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1 Introduction

The use of density forecasts has recently become common in many scientific fields (Gneit-

ing and Katzfuss, 2014) and, in particular, in many areas of economics. Density forecasts

are increasingly used, for instance, in the fields of energy economics (Huurman et al.,

2012), demand management (Taylor, 2012), finance (Shackleton et al., 2010; Kitsul and

Wright, 2013; Hallam and Olmo, 2014; Ghosh and Bera, 2015), and macroeconomics

(Clark, 2011; Herbst and Schorfheide, 2012; Aastveit et al., 2014; Wolters, 2015; Amisano

and Geweke, 2017). Many tasks, such as the computation of Value-at-Risk measures for

portfolios containing multiple assets or the planning of production for a firm that serves

many markets from one central production facility, require the construction and evalua-

tion of multivariate density forecasts. Beginning with Smith (1985) and Diebold et al.

(1999), the literature has proposed several approaches for testing whether a sequence

of multivariate density forecasts coincides with the corresponding true densities (e. g.,

Clements and Smith, 2000, 2002; Corradi and Swanson, 2006a; Bai and Chen, 2008;

González-Rivera and Yoldas, 2012; Ko and Park, 2013a; Ziegel and Gneiting, 2014).

This strand of literature has neglected two important issues (Ziegel and Gneiting,

2014 being an exception). First, established tests depend on the order of variables in a

multivariate model. As a consequence, researchers need to present a myriad of (some-

times inconclusive) results. The issue even offers room for data mining if a researcher

decides to report only those results which correspond to one particular (“preferred”)

order. Essentially, this is one form of “data snooping” as discussed in White (2000).

Second, all empirical applications and many of the theoretical results focus on the bi-

variate case. However, many applications, especially in finance, require models of higher

dimensionality to be useful. We address both issues in this paper.

Following Diebold et al. (1999), the most commonly used approach for testing the

calibration of multivariate density forecasts is based on the Rosenblatt (1952) probability

integral transform (PIT). Examples include Clements and Smith (2000), Clements and

Smith (2002), Ko and Park (2013a), and Ko and Park (2013b). This approach relies on

the factorization of the multivariate forecast distribution into conditional distributions

because these, in turn, can be used to form independent PITs which, for well-specified

models, follow a uniform distribution.1 Suitable transformations of these conditional PITs

then lead to a reduction of the multivariate testing problem to a univariate one. How well

a testing approach works depends crucially on the chosen transformation. The univariate

tests can be implemented using any goodness-of-fit test (e. g., Neyman’s smooth test, the

Kolmogorov-Smirnov test, or the Anderson-Darling test).

1Henceforth, we use the term conditional distributions in a way that includes the one marginal
distribution that is needed for the factorization of the joint distribution. In addition, we will refer to the
PITs of the conditional distributions as conditional PITs.
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Two aspects that are of utmost importance in practical applications that involve

parametric forecasting models are parameter estimation uncertainty and dynamic mis-

specification. Corradi and Swanson (2006b) present a comprehensive overview about

these aspects. Dynamic misspecification refers to the fact that a forecaster potentially

uses only a subset of the relevant information to form a conditional density forecast. In

most fields of economics and finance this is very likely. Parameter estimation uncertainty

arises whenever a parametric forecast model is used to construct density forecasts whose

parameters are estimated based on finite samples. Whether estimation uncertainty has

to be dealt with when evaluating a sequence of predictive densities depends on the exact

formulation of the null hypothesis one is interested in. One common approach is to test

whether the forecast distribution belongs to a given parametric density family with pa-

rameters evaluated at their pseudo-true values. Thus one tests whether the underlying

model specification is suitable to generate appropriate conditional density forecasts. An

alternative view, proposed in Rossi and Sekhposyan (2016), is to test for the ability of

a model to produce correct forecast distributions evaluated at the estimated parameter

values. This means one tests whether the estimated model is suitable to generate appro-

priate conditional density forecasts. The tests that we propose are, in general, capable of

handling both views.

A number of approaches have been suggested in the literature to address parameter

estimation uncertainty. Bai (2003) (for the univariate case) and Bai and Chen (2008)

(for multivariate densities) combine the Kolmogorov test with Khmaladze’s martingale

transformation to obtain a test which is distribution free in the presence of estimated

parameters. Andrews (1997) solves this problem by using a parametric bootstrap. Duan

(2004) uses a suitable sequence of transformations to obtain a parametric test that does

not suffer from parameter estimation error. More recently, Chen (2011) adapts a number

of tests from the parameter-free context to parameter-dependent density forecast evalu-

ation, building on insights from Newey (1985) and Tauchen (1985) in the in-sample case

and from West (1996) and West and McCracken (1998) in the out-of-sample case. This

is the approach that we use in our paper.

Dynamic misspecification causes the PITs to be serially correlated. A number of

papers propose tests that are robust against dynamic misspecification, i. e., preserve this

misspecification under the null hypothesis. Usually, at the same time, those papers also

consider the effects of parameter estimation uncertainty. Pioneering work in this context

has been made by Corradi and Swanson (2006a), who show that a block bootstrap can be

used to adjust Kolmogorov-type tests under such conditions. Their parametric approach

has the advantage of a higher rate of convergence relative to the non-parametric test

proposed in Hong and Li (2005). Both papers assume a stationary data generating

process. In contrast, Rossi and Sekhposyan (2013) relax this assumption and propose a

test for correct specification of density forecasts that is robust, in addition, to structural
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Table 1: Classification of Testing Problems

Treatment of dynamic Known Parameters/ Estimated Parameters
misspecification: Forecasts as Primitives

Ignored Diebold et al. (1998), Diebold
et al. (1999), Clements and
Smith (2000, 2002), Ko and Park
(2013a)

Andrews (1997), Bai (2003),
Chen (2011)

Accounted for Knüppel (2015) Corradi and Swanson (2006a)

Tested for Berkowitz (2001), Rossi and
Sekhposyan (2016)

Hong and Li (2005), Hong et al.
(2007), Ko and Park (2013b), Lin
and Wu (2017), Gonzlez-Rivera
et al. (2011), González-Rivera
and Yoldas (2012), González-
Rivera and Sun (2015)

Notes: This table contains a non-exhaustive collection of papers taking different views on how parame-

ter estimation and dynamic misspecification should be treated when testing the calibration of (predictive)

densities.

breaks. Serial dependence of PITs is also an issue in the context of multi-step forecasts

(see, e.g., Knüppel, 2015). PITs based on h-step-ahead density forecasts will generally

follow a moving average process of order h− 1.

Other papers test jointly for uniformity and the i.i.d. property of the PITs, thereby

testing the null hypothesis of completely calibrated densities (Mitchell and Wallis, 2011).

The first contributions in this context use simultaneous tests. Berkowitz (2001), for

instance, develops a likelihood ratio test for this joint null hypothesis, allowing for serial

correlation of different order under the alternative. Hong et al. (2007) (using a non-

parametric kernel density estimate) and Ko and Park (2013b) (using a parametric density

estimate) propose a test based on the joint distribution of consecutive PITs. Lin and Wu

(2017), in contrast, propose a sequential procedure consisting of a data driven smooth

test for uniformity, preceded by a test of serial independence of the PITs. An alternative

approach that relies on so-called (generalized) autocontours has recently been proposed

by Gonzlez-Rivera et al. (2011) and González-Rivera and Sun (2015).

Thus, there is a wide range of views about how density forecasts should be tested

which we summarize in Table 1. In practice, the exact formulation of the testing problem

depends on several factors such as the type of application or whether predictive densities

are model-based or obtained via a survey. The methods that we propose below are

compatible with any combinations of views about how dynamic misspecification and

parameter uncertainty should be treated.

In this paper, we contribute to the literature on the evaluation of multivariate density
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forecasts in the following way. We propose new transformations of the conditional PITs

which can be combined with any goodness-of-fit test for univariate distributions. Our pre-

ferred transformations (called Z2
t
∗

and Z2
t
†

below) are constructed as the sum of squares

of inverse normal transformations of the conditional PITs corresponding to all possible

orders of the variables. The new transformations have a number of advantages. First,

they are order invariant, a concept we define below, meaning that test results do not

depend on the order of variables in the forecasting model. We show that the distortions

in rejection rates caused by a tendentious application of the established tests, which are

not order invariant, can be very substantial. Second, the new tests are applicable to

densities of arbitrary dimension. Third, they have better power (relative to established

tests) against a wide range of alternatives. Furthermore, we show that our tests can also

be used when dynamic misspecification and parameter uncertainty have to be taken into

account. In an application, we show that the new tests are helpful for testing the appro-

priateness of density forecasts based on sophisticated multivariate models for vectors of

financial returns. In particular, we show that the potential for data mining is immense

when using the established tests in practice and that our order invariant tests are required

to draw unambiguous conclusions.

The remainder of this paper is organized as follows. In Section 2, we describe the

testing problem, generalize established tests, and derive new tests to evaluate multivariate

densities. In Section 3, we assess the finite sample properties of different tests by means

of Monte Carlo simulations. In Section 4, we demonstrate the usefulness of the newly

proposed tests in an application to forecasting the distribution of a vector of stock returns.

Section 5 concludes. The Appendix contains all proofs and technical derivations as well

as additional simulation results.

