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Abstract 
 
This paper characterizes the optimal information structure in competitive insurance markets with 
adverse selection. A regulator assigns ratings to individuals according to their risk 
characteristics, insurers offer fixed insurance contracts to each rating group, and the market 
clears as in Akerlof (1970). The optimal rating system minimizes ex-ante risk subject to 
participation constraints. We prove that in any such market there exists a unique optimal system 
under which all individuals trade and the ratings match low risk types with high risk types 
negative assortatively. A simple algorithm yields the optimal system. We examine implications 
for government regulations of insurance markets. 
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1 Introduction

As the combination of big data, artificial intelligence, and scientific innovations
in predictive medicine improves the accuracy of risk estimates in insurance mar-
kets, a key policy question is how much information should insurers be allowed
to use when offering contracts. In health insurance, the Genetic Information
Non-discrimination Act of 2008 (GINA) and the Affordable Care Act of 2011
(ACA) have restricted the degree to which insurers can price discriminate based
on information about individual risk characteristics, such as genetic mutations
and preexisting conditions. The premise of such policies is that equalizing in-
surance premiums, rather than differentiating them, provides better insurance
from an ex-ante perspective. However, providing more accurate information to
insurers enables them to offer different contracts to individuals with different risk
characteristics, alleviating adverse selection.

The tension between ex-ante insurance and ex-post participation appears to
have substantial welfare consequences.1 In health insurance, for example, indi-
viduals with preexisting conditions are turned down or priced out, while healthier
and younger individuals opt out of expensive contracts. Since the seminal works
of Akerlof (1970) and Hirshleifer (1971), the literature has studied the social
value of information in settings with adverse selection or ex-ante insurance, but
not with both. In this paper, we focus on this fundamental tradeoff and charac-
terize the optimal information structure in competitive insurance markets with
adverse selection.

We consider a market where a population of risk-averse agents buy insurance
policies from risk-neutral sellers, as in Akerlof (1970). Each agent has a privately
known risk type, which can be understood as a distribution of medical costs.
There are no opportunities for signaling or screening in this market. Insurers
offer fixed insurance contracts, which cover all medical expenses, and compete
over prices. In the ex-ante stage, a regulator designs a rating system, which
assigns a public rating to each agent depending on her risk type. Insurers can
differentiate agents only by their rating, and thus the rating system determines

1See, e.g., Handel, Hendel, and Whinston (2015) for health insurance, Hendel and Lizzeri
(2003) for life insurance, and Finkelstein, McGarry, and Sufi (2005) for long-term care insurance
markets.
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the information structure in the market.
The regulator designs a rating system in order to maximize the expected

social welfare given the market structure. We show that in any such market there
exists a unique optimal rating system. In the allocation induced by this optimal
rating system, all individuals trade and the ratings match low risk types with
high risk types negative assortatively. Importantly, these properties require no
assumptions on the underlying distribution of risk or on agents’ preferences aside
from risk aversion. Although our primary focus is on health insurance markets,
the analysis and results apply to any competitive market for insurance, including
financial markets and labor markets. In contrast to many economic settings
where the optimal policy pools similar types together,2 the optimal information
structure in these markets exhibits negative assortative pooling.

Optimal Rating System

In the insurance market described above, each rating induces a posterior distri-
bution over the risk types, which we refer to as a risk pool. In equilibrium, each
agent will be charged an insurance premium equal to the average medical cost of
the participating agents in the same risk pool. Let us consider a simple example
to illustrate this. Suppose that each agent either has a genetic mutation or not,
and either has a preexisting condition or not. There are four risk types in the
population: agents with neither mutation nor preexisting condition, agents with
both mutation and preexisting condition, and so on. If the rating system assigns
a unique rating to each risk type, then each agent will pay the actuarially fair
price equal to her own expected medical cost. The resulting allocation achieves
full participation, but no risk sharing between different types. At the opposite
extreme, if everyone receives the same rating, then the healthiest agents will not
participate if the average cost in the entire population is too high.

The optimal rating system minimizes ex-ante risk subject to participation
constraints. To achieve this, the regulator may decide to assign rating B to agents
with a preexisting condition and assign rating A to the rest of the population.
The healthiest agents, those who have neither a pre-existing condition nor a

2Examples are, inter alia, delegation, strategic persuasion, and costly verification models.
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mutation, will participate only if the average medical cost of the agents in rating
A is sufficiently low. The regulator can also implement a more diversified risk
pool by assigning rating B only to a fraction of the population with a preexisting
condition and assigning rating A to the rest of the population, which includes
the remaining agents with a preexisting condition.

To simplify the exposition, assume that types can be ordered from healthier
to sicker, such that agents of those types with higher expected medical costs
are also willing to pay more for full coverage. We say that a subpopulation of
agents is an interval of sickest agents if the expected medical cost of any agent
within the subpopulation is (weakly) greater than the expected cost of any agent
outside this subpopulation. Notice that an interval of sickest agents may include
multiple risk types. Our main result is that the following algorithm yields the
unique optimal rating system:

Step 1. If the average cost in the population is below the willingness-to-pay
of the healthiest agent, the entire population receives the same rating and the
process is complete. Otherwise, all agents of the healthiest type receive rating R1.
An interval of sickest agents receives the same rating R1, so that the posterior
distribution of the average cost associated with the rating R1 makes the healthiest
type indifferent between buying insurance and not.3 Proceed to Step 2.

Step 2. The agents that have been rated in Step 1 are removed from the pop-
ulation. If the residual population is empty, the process if complete. Otherwise,
the process returns to Step 1.

In other words, each iteration of the algorithm creates a new rating, which pools
all agents of the healthiest type among those who have not yet been rated with
an interval of sickest agents among those who have also not yet been rated.

The proof shows that three properties are necessary and sufficient to charac-
terize the optimal rating system. The first property is that all agents purchase
insurance. To see why this property is necessary, observe that if an agent were
to not participate in the market, the regulator could create a new rating that
perfectly reveals her type and induce her to trade. Since she was not partici-

3Such an interval of sickest agents always exists when the population is large or, equivalently,
when allowing for stochastic ratings. The formal description appears in Section 3.
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pating before, no other price is affected and the resulting allocation is a Pareto-
improvement. The second property, which we refer to as no rents at the top,
states that the participation constraint of the healthiest type in each risk pool is
binding, except perhaps in the risk pool that has the highest average cost. The
idea behind this property is that if the participation constraint were not binding
for the healthiest type in a given risk pool, we could “move” some of the sickest
agents in the worst risk pool to this pool without violating any constraints. Since
the average price equals the average cost of participating agents, the resulting
allocation achieves a mean preserving contraction of the posterior distribution of
prices, which is a welfare improvement.

The third property, referred to as negative assortative pooling, is perhaps the
most surprising. It states that if two risk types i and j are the healthiest in their
respective risk pools with i healthier than j, then any type in j’s risk pool is
(weakly) healthier than any type in i′s risk pool. For example, if type i is the
healthiest type in the population, then those agents who are pooled with type i
form an interval of sickest agents. The idea behind negative assortative pooling
is that it minimizes price dispersion. The proof then shows that the output of
the algorithm described above is the unique rating system satisfying all three
properties.

We find that the optimal rating system is more informative whenever: 1) the
adverse selection problem is more acute and 2) there is less uncertainty about the
medical costs, either because private information is more precise or because there
is less idiosyncratic risk. These comparative statics suggest that restricting the
use of genetic information is more likely to increase welfare in health insurance,
where most agents are covered, than in annuity markets, where only a small frac-
tion of the population participates (see, e.g., Chiappori (2006)). Moreover, our
results suggest that as accurate genetic information becomes more widespread,
the regulations restricting its use should become less strict.

Related Literature

This work relates to several strands of the literature. Following the seminal work
of Hirshleifer (1971), a number of papers have shown that releasing public infor-
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mation in insurance markets is socially harmful (see Schlee (2001) and references
therein). These models do not consider agents with private information, thus
leaving out an important motive for information disclosure: making private in-
formation public may reduce adverse selection. On the other hand, there is a
small but influential literature on the value of information in competitive mar-
kets with adverse selection (Levin (2001); Bar-Isaac, Jewitt, and Leaver (2017)).
In these models agents are risk neutral, and hence there is no motive to reduce
price dispersion. We analyze insurance markets where both forces are present
and fully characterize the optimal information structure.

The papers most related to our work are Handel, Hendel, andWhinston (2015)
and Goldstein and Leitner (2015). Handel, Hendel, and Whinston (2015) quan-
titatively study the effect of price discrimination by simulating health insurance
exchanges (markets). They focus on two pricing schemes, no discrimination and
perfect discrimination, which in our model correspond to a rating system that
reveals no information and complete information, respectively. In their simula-
tions, most of the markets in which insurers cannot price discriminate unravel.
The average social welfare in these markets is nonetheless higher than in mar-
kets in which insurers can perfectly price discriminate. Our results characterize
the constrained efficient discrimination policy. Section 3.1 compares the optimal
rating system with these two policies from a welfare perspective.

Goldstein and Leitner (2015) study public information disclosure in financial
markets where the motive for trade is to obtain outside liquidity to finance a
profitable investment, rather than insurance. The optimal disclosure rule max-
imizes the volume of trade. The key difference with our setup is that in their
model agents are risk neutral, and thus price dispersion does not matter. They
first consider the symmetric information case, and show that the optimal disclo-
sure rule is a cutoff rule. In our model, absent private information, it is never
optimal to reveal any information. In the private information case, Goldstein
and Leitner do not fully characterize the optimal disclosure rule, which need not
be unique. Under some restrictions, they show that higher types are matched
with lower types, but a subset of low types is always excluded. In our insur-
ance market model, the lowest types are uniquely matched negative assortatively
with the highest types. Despite these differences, our view is that these results
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are complementary and reinforce non-monotonicity as an important feature of
optimal information disclosure regardless of the motive for trade.

Finally, with respect to the literature on strategic persuasion and information
design (Aumann and Maschler (1995); Kamenica and Gentzkow (2011); Berge-
mann and Morris (2013, 2016)), our model considers a benevolent social planner
who has no conflict of interest with market participants. Technically, the tension
between ex-ante insurance and ex-post participation is what makes our analysis
novel. In addition, our proofs are constructive and we need not make use of
concavification techniques.

2 General Setup

We consider an insurance market consisting of identical risk-neutral insurers and
a heterogeneous population of risk-averse agents who are subject to idiosyncratic
health risks. Agents in the population are distributed over a finite set of risk types
Θ = {1, 2, ..., N} according to the probability distribution µ. A type i agent has
a distribution of medical costs fi ∈ ∆(X) where4 X ⊂ <+. Every agent has a
utility function u : < → < that is continuous, strictly increasing, and strictly
concave. We let θ1, . . . , θN be the expected medical cost of type i, θi = Efi(x).
The types are labeled so that θN > θN−1 > . . . > θ1. Let Ui = Efi

(
u(w − x)

)
be type i’s expected utility, where w is the agent’s wealth. The parameter φi
denotes the willingness-to-pay for full insurance of an agent of type i. That is,
u(w − φi) = Ui.

