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Abstract 
 
We propose an analytical framework based on the Kalman Filter to quantify central 
distortionary effects of product-specific subsidies. In our application, we use time series of 
foreign and domestic order book levels during and after the temporary installation of a “cash for 
clunkers” subsidy by the German government in 2009 to assess implied disruptions in the 
German automobile sector and eleven competing industries of the German manufacturing 
sector. We find stimulus-effects to be rather mild, some evidence of intertemporal program 
reversal, and consumers’ windfall gains to clearly come at the expense of other industries. 
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1 Introduction

The debate about fiscal stimulus or in general about the government “buying output”

and the size, impact, and timing of the multiplier of government spending has a long

tradition, in particular, in the quantitative economics literature. Seminal theoreti-

cal contributions, taking a supply-side perspective on the topic, include Hall (2009),

Angeletos and Panousi (2009), and Strulik and Trimborn (2017). Demand-sided quan-

titative research focusing on macroeconomic aggregates can be found, among others,

in the seminal studies by Blanchard and Perotti (2002), Barro and Redlick (2011),

and Ramey (2011). In the context of an industry with high fixed costs total market

demand and price are of paramount importance as they largely determine (annual)

profitability; see Goolsbee and Krueger (2015) on the U.S. lightweight vehicle industry.

Product-specific fiscal stimulus in the vehicle sector of some G7 economies is analyzed,

for example, in Adda and Cooper (2000) for France, Schiraldi (2011) for Italy, and in

Mian and Sufi (2012) and, to some extent, Goolsbee and Krueger (2015) for the U.S.,

respectively. We take up the discussion with a different twist, propose a novel analyt-

ical framework to quantify intertemporally and intersectorally distortionary effects of

such subsidies, and come up with some new insights.

The 2015-2017 “dieselgate” emission control cheating-scandal concerning leading Ger-

man automobile firms and their products since 2009, led some German politicians to

propose a quite specific scrapping subsidy to foster purchases of new diesel vehicles

meeting the Euro-6 emission standard. The latter sets the currently highest standard

of acceptable limits for exhaust emissions of new diesel vehicles in the European Union

as of 2014. The German Federal Ministry of the Environment as well as politicians from

both the liberal and the green party clearly reject this idea on grounds of addressing

the problem by unjustifiably favoring a dying out technology at the cost of other prod-

ucts –such as e-vehicles, public transport or bikes– and of the taxpayers. This example

very well highlights the three dimensions of product-specific scrapping subsidies that

we seek to explore and quantify: demand-sided effectiveness, intertemporal bias, and

intersectoral bias. A comprehensive quantitative analysis may also help us to address

the question of a trade-off between effectiveness on the one hand and intertemporal

and intersectoral bias on the other; that is, if a product-specific scrapping subsidy is

merely (very) effective does this imply low (high) intertemporally and intersectorally

distortionary effects of the measure?
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To this end, we analyze the temporary installation of a “cash for clunkers” subsidy

by the German government in 2009 that coincided with the perceived need for fiscal

stimulus in the advent of the Great Recession. As orders and sales of the manufactur-

ing industries started to decrease exceptionally,1 the German government decided to

introduce a scrapping bonus as part of its recovery program “Konjunkturpaket II” in

January 2009. From the 50bn Euros of the total package, 5bn Euros financed the cash

for clunkers program (OECD, 2010, p. 100). The individual scrapping bonus amounted

to 2,500 Euros. It was granted to private consumers for scrapping a used car and buy-

ing a new one. Although, it was officially labeled an environmental policy measure,

with the aim to increase the fuel efficiency of the German households’ vehicle stock,

there is little debate that it was indeed an example for counter-cyclical fiscal policy

with the aim to cushion the crisis’ negative effects on the German automobile industry.

The latter is said to be the nation’s core industry directly employing about two percent

of the German working population (Schweinfurth, 2009; Leuwer and Süssmuth, 2018).

Microeconomically, the scrapping bonus has three main effects. First, it increases the

disposable income of households (primary income effect). Secondly, it reduces the price

of automobiles (price effect). And thirdly, it decreases disposable income in case it has

to be financed via taxation (withdrawal effect). The price effect may be subdivided

into a substitution and a secondary income effect. One problem of the scrapping bonus

is that due to the substitution effect it will probably increase the quantity demanded in

the automobile industry at the expense of other industries, i.e. induce an intersectoral

bias. Besides, only a small fraction of car sales in 2009 might have been induced by

the bonus. A major share of vehicle sales might have been carried out anyway. We can

think of realized bonuses in this case as unintended windfall gains. The higher they are,

the less effective we overall assess the scrappage scheme. Finally, intertemporal bias is

given if consumers “squirrel away” new cars to realize bonuses; that is, households that

had planned to buy a new car in 2010 or later might have simply pulled their purchase

from the future to the present (strategic pull-forward effects). Mian and Sufi (2012)

refer to this phenomenon as “program reversal.” This reversal in turn might lead to

a deterioration of vehicle sales after the end of the scrapping bonus. Such an effect

has, for example, been found in the aftermath of similar policy measures in Italy and

France (Adda and Cooper, 2000). By estimating counterfactual outcomes based on

information contained in foreign orders and netting out reaction functions, our study

1However, in international terms the dip was rather modest. Only car sales growth in Poland and

China reacted even less negatively than the German one from 09/08 to 01/09; see OECD (2010, p.95).
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is the first to offer detailed quantitative assessments of demand-sided effectiveness,

intertemporal bias, and intersectoral bias of a product-specific scrappage subsidy. A

sneak preview of our results section given in Figure 1 makes the point: demand-sided

effectiveness is shown in the black colored part of its left panel; intertemporal bias in

the form of program reversal is represented by the red part in the left schedule (in

particular, seen against the backdrop of the black colored area in the right panel, i.e.

a swelling pent-up demand in all other industries, apart from automobiles, coinciding

with the ending of the subsidy); intersectoral bias even outnumbering the first effect

as highlighted by the red colored area in its right panel.

Figure 1: Distortionary effects of product-specific subsidy on order books
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Note: Left panel: automobile sector; right panel: all other manufacturing sectors; period: 01/2009 to 06/2012

The German 2009 scrappage program that was the most generous as a share of domestic

GDP, amounting to 0.2 percent, in an international comparison is indeed perceived

to profoundly have stabilized sales (OECD, 2010). However, we find the demand-

sided effectiveness of such a temporary product-specific scrappage subsidy to be rather

poor. Buyers realize substantial unintended windfall gains that are –as opposed to

some alternative schemes one can think of– non-neutral with regard to the public

budget. Additionally, stabilization comes according to our estimates at the price of a

prolongation of the sectoral trough and a procrastination of the subsequent recovery

in the automobile industry by about one year. This seems non-trivial costs given that

the German automobile sector’s annual turnover amounts to roughly ten percent of

German GDP (Schweinfurth, 2009). Finally, as theory suggests, we find evidence for
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(net) sectoral crowding-out and, hence, intersectoral bias of the measure. Thus, our

summarizing findings-preview might be seen as speaking in favor of less product-specific

alternatives to induce fiscal stimulus such as consumption vouchers with deadlines, tax

incentives, or intervention support in the form of direct governmental purchases.

Our contribution to the literature and research agenda is to set up and apply an inte-

grated time series approach to systematically and thoroughly disentangle and quantify

the different distortions of temporary product-specific subsidies. To the best of our

knowledge, such an approach does not exist to the present. It is based on Kalman

Filter/Smoother estimates of counterfactual time series using information contained in

series unaffected from the intervention (in our exemplary application, foreign orders)

and on netting out corresponding factual and counterfactual response functions.

The remainder is organized as follows. Section 2 briefly rationalizes some theoretical

considerations on product-specific subsidization regarding the use of resources and out-

put in the total economy. After some description of our data, we introduce in Section

3 the analytical time series intervention framework to disentangle and quantify the dif-

ferent distortionary effects of temporary product-specific subsidies. In our application

we interpret findings step by step. Section 4 concludes.

2 Some theoretical considerations

A scrapping bonus is an instrument of fiscal policy that may be used to stabilize an

industry in times of economic crisis. To get an idea of the effects of a product-specific

scrapping subsidy we consider a basic theoretical model in the spirit of Harris and

Todaro (1970). Detailed underlying equations are given in the Appendix. In the

following, we focus on a graphical wrap-up as shown in Figure 2.

