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Abstract 

 
We designed four observational learning experiments to identify the key channels that, along 
with Bayes-rational inferences, drive herd behavior. In Experiment 1, unobserved, whose 
actions remain private, learn from the public actions made in turn by subjects endowed with 
private signals of medium quality. We find that when unobserved face a handful of identical 
actions that contradict their high quality signals they herd more extensively than predicted by 
Bayes-rational herding. Deviations from the normative solution result in severe expected losses 
and unobserved would be better off without the chance to learn from others. When unobserved 
are endowed with medium quality signals they learn rather successfully from public actions, but 
they overweight their low quality signals relative to public information. Experiments 2-4 reveal 
that non-Bayesian updating and informational misinferences are the two channels that drive 
excessive herding, while the strong (resp. mild) overemphasis on low (resp. medium) quality 
signals is caused by wrong expectations about others’ strategy. A model of intuitive 
observational learning accounts for the phenomenon of excessive herding, it captures well herd 
behavior with medium quality signals, but it fails to predict that the reluctance to contradict 
private signals is stronger for low than for medium quality. 
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1 Introduction

Economists have long recognized that people often adjust their behavior to conform with the choices

of others and that social costs become substantial when herding spreads through large segments of the

population. Early informal analyses insisted upon the psychological and sociological aspects of herding

(Keynes, 1930; Kindleberger, 1978). In contrast, a more recent theoretical literature, beginning with

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (BHW 1992), shows that herd behavior

can be a rational response to the information contained in others’ actions. When a sequence of

Bayes-rational agents each in turn take one of several actions, and learn from their predecessors’

actions, an information cascade quickly occurs in which they abandon their private information and

take imitative actions.1 This striking implication of Bayes-rational observational learning has been

tested in a series of economic experiments. The bulk of this laboratory evidence is summarized in

Weizsäcker (2010) and Ziegelmeyer, March, and Kruegel (2013), two meta-studies that measure the

success of observational learning by controlling for the empirical profitability of actions. The main

finding is that laboratory cascades eventually emerge, though subjects follow others only when the

monetary incentives to do so are strong enough.

The experimental evidence on simple cascade games informs only partially our understanding

of herd behavior since these experiments merely test whether subjects imitate their predecessors

or not. However, as repeatedly argued in BHW (1992), Bayes-rational herding is unique in that the

conformity of behavior caused by an information cascade does not become more robust as the number

of imitative actions increases. This property allows some of the benefit of information diversity to be

recaptured as Bayes-rational herds are easily overturned by better informed agents.2 In this paper,

we report the results from four experiments that separate Bayes-rational herding from less rational

forms of herding by investigating whether subjects imitate others excessively.

In Section 2, we show that when subjects learn from a handful of identical actions that contradict

their precise signal they herd more extensively than predicted by Bayes-rational herding, and we

quantify the inefficiencies associated with such a stronger and more robust form of herding. Our

experimental setting builds on a rich information structure which, for a given string of previous actions,

distinguishes between situations where Bayes-rational herding occurs and situations where it does not.

Concretely, we implement an observational learning scenario with two parallel sequences of players

who submit binary guesses (either B or O) about an unknown payoff-relevant state (either B or O with

Pr (B) = 0.55). Seven observed players receive binary private signals (either b or o) of medium quality,

and their guesses are made public meaning that they learn from previous observed guesses as in simple

cascade games. Eight unobserved players also learn from the public guesses made by the observed, but

their own guesses remain private and they receive binary private signals whose quality is either low,

medium or high (we have that Pr (o | O) = Pr (b | B) = 1−Pr (b | O) = 1−Pr (o | B) = 12/21, 14/21

and 18/21 when the quality is low, medium and high respectively). If the player’s guess correctly

predicts the state—her guess is B when the state is B or her guess is O when the state is O—the player

gets a payoff of 1, otherwise she gets nothing. Bayesian rationality predicts that, for most strings of

public guesses, unobserved endowed with low or medium quality signals imitate the most recent guess

when the latter conflicts with their private information. Bayes-rational herding often occurs with

low and medium quality signals. Per contra, Bayes-rational unobserved who receive signals of high

1If agents’ actions are always sufficient statistics for their information, then learning from others’ actions is efficient
(Lee, 1993). In settings where economic outcomes are inefficient, information cascades need not arise as observational
learning is asymptotically complete with unbounded private signals (Smith and Sørensen, 2000).

2Said differently, Bayes-rational herding is a weak form of herding as it denies the possibility of extreme confidence
in wrong beliefs. Eyster and Rabin (2014) even show that Bayes-rational herding is a limited form of herding since, in
the case of observation structures more general than the canonical single-file setting, the logic of social inference requires
that Bayes-rational agents greatly limit the scope of their imitation.

2



quality never imitate the guesses they observe, but systematically follow their private information.

Bayes-rational herding never occurs with high quality signals.

To measure how successful subjects are in learning from others, we first estimate the incentives to

contradict private information and then we assess the proportion of guesses that contradict private

information in situations where it is empirically optimal to do so and in situations where following

private information is empirically optimal. A reliable measure of the empirical success of observational

learning requires a large dataset. Hence, we employ a strategy method-like procedure according to

which, in the same repetition of the scenario, subjects learn from various strings of public guesses

while endowed with the same private signal. Estimated incentives reveal that herds of public guesses

aggregate at most two private signals which implies that following private information is always

empirically optimal for unobserved with high quality signals.

The main results of our first experiment are as follows. First and foremost, unobserved with high

quality signals herd excessively: when she observes an excess of at least four public guesses that

contradict her high quality signal, the average unobserved follows the public majority. Deviations

from Bayes-rational herding result in severe expected losses and unobserved with high quality signals

would be better off without the chance to learn from others. Second, though they fall short of better

responding to the value of their available information, unobserved with medium quality signals are

quite successful in learning from others. In comparison, the average observed is clearly reluctant to

contradict her private information when the expected monetary costs of making an informative guess

are low to moderate. Third, given identical incentives to follow others, unobserved are more reluctant

to contradict their private information with low than with medium quality signals. In particular, the

average unobserved follows a single contrary guess slightly more often than her low quality signal,

though her incentives to contradict private information are 1.75 times stronger than her incentives

to follow private information. Fourth, individual herd behavior is substantially heterogeneous. Un-

observed are almost equally divided into successful observational learners, conformists who tend to

herd excessively, and dissenters who respond too strongly to their private information. This being

said, the tendencies to herd excessively with high quality signals and to respond too strongly to low

quality signals are common among unobserved.

In view of this evidence, we conclude that unobserved mislearn from public guesses conflicting

with their private signals, especially when the latter are of high quality, because they wrongly assess

the value of their available information in those challenging situations. Misvaluations of the available

information may be caused by each of three potential deviations from Bayes-rational herding. First,

unobserved may have an incorrect model of how others make guesses (Kübler and Weizsäcker, 2004;

Bohren, 2016). Second, even if their expectations about others’ strategy are correct, unobserved

may use improper inference rules leading them to infer signals that differ systematically from the

ones actually received by others (Eyster and Rabin, 2005, 2010). Third, unobserved may not adhere

to Bayes’ rule when incorporating into their beliefs the signals inferred from public guesses (Huck

and Oechssler, 2000; Goeree, Palfrey, Rogers, and McKelvey, 2007). In Section 3, we report three

experiments that uncover the nature of these deviations in our observational learning scenario, and

we evaluate the impact that each deviation has on herd behavior. As in Experiment 1, unobserved

are endowed with private signals of low, medium or high quality, and they learn from strings of public

guesses. However, the three experiments rely more extensively on the strategy method-like procedure

to offer subjects ample opportunities to learn from strings of contrary guesses. Experiments 2-4’s

evidence aims at clarifying how herd behavior is shaped by the interplay of the three components of

belief formation, namely belief updating, informational inferences, and expectations about others.

In Experiment 2, unobserved learn from public signals. Thus, the components informational

inferences and expectations about others are turned off. The observable-signals scenario unveils the
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nature of the belief updating rules used by unobserved and the extent to which they undermine their

observational learning success. In Experiment 3, unobserved learn from public guesses known to be

made by computer-observed that adopt the Bayes-rational strategy. Informational misinferences and

non-Bayesian updating potentially impact herd behavior in the second scenario, but the component

expectations about others remains turned off. The comparison of the observational learning success

in Experiments 2 and 3 reveals the nature of informational misinferences and the extent to which

they cause unobserved to misvalue their available information over and above non-Bayesian updating.

Finally, in Experiment 4, unobserved learn from guesses made by other subjects which implies that

the expectations component is turned on. By comparing their observational learning success in

Experiments 3 and 4, we shed light on the model that unobserved have about how others make

guesses and we assess the extent to which uncertainty about others’ strategy impacts herd behavior.

Experiments 2-4’s results show that non-Bayesian updating, informational misinferences, and

incorrect expectations about others all undermine the success of observational learning, though in

different ways. First, non-Bayesian updating and informational misinferences are the two channels

that drive excessive herding with high quality signals. In Experiment 2, the average unobserved acts

against her precise signal when the incentives to follow private information are 1.40 times stronger

than the incentives to contradict private information. Excessive herding is even more pronounced in

Experiment 3 since the average unobserved contradicts her high quality signal when the incentives

to contradict private information are further reduced by 60%. On the other hand, unobserved with

high quality signals learn as successfully from guesses submitted by other subjects as from public

signals. Uncertainty about others’ strategy mitigates excessive herding. Second, the overemphasis on

low and medium quality signals is mainly caused by incorrect expectations about others’ strategy. In

Experiment 3, the average unobserved with a low or medium quality signal learns rather successfully

from short strings of contrary guesses indicating that she correctly appreciates the connection between

the signals of Bayes-rational observed and their informative guesses. In Experiment 4, however, the

average unobserved wrongly believes that observed respond weakly to their private information which

reduces her success when learning from a few contrary guesses. As a final observation, and in line with

herd behavior at the aggregate level, we find the largest proportion of conformists in Experiment 3

(44% versus 14% and 34% in Experiment 2 and 4 respectively) and the largest proportion of dissenters

in Experiment 4 (49% versus 32% and 16% in Experiment 2 and 3 respectively).

In Section 4, we present a structural model of intuitive observational learning which incorporates

non-Bayesian updating, informational misinferences, and wrong expectations about others’ strategy.

In line with the central idea of the “heuristics and biases” program (Kahneman, Slovic, and Tversky,

1982), we posit that when people learn from others’ actions they form probability judgments that

are reflexive and effortless and that these intuitive judgments are often supplemented and sometimes

overridden by more deliberate and taxing judgments. Still, deliberate probability judgments are

likely to remain anchored on their intuitive counterparts (Kahneman, 2003). We should emphasize

that the cognitive processes underlying intuitive observational learning are not merely simpler than

the ones underlying Bayes-rational observational learning, they are different in nature since they rest

on general-purpose heuristics such as the representativeness heuristic. Because of their non-normative

nature, intuitive valuations of the available information are systematically biased.

We consider a logit quantal response version of intuitive observational learning where each belief

component is formulated as a one-parameter extension of its Bayes-rational counterpart. So, our alter-

native model embeds the normative one as a constellation of parameter values, which are individual-

specific to accommodate the rich behavioral heterogeneity found in our experiments. As to the

expectations about how public guesses are made, we postulate that intuitive observational learners—

henceforth Intuitive—don’t entertain the possibility that others’ beliefs are distorted, but they simply
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expect others to play (homogeneous) logit quantal-response equilibrium strategies. Intuitive attribute

to others a payoff-responsiveness that is either strictly smaller or larger than their own meaning that

expectations are heterogeneous. Additionally, we assume that when Intuitive draw an inference from

a public guess, the signal more frequently associated with that guess comes foremost to their mind.

This assumption captures the logic of the representativeness heuristic. Indeed, a public guess that

is more frequently associated with a given signal is more representative of that signal than of the

other signal. Given their simple view of how others make guesses, Intuitive regard guess B as more

representative of signal b than of signal o. Therefore, Intuitive make an informational inference that is

biased towards signal b when they observe guess B (and they make a biased inference towards signal o

after guess O). Our approach follows Gennaioli and Shleifer (2010) who examine how representative-

ness distorts the assessed probabilities of alternative hypotheses. Borrowing from their terminology,

Intuitive are “local thinkers” who make informational inferences in light of what comes to mind, but

not of what does not. The extent to which an Intuitive misinfers from public guesses depends on

her degree of local thinking. Finally, we posit that Intuitive weight the signals inferred from public

guesses differently than advocated by Bayes’ rule. Depending on the value of their public informa-

tion weight, Intuitive treat inferred signals as either less or more informative than would a Bayesian

updater. Though the weighted updating rule is an overly simplified formalization of non-Bayesian

updating, it captures typical probability judgment biases such as conservatism (Edwards, 1968) or

the “belief in the law of small numbers” (Rabin, 2002), the latter being a possible consequence of the

reliance on the representativeness heuristic (Tversky and Kahneman, 1971).

We use maximum-likelihood techniques to estimate, for each unobserved in Experiment 4, her

parameters of the intuitive observational learning model. Our structural estimation results reveal a

rich diversity in the weighting of public information and in the degree of local thinking. Slightly more

than a quarter of the unobserved perceive the informativeness of inferred signals as (at most) four

times lower than would a Bayesian updater, whereas almost a sixth of them treat inferred signals as (at

least) fifty percent more informative than would a Bayesian updater. And though more than half of

the unobserved have a high degree of local thinking, almost a fifth of them make proper informational

inferences. On the other hand, expectations about others’ strategy are quite homogeneous since

more than two-thirds of the unobserved attribute to others the same payoff-responsiveness as their

own. Lastly, we measure the accuracy of our estimated model’s predictions relative to the guesses

made by unobserved in Experiment 4. We find that intuitive observational learning has a much

higher predictive power than the theoretical benchmark which assumes that players probabilistically

best respond to the correct value of their available information. Most notably, the estimated model

captures well the phenomenon of excessive herding with high quality signals. Its strong predictive

power in those guessing situations is driven by the high degrees of local thinking and the non-negligible

overweighting of public information. The behavior of unobserved with medium quality signals is also

well captured by intuitive observational learning. In contrast, the model fails to predict that, when the

incentives to follow others are identical, observational learners are more reluctant to contradict their

low than their medium quality signals. By comparing the predictive power of alternative specifications

of the expectations component, we also find that the nature of expectations about others’ strategy

hardly affects the ability of intuitive observational learning to predict accurately.

We conclude in Section 5 by discussing the robustness of our prediction results with respect to

the modelling assumptions of intuitive observational learning. The supplementary material contains

a series of appendices with complementary data analyses and proofs.3

3The supplementary material is available at https://www.vwl.wi.tum.de/fileadmin/w00bpu/www/team/march/

ExcessiveHerding_SM.pdf.
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Related literature

Since Weizsäcker (2010) summarized the early literature on laboratory cascades, several studies,

complementary to ours, attempted at disentangling rational from less rational forms of herding.4

Brunner and Goeree (BG 2011) test the model of Callander and Hörner (2009) which predicts

that, when they are differentially informed and they observe the number of times each option has

been chosen (rather than the sequence of previous choices as in BHW), rational observational learners

may discard their private information and follow the minority instead of the majority. Contrary to

this prediction, their subjects tend to follow the majority, i.e., they don’t believe that majorities are

more likely to be wrong than right. Likewise, our subjects doubt the fallibility of crowds when they

contradict their high quality signals and follow large contrary majorities. Yet, BG (2011) report that

deviations from theoretical predictions are approximate best responses to the empirical distribution

of play whereas excessive herding with high quality signals results in severe expected losses.

Eyster, Rabin, and Weizsäcker (ERW 2015) investigate experimentally whether people appreciate

the redundancy of information conveyed by others’ actions. A novel observational learning scenario

is introduced where subjects in the current period observe the set of actions chosen by a group of

subjects in the previous period. Though rational observational learning requires anti-imitation, there

is strong evidence for redundancy neglect, which creates excessive imitation, and the average subject

would earn more by ignoring others’ actions. Our finding that unobserved with high quality signals

herd excessively and would be better off without the chance to learn from others clearly corroborates

their results. In their setting, however, rational players aim at learning the signals of their predecessors

rather than an underlying payoff-relevant state and observational learning does not require the use

of Bayes’ rule. Also, ERW (2015) interpret the deviations from optimality as errors in higher-order

reasoning whereas we emphasize the role of intuitive judgments in observational learning.

In an observational learning scenario with private signals of identical quality, Angrisani, Guarino,

Jehiel, and Kitagawa (AGJK 2017) elicit a subject’s beliefs both before and after she receives her

private information. Their experimental results are at odds with the interpretation that early decisions

in the sequence have an undue influence on later decisions (Eyster and Rabin, 2010), but they support

a model where players believe they have a higher ability to understand the private signal than their

predecessors. Our finding that the overemphasis on low and medium quality signals is mainly caused

by incorrect expectations about others’ strategy is clearly in line with AGJK (2017)’s results.

Duffy, Hopkins, Kornienko, and Ma (2017) report an observational learning experiment where

subjects must choose between receiving a private signal or seeing their predecessors’ guesses. The

authors find that aggregate behavior approximates the equilibrium predictions fairly closely, though

some subjects consistently choose social information and others consistently choose private informa-

tion. Heterogeneity in individual herd behavior is also a recurrent finding in our experiments.