We assume that the only source of heterogeneity across agents is their medical
costs, and therefore agents have the same utility functions and wealth levels (for
further discussion see Section 5). We also make the following assumption for
expositional reasons:

Assumption 1. φl > φi if and only if θl > θi.

In words, agents with higher expected medical costs are willing to pay more to
obtain insurance. In Section 3.3 we relax Assumption 1 and show that all our

4An agent’s risk type can be derived from a primitive cost function that depends on her
profile of individual characteristics.
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results remain true.

Information. Each agent knows her individual risk characteristics, and therefore
her type. Insurers know only the prior distribution over the types. A regulator
knows the risk type of every individual and can design a rating system which
reveals public information about agents’ expected medical costs.5

Definition: A rating system, σ, is a probability distribution over a set of public
signals, or ratings, S = (s0, ..., sM) conditional on the realization of the type
i ∈ Θ.

Let ∆M×N be the collection of all rating systems. For any rating system σ ∈
∆M×N , let σji = Prσ(sj | i) denote the probability of rating sj conditional on
the type being i. In particular,

∑M
j=1 σji = 1 for all i = 1, 2, .., N . The set of

available ratings is sufficiently rich so that | S |= M > N . It will be useful to
define a risk pool associated with a rating s ∈ S as the posterior distribution of
types among the population receiving the rating s. The average expected medical
cost of the risk pool associated with a rating sj is denoted by Ej(θ). That is,
Ej(θ) =

∑N
i=1 Prσ(i|sj)θi, where

Pr(i|s = sj) =
Pr(s = sj|i) Pr(i)

Pr(sj)
=

σjiµi∑N
l=1 σjlµl

.

Timing. The regulator designs a rating system, and agents privately learn their
types. Then, public ratings are realized according to the designed system and
agents’ types. Lastly, trade occurs, the outcome of the lottery fi is realized, and
consumption takes place.

Trading Process. We adopt Akerlof’s market for lemons and focus on fixed
insurance contracts that provide full coverage in exchange for a fixed price, or
premium. Insurers compete over prices and offer insurance contracts conditional
on the information that they observe. While there may be multiple equilibrium
prices, we focus on the minimum price that achieves the most efficient allocation.

5For example, to compute risk adjustments in Medicare, regulators use detailed information
of individuals’ medical histories (See, e.g., Geruso and Layton (2017) and the references therein).
In Section 4 we extend the analysis to a case where the regulator and the agents do not have
the same information.
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Hence, the price associated with signal sj satisfies

tj = min{t : t = Ej
(
θ|i ∈ A(t)

)
and A(t) = {i : t ≤ φi}}.

In words, A(t) is the set of types willing to accept price t. The equilibrium price
of risk pool j equals the expected average cost of agents in the risk pool who
are willing to trade at that price. Assumption 1 guarantees that the set of types
A(tj) is an interval and, therefore, the price is well defined.

The regulator’s problem. We assume that a benevolent regulator designs the
rating system at the ex-ante stage in order to maximize the utilitarian welfare of
patients with Pareto weights given by the prior distribution. The optimal rating
system solves the following problem:

max
σ∈∆M×N

N∑
i=1

µi

M∑
j=1

σji

(
u(w − tj)1tj≤φi + Ui1tj>φi

)
s.t. tj = min

t
Ej
(
θ | i ∈ A(t)

)
In the Appendix we show that it is without loss of generality to consider rating
systems with at most N + 1 signals (Remark A1).6

Remark 1. We have assumed that there is asymmetric information and the
rating system reveals new information to insurers. An equivalent formulation
of the model is that insurers can only offer contracts based on the information
provided by the rating system. The key assumption is that the regulator has
access to the same information as the market participants. In Section 4 we
examine the consequences of relaxing this assumption.

Remark 2. The model applies to any competitive insurance market with adverse
selection. In particular, we can relabel the notation to represent an asset market

6Although we assume perfect competition, all our results extend to the case in which the
price is computed using a constant load λ on the actuarially fair price so that t = (1+λ)Ej

(
θ |

i ∈ A(t)
)
provided that (1 + λ)θi ≤ φi for all types i. Note also that since firms obtain no

rents, the optimal test does not incorporate the rent-extraction versus rent-creation trade-off,
which is at the heart of some recent contributions to the literature on information design (e.g.,
Roesler and Szentes (2017)).
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where risk-averse sellers know the distribution of the asset’s return fi, risk-neutral
buyers are initially uninformed, and the regulator can disclose information about
the asset’s quality.

3 Optimal Rating System

This section characterizes the optimal rating system. The first-best allocation
requires full insurance of both risk sources (µ and f). Therefore, the set of
Pareto-efficient allocations satisfying ex-ante individual rationality is spanned
by a scalar π ≥ 0, which specifies the insurer’s profit with the constraint that
u(w − Eµ(θ) − π) ≥ EµU . In the absence of any public information, our model
reduces to Akerlof’s market for lemons with risk. The equilibrium price is the
minimal price satisfying t = Eµ(θ|i ∈ A(t)). If Eµ(θ) ≤ φ1, then all the agents will
trade at price Eµ(θ), which is a Pareto-efficient allocation. If Eµ(θ | θ ≥ θi) > φi

for all i 6= N , market breakdown occurs because only agents of the sickest type
obtain insurance. At the opposite extreme, a rating system that perfectly reveals
the type of every agent induces each agent to trade at the price ti = θi. The
expected utility is

∑N
i=1 µiu(w − θi). This allocation is never Pareto-optimal

because it provides no cross-subsidization between risk types, but it may be
superior to the allocation without any public information.

The following observations simplify the problem of characterizing the optimal
rating system. First, for every rating system σ we can define a distribution of
prices Prσ(tj = t | i), and two rating systems are equivalent if they generate the
same distribution of prices for all types. It is then without loss of generality to
focus on rating systems such that every two signals sj, sj′ induce different risk
pools since otherwise the regulator could just merge them into one signal and
obtain the same expected payoff. Second, it is without the loss of generality to
consider rating systems that implement an outcome of no exclusion where all
types are insured.

Lemma 0. An optimal rating system satisfies no exclusion.

Proof. By Remark A1 in the Appendix, it is without loss of generality to assume
that σMi = 0,∀i since at most N + 1 ≤M signals are necessary to implement an
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optimal allocation. Suppose that σji > 0 and type i ∈ Θ does not buy insurance
following some signal sj; then tj = mintEj

(
θ | i ∈ A(t)

)
does not depend on

σji, and we can construct another rating system that strictly improves. The new
rating system σ̂ equals σ except that σ̂ji = 0 and σ̂Mi = σji and σ̂Mk = 0, ∀k 6= i.
Thus, under σ̂, type i’s expected utility is strictly greater and types k 6= i have
the same expected utility. �

It follows that for each signal sj we can identify an associated equilibrium
price

tj = Ej(θ) =
N∑
i=1

Pr(θi|sj)θi =
N∑
i=1

σjiµi∑N
l=1 σjlµl

θi,

and write the regulator’s maximization problem as

max
σ∈∆M×N

N∑
i=1

µi

M∑
j=1

σjiu(w − tj)

s.t. tj = Ej(θ)

tj ≤ φi,∀i : σji > 0

The regulator chooses a rating system to maximize the ex-ante expected util-
ity, subject to the ex-post participation and break-even constraints. The break-
even constraint is in the spirit of the Bayes-neutrality condition of Bayesian Per-
suasion models but has a classical meaning in insurance markets: the premium
must be actuarially fair given the information available in the market. The par-
ticipation constraint of the insurer is more novel (with respect to the Bayesian
Persuasion literature) and it arises naturally in insurance markets. A solution to
this problem exists because the set of rating systems is compact and the feasi-
ble set is non-empty (e.g., full information is always feasible).7 Our main result
shows that there exists a unique optimal rating system that is the outcome of a
simple algorithm.

7Notice that the participation constraints define a closed set since they can be rewritten as
σji(tj − φi) ≤ 0.
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Theorem 1. The following algorithm yields the unique optimal rating system.
Let l ∈ N be a counter variable and set l = 1 and µ1 = µ.

Step l1. If Eµl(θ) ≤ φl, then set σ0i = 1−
∑l−1

j=1 σji,∀i ∈ Θ and stop. Otherwise,
create signal sl such that tl = Eµl(θ|sl) = φl, where σll = 1, and σli > 0 only if
∀k > i,

∑l
j=1 σjk = 1 . Proceed to Step l2.

Step l2. Stop if there are no individuals remaining in the population. Otherwise,
define the prior on the remaining types by

µl+1
i =

µli(1− σli)∑N
k=l µ

l
k(1− σlk)

,

increase l by one (that is, l = l + 1), and proceed to Step l1.

Informally, each iteration of the algorithm assigns a new rating only to the
agents who have not yet been rated (the remaining population). All agents of
the healthiest type in the remaining population receive this rating. An interval of
sickest agents8 in the remaining population also receive this rating, up to the point
where either the price equals the willingness-to-pay of the remaining healthiest
type or the remaining population is exhausted.

Figure 1 depicts the outcome of this algorithm for a case with five types.
The first best is not feasible because E(θ) > φ1. The optimal rating system
pools together types {1, 5} and a fraction of type 4 in such a way that type 1
is indifferent (i.e., t1 = φ1), and the insurer’s expected profit from type 1 agents
equals the expected loss from the interval of sickest agents:

µ1(φ1 − θ1) = µ5(θ5 − φ1)︸ ︷︷ ︸
A5

+ µ4σ14(θ4 − φ1)︸ ︷︷ ︸
A4

.

The distribution of the residual types is given by

µ2 =
1

µ2 + µ3 + (1− σ14)µ4

(0, µ2, µ3, (1− σ14)µ4, 0),

8Recall that a subpopulation of agents is an interval of sickest agents if the expected medical
cost of any agent within the subpopulation is (weakly) greater than the expected cost of any
agent outside this subpopulation.
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Figure 1: The optimal rating system

and it induces an expected cost of
∑5

=1 µ
2
i θi < φ2. Therefore, the algorithm

assigns rating s0 to the remaining types with price t0 =
∑5

=1 µ
2
i θi.

