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Abstract 
 
Central banks have sometimes turned their attention to long-term interest rates as a target or as a 
diagnosis of policy. This paper describes two historical episodes when this happened - the US in 
1942-51 and the UK in the 1960s - and uses a model of inflation dynamics to evaluate monetary 
policies that rely on going long. It concludes that these policies for the most part fail to keep 
inflation under control. A complementary methodological contribution is to re-state the classic 
problem of monetary policy through interest-rate rules in a continuous-time setting where 
shocks follow diffusions in order to integrate the endogenous determination of inflation and the 
term structure of interest rates. 
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1 Introduction

Long-term interest rates have for long played an ambiguous role in the operation of monetary

policy. The Federal Reserve Act of 1913 that created the Federal Reserve set the monetary

policy objective to be: “... to promote effectively the goals of maximum employment, stable

prices, and moderate long-term interest rates.” But, after the Treasury Fed accord of 1951,

the Fed dropped the third of these objectives, and has since referred to itself as having

a “dual mandate”. More recently, when policymakers discuss the effect of new monetary

policies, from forward guidance to quantitative easing, they commonly state their impact

on longer-term interest rates as a proof of success. As short-term interest rates stay close

to zero, policies that directly target long-term rates can be considered to control inflation,

together with macro-prudential policies that affect the risk premium in long-term bonds.

In principle, a central bank could issue reserves and make loans at one arbitrary maturity,

and use its lending and deposit facilities together with open-market operations to target the

market interest rate at this maturity. Almost all central banks choose very short maturities,

from the traditional focus on the overnight Federal Funds rate by the Federal Reserve, to

the one-week main refinancing operations of the European Central Bank.1 In September of

2016, the Bank of Japan announced a new policy of “yield curve control,” which targets a

rate of 0% for the 10-year government yield. If inflation stays away from target for long, as

it happened in Japan, other central banks may consider going long as well.

To evaluate these potential policies in the future, this paper looks at the past. During

the late 1940s, the long-term interest rate played a crucial role in U.S. monetary policy,

both in its operations and in its goals. The Federal Reserve was not unique in this regard,

as the Bank of England focussed policy in part on long-term interest rates, following the

recommendations of the 1959 Radcliffe report. This paper describes the context behind

these two historical experiments, and analyzes their role in determining inflation through

the lenses of a model of inflation with interest-rate rules. Each of these experiments was

different, but each went well beyond just using the long-term interest rate as one of many

indicators of the state of economy. Central banks went long, significantly changing the

composition of their balance sheets and adapting their procedures to focus monetary policy

on long-term interest rates. In the context of interest-rate rules, the long-term interest rate

was not just one more variable on the right-hand side, but crossed to the left-hand side of

the policy rule.

1An exception is the Swiss National Bank, whose target interest rate is a 3-month money-market rate.
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Motivated by these historical episodes, this paper discusses different ways in which the

familiar model of monetary policy can integrate long-term interest rates as a policy tool with

the dynamics of inflation. While each case is different, the results brought together suggest

that focussing on long-term interest rates leads to more volatile and less anchored inflation.

The economic analysis requires linking the dynamics of inflation, short-term nominal

interest rates, and long-term yields. There is an extensive literature on the yield curve and

inflation, including several tractable models and extensions that have successfully fit the

data.2 A barrier to merging them with the study of inflation is that they are mostly set in

continuous time with shocks that follow diffusions, while most work in monetary economics

uses linearized models in discrete time.3 To overcome this barrier, this paper presents the

classic inflation control problem in continuous model. This may prove to be useful in other

contexts. Methodologically, it pushes forward a research agenda promoted by Brunnermeier

and Sannikov (2017), who argue that bringing continuous-time tools to macroeconomics will

allow models to better incorporate endogenous risk premia and financial frictions.

Sections 2 to 4 of the paper set up the model, solve for the dynamics of inflation, and

characterize the dynamics of the yield curve, respectively. Sections 5 and 6 discuss the

two case studies of central banks going long, and applying the model to understand them.

Section 7 discusses the recent Japanese experience. Section 8 concludes with lessons for

central banks who consider going long, and discusses future research to integrate the study

of monetary policy with long-term interest rates.

2 Controlling inflation in continuous time

I first describe the choices facing the private sector, then the central bank’s policies, and

finally define the equilibrium interaction between the two. Section 2.4 provides general-

equilibrium microfoundations.

2See Piazzesi (2010) for a survey and Smith and Taylor (2009) for an estimated model closer to the one
in this paper.

3On the study of inflation, Jones and Kulish (2013) and McGough, Rudebusch and Williams (2005) are
the closest papers in the literature in their treatment of long rates, but they work with linearized discrete-
time new Keynesian models. Gallmeyer, Hollifield and Zin (2005) are closer from the perspective of the yield
curve.
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2.1 The private sector

A representative household chooses how much to save in a real riskless bond that, in exchange

for one unit of consumption today, returns for sure R
(s)
t units of consumption s periods from

now. Letting mt denote the marginal utility of consumption at date t, then the optimal

holdings of this bond must satisfy the Euler equation:

mt = Et
(
mt+sR

(s)
t

)
. (1)

Buying an extra unit of the bond lowers utility by the left-hand side of this equation, but is

expected to raise it by the right-hand side. At the optimum, the net effect must be zero.

Taking the limit as s becomes a time interval dt that is infinitesimally close to zero, and

since R
(s)
t is know at date t, gives the continuous-time version of this equation:

Et
(
dmt

mt

)
= −rtdt, (2)

where rt is the return on an instantaneous bond. Using the language of the Ramsey model,

this equation states that marginal utility must decline at the same rate as the safe return to

savings at an intertemporal optimum.

I assume that the utility function of the households is time separable and has constant

relative risk aversion. Therefore: mt = βtc−γt , where β ∈ (0, 1) is the discount factor,

ct is consumption, and γ > 0 is the coefficient of relative risk aversion. As in baseline

new Keynesian economies, there is no capital or investment; therefore markets clear when

consumption equals output yt.

The key assumption in this economy is that prices are flexible, so the classical dichotomy

holds. As illustrated in Woodford (2003), Cochrane (2011), or more recently in Hall and

Reis (2016), the economic problem of pinning down the price level using interest-rate rules is

conceptually unchanged if there are nominal rigidities and a Phillips curve. Adding nominal

rigidities complicates the expressions and may require linearizing the equilibrium conditions,

but the qualitative conclusions on when is inflation pinned down remain unchanged.

Given this assumption, it is then a mere simplification to further assume that output is

exogenous, as in an endowment economy. (For the unconvinced readers, section 2.4 endog-

enizes the evolution of output as a function of technology shocks.) In particular, I assume

that output follows a random walk, that has normally distributed innovations with standard
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deviation σy, and a stochastic mean growth rate gt.
4 This trend, in turn follows a stationary

autoregressive process, with long-run mean ḡ, speed of mean reversion κg, and normal shocks

with standard deviation σg. In continuous-time notation, this is compactly written as:

dyt
yt

= gtdt+ σydz
y
t , (3)

dgt = −κg(gt − ḡ)dt+ σgdz
g
t . (4)

The shocks are independent Wiener processes, so they are normally distributed with mean

zero and variance E0[(z
y
t )2] = E0[(z

g
t )

2] = t.

To solve for the real interest rate, note that market clearing in the goods market implies

that: mt = βty−γt . Using Ito’s lemma to take time derivatives of this expression:

dmt

mt

= [ln β − γgt + 0.5γ(γ + 1)σ2
y]dt− γσydz

y
t . (5)

Then, the Euler equation gives the solution for the real interest rate:

rt = γgt − ln β − 0.5γ(γ + 1)σ2
y. (6)

The first two terms on the right-hand side are the standard ones from the Ramsey model:

higher growth rates or more patient households increase the equilibrium real interest rate.

The third term captures the precautionary savings effect that more uncertainty on output

induces the consumer to save more and this lowers the real interest rate in equilibrium. A

virtue of working in continuous time is that this precautionary savings term is present and

analytic; in discrete-time linearized setups it is zero, and in numerical solutions it appears

only as higher-order terms.