2 Theory

2.1 Setup and Test Hypothesis

Let Yt = [Y1,t . . . Yd,t]
′ be a vector-valued continuous random variable with true (but

unknown) conditional distribution function (CDF) GYt(Yt|It−1), where It−1 denotes the

relevant information set available at time t− 1. Furthermore, we consider the predictive

CDF FYt(Yt|Ωt−1, θ0) with corresponding conditional probability density function (PDF)

fYt(Yt|Ωt−1, θ0), where Ωt−1 ⊆ It−1 is the information set available to the researcher and θ0

denotes a parameter vector with compact and finite parameter space Θ. This framework

takes into account that density forecasts are often constructed using parametric models

and allows for dynamic misspecification as defined, for instance, by Corradi and Swanson

(2006a). For the time being, we treat θ0 as known. In practice, the parameters have to

be estimated from the data. We discuss below how this affects the testing problem and

how we can take estimation uncertainty into account.
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Consider a sample {Yt,Ωt−1}nt=1 of which the first R observations can potentially be

used to estimate θ0 and the remaining P observations are used to evaluate the predictive

densities generated by FYt(Yt|Ωt−1, θ0). We are interested in testing whether the model

FYt(Yt|Ωt−1, θ0) is correctly specified in the sense that

H0 : FYt(Yt|Ωt−1, θ0) = GYt(Yt|It−1). (2.1)

To specify the null exactly, assumptions need to be made about whether θ0 has to be

estimated and about whether dynamic misspecification can be ignored, should be con-

trolled for, or should jointly be tested. In Table 1 above, we provide an overview about

the assumptions made in the literature.

In the univariate case, H0 implies that the probability integral transform (PIT), given

by Ut = FYt(Yt), is uniformly distributed between 0 and 1 (see, e.g., Gneiting and Katz-

fuss, 2014). This fact can be used to test for proper density calibration (e. g., Dawid, 1984;

Diebold et al., 1998). The uniformity can be checked either by graphical methods, such

as QQ-plots and histograms, or by goodness-of-fit tests, such as the Kolmogorov-Smirnov

test, the Anderson-Darling test, or Neyman’s smooth test.

Unfortunately, matters are more complicated in the multivariate case because the dis-

tribution of the multivariate PITs of Yt under the null is unknown, in general, for d > 1

(see, e. g., Genest and Rivest, 2001). In essence, the task then is to reduce the multivariate

problem to a univariate one by using suitable transformations. One way to approach this

problem, proposed in Ziegel and Gneiting (2014), is to work with the Kendall distribution

function for FYt(Yt|Ωt−1, θ0).
2 The more commonly used way to approach this problem

is based on the factorization of the joint densities into the product of conditional densi-

ties. Let FYi(Yi,t|Ωt−1, θ0) denote the marginal CDF for the ith element of Yt and denote by

FYi|Yi−1,...,Y1(Yi,t|Yi−1,t, . . . , Y1,t,Ωt−1, θ0) the conditional distribution of Yi,t given

Yi−1,t, . . . , Y1,t. Suppressing the dependence on Ωt−1 and θ0, we can then write

fYt(Yt) = fYd|Yd−1,...,Y1(Yd,t)× . . .× fY2|Y1(Y2,t)× fY1(Y1,t). (2.2)

Rosenblatt (1952) shows that the sequences of conditional PITs for the elements of Yt

U1
t = FY1(Y1,t),

U
2|1
t = FY2|Y1(Y2,t),

...

U
d|1,...,d−1
t = U

d|1:d−1
t = FYd|Yd−1,...,Y1(Yd,t)

(2.3)

2We experimented with this approach but results were much worse (in terms of power) than those
based on alternative approaches presented below. Therefore, we do not report them in this paper.

6



are independent of each other and distributed U(0, 1). The next step is to obtain a

univariate testing problem based on this vector of PITs. Diebold et al. (1999) achieve

the reduction of dimension by stacking all conditional PITs. More formally, if we let

St = [U
d|1:d−1
t , . . . , U1

t ]′, (2.4)

then S = [S ′R+1, S
′
R+2, . . . , S

′
n]′ constitutes a vector of variables which are i.i.d. uniformly

distributed under H0.

Instead of stacking the conditional PITs, a commonly used alternative is to transform

the vector-valued random variable Yt into a scalar random variable and to compute PITs

for this transformed random variable. This is also the approach that we use below

when developing our new tests. The computation of the conditional PITs is often an

intermediate step in such transformations. To formalize the idea, consider the general

transform function gt(·) : Rd → R and define the transformed series Wt = gt(Yt) with

distribution function FWt . The PIT of Wt is given by

UW
t = FWt(Wt). (2.5)

Testing H0 then is equivalent to testing whether UW
t ∼ U(0, 1). In the absence of dynamic

misspecification, the PITs are also independently distributed across time under H0, i. e.,

UW
t

i.i.d.∼ U(0, 1). Mitchell and Wallis (2011) call density forecasts which satisfy both

features completely calibrated.

2.2 The Order of Variables

So far, we have implicitly assumed that there exists a natural order of variables from 1 to

d. This, of course, is not true as already mentioned in most papers on the topic (Diebold

et al., 1999; Clements and Smith, 2002; Hong and Li, 2005; Ishida, 2005). Ordering

the elements in Yt in a different way will generally lead to different results because the

Rosenblatt transform in (2.3) clearly depends on the order of the variables. Consequently,

the outcome of a hypothesis test will depend on the selected order. This is an undesirable

property for a test since a researcher who is interested in supporting or discrediting a

certain model may perform the hypothesis test for all distinct orders and only report the

outcome with the largest or smallest p-value.3 While it is certainly true that for low-

dimensional cases results for all possible permutations can be presented and discussed, this

becomes quickly impossible for larger d. In addition, even when multiple test statistics

are presented, it is unclear how an overall decision should be made.

3In a different context, Clements and Hendry (1993) show that for commonly used selection criteria
the choice of an optimal forecast model depends on the data transformation (e.g., levels or first differences)
that is chosen, providing opportunity for a similar type of “data mining”.
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We use the following notation for different permutations of the variables. Let πk,

for k = 1, . . . , d!, be the set of all possible permutations of the data. Furthermore, let

πk(i) denote the index (or “position”) of variable i in the kth permutation. Then, the

conditional PITs under permutation πk are given by

U
πk(1)
t = FYπk(1)

(Yπk(1),t)

U
πk(2)|πk(1)
t = FYπk(2)|Yπk(1)

(Yπk(2),t)

...

U
πk(d)|πk(1):πk(d−1)
t = FYπk(d)|Yπk(d−1),t,...,Yπk(1),t

(Yπk(d),t).

(2.6)

The following definition formalizes the concept that the initial order of the data is not

relevant for the test outcome.

Definition 1. Let T (πk) be a test statistic based on {Yt}nt=1 under permutation πk. We

call a test statistic T (πk) order invariant if T (πk) = T (πj), ∀ k 6= j.

In the next section, we show that established transformations are order invariant only

under very restrictive conditions and we derive new transformations that are always order

invariant.

2.3 Established Transformations

Different transformations gt(·) have been considered in the literature. Clements and Smith

(2000) propose to evaluate density forecasts based on the product of the conditional

PITs corresponding to one particular permutation of the variables. In this case, the

transformation function gt(·) is given by

CSt,d = g(Yt) =
d∏
i=1

U
i|1:i−1
t , (2.7)

where we define U
1|1:0
t = U1

t . Ko and Park (2013a) explain why tests based on CSt,d have

good power only against correlations lower than the hypothesized value. They suggest a

location-adjusted version which does not suffer from this asymmetry and is given by

KPt,d = g(Yt) =
d∏
i=1

(U
i|1:i−1
t − 0.5). (2.8)

Tests based on the transformations suggested by Diebold et al. (1999), Clements and

Smith (2000), and Ko and Park (2013a) are not, in general, insensitive to the choice of

the permutation.
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Proposition 1. Test statistics T (πk) based on {CSt,d}nt=1, {KPt,d}nt=1 and on the stacked

transformation {St,d}nt=1 are order invariant if and only if under H0 the variables Y1,t, . . . , Yd,t

are independent, i. e., when fYt(Yt) = fY1(Y1,t)× . . .× fYd(Yd,t).

2.4 New Transformations

The first transformation that we propose leads to order-invariant test statistics under

less restrictive conditions and forms the basis for additional transformations that always

lead to order invariant tests. Consider the following transformation which is based on

the squares of inverse normal transforms of the PITs for one particular permutation of

the data:

Z2
t,d =

d∑
i=1

(
Φ−1

(
U
i|1:i−1
t

))2
, (2.9)

where Φ(·) denotes the CDF of the standard normal distribution.

Proposition 2. Test statistics T (πk) based on {Z2
t }nt=1 are order invariant if under H0

Yt ∼ N (µ,Σ), i. e., when Yt follows a multivariate normal distribution with mean vector

µ and covariance matrix Σ.

Of course, Z2
t can also be used to test non-Gaussian densities. In this case, however,

the corresponding test statistics are not generally order invariant, except for the obvious

case of independence. The proof of Proposition 2 in the appendix shows that under

the null hypothesis of normality it holds that Z2
t = (Yt − µ)′Σ−1(Yt − µ), which is the

transformation proposed by Ishida (2005).

Ideally, however, we would like to obtain a transformation that is order invariant

in general. A transformation that fulfils this criterion is similar in structure to Z2
t but

considers the sum over all distinct conditional PITs. Consider all possible permutations

πk for k = 1, . . . , d! and the corresponding sequences of conditional PITs defined by

(2.6). This yields a total of d × d! terms. However, the number of distinct PITs is only

d×
∑d−1

k=0

(
d−1
k

)
= d×2d−1. To formalize, let γki , for k = 1, . . . , 2d−1, be the set of all sets of

conditioning variables (including the empty set) corresponding to all distinct conditional

PITs for Yi,t. Then the suggested transformation has the form

Z2
t
∗

=
d∑
i=1

2d−1∑
k=1

(
Φ−1

(
U
i|γki
t

))2
. (2.10)

Since all distinct conditional PITs enter into this transformation and, thus, the initial

order of the variables in Yt is irrelevant, order invariance is clearly ensured for any test

statistic based on Z2
t
∗
.
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When d increases, the number of terms entering Z2
t
∗

can become prohibitively large. In

this case, it appears sensible to use a transformation for which the number of terms grows

only linearly with d. Such transformation that, at the same time, is always order invariant

can be obtained by picking a suitable subset from the set of all distinct conditional PITs on

which Z2
t
∗

is based. The transformation that we propose considers only such conditional

PITs corresponding to each Yi,t which are conditional on all other variables. Denoting

those conditional PITs by U
i|−i
t , the transformation is given by

Z2
t
†

=
d∑
i=1

(
Φ−1

(
U
i|−i
t

))2
. (2.11)

We think that this particular choice has some merits since the considered subset of con-

ditional PITs contains rich information about the dependence structure of the elements

of Yt.