Suppose the total economy initially produces efficiently in point A with output x∗ and

y∗, where the latter subsumes the output of all other sectors apart from x. Input factors

are rewarded their marginal product m in each sector x and remaining industries y. The

introduction of a subsidy s for sector x, e.g. a scrapping bonus, will increase the demand

for resources and ultimately raise output in sector x at the expense of remaining sectors

y. The economy will produce in B (mere substitution effect). Note that a production in

B cannot be Pareto-efficient as MRS∗ 6= MRT 0. In case the subsidization of sector x

4



ends, output in sector x (all other sectors y) will decrease (increase).2 Temporarily this

can lead to a situation where there are unused resources. Graphically such a situation

is given by point C. For R0, production in C would be feasible, however, inputs are

not fully employed, i.e. production does not fulfill technical efficiency. Eventually, as

my decreases the economy will reach a new productively efficient equilibrium with all

resources in use. Thus, the challenge is to quantifying distance AB and the associated

drop in y and increase in x over time of the transitory x-specific subsidy; distance BC,

that is the gradual decrease in x at the end and after removal of the subsidy possibly

falling below Pareto-level x∗ to x1; distance CA, that is the recovery to initial levels

x∗, y∗. Note this process –other than shown in Figure 2– might be paralleled by some

pent-up demand in y (graphically, this would imply that the concave connecting line

between C and A would temporarily even exceed y∗). The final task is to assess the

time it takes for re-allocating, that is for the BC, CA re-adjustment.

Figure 2: Transformation curve and change in sectoral output due to subsidy

In the empirical application parts of our study, inefficiency will be measured by esti-

mating a counterfactual scenario without a scrapping bonus. It allows us not only to

assess how close to the origin and, hence, off x∗ the output in the German automobile

sector fell below an efficient level after the ending of the program, but also to assess

the price, i.e. the repercussion, of this fiscal stimulus in terms of getting back to an

efficient level x∗. In other words, our strategy allows us to measure the true stimulus of

2In the simple underlying model detailed in the Appendix this is due to equation (A.1.9).
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the program and the true dip in vehicle sales after the ending of the cash for clunkers

program. Additionally, it will provide us with a measure for the actual time of recovery

from this dip, i.e. the time elapsed for distance CA in Figure 2. By “true” and “actual”

in the last sentences we mean corrected distance and time measures: First, this refers

to distance x0 − x∗ corrected for unintentional windfall-profit effects, i.e. considering

the volume of vehicles that would have been produced and sold between January and

September 2009 anyway without the subsidy. Secondly, it refers to corrected distance

and time elapsed measures for x∗−x1 taking into account strategic pull-forward effects,

i.e. considering consumers having pulled forward their purchases from the future. Nat-

urally, such purchases deepen the cut of sales after the ending of a scrappage scheme

and delay subsequent recovery.

3 Empirical framework and analysis

3.1 Sectoral time series

We consider seasonally adjusted monthly data from January 1991 to June 20123 on

order book levels in twelve industries of the German manufacturing sector. The data

is supplied as volume index by the German Statistical Office. The industries that are

considered are electronical and optical devices, clothing, chemicals, electronics, cars,

metalworking, production of paper, pharmaceutics, textiles, machines, production of

metal, and vehicles other than cars. Figure A.5 shows the data for the twelve considered

industries separated by orders from foreign markets (dotted) and from inland (dashed).

The three vertical grey lines mark the beginning of the financial crisis on August 9,

2007 (hallmarking the start of rapid increase of the interbank interest rate in the U.S.),4

the collapse of Lehman Brothers in September 2008, and the beginning of the sovereign

debt crisis in the euro area in October 2009, respectively.

3We choose June 2012 as endpoint of our sample period as it generally marks a point of discontin-

uation of the official statistics on industrial new orders and corresponding sectoral series in European

countries. See De Bondt et al. (2013) for detail.
4Different to the situation at the time in the U.S., where subprime auto credit had been unsus-

tainably inflated by the preceding housing and credit bubble (Goolsbee and Krueger, 2015), neither

credit crunch in the sense of households lacking access to credit and, thus, postponing car purchases

nor the liquidation risk of the “big 3” car producers were given for Germany (OECD, 2010).
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Figure 3: Log order book levels with foreign (dotted) and inland (dashed) origin
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The grey shaded area in the fifth panel identifies the scrapping bonus in the cars

industry that was in place from January 2009 to September 2009. In each panel the

two red points mark lower turning points, i.e. the minimum of orders between the first

and third vertical line, respectively. As can be seen from Figure 3, the crisis effect

varies by sector. There seem to be three stylized types of reaction: industries that are

seemingly unaffected by the crisis (e.g. vehicles other than cars in panel 12), industries

that were affected by the crisis but recovered quite fast (e.g. electronics in panel 4)

and industries in which orders shifted downwards and did not recover up to the end of

our observation period (e.g. clothing in panel 2).

The German cars industry is the only one from the sectors shown in Figure 3 that

could directly benefit from policy measures undertaken to dampen the crisis’ impact.

Although the bonus was officially introduced to increase fuel efficiency of the German

households’ vehicle stock, there is no doubt it actually was intended as fiscal stimulus.

Table A.1 in the Appendix provides summary statistics of series underlying Figure 3.

3.2 Intervention analysis

Intervention analysis, dating back to the seminal contribution by Box and Tiao (1975),

is a straightforward technique to backup our approach and allows to assess the effect

of an intervention on a series, in particular, as regards potential change of its first

moment. Consider a time series {yt} that may be modeled by some ARIMA(p, d, q)

process. An intervention model then is written as

yt = ν(L)It +
Θq(L)

Φp(L)
zt = mt + nt. (3.1)

In (3.1) nt is the noise model and mt represents the change in the mean function due

to an intervention. The lag polynomial ν(L) determines the shape and the duration of

the series’ reaction to a shock. ν(L) is approximated by the following rational function

ν(L) =
ω(L)

δ(L)
La, (3.2)

where the exponent a ∈ N0 determines the amount of time that passes before yt reacts

to an intervention; and ω(L) and δ(L) are polynomials in L of order s and r, i.e.

ω(L) = ω0 +ω1L+ ...+ωsL
s and δ(L) = 1− δ1L− ...− δrLr. The coefficients ωj in the

numerator of (3.2) capture the immediate effect of an intervention while the coefficients

δr of the denominator model the permanent effect of the intervention.
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Coefficients νj of ν(L) are calculated from δ(L)ν(L) = ω(L)La, that is

(1− δ1L− ...− δrLr)(ν0 + ν1L+ ν2L
2 + ...) = (ω0 + ω1L+ ...+ ωsL

s)La.

This implies that

νj =


0 for j < d

δ1νj−1 + δ2νj−2 + ...+ δrνj−r + ωj−d for j = d, d+ 1, .., d+ s

δ1νj−1 + δ2νj−2 + ...+ δrνj−r for j > d+ s.

In general, we can think of three different stylized types of intervention responses:

1. Impulse function (IF)

It := ε
(τ)
t =

1 for t = τ

0 for t 6= τ,
(3.3)

2. Extended impulse function (EIF)

It := η
(τ1,τ2)
t =

1 for τ1 ≤ t ≤ τ2

0 for t else,
(3.4)

3. Step function (SF)

It := ζ
(τ)
t =

1 for t ≥ τ

0 for t < τ.
(3.5)

Figure 4 exemplarily shows the shape of mt for different intervention response types

along its column dimension: SF: It := ζ
(τ)
t in its first column, IF: It := ε

(τ)
t in its second

column, and EIF: It := η
(τ1,τ2)
t in its third column, respectively. Transfer function

specifications are displayed along the row dimension: ν(L) = ω0L
a with a = 0 and

ω0 = (−1.5) in the second row, ν(L) = ω0/(1 − δ1L)La with a = 0, ω0 = (−1.5) and

δ1 = 0.5 in the third row, ν(L) = ω0/(1− δ1L)La with a = 0, ω0 = (−1.5) and δ1 = 1.0

in the fourth row, respectively.5 The fitting of intervention models to data evolves

according to the following steps:

5In some cases more sophisticated multiple intervention models will be needed in order to consider

more complicated (i.e. less stylized) dynamic reactions.
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Figure 4: Mean reaction to different intervention types and transfer functions
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1. Find an ARIMA(p, d, q)-process of appropriate order for the noise model nt based

on the pre-intervention data. Determining the model order (p, q) is done by look-

ing at the sample autocorrelation function (SACF) and sample partial autocor-

relation function (SPACF) or minimizing some information criterion.

2. Selecting the intervention type as well as the form of the transfer function (i.e.

specifying mt) is done by visually inspecting the series under study or making

use of any prior knowledge about the intervention process.

