-
mary statistics for work distances of males, females and singles. It shows both the measure
based on the tax deduction for work distance as well as the “actual work distance” variable,
which measures the distance using GPS coordinates. The tax deduction is a deduction from
taxable income and it is given as a fixed amount per kilometer per day but is equal to zero if
the distance is shorter than 12 km. The number of days worked is not observed so we assume
that all individuals work 225 days a year, which is very common in Denmark. Hence, if the
individual actually worked fewer days, we will be undershooting the measure (which explains
why the variable can take values below 12 km) and vice versa. The per km rate varies over
time and there is a kink in the schedule at 50 km where it falls to half the rate.35

35In some years, a small number of fringe municipalities (Danish: udkantskommuner) also had the full rate
after the 50 km threshold.
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Figure 11: Years to Test by Start Date of the Driving Period
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Note: Years to test is the difference between two odometer readings. Since there are more used than new cars,
the average is closer to 2 than 4. We start our sampling period in mid 1998 because the average stabilizes
here. Prior to that, cars were coming in that had never been to an inspection before and therefore had very
long driving periods.

To explore the validity of the work distance variable, we exploit the aforementioned door-
to-door work distance, which is based on the address of the home and work location. Thus,
it directly captures the literal work distance. However, it is not available for the full sample
and it is a massive over-estimate for households that work from home or work elsewhere than
the primary office of their work. Thus, we see it as a useful robustness check and opt to use
the tax return variable in our primary specification.

We compare the distribution of driving according to the two variables to validate the tax
return measure. To make the comparison sensible, make the comparison for the subsample
where both measures fall in the range [12 km ; 100 km]. The lower bound ensures that the
tax-based measure is also observed, while the upper bound makes the graph easier to read.
Figure 15 shows the comparison, demonstrating the comparability of the two work distance
variables.
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Figure 12: The Distribution of Vehicle Kilometers Traveled
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Figure 13: Observations in the Estimation Sample by Municipality
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Figure 14: Average Driving by Municipality
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Table 8: Work Distance (WD) Variables

N mean sd p1 p10 p25 p50 p75 p90 p95 p99
WD, male 4550411 9.5932 18.51 0.0 0.0 0.0 0.0 15.5 32.2 44.7 80.7
WD, female 4550411 6.9385 13.77 0.0 0.0 0.0 0.0 10.7 24.8 33.7 58.3
WD, single 1305035 7.6966 16.87 0.0 0.0 0.0 0.0 9.0 27.5 39.3 75.1
WD non-zero, male 4550411 0.3493 0.48 0 0 0 0 1 1 1 1
WD non-zero, female 4550411 0.3137 0.46 0 0 0 0 1 1 1 1
WD non-zero, single 1305035 0.2917 0.45 0 0 0 0 1 1 1 1
WD, door-to-door, male 3343884 20.3157 34.36 0.0 0.0 2.7 9.8 23.7 46.5 71.8 196.3
WD, door-to-door, female 3094025 14.3657 22.45 0.0 0.6 2.8 8.1 18.1 32.1 45.0 99.3
WD, door-to-door, single 813453 18.6009 32.87 0.0 0.1 2.6 8.6 21.1 42.0 66.1 183.4

Note: WD refers to the work distance variable based on the travel tax deduction, which is censored at 12 km
but contains information on the number of days commuted. “WD door-to-door” refers to the shortest path
measure from home to work. The two measures should only be expected to be equal if the person has longer
than 12 km to work and works precisely 225 days each year.
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Figure 15: Comparing the Two Work Distance Measures
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Selection: males’ work distance should be in [12; 100] km with both measures (1013011 obs.).
WD is based on the tax deduction and WD (actual) on GPS coordinates.

Note: Both curves are non-parametric kernel density estimates for the work distance for households where it
is greater than 12 km for both measures. The tax-based measure features a few notable excess-mass points,
which is most likely due to individuals rounding off if in doubt.

B Additional Regression Results

This appendix contains number of econometric results supplementing the primary results
from section 5. To begin, Table 9 shows the coefficients pertaining to car characteristics and
the driving period that were suppressed in the primary results table in our paper.