The proof of Theorem 1 identifies three necessary properties, that are jointly
sufficient to characterize the optimal rating system. The first property is no
exclusion, which was discussed above. The second property states that the par-
ticipation constraint of the healthiest type receiving a certain rating with positive
probability is binding, except for the rating associated with the highest average
cost. Formally, we say that a rating system σ satisfies no rents at the top if
whenever i = min{k : σjk > 0} and tj < maxj′ tj′ , then tj = φi.

The third property is negative assortative pooling. It states that if types
i, l ∈ Θ are the healthiest types in their respective pools, and type i is healthier
than type l, i.e., i < l, then any agent pooled with i is (weakly) sicker than
any agent pooled with l. Formally, if there are two signals sj and sj′ such that
i = min{k : σjk > 0} < min{k : σj′k > 0} = l, then min{k 6= i : σjk > 0} ≥
max{k : σj′k > 0}.
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Theorem 2. A rating system is optimal if and only if it satisfies the properties
of no exclusion, no rents at the top, and negative assortative pooling.

The proof is given in the Appendix. We first explain the intuition for why
these properties are necessary. We begin with no rents at the top. Suppose
that there exists a rating with an associated risk pool whose average cost lies
strictly below the willingness-to-pay of the healthiest agent in that pool. Since
the participation constraints in this risk pool are not binding, we can “move”
some of the the sickest agents from a risk pool that has a higher average cost
to this risk pool without violating any constraint. The resulting allocation is
welfare-improving because the price dispersion between these pools is reduced
and the average price across these pools does not change, as the average price
equals the average medical cost of the participating agents.

To see why negative assortative pooling is necessary, consider a case with
three types {1, 2, 3}. The details of the general case are in the Appendix. It
follows from no rents at the top that all agents of type 1 receive the same rating,
henceforth rating A, and rating A has the lowest average cost of all the ratings.
Suppose, towards a contradiction, that some agents of type 2 receive rating A and
some agents of type 3 receive rating B. Then there exists a welfare improving
rating system. Namely, create a new rating, henceforth rating C, and “move”
some agents of type 2 from rating A to rating C. Since the average cost of rating
A can either increase or decrease, we “move” some agents of type 3 to keep it
constant. In the case where the average cost of rating A increases, we can subtract
agents of type 3 from rating B and add them to rating A, as depicted in the right
panel of Figure 2. In the case where the average cost of rating A decreases, we can
subtract agents of type 3 from rating A and add them to rating C, as depicted
in the left panel of Figure 2. Importantly, in either case, the average cost of
rating C lies between that of ratings A and B, and the participation constraints
of the agents that receive rating C are not binding. Therefore, we can “move”
agents of type 3 from rating B to rating C without violating any participation
constraints. The resulting allocation achieves the same average price and reduces
price dispersion.

The final step shows that there exists a unique rating system that satisfies
the three properties. To see this consider two potential candidates σ and σ̂

14



Figure 2: Improving Allocation

with associated number of signals M and M̂ ≥ M. Since no agent is excluded,
both rating systems achieve an allocation with the same average price. By no
rents at the top, the prices associated with all signals except the worst equal the
willingness-to-pay of a type. Hence, the lowest M − 1 prices induced by each of
the two rating systems coincide. By negative assortative pooling the probabilities
of each of thoseM−1 signals must be the same in both rating systems. It follows
that the price of the worst signal in σ equals the average price among the worst
M̂ −M + 1 signals in σ̂, and that all types in the support of these signals are
willing to trade at such a price. But then σ̂ either violates no rents at the top
or negative assortative pooling. It is straightforward to check that the output of
our algorithm satisfies the three properties.

3.1 Welfare and Comparative Statics

In a recent paper, Handel, Hendel, and Whinston (2015) estimate the social wel-
fare in health insurance exchanges under two pricing systems. Under a system
of pure community rating, insurers are not allowed to price any individual risk
characteristics, which constitutes the no information benchmark of our model.9

Under a system of health-based pricing, insurers price the individual risk charac-
9In the exchanges set up by the Affordable Care Act, prices are determined by adjusted

community ratings that depend only on age and smoking.
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teristics, which is equivalent to the full-information benchmark in our model.
An important perspective emerges when we compare these systems to the

optimal rating system. Pure community rating is optimal only if it achieves full
trade and is otherwise Pareto dominated by the optimal rating system. Health-
based pricing is never optimal because the regulator can pool individuals more
efficiently by cross-subsidizing between risk types. In order to better understand
the welfare gains of the optimal rating system, we use a simple example with
three types and CARA utility.

Example 1. Following Handel, Hendel, and Whinston (2015), we assume that
the health expenditure is given by x = αεi + (1 − α)εA, where εi is known by
the agent and εA is not. We assume that εi ∈ {ε1, ε2, ε3}, and preferences are
represented by a CARA utility function with a coefficient of risk-aversion γ.
Therefore, θi = E(x|εi) and φi = E(x | εi) + γ(1− α)2V ar(εa) ≡ θi + ∆.

Thus, under health-based pricing, each type pays her actuarially fair price
ti = θi. Under pure community rating, we either have full participation at price
Eµ(θ) (iff φ1 ≥ Eµ(θ)); or partial unraveling, which occurs when only types 2 and
3 purchase insurance at price Eµ(θ|i 6= 1); or complete unraveling, which occurs
when only type 3 purchases insurance at price θ3. Under the optimal rating
system, all types receive the same rating if and only if φ1 = θ1 + ∆ ≥ Eµ(θ).
Otherwise, there are 3 regions given by ∆1 < ∆2 < ∆3:

• If ∆ ∈ [∆1,∆2), there are two ratings: the healthiest types, the sickest
types, and some of the middle types receive rating s1 and pay t1 = θ1 + ∆;
the rest of the middle types receive rating s0 and pay t0 = θ2.

• If ∆ ∈ [∆2,∆3), there are two ratings: the healthiest types and some of
the sickest types receive rating s1 and pay t1 = θ1 + ∆; and the remaining
types receive signal s0 and pay t0 = E(θ | s0) where θ2 ≤ t0 < θ2 + ∆.

• If ∆ ≥ ∆3, there are three different ratings: the healthiest types and some
of the sickest types receive rating s1 and pay t1 = θ1 + ∆; the middle types
and some of the low types receive signal s2 and pay t2 = θ2 + ∆; and the
rest of the low types receive signal s0 and pay t0 = θ3.
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Figure 3: Welfare Comparisons across Regimes

Notice that α affects both the level of risk (measured by ∆ = γ(1−α)2V ar(εa))
and the dispersion of types (θi = αεi + (1 − α)εa). In order to calibrate these
parameters, we again follow Handel, Hendel, and Whinston (2015) and assume
that εa is log-normal with mean 6 (in thousands of US $) and V ar(εa) = 60

and γ = 0.05. We approximate the log-normal distribution of types so that
εi ∈ {2, 6.85, 23} with probabilities (0.5, 0.4, 0.1).

The welfare for this market as a function of α is depicted in Figure 3. The
blue line depicts the ex-ante certainty equivalent under the optimal rating system.
The green line depicts the (ex-ante) certainty equivalent under pure community
rating. The blue and green lines coincide if α < 0.33 since both regimes implement
the efficient allocation. As α increases, ∆ decreases and the market under pure
community rating unravels, as represented by the downward jumps in the green
line. The orange line depicts the certainty equivalent under health-based pricing.
Full information is optimal only if there is no ex-ante information (α = 0) or
there is no ex-post risk (α = 1).

This example also suggests that there is a clear relation between the level of
idiosyncratic risk and the efficiency of the market under an optimal rating system.
More risky environments increase the wedge between the expected cost and the
willingness-to-pay and allow the regulator to pool types more efficiently. Indeed,
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if we compare two different markets M1 and M2 such that for all types i ∈ Θ, f 2
i

is a mean preserving spread of f 1
i , then the ex-ante expected utility is higher in

M2.10

3.2 Non-Monotonic Preferences

Assumption 1 posits that agents with higher expected medical costs are willing
to pay more for full coverage. This assumption, which is typically made for
tractability, implies that the average cost of a given risk pool is always decreasing
in participation (formally, A(t) is always an interval). But in some cases of interest
Assumption 1 may fail. For example, in life insurance markets, individuals who
are expected to live longer are likely to be more risk-averse (Finkelstein and
McGarry (2006)). In asset markets, portfolios with higher returns may have
higher variance and if the sellers are sufficiently risk-averse, the preference relation
may be non-monotonic.

Fortunately, a simple modification of the algorithm presented in Theorem 1
yields the optimal rating system in this more general environment. That is, the
algorithm assigns higher consumption to those agents with lower willingness-to-
pay for insurance (lower φ), regardless of their medical costs.

Corollary 1. The following algorithm provides the unique optimal rating sys-
tem. Let l ∈ N be a counter variable and set l = 1, and µl = µ. Then:

Step l1. Let j(l) ∈ Θ be the type with the lowest willingness-to-pay in the
support of µl, i.e., φj(l) = min{φi : µli > 0}. If Eµl(θ) ≤ φj(l), then set σ0i =

1−
∑l−1

j=1 σji,∀i and stop. Otherwise, create signal sl such that tl = E(θ|sl) = φj(l),
where σlj(l) = 1 and σli > 0 only if ∀r > i,

∑
k≤l σkr = 1. Proceed to Step l2.

Step l2. Stop if there are no individuals remaining in the population. Otherwise,
define the prior on the remaining types by

µli =
µl−1
i (1− σli)∑N

k=1 µ
l−1
k (1− σlk)

,

increase l by one (that is, l = l + 1), and proceed to Step l1..
10Observe that the optimal test under f1 is feasible under f2 because φ1i > φ2i and θ1i = θ2i

for all i.
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In each iteration, if the average medical cost of the population that has not
yet been rated is below the willingness-to-pay of each agent that has not yet been
rated, then the remaining types are pooled in the same rating. Otherwise, the
agents that are willing to pay the least for insurance are pooled with the agents
that have the highest expected medical costs (within the remaining population),
so that the participation constraints of the former are binding. In the resulting
allocation, an interval of agents with the lowest willingness-to-pay receive no
rents, and an interval of the agents with the highest expected medical costs
receive rents.

4 Informational (Dis)Advantage

We have characterized the optimal rating system under the assumptions that the
regulator has access to the same information as market participants. This section
explores the results of relaxing this assumption. We begin with the case where
the regulator has more precise information than the agents. This information
asymmetry may arise, for example, because the regulator can more accurately
estimate the likelihood of developing certain illnesses or can better predict the
costs that are associated with them. We will show that the optimal rating system
is still characterized by the same properties, but the regulator can leverage his
superior information to design better rating systems.