3. Parameter estimates are obtained by Maximum Likelihood (ML) estimation.

4. Testing the white noise assumption of model residuals completes the procedure.

In the following, we first estimate intervention models for the non-subsidized sectors.

We proceed by fitting intervention models to the subsidized car industry quantifying

the crisis effect on foreign orders and the crisis and bonus effect on domestic orders,

respectively. In a next step, we make use of the information contained in foreign orders

series that were unaffected by the domestic scrappage scheme6 in order to estimate

counterfactual intervention-free reactions sector by sector. This strategy allows us to

assess and to separate intertemporal strategic pull-forward effects from unintentional

windfall profits and from intersectoral distortions, respectively.

3.3 Fitting intervention models to non-subsidized sectors

The choice of a noise model nt is based on pre-intervention data ranging from 01/1991 to

07/2007. Appropriate AR and MA orders are found by first inspecting the respective

series’ SACF and SPACF and then minimizing the AIC over a reasonable range of

values for p and q. All series are assumed to be integrated of order one, i.e. d = 1.

When setting up mt we first need to choose the respective intervention type. In most

cases the crisis impact is modeled as an EIF η
(τ1,τ2)
t with τ1 = 09/2008 and τ2 = 10/2009.

This seems to be a reasonable choice with regard to the course of the crisis and the

6It is noteworthy in this context that the German scrappage scheme preceded all comparable

temporary programs in the OECD apart from the one installed in France which, however, represents

the smallest among the five largest schemes for year 2009 amounting to less then 8 percent of the

German subsidization (Schweinfurth, 2009; OECD, 2010).
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shape of the series under study.7 For most industries we observe a quite instantaneous

drop in log new orders after 09/2008. Hence, a = 0, see equation (3.2), seems to be

justified for the majority of cases. Only in case of the clothing industry the series

reaction to the collapse of Lehman Brothers is slightly delayed (i.e. by about two

months). Thus, we straightforwardly set a = 2 for this sector. As regards the shape

of the transfer function ν(L), fairly parsimonious specifications, like the ones shown

in the third row of Figure 4, prove adequate. In some cases a higher order of the

polynomial δ(L), e.g. for industries electronical and optical devices, electronics, and

textiles, or multiple intervention models, e.g. for the pharmaceutics and machinery

industries, turned out to be the superior specifications.

Table A.2 in the Appendix gives an overview on the intervention models fitted to the

log series. The last column of the table reports the p-value of the respective Ljung-

Box statistic, which was calculated based on 20 lags. The hypothesis that there is no

significant residual correlation left cannot be rejected.8 Figure 5 plots the time series

along with fitted values and the respective estimated stylized crisis effect. Table 3.1

reports the estimated (percentage) decrease in vehicle orders due to the crisis k months

after 09/2008 for different industries.

Some results stand out. First, in general, orders from abroad seem to have been affected

by the crisis more severely than domestic orders. This result fits common wisdom as

economies coined by strong exporting industries are generally considered to be most

severely hit by an international crisis. One obvious exception is the pharmaceutical

industry. Offshore orders in this particular industry seem not to have been affected by

the crisis at all, whereas domestic orders decreased significantly and kept on fluctuating

around a lower level than before 2008. But also in the electronics, machinery and

production of metal industry foreign orders are slightly less affected by the crisis.

However, across industries the decrease in foreign orders on average was approximately

13% higher than the one of domestic orders. Secondly, concerning the absolute size of

the crisis impact, the German machinery industry was most seriously hit.

7However, one might argue that the financial crisis directly carried over into the European sovereign

debt crisis. In this case the crisis impact could also be modeled as a step function ζτ with τ = 09/2008.

Eyeballing our series at stake, this seems to be the more appropriate strategy in case of the clothing

industry as well as the textiles industry; see panel 2 and 9 in Figure 3.
8In other words, the null of the model capturing the dependence structure of the time series cannot

be rejected at a 5% level of significance in all but one of the cases.
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Figure 5: Log series, fitted values and implied stylized sectoral dips (crisis effect)
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Note: Results for the German automobile industry are shown separately in Section 3.4. Industry 12 Vehicles other

than cars is not shown due to being not significantly affected by the crisis.

Twelve months after the collapse of Lehman Brothers domestic (foreign) orders had

decreased by around 47% (45%). Finally, we can see that there are industries that
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did not recover up to mid-2012. These are the clothing and textiles industry but also

domestic orders in the pharmaceutics and machinery industry and foreign orders in the

electronics industry are significantly and persistently lower after than before the crisis.

This persistency is is also indicated by t|mt=0 =∞ in the last column of Table 3.1.

Industry No. Series Name
k

t|mt=0
1 2 3 6 9 12 15 18 21 24

1
OIElinl -3.89 -3.64 -6.52 -7.88 -10.27 -10.47 -7.50 -5.19 -2.24 -1.74 29

OIElfor -4.01 -7.19 -9.72 -14.59 -17.02 -18.24 -14.84 -7.42 -3.71 -1.86 30

2
OIClinl 0.00 0.00 -6.68 -18.75 -24.20 -26.66 -27.77 -28.27 -28.50 -28.60 ∞
OIClfor 0.00 0.00 -12.80 -32.80 -39.89 -42.40 -43.29 -43.60 -43.71 -43.75 ∞

3
OIChinl -4.11 -7.30 -9.77 -14.32 -16.44 -17.43 -13.78 -6.42 -2.99 -1.39 29

OIChfor -4.59 -8.27 -11.21 -16.97 -19.92 -21.44 -17.63 -9.05 -4.65 -2.39 32

4
OIEdinl -7.23 -12.96 -17.51 -26.24 -30.59 -32.76 -26.61 -13.26 -6.61 -3.30 33

OIEdfor -6.81 -8.74 -13.05 -20.50 -26.36 -30.51 -26.73 -20.39 -14.55 -10.61 ∞

5
OICainl

See section 3.4
OICafor

6
OIMeinl -5.13 -9.33 -12.78 -19.82 -23.69 -25.82 -21.87 -12.04 -6.63 -3.65 34

OIMefor -6.70 -12.17 -16.64 -25.70 -30.63 -33.32 -28.08 -15.29 -8.33 -4.53 35

7
OIPainl -2.32 -4.03 -5.29 -7.40 -8.24 -8.58 -6.39 -2.55 -1.02 -0.41 24

OIPafor -3.10 -5.46 -7.27 -10.50 -11.93 -12.57 -9.75 -4.33 -1.92 -0.85 26

8
OIPhinl -5.37 -7.09 -8.83 -14.14 -19.58 -25.17 -25.52 -26.18 -26.85 -27.54 ∞
OIPhfor - - - - - - - - - - -

9
OITxinl -4.21 -7.68 -10.57 -16.69 -20.49 -23.06 -20.79 -13.63 -9.88 -7.91 ∞
OITxfor -7.35 -12.76 -16.75 -23.44 -26.12 -27.18 -27.61 -27.78 -27.85 -27.88 ∞

10
OIMainl -7.59 -14.17 -19.87 -32.80 -41.21 -46.69 -42.66 -27.77 -18.07 -11.76 ∞
OIMafor -8.89 -16.20 -22.21 -34.55 -41.41 -45.23 -38.46 -21.38 -11.88 -6.60 38

11
OIStinl -9.76 -16.67 -21.55 -29.19 -31.89 -32.85 -23.43 -8.30 -2.94 -1.04 27

OIStfor -7.57 -13.19 -17.36 -24.45 -27.35 -28.53 -21.45 -8.77 -3.58 -1.46 28

12
OIBoinl - - - - - - - - - - -

OIBofor - - - - - - - - - - -

Table 3.1: Crisis effect as percentage drop in orders k months after 09/2008

Note: Last column indicates after how many months the effect has vanished (= 0).

3.4 Fitting intervention models to the subsidized sector

3.4.1 Estimating the crisis effect on foreign orders

To model the crisis effect on foreign orders for German vehicles we first choose an

ARIMA(2,1,1) process for the noise model nt. The model order is determined on

the basis of a visual inspection of the SACF and SPACF of the pre-intervention data

as well as on the basis of the AIC. The change in the series’ mean is modeled as

mt = [ω0/(1− δ1L)]η
(τ1,τ2)
t , with τ1 = 09/2008 and τ2 = 10/2009.