To further explore heterogeneity, Table 10 shows the coefficients for the demographic
variables for the quantiles 1, 50 and 99 in the panel quantile regression estimates. They show
that many of the coefficients do not vary over the conditional distribution of VKT. However,
the fuel price elasticity, work distance, company car dummy, and transit stop density variables
change.
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Table 9: Main results — Car and Period Controls

OLS Household FE
(1) (2) (3) (4)

No demo Base FE Main
log pfuel -0.866∗∗∗ -0.298∗∗∗ -0.515∗∗∗ -0.304∗∗∗

(0.00509) (0.0143) (0.00722) (0.0154)
New car -0.00350∗ 0.0128∗∗∗ 0.00838∗∗∗ 0.0394∗∗∗

(0.00148) (0.00148) (0.00160) (0.00164)
Percent owned of period -0.189∗∗∗ -0.112∗∗∗ -0.0537∗∗∗ -0.0154∗∗∗

(0.000826) (0.000862) (0.00106) (0.00110)
Driving period length -0.0507∗∗∗ -0.0541∗∗∗ -0.0465∗∗∗ -0.0242∗∗∗

(0.000634) (0.000645) (0.000681) (0.000725)
Weight (ton) 0.00214∗∗∗ 0.00169∗∗∗ 0.00166∗∗∗ 0.00167∗∗∗

(0.00000523) (0.00000506) (0.00000799) (0.00000798)
Weight squared -0.000000471∗∗∗ -0.000000369∗∗∗ -0.000000354∗∗∗ -0.000000354∗∗∗

(1.35e-09) (1.30e-09) (2.00e-09) (2.00e-09)
Diesel 0.316∗∗∗ 0.311∗∗∗ 0.228∗∗∗ 0.259∗∗∗

(0.000918) (0.00557) (0.00139) (0.00545)
Van -0.236∗∗∗ -0.199∗∗∗ -0.204∗∗∗ -0.205∗∗∗

(0.00117) (0.00115) (0.00171) (0.00170)
Car age -0.0302∗∗∗ -0.0275∗∗∗ -0.0284∗∗∗ -0.0293∗∗∗

(0.0000932) (0.0000911) (0.000140) (0.000141)
# cars owned 0.0482∗∗∗ -0.0202∗∗∗ -0.0581∗∗∗ -0.0501∗∗∗

(0.000593) (0.000759) (0.00114) (0.00109)
# vans owned 0.0111∗∗∗ -0.0470∗∗∗ -0.0711∗∗∗ -0.0654∗∗∗

(0.00124) (0.00122) (0.00183) (0.00179)
# motorcycles owned 0.0319∗∗∗ -0.00420∗∗∗ 0.0102∗∗∗ 0.0118∗∗∗

(0.00101) (0.000905) (0.00178) (0.00178)
# mopeds owned 0.136∗∗∗ 0.0415∗∗∗ 0.0232∗∗∗ 0.0204∗∗∗

(0.00138) (0.00131) (0.00218) (0.00217)
# trailers owned 0.0123∗∗∗ 0.0258∗∗∗ 0.00334∗∗ 0.00595∗∗∗

(0.000519) (0.000983) (0.00106) (0.00106)
Year controls No Yes No Yes
Household FE No No Yes Yes
R2 0.20 0.34 0.18 0.18
N 5,855,446 5,855,446 5,855,446 5,855,446
Dependent variable is the log VKT. An observation is a driving period. All specifica-
tions have all of the other variables and controls in Table 9. Robust standard errors
clustered at the household level in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 10: Panel Quantile Regression for P01, P50 and P99: Demographics

(1) (2) (3) (4)
Linear P01 P50 P99

log pfuel -0.304∗∗∗ -0.559∗∗∗ -0.233∗∗∗ -0.609∗∗∗
(0.0154) (0.0663) (0.00739) (0.0592)

Work Distance (WD) controls
WD, male 0.00242∗∗∗ 0.00137∗∗∗ 0.00260∗∗∗ 0.00347∗∗∗

(0.0000336) (0.000106) (0.0000118) (0.0000947)
WD non-zero, male 0.0329∗∗∗ 0.0797∗∗∗ 0.0320∗∗∗ -0.00688

(0.00107) (0.00427) (0.000476) (0.00382)
WD, female 0.00303∗∗∗ 0.00245∗∗∗ 0.00328∗∗∗ 0.00338∗∗∗