2.5 Distribution of Transformations

To test H0 based on the transformations, we need to know their distribution under the null

hypothesis as indicated by (2.5). The distributions of the established transformations are

as follows. St is simply a vector of independent uniformly distributed random variables

under H0. Clements and Smith (2000) derive the distribution of CSt for d = 2, 3. In

the appendix, we show that for arbitrary d its distribution under H0 is described by the

following PDF and CDF:4

fCSd(CSt,d) =
(−1)d−1

(d− 1)!
logd−1(CSt,d)

FCSd(CSt,d) = CSt,d

d−1∑
i=0

fCSd−i(CSt,d)

Note that for d = 2, 3 the densities derived in Clements and Smith (2000) is recovered.

Ko and Park (2013a) provide the distribution of KPt for d = 2.5 In the appendix,

we show that for arbitrary d its distribution under H0 is described by the following PDF

and CDF:

fKPd(KPt,d) =
2d−1

(d− 1)!
logd−1

∣∣∣∣ 1

2dKPt,d

∣∣∣∣
4Clements and Smith (2000) suggest a sequential algorithm based on which the PDFs and CDFs for

d > 3 could also be obtained.

5Note that the density given in the appendix of Ko and Park (2013a) needs to be multiplied by a
factor of 2.
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FKPd(KPt,d) = KPt,d2
d−1

d∑
i=1

1

(d− i)!
logd−i

∣∣∣∣ 1

2dKPt,d

∣∣∣∣+
1

2

In the next two subsections, we derive the distributions of the new transformations.

We distinguish two cases. In the first case, we do not make any assumptions about

the distribution of Yt, except that it is continuous. The corresponding results include,

for instance, cases in which H0 implies non-Gaussian parametric distributions of Yt or

its distribution is not available analytically so that the conditional PITs have to be

calculated numerically. In the second case, we show that if Yt is normally distributed the

distributions of Z2∗ and Z2† become much more tractable.

2.5.1 Distributions of New Transformations: General Case

As shown in Section 2.1, the different conditional PITs for one particular permutation

are independent. Therefore, H0 implies that Z2
t,d ∼ χ2

d, where χ2
d denotes the chi-squared

distribution with d degrees of freedom. Denoting its CDF by Fχ2
d
, the random variable

UZ2

t = Fχ2
d
(Z2

t,d) is distributed U(0, 1) under H0.

Z2
t,d
∗

is similar to Z2
t,d. However, due to the fact that the summands in (2.10) are

not independent in general, Z2
t
∗

no longer follows a χ2 distribution under H0. The

same argument applies in the case of Z2
t
†
. However, we can straightforwardly obtain the

distributions of the transformations by Monte Carlo simulation as long as it is possible

to generate random draws from the density model under H0.

The following algorithm describes how the distributions of Z•t = {Z2
t
∗
, Z2

t
†} can be

approximated numerically to compute UZ•
t . We would like to stress that this algorithm

is exclusively used to approximate this distribution for a given parameter value that can

be either θ0 or an estimate θ̂. We show below how parameter uncertainty is accounted

for in the latter case at another step of the testing procedure.

1. Generate M conditional forecasts, y
(m)
t , based on the model under H0, i.e., draw

repeatedly from the conditional predictive densities fYt(·).

2. Given fYt(·), construct U
i|γki
t,(m), ∀i, k, for m = 1, . . . ,M along the lines described in

Section 2.4.

3. Compute the corresponding inverse PITs as Φ−1
(
U
i|γki
t,(m)

)
.

4. Based on the set of Φ−1
(
U
i|γki
t,(m)

)
, compute Z•t,(m) using (2.10) or (2.11), respectively.

5. Compute UZ•
t = Pr

(
Z•t < Z•t,(m)

)
by simply counting how often the transformed

statistic based on the actual realizations is smaller than the transformed statistics

based on conditional forecasts that are generated under H0.
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If H0 holds, UZ•
t is distributed U(0, 1) for M sufficiently large. Validity of this simulation

approach is straightforward as we simulate directly from the (parametric) null distribution

and only apply continuous transformations.

2.5.2 Distributions of New Transformations: Gaussian Case

Under the assumption that Yt is normally distributed, the distributions of Z2
t
∗

and Z2
t
†

are

available analytically and do not need to be simulated. In this case, the terms Φ−1
(
U
i|γki
t

)
jointly follow a multivariate normal distribution. However, since their marginal distribu-

tions are not independent, the transformations do not follow a chi-squared distribution

but a mixture of chi-squared distributions, where the weights depend on the dependence

structure of the Φ−1
(
U
i|γki
t

)
. For Z2

t
∗
, we obtain the following result:

Proposition 3. Let Yt ∼ N (µ,Σ). Then Z2
t
∗

is distributed as
∑d

i=1 λiZ
2
i , for independent

N (0, 1) variables Z1, . . . , Zd and λ1, . . . , λd the non-zero eigenvalues of the rank d matrix

RZ∗, which is the correlation matrix of all distinct terms Φ−1
(
U
i|γki
t

)
∀ i, k entering Z2

t
∗
.

A typical entry of RZ∗ is given by

Corr

(
Φ−1

(
U
i|γki
t

)
,Φ−1

(
U
j|γlj
t

))
= (Σi,i − Σi,γki

Σ−1
γki ,γ

k
i

Σγki ,i
)−1/2(Σj,j − Σj,γlj

Σ−1
γlj ,γ

l
j

Σγlj ,j
)−1/2×

(Σi,j − Σj,γlj
Σ−1
γlj ,γ

l
j

Σγlj ,i
− Σi,γki

Σ−1
γki ,γ

k
i

Σγki ,j
+ Σi,γki

Σ−1
γki ,γ

k
i

Σγki ,γ
l
j
Σ−1
γlj ,γ

l
j

Σγlj ,j
),

where the Σr,c (r, c ∈ {i, γki }) are scalars, vectors, and matrices containing those elements

of Σ that are defined by the row(s) corresponding to the variable(s) defined by r and the

column(s) corresponding to the variable(s) defined by c.

The distribution of Z2
t
†

in the Gaussian case is given by the following corollary:

Corollary 1. Let Yt ∼ N (µ,Σ). Then Z2
t
†

is distributed as
∑d

i=1 λiZ
2
i , for independent

N (0, 1) variables Z1, . . . , Zd and λ1, . . . , λd the eigenvalues of the matrix RZ†, which is

the correlation matrix of all terms Φ−1
(
U
i|−i
t

)
for i = 1, . . . , d entering Z2

t
†
. A typical

entry of RZ† is given by

Corr
(

Φ−1
(
U
i|−i
t

)
,Φ−1

(
U
j|−j
t

))
= (Σi,i − Σi,−iΣ

−1
−i,−iΣ−i,i)

−1/2(Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j)

−1/2×

(Σi,j − Σj,−jΣ
−1
−j,−jΣ−j,i − Σi,−iΣ

−1
−i,−iΣ−i,j + Σi,−iΣ

−1
γki ,−i

Σ−i,−jΣ
−1
−j,−jΣ−j,j),

where the index −i denotes all rows/columns of Σ except for the ith one.

Note that, of course, Z2
t,d ∼ χ2

d continues to hold under H0 in the Gaussian case.

2.6 Tests for Proper Calibration

In this section, we describe how we can construct tests of H0 based on the transformations

derived in the previous section. Depending on the formulation of the null hypothesis,

12



this involves either testing that UW
t ∼ U(0, 1) or jointly testing UW

t ∼ U(0, 1) and

independence across time. In the former case, we use Neyman’s (1937) smooth test and

distinguish two cases. First, we do not account for potential autocorrelation in UW
t and

assume that we know the parameters of the model that is used to generate the densities.

Then, we construct tests that are robust against the existence of autocorrelation in UW
t

and assume that we have to estimate the parameters of the density model. To test the

joint hypothesis in the second case, we resort to the concept of Generalized Autocontour

(G-ACR) suggested by González-Rivera and Sun (2015).

2.6.1 Known Parameters and no Dynamic Misspecification

The first case that we consider ignores the issues of parameter uncertainty and dynamic

misspecification. We assume θ0 is known and Ωt−1 = It−1. The null hypothesis is

UW
t ∼ U(0, 1).6 Many tests can be used in this context. We follow, Bera and Ghosh

(2002) and De Gooijer (2007) who advocate testing uniformity with Neyman’s (1937)

smooth test.

To understand Neyman’s smooth test, consider the alternative family of smooth dis-

tributions

s(u) = b0 exp

(
k∑
i=1

biψi(u)

)
, u ∈ [0, 1], (2.12)

with b0 a normalization constant and ψi the orthonormal Legendre polynomials. Testing

uniformity (and hence H0) against all distributions nested in (2.12) boils down to testing

bi = 0 for all i = 1, . . . , k. Here we consider the first four Legendre polynomials, but in

principle one could also determine the number of polynomials in a data-driven fashion as

suggested by Ledwina (1994) and applied, for instance, by Lin and Wu (2017).

A score test is easily computed as follows. Denoting the vector of (log-)scores of (2.12)

by ξt = [ψ1(U
W
t ), . . . , ψ4(U

W
t )]′, it follows that under H0

1√
P

n∑
t=R+1

ξt
d→ N(0, I4), (2.13)

where I4 is the 4× 4 identity matrix. The Neyman smooth test statistic is then given by

NST = P−1

[
n∑

t=R+1

ξt

]′ [ n∑
t=R+1

ξt

]
, (2.14)

6This approach can also be used if autocorrelation is not of concern and/or the tested densities are
not model based (for instance, because they are obtained from a survey).
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which follows a χ2
4 distribution under H0. This result, however, only holds when the model

parameters are assumed to be known and when there is no dynamic misspecification.