We extend our model by assuming that agents do not know their risk-type
precisely, but instead have a coarser partition. Let P = {P1, . . . , PK} be a par-
tition on the set Θ. The partition is monotonic so that if θi > θj > θl and
i, l ∈ Pk, then j ∈ Pk. We denote by φk the maximal price that an agent is
willing to pay for full coverage if she receives only the private signal Pk. That is,
u(w − φk) =

∑
i∈Pk

µ̃kiUi, where µ̃ki = Pr(i|Pk). The preferences are monotonic
so that k < k′ if and only if φk < φk

′ .
The regulator can directly observe the type. Given a partition P , we define

a rating system σ ∈ ∆M×N as a distribution over public ratings s1, . . . , sM that
depends only on each agent’s risk type, so that σji is the probability that an
agent of type i receives public signal sj. Let φkj denote the maximal price that
an agent is willing to pay for full coverage after she receives private signal Pk and
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public signal sj. That is,

u(w − φkj ) =
∑
i∈Pk

Pr(i|sj, Pk)Ui =
∑
i∈Pk

µ̃ki σji∑
l∈Pk

µ̃kl σjl
Ui.

Proposition 1. The following algorithm yields an optimal rating system. Let
l ∈ N be a counter variable and set the counter to l = 1, and µ1 = µ.

Step l1. If Eµl(θ) ≤ φl then set σ0i = 1−
∑l−1

j=1 σji, ∀i ∈ Θ and stop. Otherwise,
create signal sl such that tl = Eµl(θ|sl) = φl, where σli = 1, ∀i ∈ Pl, and σli > 0

for i /∈ Pl only if ∀r > i,
∑l

j=1 σjr = 1. Proceed to Step l2.

Step l2. Stop if there are no individuals remaining in the population. Otherwise,
define the prior on the remaining types by

µl+1
i =

µli(1− σli)∑N
r=l µ

l
r(1− σlr)

,

increase l by one (that is, l = l + 1), and proceed to Step l1..

In other words, if the average cost in the population that has not been rated
is below the willingness-to-pay of the agents that have not been rated, then the
rating system does not reveal any more information. Otherwise, the agents in the
cell of the partition with the lowest willingness-to-pay are pooled with an interval
of sickest agents, so that the healthiest type is indifferent. The proof is given in
Appendix B. It applies the same arguments presented in the proof of Theorem 1.

Observe that this algorithm achieves negative assortative pooling where the
agents at the top are selected by the coarser information ( their element of the
partition), while the agents at the bottom are selected by the finer informa-
tion (their true type). The intuition is that a public rating that reveals new
information increases the dispersion of the outside options. At the same time,
negative assortative pooling is most efficient when the types at the bottom, whose
participation constraints are not binding, are selected using the most precise in-
formation.

As a result, as agents possess finer information about their risk characteristics,
the regulator designs a rating system that reveals more information. This is due to
two reasons. First, Jensen’s inequality implies that participation constraints are
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tighter, in the sense that the total rents that can be extracted from any interval
of healthiest agents is lower. Second, mechanically, if there are more types, the
regulator uses more signals. In the context of health insurance contracts, this
result suggests that as more and more insurees obtain genetic information for
medical reasons, insurance companies should be able to price discriminate based
on richer information.

A more difficult problem is presented if the regulator has access to a coarser
information structure than the agents do. The key issue here is that the regulator
may have to promise informational rents in order to satisfy the agents’ partic-
ipation constraints, and thus it may be optimal to exclude some of the types
(see Example B.1 in the Online Appendix for an illustration). Nevertheless, for
the case where informational asymmetries are not too severe, in the sense that
the regulator could implement full trade by revealing her information, it can be
shown that the optimal rating system satisfies no rents at the top (with respect
to the information held by the agents) and negative assortative pooling (with
respect to the information held by the regulator).

To illustrate this, let us consider a situation where the regulator perfectly ob-
serves the expected medical costs of each agent, but not their willingness-to-pay
for insurance. That is, an agent’s type is a pair (i, φ) so that the expected medical
cost is θi and the willingness-to-pay for full coverage φ is distributed according
to Gi. The regulator knows θi and the prior distribution of φ conditional on i.
Each agent knows θi and the realization of φ. A rating system is a probability
distribution over a set of ratings S = (s0, ..., sM) conditional only on the realiza-
tion of the average cost θi. To place some structure, let us assume that agents
can be ordered so that agents with higher expected medical costs are willing to
pay more for insurance. That is, the willingness-to-pay of different cost types do
not overlap, so that if Gi+1(x) > 0, then Gi(x) = 1.11

This information asymmetry may arise, for example, if agents have private
information about the variance of the distribution of medical costs or about their
preferences. As we have argued above, since there is private information, the
optimal rating system need not satisfy the property of no exclusion. However,

11This is consistent with Assumption 1 since θi+1 > θi.
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as long as the regulator’s objective function continues to exhibit a preference for
mean preserving contractions of the price distribution (as would be the case if the
heterogeneity concerns only the variance of the distribution), then the optimal
rating system satisfies the other two properties of Theorem 2.

In this setting, we say that a rating system satisfies no rents at the top* if
whenever θi = min{θl : σjl > 0} and tj < max{tj′ : j′}, then tj ∈ supp(Gi).

Corollary 2. The optimal rating system satisfies no rents at the top* and
negative assortative pooling.

The proof is given in Appendix B. It follows the same line of arguments used
to prove Theorem 2.

Finally, in some markets regulators may not be able to fully control the infor-
mation used to price contracts. For example, it may be that insurance companies
can offer different contracts to individuals in different regions. In such a case, if
the distribution of medical risks across regions differs, then individuals in health-
ier regions will be offered cheaper insurance contracts. Even if the regulator
cannot eliminate regionally-based discrimination, he is still likely to have access
to the information that insurers use to cherry pick their customers. It follows
naturally that the regulator should optimally choose a different rating system in
each region. The rating system in each region is computed using the algorithm
given in Theorem 1. Importantly, since the region-by-region algorithm is feasible
in the case where insurers cannot cherry pick, but is generically not optimal, it
follows that agents are worse off under regionally-based discrimination.

5 Discussion

We have analyzed the problem of a regulator that can provide information to
insurers and this information enables them to offer different contracts to individ-
uals with different risk characteristics. We showed that the optimal rating system
is uniquely characterized by three properties: no exclusion, no rents at the top,
and negative assortative pooling. The key assumption is that the regulator has
access to the same information as the agents. In view of the recent scientific
innovations in predictive medicine and machine learning techniques, we think
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that this assumption is reasonable in most insurance markets. In various setting,
we have argued that the optimal rating system still satisfies no rents at the top
and negative assortative pooling, even though it need not induce full trade. We
briefly discuss a number of possible extensions of the model.

Preferences and Welfare. We have assumed that (i) individuals are risk-averse
expected-utility maximizers, and (ii) the regulator maximizes the utilitarian social
welfare function with Pareto weights given by the prior distribution. The optimal
rating system we have characterized remains optimal under more general models
accommodating risk-aversion and a large class of social welfare functions.

To see this, notice first that the key feature of the model is that each agent’s
willingness to pay is greater than her average cost, φi > θi, which is true under
any definition of risk aversion. Second, a rating system that does not achieve
full trade is Pareto dominated, and thus the optimal rating system under any
social welfare function satisfies no exclusion (Lemma 0). Third, the proof of The-
orem 1 takes any rating system satisfying no exclusion and applies a sequence
of perturbations yielding the unique rating system constructed by our algorithm.
Each test perturbation is a mean preserving contraction of the distribution of
consumption profiles. Therefore, the proof holds true for any social welfare func-
tion that respects SOSD. For example, maximin (Rawls (2009)) and leximin (Sen
(1977)) social preferences, which put all their weight on the worse-off members
of society, and the quadratic social welfare function (Epstein and Segal (1992)),
which maximizes a mean-variance value function of the interim utilities, all re-
spect SOSD.

Heterogeneity. We have assumed that the only source of heterogeneity is the
distribution of medical costs. The assumption implies that a rating system that
induces full trade at lower price dispersion is welfare-improving. Without it, the
social planner need not have a preference for mean preserving contractions of
the price distribution, and consequently a general characterization of the optimal
rating system is not possible. For example, suppose that each agent is willing to
trade at a price equal to the average medical cost in the population, t = Eµ(θ).
A rating system that creates a single risk pool induces full trade, but this need
not be optimal if the marginal utility from consumption depends also on agents’

23



wealth levels.12 In practice, health insurance policy is often used as a safety net
with the (implicit) aim of reducing inequality and poverty (see, e.g., Finkelstein,
Hendren, and Shepard (2017)), but the additional trade-offs involved are beyond
the scope of the present paper.

Market Structure. We have assumed that insurers offer fixed insurance con-
tracts and compete over prices, while agents face an all-or-nothing decision. On
the supply side, if insurers can offer quantity-price pairs, as in Rothschild and
Stiglitz (1976), the only equilibrium outcome, when it exists, requires full sepa-
ration of types, and so no further cross-subsidization is feasible. A possible way
forward is to follow Handel, Hendel, and Whinston (2015) and focus on a market
configuration with two active policies, using Riley equilibrium as the solution
concept. Relaxing competition would introduce an additional dimension to the
problem of the regulator, since different information structures induce different
splits of the pie for buyers and sellers. On the demand side, a natural extension
is to allow agents to buy partial insurance. Partial insurance adds a new trade-
off for the regulator because increasing the mass of high-cost agents in a pool
reduces the participation of low-cost agents on the extensive margin. It is easy to
see that some pooling remains optimal but a full characterization of the optimal
information structure is left for future work.

Taxes and Subsidies. We have analyzed the problem of a regulator that can
influence the market outcomes only through information design. There are, of
course, a range of more direct policy interventions. The Affordable Care Act,
for example, specifies a broad redistributive scheme across contract pools (the
so-called risk-corridor), compensating insurers with excessive costs.13 A natural
question to ask is how to optimally combine information design and fiscal policies.

More specifically, suppose that, as in our model, the regulator designs a rating
system that determines the composition of the risk pools, and then the price of
each risk pool is determined by market competition (it equals the average cost

12Observe that a rating system that creates diverse risk pools consisting of healthy rich agents
and poor sick agents may better equalize the consumption profile.

13The ACA also introduces direct subsidies to policy-holders depending on their income.
Since poorer individuals tend to have worse health status, these subsidies can also be interpreted
as redistribution across pools.
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of the agents participating in the risk pool). In addition, the regulator sets a tax
rate and a subsidy for each of the risk pools, with the constraint that the policy
should be budget-balanced. For instance, the regulator may choose a rating
system that perfectly reveals each type and set up taxes and subsidies so as
to smooth consumption subject to the participation constraint. The optimal tax
scheme in this case is given by the Ramsey problem: the planner taxes an interval
of the healthiest agents so that their participation constraints are binding, and
redistributes the proceeds to equalize the consumption of everyone else. If the tax
system is fully efficient, in the sense that there is no waste associated with raising
taxes, it follows that this “Ramsey allocation” is optimal. In other words, it is
more efficient to redistribute directly through taxes and subsidies than through
diversification of risk pools. The intuition is that negative assortative pooling
promises a very high consumption level to a subset of the sickest types, whereas
direct redistribution achieves a more even allocation.