2 Laboratory Evidence on Excessive Herding

Laboratory experiments on simple cascade games have confirmed that people herd for informational

reasons, at least when the actions of their predecessors strongly conflict with their private signal. Yet,

Bayes-rational herding is pervasive in these observational learning scenarios, implying that alternative

4Kübler and Weizsäcker (2005) report that in many experiments that follow the basic model by BHW (1992) the
strength of laboratory cascades is positively correlated with their length. They also document that this correlation
leads subjects to imitate their predecessors though the normative solution prescribes to follow one’s own information.
However, past evidence on excessive herding is not entirely convincing. Indeed, to the best of our knowledge, in all former
experimental settings where excessive herding has been observed the empirical incentives to follow private information
were (at best) slightly larger than the empirical incentives to follow others.
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forms of herding were mostly unexplored. Per contra, our first experiment has been expressly designed

to explore the extent to which forces other than Bayes-rational inferences drive herd behavior, in a

setting where the expected costs of excessive imitation are substantial.

2.1 Theory and Experimental Design

Experiment 1 extends the classic “ball and urn” setup, initially proposed by Anderson and Holt

(1997), in two major ways. First, (almost) each subject submits multiple guesses about the unknown

event in different periods, though only one of her guesses is payoff-relevant. This strategy method-like

procedure, introduced in Cipriani and Guarino (2009), generates a dataset large enough to assess the

empirical success of observational learning. Second, similarly to Ziegelmeyer, Koessler, Bracht, and

Winter (2010), there are two groups of subjects who submit their guesses in two parallel sequences.

Observed receive private signals of medium quality and they learn from previous observed guesses as

in BHW’s cascade game. Unobserved also learn from observed guesses but their own guesses remain

private and they receive private signals whose quality is either low, medium or high.

After introducing our laboratory game, we detail the progress of a session and the experimental

procedures.

2.1.1 The Laboratory Game and Its Predictions

We first describe the “2 Sequences and 3 Qualities” observational learning game (henceforth 2S3Q

game) played by subjects during non-practice rounds and then we derive its Bayes-rational predictions.

There are two possible payoff-relevant states of Nature—state BLUE and state ORANGE—

which we denote by states B and O. There are two groups of players: A group of seven observed

players and a group of eight unobserved players. Each player receives a private signal which is a ball

drawn from an urn whose composition depends on the state and on the player’s group. In state B
each observed draws a ball from an urn which contains nObs blue balls and (21− nObs) orange balls

whereas each unobserved draws a ball from an urn which contains nUnobs blue balls and (21− nUnobs)
orange balls with 21 > nObs, nUnobs ≥ 12. In state O each observed draws a ball from an urn which

contains (21− nObs) blue balls and nObs orange balls whereas each unobserved draws a ball from an

urn which contains (21− nUnobs) blue balls and nUnobs orange balls. If a player draws a blue ball

then we denote her signal by b and if a player draws an orange ball then we denote her signal by o.

The ratio nObs/21 corresponds to the signal quality of observed and the ratio nUnobs/21 corresponds

to the signal quality of unobserved. Different parametrizations of the game rely on different values

of the observed and unobserved signal qualities where, for a given parametrization, both are public

knowledge. As detailed below, in each session of Experiment 1 subjects play three parametrized

versions of the game with nObs = 14 and nUnobs ∈ {12, 14, 18}.
At the start of the game Nature randomly selects one of the two states with Pr (B) = 0.55 and each

player receives a private signal. The randomly selected state remains unknown to the players. Then

players submit guesses about the state randomly selected by Nature over eight periods. There are two

possible guesses—“guess state BLUE” and “guess state ORANGE”—which we denote by guesses

B and O. In period 1 all fifteen players simultaneously submit a guess. At the beginning of period 2,

one of the seven observed guesses submitted in period 1 is publicly revealed and the observed whose

guess becomes public stops guessing. Then all fourteen remaining players simultaneously submit a

guess. At the beginning of period 3, one of the six observed guesses submitted in period 2 is publicly

revealed and the observed whose guess becomes public stops guessing. Then all thirteen remaining

players simultaneously submit a guess. And so on, until period 8 where all unobserved simultaneously

submit a guess. Note that the guesses of unobserved remain private and that players who act in period
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t ∈ {1, . . . , 8} face history ht = (g1, . . . , gt−1) ∈ Ht = {B,O}t−1, with h1 = ∅, where gτ is the observed

guess submitted in period τ ∈ {1, . . . , t − 1} and made public at the beginning of the next period.

Every observed guess submitted in period t ∈ {1, . . . , 7} is equally likely to be publicly revealed at

the beginning of the next period meaning that the selection probability equals 1/(8− t).
Once all guesses have been submitted, payoffs are realized. For each player only one of her guesses

is payoff-relevant. The payoff-relevant guess of each observed is the last guess she submitted, i.e., the

guess which has been publicly revealed. On the other hand, each unobserved is randomly assigned

to one of the eight periods, a different one for each unobserved, and her payoff-relevant guess is the

one she submitted in that period (which she learns about only after all guesses have been made).

We assume that players are expected utility maximizers and that each payoff-relevant guess B has

vNM payoffs u (B,B) = 1 and u (B,O) = 0 whereas each payoff-relevant guess O has vNM payoffs

u (O,B) = 0 and u (O,O) = 1. Thus, our laboratory game is strategically equivalent to an observa-

tional learning game where, in each group, players submit guesses in an exogenously given order.

Predictions. Assume that players update their beliefs using Bayes’ rule and that they maximize

their expected payoffs conditional on those beliefs. If we assume further that this fact and the game

structure are commonly known, then the 2S3Q game has a unique rationalizable outcome. From now

on, we refer to this joint assumption simply as Bayesian rationality. In period 1, observed guess in

accordance with their private information, signal o leads to guess O whereas signal b leads to guess B.

In period 2, observed follow their private information if the history is (O) and they submit guess B if

the history is (B). Hence, if guess B is publicly revealed at the beginning of period 2, an information

cascade starts with all subsequent observed submitting guess B. In period 3, an information cascade

starts at history (O,O) with all subsequent observed submitting guess O whereas observed follow

their private information at history (O,B). In later periods, a B-cascade (resp. O-cascade) starts

after any history with one B (resp. two Os) not canceled out by previous guesses. The only history

which does not lead to an information cascade is the history (O,B, . . . O,B), and the probability of

no cascade decreases exponentially.5

Unobserved with signal quality 12/21 imitate the most recent public guess except in the first

period or after history (O,B . . . O,B) where they follow their private information. Unobserved with

signal quality 14/21 act like observed. Finally, unobserved with signal quality 18/21 follow their

private information at all histories.

2.1.2 The Progress of an Experimental Session

Each session starts with three paid practice rounds during which the 15 subjects familiarize them-

selves with the observational learning task. In a given practice round, each subject submits a guess

about one of two possible states after having observed a sequence of previous guesses (the public

information) and a ball drawn from a physical urn whose composition depends on the unknown state

(her private information). After practice, subjects play six repetitions of the 2S3Q game in each

of three parts which differ according to the quality of private signals that unobserved receive. The

strategy method-like procedure allows subjects to learn from various sequences of previous guesses

for a given private signal. In particular, unobserved gain extensive experience with the combination

of private and public information as they learn from various sequences of observed guesses with three

different signal qualities. Note that to reduce confusion and errors, there is no mentioning of the three

parametrizations of the 2S3Q game at the start of the session meaning that subjects are informed

5Having an asymmetric prior in the 2S3Q game has two advantages. First, there is no need to consider a commonly
known tie-breaking rule as Bayes-rational players are never indifferent. Second, information cascades are more likely to
emerge than in a game with a flat prior where indifferent players follow their private information.
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about the prevailing parametrization only at the beginning of the part.

Practice rounds: In each of the three practice rounds unobserved receive private signals of quality

14/21 and each subject submits only one guess. Concretely, in each of the first seven decision periods

one observed and one unobserved submit a guess, and in the last decision period only the remaining

unobserved submits a guess. Assignments to decision periods are random. Participants receive 1

Euro for a correct guess and 0 Euro otherwise. At the end of the practice round, each subject is

reminded of her private signal, her guessing period, the guess she made and the sequence of observed

guesses, and she is informed about the realized state and her earnings. Additionally, feedback screens

of observed display the composition of the urn used in the observed sequence whereas feedback screens

of unobserved display the urn composition in each sequence.

Part 1: Medium quality signals for unobserved. In part 1 subjects play six repetitions of the

2S3Q game where unobserved receive private signals of quality 14/21. Concretely, all 15 subjects

submit a guess in the first decision period. The guess of one observed is randomly selected to be

made public at the beginning of the next period and this subject stops from submitting guesses. In

the second decision period, all remaining 14 subjects submit a guess. The guess of one observed is

randomly selected to be made public at the beginning of the next period and this subject stops from

submitting guesses. And so on, until the last decision period where all unobserved submit a guess.

For each subject, only one randomly selected guess is paid in each repetition. If the guess is correct

the subject receives 1 Euro, otherwise she receives nothing. Feedback screens are identical to those

in the practice rounds except that each subject is only reminded of her payoff-relevant guess and of

the observed guesses which were made public.

Part 2: High quality signals for unobserved. The second part is identical to the first one except

that unobserved receive private signals of quality 18/21.

Part 3: Low quality signals for unobserved. The third part is identical to the first one except

that unobserved receive private signals of quality 12/21.

We designed Experiment 1 to measure the observational learning success in rich-information scenarios

with a particular interest for the scenario where unobserved receive high quality signals. Experimental

sessions therefore start with the simple scenario where observed and unobserved receive medium

quality signals to promote successful observational learning. And they end with unobserved receiving

low quality signals to avoid biasing their behavior towards excessive herding in earlier parts.

2.1.3 Experimental Procedures

The experimental sessions took place at the laboratory for experimental economics of the Technis-

che Universität München (experimenTUM) in April 2014, February and April 2015. Students from

the Technische Universität München and the Ludwig-Maximilians-Universität München were invited

using the ORSEE recruitment system (Greiner, 2015). We conducted nine sessions with 16 subjects

in each session. One subject was randomly selected to serve as the laboratory assistant and the

other fifteen were randomly assigned to computer terminals in isolated booths. Experiment 1 was

programmed in zTree (Fischbacher, 2007).

Each session started with short demonstrations of the state-selection procedure. An experimenter

shuffled a deck of 20 cards—11 cards with a blue front and 9 cards with an orange front—and laid the

9



cards face down on a table. The assistant then picked 1 card out of the 20 cards, and the front color of

the picked card determined the state.6 After the demonstrations, paper instructions for the practice

rounds were distributed and subjects were given time to read them at their own pace. Instructions

were then read aloud and finally subjects learned about their role, observed or unobserved, which they

kept during the entire experimental session.

The procedures of the three practice rounds closely follow those used by Anderson and Holt (1997)

in their baseline experiment except for the two parallel sequences of subjects and the fact that guesses

were collected and transmitted through computer terminals. Concretely, after the assistant randomly

selected a state, experimenters went to each unobserved with the physical “UNOBSERVED” urn

containing 14 correct balls and 7 incorrect balls. The participant was asked to draw one ball, return

it to the urn and confirm its color in an input box on her computer screen. At the same time each

observed was approached by another experimenter with the physical “OBSERVED” urn, containing

14 correct balls and 7 incorrect balls, to learn the color of one ball. Guesses were then made at the

computer.

Once the practice rounds were over, paper instructions for part 1 were distributed and subjects

were given time to read them at their own pace. A summary of the instructions was then read aloud.

A short on-screen-demonstration of the draws from the virtual urns followed (to save time, subjects

drew private signals from virtual urns displayed on their computer screens during non-practice parts).

Again, one of the experimenters summarized aloud the main points of the demonstration. After that,

the six repetitions of part 1 were run. The second part of the experiment was conducted in a similar

way as the first one except that only short paper instructions were distributed. Part 2 was followed by

a short break. Subjects were offered soft drinks and water, and a paper questionnaire was distributed

asking for gender, month and year of birth, academic major, mother tongue, and citizenship. Short

paper instructions for part 3 were then distributed and the six repetitions were conducted. Finally,

subjects privately retrieved their earnings.

In each session we collected 45 guesses from the three practice rounds and 1,656 guesses from the

18 repetitions of the 2S3Q game for a total of 4,725 observed and 10,584 unobserved guesses. On

average, observed and unobserved earned 17.33 Euro and 17.96 Euro respectively, including a show-up

fee of 3 Euro. A session lasted for about 105 minutes. During the entire session, subjects interacted

only through the computers and no other communication was permitted. Appendix A contains a

translated version of the instructions.

2.2 Results

The data analysis reported in the main text excludes the few guesses submitted during the practice

rounds and groups together the observed guesses over the three non-practice parts. Our analysis

therefore abstracts from the potential changes in the observational learning behavior of observed over

the course of the experiment and it compares the behavior of unobserved with medium quality signals

to the observed behavior averaged across the three parts. March and Ziegelmeyer (2016) examine

thoroughly the dynamics of the observed and unobserved behavior in a setting similar to Experiment

1 except that the two roles always receive medium quality signals and interactions take place over two

non-practice parts. They show that observed contradict their private information significantly less

often than unobserved in situations where the monetary incentives to follow others are moderately

weak and that once the incentives to follow others are strong enough both roles contradict their private

information to the same extent. Moreover, behavioral differences between observed and unobserved

6The laboratory assistant randomly selected the state in each practice and non-practice round. The assistant also
helped with the drawing of signals from the physical urns during the practice rounds and she monitored the progress of
the session on her own computer terminal.
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significantly increase as the session progresses. They conclude that the exaggerate response to private

information mainly originates from subjects recognizing the future benefits of informative guesses and

behaving altruistically. Complementary data analyses are provided in Appendix B and they confirm

that observed guesses become more informative over time.

Note that the strategy method-like procedure implies that subjects face random payments with

known probabilities in each repetition of the 2S3Q game. We assume that subjects evaluate objective

lotteries according to expected utility, a sufficient condition to ensure the incentive compatibility of

our payment protocol.

2.2.1 Descriptive Analysis

First, we examine the nature of the histories of public guesses in the different decision periods, i.e.,

the observed guesses that have been publicly revealed up to the (beginning of the) relevant period.

Second, we assess the influence of public guesses on subjects’ propensity to contradict their private

information and on their ability to make (ex post) correct guesses.

Table 1 shows the distributions of histories of public guesses in each period derived from the 162

repetitions of the 2S3Q game. For the sake of space, we shorten the notation of histories—for example

histories BBBB and OOOB are shortened to 4B and 3OB—and from period 5 on we only report

histories which occur at least 3 times.

Period B O
2 53% 47%

Period 2B BO OB 2O
3 32% 21% 24% 23%

Period 3B 2BO BOB B2O O2B OBO 2OB 3O
4 29% 03% 12% 09% 09% 15% 02% 21%

Period 4B BO2B BOBO B3O O3B OBOB OB2O 3OB 4O
5 28% 05% 07% 08% 08% 04% 11% 03% 18%

Period 5B 4BO BO3B BOBOB BOB2O B4O O4B OB3O 3OBO 5O
6 25% 03% 04% 02% 04% 07% 07% 11% 02% 17%

Period 6B 4BOB BO4B BOBO2B BOB3O B5O O5B OB4O 6O
7 23% 02% 04% 02% 03% 07% 07% 11% 17%

Period 7B 4BO2B BO5B BOBO3B BOB4O B6O O6B OB5O 7O
8 22% 02% 04% 02% 02% 07% 06% 10% 15%

Table 1: Distributions of Public Histories

We observe that in many empirical histories guess O follows guess B (a fifth of the histories that

occur in period 3 or later) and that in some empirical histories either guess O follows guesses BB or

guess B follows guesses OO or even guesses OOO (together, almost one tenth of the histories that

occur in period 4 or later). These non-Bayes rational guesses imply that empirical histories are more

diverse than predicted. In particular, Bayesian rationality predicts that 75% of the final histories are

full cascades, i.e. 7B or 7O, and that about 20% of final histories are either O6B or OB5O. The

predicted distribution of final histories differs significantly from the empirical one (Chi-square test;

p-value < 0.01) where only 37% of the final histories are full laboratory cascades. Our results are

perfectly in line with those of past cascade experiments and they indicate that observed guesses rely

too much on private information, as confirmed by the next analysis.

In a given period, the information set of a subject corresponds to the couple (private signal,

history of public guesses). As a convention we denote the size of the majority of public guesses by

∆ = #blue − #orange where #blue and #orange is the number of blue and orange guesses in the

11



public history with ∆ ∈ {−(t − 1), . . . , t − 1} at the beginning of period t ∈ {1, . . . , 8}. Moreover,

we refer to the majority of public guesses as a contrary majority (resp. favoring majority) in cases

where the subject’s private signal and the majority of public guesses are conflicting (resp. concordant)

pieces of information. Thus, the subject faces a contrary (resp. favoring) majority either when she is

endowed with a blue signal and ∆ < 0 (resp. ∆ > 0) or when she is endowed with an orange signal

and ∆ > 0 (resp. ∆ < 0). If ∆ = 0, there is no majority in the history of public guesses. Table 2

reports the percentage of guesses that contradict private information by the signal of each role and

for the different majorities of public guesses. Note that observed (resp. unobserved) face majorities

of size at most 6 (resp. 7). We don’t differentiate between favoring majorities since the percentages

of guesses contradicting private information hardly change with the size of the favoring majority or

between large contrary majorities as fewer data are available for contrary majorities of size 5 or more.