Collecting all the results gives the real equilibrium:

Lemma 1. Real variables do not depend on monetary policy and the marginal utility of

consumption and the real interest rate are given by:

dmt

mt

= −rtdt− γσydzyt , (7)

drt = −κg(rt − r̄)dt+ γσgdz
g
t . (8)

4To be more precise, time is continuous, yt is a stochastic variable defined on a filtered probability space,
and zyt is an adapted Brownian motion in this space. The same applies to all other stochastic variables in
this paper.
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where r̄ = γḡ − ln β − 0.5γ(γ + 1)σ2
y.

2.2 The central bank

Central banks take deposits from banks, commonly called reserves. This liability is crucial

in the modern monetary system, because people make electronic payments using cards and

other means of payments issued by banks. These give rise to large gross cross-bank liabilities

every day. Reserves are the settlement currency used by the banks to clear these transactions

between themselves.

If the deposits at the central bank have maturity s, then the usual central-bank policy is

to promise a safe nominal return of I
(s)
t per unit of currency held as reserves. I assume that

the demand for liquidity is satiated (Reis, 2016a), so that the central bank can perfectly

choose this return and the private agents in the economy, represented by the representative

consumer, choose to hold these deposits according to the optimality condition:

Et

(
mt+sI

(s)
t

pt+s

)
=
mt

pt
. (9)

The price level pt appears because reserves are the unit of account in the economy. In the

extreme case where reserves are instantaneous deposits, then the differential version of this

condition is:

Et
(
d(mt/pt)

(mt/pt)

)
= −itdt, (10)

where it is the nominal interest rate on an instantaneous deposit at the central bank.

The central bank is independent, and its dividend rule is to rebate net profits every instant

to the fiscal authority. By the result in Hall and Reis (2015), the central bank is therefore

always solvent, as its reserves satisfy a no-Ponzi scheme condition. Fiscal considerations

then play no role in the determination of inflation.5

Following a long line of work, I assume that the central bank adopts a feedback rule for

the choice of the interest rate. The first component of this rule is a constant inflation target

π∗.6 A strict reading of the mandate of most central banks sets π∗ to a constant equal to

2% at an annual rate.7

The central bank then responds to any deviation of actual inflation dpt/pt from this target,

5For a discussion of the multiple fiscal channels between central banks and Treasuries, see Reis (2018).
6Letting the target vary over time deterministically would make no difference to the results.
7For instance, if a one-unit period in the model corresponds to one week, then π∗ = 0.02/52.

5



by raising interest rates by an amount φ ≥ 0 in the next instant of time. The assumption that

this is positive corresponds to the famous Taylor principle (since it corresponds to eφ ≥ 1.)

Most central banks, however, do not engage in such strict inflation targeting, but rather

adopt a policy of flexible inflation targeting. Any given period, they target an inflation rate

different from π∗ depending on the state of the economy. This is optimal in many models of

nominal rigidities.8 As a result, interest rates rise and fall to push inflation above or below

the strict inflation target temporarily in order to stabilize real activity.

Moreover, when inflation is on target, then the nominal interest rate must mimic changes

in real interest rates. Yet, most central banks find it difficult to measure the right real

interest and respond to it instantly, or more generally to track the state of the business

cycle. Errors in measurement lead to changes in interest rates.

Finally, almost no central bank follows a rule, but rather chooses a path for monetary

policy from the aggregation of the opinions of different committee members. As opinions of

the individuals in charge of decision, or the composition of the committee changes, this will

lead to changes in interest rates.

Whether it is in response to desires to stabilize real fluctuations, due to mis-measurement

of the actual state of the business cycle, or because of monetary policy shocks, then even if

inflation is at π∗, nominal interest rates may vary. I capture the combination of all these

factors through a random nominal interest rate target, or intercept xt, that also follows a

Markov process with long-run mean x̄ and shocks dzxt .

Finally, central banks smooth interest rates at a rate ρ > 0.

Combining all these ingredients, and assuming for now that the central bank sets policy

in terms of the instantaneous interest rate on reserves, gives the monetary policy rule:

d(it − xt) = −ρ(it − xt)dt+ φ

(
dpt
pt
− π∗dt

)
. (11)

2.3 The equilibrium

Because the classical dichotomy holds in this economy, all the real variables are already

pinned down. What remains to determine is the price level. A rational expectations equi-

librium is a path for the price level {pt ∈ <+ : t ≥ 0} given the real equilibrium in lemma 1

and the monetary policy rule in equation (11). Following a long literature on new Keynesian

DSGE models of monetary policy, I focus on a narrower definition of equilibrium:

8See Woodford (2010) or Ball, Mankiw and Reis (2005).
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Definition 1. A bounded homoskedastic Markov perfect equilibrium is a function for expected

inflation π(r, x) : <2 → < and three constants, αy, αg, αx such that:

dpt
pt

= π(rt, xt)dt+ αyσydz
y
t + αgσgdz

g
t + αxσxdz

x
t , (12)

where equations (7), (8) and (11) hold, and expected inflation satisfies:

lim
T→∞

Et
(
e−ε(T−t)π(rT , xT )

)
= 0 (13)

for any ε > 0.

There are three restrictions imposed in this definition relative to the rational-expectations

equilibrium. First, since the state of the economy is captured by the real interest rate

and the nominal interest rate, and (rt, xt) follows a Markov process, the restriction to look

only at a Markov equilibrium is natural. This rules out the possibility that sunspots drive

inflation. Second, since all variances are independent of time, the definition imposes that

the variance of inflation also did not depend on time. Therefore, the responses to shocks,

stacked in the column vector Zt = (zyt , z
g
t , z

x
t ) are given by a column vector of constants

α = (αyσy, αgσg, αxσx) rather than by three functions of the state vector. I conjecture that

allowing for sunspot shocks by letting inflation depend also on some other αεdz
ε
t , or allowing

the responses of inflation to shocks to depend on (rt, xt) would actually make no difference:

in equilibrium, αε = 0 and the other α’s would not depend on the state of the economy.

More important is the assumption of boundedness. Cochrane (2011) provides a scathing

critique of this assumption as an equilibrium selection device. It is not micro-founded since

it does not follow from optimal behavior or market clearing conditions. Moreover, it plays an

important role, since variations of it can dramatically change the results. The long literature

on interest-rate rules has proposed other related boundary conditions, Obstfeld and Rogoff

(1983) being a famous example, and there is also an extensive literature using other monetary

policies to control the price level (Reis, 2016b). I follow Woodford (2003) and the extensive

literature after it in maintaining this assumption because there is little in the analysis that

brings any new light to the issues involved.

Given the stochastic process for marginal utility in equation (7), and for prices in equation

(12), Ito’s lemma gives the expected rate of change in mt/pt. By the Euler equation (10), this

is equal to the instantaneous nominal interest rate. This gives a modified Fisher equation as

7



a no arbitrage condition between nominal and real bonds:

it = rt + πt − α′α− γσ2
yαy. (14)

As usual, the nominal interest rate is equal to the sum of the real interest rate and ex-

pected inflation, the two first terms on the right-hand side, respectively. However, shocks to

inflation introduce two extra terms. First, because of the convexity of returns, more variable

inflation subtract from the realized real returns on nominal bonds. Second, there is an in-

flation risk premium. If positive shocks to inflation come at times when the marginal utility

of consumption is high, then nominal bonds will have a realized return that is lower when

returns are more valuable. Thus, holding a nominal bond comes with risk, and so it must

pay a higher nominal interest rate to compensate for this risk. The focus on a homoskedastic

equilibrium makes this risk premium constant, which is counterfactual. Allowing for het-

eroskedasticity in the growth rate of output or in the shocks to monetary policy would easily

lead to a time-varying risk premium, and future work should explore its role.

2.4 Where does the price level come from?

Because reserves are the unit of account in the economy, their real value is, by definition,

1/pt. It is the absence of arbitrage between private bonds and reserves at the central bank

that pins down the price level. Outside of equilibrium, if the price level was too high, then

reserves would cost less, which would make banks want to sell private bonds and deposit

more reserves at the central bank. As the supply of reserves is fixed by the central bank this

“excess demand” for reserves would make their value fall, which comes through the price

level rising back to equilibrium.

This description of equilibrium may strike some readers as odd in two ways. First, output

was taken as exogenous, as in an endowment economy. Second, there was no mention of

goods’ prices. Both of these features resulted from not having any mention of firms selling

goods and setting prices. This section shows how introducing these makes no difference.