(0.0000443) (0.000151) (0.0000168) (0.000135)
WD non-zero, female 0.0257∗∗∗ 0.0950∗∗∗ 0.0247∗∗∗ -0.0327∗∗∗

(0.00111) (0.00461) (0.000513) (0.00412)
WD, single 0.00419∗∗∗ 0.00360∗∗∗ 0.00448∗∗∗ 0.00562∗∗∗

(0.0000835) (0.000216) (0.0000241) (0.000193)
WD non-zero, single 0.0724∗∗∗ 0.138∗∗∗ 0.0713∗∗∗ -0.0174∗

(0.00243) (0.00832) (0.000927) (0.00743)

Age controls
Age, male 0.0212∗∗ 0.0224∗∗∗ 0.0213∗∗∗ 0.0199∗∗∗

(0.00813) (0.00133) (0.000148) (0.00119)
Age, female 0.0468∗∗∗ 0.0534∗∗∗ 0.0469∗∗∗ 0.0403∗∗∗

(0.00813) (0.00132) (0.000148) (0.00118)
Age, single 0.0598∗∗∗ 0.0631∗∗∗ 0.0604∗∗∗ 0.0549∗∗∗

(0.000939) (0.000971) (0.000108) (0.000868)
Age squared, male -0.0000930∗∗∗ -0.000118∗∗∗ -0.0000943∗∗∗ -0.0000705∗∗∗

(0.0000112) (0.0000128) (0.00000143) (0.0000115)
Age squared, female -0.000195∗∗∗ -0.000275∗∗∗ -0.000197∗∗∗ -0.000117∗∗∗

(0.0000115) (0.0000134) (0.00000149) (0.0000120)
Age squared, single -0.000206∗∗∗ -0.000275∗∗∗ -0.000213∗∗∗ -0.000119∗∗∗

(0.00000767) (0.00000933) (0.00000104) (0.00000834)

Other demographic controls
log gross inc (couple) -0.0242∗∗∗ -0.0156∗∗∗ -0.0176∗∗∗ -0.0278∗∗∗

(0.00162) (0.00304) (0.000339) (0.00272)
log gross inc (single) 0.0200∗∗∗ 0.0268∗∗∗ 0.0195∗∗∗ 0.0144∗∗∗

(0.00288) (0.00226) (0.000252) (0.00202)
Urban (dummy) -0.0249∗∗∗ -0.0392∗∗∗ -0.0254∗∗∗ -0.0146∗∗

(0.00284) (0.00519) (0.000578) (0.00463)
# of kids -0.0168∗∗∗ -0.0145∗∗∗ -0.0169∗∗∗ -0.0145∗∗∗

(0.000650) (0.00146) (0.000163) (0.00130)
Company car -0.0977∗∗∗ -0.312∗∗∗ -0.102∗∗∗ 0.0601∗∗∗

(0.00216) (0.00695) (0.000775) (0.00621)
Self employed 0.000712 -0.0818∗∗∗ 0.00334∗∗∗ 0.0694∗∗∗

(0.00136) (0.00426) (0.000474) (0.00380)
Bus/Train stops per km2 0.0000419 -0.0000421 0.0000173 0.000300∗∗

(0.0000548) (0.000103) (0.0000114) (0.0000916)

Year controls Yes Yes Yes Yes
% of each month Yes Yes Yes Yes
Car Yes Yes Yes Yes
Period Yes Yes Yes Yes
Linear Fixed Effects (FE) Yes No No No
Canay (2011) FE No Yes Yes Yes
N 5855446 5855446 5855446 5855446
Standard errors in parentheses. FE are at the household level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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C Robustness Checks

C.1 Stratifying on Time

Tables 11 and 12 show the implications for the estimated fuel price elasticity of dropping
certain years from the sample. These results demonstrate considerable robustness.