More generally, if taxes and subsidies are not fully efficient and consequently
a fraction of the tax revenue is lost, information design becomes an important
redistributive policy tool. The Online Appendix presents a formal analysis of
this case. Proposition B1 shows that there exists a threshold level such that if
the tax system is more efficient than this threshold, the Ramsey allocation is
optimal, while if it is less efficient, the optimal rating system is characterized by
the properties presented in Theorem 2.

Implementation. The main obstacle to implementing the optimal rating system
is that the regulator needs to have access to at least as much information as
market participants and be able to accurately predict the medical costs. While
these assumptions may seem strong, we contend that in various cases of interest
regulators have access to detailed information about medical histories and genetic
data, and the availability of big data together with machine learning techniques
yield accurate predictions. In fact, regulators routinely estimate the average
cost of different risk pools and cross-subsidize between them. For example, in
Medicare and ACA exchanges, insurers are compensated whenever the expected
cost in their pool exceeds the average cost in the population of insurees (Geruso
and Layton (2017)). As far as we can tell, the amount of information required
to perform these computations is similar to the information used in the optimal
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rating system.
Another implementation obstacle is that negative assortative pooling induces

payoffs that are non-monotone in type, in the sense that the expected utility
of healthier types may be lower. Non-monotonicity is a potential concern for
policy-makers because such allocations may appear unfair, and also because of
moral hazard (agents may want to mimic lower types). The Online Appendix
presents an analysis of the optimal rating system under the additional restrictions
of monotone expected payoffs.

References

Akerlof, G. A. (1970): “The Market for "Lemons": Quality Uncertainty and
the Market Mechanism,” The Quarterly Journal of Economics, 84(3), 488–500.

Aumann, R. J., and M. Maschler (1995): Repeated Games with Incomplete
Information. MIT Press.

Bar-Isaac, H., I. Jewitt, and C. Leaver (2017): “Multidimensional Asym-
metric Information, Adverse Selection, and Efficiency,” Discussion paper.

Bergemann, D., and S. Morris (2013): “Robust Predictions in Games with
Incomplete Information,” Econometrica: Journal of the Econometric Society,
81(4), 1251–1308.

(2016): “Information Design, Bayesian Persuasion, and Bayes Correlated
Equilibrium,” The American Economic Review, 106(5), 586–91.

Chiappori, P.-A. (2006): “The Welfare Effects of Predictive Medicine,” Com-
petitive Failures in Insurance Markets: Theory and Policy Implications.

Epstein, L. G., and U. Segal (1992): “Quadratic Social Welfare Functions,”
Journal of Political Economy, 100(4), 691–712.

Finkelstein, A., N. Hendren, and M. Shepard (2017): “Subsidizing Health
Insurance for Low-Income Adults: Evidence from Massachusetts,” Discussion
paper, NBER Working Paper 23668.

26



Finkelstein, A., and K. McGarry (2006): “Multiple Dimensions of Pri-
vate Information: Evidence from the Long-Term Care Insurance Market,” The
American Economic Review, 96(4), 938.

Finkelstein, A., K. McGarry, and A. Sufi (2005): “Dynamic Inefficien-
cies in Insurance Markets: Evidence from Long-Term Care Insurance,” The
American Economic Review, 95(2), 224–228.

Geruso, M., and T. J. Layton (2017): “Selection in Health Insurance Markets
and Its Policy Remedies,” Journal of Economic Perspectives, 31(4), 23–50.

Goldstein, I., and Y. Leitner (2015): “Stress Tests and Information Disclo-
sure,” Discussion paper.

Handel, B., I. Hendel, and M. D. Whinston (2015): “Equilibria in Health
Exchanges: Adverse Selection versus Reclassification Risk,” Econometrica,
83(4), 1261–1313.

Hendel, I., and A. Lizzeri (2003): “The Role of Commitment in Dynamic Con-
tracts: Evidence from Life Insurance,” The Quarterly Journal of Economics,
118(1), 299–328.

Hirshleifer, J. (1971): “The Private and Social Value of Information and the
Reward to Inventive Activity,” The American Economic Review, 61(4), 561–
574.

Kamenica, E., and M. Gentzkow (2011): “Bayesian Persuasion,” The Amer-
ican Economic Review, 101(6), 2590–2615.

Levin, J. (2001): “Information and the Market for Lemons,” The RAND Journal
of Economics, 32(4), 657–666.

Rawls, J. (2009): A Theory of Justice. Harvard University Press.

Roesler, A.-K., and B. Szentes (2017): “Buyer-Optimal Learning and
Monopoly Pricing,” The American Economic Review, 107(7), 2072–80.

27



Rothschild, M., and J. Stiglitz (1976): “Equilibrium in Competitive In-
surance Markets: An Essay on the Economics of Imperfect Information,” The
Quarterly Journal of Economics, pp. 629–649.

Schlee, E. E. (2001): “The Value of Information in Efficient Risk-Sharing Ar-
rangements,” The American Economic Review, 91(3), 509–524.

Sen, A. (1977): “On Weights and Measures: Informational Constraints in So-
cial Welfare Analysis,” Econometrica: Journal of the Econometric Society, pp.
1539–1572.

A Appendix

We begin by establishing that the optimal rating system will use at most N +

1 < ∞ ratings. We then provide two useful lemmas that help us derive the
characterization result in Theorem 2. We conclude the proof of our main results
by showing that the output of the algorithm provided in Theorem 1 is the unique
rating system that satisfies the properties of Theorem 2.

Given any rating system, we refer to the rating inducing the highest equilib-
rium price as s0 and price t0 = E(θ|s0, i ∈ A(t0)).

Remark A1. The optimal rating system has at most N + 1 ratings.

Proof. Fix σ with ratings s0, . . . , sM−1 and suppose M > N + 1. By the
pigeonhole principle, there must exist some i ∈ Θ such that i is in the support of
two ratings sk and sj, k, j 6= 0, and i is the healthiest type who participates in
each of these ratings. Since ratings are not redundant, tk 6= tj, and assume that
tk > tj. Type i is the maximal type who is willing to participate in both ratings,
and therefore φl ≥ φi > tk > tj for all types l ∈ Θ who participate in rating j.
We now construct a welfare-improving rating system, σ̂: σ̂jl = σjl + (1 − β)σ0l,
σ̂0l = βσ0l, σ̂j′l = σj′l for all l ∈ Θ and j′ 6= 0, j. Thus, for β large enough,
φi ≥ t̂j. To see that this is an improvement, notice that the only change in the
allocation pertains to ratings s0 and sj. By construction, notice that t̂0 = t0,∑

i σ0i >
∑

i σ̂0i,
∑

i σ0it0 +
∑

i σjitj =
∑

i σ̂0it̂0 +
∑

i σ̂jit̂j, and tj > t̂j > t0. It
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follows that the distribution of prices under σ̂ is a mean-preserving contraction
of that under σ. �

Lemma 1. Let σ be an optimal rating system and suppose that tj < t0 and
σji > 0. The following is true:

1. (No rents at the top) If i = min{k : σjk > 0}, then tj = φi.

2. If tj < φi, then θi ≥ t0 (with strict inequality unless σ0k = 0 for all k 6= i).

Proof. Claim (1) follows from the same argument used to prove Remark A1.
Suppose, for a contradiction, that there exists an optimal rating system σ with
some signal sj 6= s0 and for all types i with σji > 0, tj < φi. We now construct a
welfare-improving rating system, σ̂: σ̂jl = σjl + (1− β)σ0l, σ̂0l = βσ0l, σ̂j′l = σj′l

for all l ∈ Θ and j′ 6= 0, j. Thus, for β large enough, φi ≥ t̂j. To see that
this is an improvement, notice that the only change in the allocation pertains
to ratings s0 and sj. By construction, notice that t̂0 = t0,

∑
i σ0i >

∑
i σ̂0i,∑

i σ0it0 +
∑

i σjitj =
∑

i σ̂0it̂0 +
∑

i σ̂jit̂j, and tj > t̂j > t0. It follows that the
distribution of prices under σ̂ is a mean-preserving contraction of that under σ.

To prove claim (2), we proceed by contradiction and assume that σji > 0,
θi ≤ t0, tj < φi, and i is not the unique type that has positive probability of
receiving the worst signal. We construct a welfare improving rating system σ̂

with an additional signal denoted by sM+1. There are four cases to consider.

Case 1: t0 > θi > tj. We construct rating system σ̂ in 4 Steps:

1. σ̂0l = (1− γ − λ)σ0l for all l ∈ Θ and 1 > γ + λ > 0 and γ, λ ≥ 0;

2. σ̂jl = σjl + λσ0l for all l 6= i and σ̂ji = (1− δ)σji + λσ0i for some δ ≥ 0;

3. σ̂(M+1)l = γσ0l for l 6= i and σ̂(M+1)i = δσji + γσ0i.

4. For all k 6= j, 0 we have σkl = σ̂kl.

In words, we move a representative sample of those types who were in rating 0

(Step 1) and distribute them to ratings j and M + 1 (Steps 2 and 3); we move
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type i from rating j (Step 1) to rating M + 1 (Step 3); and we keep everyone else
in the same rating (Step 4). By construction t0 = t̂0 and,

t̂M+1 =

∑N
l=1 µlσ̂(M+1)lθl∑N
l=1 µlσ̂(M+1)l

=
µiδσjiθi + t0

∑N
l=1 γµlσ0l

µiδσji +
∑N

l=1 γµlσ0l

∈ (θi, t0)

For any δ > 0, there exists some γ(δ) such that for all γ < γ(δ), we have that
θi < t̂M+1 ≤ φi. The equilibrium price t̂j satisfies

t̂j =

∑N
l=1 µlσ̂jlθl∑N
l=1 µlσ̂jl

=

∑N
l=1 µl(σjl + λσ0l)θl − µiδσjiθi∑N
l=1 µl(σjl + λσ0l)− µiδσji

.

Since θi ≥ tj, for any δ > 0 sufficiently small, there exists some λ(δ) such that
t̂j = tj. Therefore, there exist combinations of (δ, λ, γ) such that t0 = t̂0 >

t̂M+1 > tj = t̂j and for all k 6= j, t̂k = tk. Since the price distributions under σ
and σ̂ have the same mean, σ̂ induces a mean-preserving contraction of σ.