2.6.2 Estimated Parameters and Accounting for Dynamic Misspecification

Parameter uncertainty and dynamic misspecification are often relevant in practice when

parametric forecast models are used and the DGP of the variables to be forecast (including

the true values of the relevant parameters) is unknown to the forecaster. Ignoring both

issues will, in general, lead to oversized tests in an out-of-sample evaluation. Thus, we

now assume estimates of the parameters, θ̂, are obtained using a
√
T -consistent estimator

and Ωt−1 ⊂ It−1. We test again if UW
t ∼ U(0, 1).

We adjust Neyman’s smooth test by relying on results in West (1996) and West and

McCracken (1998) to derive suitable tests in the presence of parameter uncertainty and

potential dynamic misspecification. Recall that we split our n observations into R in-

sample observations, which we use to estimate the parameters, and P out-of-sample ob-

servations, which we use to evaluate the forecast model. Let ξ̂t = [ψ1(Û
W
t ), . . . , ψ4(Û

W
t )]′

denote the Legendre polynomials in the estimated PITs of the (univariate) transformed

series Wt, where ÛW
t has been computed using the in-sample parameter estimates. It

follows that under H0 the elements of ξ̂t are no longer independently distributed with

unit variance as in (2.13), but

1√
P

n∑
t=R+1

ξ̂t
d→ N(0,Σ), (2.15)

where (using the notation in Chen, 2011)

Σ = S∗ − η1
(
D∗A−1C ′ + CA−1D∗′

)
+ η2

(
CA−1B∗A−1C ′

)
. (2.16)

Given the score function st = ∂
∂θ0

ln ft(Yt|Ωt−1, θ0), the elements of Σ are given by A =

E( ∂
∂θ0
st), B = E(sts

′
t), C = E( ∂

∂θ0
ξt), D = E(ξts

′
t), S

∗ =
∑∞

k=−∞E(ξtξ
′
t−k), B

∗ =∑∞
k=−∞E(sts

′
t−k), and D∗ =

∑∞
k=−∞E(ξts

′
t−k). The constants η1 and η2 are determined

by the sampling scheme (fixed, rolling, or recursive) used to estimate the parameters

and the limiting value of the ratio of in-sample and out-of-sample observations λ =

limn→∞ P/R; see Chen (2011) for the precise formulas.

In order to avoid the evaluation of the matrices A and C (the latter of which may

be particularly tedious to obtain), we use the fact that the equalities A + B = 0 and

C + D = 0 continue to hold even under dynamic misspecification, even though in this

case they cannot be interpreted as (generalized) information matrix equalities; see White

(1994). Thus, we can rewrite (2.16) as

Σ = S∗ − η1
(
D∗B−1D′ +DB−1D∗′

)
+ η2

(
DB−1B∗B−1D′

)
. (2.17)
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The matrices B and D can be estimated straightforwardly by their sample counterparts.

In contrast, S∗, B∗, and D∗ need to be estimated by an appropriate estimator that is

autocorrelation consistent. While in principle the widely used HAC estimator by Newey

and West (1987) could be used, we found results in finite samples to be better (in terms of

size) if we use the quadratic spectral estimator proposed by Andrews (1991). Neyman’s

smooth test statistic is then given by

NST = P−1

[
n∑

t=R+1

ξ̂t

]′
Σ̂−1

[
n∑

t=R+1

ξ̂t

]
, (2.18)

which follows a χ2
4 distribution under H0. In addition, we can consider two intermediate

cases. In the absence of dynamic misspecification, it holds that B∗ = B, D∗ = D and

S∗ = I4; so (2.16) simplifies to Σ = I4 + (η2 − 2η1)DB
−1D′. In the absence of parameter

uncertainty, we obtain Σ = S∗.

2.6.3 Estimated Parameters and Testing for Independence

To jointly test for proper calibration and temporal independence of PITs, we have to test

the null hypothesis UW
t

i.i.d.∼ U(0, 1). The G-ACR proposed in González-Rivera and Sun

(2015) can be used to test this hypothesis and seems to work well in practice. Therefore,

we adapt this approach to our testing problem. The idea is the following: consider the

pair of PITs [UW
t , UW

t−k] ⊂ R2. Under the null hypothesis, the G-ACR for a level of

α ∈ (0, 1) is given by the set of points B such that

G-ACRα,k ={B(UW
t , UW

t−k) ⊂ R2|| 0 ≤ UW
t ≤

√
α

and 0 ≤ UW
t−k ≤

√
α, s.t.: UW

t × UW
t−k ≤ α}.

We apply the G-ACR method to the PITs of the transformed variable(s) because we

would loose the order invariance of our results if we directly compute the G-ACRs for

the multivariate densities as the multivariate version proposed by González-Rivera and

Sun (2015) also relies on the Rosenblatt transform and, thus, one particular order of

the variables. A test is then based on the comparison of the empirical frequency with

which the (current and lagged) PITs fall into the square defined by the G-ACR to its

distribution under the null hypothesis (potentially involving results for a range of values

for α and k). For details on the test statistic we refer the reader to Proposition 3 in

González-Rivera and Sun (2015). In our simulations, we implement the test for k = 1

and with a set of 13 quantile values for α (jointly). Note that in the case of estimated

parameters a bootstrap needs to be applied to obtain critical values of the test.

15



3 Monte Carlo Simulations

We use Monte Carlo simulations to analyze how severe the size and power distortions

caused by data mining can be in the case of the order-dependent approaches and how

the size and power of the tests based on the different transformations compare. In the

main text, we consider the problem of testing the null hypothesis of a multivariate normal

distribution for the cases of i) known parameters and no dynamic misspecification and ii)

estimated parameters and accounting for dynamic misspecification. In the appendix, we

consider the following additional settings: i) testing the null hypothesis of a multivariate

t distribution, ii) testing the null hypothesis of a multivariate GARCH model, and iii)

jointly testing the null hypothesis of a multivariate normality and independence using

the G-ACR approach.

3.1 Simulation Setup

3.1.1 Known Parameters and no Dynamic Misspecification

Assume that the data generating process (DGP) under the null hypothesis is given by

yt = εt, with εt
i.i.d.∼ N (0,Σ). (3.1)

The d × d covariance matrix Σ is constructed such that all elements of yt have unit

variances (σ2
i = 1 for i = 1, . . . , d) and the correlation between any two elements of yt is

equal to 0.5 (ρij = 0.5 for all i 6= j). We consider different dimensions between d = 2

and d = 507, and (predictive) sample sizes of P = {50, 100, 200}. Throughout the paper,

we use 10,000 iterations for our Monte Carlo simulations. We consider seven alternative

DGPs which imply different (combinations of) deviations from H0:

• Alternative 1 (H1): The innovations are generated from a multivariate normal

distribution with σi = 1.1 and ρij = 0.5.

• Alternative 2 (H2): The innovations are generated from a multivariate normal

distribution with ρij = 0.5, σi = 1.1 for i = 1, . . . , bd/3c, and σ2
i = 1.0 for i =

bd/3c+ 1, . . . , d.

• Alternative 3 (H3): The innovations are generated from a multivariate normal

distribution with σi = 1.0 and ρij = 0.4.

• Alternative 4 (H4): The innovations are generated from a multivariate normal

distribution with σi = 1.1 and ρij = 0.4.

7For the cases d = 20 and d = 50 we do not perform tests based on the transformation Z2
t
∗

since the
number of included terms becomes to large.
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• Alternative 5 (H5): The innovations are generated from a multivariate t distri-

bution with 8 degrees of freedom with σi = 1.0 and ρij = 0.5.

• Alternative 6 (H6): The innovations are generated from a multivariate t distri-

bution with 8 degrees of freedom with σi = 1.1 and ρij = 0.4.

• Alternative 7 (H7): The innovations are generated from a multivariate Gaussian

CCC-GARCH(1,1) model which we parameterize such that the unconditional co-

variance matrix is equal to that under H0 and with GARCH parameters (ω, α, β) =

(0.05, 0.1, 0.85).

We use Neyman’s smooth test as described in Section 2.6.1 for this set of simulations.

3.1.2 Estimated Parameters and Accounting for Dynamic Misspecification

We consider two types of simulations with dynamic misspecification and estimated pa-

rameters. First, we generate data by the following homoskedastic dynamic model:8

yt = 0.5Id×dyt−1 + εt, with εt
i.i.d.∼ N (0,Σ). (3.2)

To simulate dynamic misspecification, we generate predictive densities ignoring the au-

tocorrelation in the conditional mean. Since parameters are now estimated, we consider

only alternative 5 from the above list. Rejecting the null hypothesis might be very hard

in small samples if the alternative is a t distribution with 8 degrees of freedom. Therefore,

we consider an additional alternative with a more substantial deviation from H0:

• Alternative 8 (H8): The innovations are generated from a multivariate t distri-

bution with 4 degrees of freedom with σi = 1.0 and ρij = 0.5.

In addition, we consider multivariate Gaussian CCC-GARCH(1,1) models with param-

eters (ω, α, β) = (0.05, 0.1, 0.85) under the alternative. The first assumes no dynamic

misspecification in the mean equation (by simulating data from a DGP without dynam-

ics in the unconditional mean), even though we control for it when testing due to the fact

that there is dynamic misspecification in the second moments.

• Alternative 9 (H9): Same as H7, i.e., considering no dynamic misspecification in

the mean equation.

The second case involves GARCH effects and dynamic misspecification in the mean:

• Alternative 10 (H10): Same as H7 but with conditional mean dynamics given in

equation (3.2).