8



Assume that the representative agent solves the following problem:

max
{{ct,j},lt}

E0

∫ ∞
0

βt

(
c1−γt

1− γ
− l1+ψt

1 + ψ

)
dt (15)

s.t. ct =

(∫ 1

0

c
1/µ
t,j dj

)µ
, (16)

d(bt + vt) =

(
it −

dpt
pt

)
vt + rtbt + (wtlt + kt − ct)dt. (17)

The representative household chooses its consumption of a continuum of varieties (ct,j) and

hours worked (lt) for a real wage (wt) to maximize expected discounted utility, subject to its

preference for different varieties and to a flow budget constraint where labor and investment

income is complemented with dividends from firms (kt). For simplicity, this assumes only

instantaneous bonds (bt) and reserves (vt) are held, but allowing for higher maturities would

not change the argument.

The optimal behavior of consumers is then characterized by the two Euler equations

already presented in equations (2) and (10), the flow of resources combined with a transver-

sality condition, and finally the optimality condition for labor supply:

cγt l
ψ
t = wt. (18)

The real wage is equal to the marginal rate of substitution between labor and consumption.

A continuum of monopolistic firms operate a technology yt,j = atlt,j to produce each

variety of good subject to the common productivity at. Using their monopoly power, the

optimal price they charge is a markup over costs:

pt,j
pt

=
µwt
at

. (19)

A general equilibrium of this economy is a situation where households and firms behave

optimally, and all market clear. There is a market for labor, so that lt =
∫
lt,jdj. In the

goods market, ct,j = yt,j leading to ct = yt. Finally, the supply of real bonds and nominal

reserves are both zero on net: bt = vt = 0.

This economy maps exactly into the price determination problem defined before. To see

this, note that because prices are flexible, the symmetry of the problem leads to pt,j = pt. It
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then follows from combining equations (18) and (19) that:

µyγ+ψt = a1+ψt . (20)

Therefore, given an exogenous stochastic process for technology such that at is a random

walk in logs with a stochastic stationary trend, this maps exactly into the assumption on yt.

The model is fully microfounded with firms that choose prices.

The process by which an equilibrium price level is attained in the economy can be ex-

plained differently. If the price level is hypothetically too high, the private agents realize that

the return on savings in reserves at the central bank is high. They therefore cut consumption

to save more. But, as they cut consumption, this lowers the demand for goods, leading firms

to want to cut their prices, making the price level fall back to equilibrium.

In Walrasian general equilibrium economies, either this story or the one at the start of

this subsection, are equally valid. All markets, for savings, for bonds, for reserves, for goods,

and for labor must jointly clear, so excess demand or supply in any one of them comes

with excess demand or supply in all others. Firms are choosing prices, and households are

responding to them by consuming more or less, by saving more or less, and by depositing

more funds at the central bank or not, all together and at once.

3 The dynamics of inflation

This section solves the mathematical problem set out in the previous section: to solve for

the dynamics of inflation in equation (12), subject to the equilibrium Fisher equation (14),

the policy Taylor rule in equation (11), and the boundary condition in equation (13).

3.1 A phase diagram for expected inflation

The Fisher equation is a linear relation between the nominal interest rate and expected

inflation with slope 1 and vertical intercept rt − α′α − γσ2
yαy. At a steady state with no

shocks, the policy rule is also a line, with slope φ/ρ, so that if expected inflation is equal

to π∗, then the nominal rate is xt. Figure 1 shows the phase diagram for the dynamics

of expected inflation. The equilibria are movements along the Fisher line, such that if the

economy is above the policy rule, then the interest rate will fall, and rise conversely.

The dynamic system is clearly unstable as long as φ > ρ. Therefore, inflation must always

stay at the intersection of the two lines. Otherwise, it would diverge to infinity violating
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Figure 1: Phase diagram for expected inflation

Inflation (π)

Nominal rate (i)

r+π*-α'α-γσ2αy

π*

Fisher equation

Policy rule

Expected	infla-on	(π)

the boundedness condition. This is the famous Taylor condition, adapted to account for

interest-rate smoothing. Intuitively, as long as the central bank commits to raising interest

rates when expected inflation increases from target then, from the Fisher equation, this will

raise expected inflation. But because this further raises inflation the next instant, it leads to

a new rise in interest rates, and a further rise in expected inflation. If private agents in the

economy rule out from their expectations these infinite forward-looking possibilities where

inflation explodes at an accelerating pace, as captured in equation (13), then this disciplines

their initial inflation expectations to not deviate from target.

The level of real interest rates rt or monetary policy xt together with shocks to both of

them determines where expected and actual inflation are at a point in time. Understanding

these responses requires moving beyond the phase diagram, fully solving the model.

3.2 Analytical solution for expected inflation

Taking time differences of the Fisher equation gives:

dit = drt + dπt. (21)
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In turn, using the Fisher equation to replace it in the Taylor rule, and the dynamics of

inflation to replace for dpt/pt gives:

dit = dxt − ρ(rt + πt − α′α + γσ2
yαy − xt)dt+ φ (πtdt+ α′dZt − π∗dt) . (22)

Equating the right-hand sides of the previous two equations and rearranging gives the

law of motion for expected inflation:

dπt = (φ− ρ)(πt − π∗)dt− dεt − ρεtdt+ φα′dZt. (23)

This expression defined a new variable: εt = rt − xt + π∗ − α′α− γσ2
yαy. For now, take this

as being just a convenient way to collect terms in what would otherwise be a long and messy

expression.

Take expectations of the differential equation at date t, and let hatted variables denote

the expected value of actual variables, e.g., dε̂t = Et(dεt). Expected inflation πt then evolves

according to:

d(π̂t + ε̂t − π∗) + (ρ− φ)(π̂t + ε̂t − π∗)dt = −φε̂tdt (24)

This is a standard ordinary differential equation that has the solution

πt = π∗ − ε̂t + e−(φ−ρ)(T−t)(π̂T + ε̂T − π∗) +

∫ T

t

φe−(φ−ρ)(s−t)ε̂sds (25)

Taking the limits as T goes to infinity and imposing the boundary condition gives the solution

for expected inflation:

πt = π∗ +

(
ρ

φ− ρ

)
εt +

∫ ∞
0

φe−(φ−ρ)s Et(εt+s − εt)ds (26)

as long as φ > ρ. Mathematically, equation (24) shows why the Taylor condition is necessary:

it makes expected inflation an explosive process since positive deviations from target lead to

further increases in the gap between expected inflation and target.

3.3 The deviations of expected inflation from target

Inflation deviates from target due to the terms on the right-hand side of equation (26).

Recall that:

εt = (rt + π∗ − α′α− γσ2
yαy)− xt. (27)
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If εt = 0 at all dates, then expected inflation will always be on target. An omniscient, long-

lived, and inflation-nutter central bank would perfectly control inflation by choosing xt to

mimic one-to-one movements in real interest rates. Because xt would be perfectly negatively

correlated with rt, the only state variable in the economy would be the real interest rate and

monetary policy would introduce no extra source of uncertainty to any nominal variable.

But, a central bank that has trouble tracking and measuring rt in real time, that wants

to use interest rates to have inflation deviate from the target in order to stimulate economic

activity, or that in its deliberative process changes its views on the appropriate policy, will

not be able or willing to set xt to keep inflation at π∗ at all dates. Extending the model to

have a time-varying risk premium would make it even more unlikely that the central bank

would be able to measure in real time changes in σ2
yαy and adjust the interest rate in response

to them.

The opposite case is one in which the setting of nominal interest rates by monetary policy

is independent of the real interest rate. In this case, we can take xt to follow an exogenous

process:

dxt = −κx(xt − x̄)dt + σxdz
x
t , (28)

where the shocks dzxt are independent from the shocks to output, dzyt and dzgt . The appendix

covers the intermediate case where xt only partially adjusts to changes in rt.

Using the stochastic processes for real interest rates and policy interest rates in equations

(8) and (28), one can evaluate the expectations and the integral in equation (26).9 The final

solution for expected inflation is:

π(rt, xt) = π∗ +

(
ρ

φ− ρ

)(
r̄ + π∗ − α′α− γσ2

yαy − x̄
)

+

(
ρ− κg

κg + φ− ρ

)
(rt − r̄)−

(
ρ− κx

κx + φ− ρ

)
(xt − x̄). (29)

Expected inflation is a linear function of the two state variables.