Case 2: t0 = θi > tj. Then, either i is the unique type in rating s0 and we
are done, or there must exist some other type i′ with σ0i′ > 0 and θi′ > θi.
We construct rating system σ̂ with σ̂ji = (1 − δ)σji and σji′ = σji′ + γσ0i′ ,
σ̂0i = σ0i + δσji and σ̂0i′ = δσ0i′ . In words, we move i from rating sj to s0 and i′

from s0 to sj. Since θi′ > θi > tj, we can choose combinations of parameters (λ, δ)

such that t̂j = tj and, therefore, t̂0 < t0, which also leads to a mean-preserving
contraction of the price distribution.

Case 3: θi = tj. We construct a rating system σ̂ as in Case 1, only λ = 0.

Case 4: tj > θi. In this case, moving type i ∈ Θ from the support of signal sj
leads to an increase in its price, so we cannot simply replace type i with types
from the support of s0. However, in such a case there must be an additional type
i′ ∈ Θ such that σji′ > 0 with θi′ > tj (for otherwise the average cost of agents in
sj cannot be above θi). We construct a welfare-improving rating system σ̂, with
σ̂0l = (1− γ)σ0l for all l, σ̂ji = (1− δ)σji, σ̂ji = (1− δ′)σji′ , σ̂(M+1)i = δσji + γσ0i,
σ̂(M+1)i′ = δ′σji′ + γσ0i′ . We can choose δ and δ′ such that t̂j = tj and for γ
sufficiently small, min{φi, t0} > tM+1 > tj, which implies that σ̂ induces a mean-
preserving contraction of the price distribution. In other words, we construct a
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virtual type which is a convex combination of type i and i′ that has an average
cost of tj and proceed as in Case 3. �

As a result of Lemma 1, under the optimal rating system, for every signal sj
(except s0), there exists a unique healthiest type i for which tj = φi (Condition
1 of Lemma 1), σji = 1 (Condition 2 of Lemma 1), and for all other types l 6= i,
if σjl > 0 then tj < θl. Therefore, we relabel the signals so that tj = φi iff
i = j. Under this relabeling, negative assortative pooling is equivalent to the
following condition: if there exists a type l and signal sj, with j < l such that∑

1≤k≤j σkl < 1, then σjl′ = 0 for all types j < l′ < l. Notice that if i < j, then
type i cannot be in the support of rating sj.

Lemma 2. The optimal rating system satisfies negative assortative pooling.

Proof. Assume that the statement is not true, so that there exists a type l ∈ Θ

and signal sj, with j > l such that
∑

1≤k≤j σkl < 1, but for some type l > l′ > j,
σjl′ > 0. Again, it must hold that there exists some other signal sj, with j < j′ < l

(or sj = s0) such that σj′l > 0. By definition, tj =
∑N

i=1 µiσjiθi∑N
i=1 µiσji

, and let

∆ ≡
∑
i 6=l,l′

µiσji(tj − θj) = µlσjl(θl − tj) + µl′σjl′(θl − tj).

The key observation is that by the second condition of Lemma 1, we have that
∆ > 0 because θl > θl′ > tj. Consider then σ̂ such that σ̂ki = σki, for all i 6= l, l′

and for all ratings sk; σ̂kl = σkl and σ̂kl′ = σkl′ for all k 6= j, j′ ; we set σ̂jl and
σ̂jl′ such that

µlσ̂jl(θl − tj) + µl′σ̂jl′(θl′ − tj) = ∆ ⇐⇒ µl′σ̂jl′ =
∆

θl′ − tj
− µlσ̂jl(θl − tj)

θl′ − tj

where σ̂jl > σjl and σ̂jl′ < σjl′ ; and finally, we set σ̂j′l = 1 −
∑

k 6=j′ σ̂kl and
σj′l′ = 1−

∑
k 6=j′ σ̂kl′ . Therefore, by construction, we have that t̂j = tj > t̂j′ > tj′ ;

and the average price under σ is a mean-preserving spread of that under σ̂.�

Proof of Theorem 2. By Lemmata 0, 1 and 2, it follows that no exclusion, no
rents at the top, and negative assortative pooling are necessary properties of an
optimal rating system. We now show that there exists a unique rating system
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satisfying all three properties. Suppose that σ and σ̂ satisfy these three properties
and induce the prices (t1, t2, ..., tk, t0) and (t̂1, t̂2, ..., t̂k, t̂k+1, ..., t̂l, t̂0), respectively.
First, if prices are in ascending order, then tj = φj for all j ≤ k, and t̂j = φj

for all j ≤ l. To see this, observe that by no rents it must be that for j ≤ k

there exists i ∈ Θ such that tj = φi . If i < j, we have a contradiction because
then there exists a price j′ < j such that tj′ /∈ φ1, ..., φN , (by the pigeonhole
principle). If i > j, we have a contradiction since there exists type i′ < i and
φi′ < tj = φi which implies that either σi′j′ > 0 for j′ < j which contradicts
negative assortative pooling or σi′j′ > 0 for j′ > j which contradicts full trade
(tj′ > φi′). Moreover, by negative assortative pooling, σji = σ̂ji,∀j ≤ k.

On the one hand, we have that:

Pr
σ

(s0)t0 = Pr
σ̂

(s0)t̂0 +
∑
j≥k+1

Pr
σ̂

(sj)t̂j.

On the other hand, we have that:

Pr
σ̂

(s0)t̂0 +
∑

j≥K+1

Pr
σ̂

(sj)t̂j = Pr
σ̂

(s0)t̂0 +
∑
j≥k+1

Pr
σ̂

(sj)φj

> φk+1

( ∑
j≥k+1

Pr
σ̂

(sj) + Pr
σ̂

(s0)

)
= φk+1 Pr

σ
(s0) ≥ Pr

σ
(s0)t0,

where the first equality follows from the above; the inequality follows by the
ordering of the willingness-to-pay and the fact that t̂0 is the highest price, and at
least one of those signals have a strictly positive probability; the next follows by
the fact that

∑
j≥k Prσ̂(sj) =

∑
j≥k Prσ(sj), and the last inequality follows from

the fact that σ is feasible and satisfies the participation constraints. Hence, we
have a contradiction. �

Proof of Theorem 1. The algorithm yields a unique rating system in at most
N steps. By construction it satisfies full trade (if φi < t0, σii = 1 and ti = φi,
else φi > t0 ≥ tj for all j); no rents at the top (if tj < t0, then tj = φj = min{i′ :
σii′ > 0}); and negative assortative pooling (if for some j,

∑
k≤j σki < 1, σji′ = 0

for all j < i′ < i). By Theorem 2, there exists a unique such rating system, and,
therefore, the algorithm yields the optimal rating system.
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B Online Appendix

B.1 Proof of Proposition 1

Proof. The proof applies the same arguments that were used to characterize the
optimal rating system in Section 3. The only difference is that we must keep track
of the interim beliefs. We begin with several definitions. Given a rating system σ,
let µjil(σ) be the probability that an agent of type i who observes signal sj attaches
to the event that she belongs to type l. Notice that the partition structure of the
prior information implies that for all i, i′ ∈ Pk, µjil(σ) = µji′l(σ) =

µlσjl∑
l′∈Pk

µl′σjl′
if

l ∈ Pk, and µjil = µji′l = 0 otherwise. The interim belief µjk(σ) is the posterior
distribution over the type space of an agent of type i ∈ Pk who receives signal sj.
We define φjk(σ) to be the willingness-to-pay of an agent who has belief µjk(σ).
Whenever there is no confusion, we suppress σ.

Since the regulator has superior information, she can induce full trade and
the optimal rating system satisfies no exclusion (see Lemma 0 for the formal
argument). We first show that an optimal rating system σ satisfies no rents at
the top with respect to the interim beliefs:

tj = min{φjk(σ) : σji > 0 for some i ∈ Pk},∀j 6= 0.

Suppose that there exists a type l ∈ Pk and signal sj such that σjl > 0, and
tj < φjk ≤ φjk′ for all k

′ such that σj′i > 0 with i ∈ Pk′ . In other words, types in
Pk are the healthiest in rating j and receive rents. We can construct a welfare-
improving rating system σ̂ as in Lemma 1: we “move” a small fraction ε > 0 of
the mass in the signal associated with the highest price to signal sj such that
φjk(σ̂) > t̂j. Observe that such an ε exists because if {l ∈ Pk : σ0l > 0} = ∅, then
the interim beliefs satisfy µjk(σ̂) = µjk(σ) and φjk(σ̂) = φjk(σ); and if there exists
some l ∈ Pk, with σ0l > 0, then φjk(σ̂) > φjk(σ).

We now prove that under an optimal rating system, for every signal sj 6= s0

there exists a unique element of the partition, Pk, such that σji > 0 for some
i ∈ Pk and E(θ | sj, i ∈ Pk) ≡ θjk < t0. Suppose not, then there exist i ∈ Pk

and i′ ∈ Pk′ such that σji > 0, σji′ > 0, and θjk′ < θjk < t0. Let i0 ≡ min{l :

σ0l} /∈ Pk ∪ Pk′ . We can construct a welfare improving rating system σ̂ as in
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Lemma 1, using a new rating sM+1. In the case that θjk ≥ tt, we move a portion
of agents of type i0 from s0 and distribute them to signals sj and sM+1; we move
a representative sample of the types in Pk from signal sj to signal SM+1 ; and
we keep everyone else in the same rating (Case 1 in the proof of Lemma 1). The
proportions are such that tj = t̂j, t̂M+1 = φM+1

k (σ̂). Importantly, no participation
constraint is violated because i0 /∈ Pk ∪ Pk′ , and hence φjk′(σ̂) = φjk′(σ) and
φM+1
k (σ̂) = φjk(σ). For the case that θjk < tj, see Case 4 in the proof of Lemma 1.
We say that a rating system satisfies Property* if the healthiest type in the

support of two different signals belongs to two different elements of the partition.
That is, if i = min{l : σjl > 0} and i ∈ Pk, then ∀j′ 6= j : min{l : σj′l > 0} /∈ Pk.

We now show that Property* is necessary. Given the element Pk, let Sk =

{sj : tj = φjk(σ)} be the set of all signals sj for which the healthiest type is in Pk.
If there are more than two signals in Sk, let σ̂ be an alternative rating system
whereby all the signals in Sk are merged. That is, σ̂(M+1)i =

∑
j∈Sk

σji and
σ̂ji = σji for j /∈ Sk. We now show that σ̂ satisfies the participation constraints.
Let µki = µi∑

l∈Pk
µl

and we have that for all j ∈ Sk,

u(w − φjk(σ)) =
∑
i∈Pk

Pr
σ

(i|sj, i ∈ Pk)Ui =
∑
i∈Pk

(
σjiµ

k
i∑

l∈Pk
σjlµkl

)
Ui. (1)

Likewise,

u(w − φM+1
k (σ̂)) =

∑
i∈Pk

Pr
σ̂

(i|i ∈ Pk, sM+1)Ui

=
∑
i∈Pk

( ∑
j∈Sk

σjiµ
k
i∑

l∈Pk

∑
j∈Sk

σjlµkl

)
Ui =

∑
j∈Sk

∑
i∈Pk

(
σjiµ

k
i∑

j∈Sk

∑
l∈Pk

σjlµkl

)
Ui.