8Results assuming a dynamic moving average structure, yt = 0.8Id×dεt−1 + εt, are very similar and
not reported below.
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To estimate the model parameters, we consider a fixed estimation scheme and set λ = 1/4

to determine the size of the estimation sample R = P/λ. We use the modified Neyman’s

smooth test as described in Section 2.6.2 for this set of simulations.

3.2 Potential for Data Mining

In this section, we present results that show whether considering different permutations

of the data can have a serious impact on the outcomes of the tests that are not order

invariant. All results here are based on Neyman’s smooth test. The idea is the following:

a researcher who wants to discredit (support) the hypothesis that a particular model

produces good density forecasts could, in principle, search across all permutations and

select the one which yields the highest (lowest) test statistic. We present results for H0

and H5 based on P = 100 and the assumption that parameters are known; results are

similar for other settings and available upon request.

The left part of Figure 1 shows how severe data mining can be under the null hypoth-

esis. The solid line indicates the nominal size of 5 % which, as we show below, is obtained

when tests are applied properly (meaning that the order of variables is chosen randomly).

The other lines refer to the rejection frequencies that we obtain for the tests based on S,

CS, and KP , respectively, when we always choose the permutation for which we obtain

the highest (lowest) test statistic. At the lower end of obtainable rejection rates, it is

clearly possible to virtually never reject the null hypothesis for any dimension. On the

other hand, the null hypothesis can be rejected much too frequently if one chooses those

permutations that yield high test statistics. For d = 2 the scope for data mining is rather

limited, with obtainable rejection rates being around 10 %. However, once the dimension

(and consequently the number of possible permutations) increases, obtainable rejection

rates increase quickly. They lie above 50% for d = 6 for all transformations considered

and reach virtually 100 % for the test based on KP .

In the right part of Figure 1, the solid lines indicate the power that is obtained when

the tests are applied properly. The upper (lower) lines show the rejection rates that

one obtains when always selecting the highest (lowest) test statistic across all possible

permutations. The range of obtainable rejection rates is considerable in all cases. For

tests based on CS and KP , the lower line is very close to 0. This means that even though

the data are generated from a different DGP, a researcher would be able to purposely

select permutations in such a way that H0 is almost never rejected.

3.3 Size and Power

3.3.1 Known Parameters and no Dynamic Misspecification

Table 2 shows the Monte Carlo results concerning the size and power for the different

transformations under the assumption of known parameters and no dynamic misspeci-
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Figure 1: Scope for data mining.

fication. Focusing on the upper panel of the table, we see that none of the approaches

suffers from notable size distortions. In all cases, the obtained actual sizes are very close

to the nominal size of 5 %.

The second panel of the table reveals that tests based on our three new transfor-

mations and on S have the best power when the alternative implies deviations of the

variances (H1). Tests based on our new transformations outperform the test based on

S for large dimensions, as also documented by the performance against H2, the more

challenging alternative in which we change only a third of the variances. Results for H3

show that the three new approaches consistently outperform the tests based on estab-

lished transformations when deviations from H0 are specified in terms of the correlation

structure of the multivariate density. In the case of simultaneously misspecified variances

and correlations (H4), the new approaches consistently outperform the tests based on CS

or KP . For small samples (P = 50), they also outperform the test based on S; for larger

samples tests based on either S or the new transformations quickly approach a power of

1.

Turning to the power of the different tests for detecting misspecification of the kurtosis

(H5), we see that the new approaches outperform all established tests by a wide margin.

Especially for P = 50 the results are stunning: the power of the new approaches exceeds

that of even the best-performing established approach by a factor of more than two in

many cases. Adding wrongly calibrated variances and correlations to the misspecification

of the distribution in H6 leads to a decrease of this outperformance because there is

little room for the power of the new approaches to improve while, at the same time,
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tests based on the old transformations gain a lot of power through these additional

deviations from H0. However, our new approaches still clearly outperform the established

approaches. Finally, the new transformations have also better power against GARCH

effects (H7). In light of our previous results, this is expected given that this alternative

leads to innovations that are unconditionally distributed with excess kurtosis. The second

set of simulations which assumes a multivariate t distribution as the null model yields very

similar results with respect to the relative performance of the different transformations;

results can be found in the appendix.

3.3.2 Estimated Parameters and Accounting for Dynamic Misspecification

Now, we turn to the case where the model parameters have to be estimated from in-sample

data and we account for dynamic misspecification. In general, the results indicate that

tests based on all transformations are substantially oversized if one does not adjust Ney-

man’s smooth test (Table 3). Using the adjusted version described in Section 2.6.2, yields

correctly sized tests for P ≥ 100. Furthermore, the results indicate that having to deal

with estimated parameters and dynamic misspecification results in a considerable loss of

power against H5. Large evaluation samples seem to be necessary to detect this devia-

tion from the null hypothesis reasonably well (especially for low dimensional densities).

Power increases considerably for sample sizes of P ≥ 100 in the case of H8 which implies

a much stronger deviation from H0. At the same time, the ranking of the competing

tests remains largely unaffected under both alternatives so that the new tests proposed

in this paper continue to perform substantially better than established tests. Interest-

ingly, when GARCH effects are present, the test based on S outperforms other tests both

when dynamic misspecification is present (H10) and when it is not (H9).

In further simulations that can be found in the appendix, we show that the new tests

have the highest power against CCC-t-GARCH models when the null hypothesis is a

Gaussian CCC-GARCH model if no dynamic misspecification is present. If, on the other

hand, dynamic misspecification is present, tests based on S have the highest power for

small P and comparable power to the new tests for larger evaluation samples. Further-

more, we show that tests based on the idea of G-ACRs (discussed in Section 2.6.3) are

properly sized and that tests of this kind based on S have the best power against dy-

namic misspecification while tests based on our new transformations have the best power

against distributional misspecifications. Again, results can be found in the appendix.

4 Predicting the Distribution of Stock Market Returns

In this section, we provide an application of the tests discussed above. The application

shows that using tests that are not order invariant offers room for data mining in many
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Table 2: Size and power - known parameters and no dynamic misspecification

Size P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.047 0.051 0.047 0.051 0.050 0.052 0.051 0.050 0.052 0.045 0.054 0.055 0.053 0.051 0.050 0.051 0.052 0.053
d = 3 0.049 0.047 0.048 0.047 0.053 0.052 0.050 0.047 0.050 0.047 0.049 0.047 0.052 0.047 0.047 0.053 0.052 0.055
d = 4 0.049 0.050 0.048 0.050 0.048 0.051 0.053 0.052 0.050 0.045 0.049 0.047 0.051 0.050 0.051 0.045 0.051 0.049
d = 5 0.051 0.049 0.051 0.049 0.052 0.054 0.051 0.047 0.048 0.049 0.048 0.047 0.050 0.050 0.049 0.049 0.053 0.052
d = 6 0.047 0.051 0.049 0.048 0.047 0.048 0.049 0.054 0.049 0.047 0.049 0.048 0.052 0.049 0.049 0.052 0.053 0.051
d = 10 0.047 0.046 0.049 0.049 0.052 0.053 0.051 0.054 0.049 0.049 0.046 0.056 0.053 0.051 0.051 0.050 0.062 0.053
d = 20 0.053 0.048 0.051 0.053 - 0.059 0.053 0.048 0.051 0.053 - 0.059 0.053 0.051 0.053 0.050 - 0.054
d = 50 0.048 0.049 0.048 0.051 - 0.051 0.048 0.049 0.048 0.051 - 0.051 0.054 0.049 0.046 0.053 - 0.055

Power against H1 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.197 0.137 0.139 0.198 0.199 0.164 0.328 0.210 0.211 0.336 0.336 0.273 0.556 0.338 0.358 0.596 0.583 0.484
d = 3 0.253 0.150 0.162 0.273 0.272 0.227 0.435 0.223 0.240 0.464 0.472 0.394 0.739 0.385 0.411 0.777 0.766 0.673
d = 4 0.323 0.164 0.184 0.338 0.335 0.289 0.557 0.247 0.280 0.603 0.597 0.516 0.859 0.435 0.487 0.893 0.882 0.822
d = 5 0.385 0.175 0.205 0.418 0.407 0.360 0.654 0.279 0.315 0.698 0.693 0.635 0.925 0.472 0.539 0.948 0.940 0.909
d = 6 0.449 0.193 0.219 0.482 0.475 0.434 0.741 0.301 0.361 0.783 0.763 0.721 0.961 0.527 0.600 0.977 0.971 0.954
d = 20 0.925 0.384 0.497 0.953 - 0.941 0.999 0.650 0.785 1.000 - 0.999 1.000 0.915 0.978 1.000 - 1.000

Power against H2 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 3 0.076 0.056 0.067 0.081 0.081 0.075 0.092 0.061 0.079 0.097 0.099 0.094 0.132 0.068 0.091 0.147 0.153 0.134
d = 6 0.089 0.057 0.080 0.102 0.101 0.098 0.129 0.063 0.089 0.149 0.149 0.143 0.217 0.076 0.120 0.256 0.255 0.231
d = 10 0.104 0.056 0.075 0.122 - 0.115 0.154 0.068 0.095 0.189 - 0.184 0.281 0.096 0.132 0.338 - 0.324
d = 20 0.157 0.062 0.098 0.189 - 0.187 0.276 0.086 0.127 0.330 - 0.323 0.520 0.142 0.204 0.610 - 0.593
d = 50 0.386 0.097 0.172 0.464 - 0.457 0.700 0.174 0.275 0.783 - 0.774 0.953 0.346 0.465 0.982 - 0.979