Table 11: Robustness: dropping earlier years

(1) (2) (3) (4)
Full 1999- 2000- 2001-

log pfuel -0.304∗∗∗ -0.326∗∗∗ -0.384∗∗∗ -0.402∗∗∗
(0.0154) (0.0165) (0.0149) (0.0153)

Year controls Yes Yes Yes Yes
% of each month Yes Yes Yes Yes
Car Yes Yes Yes Yes
Period Yes Yes Yes Yes
Demographics Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
N 5,855,446 5,681,226 5,235,440 4,675,560
R2 0.180 0.182 0.188 0.198
Note: In each column (2)–(4), data before year 97, 98, 99 are dropped respectively.
Robust standard errors clustered on household in parantheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 12: Robustness: dropping later years

(1) (2) (3) (4)
Full -2006 -2005 -2004

log pfuel -0.304∗∗∗ -0.258∗∗∗ -0.308∗∗∗ -0.279∗∗∗
(0.0154) (0.0156) (0.0171) (0.0187)

Year controls Yes Yes Yes Yes
% of each month Yes Yes Yes Yes
Car Yes Yes Yes Yes
Period Yes Yes Yes Yes
Demographics Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
N 5855446 5177147 4443035 3736630
R2 0.180 0.173 0.166 0.161
Note: In each column (2)–(4), data after year 06, 05, 04 are dropped respectively.
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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C.2 Stratifying on Couples or Singles

Table 13 shows the results when estimating on the sample consisting exclusively of couples
or singles, again demonstrating considerable robustness.

Table 13: Robustness: dropping couples or singles

(1) (2) (3)
Base Only couples Only singles

log pfuel -0.304∗∗∗ -0.318∗∗∗ -0.250∗∗∗
(0.0154) (0.0176) (0.0323)

Year controls Yes Yes Yes
% of each month Yes Yes Yes
Car Yes Yes Yes
Period Yes Yes Yes
Demographics Yes Yes Yes
Household FE Yes Yes Yes
R2 0.180 0.200 0.108
N 5855446 4550410 1305036
Note: columns (2) and (3) contain only couples or singles respectively.
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

C.3 Stratifying on the Length of the Period

In our primary specification, we include as control variables both the length of the driving
period as well as a dummy for whether it is the first driving period for the car. Since our
outcome is the average daily driving, there should not be a mechanical relationship so this
robustness check is just to confirm that there is not an issue. Nevertheless, we have included
driving periods that are longer or shorter than expected and we now turn to examining
robustness with respect to these. In table 14, we drop the driving periods that have years to
test (length of the driving period) more than 3 months away from either 2 or 4 years. Recall
that a normal test period will be 4 years for a new car and 2 years for a used car. However,
during the phase-in of the inspections, cars were summoned for inspection for the first time
and therefore did not necessarily drive the normal length early on. The results show that
when we remove these driving periods with non-standard length we find a numerically lower
elasticity of -0.275. In column (2), we include a dummy to control for the non-standard
length, but this does not change the fuel price elasticity much at all (-0.304). We have also
experimented with using the length of the driving period as an inverse probability weight as
a robustness check. This results in a slightly higher mean elasticity, which is also what we
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find for newer cars — in that sense, it is consistent with the estimates applying more weight
to the newer driving observations.

We have also experimented with a regression where we assign each observation a weight
proportional to the length of the driving period. We found that this raises the elasticity a
little, moving it towards the higher elasticity we find when we estimate on the subsample of
households holding newer cars.

Table 14: Robustness: length of the driving period

(1) (2) (3)
Base Dummy Subsample

log pfuel -0.304∗∗∗ -0.298∗∗∗ -0.275∗∗∗
(0.0154) (0.0154) (0.0158)

Non-standard test length -0.00278∗∗∗
(0.000596)

Year controls Yes Yes Yes
% of each month Yes Yes Yes
Car Yes Yes Yes
Period Yes Yes Yes
Demographics Yes Yes Yes
Household FE
R2 0.180 0.180 0.192
N 5855446 5855446 4535353
Note: Standard test length: years to test is ± 3 months from either 2 or 4 years.
Elsewhere, sample selection requires VKT in [1;2.5] or [3.5;4.5] years.
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

C.4 Year and Seasonality Controls

Table 15 shows the results when we change the way we control for time effects in decreasing
complexity over the columns. The results show that even if we simplify down to a specification
with only a linear time trend, our mean elasticity is nearly unchanged. However, if we remove
time controls entirely, the elasticity changes substantially.
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Table 15: Robustness: year controls