Therefore, if we take (1) and sum over the signals in Sk weighted by the proba-
bility that agents of each type l ∈ Pk receive them, we get:

u(w − φM+1
k (σ̂)) =

∑
j∈Sk

∑
l∈Pk

σjlµ
k
l∑

j∈Sk

∑
l∈Pk

σjlµkl
u(w − φjk(σ)),
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and Jensen’s inequality implies that

φM+1
k (σ̂) ≥

∑
j∈Sk

∑
l∈Pk

σjlµl∑
j∈Sk

∑
l∈Pk

σjlµl
φjk(σ). (2)

For each signal sj ∈ Sk, since only types in element k are such that θl ≤ tj =

φjk(σ), we have that

∑
l∈Pk

σjlµl(φ
j
k(σ)− θl) =

∑
l /∈Pk

σjlµl(θl − φjk(σ)),

and summing over the signals yields∑
j∈Sk

∑
l∈Pk

σjlµl(φ
j
k(σ)− θl) =

∑
j∈Sk

∑
l /∈Pk

σjlµl(θl − φjk(σ)).

Rewriting (2), and using that∑
j∈Sk

∑
l∈Pk

σjlµl =
∑
l∈Pk

(
∑
j∈Sk

σjl)µl =
∑
l∈Pk

σ̂(M+1)lµl,

we get ∑
j∈Sk

∑
l∈Pk

σjlµl(φ
j
k(σ)− θl) ≤

∑
l∈Pk

σ̂(M+1)lµl(φ
M+1
k (σ̂)− θl).

As a result,∑
l∈Pk

σ̂(M+1)lµl(φ
M+1
k (σ̂)− θl) ≥

∑
l /∈Pk

σ̂(M+1)lµl(θl − φM+1
k (σ̂)),

from the formula for the equilibrium price, we obtain∑
l

σ̂(M+1)lµlt̂M+1 =
∑
l

σ̂(M+1)lµlθl ≤
∑
l

σ̂(M+1)lµlφ
M+1
k (σ̂),

and, therefore, φM+1
k (σ̂) ≥ t̂M+1. As a result, σ̂ is feasible and yields a mean-

preserving contraction of the price distribution.
In the next step we establish negative assortative pooling. Assume towards

a contradiction that there exist types i < i′ and signals sj, sj′ where i = min{l :
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σjl > 0} and i′ = min{l : σj′l > 0}, but there exist types l′ > l > i such that
σjl > 0 and σj′l′ > 0. First, it follows from Property* that i ∈ Pk and i′ ∈ Pk′
and k 6= k′. Second, from no rents at the top, tj = φjk < tj′ = φj

′

k′ ≤ t0. Third,
since θl′ > θl > t0 > tj, we can construct a welfare improving rating system σ̂

by moving a fraction of type l to signal sj′ and a fraction of type l′ to signal sj
such that t̂j = tj does not change and t̂j′ < tj (the construction is identical to
the proof of Lemma 2). Observe that l′ /∈ Pk because l′ > i′ ∈ Pk′ , and thus
φjk(σ̂) = φjk(σ) ≥ t̂j. If l /∈ Pk′ , then φj

′

k′(σ̂) = φj
′

k′(σ) > t̂j′ ; and if l ∈ Pk′ , then
since θl > t0 ≥ tj′ ≥ E(θ|sj′ , i ∈ Pk′), φj

′

k′(σ̂) ≥ φj
′

k′(σ). Thus, no participation
constraint is violated.

Finally, there exists a unique rating system that satisfies no exclusion, Prop-
erty*, no rents at the top with respect to the interim beliefs, and negative as-
sortative pooling. To see this, suppose that σ and σ̂ satisfy these properties and
induce the prices (t1, t2, ..., tj, t0) and (t̂1, t̂2, ..., t̂j, t̂j+1, ..., t̂j′ , t̂0), respectively. Let
us assume that the prices are in ascending order and that all signals have a strictly
positive support. We will show that for all l < j: tl = t̂l; σli = σ̂li,∀i ∈ Θ ; and
σil = σ̂il = 1, ∀i ∈ Pl. By induction, for l = 1 it follows from no exclusion and
Property* that σ1i = σ̂1i = 1 ∀i ∈ P1, and from no rents at the top, t̂1 = t1. Nega-
tive assortative pooling and no exclusion imply that σ1i = σ̂1i,∀i ∈ Θ. Take l > 1,
by induction, we have that σl′i = σ̂l′i for all l′ < l and i ∈ Pl. Therefore, if there
exists i ∈ Pl such that σl′i = σ̂l′i > 0 then we are done (because by negative as-
sortative pooling, all the types are exhausted: σki = σ̂ki = 0,∀i ∈ Pk and k > l).

Therefore, we assume that σl′i = σ̂l′i = 0 for l′ < l. No exclusion and Property*
imply σli = σ̂li = 1 ∀i ∈ Pl, and no rents at the top further implies tl = t̂l.
It follows that σli = σ̂li for all i ∈ Θ (because otherwise, negative assortative
pooling or the induction hypothesis is violated).

We can use the same argument as in Theorem 2 to show that σ̂(j+1)i = . . . =

σ̂j′i = 0. It is straightforward to check that the outcome of the algorithm satisfies
these properties. �
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B.2 Direct Intervention

We have assumed throughout Sections 2 and 3 that the regulator can only influ-
ence the market outcomes by controlling the information used to price contracts.
In health insurance markets, taxes and subsidies are also used to affect the out-
comes. For example, the Affordable Care Act specifies a broad redistributive
scheme across contract pools (the so-called risk-corridor), compensating insurers
with excessive costs.14 This section extends our model to address the question
of how regulators optimally combine information design and direct intervention
policies.

We consider the insurance market defined in Section 2 and let the regulator
design the public rating system σ and also set taxes and subsidies on the risk
pools. An agent who receives signal sj and purchases insurance at price tj, will
consume cj = w − tj(1 + τj) + bj, where τj is the tax rate and bj is the per-
capita subsidy of contract pool j. We assume that redistribution is costly so
that a certain fraction of total revenue is lost. The budget-balance condition is∑M

j=1

∑N
i=1 µiσji(αtjτj − bj) = 0, where α ∈ [0, 1] measures the efficiency of the

tax system.15

Competition between insurers drives the price of each risk-pool to the average
cost, tj = mintEj{θ : i ∈ A(t)}. The same argument used to prove Lemma 0
applies here, and hence we restrict attention to rating systems that implement
full trade. The regulator’s problem is to design the rating system σ and the tax
policy {τi, bi}Mi=1 to maximize ex ante welfare:

14The ACA also introduces direct subsidies to policy-holders depending on their income.
Since poorer individuals tend to have worse health status, these subsidies can also be interpreted
as redistribution across pools.

15There is a large literature on the inefficiencies associated with the implementation of risk-
corridors in Medicare. For a recent review see Geruso and Layton (2017)
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max
σ,τ,b

N∑
i=1

µi

M∑
j=1

σjiu(cj)

s.t. cj = w − (1 + τj)tj + bj

tj = Ej(θ)

(1 + τj)tj − bj ≤ φi,∀i : σij > 0

M∑
j=1

N∑
i=1

µiσji(ατjtj − bj) = 0

To gain intuition, let us compare two redistribution policies. In the benchmark
model, we had τj = bj = 0 for all j and redistribution was achieved by creating
diverse risk-pools design. The optimal rating system is characterized by the
properties of Theorem 2. We shall refer to the resulting allocation as the No-
Taxation (NT) allocation. Another relevant policy configuration uses taxation
and subsidies as the only tool for redistribution. We shall refer to it as the Ramsey
(R) allocation. In the Ramsey allocation, the rating system perfectly reveals each
risk-type. Trade occurs at the actuarially fair price tj = θj,∀j. An interval of the
healthiest types 1, . . . K are taxed so that(1+τj)θj = φj for j = 1, . . . K. The tax
revenues B0 = α

∑K
j=1 µj(φj−θj) are redistributed to the remaining K+1, . . . , N

types in such a way that equates their consumption. The cutoff type K is set to
maximize the agents that are subsidized.16

Observe that negative assortative pooling redistributes income by promising
very high consumption profiles to an interval of sickest agents, while taxes and
subsidies redistribute income directly to the sickest individuals. Therefore, in
the case where the tax system is efficient, α = 1, the Ramsey allocation has the
same average consumption and lower variation in the consumption profiles. In
the cases where the tax system is inefficient, α < 1, the average consumption is
lower under the Ramsey allocation. This trade-off drives the next Proposition.

16If types 1, . . . ,K are taxed and c0(K) is the consumption of the agents that are subsidized
(the consumption level is equal at the bottom), then type K + 1 is willing to participate at
consumption level c0(K) and typeK is not willing to participate at consumption level c0(K−1).
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Proposition B1. There exists 1 > α1 > α2 > 0 such that

1. If α > α1 the Ramsey allocation is optimal

2. If α < α2 the No-Taxation allocation is optimal

3. If α ∈ [α1, α2], there exists some j such that τj > 0 and σ satisfies the
properties of Theorem 2.

Before we present the proof of Proposition B1, we would like to point out that
the relative efficiency of taxes depends very much on the distribution of types.
Indeed, it can be shown that for every ε > 0, there exists some µ such that
α1 > 1 − ε. Thus, information design is useful policy tool in a wide range of
environments.

Proof. We begin by establishing that it is without loss of generality to consider
schedules whereby bj = 0 if cj > c0. To see this consider a policy (σ, τ, b) with
bk > 0,tk > φk and φk > c0. Since τk = 0, it follows that

∑
i µiσki(θi−bk−φk) = 0.

Consider now the following alternative scheme (σ̂, τ, b̂), with σ̂ki = (1− β)σki for
all i 6= j and σ̂0i = σ0i + βσki for all i 6= j and σ̂ji = σji otherwise. Notice that
since both tax revenue and the associated waste is the same in both policies,
any policy that reduces dispersion is beneficial. As before, we show that one can
increase ĉ0 while keeping ck = w − φk by redistributing some individuals from k

to 0. Subsidies adjust so that

µk(θk − b̂k − φk) + (1− β)
∑
i 6=k

µiσki(θi − b̂k − φk) = 0.