We say that a subject herds if she contradicts her private signal when she faces a contrary majority

of public guesses, thereby excluding imitative guesses which accord with private information.

Observed Unobserved
History of Medium quality Low quality Medium quality High quality

public guesses b o b o b o b o

Favoring majority 02% 02% 02% 01% 03% 03% 01% 02%
(889) (745) (769) (741) (825) (751) (968) (791)

No majority 03% 06% 06% 10% 05% 11% 01% 03%
(796) (781) (372) (340) (350) (330) (335) (393)

1 14% 20% 53% 53% 27% 33% 02% 06%
Contrary (292) (296) (204) (163) (155) (144) (123) (184)

2 63% 63% 79% 85% 77% 67% 26% 12%
majority (136) (141) (130) (098) (094) (104) (072) (083)

3 81% 84% 86% 91% 83% 82% 47% 25%
of (106) (107) (111) (098) (103) (106) (072) (075)

4 89% 87% 88% 94% 91% 88% 52% 47%
size (062) (076) (072) (082) (080) (097) (064) (062)

≥ 5 91% 92% 93% 94% 94% 88% 57% 50%
(043) (066) (134) (142) (137) (180) (102) (132)

Note: In each cell, the first row reports the percentage of guesses that contradict private information and the
second row reports the number of guesses.

Table 2: Percentages of Guesses that Contradict Private Information

Several observations can be made from Table 2. First, whenever the private signal and the history

of public guesses do not constitute conflicting pieces of information, i.e., at favoring and no majorities,

almost all guesses follow private information. Second, subjects’ propensity to contradict their private

information systematically increases with the size of the contrary majority. This observation entails

that once the public evidence is conclusive enough herd behavior is qualitatively consistent with Bayes-

rational herding for low and medium quality signals and that unobserved with high quality signals herd

excessively. Indeed, the majority of unobserved guesses contradict high quality private information

at large contrary majorities. Third, at small and medium contrary majorities, the higher their signal

quality the more unobserved follow their private information. Reassuringly, unobserved guesses take

into account the quality of the signal. Fourth, subjects contradict their private information more

frequently with orange than with blue signals at contrary majorities of size 1 but the difference

vanishes at larger contrary majorities. This suggests that guesses account to some extent for the

asymmetric prior. Finally, in line with the main finding of March and Ziegelmeyer (2016), unobserved
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with medium quality signals contradict their private information more often than observed at short

contrary majorities but the difference vanishes at larger contrary majorities.

In Appendix B, we report the fraction of (ex-post) correct guesses for observed and for each signal

quality in the case of unobserved (fractions are averaged across signals). We find that, whatever the

size of the contrary majority, the more profitable guess consists in following private information for

unobserved with high quality signals. Also, it is more profitable for observed (resp. unobserved with

low or medium quality signals) to contradict private information when the contrary majority is of

size ≥ 2 (resp. ≥ 1).

2.2.2 Measuring the Success of Observational Learning by Controlling for Incentives

As rightly argued by Weizsäcker (2010), existing theoretical models of observational learning have a

rather limited descriptive power which implies that in many cases they falsely predict the incentives

of laboratory subjects. It is therefore problematic to measure the success of observational learning

by assuming that subjects learn from players who obey a descriptively inaccurate model solution.

The alternative approach we follow here first estimates subjects’ incentives to contradict their private

information and then measures the success of observational learning by controlling for these incentives.

In each of the three non-practice parts, we estimate separately for observed and unobserved the

(expected monetary) value of a guess that contradicts private information across all observations

with the same history and private signal. This empirical value of contradicting private information

approaches the true value of contradicting private information as the number of occurrences of the

guessing situation increases in the dataset. Formally, a guessing situation is characterized by part

p ∈ {1, 2, 3}, role r ∈ {observed, unobserved}, signal s ∈ {b, o} and history of public guesses ht =

(g1, . . . , gt−1) ∈ {B,O}t−1, and the empirical value of contradicting private information at guessing

situation (p, r, s, ht) is defined by

value contra PI (p, r, s, ht) =



1 +
11 q

9 (1− q)

∏
τ<t

2 P̂ r (gτ | b, hτ ,B) + P̂ r (gτ | o, hτ ,B)

P̂ r (gτ | b, hτ ,O) + 2 P̂ r (gτ | o, hτ ,O)

−1

if s = b

1 +
9 q

11 (1− q)

∏
τ<t

P̂ r (gτ | b, hτ ,O) + 2 P̂ r (gτ | o, hτ ,O)

2 P̂ r (gτ | b, hτ ,B) + P̂ r (gτ | o, hτ ,B)

−1

if s = o,

where q ∈ {12/21, 14/21, 18/21} is the quality of signal s, and P̂ r (gτ | s′, hτ , ω) is the fraction of gτ

guesses, gτ ∈ {B,O}, among all observed guesses with signal s′ ∈ {b, o} of quality 14/21, at history

hτ ⊂ ht and state ω ∈ {B,O} (products over τ < t are assumed equal to one in the first period).

Note that the computation of value contra PI (p, r, s, ht) requires that the fraction of gτ guesses

exists for each couple (s′, ω) at each sub-history hτ ⊂ ht, a more stringent requirement in later

periods. We are unable to compute value contra PI at 133 of the 327 guessing situations encoun-

tered by observed and at 303 of the 506 guessing situations encountered by unobserved. Still, the

guessing situations for which value contra PI can be computed cover about 94% and 74% of the

observed and unobserved guesses respectively. The omitted guessing situations occur rather infre-

quently as they are mostly encountered in the last period of each sequence.7 More importantly,

value contra PI (p, r, s, ht) is an imperfect measure of the true underlying monetary incentives whose

precision relates to the number of occurrences of the guessing situation in the dataset. We denote

by sitcount (p, r, s, ht) the number of occurrences of guessing situation (p, r, s, ht) in the dataset. The

7For example, half of the left out unobserved guesses are made in period 8 where the empirical value of contradicting
private information cannot be computed for (almost) any guessing situation.
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data analysis reported in the main text has been performed on the sample of guessing situations with

sitcount ≥ 10 as value contra PI is likely to be far away from the true expected value of contradicting

private information for rarely occurring situations. Robustness checks based on different samples of

guessing situations deliver the same qualitative results (see Appendix B).

Note also that subjects cannot derive the empirical value of contradicting private information after

the first period since value contra PI (p, r, s, ht) is computed using the occurrences of the guessing

situation in all sessions and using all observed guesses, publicly revealed or not. However, our aim is

not to examine how well subjects uncover the true behavior of others as their experiences accumulate,

but rather to compare their success in learning from others with the success of players who, on

average, correctly react to the true value of contradicting information. Concretely, our theoretical

benchmark assumes that players know the informational value of public guesses, whether these guesses

are compatible with Bayesian rationality or not, that they update their beliefs using Bayes’ rule, and

that they make probabilistic money-maximizing guesses conditional on their beliefs (where the choice

probability of a guess increases with its expected monetary payoff). If the empirical value estimates

perfectly the true value of contradicting private information, the theoretical correspondence between

value contra PI and the probability of contradicting private information is an S-shaped curve through

(0.5, 0.5). By controlling for the underlying incentives, our analysis measures how successful subjects

are in learning from others compared to players in the theoretical benchmark.

Empirical Values of Contradicting Private Information

Before analyzing the subjects’ responses to the empirical value of contradicting private information,

we examine the level of the underlying incentives in various guessing situations. Table 3 reports the

empirical values of contradicting private information by majorities of public guesses and by role, distin-

guishing between signal qualities for unobserved. In each cell, we display the mean of value contra PI,

the first and ninth deciles of value contra PI, and the total number of individual observations for all

guessing situations in the first, second, and third row respectively.

Incentive levels in the top row of Table 3 clearly imply that, for each role and each signal quality,

the empirically optimal guess at favoring majorities consists in following private information. The

average incentives to act in accordance with private information are at least four times stronger

than the average incentives to contradict private information. Further down the table incentives

to contradict private information firmly increase till the contrary majority reaches size 2 but then

incentive levels hardly vary with additional contrary guesses. According to the estimated values

of contradicting private information, contrary majorities of size ≥ 2 aggregate about two private

signals.8 In the last two columns of Table 3, the incentives to follow private information are at least

1.5 times stronger than the incentives to contradict private information. Unobserved should therefore

always follow their private information when endowed with high quality signals. On the other hand,

unobserved with low quality signals should herd at contrary majorities of any size and they should

follow their private information otherwise (columns 4-5). Still, incentives to make the empirically

optimal guess are weak in the case of no majority and an orange signal. Given the average incentive

levels in columns 2-3 and 6-7 of Table 3, subjects with medium quality signals should follow (resp.

contradict) their private information at favoring and no majorities (resp. at contrary majorities of size

≥ 2). At contrary majorities of size 1 they should follow (resp. contradict) their private information

with a blue signal (resp. an orange signal) though, as expected, incentives to make the empirically

8The value of contradicting private information for an individual with a blue signal of low (resp. medium and high)
quality who infers (a net of) two orange signals of medium quality from the public guesses equals 0.71 (resp. 0.62 and
0.35). The value of contradicting private information for an individual with an orange signal of low (resp. medium and
high) quality who infers two blue signals of medium quality from the public guesses equals 0.79 (resp. 0.71 and 0.45).
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Observed Unobserved
History of Medium quality Low quality Medium quality High quality

public guesses b o b o b o b o

Favoring majority
.16 .20 .18 .22 .17 .18 .05 .09

.11− .19 .13− .25 .14− .25 .15− .32 .16− .19 .12− .25 .04− .07 .05− .11

(704) (596) (517) (538) (524) (540) (655) (464)

No majority
.29 .38 .38 .48 .28 .39 .12 .17

.28− .29 .38− .39 .37− .40 .46− .49 .27− .29 .38− .40 .12− .12 .17− .17

(751) (748) (331) (301) (321) (311) (319) (359)

1 .45 .53 .57 .64 .43 .52 .20 .27

Contrary
.43− .48 .51− .53 .55− .64 .60− .74 .37− .46 .50− .61 .20− .23 .26− .28

(250) (266) (150) (147) (135) (120) (115) (156)

2 .59 .63 .71 .77 .58 .58 .29 .38

majority
.56− .63 .58− .67 .60− .77 .75− .81 .49− .63 .58− .58 .19− .38 .38− .39

(076) (110) (084) (069) (080) (064) (064) (060)

3 .63 .64 .73 .76 .59 .56 .27 .41

of
.59− .69 .56− .68 .56− .80 .76− .76 .49− .64 .56− .56 .18− .33 .41− .41

(064) (088) (076) (045) (078) (061) (046) (039)

4 .61 .64 .75 .78 .56 .57 .26 .39

size
.59− .66 .57− .70 .75− .75 .78− .78 .49− .59 .57− .57 .18− .33 .39− .39

(042) (068) (032) (042) (049) (060) (039) (039)

≥ 5 .61 .63 .73 .77 .63 .55 — .38
.61− .61 .56− .70 .73− .73 .77− .78 .61− .65 .54− .56 −−− .38− .38

(012) (044) (096) (068) (068) (099) (000) (037)

Note: In each cell, from top to bottom: mean of value contra PI, 1st − 9th deciles of value contra PI, and number
of individual observations.

Table 3: Empirical Values of Contradicting Private Information

optimal guess are rather weak.

Responses to the Empirical Value of Contradicting Private Information

Figure 1 plots the empirical value of contradicting private information against the proportion of

contradictions collected in identical guessing situations. The abscissae and sizes of bubbles are given by

levels of value contra PI and sitcount. The ordinates of red, black and green bubbles are given by the

proportions of contradictions for unobserved with high, medium and low quality signals respectively

(for the sake of readability, observed bubbles are omitted). Figure 1 also superimposes fitted curves

from a weighted linear regression that includes a cubic polynomial in value contra PI fully interacted

with indicator variables for unobserved in each part. To correct for the fact that value contra PI

imperfectly measures the true expected value of contradicting private information, we follow the

split-sample instrumental variable (IV) method described in Weizsäcker (2010) which obtains an

instrument by partitioning the dataset in two subsamples. The grey, red, black, and green curve

is the fitted curve for observed, unobserved with high, medium and low quality signals respectively

(the observed response is averaged over the three parts). The sample of guessing situations with

sitcount ≥ 10 consists of 239 distinct guessing situations for a total of 10,039 individual observations.

First, we compare the responses of unobserved with medium quality signals to those of observed.

In situations where their private information happens to support the empirically optimal guess both

roles largely follow their signal though unobserved do so less often than observed. Averaging across

observations where value contra PI ≤ 0.5, the proportion of guesses that are optimal is 0.92 and 0.96
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Notes: i) •◦, •◦, •◦: Unobserved guesses made with high, medium and low quality signals respectively;
•◦: Observed guesses.

ii) Empirical values of contradicting private information fall into the range [0.10, 0.70], [0.11, 0.81],
[0.12, 0.65], and [0.04, 0.41] for observed across all three parts, unobserved with low, medium and
high quality signals respectively.

Figure 1: Responses to the Empirical Value of Contradicting Private Information

for unobserved and observed, respectively. By contrast, in situations where they should contradict

their private information unobserved guess optimally and follow others far more often than observed.

Averaging across observations where value contra PI > 0.5, the proportion of guesses that are optimal

is 0.76 and 0.55 for unobserved and observed, respectively. Still, the black curve is not an S-shaped

curve through (0.5, 0.5), and we reject the hypothesis that unobserved with medium quality signals

probabilistically best respond to the value of their available information as the vertical distance

between the black curve and (0.5, 0.5) is strongly significant (two-tailed p-value < 0.01). Back to

comparing the observational learning behavior of the two roles, we note that the reluctance of observed

to contradict their private information is especially pronounced in situations where the expected

monetary costs of making an informative guess are moderate at most. Averaging across observations

where 0.5 < value contra PI ≤ 0.6, the proportion of observed contradictions is only 0.45 whereas

the proportion of unobserved contradictions is 0.73. However, once the incentives to follow others are

strong enough both roles largely contradict their private information: Averaging across observations

where value contra PI > 0.6, the proportion of contradictions is 0.87 and 0.73 for unobserved and

observed, respectively. We test whether observed make more informative guesses than unobserved

by comparing the predicted frequencies to contradict private information at value contra PI = 0.55

which corresponds to the level of monetary incentives necessary for unobserved to follow others with

more than probability one-half. We find that observed act more informatively than unobserved since

the vertical distance between the grey curve and (0.55, 0.5) is strongly significant (two-tailed p-value

< 0.01). Importantly enough, in 431 out of the 503 observations where 0.5 < value contra PI ≤ 0.6
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observed face a contrary majority of size ≤ 3 and they act in period 4 or earlier. Our findings

therefore support the conclusion of March and Ziegelmeyer (2016) that subjects overweight their

private information largely because they recognize the future benefits of informative guesses and

behave altruistically.

We now examine the responses of unobserved with low quality signals. In the left half of Figure 1,

unobserved almost always make the empirically optimal guess: Averaging across observations where

value contra PI ≤ 0.5, the proportion of guesses that are optimal is 0.97. Thus, in situations where

their private information supports the empirically optimal guess unobserved respond more strongly to

the underlying incentives with low than with medium quality signals. On the contrary, in situations

where they should contradict their private information unobserved guess less optimally with low than

with medium quality signals. Averaging across observations where 0.5 < value contra PI ≤ 0.65,

the proportion of unobserved contradictions with low quality signals equals 0.56 which is only three-

quarter of the proportion of unobserved contradictions with medium quality signals. Most notably, the

proportion of contradictions equals 0.55 for the 150 observations with 0.6 < value contra PI ≤ 0.65

which correspond to guessing situations where the size of the contrary majority equals 1 (in 123 out of

the 150 cases the signal is orange). We also find that the vertical distance between the green curve and

(0.5, 0.5) is strongly significant (two-tailed p-value < 0.01) leading to the rejection of the hypothesis

that unobserved with low quality signals probabilistically best respond to the value of their available

information. Still, once the incentives to follow others are strong enough, unobserved with low quality

signals largely contradict their private information as the average proportion of contradictions is 0.88

across observations where value contra PI > 0.65.

Finally, we examine the responses of unobserved with high quality signals. The red curve firmly

increases with the empirical value of contradicting private information and it reaches the level of

0.5 at value contra PI = 0.39. Thus, in guessing situations where the incentives to follow private

information are 1.5 times larger than the incentives to contradict private information, the average

unobserved acts against her signal. This result occurs because unobserved with high quality signals

fail to respond correctly to the value of their available information when they face large contrary

majorities. Indeed, at contrary majorities of size 5, value contra PI equals 0.38 and the proportion

of contradictions reaches 0.54 meaning that most guesses are incorrect responses to the underlying

incentives. Even at contrary majorities of size 4 the proportion of contradictions is larger than one-

half (0.51) though the mean of value contra PI only equals 0.32 when averaged across signals. On the

other hand, at contrary majorities of size 2, the mean of value contra PI equals 0.33 and unobserved

often make the empirically optimal guess as the proportion of contradictions is 0.18. In our descriptive

analysis we already highlighted that the herding of unobserved with high quality signals is particularly

pronounced when they face large contrary majorities. By controlling for the underlying incentives

our analysis shows that unobserved with high quality signals wrongly assess the informational value

of public guesses in large contrary majorities and that their excessive herding is severely harmful.