(1) (2) (3) (4) (5)
Preferred No Year No month Linear None

log pfuel -0.304∗∗∗ -0.309∗∗∗ -0.303∗∗∗ -0.313∗∗∗ -0.517∗∗∗
(0.0154) (0.0124) (0.0123) (0.00691) (0.00722)

Linear time trend -0.0414∗∗∗
(0.000360)

Year controls (gas) Yes No No No No
Year controls (diesel) Yes No No No No
% of each month Yes Yes No No No
Car Yes Yes Yes Yes Yes
Period Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes
N 5855446 5855446 5855446 5855446 5855446
R2 0.180 0.180 0.180 0.177 0.174
Col (2) has no driving year controls, Col (3) also drops month controls.
Col (4) has a linear time trend, Col (5) has no time controls.
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In Table 16, we change the main specification to use the number of months covered by
the driving period rather than the fraction of each month covered (as we use in the main
specification). Our mean elasticity is almost unchanged (from –0.373 to –0.372).
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Table 16: Robustness: month controls

(1) (2)
Fraction Sum

log pfuel -0.304∗∗∗ -0.304∗∗∗
(0.0154) (0.0154)

Feb -0.152∗∗∗ -0.00366∗∗∗
(0.0394) (0.000866)

Mar -0.0973 -0.000226
(0.0513) (0.000826)

May -0.0312 0.00143
(0.0517) (0.000852)

Jun 0.0515 0.00344∗∗∗
(0.0404) (0.000862)

Jul 0.231∗∗∗ 0.00791∗∗∗
(0.0429) (0.000890)

Aug -0.0445 0.00114
(0.0421) (0.000862)

Sep 0.00780 0.00255∗∗
(0.0410) (0.000820)

Oct -0.0541 0.00105
(0.0412) (0.000829)

Nov -0.141∗∗∗ -0.00183∗
(0.0423) (0.000841)

Dec -0.174∗∗∗ -0.00257∗∗
(0.0440) (0.000937)

Apr 0.00199∗
(0.000851)

Year controls Yes Yes
Car Yes Yes
Period Yes Yes
Demographics Yes Yes
Household FE Yes
N 5855446 5855446
R2 0.180 0.180
(1): The share of the driving period falling in each month.
(2): The number of months covered by the driving period.
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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C.5 Fuel Type

Table 17 explores heterogeneity in the fuel price elasticity by the fuel type of the car. Note
that when we have household fixed effects, removing one or more rows will drop households
entirely if they end up with one or zero remaining periods. Thus, we are removing some of
the “switchers” who have responded on the extensive margin of choosing a different vehicle,
which we do not model separately in this paper. We showed in a separate robustness check
that this sample selection does not appreciably change the results, but it should be kept in
mind in interpreting these results.

We see that allowing the elasticity to vary by fuel type results in a lower (in absolute value)
mean estimate (–0.257), while the positive coefficient on the interaction of the diesel dummy
and the log fuel price implies a higher elasticity for the diesel drivers (–0.392). Estimating
only on the subsamples of each fuel type confirms these results, yielding a lower elasticity
for gasoline drivers (–0.268) and a higher for diesel drivers (–0.541). Note that diesel cars
generally cost more up-front but are cheaper to use due to a higher fuel efficiency and a lower
price per litre of fuel (see e.g. Munk-Nielsen, 2015). Therefore, it is perhaps not surprising
that the diesel sample appears to be more price responsive. Note also that the diesel sample
is much smaller than the gasoline sample.

Table 17: Robustness: elasticity by fuel type

(1) (2) (3) (4)
Base Interaction Gas only Diesel only

log pfuel -0.304∗∗∗ -0.257∗∗∗ -0.268∗∗∗ -0.541∗∗∗
(0.0154) (0.0191) (0.0194) (0.0260)

Diesel=1 × log pfuel -0.135∗∗∗
(0.0279)

Year controls Yes Yes Yes Yes
% of each month Yes Yes Yes Yes
Car Yes Yes Yes Yes
Period Yes Yes Yes Yes
Demographics Yes Yes Yes Yes
Household FE Yes Yes Yes
R2 0.180 0.180 0.140 0.135
N 5855446 5855446 5018019 837427
In columns 3 and 4, only a single set of time controls is included.
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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C.6 Instrumental Variable Estimation

Here we present results from instrumenting for the fuel price. Our primary instrument is the
WTI crude oil price in USD per barrel. The price is converted to DKK using the exchange
rate from June 18, 2015 and then deflated using the Danish CPI. Figure 16 shows the oil
price together with the Danish real fuel prices, illustrating the high correlation.