Power against H3 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.066 0.046 0.100 0.067 0.072 0.106 0.077 0.052 0.144 0.081 0.080 0.145 0.100 0.063 0.244 0.106 0.105 0.235
d = 3 0.090 0.052 0.083 0.098 0.111 0.168 0.136 0.063 0.103 0.146 0.166 0.274 0.219 0.086 0.136 0.247 0.283 0.492
d = 4 0.135 0.060 0.106 0.149 0.175 0.238 0.217 0.076 0.139 0.241 0.290 0.406 0.377 0.114 0.199 0.429 0.513 0.691
d = 5 0.174 0.065 0.121 0.195 0.247 0.308 0.306 0.095 0.154 0.350 0.436 0.538 0.546 0.145 0.259 0.612 0.730 0.836
d = 6 0.225 0.075 0.138 0.252 0.324 0.373 0.409 0.115 0.200 0.462 0.570 0.643 0.706 0.187 0.327 0.762 0.856 0.915

Power against H4 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.305 0.135 0.256 0.326 0.325 0.378 0.510 0.203 0.423 0.549 0.549 0.627 0.810 0.341 0.696 0.844 0.848 0.904
d = 3 0.504 0.180 0.292 0.550 0.559 0.619 0.788 0.290 0.473 0.834 0.849 0.894 0.980 0.493 0.757 0.987 0.991 0.996
d = 4 0.664 0.227 0.350 0.724 0.762 0.791 0.929 0.387 0.587 0.953 0.966 0.976 0.999 0.660 0.881 0.999 1.000 1.000
d = 5 0.801 0.290 0.436 0.850 0.875 0.890 0.980 0.489 0.690 0.988 0.993 0.995 1.000 0.792 0.940 1.000 1.000 1.000
d = 6 0.892 0.346 0.508 0.923 0.941 0.946 0.997 0.589 0.787 0.998 0.999 0.999 1.000 0.881 0.976 1.000 1.000 1.000

Power against H5 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.107 0.077 0.080 0.183 0.188 0.156 0.160 0.105 0.123 0.302 0.302 0.241 0.299 0.172 0.218 0.544 0.545 0.439
d = 3 0.142 0.085 0.095 0.322 0.314 0.257 0.241 0.122 0.171 0.545 0.538 0.431 0.437 0.207 0.313 0.843 0.837 0.729
d = 4 0.177 0.091 0.125 0.481 0.472 0.391 0.311 0.143 0.214 0.763 0.750 0.652 0.563 0.247 0.413 0.970 0.970 0.925
d = 5 0.231 0.109 0.149 0.620 0.622 0.551 0.399 0.165 0.269 0.889 0.883 0.822 0.677 0.291 0.519 0.996 0.995 0.987
d = 6 0.264 0.114 0.173 0.747 0.736 0.670 0.456 0.186 0.327 0.961 0.955 0.924 0.752 0.344 0.619 1.000 1.000 0.998

Power against H6 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.186 0.108 0.181 0.299 0.300 0.320 0.293 0.155 0.275 0.486 0.478 0.514 0.504 0.248 0.478 0.756 0.762 0.795
d = 3 0.298 0.155 0.185 0.507 0.525 0.524 0.493 0.233 0.276 0.762 0.773 0.778 0.772 0.402 0.465 0.958 0.963 0.968
d = 4 0.406 0.199 0.232 0.666 0.689 0.688 0.656 0.323 0.364 0.904 0.913 0.911 0.905 0.563 0.597 0.994 0.997 0.996
d = 5 0.521 0.260 0.283 0.793 0.802 0.791 0.781 0.430 0.446 0.965 0.971 0.968 0.965 0.691 0.711 1.000 1.000 1.000
d = 6 0.588 0.304 0.326 0.859 0.872 0.865 0.847 0.505 0.514 0.988 0.991 0.989 0.987 0.784 0.799 1.000 1.000 1.000

Power against H7 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.290 0.204 0.252 0.319 0.320 0.285 0.362 0.280 0.310 0.411 0.410 0.356 0.413 0.314 0.376 0.477 0.477 0.423
d = 3 0.300 0.206 0.162 0.341 0.342 0.289 0.383 0.260 0.212 0.453 0.452 0.383 0.467 0.327 0.280 0.558 0.559 0.487
d = 4 0.353 0.216 0.169 0.406 0.402 0.350 0.433 0.272 0.242 0.510 0.506 0.438 0.491 0.316 0.285 0.623 0.619 0.545
d = 5 0.373 0.208 0.171 0.427 0.420 0.373 0.444 0.262 0.239 0.533 0.527 0.467 0.517 0.320 0.291 0.668 0.656 0.586
d = 6 0.388 0.222 0.194 0.457 0.443 0.402 0.462 0.270 0.246 0.569 0.559 0.510 0.547 0.335 0.304 0.712 0.699 0.641

Notes: Rejection frequencies of Neyman’s smooth test based on the transformations introduced in Sections 2.3 and 2.4 for the null hypothesis of multivari-
ate normality with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. All Monte Carlo simulations are based on 10,000 iterations. The alternative models
deviate from the null in terms of wrong variances (H1), partly wrong variances (H2), wrong correlations (H3), wrong variances and wrong correlations
(H4), fat tails (H5), fat tails, wrong variances, and wrong correlations (H6), and GARCH effects (H7). The exact hypotheses are defined in Section 3.1.
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Table 3: Size and power - estimated parameters and dynamic misspecification

Size (original test) P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.252 0.236 0.154 0.124 0.124 0.127 0.248 0.229 0.157 0.122 0.123 0.124 0.240 0.221 0.153 0.123 0.124 0.122
d = 3 0.262 0.226 0.098 0.133 0.132 0.143 0.253 0.228 0.102 0.134 0.133 0.133 0.259 0.237 0.102 0.130 0.130 0.132
d = 4 0.270 0.229 0.101 0.153 0.152 0.174 0.261 0.233 0.089 0.136 0.135 0.146 0.260 0.235 0.086 0.132 0.132 0.136
d = 5 0.291 0.235 0.094 0.170 0.165 0.206 0.260 0.225 0.092 0.140 0.140 0.163 0.254 0.224 0.082 0.129 0.130 0.136
d = 6 0.295 0.239 0.102 0.182 0.182 0.252 0.270 0.235 0.090 0.157 0.150 0.189 0.261 0.223 0.085 0.138 0.137 0.157

Size (adjusted test) P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.039 0.020 0.038 0.039 0.041 0.037 0.052 0.055 0.064 0.057 0.059 0.059 0.055 0.063 0.066 0.059 0.061 0.057
d = 3 0.036 0.013 0.030 0.031 0.035 0.031 0.049 0.053 0.052 0.049 0.052 0.052 0.052 0.060 0.056 0.055 0.056 0.056
d = 4 0.026 0.015 0.024 0.025 0.029 0.028 0.042 0.051 0.041 0.047 0.050 0.046 0.048 0.054 0.053 0.056 0.059 0.055
d = 5 0.018 0.010 0.015 0.019 0.020 0.018 0.035 0.045 0.035 0.047 0.048 0.046 0.045 0.058 0.047 0.052 0.054 0.050
d = 6 0.010 0.006 0.010 0.014 0.018 0.014 0.027 0.041 0.033 0.039 0.041 0.040 0.043 0.058 0.041 0.047 0.049 0.050

Power against H5 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.050 0.019 0.043 0.022 0.024 0.022 0.084 0.071 0.091 0.056 0.056 0.051 0.121 0.096 0.122 0.129 0.130 0.106
d = 3 0.046 0.016 0.036 0.013 0.014 0.015 0.094 0.064 0.073 0.059 0.058 0.049 0.140 0.102 0.123 0.229 0.225 0.161
d = 4 0.038 0.013 0.024 0.007 0.007 0.009 0.091 0.058 0.073 0.071 0.070 0.059 0.170 0.092 0.136 0.360 0.351 0.262
d = 5 0.026 0.007 0.018 0.003 0.004 0.005 0.091 0.053 0.064 0.093 0.090 0.066 0.209 0.099 0.153 0.514 0.504 0.397
d = 6 0.022 0.005 0.009 0.003 0.003 0.003 0.085 0.044 0.055 0.116 0.106 0.090 0.223 0.095 0.166 0.648 0.629 0.538

Power against H8 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.074 0.016 0.042 0.015 0.016 0.013 0.235 0.128 0.199 0.191 0.185 0.142 0.471 0.266 0.424 0.654 0.649 0.541
d = 3 0.085 0.013 0.034 0.010 0.009 0.009 0.305 0.112 0.192 0.289 0.283 0.209 0.649 0.299 0.507 0.891 0.888 0.784
d = 4 0.088 0.010 0.023 0.007 0.007 0.006 0.368 0.108 0.204 0.402 0.392 0.294 0.758 0.320 0.613 0.979 0.978 0.942
d = 5 0.082 0.008 0.015 0.006 0.006 0.003 0.411 0.090 0.207 0.515 0.501 0.397 0.834 0.334 0.688 0.997 0.996 0.985
d = 6 0.077 0.007 0.010 0.004 0.004 0.002 0.454 0.081 0.211 0.600 0.572 0.470 0.883 0.348 0.757 0.999 0.999 0.997

Power against H9
P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.141 0.075 0.092 0.081 0.098 0.075 0.248 0.204 0.260 0.216 0.230 0.197 0.327 0.267 0.336 0.315 0.321 0.280
d = 3 0.157 0.070 0.052 0.064 0.075 0.057 0.265 0.181 0.174 0.197 0.211 0.184 0.356 0.250 0.246 0.330 0.339 0.298
d = 4 0.169 0.065 0.045 0.049 0.065 0.051 0.281 0.168 0.167 0.201 0.224 0.195 0.392 0.248 0.254 0.373 0.363 0.323
d = 5 0.153 0.050 0.034 0.036 0.047 0.041 0.287 0.165 0.174 0.197 0.206 0.189 0.429 0.258 0.267 0.412 0.405 0.351
d = 6 0.152 0.045 0.029 0.030 0.042 0.036 0.312 0.154 0.164 0.188 0.196 0.183 0.448 0.241 0.258 0.427 0.412 0.370