The first line of this equation has the intercept for inflation. A central bank that cannot

fully keep track of movements in real interest rates or in inflation risk premia still has to

figure out what these are on average and then set its average interest rate appropriately.

In times when secular changes in productivity may have led to changes in safe real rates,

or when the long-run inflation risk premium may be changing due to financial crises, this

9Simply recall that Et(rt+s−rt) = (r̄−rt)(1−e−κrs) and likewise for Et(xt+s−xt), and that
∫∞
0
e−φtdt =

1/φ.
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normal interest rate to which monetary policy should converge is not easy to assess, but it

plays a crucial role in keeping inflation on target.

The second line of the expression above shows the sensitivity of expected inflation to

the state of the economy. Depending on the persistence of interest-rate changes, shocks to

monetary policy can raise or lower expected inflation. This is to be expected, since of course

forever higher nominal interest rates unambiguously raise inflation since they correspond to

an effective increase in the inflation target. A different question is whether actual inflation

rises or falls with positive shocks to nominal interest rates. I turn to this question next.

3.4 Shocks to inflation

The final step is to solve for inflation’s response to shocks in the vector α. Subtracting

equation (23) from equation (24):

dπt − dπ̂t = dε̂t − dεt + φα′dZt (30)

Using the solution for expected inflation in equation (29) and the definition of εt in equation

(27), this equation becomes:(
ρ− κg

κg + φ− ρ

)
γσgdz

g
t −

(
ρ− κx

κx + φ− ρ

)
σxdz

x
t

= −γσgdzgt + σxdz
x
t + φαyσydz

y
t + φαgσgdz

g
t + φαxσxdz

x
t . (31)

This equation must hold for all realizations of the shocks. Therefore, the solution is:

αx = − 1

κx + φ− ρ
(32)

αg =
γ

κg + φ− ρ
(33)

αy = 0. (34)

The first interesting result is that a positive shock to the nominal interest rate lowers

actual inflation. The effect is smaller the more aggressive is the Taylor rule coefficient

response in future periods, the less persistent is the shock, and the more interest rates are

smoothed. The higher is the variance of these monetary policy shocks, the higher will be

the variance of inflation deviations from target.

The second result is that permanent shocks to output that do not move real interest rates
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have no effect on inflation. Similarly, sunspot nominal shocks that do not move real interest

rates would have no effect on inflation. Moreover since all the responses to shocks depend

on parameters that are time-invariant, the equilibrium has a constant variances of shocks to

inflation. This justifies the conjecture that restricting attention to Markov homoskedastic

equilibrium is not limiting.

A summary of the analytical solution of the model is in the next proposition:

Proposition 1. The bounded homoskedastic Markov equilibrium has expected inflation π(xt, rt)

given by equation (29) and the response to shocks α given by equations (32)-(34).

4 Equilibrium interest rates

Combining the solution for expected inflation in equation (29) with the Fisher equation in

equation (14), gives the equilibrium dynamics of the short-term interest rate. The next

lemma states it formally.

Lemma 2. In equilibrium, the instantaneous nominal interest rate is:

it = θ0 + θxxt + θrrt (35)

where θ0 = [φ/(φ− ρ)](π∗ − α′α) + [φκx/(φ− ρ)(κx + φ− ρ)]x̄− [φκg/(φ− ρ)(κg + φ− ρ)]r̄

and θx = (κx − ρ)/(κx + φ− ρ) and θr = φ/(κg + φ− ρ).

In this simple model, the nominal interest rate is an affine function of the two state

variables, the state of the real economy and the stance of monetary policy. Therefore, the

model fits into the general family of affine models of the term structure (Piazzesi, 2010).

The key result from this literature then follows (and is proven in the appendix):

Lemma 3. Define the yield on the bond as i
(s)
t = log(I

(s)
t )/s. In equilibrium, it is:

i
(s)
t = δ0(s) + δi(s)it + δx(s)xt (36)

where δi(s) = (1− e−κgs)/(κgs).

4.1 Two limitations to going long

The relation between long and short rates in the lemma results from the absence of arbitrage

along the yield curve. A central bank that follows a Taylor rule for the overnight rate cannot
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separately set an exogenous target for the long rate that disrespects the equation in this

lemma. Otherwise, if i
(s)
t is larger than the expression in the lemma, private banks and

investors would all want to deposit long-dated reserves at the central bank and want to

hold zero instantaneous reserves. If the inequality flipped, so would the balance sheet of

the central bank suddenly, from long to short reserves. The central bank, pushed from one

corner to the next, would have to adjust its assets correspondingly and quickly, otherwise it

would be exposed to losses that could endanger its solvency.

Moreover, for long maturities, s is large, so δi(s) is expected to be quite small as long as

the shocks to real interest rates are not very persistent (so κg is not too small). This says that

temporary changes in short-term interest rates move long rates less than one-to-one. Stated

backwards, it means that if the central bank targets the long rate, then any policy decision

to change it will have a large impact on short-term interest rates. Today, central banks

change their policy rate infrequently in a lumpy way, say every so many weeks by 25 basis

points. If they did the same while going long, then the days before any policy meeting would

come with intense speculation on short bonds in the days before, as the short rate would

be expected to move by several percentage points at the time of the policy announcement.

Going long requires a large change in operating procedures, with more frequent meetings of

policy committees that would make single-digit basis point decisions.

4.2 From the model to the data

Another implication of lemma 3 is that long-term interest rates are linear functions of the

instantaneous interest rate.10 This affine property of the model is very convenient on many

accounts. First, this class of models has been extensively taken to the data on interest rates

of different maturities. Second, it has been extended in different directions. One could for

instance consider shocks to the long-run growth rate of the economy, akin to news shocks, or

stochastic volatility in the growth rate mapping into uncertainty shocks, and so incorporate

these two recent popular business-cycle literatures into the determination of inflation and

the study of long-term interest rate policies.

Third, we can easily incorporate other state variables. For instance, Greenwood, Hanson

and Vayanos (2016) introduce limits to arbitrage in the bond market so that there are two

extra linear factors corresponding to the actual bond holdings by the central bank and their

expected mean at different maturities. In their model, when central banks go long in the

10Smith and Taylor (2009) impose this linearity and obtain a related result to lemma 3 to focus on how
changes in φ affect δx(s).
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sense of buying government bonds of different maturities, they affect long-term interest rates.

In this paper instead central banks go long directly by choosing the value of the long-term

interest rate. Merging the two models would provide a rich theory for how quantitative

easing policies can affect inflation.

5 The United States pre accord: 1942-1951

The behavior of the Federal Reserve during the Great Depression is one of the most studied

in monetary history. In turn, modern analyses of U.S. monetary policy almost exclusively

focus on the behavior of the Fed after the Treasury-Fed accord of March 4, 1951, described

by Friedman and Schwartz (1963) as: “Few episodes in American monetary history have

attracted so much attention in the halls of Congress and in academic quarters, alike.” Con-

siderably less attention has been spent on the period that goes from World War II to the

accord. This was a period when the Federal Reserve went long.11

5.1 Pegging interest rates

The United States entered World War II on the 8th of December of 1941. As almost always

happens when a country enters a major war, the primary goal of economic policy became the

financing of large war expenditures, and the Treasury was its leading executor. The Federal

Reserve was a subordinate, as monetary policy’s role was to ensure that the banks that it

regulated and the financial markets in which it intervened would provide a steady demand for

the government bonds. While the Treasury officially managed the public debt, the Federal

Reserve was supposed to ensure that the government bonds were sold at a favorable price.

The particular approach by the United States during this time was announced in April

of 1942. One part of this policy was that the Fed stood ready to buy and sell 90-day

Treasury bills at a fixed rate of 3/8%. The T-bill rate then became the effective policy rate.

Certificates of deposit could be discounted at rates that still changed from time to time to

respond to demands in the banking sector, but the peg on the T-bill rate was the focus of

policy. Correspondingly, Treasury bills, not reserves became the major liquid asset in the

balance sheet of banks. Knowing that these could be bought and sold from the Fed at a

fixed price at any time, banks did not need reserves, for T-bills were just as liquid.