Figure 16: Danish Fuel Prices and the WTI Oil Price
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Table 18 shows the main two-stage least squares results, instrumenting log real fuel price
with log real WTI oil price.

Table 18: Instrumental Variables Results

(1) (2) (3) (4)
OLS FE 2SLS 2SLS FE

log pfuel -0.298∗∗∗ -0.304∗∗∗ -0.511∗∗∗ -0.368∗∗∗
(0.0143) (0.0154) (0.0148) (0.0160)

Year controls Yes Yes Yes Yes
% of each month Yes Yes Yes Yes
Car Yes Yes Yes Yes
Period Yes Yes Yes Yes
Demographics Yes Yes Yes Yes
Observations 5855446 5855446 5855331 5855296
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 19 shows the first stage results. Note that the very high R2 of 98% is partially due
to the fact that overlapping periods are repeated. These results indicate that the log oil price
is a very strong instrument. The F-statistic for both columns is well above 100.
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Table 19: Instrumental Variables Results: First Stage

(1) (2)
Simple Full

diesel -0.973∗∗∗ -0.855∗∗∗
(0.000299) (0.000700)

log oil 0.176∗∗∗ 0.177∗∗∗
(0.0000187) (0.0000552)

diesel log oil 0.147∗∗∗ 0.124∗∗∗
(0.0000519) (0.000129)

All controls No Yes
Household FE No No
N 5855331 5855331
R2 0.972 0.982
Robust standard errors clustered on household in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

C.7 Fuel Efficiency and Car Price

In this section, we argue why our estimate of the fuel price elasticity is not biased by our
inclusion of most, but not all, vehicle characteristics. First, we show that adding the fuel
economy as a control (in the subsample where the variable is observed) does not change the
fuel price elasticity.

In Table 20, we show the results of our primary estimation only including fuel economy
and car price (manufacturer’s suggested retail price, MSRP). One major reason why these
variables are not included in the main specifications is that they are only available for a
subset of the period. The data source for these variables is the Danish Automobile Dealer
Association (DAF). This dataset has been merged to the VINs used by the Motor Register.36

The results in Table 20 show how the sample where the characteristics are observed is
different from the estimation sample used throughout this paper; switching to this subsample
changes the fuel price elasticity from –0.30 to –0.59 (see column (2)). This can be at least
partly explained by there being more households with newer cars in the subsample; from the
interaction results, we saw that households who have newer cars tend to also be more price
sensitive. Including the fuel efficiency variable in column (3) only very slightly changes the
elasticity from -0.59 to -0.58. Further including the MSRP in column (4) leaves this almost
entirely unchanged (-0.58). We take this as an indication that the included car characteristics
are so highly correlated with these variables, that we have little to worry about by excluding

36The authors gratefully acknowledge Ismir Mulalic at DTU Transport for his assistance with this.
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them.

Table 20: Robustness: controlling for fuel efficiency and MSRP

(1) (2) (3) (4)
log pfuel -0.304∗∗∗ -0.591∗∗∗ -0.582∗∗∗ -0.584∗∗∗

(0.0154) (0.0166) (0.0166) (0.0166)
Fuel efficiency in km/l -0.00249∗∗∗ 0.00166∗∗∗

(0.000338) (0.000343)
price new 0.000000478∗∗∗

(9.93e-09)
Weight (ton) 0.00167∗∗∗ 0.00196∗∗∗ 0.00193∗∗∗ 0.00176∗∗∗

(0.00000798) (0.0000125) (0.0000131) (0.0000133)
Weight squared -0.000000354∗∗∗ -0.000000383∗∗∗ -0.000000380∗∗∗ -0.000000365∗∗∗

(2.00e-09) (3.30e-09) (3.33e-09) (3.34e-09)
Diesel 0.259∗∗∗ 0.214∗∗∗ 0.228∗∗∗ 0.195∗∗∗