Notice that
∑

i µi(σkibk− σ̂kiŝk) = β
∑

i 6=k µiσki(θi−φk) is the change in subsidies
needed to ensure participation in k under the alternative policy. The consumption
of the individuals receiving the worst signal∑

i

µi(σ0i + βσki)(θi − b̂0 − (w − ĉ0)) =
∑
i

µiσ0i(θi − b0 − (w − c0)) = 0.
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Simple algebra yields,∑
i

µiσ0i(c0 − ĉ0) + β
∑
i

µiσki(φk − (w − c0)) = 0.

Since ck > c0 by definition, the second term is positive. Hence, c0 < ĉ0 and there
is a profitable redistribution.

We now show that the Ramsey allocation is optimal if and only if α ≥ α1,
where α1 is the largest value of α ∈ (0, 1) that solves

u(ck)− u(c0) = u′(c0)(α1(θN − φk)− (θN − (t0 + b0))).

We begin with the case in which the participation constraint of those agents who
are assigned a consumption c0 is slack (which will generically be true). Consider
a policy (σ, τ, β) that implements the Ramsey allocation and let c0 be the lowest
consumption level. We perturb this policy so that a fraction of risk-types N
are pooled with risk type k, and then adjust the taxes and subsidies to satisfy
the participation constraints. Formally, we define the policy (σ̂, τ̂ , b̂) such that
σ̂NN = (1−β), σ̂kN = β for some k such that w−φk > c0 and σ̂ji = σji otherwise.
The price of risk pool k increases, and hence the tax rate is adjusted so that,

t̂k(1 + τ̂k) =
µkθk + βµNθN
µk + βµN

(1 + τ̂k) = φk

The tax revenue is distributed to risk-types K + 1, . . . , N − 1 and the fraction
(1 − β) of risk-type N to equalize their consumption levels, as in the Ramsey
allocation.17 The lowest consumption level, ĉ0 = w − t̂0 + b̂0 changes because (i)
the per-capita subsidy, b0, falls and (ii) the average cost of agents in the pool
t̂0 also decreases. At the same time, a fraction β of risk-type N increase their
consumption by u(ck)− u(c0). Observe that for α sufficiently low, we have that
ĉ0 ≥ c0, and the resulting allocation is welfare improving. Otherwise, c0 > ĉ0, and
approximating the change in welfare around β = 0, we have that this perturbation

17This construction assumes that in the Ramsey allocation, the participation constraint of
typeK+1 is slack so that a perturbation in consumption does not violate it (which is generically
true).
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yields an improvement if and only if

u(ck)− u(c0) > −u′(c0)
dc0

dβ
= u′(c0)(α(θN − φk)− (θN − (t0 + b0))).

The left-hand side represents the increment in utility for those who jump to
a better pool. The right-hand side represents the cost for those who remain
evaluated at their marginal utility in the Ramsey allocation. The first term
in brackets represents the drop in subsidies needed to ensure that type k still
participates. The second term measures the consumption premium of the sickest
type when receiving the worst possible signal, which represents the marginal
benefit for the remaining types when she gets excluded. If α = 1, the right-hand
side is exactly u′(c0)(ck−c0) and, therefore, concavity ensures that the inequality
is satisfied. If α = 0, the right-hand side becomes negative since the lowest type
is better than the mean type in the worst pool, so the inequality always holds.
Notice then that for every α < α1,any deviation from the Ramsey allocation is
welfare-diminishing.

Suppose then that there is a type i who gets assigned c0 with positive prob-
ability and whose participation constraint binds. In this case, any perturbation
that marginally reduces c0 violates the participation constraint of i and leads to
a discrete drop in c0.

Therefore, we only need to prove that if α < α1 and the participation con-
straints of those agents who obtain c0 in the R allocation are slack, there is no
alternative (σ, τ, b) yielding higher expected surplus. Clearly, replacing θN with
any other type with σ0i > 0 is worse because the cost of the redistribution in-
creases without affecting the benefit. Similarly, any deviation involving some
k > k∗ is inefficient if deviation at k∗is inefficient because the left-hand side in-
creases in ck less than the right-hand side. Two additional deviations need to be
checked. First, the second derivative of the value function with respect to β is
simply −u′′(c0)dc0

dβ
< 0 so that the problem of choosing the optimal β is concave.

Finally, deviations involving more than one type are equivalent (for the R allo-
cation) to deviations of the average type but since it is suboptimal to choose any
other type than the worst, the average deviation cannot improve welfare if the
deviation with the worst type does not. Hence, the R allocation is optimal iff
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α ≥ α1 as desired.
To see that Lemmas 1 and 2 must still hold fix an optimal allocation in which

types l,l′ with θl < θl′and signals sj and sj′ such that φj > φj′ and σjl > 0 but
σj′l′ > 0. Consider σ̂ such that σ̂jl+ σ̂j′l = σjl+σj′l and σ̂jl′+ σ̂j′l′ = σjl′+σj′l′and
σ̂kl = σkl otherwise. We pick σ̂ so that the expected pre-tax following signal sj is
constant but now

∑
µiσ̂ji <

∑
i µiσji. If the wasted revenue was constant, this

would induce an improvement by Lemmas A and B, but the wasted revenue is
actually lower so this must be a strict improvement. �

B.3 Private Information

We begin by describing a simple example that explains why the optimal rating
system need not induce full trade.

Example B.1. Suppose there are two cost-types θ1 < θ2, each of them with
probability 1/2. A fraction η of the low-cost agents have a willingness-to-pay of
θ1 + ∆ and a fraction 1 − η have a willingness-to–pay of θ1 + 2∆. First notice
that it is suboptimal to induce two different prices for the low-cost type.18 If
θ2− θ1 < 2∆, then the first best is feasible and the optimal rating system reveals
no information. Else, if η > η∗, then the optimal rating system still implements
full trade with σ11 = 1, σ12 = ∆

θ2−(θ1+∆)
so that t1 = θ1 +∆ and t0 = θ2. If η < η∗,

then the optimal rating system excludes the low-willingness-to-pay agents and
sets σ11 = 1, σ12 = 2∆(1−η)

θ2−(θ1+2∆)
, so that t1 = θ1 + 2∆, t0 = θ2 and those who do

not trade obtain a lottery worth θ1 + ∆. Notice that since 2∆
θ2−(θ1+2∆)

> ∆
θ2−(θ1+∆)

,
η∗ > 0 and full trade is suboptimal in an open interval of parameters.

Proof of Corollary 2. Notice first that it is possible to achieve full trade
by revealing the type of each agent (since Gi(θi) = 0). But as Example B.1
shows, it need not be optimal to implement full trade. It is true, however, that
an optimal rating system induces a positive measure of agents of each type to
trade. Therefore, suppose that a certain agent of type i is the healthiest agent
who receives signal sj, then, in an optimal rating system, all agents of type i will
receive signal sj and they will trade if and only if their willingness-to-pay exceeds

18To see this notice that the ex-ante expected utility would be the weighted average of the
expected utility of both signals and, generically, one is higher than the other.
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a certain threshold xij = tj = Ej(θ | φi ≤ xij). The first part follows from the
same argument as in the case with no private information and the second by our
assumptions on preferences.
Hence, we can restrict attention to allocations with at most N + 1 signals and
such that the agent with the lowest willingness-to-pay who trades in each signal
(except perhaps the worst signal) receives no rents.

Now, consider any rating system that violates negative assortative pooling
with respect to the information that the regulator has for a given rating sj. By
the argument we used in Lemma 2, there must exist a redistribution of agents
from types whose expected cost is above the price tj and that it induces the same
price in pool j. Since tj is constant, xij = tj and the set of agents of type i who
trade in pool j does not change, then we can still apply the argument in Lemma
2 and show that this redistribution is welfare-improving and feasible. As a result,
we have that the optimal rating system satisfies negative assortative pooling in
the sense that if the healthiest agent in rating j is healthier than the healthiest
agent in rating j′, then every other agent who has positive probability in rating
j is sicker than any agent in rating j′.

B.4 Monotonic Payoffs

We finally consider the problem of a regulator who maximizes ex-ante expected
utility subject to the participation constraints and the restriction that if i > l

then
∑

j σjiu(w − tj) ≤
∑

j σjlu(w − tj). The following result shows that there
exists an optimal algorithm that satisfies a modified version of the properties
derived in Theorem 2.

Proposition B.2. There is an optimal monotonic test with the following fea-
tures:

1. All types i ≥ l, with φl ≥ E(θ | θ ≥ θl) = t0 are treated equally (σji = σjN)

2. Types l < i ≤ k obtain the same expected utility as the sickest type,
∑

j σjiu(w−
tj) =

∑
j σjNu(w − tj) but σji > 0 iff j ≥ i.

3. Types i > k are such that σii = 1 and u(w − ti) >
∑

j σj(i+1)u(w − tj).
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Proof. Part 3 follows directly by Theorem 2 since for types i = k + 1, ..., N

monotonicity does not impose any additional restrictions. All these types pay
price ti = φi and get pooled with some lower types. Now fix an allocation and let
ū0 = maxj≤k

∑
σjiu(w− tj). Monotonicity requires that ū0 = uk, but optimality

requires that uk = minj≤k
∑
σjiu(w − tj). Hence, ui = ū0 for all i ≤ k. Since IR

must hold ex-post for every signal, σji = 0 for all j = i. This establishes part 2.
The equal treatment property for types i ≤ l where l is the highest type such that∑

i≤l µiθi ≤
∑

i≤l µiφl follows from Theorem 2 with the additional monotonicity
constraint since the optimal profile has a decreasing expected utility. �

Example B.2. Consider the CARA case with a uniform prior over Θ =

{0, 6, 7, 8} with φ1 = 5, φ2 = 6 and φ3 = 8.

• Without the monotonicity restriction, the optimal rating system creates
two pools: pool 1 consists of the entire population of types 1, 3, 4: σ11 =

σ13 = σ14 = 1; and pool 0 consists of the entire population of type 2, and
thus σ22 = 1. Observe that types 3 and 4 receive a higher payoff than type
2.

• A rating system that is optimal under the monotonicity restriction creates
3 pools: pool 1 contains the entire population of type 1 and a mixture of the
other population: σ̂11 = 1, σ̂13 = σ̂14 = 0.997, σ̂12 = 0.011; pool 2 contains
the residual population of type 2, σ̂22 = 1− σ12; and pool 0 consists of the
residual population of types 3 and 4, σ̂03 = σ̂04 = 1− σ̂13. Observe that the
expected payoffs of types 2, 3, 4 are equal and the resulting allocation is a
mean-preserving spread of the unconstrained optimal allocation.
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