11Standard references for the history of the Federal Reserve are Friedman and Schwartz (1963) and Meltzer
(2010).
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While much has been made of the policy of pegging interest rates, it actually lasted for a

relatively short period of time. The Federal Reserve continuously clashed with the Treasury

about raising the T-bill rate, especially at the end of the War when inflation accelerated.

Eventually, in July of 1947, the Fed raised the T-bill rate after striking a bargain with the

Treasury that involved the payment to the Treasury of a significant share of the net income

it had accumulated. Further increases immediately followed, so that by December the bill

rate was 1%, and one year later by the end of 1948 it was set at 1 1/8%.

Between 1949 and 1951, there was an intense political struggle between the Treasury,

partly backed by the president, and the Fed. At times, it seems worthy of a political drama

TV series (Hetzel and Leach, 2001). It started with the FOMC statement in June of 1949

that it intended to change the interpretation of the mandate to keep a peg on interest rates.

A crucial shock arrived in 1950 with the intensification of the Korean war. Real interest rates

rose as a response, and large government deficits were expected. Moreover the anticipation

of price controls led to a sharp increase in inflation, mostly for durable goods. On one side,

the Treasury became nervous about keeping the peg on the price of its debt, especially given

the prospect of another long conflict. On the other side, the Fed worried that to keep its

interest rates low, it would have to issue reserves to buy more government bonds, and that

this would fuel credit and inflation. In 1951, in testimony to Congress, the chairman of

the Federal Reserve system unequivocally stated that: “As long as the Federal Reserve is

required to buy government securities at the will of the market for the purpose of defending a

fixed pattern of interest rates established by the Treasury, it must stand ready to create new

bank reserves in unlimited amount. This policy makes the entire banking system, through the

action of the Federal Reserve System, an engine of inflation. (U.S. Congress 1951, p. 158)”.

The Treasury-Fed accord of March 1951 declared a truce between the Treasury and the

Fed. In spite of having little legal force, and in itself stating little of substance, Fed chairman

Martin masterfully interpreted it in a way that affirmed the independence of the Fed from

the Treasury from then onwards. One fundamental implication of the accord for the conduct

of U.S. monetary policy was that supporting the national debt was no longer an objective for

monetary policy, which became concentrated on macroeconomic and price stability. Another

implication was that the peg on the bill rate was lifted and the Fed gained full autonomy

over the setting of interest rates.

There was a third implication of the Treasury-Fed accord. Since then and all the way

until the adoption of quantitative easing in 2008, the Federal Reserve focussed its attention

on short-term interest rates and conducted the bulk of its open market operations using
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Treasury bills. This was not the case before the accord.

5.2 Ceiling policy

While the peg for the T-bill rate gets much of the attention, it only lasted for five years. More

persistent, and arguably more significant was a different part of the March 1942 policy, which

remained until March of 1953: an explicit ceiling of 2.5% for the 10-year yield. Friedman and

Schwartz (1963) argue that, unlike the peg on the bill rate, the Fed was in general favorable

to this policy. The bond support program, as it was called, had originated intellectually

within the Fed.

While the War lasted, the yield on Treasury bills was low relative to the yield on longer-

dated Treasury bonds. As a result, banks were happy to hold bonds earning higher returns,

exchanging them for Treasury bills at the Fed whenever they needed liquidity. The Fed

rarely needed to intervene, and its assets mostly consisted of Treasury bills.

This changed between 1945 and 1948. The Treasury started issuing many more long-

term bonds with the goal of delaying the payment of the wartime debt. Yields rose, reaching

2.37% in November of 1947 and forcing the Fed to step in with a large-scale purchase of

bonds to keep the ceiling unbroken. In December 24 of that year, the Fed released a mere

suggestion that it might allow for small deviations from the ceiling, and the long-term yield

immediately jumped to 2.45%, demonstrating the active role the Fed was playing in the

the bond market. As the slope of the yield curve shrank, the private sector shifted the

composition of its portfolio towards Treasury bills. Correspondingly, the maturity of the

Fed’s bond portfolio expanded.

Noticeably, while between 1947 and 1950 the Fed raised the bill rate several times, and

wanted to raise them more and more often, it always stayed committed to the ceiling on

the bond rate. In fact, in October 16 of 1947, the Board of governors wrote a letter to the

Treasury secretary where in the process of defending the change in the bill rate, it stated:

“We can assure you that these actions will not affect the maintenance of the 2 1/2 percent

rate for the outstanding long-term government bonds.”

This changed with the Korean War. The flattening of the yield curve intensified the

pressure for the Fed’s balance sheet to grow and become longer. In 1950, chairman Eccles

advocated a relaxation of the ceiling on bond yields, but was strongly opposed by president

Truman who, having imposed wage controls in 1951, was adamant that long-term mortgage

rates would not increase. Moreover, the Treasury warned of a large financial crisis in bond

markets if the ceiling was dropped. Following the accord, the Fed did not explicitly abandon
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its interest rate ceiling, doing so only a full two years later, in March of 1953. Only then did

the Fed start selling bonds at a fast pace. Intellectual and policy support for a “bills only”

policy with regards to the Fed’s balance sheet arose, and remained for many years to come,

as the Fed moved completely away from its going long policy.

5.3 Turning to the model: pegs

Focussing on the peg of short-term rates that lasted between 1942 and 1947, if the peg was

expected to last forever, then inflation becomes indeterminate. This policy corresponds to

φ = ρ = 0 and to a constant xt in the model. In this case, combining the Fisher equation in

(14) with the policy rule, now gives:

πt = x̄− rt + α′α + γσ2
yαy. (37)

Since rt is a stationary process, this satisfies the boundedness condition. Therefore, this

equation is the sole condition with which to pin down the evolution of inflation. This is one

equation in several variables: expected inflation and the response of inflation to each of the

shocks. The result is indeterminacy.

This is not the classic indeterminacy result of Sargent and Wallace (1975). In a deter-

ministic model, α = 0, so the equation above uniquely pins down inflation. Sargent and

Wallace (1975) instead emphasized that the initial price level is indeterminate, not inflation.

With uncertainty, there is another form of indeterminacy (Nakajima and Polemarchakis,

2005). Monetary policy can at best pin down a risk-adjusted measure of expected inflation,

the breakdown between expected inflation and the actual inflation response to shocks is

indeterminate.

Figure 2 plots the phase diagram for this case, where the policy rule is now a horizontal

line. Clearly, the system is globally stable: after a shock to the real economy (which shifts

the Fisher relation) or a shock to monetary policy (which shifts the policy rule), inflation

will converge back to the new intersection of the two lines. The boundedness condition

puts no restriction on equilibrium. Yet, with risk, the change in inflation in response to

the shocks (α) affects the location of the Fisher relation. Therefore, there are multiple

possible combinations of inflation and its responsiveness to shocks that are consistent with

equilibrium.

The Fed instead set policy in terms of the 90-day rate. A peg on a long rate implies that
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Figure 2: A hard peg
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i
(s)
t equals a constant ι. Using lemma 3, this implies that:

ι = δ0(s) + (δi(s) + δx(s))x̄. (38)

Given the one-to-one correspondence between x̄ and ι, the peg on a long rate can be analyzed

using the same phase diagram and the same mathematics as a peg on the short rate: it simply

corresponds to a different choice of x̄. Indeterminacy of inflation remains, and going long is

immaterial.

5.4 Ceilings and inflation

The supposed hard peg only lasted for a little over 5 years; by comparison the policy rate

was unchanged in the United States for 7 years, between December of 2009 and December

of 2016. An alternative interpretation of the policy at the time is that the Fed followed a

feedback rule for interest rates, as in equation (11), but with a very high extent of interest-

rate smoothing (low ρ) and a relatively low sensitivity of interest rates to inflation (low φ).

However, the analysis of section 3 does not apply. For more than a decade, the Fed had

a ceiling on long rates. That is, there was an exogenous ι for the 10-year rate such that
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monetary policy followed the feedback rule unless it implied a violation of the constraint

i
(s)
t ≤ ι. If so, then the interest rate was unchanged.