In fact, unobserved with high quality signals would be better off by not learning from others as the

proportion of optimal guesses in period 1 is greater than the average proportion of optimal guesses

across later periods (0.98 versus 0.92), even though unobserved mostly face favoring majorities when

endowed with high quality signals.

2.2.3 Herd Behavior at the Individual Level

To examine herd behavior at the individual level, we assign unobserved into six decision rules based

on their profile of guesses across ten groups of guessing situations (see Appendix D for details). In

group 1 (resp. 2 and 3), the history of public guesses induces a favoring or no majority and the signals’
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quality is low (resp. medium and high). In groups 4 to 10, the history of public guesses always induces

a contrary majority. In group 4 (resp. 5), the signals’ quality is low and the majority size is less

than 2 (resp. more than 3). In both groups the empirically optimal guess is herding and the average

incentives to do are weaker in group 4 than in group 5 (vcPI = 0.65 vs. vcPI = 0.75). In group 6,

the signal is blue medium and the majority size is 1 which implies that unobserved should follow their

signal. In group 7, the empirically optimal guess is herding since either the signal is orange medium

and the majority size is 1 or the signals’ quality is medium and the majority size is 2. The incentives

to guess optimally are rather weak in groups 6-7. In group 8, the signals’ quality is medium and the

majority size is larger than 3 which implies that unobserved should herd (vcPI = 0.58). Finally, in

group 9 (resp. 10), the signals’ quality is high and the majority size is less than 2 (resp. more than

3). In both groups following private information is empirically optimal (on average, vcPI = 0.30).

Our classification proceeds in two steps. First, an unobserved is classified as noisy if less than half

of her guesses are empirically optimal both across groups 1-3 and across groups 4-10. Second, each

of the remaining unobserved is assigned to one of five non-noisy decision rules based on her profile of

guesses across groups 4-10. The first decision rule is successful observational learning (SOL) which

guesses optimally in every group of guessing situations. The next two rules herd excessively compared

to SOL. The weak conformism rule (WC) guesses like SOL except that it herds in groups 6 and 10,

and the strong conformism rule (SC) guesses like WC except that it also herds in group 9. On the

other hand, the last two rules follow private information excessively compared to SOL. The weak

following-private-information rule (WFPI) guesses like SOL except that it follows private information

in groups 4 and 7, and the strong following-private-information rule (SFPI) guesses like WFPI except

that it also follows private information in groups 5 and 8. For each unobserved we compute 5 scores

where each score reflects the adequacy between her guesses and the guesses made by one of the five

non-noisy decision rules.9 The highest score determines the rule to which the unobserved is assigned.

We find that 32% of the unobserved are assigned to the SOL rule, 33% (resp. 03%) of them

are assigned to the WC (resp. SC) rule, and 25% (resp. 06%) of them are assigned to the WFPI

(resp. SFPI) rule. Only one unobserved is classified as noisy. Thus, unobserved are almost equally

divided into observational learners who guess optimally, observational learners who herd too often,

and observational learners who respond too strongly to their private information. Unsurprisingly,

excessive herding is most pronounced among conformists with an average proportion of contradictions

of private information equal to 0.83 in group 10. We note, however, that even SOL and WFPI exhibit

a non-negligible tendency to herd with high quality signals at large contrary majorities (the average

proportion of contradictions is 0.17 for SOL and 0.43 for WFPI). In a similar vein, though the

overemphasis on low or medium quality signals is most pronounced among FPIs, SOL and WC also

tend to respond too strongly to private information at small contrary majorities (when averaged

across groups 4 and 7, the proportion of guesses that follow private information is 0.20 for SOL and

0.28 for WC). In sum, herd behavior is substantially heterogeneous at the individual level but the

tendencies to herd excessively with high quality signals and to respond too strongly to low or medium

quality signals are rather widespread among unobserved.

2.3 Discussion

There are four main insights that come out of Experiment 1. First and foremost, unobserved with

high quality signals wrongly respond to the informational value of public guesses in large contrary

majorities which leads them to herd excessively. Deviations from Bayes-rational herding result in

9Concretely, if in a given situation the unobserved guess matches the guess of the decision rule then we add one to
the score, otherwise the score remains unchanged.
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severe expected losses and unobserved with high quality signals would be better off without the

chance to learn from others. Second, though they fall short of better responding to the value of their

available information, unobserved with medium quality signals are quite successful in learning from

others. In particular, their overemphasis on private information is less pronounced than for observed

whose behavior is partly driven by efficiency concerns. Third, unobserved are more reluctant to

contradict their private information with low than with medium quality signals when facing identical

incentives to follow others. Still, the proportion of unobserved contradictions with low quality signals

is larger than one-half whenever the empirical value of contradicting private information exceeds

0.55. Fourth, there is substantial heterogeneity in the individual herd behavior. Unobserved are

almost equally divided into observational learners who guess optimally, observational learners who

herd too often, and observational learners who respond too strongly to their private information.

As we just emphasized, the observational learning success of unobserved is rather modest in the

challenging situations where public guesses conflict with their private signals, especially when signals

are of high quality. We interpret this modest success as a failure by unobserved to properly assess the

value of their available information in the face of contradictory public information. Secondary insights

from Experiment 1 support our interpretation, rather than the alternative interpretation according

to which unobserved fail to better respond to properly valued information endowments. Indeed, in

many of the situations where unobserved learn from contrary majorities their guesses respond to the

quality of the private signals or to the asymmetric prior as qualitatively advocated by our theoretical

benchmark. We found that i) the higher their signal quality the more often unobserved follow their

private information at small and medium contrary majorities; and that ii) unobserved contradict

their private information more frequently with orange than with blue signals at contrary majorities

of size 1 though the difference vanishes at larger contrary majorities. We also note that unobserved

predominantly make the empirically optimal guess when they face favoring or no majorities. Overall,

the evidence from Experiment 1 indicates that unobserved guesses largely respond to the information

structure of the 2S3Q game and that systematic deviations from the theoretical benchmark play are

restricted to situations where unobserved face contrary majorities.

3 Laboratory Evidence on the Driving Forces of Herd Behavior

This section reports on three laboratory experiments designed to identify the elements of human

behavior that best account for the descriptive failure of Bayes-rational herding. We focus on the

behavior of the unobserved and therefore neglect efficiency concerns which, as confirmed by Experi-

ment 1, partly drive the behavior of the observed. To guide our identification strategy, we endorse a

belief-based view of herd behavior. Concretely, we assume that unobserved form probabilistic beliefs

about the payoff-relevant states and that they better respond to their beliefs.

Economists have offered three complementary explanations for the descriptive failure of Bayes-

rational herding. First, people may wrongly incorporate the signals inferred from public guesses into

their beliefs because they suffer from biases in statistical reasoning (Huck and Oechssler, 2000; Goeree,

Palfrey, Rogers, and McKelvey, 2007). Second, observational learners may infer signals from public

guesses that differ in systematic ways from the signals actually received by others because they rely

on “informationally näıve” inference rules (Eyster and Rabin, 2005, 2010). Third, the model of how

others make guesses may be incorrect. Wrong expectations about others’ strategy can induce people

to either overappreciate or underappreciate the informational value of public guesses (Kübler and

Weizsäcker, 2004; Bohren, 2016).

Each of the aforementioned explanations has the potential to account by itself for our two main

findings in Experiment 1, namely excessive herding with high quality signals and overemphasis on low
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and medium quality signals. To isolate the impact that each deviation from Bayesian rationality has

on herd behavior, we conducted three new experiments. The new evidence should ultimately further

our understanding of how herd behavior is shaped by the interplay of the three components of belief

formation: belief updating, informational inferences, and expectations about others. To achieve this

goal, we compare the behavior of unobserved in three scenarios which differ in the set of deviations

that can impact the observational learning success. In Experiment 2 unobserved learn from public

signals, implying that the two components informational inferences and expectations about others

are turned off. Thus, the observable-signals scenario informs us about the nature of non-Bayesian

updating and the extent to which it undermines the observational learning success. In Experiment 3

unobserved learn from public guesses known to be made by computer-observed that adopt the Bayes-

rational strategy. In the second scenario both informational misinferences and non-Bayesian updating

potentially impact herd behavior, but the component expectations about others remains turned off.

The comparison of the observational learning success in Experiments 2 and 3 reveals the nature of

informational misinferences and the extent to which they cause unobserved to improperly assess the

value of their available information over and above non-Bayesian updating. Finally, in Experiment

4 unobserved learn from public guesses made by subjects in the observed sequence meaning that the

component expectations about others is turned on. By comparing their observational learning success

in Experiments 3 and 4, we shed light on the model that unobserved have about how others make

guesses and we assess the extent to which uncertainty about others’ strategy impacts herd behavior.

3.1 Experimental Designs and Procedures

As in Experiment 1, unobserved play repeatedly the 2S3Q game in Experiments 2-4. However,

compared to Experiment 1, the three experiments rely more extensively on the strategy method-

like procedure to offer ample learning opportunities from contrary majorities. The main differences

between the non-practice parts of a laboratory session in the three experiments and in Experiment 1

are as follows. The first non-practice part is similar to the non-practice parts in Experiment 1 except

that unobserved receive private signals of different qualities in subsequent rounds. In the second non-

practice part unobserved remain uninformed of their private signal till the end of the round. They

must therefore submit two guesses in each decision period, one guess with signal b and one guess

with signal o. Thus, in a given decision period each unobserved faces either twice a no majority with

different signals or once a contrary majority and once a favoring majority of the same size (Cipriani

and Guarino, 2009, first considered this extension). Finally, in the third non-practice part unobserved

remain uninformed of both the signal and its quality till the end of the round. They must therefore

submit a total of six guesses in each decision period, which ensures that each unobserved regularly

faces a contrary majority even when endowed with high quality signals.

Below we first describe each experimental setting, then we outline the progress of a laboratory

session, and finally we detail our experimental procedures.

Experiment 2: Learning from signals

In Experiment 2 unobserved learn from guesses made by computer-observed and it is public knowledge

that the latter guess B if and only if their private signal is b. Since public guesses perfectly reveal

private signals, unobserved are in effect learning from strings of public signals.

A different parametrization of the 2S3Q game is played in Experiment 2 than in Experiment 1 with

nObs = 12 and nUnobs ∈ {12, 14, 18}. In other words, computer-observed receive low quality signals in

the second experiment. Indeed, since public information keeps accumulating in an observable-signals

scenario, the evidence from strings of medium quality signals would swamp the private information
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of unobserved rather quickly. By lowering the quality of computer-observed signals, we ensure that

following private information remains the Bayes-rational strategy for unobserved with high quality

signals in (almost) all of Experiment 2’s situations. Specifically, Bayesian rationality prescribes to

guess in accordance with private information except in the following situations: With high (resp.

medium and low) quality signals, guess B if ∆ ≥ 6 (resp. ∆ ≥ 2 and ∆ ≥ 1) and guess O if ∆ = −7

(resp. ∆ ≤ −4 and ∆ ≤ −2) where ∆ denotes the difference between the number of blue and orange

public guesses.

The two components informational inferences and expectations about the strategy that generates

public guesses are turned off in the observable-signals scenario. Deviations from better responses to the

true value of information merely reflect failures to use Bayes’ rule when aggregating multiple signals.

For example, if they believe in the “law of small numbers” (Tversky and Kahneman, 1971; Rabin,

2002) then unobserved overestimate the informational value of relatively small contrary majorities

which leads them to herd excessively when endowed with medium or high quality signals. On the

other hand, if they are prone to the conservatism bias (Edwards, 1968) then unobserved underestimate

the informational value of large contrary majorities and in turn they insufficiently contradict their

low or medium private signals. By measuring the observational learning success in Experiment 2 we

can identify the errors in statistical reasoning that prevent unobserved from forming Bayesian beliefs

when they learn from strings of public signals.

Experiment 3: Learning from Bayes-rational guesses

In Experiment 3 unobserved learn from guesses made by computer-observed and it is public knowledge

that the latter adopt the Bayes-rational strategy described in subsection 2.1.1. The parametrization

of the 2S3Q game is the same as in Experiment 1 with unobserved receiving either low, medium or

high quality signals and computer-observed receiving medium quality signals. Accordingly, Bayes-

rational players endowed with low quality signals always imitate the most recent public guess except

in the first period or after history (O,B, . . . , O,B) where they follow private information. When they

receive medium quality signals Bayes-rational players act like the computer-observed, and they follow

their private information at all histories of public guesses when endowed with high quality signals.

Though unobserved know the strategy that generates public guesses in both experiments, the

task of evaluating their available information is cognitively more demanding in the third than in the

second experiment. Indeed, to properly assess their available information in Experiment 3 unobserved

must not only update their beliefs in a Bayesian manner but they must also correctly infer signals

from public guesses. Two opposite departures from Bayesian rationality can cause unobserved to

infer signals from public guesses that differ from the signals actually received by the computer-

observed. First, unobserved may fail to realize that, except when they are part of an information

cascade, Bayes-rational guesses reflect the signals of computer-observed, i.e., they are informative. If

they underappreciate the connection between the signals of computer-observed and their non-cascade

guesses, then unobserved will be reluctant to contradict their low or medium quality signals. Second,

unobserved may fail to understand that in an information cascade Bayes-rational guesses become

uninformative. Unobserved who don’t understand that cascade guesses have no informational value

will herd excessively when endowed with high quality signals. By comparing the deviations from

better responses to the true value of information in Experiments 2 and 3 we can identify the nature

of informational misinferences and their impact on the observational learning success.

There is a final aspect of the experimental setting that we would like to mention since it bears

on the theoretical rationalization of informational minsferences in Experiment 3. To infer the correct

signal from the most recent public guess, unobserved don’t have to reason through how computer-
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observed make informational inferences from previous public guesses. Indeed, subjects get a sheet

of paper with a table that reports the guess made by the computer depending on its signal and the

history of previous public guesses (see our experimental procedures for details). To determine whether

the most recent public guess is informative or not, unobserved simply have to check whether, given

the history of previous public guesses, the computer makes a different guess with each signal or the

same guess with both signals. This design feature casts doubt on the appropriateness of assuming

that unobserved have limited depth of iterated reasoning to rationalize informational misinferences

in Experiment 3.

Experiment 4: Learning from human guesses

In Experiment 4 unobserved learn from public guesses made by other subjects in the observed

sequence. Thus, unobserved are uninformed of the strategy that generates public guesses. They

have to form expectations about how observed play in order to seize the informational benefits of

public guesses. Note that uncovering the strategy adopted by observed is particularly challenging in

the 2S3Q game since the signals they receive in a given repetition of the game are never made public

even at the end of the repetition.

The parametrization of the 2S3Q game is identical in Experiments 1 and 4 which implies that

Bayesian rationality makes the same predictions in both experiments (see subsection 2.1.1). Behav-

ioral differences in Experiments 1 and 4 inform us about the extent to which observational learning

is affected by a more extensive use of the strategy method-like procedure.

Even if they subscribe to the Bayes-rational view of herding in settings where they know how

public guesses are generated, unobserved may fail to better respond to their available information

in Experiment 4 because of wrong expectations about others’ strategy. Indeed, unobserved may be

reluctant to contradict their low or medium quality signals if they wrongly believe that observed

always respond weakly to their private information. Alternatively, unobserved may herd excessively

with high quality signals if they wrongly believe that observed always respond strongly to their private

information. By comparing the observational learning success in Experiments 3 and 4, we can isolate

the impact that expectations about others have on herd behavior.

3.1.1 The Progress of an Experimental Session

As in Experiment 1, each session starts with three paid practice rounds. After practice, subjects play

twelve repetitions of their respective 2S3Q game in each experiment. There are six (resp. three)

repetitions of the game in the first non-practice part (resp. second and third non-practice parts) and

the number of hypothetical guesses increases from one non-practice part to the next.

Practice rounds: Practice rounds proceed as in Experiment 1 except that the quality of the private

signals received by unobserved differs in each round. In the first (resp. second and third) practice

round unobserved receive medium (resp. high and low) quality signals.

Part 1: Strategy method with respect to the decision period. In part 1 the six repetitions of

the 2S3Q game proceed as in Experiment 1 except that unobserved receive private signals of different

qualities in subsequent rounds. Unobserved receive low quality signals in rounds 1 and 4, medium

quality signals in rounds 2 and 5, and high quality signals in rounds 3 and 6.

Part 2: Strategy method with respect to the decision period and the signal. The second

part is identical to the first one except that the 2S3Q game is repeated only three times and that
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unobserved make two guesses in each decision period, one guess with signal b and one guess with

signal o. Unobserved receive high quality (resp. low quality and medium quality) signals in round

1 (resp. round 2 and round 3). In Experiment 4 an observed whose guess has not been publicly

revealed yet also makes one guess with signal b and one guess with signal o in the current decision

period. Subjects are informed of their payoff-relevant signal at the end of the round.

Part 3: Strategy method with respect to the decision period, the signal, and the quality.

The third part is identical to the second one except that unobserved make a total of six guesses in each

decision period and that subjects receive 3 Euro for a correct guess and 0 Euro otherwise. Unobserved

are informed of the payoff-relevant quality of their signal at the end of the round.

We implemented the strategy method-like procedure so as to limit its potential impact on behavior.