Table 3.2 reports the ML estimates for the intervention model fitted to the logs of

foreign orders. It can be seen that all coefficient estimates are significant and that the
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crisis had a significantly negative effect on vehicle orders. The Ljung-Box statistics

(calculated for 20 lags) has a p-value = 0.7119, i.e. the assumption of white noise

residuals cannot be rejected.

The right column of diagrams in Figure 7 shows the log of foreign vehicle orders together

with fitted values (upper panel) and the estimated crisis’ effect (lower panel)

φ1 φ2 θ1 ω0 δ1

-0.8280 -0.3438 0.3796 -0.0863 0.7139

(0.1711) (0.0772) (0.1740) (0.0210) (0.0732)

Log-Likelihood = 390.91, AIC = −771.82

Table 3.2: Intervention model for logs of foreign orders of German automobile sector

Note: Standard errors given in parantheses.

3.4.2 Estimating crisis effect and bonus effect on domestic orders

In order to estimate the crisis effect and the scrapping bonus effect on domestic orders

for German cars we have to use a more sophisticated multiple intervention model. We

start by fitting an ARIMA(p, d, q) model to the data based on the pre-intervention

observations. The model order is chosen as p = 2, d = 1 and q = 0 according to a

visual inspection of the SACF and SPACF and the minimization of the AIC.

Both the impact of the crisis and the scrapping bonus is modeled as extended im-

pulse function, that is η
(τ1,τ2)
t,1 with τ1 = 09/2008, τ2 = 10/2009 and η

(τ1,τ2)
t,2 with

τ1 = 01/2009, τ2 = 09/2009.

Hence, the change in the mean of domestic orders is assumed to show the following

functional form

mt =
ω0

1− δ1L
η

(τ1,τ2)
t,1 +

ω1

1− δ2L
η

(τ1,τ2)
t,2 , (3.6)

where the first part measures the crisis effect. The second part captures the positive

impact of the scrappage bonus. Thus, ω0 is expected to have a negative sign, while δ1,

ω1, and δ2 are presumably positive. The ultimate window of Figure 6 schematically
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plots the shape of such a specification for mt given theoretical parameter values.9

Figure 6: Stylized transfer functions for crisis effect and scrapping bonus effect
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Notes: The following parameter values are assumed: ω0 = (−1.5), δ1 = 0.5, ω1 = 1.0 and δ2 = 0.5.

Table 3.3 shows the ML estimates (first row) along with standard errors (second row)

for an intervention model as described above fitted to the logs of domestic orders in

the German automobile industry. All coefficients are highly significant. As can be

seen, the crisis had a significantly negative effect, while the scrapping subsidy effect is

significantly positive. The Ljung-Box statistics (calculated for 20 lags) implies a p-value

9Note, mt could be specified in a different way resulting in an even better model fit, yet economically

not meaningful coefficients; see Figure A.1 in the Appendix.
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of 0.4309. Thus, the assumption of white noise residuals can also not be rejected.

φ1 φ2 ω0 δ1 ω1 δ2

-0.4138 -0.1602 -0.0884 0.8725 0.0930 0.8677

(0.0620) (0.0625) (0.0189) (0.1006) (0.0209) (0.1431)

Log-Likelihood = 435.56, AIC = −859.12

Table 3.3: Intervention model for logs of inland orders of German automobile sector.

Note: Standard errors given in parantheses.

Figure 7: Series, fitted values and estimated crisis effect and scrapping bonus effect.
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Industry No. Series Name
k

t|mt=0
1 2 3 6 9 12 15 18 21 24

5
OICainl -8.84 -16.55 -23.28 -14.37 -8.72 -5.14 -11.41 -8.02 -5.61 -3.91 41

OICafor -8.63 -14.79 -19.19 -26.17 -28.71 -29.64 -21.34 -7.77 -2.83 -1.03 27

Table 3.4: Crisis effect as percentage drop in orders k months after Lehman Brothers

Note: Last column indicates after how many months the effect has vanished (= 0).

Figure 7 summarizes estimated crisis effect and scrappage subsidy effect. The left

column of diagrams plots the log of domestic vehicle orders along with fitted values

(upper panel) and the estimated crisis effect and scrapping bonus effect (lower panel),

respectively. The second column analogously refers to orders from abroad.

From Table 3.4 (where first row refers to domestic orders and second row to foreign or-

ders) in combination with Table 3.1, we can see that the automobile industry’s reaction

to the crisis compared to the crisis effect in other industries is not special. This con-

cerns both the size of the negative effect and the fact that foreign orders were hit more

severely than domestic orders. However, we also see that it took domestic orders in the

German automobile industry by far the longest to get back on track: overall, a remark-

able 41 months. This is a strong indication for the temporary product-specific subsidy

having indeed led to structural disruptions that in the end substantially prolonged the

impact and aftermath of the crisis through pull-forward effects of car sales.

3.5 Disentangling by estimating counterfactual intervention-free reactions

Strategic pull-forward effect The German scrapping bonus, just like the cash for

clunkers program (officially named “Car allowance rebate system” or briefly CARS;

see Goolsbee and Krueger, 2015) in the United States that the U.S. federal govern-

ment started coinciding with the phase-out of the German program, induced sales of

additional cars in the short run. However, it might have led to a substantial reversal in

the sense of households “front-loading” their expenditures for vehicles in the medium

run (Mian and Sufi, 2012). It is straightforward to suppose that consumers who had

planned to buy a new car in 2010 or later anyway pulled forward their purchases of new

vehicles due to the subsidy.10 This in turn could have led to a situation in which vehicle

orders (and purchases) did not normalize after the end of the scrapping bonus or of the

10This is closely linked to a “free-rider” problem, which we describe in more detail later.
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crisis. We may test this by using a model specification that differs from the one used

hitherto. Basically, the idea is to test two different specifications for mt against each

other. The first one just as the preceding ones assumes that vehicle orders got back on

track after the subsidy and/or the crisis had ended, i.e., that there was no permanent

shift in the mean of the series. The second possible specification presumes that orders

remained on a new, lower level after 2009. In this case, the first part of equation (3.6)

has the following form[
ω0

1− δ1L
+

ω1

1− δ1aL

]
η

(τ1,τ2)
t,1 ,

where δ1a = 1, i.e. the shift in the series mean is modeled as

mt =

[
ω0

1− δ1L
+

ω1

1− L

]
η

(τ1,τ2)
t,1 +

ω2

1− δ2L
η

(τ1,τ2)
t,2 . (3.7)

The estimated effect will then represent stylized reactions as shown in Figure 8.11

However, if we modify the specification of the transfer function according to (3.7) the

resulting estimate for ω1 is neither economically meaningful nor statistically significant.

Furthermore, the AIC value of the new model increases (AIC = −858.5). Thus, we

conclude that the more parsimonious model is justified.

In line with our intuition, there seems to be no evidence that pull-forward sales by

implying structural disruptions in the automobile market have led to a permanent

decrease in vehicle orders following the crisis and/or the scrappage program. Never-

theless, “front-loading” of household expenditures on vehicles most probably prevented

the German automobile industry to recover as fast as other industries did.12 As ini-

tially suspected, it actually led to a transitory decrease of vehicle orders following the

end of the scrapping bonus; see Table 3.4. In what follows, we compute and visualize

this externality by estimating the net effect of the scrappage scheme.

11Note, the crisis effect in the pharmaceutical industry has already been modeled in this way.
12Microeconomically, one route of reasoning for the substantially delayed rebound of consumer

demand for autos might be that some households planned the acquisition of two low price-segment

products for 2010 or later and due to the subsidy not only pulled forward their purchasing but

also changed their plan to acquire only one (subsidized) product from the premium price-segment.

However, this contrasts with international experience suggesting a boost of low-margin segments

(OECD, 2010) and our volume index series does not allow to test such hypotheses.
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Figure 8: Transfer function specification for a permanent drop in vehicle orders
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Unintentional windfall-profit effect In the following, we seek to calculate the

hypothetical crisis effect in the absence of a scrapping subsidy in order to quantify a

potential and frequently debated on free-rider effect of such bonus-measures. The idea

is to address the question of how many cars would have been ordered (counterfactually)

between January and September 2009 if there had been no subsidizing program. Thus,

the aim is to assess the ineffective part of the scrappage scheme by also accounting for

the fact that vehicle orders might have regained over the year after January 2009 even

without the installation of the program. This quantitative assessment is done in three

steps. First, we assume that the series for domestic vehicle orders was not observed

between January and September 2009 (see Figure 9). Secondly, we transform the series

for foreign and domestic orders, where the latter is only partially observed, into a state

space representation and estimate values for the missing observations by applying the

Kalman Filter.13 Based on the filtered values for the missing observations we then

are able to calculate what the crisis impact on the German automobile industry would

have been without the scrapping subsidy, i.e. the net effect.