Figure 3 plots the phase diagram matching this case. For simplicity of the graph, consider

the case where all shocks are zero, so that i
(s)
t =

∫ s
t
ijdj and take the intercept in the policy

rule to be consistent with the inflation target: xt = x̄ = r+ π∗. Then, starting from a point

where the short-term rate equals the long-term rate, the policy resembles a peg. Therefore,

the policy rule at point H is horizontal and stays so up to the point where it intersects the

feedback rule. Given the monotonicity of the interest rate in the dynamic system, it then

follows that the interest rate will be at the bound for all levels of inflation between point H

and the point where the ceiling intersects the unbounded policy rule.

There are now two equilibria: the previous unstable one, with inflation on target at point

L, and a new globally stable equilibrium at point H, with persistently high inflation. This

model allows one to make sense of the conflict between the Fed and the Treasury in the late

40s and of the dynamics of inflation at the time. At first, the economy was close to the L

equilibrium. Given small shocks to the real interest rate that shifted the Fisher equation,

the Fed would make small adjustments to the bill rate (changes in xt) to shift the policy

rule, and make sure that the interaction L still implied inflation at π∗. These adjustments

had to be negotiated with the Treasury, but they were essential since if the shocks pushed

for higher inflation and the Fed was not quick to raise xt and shift the policy rule, it risked

being to the right of the L point and entering escape dynamics towards the H equilibrium.

Post 1945, when these positive inflation shocks happened, the political tension between Fed

and the Treasury was therefore large, and concentred on the level of the T-bill rate.

In 1950, the the intensification of the Korea War implied a a large increase in rt shifting

the Fisher equation upwards. Controlling inflation would require a sharp increase in the bill

rate xt to shift the policy rule upwards as well and keep inflation on target. The tension

intensified and the accord had to follow. The ceiling played a crucial role because as the two

upwards sloping line segments shift upwards, any further positive shocks to inflation would

quickly set in dynamics that ultimately lead to point H. Translating this into economics, as

real and nominal rates rise, the yield curve flattens, and this reduces the room for further

shocks to not make the ceiling put a binding constraint on short rates.

By 1953, it was clear that the Fed must let go of the ceiling. Even with control of short

rates and potentially a more aggressive policy in the form of a higher φ, still there was a real

danger that a future shock would start dynamics towards the H point. The statements by

the Fed at the time, of fearing that the policy of pegging the long rate would lead to inflation
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Figure 3: Long ceiling policy
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getting out of hand are justified by this simple model. The ceiling put a strain on monetary

policy because any mistake in setting xt too low, would lead the economy to enter a stable

path where inflation monotonically rises and converges to the high inflation equilibrium in

point H. Abandoning the ceiling was the way to prevent the high-inflation stable equilibrium

from becoming the dominant reality in the United States.

According to the model, the way in which the Fed went long at the behest of the Treasury

was ultimately unsustainable. It created a high inflation equilibrium that might have been

reached and set its stable roots in the U.S. were it not for the strong intervention of the Fed

to break its ties with the Treasury.

6 The Radcliffe commission and UK monetary policy

in the 1960s

On May 3 of 1957, the chancellor of the exchequer set up a “Committee on the Working

of the Monetary System,” headed by Lord Radcliffe. Its official goal was ambitious and

wide ranging: “to inquire into Britain’s monetary and credit mechanism and to make rec-
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ommendations”. It deliberated for more than two years, questioning more than two hundred

witnesses and receiving more than one hundred special memoranda, until the final report

was presented in August of 1959.

The Radcliffe report’s purported to explain how monetary policy worked and how should

it work. Unsurprisingly, it attracted both strong support as well as violent disagreement

across the globe. In the academic world, in 1960 alone, there were special articles in the

American Economic Review, the Journal of Finance, and the Review of Economics and

Statistics devoted to the report. The prominent monetary economist Anna Schwartz for

many years argued that the report was misguided (Schwartz, 1987). Its policy principles

explicitly guided the Bank of England’s monetary policy during the 1960s, and were arguably

influential for longer, so that the report plays a central role in any history of the Bank of

England in the XXth century.12

6.1 Prelude: criticisms of monetary policy in the 1950s

Throughout the 1950s, the UK economy was still recovering from the devastating effects of

World War II. There were many direct economic controls in place and a large stock of public

debt outstanding. The maturity of that debt was low relative to what had been typical,

leading to constant pressure to refinance bonds that would come due.

The Bank of England was not independent, operating under control of the Treasury. Re-

ducing unemployment was the dominant goal of economic policy, and following the prevalence

of Keynesian thought, fiscal policy directed to controlling aggregate demand was perceived

as the best way to achieve it. Monetary policy was mostly devoted to managing international

reserves and preventing fluctuations in the value of the exchange rate. Therefore, almost

all of the changes in the main policy rate—the rate at which the Bank of England lends

to banks—came in response to international shocks that affected the exchange rate. This

led to frequent accusations that the Bank was too short-sighted, focussing on short rates as

opposed to keeping long rates low, a policy of “cheap money” that was popular in Keynesian

circles.

As in the United States, right after the war there was an explicit target for the 10-year rate

on government bonds of 2.5%. However, it was implemented quite differently. If investors

required higher returns to buy the bonds, the Treasury simply refused to sell them. As a

12Good references for monetary policy in the period before and after the report, drawing links to long-term
interest rates, are Dimsdale (1991), Goodhart (1999), Batini and Nelson (2005), Capie (2010), and Allen
(2014).
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result, when during the 1950s, the Bank would increase short-term interest rates in response

to foreign shocks while keeping long rates fixed, the market for long-term gilts would dry up,

and the Treasury would issue mostly Treasury bills. This led to further criticism of the Bank,

for undermining the national goal of extending the maturity of the stock of government debt.

Academics were likewise critical of the Bank, as this was a time of fervent debate on the

role of monetary policy. Students of the gold standard thought that the central bank should

be solely in charge of setting an interest rate to affect currency markets. In turn, Treasury

officials saw macroeconomic policy through the lenses of a tradeoff between unemployment

and inflation, in the spirit of the Phillips curve. More dominant was the view that credit

policies were the main tool for a central bank to affect financial markets, while only a minority

argued that monetary aggregates were important.

Following large sudden increases in the bank rate in 1955 and 1957 partly to stop an

outflow of international reserves, and the 1957 rise to power of prime minister Macmillan,

the Radcliffe Committee was formed to clarify the role of monetary policy and the functions

of the Bank of England. The Radcliffe Committee’s hearings became a public arena where

competing views of monetary policy were debated.

6.2 The report’s view of monetary policy

While the report was unanimously approved by its members, it did not offer a clear list of

conclusions and recommendations. Still, most contemporary readers summarized its contri-

bution in a list of five points. The first four of these have attracted much academic attention

already. They were: first, the recommendation that monetary policy has many different

goals, sprayed throughout the report without any clear discussion of policy tradeoffs, and no

clear connection between them beyond the fact that central bank actions could in principle

be relevant to each of them. Second, the downplay of monetary aggregates or more generally

of the role of money in affecting macroeconomic outcomes due to the combination of a view

that velocity is infinitely elastic and a preference for a broader and looser concept of “liq-

uidity” as the relevant influence on aggregate demand and inflation. Third, the preference

for explicit credit policies and controls as the tool that the Bank of England should use to

complement the role of fiscal policy in steering aggregate demand. Fourth, a conventional

and unremarkable discussion of the role of international reserves and exchange rate volatility.

The fifth conclusion concerned the role of interest rates, especially at longer maturities,

in monetary policy. This is the part of the Radcliffe report relevant for this paper. It is the

more grounded and clearly argued of the five main points, because it builds and expands on
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the 1945 National Debt Enquiry. Unlike the targets for liquidity, which were never concretely

implemented, the advice on interest rates was influential in the setting of Bank of England

policy in the 1960s.

The Radcliffe report saw the management of the public debt as a fundamental goal of

monetary policy. This was to be done by setting interest rates at many different maturities

since policymakers: “ They must have and must consciously exercise a positive policy about

interest rates, long as well as short, and about the relationship between them.” (page 337)

The quantities of government bonds held at different maturities would then be decided in

markets according to investors’ demand. The Radcliffe report implicitly rejected the no-

arbitrage view of the term structure, and was closer instead to a clienteles perspective,

where in each maturity separately, the central bank could choose a price, and market forces

would determine the finite quantity that cleared the market.