First, the strategy method-like procedure is gradually extended over the course of a session. Subjects

start by familiarizing themselves with the observational learning task through playing the 2S3Q game

with the direct-response method in the three practice rounds. After having hopefully acquired a good

understanding of the scenario, subjects make multiple guesses in each round with the number of

hypothetical guesses increasing from part 1 to part 2 and from part 2 to part 3 (except for the

observed in Experiment 4). Second, we refrain from eliciting complete strategies for the 2S3Q game.

In each decision period subjects observe the actual history of public guesses which largely restricts the

information sets they have to consider. Third, we tripled the monetary stakes in the third non-practice

part where unobserved make the highest number of hypothetical guesses.

3.1.2 Experimental Procedures

The experimental sessions took place between November 2013 and September 2016 at the same

laboratory as for Experiment 1 (experimenTUM), students from the same recruitment sample as

Experiment 1 were invited using ORSEE, and all three experiments were programmed in zTree. We

conducted six sessions in each experiment with 9 (resp. 16) subjects per session in Experiments 2

and 3 (resp. 4). One subject was randomly selected to serve as the laboratory assistant and the other

subjects were randomly assigned to computer terminals in isolated booths.

Sessions proceeded in a similar way as in Experiment 1. In particular, they started with short

demonstrations of the state-selection procedure, physical urns were used in practice rounds and virtual

urns were used in non-practice rounds, the second-practice part was followed by a short break during

which subjects answered demographic questions, and at the end of each session subjects privately

retrieved their earnings. Still, several procedural aspects of Experiment 1 had to be tailored to the

specifics of Experiments 2-4. In Experiment 1 unobserved were informed about the two possible

compositions of the “UNOBSERVED” urn only in the instructions distributed at the beginning of

each part since their private signals were of the same quality in every decision period of the same part.

In Experiments 2-4, however, the signal quality changes from round to round up to the second non-

practice part, and in the third non-practice part unobserved make a guess for each possible quality

in the same decision period. To minimize confusion and errors, every time they had to make a guess

for a given signal quality in Experiments 2-4, unobserved were reminded of the two possible urns on

their computer screen. Additionally, each subject in Experiments 2-3 received at the beginning of

the session a sheet of paper with the decision rule adopted by computer-observed. In Experiment 2

we made clear that computer-observed who receive a blue signal always guess B whereas those who

receive an orange signal always guess O. In Experiment 3, we refrained from describing the Bayes-

rational strategy algorithmically to alleviate the need for subjects to engage in higher-order thinking.
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Instead, each unobserved was given a sheet of paper with a table showing the guess made by the

computer-observed depending on its signal and the history of previous public guesses. Concretely, the

first two columns of the table reported for each period t ∈ {1, . . . , 7} the 2 t couples (signal, history of

public guesses) and the last column reported the guess made by the computer-observed in that period.

Thus, for each history of previous public guesses, one row of the table reported the guess made by

the computer-observed when endowed with signal b and another row reported the guess made by the

computer-observed when endowed with signal o (see Appendix A). Finally, the signals of computer-

observed were drawn by the assistant in Experiments 2-3. An experimenter visited the assistant with

the physical “OBSERVED” urn and asked her to draw one ball 7 times (with replacement) in the

practice rounds. The assistant drew from a virtual urn on her computer screen with re-shuffling after

each draw in the non-practice rounds.

In Experiment 2 and 3 we collected in each session 24 unobserved guesses from the three practice

rounds and 1,920 unobserved guesses from the 12 repetitions of the 2S3Q game for a total of 11,664

unobserved guesses. In Experiment 4 we collected in each session 21 observed guesses from the three

practice rounds and 504 observed guesses from the 12 repetitions of the 2S3Q game for a total of

3,150 observed guesses. We only collected a total of 11,472 unobserved guesses in Experiment 4 as

one subject could not submit all her guesses due to a technical error in the first session. On average,

subjects earned 16.79 Euro (resp. 18.19 Euro and 18.35 Euro) in Experiment 2 (resp. 3 and 4),

including a show-up fee of 3 Euro, and a session lasted for about 110 minutes. During the entire

session, subjects interacted only through the computers and no other communication was permitted.

3.2 Results

We summarize here the results of our data analysis. We start by outlining the nature of public

histories, then we report on the aggregate success of observational learning, and lastly we investigate

herd behavior at the individual level. Additional figures and tables as well as details of the data

analysis are provided in Appendix C.

3.2.1 Histories of Public Guesses

Public guesses in Experiment 2 are the signals received by observed in the different periods and they

correspond to independent draws from the state-dependent Bernoulli distribution with parameter

value 12/21. As expected, public histories are particularly diverse—we identify 56 different final

histories in the 72 repetitions of the 2S3Q game—and unobserved usually face short majorities of

public guesses with about 85% of the final majorities being of size at most 3.

On the other hand, the 72 repetitions of the 2S3Q game generate only 6 different final histories

in Experiment 3, and unobserved usually face large majorities of public guesses. From period 3 on,

80% of public histories are strings of identical guesses. This is, of course, due to the fact that public

guesses are Bayes-rational in Experiment 3 and, as described in subsection 2.1.1, almost all histories

lead to the emergence of information cascades.

We find that histories of public guesses in Experiment 4 are of similar nature as histories of public

guesses in Experiment 1. Most notably, they are more diverse than predicted by Bayesian rationality

with only 38% of the final histories being full laboratory cascades. This observation suggests that,

as in Experiment 1, the guesses made by subjects who acted as observed relied too much on private

information in Experiment 4.
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3.2.2 The Success of Observational Learning

To measure the success of observational learning in Experiments 2-3, we rely on the entire sample of

guessing situations since the values of contradicting private information are derived theoretically in

these two experiments (for the sake of brevity, we often refer to the true value of contradicting private

information as tvcPI). On the other hand, the expected monetary value of a guess that contradicts

private information is estimated in Experiment 4. This empirical value of contradicting private

information, often referred to as vcPI, is derived differently in Experiment 4 than in Experiment 1

to accommodate the procedural variations in the two experiments. Indeed, a guessing situation in

Experiment 4 is characterized by the quadruple (quality, role, signal, history of public guesses) rather

than by the quadruple (part, role, signal, history of public guesses). Each value of contradicting private

information is therefore estimated over the three non-practice parts of Experiment 4. We discuss here

the analysis of the observational learning success that has been performed on the sample of guessing

situations with sitcount ≥ 10. Robustness checks on different samples of guessing situations are

provided in Appendix C.

Figure 2 depicts the responses to the value of contradicting private information in the three

experiments. Each subfigure plots tvcPI or vcPI against the proportion of contradictions collected

in identical guessing situations, and it superimposes fitted curves from a weighted linear regression

that includes a cubic polynomial in the value of contradicting private information fully interacted

with indicator variables for the signal quality of unobserved (and the role in Experiment 4). There

are 658 (resp. 186 and 217) guessing situations in Experiment 2 (3 and 4) for a total of 11,520 (11,520

and 11,650) individual observations.

Before summing up the key insights from Figure 2, we note that several of the regularities found in

Experiment 1 are also present in Experiments 2-4. The following observations emerge from examining

the percentage of (human) guesses that contradict private information in each experiment by the

signal of each role and for different majorities of public guesses (these percentages are reported in

a table which, for the sake of space, has been relegated to Appendix C). First, unobserved, as well

as observed in Experiment 4, often guess in accordance with their private information at favoring

and no majorities. When averaged across the two signals, the proportion of contradictions ranges

between 1%—in Experiment 2 with high quality signals at large favoring majorities—and 16%—in

Experiment 3 with low quality signals at no majority. Second, the higher their signal quality the

more often unobserved follow their private information. For example, 87% (resp. 94% and 97%) of

their guesses accord with private information in Experiment 2 when unobserved face a no majority

with low (resp. medium and high) quality signals (in Experiment 3 the relative frequencies are

84%, 93% and 94% respectively, and in Experiment 4 the relative frequencies are 90%, 94% and 98%

respectively). Third, guesses account to some extent for the asymmetric prior since subjects contradict

their private information more frequently with orange than with blue signals at contrary majorities

of size 1 but the difference vanishes at larger contrary majorities. Fourth, subjects’ propensity to

contradict private information increases with the size of the contrary majority (except for low quality

signals in Experiments 2-3 when moving from size 3 to size 4 or more). This final observation implies

that, as in Experiment 1, once the public evidence is conclusive enough herd behavior is qualitatively

consistent with Bayes-rational herding for low and medium quality signals whereas unobserved with

high quality signals herd excessively.

To uncover the mechanisms underlying herd behavior, we now compare how successfully un-

observed learn from contrary majorities in the three experiments. In Experiment 2, we find that

unobserved herd excessively with high quality signals. The average unobserved acts against her high

quality signal in guessing situations where the incentives to follow private information are 1.40 times
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Note: •◦, •◦, •◦: Unobserved guesses made with high, medium and low quality
signals respectively; •◦: Observed guesses.

Figure 2: Responses to the Value of Contradicting Private Information

stronger than the incentives to contradict private information (in Figure 2 the red curve reaches the

level of 0.5 at tvcPI = 0.41). Moreover, the proportion of contradictions grows at an almost constant

rate with the number of contrary public signals. When averaged across the two signals, the proportion
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of contradictions equals 0.09, 0.17, 0.31, and 0.52 at contrary majorities of size 1, 2, 3 and 4 or more,

respectively. Together with the fact that tvcPI rises slowly with the size of contrary majorities, this

regularity implies that unobserved with high quality signals are quite unsuccessful even when the

incentives to contradict private information are relatively small (e.g., the average tvcPI is only 0.30

at contrary majorities of size 3). By contrast, the majority of guesses contradict (resp. accord with)

the low or medium quality signal when tvcPI > 0.5 (resp. tvcPI < 0.5) at every size of contrary

majorities (with the minor exception of the blue medium signal at contrary majorities of size 3 where

54% of the guesses are contradictions and tvcPI = 0.49). Though our regression results indicate

that the vertical distance between the black or green curve and (0.5, 0.5) is statistically significant

(two-tailed p-values < 0.05), the average unobserved learns well from contrary majorities when en-

dowed with a low or medium quality signal (in Figure 2 the black and green curve reaches the level

of 0.5 at tvcPI equal to 0.53 and 0.55 respectively).10 In sum, our findings in Experiment 2 reveal

that non-Bayesian updating induces the average unobserved to overestimate the informational value

of medium-sized and large contrary majorities.

In Experiment 3, the average unobserved acts against her high quality signal in guessing situations

where the incentives to follow private information are 2.25 times stronger than the incentives to

contradict private information (in Figure 2 the red curve reaches the level of 0.5 at tvcPI = 0.31).

Thus, unobserved herd excessively with high quality signals in Experiment 3 even when their relative

incentives to contradict private information are 60% weaker than in Experiment 2. Unobserved are

markedly unsuccessful when learning from contrary majorities in Experiment 3 because as contrary

majorities grow larger their propensity to contradict private information increases continuously while

tvcPI barely rises. When averaging across the two signals, the proportion of contradictions increases

from 0.23 at contrary majorities of size 1 to 0.53 at contrary majorities of size 4 whereas tvcPI only

rises from 0.27 at contrary majorities of size 1 to 0.30 at contrary majorities of size 2 or more. On

the other hand, the average unobserved learns well from contrary majorities when endowed with a

low or medium quality signal in Experiment 3. Indeed, the majority of guesses contradict (resp.

accord with) the low or medium quality signal when tvcPI > 0.5 (resp. tvcPI < 0.5) at every

size of contrary majorities, and in Figure 2 the black (resp. green) curve reaches the level of 0.5 at

tvcPI = 0.48 (resp. tvcPI = 0.55). Still, we note a clear increase in the proportion of contradictions

with medium quality signals when the size of contrary majorities grows from 2 to 4 even though

the incentives to contradict private information remain constant (when averaging across the two

signals, the proportion of contradictions increases from 0.75 to 0.83 at tvcPI = 0.56). We conclude

that unobserved tend to overinfer from a handful of contrary Bayes-rational guesses and that these

informational misinferences severely undermine their observational learning success when they are

endowed with high quality signals.

In Experiment 4, we find that, at a given size of the contrary majority, unobserved contradict

their high quality signals to a similar extent as in Experiment 2. At a contrary majority of size 1, 2,

3 and 4, the proportion of contradictions equals 0.07, 0.20, 0.34, and 0.45 when averaged across the

two signals. Also in line with our findings in Experiment 2, the average unobserved acts against her

high quality signal in guessing situations where the incentives to follow private information are 1.50

times larger than the incentives to contradict private information (in Figure 2 the red curve reaches

the level of 0.5 at vcPI = 0.40).11 Hence, compared to Experiment 3, the relative incentives to

10Part of the reason why the green curve does not go through (0.5, 0.5) is that unobserved with an orange signal of
low quality make the optimal guess too often when facing no majority. Indeed, in these guessing situations we find that
the proportion of contradictions is only 0.19 though tvcPI = 0.48.

11Still, unobserved learn more successfully from public guesses in Experiment 4 than in Experiment 2 when incentives
to follow high quality signals are strong, but the reverse is true when incentives are weaker (in Figure 2 the red curve in
Experiment 2 and 4 has a linear and convex shape, respectively). The reason is that, compared to those in Experiment
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contradict private information have to be increased by a third for unobserved to herd excessively with

high quality signals in Experiment 4. Moreover, unobserved in Experiment 4 fail to better respond

to the value of their available information in situations where they should contradict their low or

medium quality signals and the incentives to do so are weak. For example, at contrary majorities

of size 1, only 43% of unobserved guesses contradict the blue signal of low quality (vcPI = 0.54)

and only 29% of unobserved guesses contradict the orange signal of medium quality (vcPI = 0.52).

Averaging across observations where 0.5 < vcPI ≤ 0.55, the proportion of contradictions equals 0.27

and 0.30 with low and medium quality signals respectively. However, once the incentives to follow

others become stronger the majority of guesses contradict private information though unobserved

remain less successful in learning from others with low than with medium quality signals (averaging

across observations where 0.55 < vcPI ≤ 0.65, the proportion of contradictions equals 0.53 with low

quality signals and 0.66 with medium quality signals). In short, Experiment 4’s results indicate that

the average unobserved wrongly believes that observed respond weakly to their private information.

Compared to a scenario where they learn from Bayes-rational guesses, these wrong expectations about

others enhance the observational learning success of unobserved with high quality signals, but they

reduce their success in learning from short contrary majorities with low or medium quality signals.

Finally, we outline the main differences and similarities between Experiments 1 and 4. To test

for the statistical significance of differences in the proportion of contradictions between the two ex-

periments, we report the results of two-sided permutation tests that use session averages as the unit

of observation. First, observed herd slightly more in Experiment 4 than in Experiment 1 when they

should, both at small and large contrary majorities, but none of the differences is statistically sig-

nificant (p-values > 0.10). As a consequence, for each quality of their private signals, unobserved

face almost identical incentives to contradict private information in the two experiments. Second, the

observational learning success of unobserved with high quality signals is almost undistinguishable in

the two experiments (see how similar the red curve in Figure 1 and the red curve of Experiment 4

in Figure 2 are). Third, in guessing situations where the contrary majority is small and vcPI > 0.5,

unobserved contradict their low quality signals slightly less often in Experiment 4 than in Experiment

1 but the difference is not statistically significant (p-value > 0.10), and they contradict their medium

quality signals significantly less often in Experiment 4 than in Experiment 1 (p-value = 0.08). Fourth,

in guessing situations where the contrary majority is large and vcPI > 0.5, unobserved contradict

their low and medium quality signals significantly less often in Experiment 4 than in Experiment 1

(p-values ≤ 0.01). In line with these observations, we find that, contrary to Experiment 1, unobserved

with medium quality signals act as informatively as observed in Experiment 4. To summarize, a more

extensive use of the strategy method-like procedure mainly affects the herd behavior of unobserved

with medium quality signals who become less successful in learning from contrary majorities.

3.2.3 Herd Behavior at the Individual Level

To examine herd behavior at the individual level in Experiments 2-4, we follow the same rule clas-

sification as in Experiment 1 (groups of guessing situations in Experiment 2 differ from those in the

other experiments to account for the low quality of public signals; see Appendix D for details).

In Experiment 2, 54% of the unobserved are successful observational learners (SOL) who guess

optimally, 19% and 13% are weak and strong followers of private information (WFPI and SFPI) who,

compared to SOL, respond too strongly to their private information, and 10% and 04% are weak and

strong conformists (WC and SC) who, compared to SOL, herd too often. There are two apparent

2, the incentives to contradict high quality signals in Experiment 4 are stronger at contrary majorities of size less than
3 but weaker at contrary majorities of size 4 or more.
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discrepancies between herd behavior at the aggregate and individual level. First, our aggregate results

substantiate that unobserved with low or medium quality signals learn well from contrary majorities,

but almost a third of them tend to follow their private information in situations where herding is the

optimal guess. This discrepancy is easily accounted for since, in situations where they should herd,

the average proportion of optimal guesses made by WFPI is 0.48 and only SFPI guess almost always

in accordance with their private information (their average proportion of optimal guesses is 0.14).

Second, though unobserved herd excessively on average, less than a sixth of them tend to contradict

their private information in situations where it is suboptimal to do so. We note, however, that the

average proportion of guesses that contradict high quality signals is 0.82 for conformists who face

large contrary majorities and that in the same situations SOL also exhibit a substantial tendency to

herd (their average proportion of contradictions is 0.38).