A particular advantage of state-space modeling is its ability to treat time series with

missing observations (Jones, 1980). Shumway and Stoffer (2008) describe the necessary

modifications to fit multivariate state-space models to data with missing observations.

13Thus, the values for the missing observations are estimated using the Kalman Filter by making

use of the information incorporated in a second series (foreign orders), which is assumed to be related

to the series with missing observations. This method is advocated by Harvey and Chung (2000). A

detailed outline is given in the Appendix. Alternatively, one could estimate missing observations based

on forecasts of a näıve AR(2) fitted to the data up to 12/2008. However, as shown in the Appendix,

our approach relying on Kalman Filter values turns out to be the superior one.

20



Figure 9: Log orders, missing observations 01/09 to 09/09 for inland orders (dashed)
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As a general starting point think of a model as given by equations (A.5.1) and (A.5.2)

in the Appendix. Next, suppose that the n× 1 observation vector may be partitioned

yt =
[
y

(1)′

t ,y
(2)′

t

]′
with the first n1t × 1 component being observed and the second

n2t× 1 component being unobserved. The partitioned measurement equation then has

the form(
y

(1)
t

y
(2)
t

)
=

(
Z

(1)
t

Z
(2)
t

)
αt +

(
u

(1)
t

u
(2)
t

)
, (3.8)

where Z
(1)
t and Z

(2)
t are the n1t×m and n2t×m partitioned measurement or observation

matrices, respectively. In case of missing observations, the covariance matrix of the

measurement errors between the observed and the unobserved parts is given by

Cov

(
u

(1)
t

u
(2)
t

)
=

(
H11t H12t

H21t H22t

)
. (3.9)

The most straightforward way to deal with missing obeservations is to always keep

an n-dimensional measurement equation zeroing out certain components. In case of

missing observations at time t we just have to substitute yt, Zt and Ht in the updating

equations (A.5.10) and (A.5.11) of the Appendix by

yt =

(
y

(1)
t

0

)
, Zt =

(
Z

(1)
t

0

)
, and Ht =

(
H11t 0

0 I22t

)
, (3.10)
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where I22t is the n1t × n2t identity matrix. Given these substitutions the prediction

errors in (A.5.8) and their MSE matrix (A.5.9) in the Appendix will look as follows

et =

(
e

(1)
t

0

)
, and Ft =

(
Z

(1)
t Pt|t−1Z

(1)′

t +Ht 0

0 I22t

)
. (3.11)

Hence, given the substitutions described above the ML-estimation of the state-space

model via the prediction error decomposition of the log-likelihood can proceed in the

same way as for the complete data case. ML-estimation of the model parameters

evolves according to the expectation maximization (EM) algorithm by Shumway and

Stoffer (2008). See the Appendix for further detail on ML-based estimation of our

state-space models. Figure 10 shows the domestic (left panel) and foreign (right panel)

orders of German vehicles as black points. Additionally, also the Kalman Filter values

(blue crosses) and the Kalman Smoother values (grey line) together with ±2

√
P

(S)
t

error bands (dashed red lines) are plotted.14

Figure 10: Log domestic and foreign vehicle orders (black points) along with Kalman

Filter values (blue crosses), Kalman Smoother values (grey line) and error bands (red)
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Figure 11 zooms into the left panel of Figure 10 and also shows the estimated free-

rider effect (black bars) as percentage share of domestic vehicle orders between 01/2009

and 09/2009. The mean value for the free-rider effect over time is 96.88% of domestic

14The superscript (·)(S) denotes Kalman Smoother values. Stoffer (1982) shows how to calculate

the values for the Kalman Smoother once the filtered values have been obtained from the missing data

specification.
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vehicle sales during the existence of the program. Thus, the program actually “created”

additional purchases of domestic cars amounting to about 3.12% of observed sales

figures during the transitory subsidization period. This figure has to be seen against

the backdrop of the fact that under the German scrapping scheme –similar as under the

U.S. CARS program– roughly 60 percent of subsidized purchases were foreign brands

(Schweinfurth, 2009, p. 4).

Figure 11: Zoom into left panel of Figure 10 and estimated “free-rider” effect (black)

as percentage share of domestic vehicle orders: 01/2009 to 09/2009
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Note: The ineffective part of the scrapping bonus (“free-rider” effect) is calculated based on Kalman Filter values.

The estimated net effect of the scrapping subsidy is plotted in Figure 12. The red part

is the estimated negative net effect of the scrapping bonus resulting from a prolongation

of the crisis effect due to structural disruptions in the automobile industry.15 “Front-

loading” of vehicle expenditures (and possibly also by subsidy induced preference bias

within the auto-sector model-segments) implied a large proportion of acquired new cars

and in turn to a decrease in orders, production, and sales of new cars after the end of

the scrapping bonus. Adda and Cooper (2000) have estimated a remarkably similar

effect on expected aggregate vehicle sales following the scrapping bonuses introduced

by French politicians Éduard Balladure and Alain Juppé in 1994/95 in France. Their

findings for the policy effect on vehicle sales, which result from the simulation of a

dynamic stochastic discrete choice model, look similar to our estimated net effect of

15Without the scrapping bonus domestic orders would have been back to normal after 28 months

and not 41 months as it actually took.
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the scrapping bonus in Germany. This especially applies to the part associated with

the negative effect of the bonus on vehicle sales after the end of the policy, i.e., the

red part in the left schedule of Figure 12 (corresponding figures for the other affected

manufacturing sector industries are given in Appendix A.6). Thus, based on prior

research political decision-makers in Germany could have foreseen, at least, in parts

this negative externality of the scrapping bonus.

Substitution effect There is one potential drawback of a temporary product-specific

bonus that we have not yet assessed and that is the intersectoral substitution effect.

Due to the scrappage scheme demand in, at least, some of the German industries might

have been redirected into the automobile sector. For these industries the subsidy should

have a negative effect on top of the negative crisis effect. In terms of Figure 2 of Section

1 this is represented by the vertical distance between points A and B. Thus, we seek

to test whether the scrapping subsidy, besides the crisis, had an additionally negative

effect due to shifting demand between sectors and to quantify this effect (also) for

the remaining affected industries of the manufacturing sector. For this purpose we

calculate the net effect of the subsidy again. This is done according to the following

steps. First, a new intervention model, which now also accounts for the scrapping bonus

effect, is fitted to the series of domestic orders in the other manufacturing industries.

Different from intervention models used up to now as summarized in Table A.2 in the

Appendix, the shift in the mean of the time series due to the two interventions (crisis

and scrapping bonus) here is considered as

ω0

1− δ1L
η

(τ1,τ2)
t,1 +

ω1

1− δ2L
η

(τ1,τ2)
t,2 ,

which is the same specification as for the domestic orders in the automobile industry.16

Overall, the scrapping bonus seems to have had a significantly negative effect on some

of the remaining affected industries. Table 3.5 exemplarily shows estimates for one such

affected industry, that is, the chemical industry. The Ljung-Box statistics (calculated

for 20 lags) implies a p-value of 0.2187. Thus, the assumption of white noise residuals

cannot be rejected.

Results shown in Table 3.5 and Figure 12 are based on re-estimates of the counter-

factual scenario treating the scrapping bonus observations, i.e. the ones from 01/2009

to 09/2009, as missing and by replacing them by corresponding Kalman Filter values,

16The noise model nt is not changed.
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which are derived from respective bivariate state space models based on domestic and

offshore orders. The net effect of the subsidy (in the chemical industry and the remain-

ing industries, respectively) is computed as the difference of the estimated crisis effect

based on an intervention model as described above and an intervention model fitted

to the series filled up with Kalman Filter values, respectively. Note, the color of bars

change indicates the change of regime, i.e. months before and after the program.

θ1 θ2 ω0 δ1 ω1 δ2

-0.2625 0.0909 -0.0365 0.7705 -0.0650 -0.2937

(0.0640) (0.0762) (0.0101) (0.0682) (0.0161) (0.1574)

Log-Likelihood = 611.45, AIC = −1210.89

Table 3.5: Intervention model for logs of inland orders of German chemicals sector.

Note: Standard errors given in parantheses.

Figure 12: Distortionary effects of product-specific subsidy on order books
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Note: Left panel: automobile sector; right panel: all other manufacturing sectors; period: 01/2009 to 06/2012.