Power against H10
P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.069 0.019 0.047 0.045 0.049 0.043 0.184 0.143 0.216 0.138 0.149 0.126 0.239 0.200 0.295 0.244 0.248 0.217
d = 3 0.075 0.016 0.037 0.025 0.033 0.030 0.173 0.119 0.156 0.117 0.126 0.109 0.261 0.182 0.233 0.252 0.250 0.209
d = 4 0.066 0.011 0.025 0.020 0.020 0.018 0.172 0.096 0.134 0.097 0.100 0.098 0.297 0.161 0.243 0.285 0.279 0.221
d = 5 0.055 0.008 0.018 0.011 0.014 0.013 0.176 0.082 0.125 0.087 0.093 0.089 0.321 0.163 0.240 0.303 0.285 0.232
d = 6 0.044 0.006 0.011 0.005 0.007 0.008 0.184 0.073 0.119 0.077 0.074 0.070 0.347 0.148 0.233 0.319 0.295 0.247

Notes: Rejection frequencies of Neyman’s smooth test based on the transformations introduced in Sections 2.3 and 2.4 for the null hypothesis of mul-
tivariate normality. All Monte Carlo simulations are based on 10,000 iterations. The data is generated by VAR(1) models with innovations following
a multivariate normal distribution (H0), multivariate t distributions with 8 degrees of freedom (H5) and 4 degrees of freedom (H8). H9 and H10 cor-
respond to a Gaussian GARCH(1,1) without dynamic misspcification of the mean equation and with dynamic misspecification in the mean equation,
respectively. The exact hypotheses are defined in Section 3.1.
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situations. We consider the problem of forecasting the joint distribution of five interna-

tional stock market indices. Our data consist of weekly returns of the MSCI indices for

the US, Japan (JA), UK, Australia (AU), and Germany (GE) which we obtained from

Datastream. The sample spans the period from January 1971 until October 2013 for a

total of 2,232 weekly returns. We consider eight different time periods of four years for

which we evaluate density forecasts. These (out-of-sample) evaluation periods are 1981-

1984, 1985-1988, 1989-1992, 1993-1996, 1997-2000, 2001-2004, 2005-2008, and 2009-2013.

In addition, we evaluate the forecast models over the entire sample from 1981-2013. For

each period, the previous ten years are considered as in-sample data to estimate the

models of interest. The models are re-estimated for each week using a recursive scheme.

Three competing models of increasing complexity are considered: (i) a Gaussian DCC-

GARCH model (Engle, 2002), (ii) a time-varying t-copula with DCC-type dynamics and t-

GARCH margins, and (iii) a time-varying t-copula with skewed-t-GJR-GARCH margins.

For the DCC-GARCH model the marginal models for i = 1, . . . , d are given by

Yi,t = µi + εi,t

εi,t =
√
hi,tzi,t

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1

with zi,t ∼ N (0, 1), ωi, αi, βi ≥ 0 and αi + βi < 1. The correlation matrix Rt of the

innovations zt = [z1,t, . . . , zd,t] is given by

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2, (4.1)

where

Qt = (1− αc − βc)Q̄+ αcz
′
t−1zt−1 + βcQt−1, (4.2)

with αc, βc ≥ 0, αc + βc ≤ 1, and Q̄ = E(z′tzt), which, in practice, is estimated using the

sample covariance matrix of zt.

For the second model, the marginal models are the same as above, with the difference

that the innovations zi,t follow a t distribution with νi degrees of freedom. The dependence

between the t-distributed GARCH innovations zt is given by a t-copula with degrees of

freedom νc and correlation matrix Rt. For details and properties of the t-copula see, e. g.,

Joe (2014). The evolution of the correlation matrix is given by (4.1) and (4.2), but with

zi,t replaced by T−1νc (Ui,t)
√

νc−2
νc

. Note that this model is slightly more flexible than a

DCC-GARCH model based on a multivariate t distribution since the copula approach

allows all marginal series to have distinct degrees of freedom. The estimation of the
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copula-based model is naturally done in two steps, ensuring numerical stability at the

price of a small loss in statistical efficiency (Joe, 2005).

The third model is even more flexible by assuming that the GARCH innovations zi,t

follow the skewed t distribution of Hansen (1994) and by relying on the GJR-GARCH

model of Glosten et al. (1993), for which the conditional variance follows

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1 + γiε

2
i,t−1I(εi,t−1 < 0).

The dependence is again given by the DCC-t-copula model.

For each model and each time period, we compute the Rosenblatt PITs and apply

the established and new transformations described above. Recall that for non-Gaussian

models the distribution of Z2∗
t and Z2†

t is not known but can be computed numerically

as explained in Section 2.5.1. The null hypothesis of correctly predicted densities is then

tested with Neyman’s smooth test (Neyman, 1937), accounting for parameter estimation

and potential dynamic misspecification as explained in Section 2.6.2. We estimate the

long-run covariance matrices using a quadratic spectral kernel and the automatic lag

selection as proposed in Andrews (1991). In Table 4, we report the p-values based on

the different transformations. For those tests which are not order invariant, we consider

all 5! = 120 permutations of the data. We report the p-value of a random permutation

of the variables (based on the arbitrary order in which we downloaded the data: US, JP,

UK, AU, GE) and, in brackets, the lowest and highest p-values across all permutations.

The results are mixed and depend on the time period under study. However, a few

things clearly stand out. First, the Gaussian DCC model is rejected by almost all tests

for all time periods except the 1997-2000 period. Second, model specifications (ii) and

(iii) perform much better, but are still rejected for some periods. Notably, most tests

reject these models for the aforementioned 1997-2000 period. This suggests that during

that period returns had much lighter tails than during other periods. A shorter in-

sample period may be appropriate to reflect such non-stationarities. Third, the most

flexible specification (iii) does not consistently outperform specification (ii), confirming

the known fact that model complexity may yield superior in-sample fit, but not necessarily

a better forecasting performance. Fourth, when we use the entire sample, all models are

rejected. However, given the very large number of observations and the fact that none

of the models features time-varying parameters that might help dealing with structural

breaks, this is not too surprising.

Finally, the potential for data mining using the tests based on S, CS, and KP ,

respectively, is immense. For the wide majority of periods one can find permutations

that reject and permutations that do not reject the null hypothesis of properly calibrated

density forecasts for any of the models. Note, however, that in line with our results from

Section 3.2, the range of p-values for tests based on S is, on average, smaller than for
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Table 4: Density forecast evaluation for stock market returns

Gaussian DCC S CS KP Z2 Z2∗ Z2†

1981-1984 0.013 [0.004, 0.195] 0.006 [0.002, 0.067] 0.021 [0.008, 0.955] 0.003 0.006 0.015
1985-1988 0.000 [0.000, 0.000] 0.002 [0.000, 0.005] 0.618 [0.001, 0.913] 0.012 0.018 0.010
1989-1992 0.001 [0.000, 0.002] 0.145 [0.002, 0.418] 0.014 [0.000, 0.019] 0.000 0.000 0.000
1993-1996 0.000 [0.000, 0.000] 0.013 [0.000, 0.024] 0.020 [0.000, 0.020] 0.000 0.000 0.000
1997-2000 0.158 [0.009, 0.734] 0.022 [0.002, 0.406] 0.702 [0.039, 0.978] 0.052 0.207 0.237
2001-2004 0.000 [0.000, 0.000] 0.008 [0.006, 0.169] 0.037 [0.000, 0.086] 0.002 0.001 0.004
2005-2008 0.000 [0.000, 0.255] 0.000 [0.000, 0.019] 0.020 [0.000, 0.673] 0.001 0.001 0.004
2009-2013 0.000 [0.000, 0.000] 0.024 [0.000, 0.153] 0.022 [0.000, 0.648] 0.000 0.000 0.001
1981-2013 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.000 0.000 0.000

t-GARCH-tDCC-Cop S CS KP Z2 Z2∗ Z2†

1981-1984 0.249 [0.043, 0.593] 0.013 [0.006, 0.119] 0.300 [0.066, 0.997] 0.415 [0.244, 0.424] 0.254 0.046
1985-1988 0.000 [0.000, 0.000] 0.004 [0.000, 0.043] 0.543 [0.009, 0.993] 0.221 [0.069, 0.307] 0.180 0.510
1989-1992 0.370 [0.007, 0.403] 0.809 [0.070, 0.901] 0.942 [0.001, 0.942] 0.107 [0.063, 0.220] 0.119 0.096
1993-1996 0.001 [0.000, 0.034] 0.062 [0.002, 0.071] 0.647 [0.000, 0.698] 0.000 [0.000, 0.000] 0.000 0.007
1997-2000 0.054 [0.001, 0.068] 0.090 [0.008, 0.750] 0.591 [0.003, 0.955] 0.000 [0.000, 0.001] 0.001 0.022
2001-2004 0.000 [0.000, 0.000] 0.030 [0.006, 0.412] 0.189 [0.000, 0.443] 0.027 [0.026, 0.034] 0.018 0.001
2005-2008 0.000 [0.000, 0.436] 0.001 [0.000, 0.050] 0.059 [0.000, 0.954] 0.091 [0.073, 0.250] 0.306 0.220
2009-2013 0.000 [0.000, 0.006] 0.204 [0.003, 0.529] 0.016 [0.000, 0.971] 0.033 [0.021, 0.056] 0.027 0.044
1981-2013 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.011 [0.000, 0.702] 0.007 [0.001, 0.051] 0.003 0.000

st-GJR-tDCC-Cop S CS KP Z2 Z2∗ Z2†

1981-1984 0.297 [0.036, 0.556] 0.017 [0.007, 0.105] 0.165 [0.056, 0.998] 0.582 [0.358, 0.638] 0.457 0.143
1985-1988 0.000 [0.000, 0.001] 0.008 [0.000, 0.085] 0.653 [0.015, 0.993] 0.126 [0.047, 0.147] 0.090 0.102
1989-1992 0.048 [0.000, 0.065] 0.582 [0.060, 0.912] 0.616 [0.000, 0.945] 0.154 [0.096, 0.277] 0.142 0.156
1993-1996 0.000 [0.000, 0.009] 0.026 [0.000, 0.026] 0.373 [0.000, 0.543] 0.000 [0.000, 0.000] 0.000 0.003
1997-2000 0.052 [0.001, 0.244] 0.258 [0.016, 0.929] 0.215 [0.002, 0.978] 0.001 [0.001, 0.001] 0.002 0.036
2001-2004 0.000 [0.000, 0.000] 0.097 [0.011, 0.318] 0.024 [0.000, 0.044] 0.001 [0.001, 0.002] 0.001 0.000
2005-2008 0.000 [0.000, 0.245] 0.010 [0.001, 0.481] 0.003 [0.000, 0.592] 0.072 [0.070, 0.100] 0.075 0.057
2009-2013 0.245 [0.005, 0.659] 0.672 [0.075, 0.794] 0.150 [0.002, 0.962] 0.767 [0.727, 0.788] 0.626 0.262
1981-2013 0.000 [0.000, 0.000] 0.000 [0.000, 0.000] 0.013 [0.000, 0.779] 0.022 [0.005, 0.104] 0.007 0.001