The report went further and dismissed the idea that in setting interest rates, the central

bank would have a significant effect on aggregate demand. It likewise dismissed a connection

between money and interest rates. Finally, it was critical of the Bank of England for focussing

on short-term interest rates, and blamed the failings of monetary policy in the previous

decade on its neglect of active management of long-term interest rates.

Throughout the 1960s, U.K. monetary policy devoted itself first to stabilizing the ex-

change rate and capital flows through the setting of short-term interest rates, and second

to managing the yield curve and the cost of government financing through the setting of

long-term interest rates. The Radcliffe report urged the central bank to estimate the “right

level” for interest rates. While the Bank never explicitly embraced focussing on one partic-

ular long-term interest rate, it continuously estimated a perceived “trend” in yields, which

throughout the 1960s kept on rising. Managing the issuance of bonds of different maturities,

using credit controls, regulating banks, and adjusting the bank rate were all tools used to

ensure that a steady demand for government bonds materialized at the desired target.

6.3 The Bank of England going long

One way to interpret U.K. monetary policy is as pegging i
(s)
t around an exogenous ιt. Inflation

was not a target for monetary policy, and changes in ιt either followed some statistically esti-

mated trend, or occurred infrequently as a result of political compromises with the Treasury

and changing views on the need to stimulate investment. The going long policy consisted of

focussing monetary policy operations on a long interest rate and choosing this somewhat in-

dependently of inflation or aggregate demand. The central bank focused instead on devising
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a target for the long rate, ιt, which following Radcliffe, was exogenous to inflation.

It is not a big stretch though to instead model the Bank of England’s policy as a feedback

rule for the long rate:

d(i
(s)
t − ιt) = −ρ(i

(s)
t − ιt)dt+ φι

(
dpt
pt
− π∗dt

)
, (39)

with a small φι and a large extent of smoothing ρ. The history of policy decisions at the time

has some episodes where an increase in inflation expectations is followed by a discussion of

whether to adjust the target for long-term interest rates.

Lemma 3 mapped long-term interest rates into the instantaneous rate. From this map

follows the result:

Lemma 4. The policy rule for long-term interest rates in equation (39) leads to inflation

dynamics as in proposition 1 with φ = φι/δi(s) and

xt =
ιt − δ0(s)

δi(s) + δx(s)
. (40)

The proof is as follows. Conjecture that the policy rule leads to a rule for instantaneous

rates as in equation (11) for some φ and some xt. Then, from lemma 3, we know that

i
(s)
t −ιt = δ0(s)+δi(s)it+δx(s)xt−ιt = δi(s) [it − (ιt − δ0(s)− δx(s)xt)/δi(s)]. The conjecture

will be verified if φ = φι/δi(s) and if

δi(s)xt = ιt − δ0(s)− δx(s)xt. (41)

Rearranging gives the expression in the lemma.

In a sense, all central banks follow a rule of this type, as few set a truly instantaneous

interest rate, but instead set overnight or one week interest rates. For these short maturities,

δ0(s) and δx(s) are close to zero, while δi(s) is close to 1. The result in lemma 4 shows that

the properties of inflation derived in section 3 then applies with no modifications to these

actual policies.

When the central bank goes long, instead, s is large and so δi(s) is small. Section 3

discussed three main determinants of inflation, which using lemma 4 we can now apply to

the policy of targeting long-term interest rates.

First, it must be that φι > δi(s)ρ for inflation to be determinate. Since δi < 1, the

condition for determinacy is therefore less stringent than it was for shorter rates.
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Second, section 3 noted that it takes a precise setting of x̄ to make inflation equal its

target on average. This translates into an average target for the long-term rate ῑ that follows

the formula in the lemma above. To calculate accurately the real interest rate and the

inflation risk premium, the policymaker must also now understand all the determinants of

long-term yields, from their long-run average to their sensitivity to each shock. The problem

is harder.

The third result in section 3 was that the variance of inflation depended on the variance

of the interest rate. Given uncertainty on the parameters that determine the yield curve,

setting the interest rate exactly to keep inflation on target (a choice of ιt to hit εt = 0)

appears to be harder. Moreover, the insistence on lowering as much as possible the burden

of paying for the national debt and the reluctance in linking interest rates to the evolution

of inflation suggests that ιt was not chosen to attempt to keep εt close to zero. Finally,

exogenous shocks to ιt may lead to a larger impact on inflation if δi(s) + δx(s) < 1.

In conclusion, using long-term rates as the policy tool is consistent with controlling

inflation and involves similar considerations as using short-term rates. In fact, the one-to-

one map between long and short rates in lemma (3) implies that the set of equilibria that a

going long policy can achieve is the same as the set of equilibria that an equivalent policy

for the short rate can achieve, in the sense of lemma (4). However, uncertainty on the shape

of the yield curve suggest that this strategy likely comes with higher level and variability of

inflation and nominal interest rates.

6.4 Spreads as targets

At the same time, the Bank of England had multiple targets for different rates. As discussed

in section 4, setting more than one interest rate independently would potentially create

arbitrage opportunities across the yield curve. Instead, one can think of monetary policy

as moving more than one interest rate in tandem to satisfy no arbitrage. A simple way to

model this is as a policy rule for the slope of the yield curve:

d(i
(s)
t − it − ιt) = −ρ(i

(s)
t − it − ιt) + φι

(
dpt
pt
− π∗dt

)
. (42)

Similar steps to those in lemma 4 show that

Lemma 5. The policy rule for the slope of the yield curve in equation (42) leads to inflation
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dynamics as in proposition 1 with φ = φι/(δi(s)− 1) and:

xt =
ιt − δ0(s)

δi(s) + δx(s)− 1
. (43)

Taking again the relevant case where s is large so δi(s) is small, the outcomes under a slope

policy differ significantly from those under a long policy in one aspect. Pinning down inflation

requires that φ > ρ and the higher is φ, the lower the variability of inflation in response to

shocks. Using the result in the lemma, this requires φι to be negative, and significantly so.

That is, the model suggests that the central bank should commit to increasing its 10-year

yield target by less than its overnight interest rate when inflation increases.

Controlling inflation requires flattening the yield curve in order to lower inflation. Con-

versely, stimulating inflation requires low overnight rates today that are expected to rise in

the future.

To be clear, this result follows in this model because only monetary effects are at play.

With nominal rigidities, lowering long rates by flattening the yield curve may stimulate

investment which, through the Phillips curve, may raise inflation. Moreover, quantitative

easing policies may instead lower term premium, which could affect inflation. Still, any

model that has a Fisher equation and a feedback interest-rate rule will have the channel

described above, according to which the slope of the yield curve should respond negatively

to inflation.

6.5 Inflation outcomes

To conclude, using long-term interest rates as the tools in feedback rules is consistent with

keeping inflation under control. The conditions and economic logic are similar to those in

the more familiar case where the policy rate is a short-term rate. However, the analysis

suggested that without a precise understanding of the yield curve, its slope, and how it

responds to shocks, keeping inflation under control will be hard.

Figure 4 shows the path of interest rates and inflation during the 1960s in the UK. Interest

rates crept up from 1965 onwards, revealing the failure to pin them down at a natural rate.

While, as the figure showed, the slope of the yield curve was small, the fiscal problems of the

government persisted and intensified eventually ending in a request for an IMF loan a few

years later. Towards the end of the decade, inflation started accelerating, and by the early

1970s the Bank of England stopped going long, with the strategy deemed a failure.
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Figure 4: U.K. interest rates and inflation, 1960-70
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7 The Bank of Japan going long

Since 1985, annual core CPI inflation in Japan only exceeded 2% in two years and inflation

expectations were equally low. In response to fears of deflation, in 1997 the Bank of Japan

gradually went long, making this policy explicit at the end of 2016.

Between July of 1996 and March of 1999, the BoJ expanded the size of its balance

sheet by saturating the market for reserves. Starting from March of 2001, the BoJ gradually

introduced quantitative easing by committing to buy government bonds and to lend to banks

in horizons that gradually rose all the way to 3 months. The interest-rate policy was clearly

laid out in the February 12th directive of 1999, which stated that: “The Bank of Japan will

provide more ample funds and encourage the uncollateralized overnight call rate to move as

low as possible. To avoid excessive volatility in the short-term financial markets, the Bank

of Japan will, by paying due consideration to maintaining market function, initially aim to

guide the above call rate to move around 0.15%, and subsequently induce further decline in

view of the market developments.” The BoJ repeatedly used forward guidance to state its

intention to keep the overnight rate low until inflation expectations rose.