The estimated net effect of the subsidy is computed as the difference of the estimated crisis effect based on an

intervention model as outlined in Section 3.4.2 and an intervention model fitted to the Kalman Filter values.

For graphical detail on how the different sectors’ transfer functions were affected by
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the temporary scrappage scheme see Figures A.3 to A.5 in the Appendix. In general,

there are three stylized reactions of considered industries (apart from the vehicles other

than cars industry that we abstract from due to being statistically not significantly

affected by the crisis): While the distortionary order book effects in the pharmaceutics,

metalworking, chemicals, and electronical and optical devices industries are broadly

characterized by a crowding-out with pent-up dynamic demand profile (Figure A.3),

the clothing, electronics, and textiles sectors also show indications of crowding-out but

without pent-up demand effects in the aftermath of the scrappage scheme (Figure A.4).

The closely to the cars sector related machinery industry displays, in terms of size, the

strongest increase in orders during and up to two months after the installation of the

scrappage scheme (left schedule in Figure A.5). The net transfer function of the paper

industry is neither indicative for a crowding-out nor for a crowding-in of demand due

to the bonus program (right schedule in Figure A.5).

4 Conclusion

Many countries temporarily subsidize specific products to cushion the effects of overall

downturn in economic activity or for meeting the aims of specific lobbying groups.

Generally, such measures may boost sales in the short run. However, there might

be intersectoral distortions through crowding-out demand for other products as well

as intertemporal distortions due to the temporary nature of such programs shifting

purchases from the future to the present and possibly reversing the surge in sales after

the ending of the measure. The latter is referred to as program reversal or payback

effect and cannot be quantified in terms of size and timing relying on standard time

series techniques such as sales projections based on error correction models; see, e.g.

OECD (2010). In general, the existing literature does not provide a coherent analytical

framework to disentangle and quantify intersectoral as well as intertemporal (payback

and rebound) distortions and to assess effectiveness of such measures. We propose such

a framework based on Kalman Filter/Smoother estimates of counterfactual time series

using information contained in series unaffected from the intervention and on netting

out corresponding factual and counterfactual response functions.

In our exemplary application, we study the largest car scrappage scheme in recent his-

tory installed by the German government between January and September 2009. In

contrast to the perception of the scheme having substantially contributed to the stabi-
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lization of one of the European core industries, we find the demand-sided effectiveness

of such a temporary product-specific subsidy to be rather poor. According to our es-

timates, the program created additional purchases of domestic products amounting to

just about three percent of observed sales figures. Thus, buyers realized substantial

unintended windfall gains that are as opposed to implications of alternatives, such as

e.g. governmental sales and re-sales on the secondary market, not or less neutral with

regard to the public budget. Additionally, stabilization comes according to our esti-

mates at the price of a prolongation of the sectoral trough and a procrastination of

the subsequent recovery in the automobile industry by about one year. These are non-

trivial costs given that the annual turnover of the automobile industry amounts to ten

percent of German GDP. Furthermore, in line with basic theory we find evidence for

net sectoral crowding-out and, hence, intersectoral bias of the measure concerning the

vast majority of competing industries in the manufacturing sector. It might have been

avoided resorting to alternative measures such as consumption vouchers with deadlines.

The latter are also less prone to distributive bias, inasmuch they do not discriminate

against non-beneficiaries as is the case for households who cannot afford to buy new

cars in case of scrappage programs.

In sum, our findings support the recent view of the quantitative theoretical literature

that calls the usefulness of national policies to temporarily protect particular domestic

industries into question by showing that they also induce technology bias favoring

products of dated technology such as diesel engines (Miravete et al., 2018).
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Appendix

A.1 Model motivating Figure 2

Let the model economy consist of a sector x and all remaining industries y, where
sector x is subsidized. The two divisions produce with production functions

x = f(Rx); f ′ > 0, f ′′ < 0 (A.1.1)

y = g(Ry); g′ > 0, g′′ < 0, (A.1.2)

where R denotes resources of any kind. In equilibrium the following three conditions
need to hold

(p+ s)f ′(Rx) = m0
x (A.1.3)

g′(Ry) = my (A.1.4)

my − c = πm0
x + (1− π)α, (A.1.5)

i.e. input factors in y (for which the price is normalized to unity) are rewarded their
marginal product m. The same applies for sector x; however, market price p is upwardly
biased by a (scrappage) subsidy amounting to s. In equation (A.1.5) c are costs of any
kind due to resources shifting from one part of the economy to another, π is the
probability of resources being used for production in sector x, α is the alternative use
value of resources spent in sector x. Equation (A.1.5) ensures that in equilibrium there
is no flow of resources from all other sectors y into x and vice versa. π is given by

π =
Rx

R0 −Ry

, (A.1.6)

where R0 is the total amount of resources in the model economy. Obviously, if π < 1
there are some resources unused. By simple logics, we can already say that in case the
subsidization of sector x ends, Rx should decrease. As π decreases

my − c > πm0
x + (1− π)α, (A.1.7)

mobile resources are drawn from sector x into remaining sectors y. As a consequence
my will have to decrease in order for the economy to reach a new equilibrium.

In the following we will briefly consider the effects of a variation in s. What are the
social effects of a variation of s? Social benefits are given by

V = pf(Rx) + g(Ry)− k(Ry −R0
y). (A.1.8)

The subtractive part in (A.1.8) represents adjustment costs that are due to sectorally
shifting resources. These costs represent social costs of any kind. Hence, the (gross)
effect of a variation in s is given by

dV

ds
= pf ′

dRx

ds
+ (g′ − k′)︸ ︷︷ ︸

>0

dRy

ds
. (A.1.9)
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In order to isolate the effects of a variation in s we need to quantify dRx/ds and dRy/ds
first. Thus, we need to consider all three equilibrium conditions. For the first condition,
we obtain

(p+ s)f ′′dRx + f ′ds = 0 ⇒ dRx

ds
= − f ′

(p+ s)f ′′
= β > 0. (A.1.10)

It is slightly more complicated to calculate dRy/ds. First, it requires the total derivative
of the second equilibrium condition, which is simply given by

g′′dRy = dmy. (A.1.11)

Secondly, considering the total derivative of the third equilibrium condition implies

dmy = (m0
y − α)dπ = δxdπ. (A.1.12)

Substituting (A.1.12) into (A.1.11), we are given

g′′dRy = δxdπ. (A.1.13)

From (A.1.6) we see that

dπ =
(R0 −Ry)dRx −Rx(−dRy)

(R0 −Ry)2
=

(R0 −Ry)dRx +RxdRy

(R0 −Ry)2

=
dRx

R0 −Ry

+
Rx

R0 −Ry

· dRy

R0 −Ry

=
dRx

R0 −Ry

+
πdRy

R0 −Ry

. (A.1.14)

Combining (A.1.13) and (A.1.12) results in

g′′dRy = δx
dRx

R0 −Ry

+ δx
πdRy

R0 −Ry

⇔(
g′′ − δx

π

R0 −Ry

)
dRy =

δx
R0 −Ry

dRx (A.1.15)

Relationship (A.1.10) allows to substitute dRx by βds and, hence,

dRy =
δxβds(

g′′ − δxπ
R0−Ry

)
(R0 −Ry)

⇒ dRy

ds
= γ < 0 (A.1.16)

We now know the respective signs of dRx/ds and dRy/ds. Thus, based on equation
(A.1.9), it can be stated that in case s is decreased resources (and thus output) in
sector x will decrease. However, this may, at least partly, be compensated by resources
drawn into and output produced in sector y. If the first additive part of (A.1.9) is
larger than the second one there will be inefficiency in the sense of unused resources.

These qualitative results are summarized graphically in Figure 2 in the text.

31



A.2 Coding of variables and descriptive statistics
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Table A.1: Coding of variables and descriptive statistics.
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A.3 Overview of intervention models

Industry No. Series nt mt p-val. Ljung-Box stat.