In Experiment 3, 38% of the unobserved are SOL, 06% and 10% are WFPI and SFPI, and 19%

and 25% are WC and SC (subject 3411 guesses suboptimally more often than not and is classified

as noisy). In line with our aggregate results, the largest share of unobserved herd too often and

only a sixth of them respond too strongly to their private information. Moreover, when they are

endowed with high quality signals and they face large contrary majorities, conformists almost always

contradict their private information and SOL exhibit a non-negligible tendency to herd (the average

proportion of contradictions is 0.92 and 0.23, respectively). Lastly, as in Experiment 2, in situations

where private-information-followers should herd only SFPI guess almost always in accordance with

their private information (their average proportion of optimal guesses is 0.23).

The distribution of decision rules in Experiment 4 resembles the one in Experiment 1 except for

a lower share of SOL (15% vs. 32%) and a larger share of SFPI (28% vs. 06%). This difference is

clearly in line with the fact that, on average, unobserved with medium quality signals respond more

strongly to their private information in Experiment 4 than in Experiment 1. In the next section, we

discuss in more details the proportion of optimal guesses by decision rule in Experiment 4.

3.3 Discussion

The results of Experiments 2-4 confirm that the observational learning success is undermined by

non-Bayesian updating, informational misinferences, and also incorrect expectations about others’

strategy. More importantly, our new evidence outlines the nature of these deviations from Bayesian

rationality, and it shows that they impact herd behavior differently.

First, non-Bayesian updating and informational misinferences are the two channels that drive

excessive herding with high quality signals. In Experiment 2, the proportion of contradictions rises

too strongly with the (net) number of contrary signals which leads the average unobserved to herd

excessively once she faces a sufficiently large number of contrary signals. On average, unobserved

overinfer from medium-sized and large strings of contrary signals. In Experiment 3, unobserved herd

excessively with high quality signals even when the relative incentives to contradict private information

are 60% weaker than in Experiment 2. The manner in which she draws informational inferences from

Bayes-rational guesses prevents the average unobserved from appreciating that cascade guesses have

no informational value. Compared to Experiment 3, the relative incentives to contradict private

information have to be increased by a third in Experiment 4 for the average unobserved to act against

her quality signal. When endowed with high quality signals, unobserved learn more successfully from

guesses submitted by other subjects than from Bayes-rational guesses.

Second, the overemphasis on low and medium quality signals is mainly caused by incorrect ex-

pectations about others’ strategy. In Experiments 2 and 3, unobserved endowed with low or medium
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quality signals essentially better respond to the true value of their available information.12 Accord-

ingly, underinferences from short strings of contrary signals are rare and unobserved appreciate the

connection between the signals of Bayes-rational observed and their informative guesses. In Exper-

iment 4, however, the average unobserved wrongly believes that human observed respond weakly to

their private information which reduces her success when learning from short contrary majorities.

4 Intuitive Observational Learning

This section presents a structural model of intuitive observational learning which builds on the three

belief distortions that drive herd behavior: non-Bayesian updating, informational misinferences, and

wrong expectations about others’ strategy. In line with the central idea of the “heuristics and biases”

program (Kahneman, Slovic, and Tversky, 1982; Gilovich, Griffin, and Kahneman, 2002),13 we posit

that belief distortions result from observational learners making use of their intuitions when they

extract signals from public guesses and incorporate those signals into their beliefs. Intuitive valuations

of the available information are systematically biased because the cognitive processes underlying

intuitive observational learning rest on general-purpose heuristics.

Each belief distortion is formulated as a one-parameter extension of its Bayes-rational counterpart

so that our alternative model embeds the normative one as a constellation of parameter values. And

to accommodate the rich behavioral heterogeneity found in our experiments, we allow for individual-

specific parameter values. By formulating a simple parametric extension of Bayesian rationality

we ensure its “portability” meaning that, once parameter values are fixed, new predictions can be

made in various observational learning scenarios (for a detailed argumentation supportive of portable

extensions of normative models, see Rabin, 2013).

Below, we first expose the formal details of our model, then we estimate the model econometrically,

and finally we measure the gain in predictive power that results from belief distortions.

4.1 A Structural Model of Intuitive Observational Learning

As in our theoretical benchmark, we assume that intuitive observational learners—henceforth simply

Intuitive—use their available information to form beliefs about the payoff-relevant states and that they

make probabilistic money-maximizing guesses conditional on their beliefs. To facilitate exposition,

we first describe formally the nature of the belief distortion when Intuitive learn from informative

signals (as in Experiment 2). Next, we expand our formal description of intuitive beliefs by including

informational misinferences when learning from Bayes-rational guesses (as in Experiment 3). Lastly,

we complete the model by formalizing the wrong expectations that Intuitive have about the guessing

strategy of others. In the interest of clarity, we restrict the exposition of intuitive observational

learning to the informational and interactive structure of our experimental settings though we abstract

from their specific parametrizations.

12Angrisani, Guarino, Jehiel, and Kitagawa (2017) report a similar finding in their “individual decision making”
treatment as in our second experiment with low quality signals.

13This program explores the heuristics that people use and the biases to which they are prone in various tasks of
judgment under uncertainty. It offers a cognitive alternative to the normative model of statistical reasoning according
to which subjective judgments of probability are intuitive and often rest on a limited number of simplifying judgmental
heuristics. Contrary to their deliberative counterparts, intuitive assessments of probability come to mind quickly and
they directly reflect impressions of the characteristics of the available information. For example, some people expect the
key characteristics of a random sample to be similar to those of its parent population, i.e., they view random samples
as extremely representative. The tendency to rely on the representativeness heuristic leads to the “belief in the law of
small numbers,” i.e., people expect small random samples to be more similar to their parent population than predicted
by sampling theory (Tversky and Kahneman, 1971).
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Before detailing each belief distortion, we introduce the elements common to every observational

learning scenario. In period t ∈ {1, . . . , T}, the information available to Intuitive i ∈ {1, . . . , I}
consists of the (non-doctrinaire) prior p = (Pr (B) ,Pr (O)) with Pr (B) = 1 − Pr (O) ∈ (1/2, 1),

her private signal si ∈ {b, o} of quality qi ∈ (Pr (B) , 1), and the history of public guesses ht =

(g1, . . . , gt−1) ∈ Ht = {B,O}t−1 with h1 = ∅. We assume that Intuitive understand that public

guesses are submitted sequentially, and that they know the prior and the qualities of signals.

The beliefs of Intuitive i are shaped by her belief distortion type Ψi which specifies in a parametric

form the relevant distortion(s) in the considered scenario. Formally, Intuitive i’s subjective probability

that B is the payoff-relevant state in period t, conditional on her available information (p, si, ht) and

her type Ψi, is given by

Pri (B | p, si, ht; Ψi) =

[
1 +

Pri (O, si, ht; Ψi)

Pri (B, si, ht; Ψi)

]−1

∈ [0, 1]

which we denote by µi (p, si, ht; Ψi) with Pri (O | p, si, ht; Ψi) = 1− µi (p, si, ht; Ψi).

For simplicity we assume that private beliefs are Bayesian.14 This simplification entails that

Pri (θ, si, ht; Ψi) = Pr(θ) Pri (si | θ) Pri (ht | θ; Ψi) for each θ ∈ {B,O} where Pri (o | O) = Pri (b | B) =

qi = 1−Pri (b | O) = 1−Pri (o | B) and Pri (ht | θ; Ψi) denotes the subjective probability assigned by

type Ψi to the occurrence of history ht conditional on state θ. In period t, Intuitive i’s belief takes

the form

µi (p, si, ht; Ψi) =

[
1 +

Pr (O)

Pr (B)

Pri (si | O)

Pri (si | B)

Pri (ht | O; Ψi)

Pri (ht | B; Ψi)

]−1

, (1)

and belief distortions are entirely reflected in the discrepancy between the subjective and the objective

public likelihood ratio Pr (ht | O) /Pr (ht | B). As detailed below, this discrepancy originates from the

failure to properly infer the informational content of public guesses or from the failure to incorporate

inferred signals into beliefs as advocated by Bayes’ rule.

We further assume that, given her belief µi (p, si, ht; Ψi) and her payoff-responsiveness λi ≥ 0,

Intuitive i submits guess B in period t with probability

σi (B | µi (p, si, ht; Ψi) ;λi) =
1

1 + exp (λi (1− 2µi (p, si, ht; Ψi)))
,

and that she submits guess O with the complementary to one probability. Given λi, the stronger

the belief of Intuitive i the larger her probability to submit guess B. Moreover, guesses approach

best responses to beliefs as λi goes to infinity and they approach uniform randomness as it goes

to zero. Though our main interest lies in the impact of belief distortions on observational learning

behavior, there are two reasons for considering a logit quantal response version of intuitive obser-

vational learning. First, quantal responses provide an error structure for the structural estimation

of belief distortion types. Second, logit QRE predictions match the behavioral patterns observed in

cascade experiments significantly better than standard predictions (e.g., Goeree, Palfrey, Rogers, and

McKelvey, 2007). Thus, a model of intuitive beliefs augmented with logistic decision errors enables

us to measure the predictive power that is gained by introducing belief distortions into a logit quantal

14Though a less restrictive approach could easily be considered, the assumption that private beliefs are Bayesian seems
appropriate to rationalize observational learning behavior in our experimental settings. Indeed, unobserved largely follow
their private information in the first period of Experiments 2 to 4. While this evidence only provides equivocal support
for our restriction, we conjecture that most subjects were able to properly combine the (almost flat) prior with their
private signal as the latter corresponds to a single draw from an urn. More importantly, our experimental settings have
not been designed to shed light on the judgment biases that might distort private beliefs.
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response model of observational learning. The vector of parameters (Ψi, λi) summarizes Intuitive i’s

behavioral type.

Intuitive Learning from Signals. Consider the simplest observational learning scenario where

Intuitive know that public guesses perfectly reveal private signals whose quality is denoted by qPUB ∈
(Pr (B) , 1) (Pr (B) = 11/20 and qPUB = 12/21 in Experiment 2). In this observable-signals scenario,

the objective public likelihood ratio in period t is simply given by ((1− qPUB) /qPUB)
∆(ht) where ∆ (ht)

is the difference between the number of blue and orange public guesses in history ht.

If their intuitions about random sampling satisfy the law of small numbers then the herd behavior

of Intuitive matches qualitatively the herd behavior found at the aggregate level in Experiment 2.

Indeed, overinferences from medium-sized strings of contrary public signals lead to excessive herding

with high quality signals, but they don’t undermine the observational learning success with medium

and low quality signals. However, our analysis of herd behavior at the individual level has revealed

that about a third of the unobserved tend to underinfer from very short strings of contrary public sig-

nals when they are endowed with low or medium quality signals. These subjects are conservative in the

sense that they do not extract enough information from short contrary majorities. Former balls-and-

urns experiments conducted by economists also find a substantial degree of individual heterogeneity

in updating behavior (for recent evidence, see Holt and Smith, 2009). In particular, El-Gamal and

Grether (1995) introduce a classification procedure to investigate the extent to which updating be-

havior is shaped by various judgmental heuristics. They conclude that the most prominent updating

rules used by subjects (in order of prominence) are Bayes’ rule, representativeness, and, to a lower

extent, conservatism.

To accommodate the rich heterogeneity in individual behavior, we propose that Intuitive have

different perceptions about the informativeness of public signals. These perceptions are entirely

reflected in the weight assigned to public information relative to private information. Depending

on the value of her public information weight, an Intuitive either makes Bayesian inferences, or she

treats public signals as less informative than would a Bayesian, or she treats public signals as more

informative than would a Bayesian. For simplicity, we assume that Intuitive understand that public

signals are i.i.d. conditional on the payoff-relevant state, and that they assign the same weight to each

public signal independently of their private signal. Though only the public information is weighted,

our interpretation is not that Intuitive view private signals as different in nature from public signals.

The weighted updating rule merely allows for the possibility that multiple informative signals are

combined in a non-Bayesian manner.15

Formally, Intuitive i’s behavioral type is given by (wi, λi) where wi ∈ [0,∞) is the weight she

assigns to each public signal, and Equation (1) simplifies to

µi (p, si, ht;wi) =

[
1 +

Pr (O)

Pr (B)

Pri (si | O)

Pri (si | B)

(
1− qPUB

qPUB

)wi·∆(ht)
]−1

. (2)

Weighted updating leads to heterogeneity in how Intuitive update their private beliefs in response to

identical strings of public signals. If wi = 1 then Intuitive i is a Bayesian observational learner. And

if wi ∈ (1,∞) then Intuitive i overweights public information, possibly because her intuitions about

random sampling satisfy the law of small numbers. On the other hand, if wi ∈ [0, 1) then Intuitive i

underweights public information as she updates her private beliefs too conservatively upon observing

strings of public signals. Note that weights are log-symmetric since the distortion of beliefs for types

15Adaptive and information-theoretic foundations for the weighted updating rule are provided in March (2016) and
Zinn (2016) respectively.
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wi > 1 is of the same magnitude as for types 1/wi. For example, when they are endowed with the

same private signal, type wi = 2 who faces a majority of one blue public signal holds the same beliefs

as type wj = 1/2 who faces a majority of four blue public signals, and those beliefs match the beliefs

of a Bayesian observational learner who faces a majority of two blue public signals.

For the sake of parsimony, we have assumed that private beliefs are Bayesian meaning that only

the public information is weighted.16 More importantly, the weighted updating rule reflects the

view that normative assessments of probability provide good first approximations to subjective ones.

Though this view sits well with conservatism, it is inconsistent with the representativeness heuristic

(as already acknowledged by Grether, 1980). Indeed, Kahneman and Tversky have repeatedly argued

that the most salient property of a binomial sample is the sample proportion and that subjective as-

sessments of probability are quite insensitive to the sample size. Representativeness therefore implies

that beliefs will depend primarily on the similarity between the proportion of blue public signals and

qPUB, rather than on the difference between the number of blue and orange public signals. In fact, the

marked variability of the responses to a given tvcPI in Experiment 2 indicates that unobserved do not

rely solely on the difference between the number of blue and orange signals to assess the value of their

available information (see top panel in Figure 2).17 Despite its shortcomings, we decided to employ

a restricted version of the weighted updating rule because it provides a tractable rationalization of

both under- and over-inferences from public signals.

Intuitive Learning from Bayes-rational Guesses. Consider now the observational learning

scenario where Intuitive know that public guesses are Bayes-rational. Let σ∗ (gt | st, ht) ∈ {0, 1}
denote the probability that the Bayes-rational guess submitted in period t is gt given private signal

st of quality qPUB ∈ (Pr (B) , 1) and public history ht. Once guess gt is publicly revealed, the objective

public likelihood ratio Pr (ht | O) /Pr (ht | B) is updated with the multiplier

Pr (gt | ht,O)

Pr (gt | ht,B)
=

Pr (st = b | O)σ∗ (gt | b, ht) + Pr (st = o | O)σ∗ (gt | o, ht)
Pr (st = b | B)σ∗ (gt | b, ht) + Pr (st = o | B)σ∗ (gt | o, ht)

=
(1− qPUB)σ

∗ (gt | b, ht) + qPUB σ
∗ (gt | o, ht)

qPUB σ∗ (gt | b, ht) + (1− qPUB)σ∗ (gt | o, ht)

which, in case the guess is informative, simplifies to (1 − qPUB)/qPUB if gt = B and to qPUB/(1 − qPUB)

if gt = O (in Experiment 3, qPUB = 2/3 so that the multiplier equals 1/2 and 2 respectively).

In contrast, the objective public likelihood ratio remains unchanged after an uninformative guess

(σ∗ (gt | b, ht) = σ∗ (gt | o, ht) = 1).

Excessive herding is more pronounced in the third than in the second experiment. Though they

draw proper informational inferences from public guesses that are informative, unobserved tend to

overinfer from public guesses that are part of an informational cascade and are therefore uninformative.

Before exposing our own approach to informational misinferences, we discuss two alternatives that are

complementary in certain observational learning settings but are less relevant in the Bayes-rational-

guesses scenario.

First, wrong expectations about others’ strategy don’t constitute a convincing explanation for why

16Previous investigations of the nature of subjective assessments of probability have employed a more flexible version
of the weighted updating rule. For example, Grether (1980) introduced a two-weights updating rule to test whether
subjects, who observe a sample of informative signals drawn from an unknown urn, rely on the representativeness
heuristic when forming beliefs. The author concluded that, though priors are not ignored, representativeness captures
reasonably well belief updating behavior in the aggregate since the estimated weight of the likelihood ratio is significantly
larger than the estimated weight of the prior odds.

17Also, we estimated in Experiment 2 the public information weight for each subject as well as an extended version
with a dummy variable that singles out the observations such that the proportion of blue public signals equals qPUB. For
one-third of the subjects, the coefficient of the dummy variable is positive, which is supportive of representativeness.
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unobserved misinfer from cascade guesses since we provide an exhaustive description of how public

guesses are generated. Second, our description of the generating process of public guesses nullifies,

or at least severely limits, the need for unobserved to reason through how computer-observed make

inferences from previous public guesses (see subsection 3.1.2 for details). Therefore, we don’t view

bounds on higher-order reasoning as the most convincing explanation for why unobserved do not fully

account for the fact that cascade guesses are redundant (Eyster and Rabin, 2010, 2014).