The first stage of this policy was unsuccessful insofar as the price level barely moved

between 1997 and 2010, and inflation expectations stayed tightly anchored at 0. In a second

stage, between 2010 and 2016, the BoJ rolled out a new policy: qualitative and quantitative

easing (QQE), committing to buy many other assets beyond government bonds. The balance
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sheet not only rapidly grew but especially changed in its composition, becoming more varied.

The second stage produced an increase in the rate of core inflation, from close to -2%

in 2010 to slightly above 1% in 2015. Yet, after an initial jump in inflation in 2013, rising

by 1.5% in a little over one year, inflation fell again throughout the second half of 2014

and 2015, so that by the middle of 2016, inflation was back to -0.5%. Consensus inflation

expectations started falling since the mid to end of 2015, far from their intended 2% inflation

target. This led to a third stage in policy in September of 2016: yield curve control.

The BoJ announced a target not just for the overnight central bank rate, but also for an

intended yield on the the 10-year government bond rate and, in the future, potentially other

maturities as well. The BoJ announced a desired target of 0% for the 10-year government

bond rate, while the target for the overnight rate was −0.1%. This was implemented by

adjusting the purchase programs of bonds at the 10-year maturity to stay near the target.

It is too early to know how this policy will be pursued in the future. The analysis in

this paper suggested that depending on whether the BoJ going long is formulated as: (i) a

peg, (ii) a ceiling, (iii) a feedback rule for long rates, (iv) a rule for the term spread, or (v)

something else, this has very different implications for how to stimulate inflation and for the

dangers that may arise. Alternatively, perhaps the policy of the BoJ consist of separate pegs

for the overnight and 10 year rate, as in the model of Reis (2017). Whichever way, if central

banks follow the lead of the BoJ and go long, both history and theory should try to inform

their policy choices.

8 Conclusion

In the past decade, it became common among policymakers to discuss monetary policies in

terms of their impact on long-term interest rates. For instance, in her survey of the conduct of

monetary policy and the role of quantitative easing by the Federal Reserve during the crisis,

chair Janet Yellen (2017) wrote: “For this reason, the Committee turned to asset purchases

to help make up for the shortfall by putting additional downward pressure on longer-term

interest rates.” The Bank of Japan has gone further by announcing an explicit 0% target for

the 10-year rate. Central banks have been going long by increasingly focussing on longer-term

interest rates.

This paper went back in history to discuss the experience of the Federal Reserve in the

1940s and the Bank of England in the 1960s. They were different in interesting ways, and

mapping them to explicit policies in a model is subject to interpretation. The analysis in
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this paper suggested several caveats to going long. First, unless it is implemented carefully,

it can put the solvency of the central bank at risk or lead to much volatility in interest rate

markets. Second, a ceiling on long-term rates creates a stable equilibrium with high inflation

to which the economy can easily escape if there are positive shocks to inflation. Third, a

feedback rule for long rates requires very precise knowledge of the yield curve and how it

changes with separate shocks. Fourth, making the slope of the yield curve the policy tool

requires steepening the yield curve, raising long rates relative to short rates, in order to raise

inflation.

The analysis required linking long-term, short-term interest rates, and inflation in a

tractable way that keeps the effects of uncertainty and risk premiums. This suggested setting

the problem of inflation control in an economy where shocks follow continuous-time diffusions.

This opens the door for future work to introduce frictions, such as nominal rigidities and

financial imperfections, in order to improve the model of the endogenous determination of

inflation and term premia in the yield curve.
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Appendix

A Partial adjustment to real interest rates

Imagine now that nominal interest rates adjust only partially to real interest rates. This is

achieved by having the policy choice of nominal interest rates, xt, follow instead:

xt − x̄ = ζ(rt − r̄) + (1− ζ)x̃t (A1)

where, with a slight abuse of notation, now it is x̃t that follows an exogenous stationary

process:

dx̃t = −κxx̃tdt + σxdz
x
t . (A2)

Finally, set x̄ = r̄ + π∗ − α′α− γσ2
yαy, so that on average inflation is on target.

Now, if ζ = 1, we are back in the first case covered in the text, in which εt = 0 at all

dates (see equation (27)). If ζ = 0, we are in the second case, and the solution for inflation

is the one given by equation (29).

Under this new rule:

εt = (rt − r̄)− (xt − x̄) = (1− ζ)(rt − r̄ − x̃t) (A3)

If therefore follows that:

Et(εt+s − εt) = (1− ζ)(rt − r̄)(e−κgs − 1)− (1− ζ)x̃t(e
−κxs − 1) (A4)

Plugging this into equation (26) and rearranging gives the new solution for expected inflation:

π(rt, xt) = π∗ +

(
ρ− κg

κg + φ− ρ

)
(1− ζ)(rt − r̄)−

(
ρ− κx

κx + φ− ρ

)
(1− ζ)x̃t. (A5)

Clearly, if ζ = 1, then inflation is on target, while if ζ = 0, this equation is equivalent to

equation (29), thus nesting the two cases in the text.

Finally, turning to the shocks on inflation, now equation (30) leads to:(
ρ− κg

κg + φ− ρ

)
(1− ζ)[dr − dr̂]−

(
ρ− κx

κx + φ− ρ

)
(1− ζ)[dx̃t − dx̂t]

= −γσgdzgt + σxdz
x
t + φαyσydz

y
t + φαgσgdz

g
t + φαxσxdz

x
t (A6)
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Collecting terms this becomes:

αx = − 1− ζ
κx + φ− ρ

(A7)

αg =
γ(1− ζ)

κg + φ− ρ
(A8)

αy = 0. (A9)

This again matches the solution in the main text for the two polar cases.

B Proof of lemma 2

Combine equations (14) and (29) and simplify by grouping terms to get the solution.

C Proof of lemma 3

Start with the Euler equation:

Et

(
mt+spt

mtpt+sQ
(s)
t

)
= 1 (A10)

where I have used the notation Q
(s)
t ≡ 1/I

(s)
t , to denote the price (the inverse of the yield)

of the s-long bond. The differential version of this equation is:

Et

(
dQ

(s)
t

Q
(s)
t

− ∂Q
(s)
t /∂s

Q
(s)
t

dt

)
+ Et(mt/pt) + Et

(
d(mt/pt)

(mt/pt)

dQ
(s)
t

Q
(s)
t

)
= 0, (A11)

where the second term inside the first parentheses takes into account the fact that an instant

later, the bond’s maturity is shorter.

Guess that logQ
(s)
t = a(s)−b(s)rt−c(s)xt, with undetermined coefficients a(s), b(s), c(s).

Then, using Ito’s lemma, it follows that:

dQ
(s)
t

Q
(s)
t

= −b(s)drt − c(s)dxt +
1

2

(
b(s)2γ2σ2

gdt+ c(s)2σ2
xdt
)
. (A12)

Using this to replace into the pricing condition, and evaluating the expectations gives a long
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expression, where each of the four line matches each of the four terms in the pricing equation:

b(s)κg(rt − r̄)dt+ c(s)κx(xt − x̄)dt+

(
b(s)2

2

)
γ2σ2

y +

(
c(s)2

2

)
σ2
x

−(a′(s)− b′(s)rt − c′(s)xt)

−(θ0 + θrrt + θxxt)

−b(s)γσ2
g(αg + γ)− c(s)αxσ2

x = 0. (A13)

Since this equation must hold for each and every realization of the state variables, one can

match the coefficients in xt to get an ordinary differential equation:

b(s)κg + b′(s)− θr = 0. (A14)

Together with the boundary condition that b(0) = 0, this has the simple solution:

b(s) = θr(1− e−κgs)/κg (A15)

Similarly, one can easily solve for a(s) and c(s).

Finally, by the definition of the long rate:

i
(s)
t =

log(I
(s)
t )

s
=
− log(Q

(s)
t )

s
=
−a(s) + b(s)rt + c(s)xt

s
(A16)

Using lemma 2 to replace out rt, this delivers the expression in lemma 3, where δi(s) =

b(s)/(sθr).
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