1
inl(and) ARIMA(0,1,1) ( ω0

1−δ1L−δ2L2 )η
(τ1,τ2)
t 0.7779

for(eign) ARIMA(0,1,1) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.4156

2
inl ARIMA(2,1,2) ( ω0

1−δ1L)L2ζτt 0.2823

for ARIMA(4,1,2) ( ω0

1−δ1L)L2ζτt 0.7021

3
inl ARIMA(0,1,2) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.1209

for ARIMA(2,1,2) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.0516

4
inl ARIMA(2,1,1) ( ω0

1−δ1L)η
(τ1,τ2)
t 2.46e-05

for ARIMA(2,1,2) ( ω0

1−δ1L−δ2L2 )η
(τ1,τ2)
t 0.2973

5 See section 3.4

6
inl ARIMA(2,1,1) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.1581

for ARIMA(1,1,1) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.8511

7
inl ARIMA(2,1,0) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.8510

for ARIMA(0,1,1) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.2647

8
inl ARIMA(2,1,0) (ω0 + ω1

1−δ1L)ζτt 0.7869

for ARIMA(2,1,3) - 0.1998

9
inl ARIMA(2,1,0) ( ω0

1−δ1L−δ2L2 )η
(τ1,τ2)
t 0.7107

for ARIMA(2,1,2) ( ω0

1−δ1L)ζτt 0.0726

10
inl ARIMA(2,1,2) (ω0 + ω1

1−δ1L)η
(τ1,τ2)
t 0.5617

for ARIMA(2,1,0) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.7977

11
inl ARIMA(3,1,3) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.1783

for ARIMA(2,1,0) ( ω0

1−δ1L)η
(τ1,τ2)
t 0.1350

12
inl ARIMA(2,1,2) - 0.0990
for ARIMA(4,1,1) - 0.1843

Table A.2: Intervention models fitted to log series. Ljung-Box statistic is calculated
based on 20 lags.
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A.4 Estimating the crisis and scrapping bonus effect on domestic orders –
alternative specification for mt

Note, that the transfer function mt could also be specified in the following way

mt =
ω0

1− δ1L
η

(τ1,τ2)
t,1 +

[
ω1 +

ω2

1− δ2L

]
η

(τ1,τ2)
t,2 . (A.4.1)

Table A.3 shows the ML estimates of the respective intervention model. As we can see
all coefficient estimates are significant. The AIC is even lower than in case of the model
specification in section 3.4.2. The Ljung-Box statistic (calculated for 20 lags) has a p-
value = 0.5610. However, the sign of ω1 does not seem to be economically meaningful,
which is why we stick to the more parsimonious specification of mt (anyway, results do
not change qualitatively).

φ1 φ2 ω0 δ1 ω1 ω2 δ2

-0.4398 -0.1937 0.7708 -0.0995 -0.2482 0.2601 0.5448
(0.0620) (0.0632) (0.0201) (0.0573) (0.1070) (0.0909) (0.1143)

Log-Likelihood = 440.19, AIC = −866.38

Table A.3: ML-estimates of intervention model fitted to logs of inland orders in the
German automobile industry – alternative specification for mt.

Figure A.1: Estimated crisis and bonus effect: alternative specification of mt.
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A.5 State-space models, Kalman Filter, and model estimation

A.5.1 State-space models

A state space-model for an n-dimensional time series yt consist of a measurement
equation that relates the observed data to an m-dimensional state vector αt. The
generation of the state vector αt from the past state αt−1, for t = 1, ..., T , is determined
by the state equation. The measurement equation has the form

yt = Ztαt + dt + ut, t = 1, ..., T. (A.5.1)

In A.5.1 Zt is an n × m matrix called measurement or observation matrix, dt is an
n× 1 vector and ut ∼ iid N(0,Ht) is an error vector. The state equation is given by

αt = Ttαt−1 + ct +Rtνt, t = 1, ..., T. (A.5.2)

In A.5.2 Tt is an m×m matrix called transition matrix, ct is an m× 1 vector, Rt is an
m× g matrix and νt ∼ iid N(0,Qt) is a g × 1 error vector. The matrices Zt, dt, Ht,
Tt, ct, Rt and Qt are called system matrices. It is frequently assumed that the errors
of the measurement and the transition equation are uncorrelated, i.e.

E[utν
′
t] = 0 ∀s, t = 1, ..., T.

However, this assumption is not necessary; see Shumway and Stoffer (2011, p. 354-358)
for a discussion of the case of correlated errors. Furthermore, it is assumed that the
initial state is given by a normal vector

α0 ∼ N(a0,P0); E[uta
′
0] = 0, E[νta

′
0] = 0, t = 1, ..., T.

Note, that the model given in A.5.2 which includes only one lag is not at all restrictive
as processes with higher orders may be casted into a state space representation as well.
Think for example of an AR(2)-process

yt = φ0 + φ1yt−1 + φ2yt−2 + νt, with νt ∼ iid N(0, σ2).

If we define αt := [yt, yt−1]′ the transition equation becomes(
yt
yt−1

)
=

(
φ1 φ2

1 0

)(
yt−1

yt−2

)
+

(
φ0

0

)
+

(
1
0

)
νt,

whereas the measurement equation would be

yt = [1, 0]αt.

Thus, the system matrices are

T =

(
φ1 φ2

1 0

)
, R =

(
1
0

)
, c =

(
φ0

0

)
, Q = σ2, Zt = [1, 0], dt = 0, ut = 0 and

Ht = 0.
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A.5.2 The Kalman Filter procedure

In most cases the aim of any analysis based on a state-space model as defined by
equations A.5.1 and A.5.2 will be to produce estimators for the underlying unobserved
signal αt given the data ys, for s = 1, ..., S. Whenever s = t this problem is called
filtering, while we speak of smoothing if s > t and forecasting in case s < t. The
problem of finding such estimators is solved by the Kalman Filter, Kalman Smoother
and forecasting recursions respectively; see Petris et al. (2009, p. 53-72). In the
following we will focus on the derivation of the Kalman Filter (i.e. s = t).

The Kalman Filter is a set of recursion equations (prediction equations and updating
equations) that determine the optimal estimates for the state vector αt given the
information available at time t (which we denote by It). The following definitions are
used

at := E[αt|It] (A.5.3)

and

Pt := E[(αt − at)(αt − at)′|It]. (A.5.4)

I.e. at is the optimal estimator of αt based on It and Pt is the MSE matrix of at.

Prediction equations Given at−1 and Pt−1 we get

at|t−1 = E[αt|It−1]

= Ttat−1 + ct (A.5.5)

Pt|t−1 = E[(αt − at−1)(αt − at−1)′|It−1]

= TtPt−1T
′
t +RtQtRt. (A.5.6)

The optimal predictor of yt is then

yt|t−1 = Ztat|t−1 + dt

= ZtTtat−1 +Ztct + dt

= Zt(Ttat−1 + ct) + dt. (A.5.7)

The prediction error and its MSE matrix are then

et = yt − yt|t−1

= yt −Ztat|t−1 − dt
= Ztαt + dt + ut −Ztat|t−1 − dt
= Zt(αt − at|t−1) + ut (A.5.8)

and

E[ete
′
t] := Ft = ZtPt|t−1Z

′
t +Ht. (A.5.9)
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Updating equations In the moment yt is observed the optimal predictor and its
MSE matrix are updated according to

at = at|t−1 + Pt|t−1Z
′
tF
−1
t (yt − yt|t−1)

= at|t−1 + Pt|t−1Z
′
tF
−1
t (yt −Ztαt|t−1 − dt)

= at|t−1 + Pt|t−1Z
′
tF
−1
t et (A.5.10)

Pt = Pt|t−1 − Pt|t−1ZtF
−1
t︸ ︷︷ ︸

Kalman Gain

ZtPt|t−1. (A.5.11)

Filter derivation The derivation of the Kalman Filter makes use of the following
properties of a bivariate normal distribution: Given y the distribution of x is normal
with

E[x|y] = µx|y = µx + ΣxyΣ
−1
yy (y − µy) (A.5.12)

V ar(x|y) = Σxx −ΣxyΣ
−1
yy Σyx. (A.5.13)

For the state vector at time t = 1 we get

α1 = T1α0 + c1 +R1ν1,

with α0 ∼ N(a0,P0), ν1 ∼ N(0,Q1) and E[α0ν
′
1] = 0. In a linear Gaussian state-

space model the initial state vector is normally distributed with

a1|0 := E[α1] = T1a0 + c1 (A.5.14)

P1|0 := V ar(α1) = T1P1|0T
′
1 +R1Q1R

′
1.

From the measurement equation we get

y1 = Z1α1 + d1 + u1,

with u1 ∼ N(0,H1) such that

y1|0 := E[y1] = Z1a1|0 + d1 (A.5.15)

V ar(y1) = E[(y1 − y1|0)(y1 − y1|0)′]

= E[(Z1{α1 − a1|0}+ u1)(Z1{α1 − a1|0}+ u1)′]

= Z1P1|0Z
′
1 +H1.

Equations A.5.14 and A.5.15 are the predictions equations for α1 and y1 at t = 0. In a
next step one has to find the distribution of α1 conditional on y1 being observed (up-
dating). For this purpose the joint normal distribution of (α′1,y

′
1) must be determined.