(0.00545) (0.00766) (0.00793) (0.00787)
Van -0.205∗∗∗ -0.229∗∗∗ -0.232∗∗∗ -0.136∗∗∗

(0.00170) (0.00225) (0.00228) (0.00278)
Car age -0.0293∗∗∗ -0.0195∗∗∗ -0.0201∗∗∗ -0.0178∗∗∗

(0.000141) (0.000233) (0.000247) (0.000248)
# cars owned -0.0501∗∗∗ -0.0258∗∗∗ -0.0259∗∗∗ -0.0271∗∗∗

(0.00109) (0.00135) (0.00135) (0.00137)
# vans owned -0.0654∗∗∗ -0.0798∗∗∗ -0.0796∗∗∗ -0.0836∗∗∗

(0.00179) (0.00220) (0.00220) (0.00223)
# motorcycles owned 0.0118∗∗∗ 0.00889∗∗∗ 0.00883∗∗∗ 0.00859∗∗∗

(0.00178) (0.00216) (0.00216) (0.00217)
# mopeds owned 0.0204∗∗∗ 0.0161∗∗∗ 0.0161∗∗∗ 0.0162∗∗∗

(0.00217) (0.00272) (0.00272) (0.00271)
# trailers owned 0.00595∗∗∗ 0.00905∗∗∗ 0.00900∗∗∗ 0.00909∗∗∗

(0.00106) (0.00128) (0.00128) (0.00128)
Year controls Yes Yes Yes Yes
% of each month Yes Yes Yes Yes
Period Yes Yes Yes Yes
Demographics Yes Yes Yes Yes
Household FE Yes Yes Yes
R2 0.180 0.202 0.202 0.205
N 5855446 3035301 3035301 3035301
Robust standard errors clustered on household in parentheses.
(2), (3) and (4) restricts the sample to fuel efficiency and car MSRP being observed.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

C.8 Location Decisions and Work Distance

In this section, we address robustness with respect to household and firm location decisions.
We have data on the home municipality of the household. This allows us to classify house-
holds as moving based on whether they ever change municipality. Table 21 shows the key
specification estimated on the primary sample of 5.9m households and on the subsample of
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3.2m households make a move across municipal borders in column (2). The mean elasticity is
larger, changing from -0.30 to -0.36, but all coefficients relating to the work distance and its
interaction with the fuel price are not statistically different. This indicates that our finding
of a different elasticity for households in the tails of the work distance distribution is not
driven by households relocating.

Next, we turn to the firm location decisions. In our data, we can identify the firm a
worker is employed at as well as the individual sub-unit (“plant”) within the firm. Our data
contains information on whether the plant relocates in a given year. This information is
created by Statistics Denmark based on the plant locations where individuals work.37 As
one might expect, relocations are not extremely common in our data, but common enough
to leave us with 49,074 household-driving-periods to estimate our model on.

In column (3), we estimate on the subsample of 49,074 households where the work location
of at least one spouse relocates. The 95% confidence intervals around these parameters all
contain the original parameter estimates. In column (4), we estimate only with households
where the firm did not relocate and the results are extremely close to the original results. Of
course, the spouse where the firm moves may decide to look for a different job in response
to advance information about the firm relocating. In columns (5) we only use the 26,803
observations where the firm relocates but where the household does not and again, the
original parameter estimates are all contained in the 95% confidence interval. Finally, in
column (6), we only estimate on the 3.2m households that moved but where neither spouse
worked at a firm-plant that relocated. It almost does not change the results to exclude the
households where the firm relocated.

37In their raw data, Statistics Denmark observes one address no longer being associated with a firm and a
new one being, and they observe the addresses of many of the workers switching from the old address to the
new. They require a minimum of the workers from one location appearing at the new in order for it to be
classified as a relocation.
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Table 21: Robustness: Stratifying on location choices

(1) (2) (3) (4) (5) (6)
Baseline HH moves Firm moves Firm stays Firm, not HH HH, not firm

Estimation sample contains observations where:
Household moves Yes Yes No Yes No Yes
Household never moves Yes No Yes Yes Yes No
Firm moves Yes Yes Yes No Yes No
Firms never moves Yes Yes No Yes No Yes
log pfuel -0.356∗∗∗ -0.418∗∗∗ -0.374∗ -0.357∗∗∗ -0.457∗ -0.416∗∗∗