Following Gennaioli and Shleifer (2010), we assume that the extent to which public guesses are

representative of the underlying signals shapes the informational inferences made by Intuitive. Once

guess gt is publicly revealed, Intuitive make an inference that, compared to the Bayes-rational one,

leans towards the signal of which gt is most representative. In line with Kahneman and Tversky’s

representativeness relation between causal systems and their outcomes (Tversky and Kahneman,

1982), we say that guess gt is more representative of signal st than of signal s̄t if it is more frequently

associated with signal st than with signal s̄t. Formally, the representativeness of public guess gt ∈
{B,O} for signal st ∈ {b, o} is defined as R (st, gt) ≡ Pr (gt | st) ∈ [0, 1], t ∈ {1, . . . , T}. In Appendix

E we show that, ∀ t ∈ {1, . . . , T}, R (st = b, gt = B) > R (st = o, gt = B) meaning that Bayes-rational

guess B is more representative of signal b than of signal o. Likewise, Bayes-rational guess O is more

representative of signal o than of signal b.

When they draw an inference from public guess gt, Intuitive know that gt is Bayes-rational. Still,

their inference is potentially biased because the signal of which gt is most representative first comes

to mind and Intuitive anchor their belief to this signal. Using Gennaioli and Shleifer’s terminology,

Intuitive are “local thinkers” who make informational inferences in light of what comes to mind (the

signal more frequently associated with the public guess), but not of what does not (the signal less

frequently associated with the public guess). Given ht and her degree of local thinking `i ≥ 0, Intuitive

i updates her subjective likelihood ratio upon observing gt with the multiplier

Pr (gt | ht,O; `i)

Pr (gt | ht,B; `i)
=

(1− qPUB)R (b, gt)
`i σ∗ (gt | b, ht) + qPUBR (o, gt)

`i σ∗ (gt | o, ht)
qPUBR (b, gt)

`i σ∗ (gt | b, ht) + (1− qPUB)R (o, gt)
`i σ∗ (gt | o, ht)

.

Local thinking affects differently the updating of the subjective public likelihood ratio depending on

the informativeness of the public guess. Indeed, if the public guess is informative then, for any degree

of local thinking, the objective and subjective likelihood ratios are updated identically. Following an

informative public guess, local thinking does not distort beliefs. On the other hand, if the public

guess is uninformative then the higher the degree of local thinking the more distorted beliefs are.

First, following uninformative guess B, the updating factor of the subjective public likelihood ratio

belongs to the interval (1−qPUB

qPUB

, 1] and it approaches the lower bound of the interval as the degree

of local thinking goes to infinity. Extreme local thinkers infer signal b from uninformative guess B.

Second, following uninformative guess O, the updating factor of the subjective public likelihood ratio

belongs to the interval [1, qPUB

1−qPUB

) and it approaches the upper bound of the interval as the degree of

local thinking goes to infinity. Extreme local thinkers infer signal o from uninformative guess O.
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Finally, given Ψi = (wi, `i), Intuitive i’s belief µi (p, si, ht; Ψi) in period t ≥ 2 takes the form[
1 +

(
1− µi (p, si, ht−1; Ψi)

µi (p, si, ht−1; Ψi)

)(
Pr (gt−1 | ht−1,O; `i)

Pr (gt−1 | ht−1,B; `i)

)wa
i
]−1

=

1 +

(
1− µi (p, si, ht−1; Ψi)

µi (p, si, ht−1; Ψi)

)
∑
st−1

Pr (st−1 | O)R (st−1, gt−1)`i σ∗ (gt−1 | st−1, ht−1)∑
st−1

Pr (st−1 | B)R (st−1, gt−1)`i σ∗ (gt−1 | st−1, ht−1)


wa
i

−1

(3)

with µi (p, si, h1 = ∅) = 1/
(

1 + Pr(O) Pri(si|O)
Pr(B) Pri(si|B)

)
, and

σ∗ (B | b, ht−1) = 1 if ∆ (ht−1) ∈ {−1, 0},
σ∗ (B | o, ht−1) = 0 if ∆ (ht−1) ∈ {−1, 0},

σ∗ (B | st−1, ht−1) = 1 ∀st−1 ∈ {b, o} if ∆ (ht−1) ≥ 1,

σ∗ (B | st−1, ht−1) = 0 ∀st−1 ∈ {b, o} if ∆ (ht−1) ≤ −2

where ∆ (ht−1) is the difference between the number of blue and orange guesses in history ht−1. In

Appendix E, we show that the difference R (b, B)−R (o,B) decreases over periods. Thus, the intuitive

belief increases at a decreasing rate along a B-cascade: Each B guess that is part of an informational

cascade is perceived as informative but less so than the previous one. Similarly, Intuitive perceive

each O cascade guess as informative but less so than the previous one.

Intuitive Learning from Human Guesses. Lastly, consider the observational learning scenario

where Intuitive learn from public guesses made by human subjects. In this human-observed scenario,

Intuitive are uninformed of the decision process that generates public guesses. Therefore, to make

inferences from public guesses, they need to form expectations about the strategies played by observed.

In view of the evidence collected in Experiments 2 and 3, we argued that non-Bayesian updating

and informational misinferences reflect intuitive judgments that build on other attributes than norma-

tive judgments—for example, the more accessible attribute of representativeness is often substituted

for the required target attribute of probability. It is our contention that intuitive reasoning also

affects the formation of expectations about others’ strategy. This leads us to postulate that Intuitive

have a simple model of how public guesses are made which abstracts from the aforementioned belief

distortions. Still, intuitive expectations should not starkly contradict observed play since we attempt

at rationalizing the behavior of experienced observational learners who repeatedly learn from public

guesses submitted by the same group of people. To accommodate both requirements, we assume that

Intuitive expect observed to play (homogeneous) logit quantal-response equilibrium strategies.

Let λEi
PUB
≥ 0 denote the payoff-responsiveness that Intuitive i attributes to observed and that she

believes to be commonly known among them. When λEi
PUB

< λi (resp. λEi
PUB
≥ λi) Intuitive i expects

observed to be less (resp. weakly more) responsive to their expected payoffs than herself. And as

λEi
PUB
→ 0 Intuitive i tends to believe that public guesses are uninformative, while she tends to believe

that observed play Bayes-rational equilibrium strategies as λEi
PUB
→ ∞. Conditional on λEi

PUB
, Intuitive

i expects the observed who acts in period τ < t to submit guess B with probability

σEi
PUB

(B | sτ , hτ ;λEi
PUB

) =
1

1 + exp (λEiPUB (1− 2µEiPUB (p, sτ , hτ ;λEiPUB)))

35



and that guess O is submitted with the complementary probability 1− σEi
PUB

(B | sτ , hτ ;λEi
PUB

) where

µEi
PUB

(p, sτ , hτ ;λEi
PUB

) =

1 +
Pr(O)

Pr(B)

Pr (sτ | O)

Pr (sτ | B)

∏
ρ<τ

∑
sρ∈{b,o}

Pr (sρ | O) σEi
PUB

(gρ | sρ, hρ;λEiPUB
)

∑
sρ∈{b,o}

Pr (sρ | B) σEi
PUB

(gρ | sρ, hρ;λEiPUB
)


−1

is the belief that Intuitive i expects the observed to form when the latter is endowed with private

signal sτ ∈ {b, o} with Pr (o | O) = Pr (b | B) = qPUB = 1− Pr (b | O) = 1− Pr (o | B) and the history

of public guesses is hτ (the product over ρ < τ is assumed equal to one when τ = 1). Therefore,

Intuitive i’s belief µi (p, si, ht; (wi, `i, λ
Ei
PUB

)) derives from Equation (3) where σ∗ (gt−1 | st−1, ht−1) is

replaced with σEi
PUB

(gt−1 | st−1, ht−1;λEi
PUB

) and the representativeness of logit quantal-response equilib-

rium guesses for signals is a function of λEi
PUB

whose properties are specified in Appendix E.

Illustrative Predictions of Intuitive Observational Learning. We predicted the responses to

vcPI for 18 different behavioral types across the guessing situations of Experiment 4. Behavioral

type i = 1, . . . , 18 is characterized by λi = 10, wi ∈ {0.25, 1, 2.5}, λEi
PUB
∈ {2.5, 10, 40}, and either a

null degree of local thinking (`i = 0) or an extreme degree of local thinking (`i → ∞). For the sake

of space, we provide here only a summary of our prediction results (see Appendix E for details).

First, we find that behavioral types with wi = 0.25 are always reluctant to contradict their low

and medium quality signals. These behavioral types are less reluctant to contradict their low and

medium quality signals when they are extreme local thinkers, but the level of noise they attribute to

public guesses hardly affects their behavior. Behavioral type (wi = 1, `i = 0, λEi
PUB

= 2.5) is the only

type with wi > 0.25 that also overweights its low and medium quality signals, though mildly so.

Second, for any λEi
PUB
∈ {2.5, 10, 40}, excessive herding with high quality signals results either from

wi ≥ 1 and extreme local thinking or from wi = 2.5 and the absence of local thinking. The difference

is that behavioral types with wi = 2.5 and `i = 0 exhibit a stronger tendency to herd excessively with

low and medium quality signals than extreme local thinkers who properly weight public information.

Moreover, large public information weights lead to excessive herding with high quality signals even

at short contrary majorities, a prediction that does not hold for large degrees of local thinking.

In sum, our illustrative predictions suggest that a small public information weight best captures

the reluctance to contradict low and medium quality signals, while both pronounced local thinking

and large public information weights lead to excessive herding with high quality signals. On the other

hand, the level of noise assigned to public guesses seems to have little impact on the predictions made

by intuitive observational learning.

4.2 Estimating Intuitive Observational Learning

We first report the estimation results for our structural model of intuitive observational learning, and

then we examine the relative influence of belief distortions on herd behavior.

The behavioral type of each unobserved in Experiment 4 is estimated using maximum-likelihood

techniques. Estimations are performed at the individual level to avoid making restrictive assumptions

about the joint distribution of the parameters, and they rely on guesses made in Experiment 4 since

each unobserved faced many short and large contrary majorities with all three signal qualities. We

employ a step-wise estimation procedure to mitigate identification problems. For each unobserved,

we repeatedly estimate her public information weight, her degree of local thinking, and her payoff-

responsiveness while holding the ratio λE
PUB
/λ fixed at each value in the grid {0.1, 0.2, . . . , 0.9, 1} ∪

{1/0.9, 1/0.8, . . . , 5, 10}. We then select the ratio that maximizes the log-likelihood across all 19
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estimation runs. Finally, parameter estimates with λE
PUB
6= λ are kept only if they significantly improve

the fit over the parameter estimates with λE
PUB

= λ (Appendix F details our estimation approach).

Table 4 reports our estimation results.18 Note that, to facilitate the comparison between subjects,

we report estimates of a rescaled version of the degree of local thinking, namely `/(1+`). Henceforth,

we simply refer to `/(1 + `) as the degree of local thinking. For each unobserved, columns 2-3 (resp.

4-5 and 6-7) report the selected estimate of parameter w (resp. `/(1 + `) and λ) and its bootstrapped

standard error, column 8 reports the selected estimate of the ratio λE
PUB
/λ, column 9 reports the log-

likelihood of the model with the selected ratio, and column 10 reports the p-value of the likelihood

ratio test.

There is a rich diversity in the weighting of public information and in the degree of local thinking.

Slightly more than a quarter of the unobserved decidedly underweight public information (ŵ ≤ 1/4)

whereas almost a sixth of them quite strongly overweight public information (ŵ ≥ 3/2). And though

more than half of the unobserved have a pronounced degree of local thinking (ˆ̀/(1 + ˆ̀) ≥ 1/2), about

one sixth of them make proper informational inferences (ˆ̀/(1 + ˆ̀) ≤ 1/20). On the other hand, for

more than two-thirds of the unobserved λ̂E
PUB
6= λ̂ does not significantly improve the fit of the model

which indicates that unobserved mostly believe that observed have the same payoff-responsiveness as

them (the 1st quartile, median, and 3rd quartile of the payoff-responsiveness distribution is 5.94, 7.60,

and 13.03 respectively).

Belief distortions and herd behavior

To determine the relative influence of belief distortions on herd behavior, we explore the relationship

between the decision rules unobserved have been assigned to and their estimated belief distortion

types. Estimates of payoff-responsiveness are rarely mentioned since, except for subject 4410 who has

been classified as noisy, λ̂ is quite high for most unobserved (the median value is 6.30, 8.23, 14.55,

7.31 and 8.70 for the SFPI, WFPI, SOL, WC, and SC rule respectively).

For each unobserved in Experiment 4 (with the exception of subject 4410), Figure 3 shows her

estimated belief distortion type in relation to the decision rule she has been assigned to. The figure

contains a marker for each unobserved with x-value ŵ, y-value ˆ̀/(1 + ˆ̀), and label λ̂E
PUB
/λ̂ where dark

(resp. light) brown dots correspond to the SFPI (resp. WFPI) rule, white diamonds correspond to

the SOL rule, and dark (resp. light) purple squares correspond to the SC (resp. WC) rule.

For almost all unobserved assigned to the SOL rule, neither the weighting of public information

nor the degree of local thinking is too extreme (0.62 < ŵ < 1.43 and 0.29 < ˆ̀/(1+ ˆ̀) < 0.71), and the

two estimates tend to be negatively correlated. This is clearly in line with the fact that the average

proportion of optimal guesses is large with high quality signals (0.98 and 0.74 at contrary majorities

of size less than 2 and more than 3 respectively) and with low or medium quality signals (0.84 and

0.98, when averaged across the two qualities, at contrary majorities of size less than 2 and more than

3 respectively). We also note that five out of the seven successful observational learners believe that

observed have the same payoff-responsiveness as them.

For unobserved who have been assigned to the WC rule, ŵ and ˆ̀/(1 + ˆ̀) are also negatively

correlated (of course, the median values of ŵ and ˆ̀/(1 + ˆ̀) are larger for weak conformists, 1.39

and 0.50, than for successful observational learners, 0.84 and 0.45). Thus, weak conformism often

results either from the combination of a high degree of local thinking and mild overweighting (or

even mild underweighting) of public information or from the combination of strong overweighting of

public information and a rather low degree of local thinking. Still, in order for them to herd with

18Due to a network error in the first session of Experiment 4, subject 4109 was prevented from submitting guesses in
non-practice parts 2 and 3 and is therefore excluded from the estimation.
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ŵ ˆ̀/
(

1 + ˆ̀
)

λ̂

Unobserved Est. SE Est. SE Est. SE λ̂E
PUB
/λ̂ LL p-value

4108 1.279 (0.159) 0.465 (0.070) 6.163 (0.552) 0.3 -60.1 0.067
4110 2.278 (0.204) 0.500 (0.048) 7.584 (0.577) 0.2 -41.2 0.011
4111 1.089 (0.104) 0.044 (0.049) 15.796 (1.942) 0.2 -23.6 0.001
4112 1.228 (0.173) 0.323 (0.099) 8.009 (0.856) 0.2 -53.7 0.070
4113 0.177 (0.089) 0.000 (0.175) 5.777 (1.024) 1 -88.1 0.154
4114 0.321 (0.064) 0.787 (0.165) 7.289 (1.156) 1 -59.6 0.352
4115 0.016 (0.028) 0.606 (0.267) 7.382 (0.855) 1 -72.0 0.644
4208 0.372 (0.109) 0.000 (0.095) 5.732 (0.751) 1 -82.3 0.358
4209 2.020 (0.282) 0.317 (0.082) 4.308 (0.414) 1 -66.3 0.127
4210 1.426 (0.098) 0.289 (0.053) 28.911 (8.863) 0.1 -10.7 0.008
4211 0.089 (0.032) 0.584 (0.215) 9.531 (2.289) 1 -53.7 0.815
4212 0.052 (0.036) 0.993 (0.460) 4.427 (0.456) 1 -101.2 1.000
4213 2.646 (0.238) 0.122 (0.070) 6.538 (0.973) 1 -37.2 0.382
4214 0.041 (0.008) 0.766 (0.107) 71.592 (49.977) 1 -15.3 0.923
4215 0.767 (0.057) 0.539 (0.053) 9.774 (1.745) 1 -37.8 0.586
4308 0.346 (0.027) 0.994 (0.103) 14.810 (5.457) 1 -27.0 0.204
4309 1.349 (0.191) 0.433 (0.107) 7.514 (1.689) 1 -28.0 0.285
4310 0.067 (0.053) 0.275 (0.210) 6.102 (3.178) 1 -81.0 0.170
4311 0.045 (0.016) 0.992 (0.280) 14.527 (8.866) 1 -38.7 0.849
4312 0.242 (0.022) 0.968 (0.062) 21.097 (6.104) 1 -23.3 0.993
4313 1.104 (0.079) 0.994 (0.103) 46.877 (119.44) 1 -5.6 1.000
4314 0.544 (0.073) 0.899 (0.121) 4.861 (0.565) 1 -67.6 0.692
4315 1.000 (0.077) 0.303 (0.048) 11.717 (11.510) 1 -24.3 0.379
4408 0.196 (0.068) 0.691 (0.208) 8.438 (1.544) 1 -54.3 0.873
4409 0.621 (0.031) 0.706 (0.017) 22.172 (7.017) 10 -17.8 0.094
4410 0.000 (7.303) 0.000 (0.482) 0.170 (0.212) 1 -166.2 0.884
4411 0.562 (0.200) 0.000 (0.118) 4.811 (0.543) 1 -91.8 1.000
4412 1.115 (0.101) 0.687 (0.048) 7.596 (1.204) 10 -45.5 0.001
4413 1.413 (0.107) 0.592 (0.034) 7.435 (0.522) 0.2 -49.8 0.095
4414 0.853 (0.079) 0.799 (0.037) 5.089 (0.611) 10 -68.8 0.079
4415 0.742 (0.077) 0.815 (0.037) 6.310 (0.718) 10 -59.7 0.017
4508 1.019 (0.062) 0.447 (0.043) 14.903 (2.210) 1 -23.1 0.328
4509 0.368 (0.041) 0.945 (0.097) 8.355 (1.311) 1 -49.1 0.391
4510 0.000 (0.035) 0.000 (0.270) 6.833 (0.941) 1 -73.0 0.999
4511 0.838 (0.073) 0.307 (0.059) 8.004 (1.058) 1 -51.7 0.505
4512 0.686 (0.072) 0.266 (0.057) 13.287 (1.304) 0.2 -34.4 0.003
4513 0.000 (0.000) 0.000 (0.000) 2.524 (0.342) 1 -134.9 1.000
4514 0.136 (0.024) 0.700 (0.085) 17.074 (3.232) 1 -31.1 0.284
4515 1.807 (0.166) 0.365 (0.056) 7.231 (0.593) 0.3 -40.3 0.003
4608 1.857 (0.162) 0.068 (0.062) 6.114 (0.633) 1 -43.8 0.366
4609 1.394 (0.169) 0.988 (0.122) 9.957 (26.639) 1 -20.7 0.379
4610 1.270 (0.065) 0.338 (0.035) 14.682 (1.172) 0.2 -22.8 0.004
4611 2.181 (3.897) 0.990 (0.053) 8.203 (5.033) 1 -20.4 1.000
4612 0.651 (0.254) 0.000 (0.148) 2.280 (0.336) 1 -137.3 0.968
4613 0.286 (0.051) 0.988 (0.196) 3.896 (0.505) 1 -100.7 1.000
4614 0.376 (0.091) 0.681 (0.121) 5.184 (0.587) 10 -82.8 0.044
4615 3.146 (0.257) 0.407 (0.053) 12.769 (0.933) 0.1 -21.7 0.040

Note: Bootstrapped standard errors in parentheses.