In finding the joint normal distribution we use

α1 = a1|0 + (α1 − a1|0)

y1 = y1|0 + y1 − y1|0

= Z1a1|0 + d1 +Z1(α1 − a1|0) + u1.
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Note that

Cov(α1,y1) = E[(α1 − a1|0)(y1 − y1|0)′]

= E[(α1 − a1|0)(Z1{α1 − a1|0}+ u1)′]

= E[(α1 − a1|0)({α1 − a1|0}Z ′1 + u′1)]

= E[(α1 − a1|0)(α1 − a1|0)Z ′1] + E[(α1 − a1|0)u′1]

= P1|0Z
′
1.

Therefore, we get(
α1

y1

)
∼ N

((
a1|0

Z1a1|0 + d1

)
,

(
P1|0 P1|0Z

′
1

Z1P1|0 Z1P1|0Z
′
1 +H1

))
.

Now, together with A.5.12 and A.5.13 we get (α1|y1) ∼ N(a1,P1) with

a1 = a1|0 + P1|0Z
′
1(Z1P1|0Z

′
1 +H1)−1(y1 −Z1a1|0 − d1)

= a1|0 + P1|0Z
′
1F
−1
1 e1 (A.5.16)

P1 = P1|0 − P1|0Z
′
1(Z1P1|0Z

′
1 +H1)−1Z1P1|0

= P1|0 − P1|0Z
′
1F
−1
1 Z1P1|0. (A.5.17)

Note, that A.5.16 and A.5.17 are the Kalman Filter updating equations for t = 1.

A.5.3 Maximum Likelihood estimation of state-space models

Let θ denote the parameters of the state-space model. Note, that these parameters
are embodied in the system matrices. The likelihood of the state-space model is cal-
culated based on the prediction errors et, with t = 1, ..., T . It was Schweppe (1965),
who first gave the innovations form of the likelihood function. The prediction error
decomposition of the (negative) log-likelihood looks as follows

−2 ln L(θ|y) = nT ln(2π) +
T∑
t=1

ln |Ft(θ)|+
T∑
t=1

e′t(θ)F−1
t (θ)et(θ). (A.5.18)

One way to estimate the unknown parameters would be to apply a Newton-Raphson
algorithm. Performing a Newton-Raphson estimation evolves according to the following
steps:

1. Find some initial values for the parameters: θ(0),

2. run the Kalman Filter based on θ(0) to obtain
{
e

(0)
t

}T
t=1

and
{
F

(0)
t

}T
t=1

,

3. run one iteration of the Newton-Raphson algorithm with the negative log likeli-
hood as the criterion function to obtain θ(1),
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4. at iteration j = 1, 2, ... repeat steps 2. and 3. based on the respective parameter
values as well as predictions errors and MSE matrices thereof. Stop if the pa-
rameters or the likelihood stabilize, i.e. when they differ from their predecessor
by some predetermined, small amount κ.

Of course, A.5.18 will be a highly nonlinear and complicated function of θ. Thus, it
might be difficult to ensure that the Newton-Raphson algorithm does not get stuck in
a local minima of the log likelihood function.

Apart from the Newton-Raphson algorithm Shumway and Stoffer (2008) present a
procedure, which is based on the EM algorithm of Dempster et al. (1977) and is
conceptually simpler. The basic idea of this approach is that if we could observe all
the states αT = {αt}Tt=0 together with the observations yT = {yt}Tt=1 we could consider
the complete data {αT ,yT}. The complete data likelihood could then be written as

−2 ln L(θ|α,y) = ln |F0|+ (α0 − a0)′F−1
0 (α0 − a0)

+ n ln |Qt|+
T∑
t=1

(αt − Ttαt−1)′Q−1
t (αt − Ttαt−1)

+ n ln |Ht|+
T∑
t=1

(yt −Ztαt)
′H−1

t (yt −Ztαt).

(A.5.19)

Thus, if we had the complete data we could easily obtain the ML-estimates of θ. How-
ever, as this is not the case we may find the ML-estimates based on the incomplete data
by successively maximizing the conditional expectation of the complete data likelihood.
This is done according to the following steps:

1. Find some initial values for the parameters: θ(0),

2. calculate the incomplete data likelihood − ln L(θ(j−1)|y); see equation A.5.18,

3. at iteration j = 1, 2, ... use the Kalman Filter and Kalman Smoother to obtain
smoothed values for α

(S)
t , P

(S)
t and P

(S)
t|t−1 for t = 1, ..., T based on the parameters

θ(j−1). Use the smoothed values to calculate the conditional expectation of the
complete data likelihood

Q(θ|θ(j−1)) =E
{
−2 ln L(θ|α,y)|yn,θ(j−1)

}
= ln |F0|+ tr

{
F−1

0

[
P

(S)
0 +

(
α

(S)
0 − a0

)(
α

(S)
0 − a0

)′]}
+ n ln |Qt|+ tr

{
Q−1 [S11 − S10Z

′
t −ZtS10 +ZtS00Z

′
t]
}

+ n ln H

+ tr

{
H−1

T∑
t=1

[(
yt −Ztα

(S)
t

)(
yt −Ztα

(S)
t

)′
+ZtP

(S)
t Z ′t

]}
,

(A.5.20)

39



where

S11 =
T∑
t=1

(
α

(S)
t α

(S)′

t + P
(S)
t

)
,

S10 =
T∑
t=1

(
α

(S)
t α

(S)′

t|t−1 + P
(S)
t|t−1

)
and

S00 =
T∑
t=1

(
α

(S)
t|t−1α

(S)′

t|t−1 + P
(S)
t|t−1

)
.

4. Update θ0 according to

T
(j)
t = S10S

−1
00 ,

Q
(j)
t = n−1

(
S11 − S10S

−1
00 S

′
10

)
and

H
(j)
t = n−1

T∑
t=1

[(
yt −Ztα

(S)
t

)(
yt −Ztα

(S)
t

)′
+ZtP

(S)
t Z ′t

]
to obtain θ(j).

5. Repeat steps 2. to 4. until convergence is achieved.

Note, that in this paper the ML-estimation of the state-space model is achieved via the
EM algorithm. We have set κ = 0.001. Convergence was achieved within 17 iterations.
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A.6 Performance of Kalman Filter vs. AR in estimating missing values

In this section we want to show that constructing a counterfactual scenario based
on Kalman Filter values for the missing observations is preferable to approximating
these observations by the forecasts of a naive AR-model. We therefore focus on the
pre-intervention data, i.e. the time series of domestic vehicle order up to July 2007.
Again we treat nine (randomly chosen) observations as missing (April to December
2004). The left panel of Figure A.2 shows domestic vehicle orders (grey dashed line).
Observations between the two red crosses, April and December 2004, are treated as
missing. They are however shown as black points. We now want to approximate
the missing observations by Kalman Filter values (again making use of the information
incorporated in the offshore vehicle orders series) and the forecasts of an AR(2)-process
fitted to the data. The results are shown in the right panel of Figure A.2. Kalman
Filter values are given by the blue crosses (the grey line represents Kalman Smoother
values). The yellow dots give the fitted values of the AR(2)-process, while yellow circles
show the forecasts of the AR(2)-process. Again, the actually observed values are given
by the black dots. As we can see the Kalman Filter values come much closer to the
actually observed values than do the predictions based on the AR(2)-process. The root-
mean-square deviation of the Kalman Filter values (for the nine missing observations)
is 0.0256, whereas for the AR(2)-forecasts it is 0.0414 – approximately 62% higher.
Thus, constructing a counterfactual scenario for the German vehicle industry without
a scrappage scheme based on the Kalman Filter seems to be the preferable method.

Figure A.2: Performance of Kalman Filter vs. AR-model in estimating missing values.
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Notes: Left panel – Domestic vehicle orders up to Jul. 2007 with missing observations between Apr. and Dec. 2004;
right panel – Kalman Filter values (blue crosses), Kalman Smoother values (grey line), fitted values of the AR(2)-process
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Figure A.3: Distortionary demand effects by sector I
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Figure A.4: Distortionary demand effects by sector II
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Figure A.5: Distortionary demand effects by sector III

Time

2009.0 2010.0 2011.0 2012.0

0.
05

0.
10

0.
15

0.
20

0.
25

Time

2009.0 2010.0 2011.0 2012.0

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Note: Net transfer functions: machines, paper

42


	6946abstract.pdf
	Abstract