(0.0200) (0.0223) (0.151) (0.0201) (0.208) (0.0223)
WD 0.0270∗∗∗ 0.0233∗∗∗ 0.0426∗∗∗ 0.0269∗∗∗ 0.0509∗∗ 0.0231∗∗∗

(0.00135) (0.00209) (0.0110) (0.00136) (0.0155) (0.00209)
WD non-zero -0.807∗∗∗ -0.769∗∗∗ -0.643∗ -0.808∗∗∗ -0.907∗ -0.767∗∗∗

(0.0376) (0.0570) (0.280) (0.0374) (0.435) (0.0564)
WD × log pfuel -0.00980∗∗∗ -0.00800∗∗∗ -0.0172∗∗∗ -0.00974∗∗∗ -0.0204∗∗ -0.00794∗∗∗

(0.000634) (0.000964) (0.00490) (0.000641) (0.00710) (0.000965)
WD non-zero=1 × log pfuel 0.374∗∗∗ 0.357∗∗∗ 0.310∗ 0.375∗∗∗ 0.421∗ 0.356∗∗∗

(0.0172) (0.0260) (0.126) (0.0171) (0.197) (0.0257)
Mean elasticity -0.302 -0.355 -0.414 -0.302 -0.493 -0.352
Household FE Yes Yes Yes Yes Yes Yes
N 5855446 3244793 49074 5806372 26803 3168183
R2 0.181 0.167 0.193 0.181 0.169 0.167
Standard errors clustered at the municipality-level in parentheses.
A household is defined as “moving” if it is observed in two different municipalities. Households are assigned to firms
based on their registered primary employer. We match households to the firm they work and to the individual work
location within the firm they work (which we refer to as a “plant”). Our data contains information on whether the
particular plant relocated in a given year. If the plant relocates and the household still works with the firm in the year
of the relocation, we classify that entire household observation as one where the firm moves.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

C.9 Alternative Specifications and the Tail

In this section, we address potential concerns relating to:

• The work distance variable,

• The linear functional form for the work distance.

First, one might be concerned that the lower tail we uncover is due to our work distance
measure being censored at 12 km. To address this, we estimate our model on the subset where
we have access to the door-to-door measure of work distance. As mentioned elsewhere, we find
this measure inferior in spite of not suffering from censoring because our preferred tax-based
measure also captures the number of days of commuting.
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Figure 17: Price elasticity and door-to-door work distance
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Second, we turn to the functional form for how the work distance enters. Omitting the
other controls, our specification takes the form

log VKTit = (γ0 + γ1WDit + γ21{WDit>0}) log pfuel
it + δ0 + δ1WDit + δ21{WDit>0} + · · ·

One may worry that our linear specification in work distance does not capture the true
relationship in the elasticity, or find it unnatural to have log in price and quantity but not
work distance. However, we find this to be the most natural specification because the work
distance–in contrast to the fuel price and driving–takes the value of zero often. Nevertheless,
to satisfy the curious reader, Table 18 shows that the finding of a U-shape in the elasticity
over work distance also arises from such a specification. We are presenting the results from
the following regression:

log VKTit = (γ0+γ11{WDit>0} log WDit+γ21{WDit>0}) log pfuel
it +δ0+δ11{WDit>0} log WDit+δ21{WDit>0}+· · ·

Figure 18 shows that the picture is qualitatively exactly the same as in the primary speci-
fication, shown in Figure 6, although the functional form of the relationship now naturally
displays slight additional curvature due to logarithic form in work distance.
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Figure 18: Price elasticity work distance measured in logs
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D Illustrative Figure Showing Distributional Calcula-
tions

This brief appendix provides a figure showing the different areas being calculated in our
distributional effects discussion.

Figure 19: Welfare Effects of a Fuel Tax Increase
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Transfer: (p1 - p0)VKT(p1)

Direct loss in consumer surplus: ∫    VKT(p) - VKT(p1)dp
i.e., deadweight loss (DWL) if Danes are price-takers and        
externalities have already been internalized
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Note: The graph illustrates the welfare effects of a fuel tax that results in a price increase from p0 to p1.
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