Table 4: Parameter Estimates for Intuitive Observational Learning

high quality signals at large contrary majorities, weak conformists with ŵ < 1.11 have to believe

that observed best respond (among those weak conformists, the median value of λ̂E
PUB

is 50.89). On

the other hand, weak conformists who tend to strongly overweight public information also tend to

perceive observed guesses as noisy (among those weak conformists, the median value of λ̂E
PUB

is 3.62).
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Figure 3: Estimated Belief Distortion Types of Decision Rules

The perceived amount of noise in observed guesses also separates the two cognitive types of weak

followers of private information. WFPIs of the first type believe that observed have the same payoff-

responsiveness as them, they strongly underweight public information (0.20 ≤ ŵ ≤ 0.37), and they

tend to be strong local thinkers (their median value of ˆ̀/(1 + ˆ̀) is 0.86). WFPIs of the second type

believe that observed make substantially more noisy guesses than themselves (0.20 ≤ λ̂E
PUB
/λ̂ ≤ 0.30),

they weight public information rather properly (0.69 ≤ ŵ ≤ 1.28), and they tend to be mild local

thinkers (their median value of ˆ̀/(1+ˆ̀) is 0.29). On average, the two cognitive types behave identically

when endowed with low or medium quality signals. Thus, the failure to herd when facing short

contrary majorities results either from the strong underweighting of public information or from the

wrong belief that others make noisy guesses. In line with the respective degrees of local thinking,

we also note that with high quality signals the first cognitive type is more (resp. less) successful in

learning from short (resp. large) contrary majorities than the second cognitive type.

Regarding extreme observational learning behaviors, a strong tendency to follow private infor-

mation is best rationalized by a substantial underweighting of public information rather than by

assigning large errors to the decision-making of others. Indeed, all strong followers of private infor-

mation believe that the observed payoff-responsiveness is at least as large as their own, and most

of them substantially underweight public information (the median value of ŵ is 0.07). Finally, the

only strong conformist overweights public information (ŵ4611 = 2.18) and wrongly believes that each

observed guess is informative (ˆ̀
4611/(1 + ˆ̀

4611) = 0.99).

Our structural estimation results indicate that at least two belief distortions are needed to capture

the rich heterogeneity in individual herd behavior. Indeed, both weak conformists and weak followers

of private information are characterized by one of two cognitive types that differ in how they weight

public information, in their degree of local thinking, and in the payoff-responsiveness they assign to

observed. And the strong conformist not only overweights public information, but she also wrongly

believes that each observed guess is informative. On the other hand, the strong tendency to follow
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private information is well rationalized by a substantial underweighting of public information.

4.3 Assessing the Predictive Power of Intuitive Observational Learning

To assess the predictive power of our model of intuitive observational learning (IOL), we measure

the accuracy of its predictions relative to the guesses made by unobserved in Experiment 4. We

also investigate whether the nature of expectations affects IOL’s ability to predict accurately by

comparing the predictive power of alternative models that differ in the richness of the expectations

that Intuitive have about others’ strategy (details about our prediction framework and results are

provided in Appendix F).

We consider 4 structural models of intuitive observational learning. In each model, the behavioral

type of Intuitive i is summarized by five parameters
(
wi, `i, λ

Ei
PUB
, λ

E2
i

PUB, λi

)
. The two parameters λEi

PUB
≥

0 and λ
E2
i

PUB ≥ 0 characterize how expectations are formed. Concretely, Intuitive expect observed to

play logit quantal-response strategies with payoff-responsiveness λEi
PUB

and they believe that observed

expect others to play logit quantal-response equilibrium strategies with payoff-responsiveness λ
E2
i

PUB. In

IOL, we have that λEi
PUB

= λ
E2
i

PUB since Intuitive expect observed to play equilibrium strategies. And

λEi
PUB

is deemed different from λi only if the fit of the model is significantly improved. We consider a

first alternative to IOL, referred to as 2λs-QRE, where λEi
PUB

always equals its estimated value. The

second alternative, referred to as 3λs-QR, is a more drastic variation of IOL where we allow all three

payoff-responsivenesses to differ
(
λi 6= λEi

PUB
, λi 6= λ

E2
i

PUB, and λEi
PUB
6= λ

E2
i

PUB

)
meaning that Intuitive i might

expect that observed play non-equilibrium strategies. In particular, observed are expected to (almost)

always guess in accordance with their private information if λ
E2
i

PUB is negligible but λEi
PUB

isn’t. Finally,

we consider a third alternative, referred to as 1λ-QRE, where Intuitive i expects observed to play

equilibrium strategies with the same payoff-responsiveness as her own meaning that λi = λEi
PUB

= λ
E2
i

PUB.

To measure the predictive power of a model, we first estimate the behavioral type of each of the

47 unobserved (subject 4109 is excluded). Second, we predict for each behavioral type its proba-

bility to contradict private information in each guessing situation. Third, we take the average of

these 47 predicted probabilities in each guessing situation, and we compute the weighted sum of

squared differences (SSD) between the average predicted probabilities and the empirical propensities

to contradict private information where the weight of a guessing situation is given by the number

of its occurrences. Finally, we compute the model’s predictive power as 1 − SSD/SSDB where

SSDB is the weighted sum of squared differences for our theoretical benchmark. Remember that

benchmark players know the informational value of public guesses, form Bayesian beliefs, and make

probabilistic money-maximizing guesses conditional on their beliefs. To compute SSDB, we assume

more specifically that benchmark guesses are logit quantal-responses to vcPI and we estimate the

payoff-responsiveness of each unobserved which enables us to predict the average benchmark proba-

bilities to contradict private information.19 Given our definition of the predictive power of a model,

if unobserved guesses are perfectly matched by the predictions of a model then its predictive power

equals 100 percent. And since the predictive power of our theoretical benchmark is null, a model that

predicts worse than our theoretical benchmark has a negative predictive power.

Table 5 reports the predictive powers of the 4 models of intuitive observational learning by the

quality of private signals and averaged across qualities. Figure 4 shows the responses to vcPI predicted

by IOL where only guessing situations with sitcount ≥ 10 are considered and fitted lines of weighted

IV regressions are superimposed.

19To derive SSDB from the same sample of guesses as each model’s SSD, we replace vcPI by a value based on the
state-contingent relative frequencies of histories in every guessing situation where it cannot be calculated. See Appendix
F.3 for details.
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Signal Quality IOL 1λ-QRE 2λs-QRE 3λ-QR

Low 60.8% 60.2% 60.7% 61.4%
Medium 86.3% 85.6% 86.5% 86.7%

High 83.1% 82.9% 83.6% 84.3%

All 76.8% 76.4% 77.0% 77.6%

Table 5: Predictive Powers of Models of Intuitive Observational Learning

Note: •◦, •◦, •◦: Predicted responses with high, medium and low quality signals respectively.

Figure 4: Predicted Responses to the Empirical Value of Contradicting Private Information

Two main observations can be made from Table 5. First, IOL’s predictive power is substantially

stronger than the predictive power of our theoretical benchmark, though the increase in predictive

power varies with the quality of private signals. When unobserved are endowed with medium or high

quality signals, we find that IOL achieves an impressive predictive power of about 85% meaning that

its SSD is only one-sixth of SSDB. With low quality signals, however, IOL’s predictive power drops

to 60.8% which implies that its SSD is almost two-fifth of SSDB. Second, the nature of expecta-

tions hardly affects the ability of intuitive observational learning to predict accurately. Indeed, for

every signal quality, the difference between the strongest predictive power of 3λs-QR and the weakest

predictive power of 1λ-QRE is less than 2 percentage points. We performed a simulation exercise to

check whether the small differences in predictive power are statistically significant. For each model,

we randomly drew guesses from a binomial distribution where the probability of a contradictory guess

is the model’s average predicted probability to contradict private information. We then computed in

each guessing situation the relative frequency of simulated guesses that contradict private informa-

tion and we derived the model’s predictive power from these relative frequencies. We repeated the

simulation process 1,000 times to construct the 90%-confidence intervals of the model’s predictive

power. We find that the simulated confidence intervals largely overlap and we cannot reject the null

hypothesis that the 4 models of intuitive observational learning have identical predictive power.20

20Unsurprisingly, our estimation results show that allowing for rich expectations about others’ strategy can partly
substitute for non-Bayesian updating and local thinking in capturing the behavior of unobserved. Indeed, as expectations
become more flexible we find higher estimates of public information weights and lower estimates of local thinking degrees.
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We now examine in more details the extent to which IOL is able to predict excessive herding with

high quality signals and overweighting of low and medium quality private signals. First, in guessing

situations where unobserved face contrary majorities with high quality signals and vcPI < 0.4,

IOL achieves an average predictive power of about 57%. It correctly predicts that the proportion

of contradictions increases sharply with the size of the majority—on average, the empirical (resp.

predicted) proportion is 0.11 (resp. 0.08) at small contrary majorities and 0.42 (0.38) at large contrary

majorities—whereas our theoretical benchmark predicts only a mild increase (from 0.20 to 0.26).

Thus, as illustrated in Figure 4, IOL captures well the phenomenon of excessive herding with high

quality signals, and its strong predictive power in those guessing situations results from both the

overweighting of public information and local thinking.

Second, in guessing situations where unobserved face small contrary majorities with medium

quality signals and 0.6 > vcPI ≥ 0.5, IOL achieves an average predictive power of 69%. In contrast

to our theoretical benchmark, IOL correctly predicts that a minority of guesses contradict private

information. IOL also correctly predicts that only about half of the guesses are contradictions when

vcPI ≥ 0.6—on average, the empirical (resp. predicted) proportion is 0.54 (resp. 0.53) whereas

our theoretical benchmark predicts that most guesses contradict private information (the benchmark

proportion equals 0.78), and IOL’s predictive power reaches 83%. Thus, IOL also captures well the

phenomenon of overweighting of private information when signals are of medium quality. We note

that in those guessing situations the average predictive power of IOL is comparable to the average

predictive power of both 1λ-QRE and 3λs-QR which indicates that the strong predictive power of

intuitive observational learning results from the underweighting of private information.

Third, in guessing situations where unobserved face small contrary majorities with low quality sig-

nals and vcPI ≥ 0.5, IOL achieves an average predictive power of only 25%. Though IOL’s predictive

power is positive, it is rather low partly because our theoretical benchmark also predicts well. Both

IOL and our theoretical benchmark exaggerate the proportion of contradictions when vcPI < 0.6—

the empirical, IOL predicted, and benchmark proportion is 0.50, 0.56, and 0.61 respectively—and

even more so when vcPI ≥ 0.6—the empirical, IOL predicted, and benchmark proportion is 0.61,

0.74, and 0.77 respectively.

At last, there are guessing situations where IOL’s predictions are quite at odds with unobserved

guesses. Mostly, IOL overpredicts the propensity to contradict low quality signals in the absence

of a majority when 0.4 ≤ vcPI < 0.5, though our theoretical benchmark predicts even worse—

the empirical, IOL predicted, and benchmark proportion of contradictions is 0.12, 0.38, and 0.45

respectively. Note that most of the corresponding guesses (241 out of 312) are made in period 1 where

none of the belief distortions affects the predicted probability to contradict private information.21

5 Concluding Discussion

We designed four experiments to explore whether forces other than Bayes-rational inferences drive

herd behavior and, if so, to delineate the nature of these forces. In Experiment 1, unobserved learn

from public guesses made by other subjects who are endowed with medium quality signals. We find

See Appendix F.2 for details.
21Regarding the many guessing situations where unobserved face a favoring or no majority and vcPI < 0.4, IOL

achieves an average predictive power of about 90% with medium or high quality signals and almost 80% with low
quality signals. Indeed, IOL predicts proportions of contradictions that are almost as tiny as the empirical ones whereas
our theoretical benchmark predicts proportions that are between 3 and 5 times larger than the empirical ones. The two
reasons are: i) local thinking causes the predicted probability to contradict private information to sharply decrease with
the size of the favoring majority, a property that is shared by the data; and ii) estimated payoff-responsivenesses are
considerably larger for IOL than for our theoretical benchmark (about three-quarters of the IOL payoff-responsivenesses
are larger than all of the benchmark payoff-responsivenesses).
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that unobserved herd excessively with high quality signals, they learn rather successfully from public

guesses with medium quality signals, and they overweight their low quality signals relative to public

information. Experiments 2-4 reveal that non-Bayesian updating and informational misinferences are

the two channels that drive excessive herding, while the strong (resp. mild) overemphasis on low

(resp. medium) quality signals is mainly caused by incorrect expectations about others’ strategy.

A model of intuitive observational learning (IOL) accounts for the phenomenon of excessive herding

and it also captures well observational learning with medium quality signals. However, IOL fails to

predict that unobserved are more reluctant to contradict their low than their medium quality signals.

We conclude by summarizing the content of i) two appendices that investigate the robustness of

our prediction results with respect to the modelling assumptions of IOL; and ii) one appendix that

evaluates the increase in IOL’s predictive power due to the inclusion of efficiency concerns.

Appendix G evaluates the predictive value of heterogeneity in the belief distortions that compose

IOL. We find that allowing for individual-specific weights in Experiment 2 is of considerable predictive

value. Indeed, non-Bayesian updating with a single weight has the same predictive power as Bayesian

updating which is approximately 20% lower than the predictive power of heterogeneous non-Bayesian

updating. In contrast, local thinking with a common degree, whose estimate is 0.572, predicts as

well as heterogeneous local thinking in Experiment 3, despite considerable diversity in the individual

degrees of local thinking. Restricting IOL to a single degree of local thinking still permits a good

description of herd behavior while removing many degrees of freedom.

In Appendix H, we measure the predictive power of two restricted versions of 1λ-QRE and IOL

where i) belief updating is Bayesian and ii) local thinking is absent. We find that the predictive power

of 1λ-QRE markedly decreases when either non-Bayesian updating or local thinking are dispensed

with. Conversely, the full and restricted versions of IOL predict equally well for each signal quality.

These findings confirm that, once they are sufficiently rich, expectations about others’ strategy can

substitute for non-Bayesian updating or local thinking in describing herd behavior. These findings

also help understand why deviations from Bayesian rationality in cascade experiments have often

been interpreted as errors in higher-order reasoning. Still, the fact that expectation models of how

others draw informational inferences are flexible enough to be descriptively accurate does not entail

that they pinpoint the main principles behind herd behavior. Though we acknowledge that people are

unlikely to have a correct model of how others learn from public guesses, our new evidence indicates

that non-Bayesian updating and local thinking are vital principles governing herd behavior.

Appendix I measures the out-of-sample predictive power of (extensions of) IOL by calibrating

the model from unobserved guesses in Experiment 4 and predicting observed guesses in the same

experiment as well as observed and unobserved guesses in Experiment 1. As expected, we find

that the predictive power of IOL in Experiment 4 is significantly lower for observed guesses than

for unobserved guesses with medium quality signals. To capture the behavioral differences between

observed and unobserved, we propose a simple extension of IOL that incorporates efficiency concerns.

The extension increases IOL’s predictive power for observed guesses by almost 12% in Experiment 1

and by only 5% in Experiment 4. These prediction results confirm that the observational learning

behavior of observed is partially driven by efficiency concerns and that their impact is stronger in

Experiment 1 than in Experiment 4.
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