Notes: The table shows p-values corresponding to the different transformations introduced in Sections 2.3 and 2.4 using the adjusted
version of Neyman’s smooth test (Neyman, 1937) that accounts for parameter estimation and potential dynamic misspecification as ex-
plained in Section 2.6.2. The data are weekly MSCI stock index returns for the US, Japan, UK, Australia and Germany. Forecasts are
evaluated for the stated periods and the previous 10 years of data are used as the in-sample period. For transformations which are not
order invariant, the numbers in brackets show the lowest and highest obtained p-values across all permutations of the variables; for these
transformations, the first p-value is for an arbitrarily selected permutation.

the ones based on CS and KP . Finally, turning to the results for Z2 which are not

order invariant for the non-Gaussian models, one can see that the range of the p-values

is very limited and that there is only moderate scope for data mining based on this

transformation.

In summary, we recommend evaluating the density forecasts based on Z2∗ and Z2†, and

possibly based on Z2. The results based on the other transformations are not reliable

as different permutations can lead to substantially different conclusions regarding the

performance of the models. Furthermore, our Monte Carlo simulations show that the

new tests are superior in terms of power. Using a 1% significance level, specifications (ii)

and (iii) are rejected by the test based on Z2∗ (Z2†) for only 2 (2) and 3 (2) sub-samples,

respectively. When using a Bonferroni correction to address the fact that this is a case of

multiple testing, specification (ii) is only rejected for the 1993-1996 period (based on both

Z2∗ and Z2†) and for the 1997-2000 period (based on Z2∗).9 Thus, overall, the t-GARCH

model with a time-varying t-copula can be recommended for modeling and predicting the

joint density of weekly stock market returns.

9Since we apply the tests to eight different sub-samples, a test at the 5% significance level should
reject when the p-value is smaller than 0.05/8 = 0.0063.
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5 Conclusion

In this paper we derive order-invariant tests for proper calibration of multivariate density

forecasts of arbitrary dimension. We demonstrate that distortions in rejection rates can

be very large when established tests, which are not order invariant, are used for data

mining. Furthermore, we show that the new tests have very good power against a wide

range of deviations from the null hypothesis; this holds true, in particular, when the data

exhibit fat tails that are not taken into account by the null model. We do not find that

one of our new tests dominates the others in terms of power regardless of the alternatives.

Our Monte Carlo simulations indicate that tests based on Z2∗ have slightly better power

against misspecification of the variance and in the presence of fat tails while tests based

on Z2† have slightly better power against misspecification of the correlation structure.

Therefore, we recommend using simultaneously the tests based on Z2∗ and Z2† whenever

there is no strong prior about the nature of potential deviations from the specified null

model.

We want to stress again that our approach, which essentially relies on transforming

the multivariate problem to a univariate one, is compatible with any method for testing

univariate distributions. We recommend using the powerful Neyman smooth test and

show how it can be adjusted to account for parameter uncertainty and dynamic misspec-

ification. If the aim is to test the joint hypothesis of completely calibrated distributions,

G-ACR-based tests seem to work well.

We believe there is a wide range of other applications in various fields. First, the

proposed methods are useful whenever properly calibrated density forecasts are crucial

to form well-informed decisions (about production, investment, pricing, etc.) and will

foster the use of multivariate density forecasts in situations in which decisions are based

on loss functions that take more than one variable as input arguments. Our tests could,

for instance, be used to assess the overall forecast performance of macroeconomic DSGE

models used at central banks. Second, the proposed methods are useful to improve

the specification of multivariate models taking higher moments into account; obvious

applications of this kind are common in financial econometrics, e. g., for estimating the

Value-at-Risk of a portfolio, but it can be expected that the modeling of the dependence

structure of higher moments of multivariate data becomes more common also for demand

management or in macroeconomics.

Our study leaves room for future research along several dimensions. First, especially

for financial applications, it would be interesting to extend the analytical results of our

paper which are limited to the case of multivariate Gaussian processes under the null hy-

pothesis to more general settings. Second, we believe it may be possible to develop tests

with even better power for very high-dimensional densities; this could be achieved by

selecting the terms entering the Z2∗ transformation in a data-driven way or by assigning
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weights to the conditional PITs entering the transformations that are based on the rele-

vant loss function. Finally, it might be worthwhile to investigate whether powerful order

invariant tests can be constructed that are not based on the Rosenblatt transformation.
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APPENDIX

Appendix A Proofs and Derivations

Proof of Proposition 1. Under independence, we have U
i|1:i−1
t = U i

t , i. e., the con-

ditional CDF is equal to the marginal CDF. In this case, the product transformation

reduces to Pt,d =
∏d

i=1 U
i
t . This is clearly robust to permutations. The same argument

can be made for the location-adjusted version P ∗t,d. The stacked transformation then

becomes St = [U1
t , . . . , U

d
t ]′, which again is obviously order invariant.

Now consider the following two permutations: π1 = (1, 2, 3, . . . , d) and π2 = (2, 1, 3, . . . , d).

For these permutations, the product transformations only differ in their first two com-

ponents. So w.l.g., we only check that independence is needed for U1
t · U

2|1
t = U2

t · U
1|2
t

to hold. The latter equality is equivalent to
U1
t

U2
t

=
U

1|2
t

U
2|1
t

for all t, which does not hold in

general, unless we have independence.

For these two permutations order invariance in St is given only if [U1
t U

2|1
t ]′ is equal

to [U2
t U

1|2
t ]′ for all t, which again only holds under independence.

Proof of Proposition 2. W.l.g. let µ = 0, which can be achieved by demeaning the

original data. Rewrite Yt as

Y1,t = Z1,t

Y2,t = β2,1Y1,t + Z2t

...

Yd,t = βd,1Y1,t + βd,2Y2,t + . . .+ βd,d−1Yd−1,t + Zd,t,

with Zi,t normally distributed. Writing this more compactly we obtain

BYt = Zt,

where Zt = (Z1,t, . . . , Zd,t)
′, with

E(ZtZ
′
t) = D = diag


σ2
1

σ2
2|1
...

σ2
d|1:d−1
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and

B =


1 0 0 . . .

−β2,1 1 0 . . .

−β3,1 −β3,2 1 . . .
...

...
...

. . .


is the matrix of population regression coefficients, whose precise form in terms of the co-

variance matrix is directly available using standard results on conditional normal random

variables. It holds that U1
t = Φ(Z1,t/σ1), U

2|1
t = Φ(Z2,t/σ2|1), . . . , U

d|1:d−1
t = Φ(Zd,t/σd|1:d−1).

Furthermore, note that

Cov(Yt) = E(YtY
′
t ) = Σ = B−1DB−1

′
.

Consequently,

Z2
t = (Z ′tD

−1/2)(D−1/2Zt) = Y ′tB
′D−1BYt = Y ′t Σ

−1Yt.

The last term is clearly invariant to the order of the variables.

Derivation of the distribution of CSt,d for arbitrary d. This can be shown by

induction. To simplify notations we drop the time subscript and replace the conditional

PITs by a sequence of independent U(0, 1) random variables U1, U2, . . ..

Step 1 (d = 2): For d = 2 the density is given by

fCS2(CS2) =
(−1)1

1!
log(CS2) = − log(CS2),

which is equal to the density derived in Clements and Smith (2000). Note that we could

also start at d = 1, for which the density is equal to 1, corresponding to the uniform

distribution.

Step 2 (d→ d+ 1): Consider the change of variables

CSd+1 = CSdUd+1

The determinant of the Jacobian for the inverse transformation is

J = det
∂(CSd, Ud+1)

∂(CSd+1, Ud+1)
=

∣∣∣∣∣ 1
Ud+1

−CSd+1

U2
d+1

0 1

∣∣∣∣∣ =
1

Ud+1

.

The joint density of CSd+1 and Ud+1 is

fCSd+1,Ud+1
(CSd+1, Ud+1) = fCSd

(
CSd+1

Ud+1

)
· 1

Ud+1

=
(−1)d−1

(d− 1)!
logd−1

(
CSd+1

Ud+1

)
· 1

Ud+1

,
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with 0 < CSd+1 < Ud+1 < 1. Therefore, the marginal PDF of CSd+1 is

fCSd+1
(CSd+1) =

∫ 1

CSd+1

fCSd

(
CSd+1

Ud+1

)
· 1

Ud+1

d · Ud+1 =
(−1)d

d!
logd(CSd+1) = fd+1(CSd+1).

To show that the CDF is correct first note that

f ′CSd(CSd) =
(−1)d−1

(d− 2)!
logd−2(CSd) ·

1

CSd
= −1 · fCSd−1

(CSd) ·
1

CSd
.

It follows that

F ′(CSd) =
d−1∑
i=0

fCSd−i(CSd)−
d−1∑
i=1

fCSd−i(CSd) = fCSd(CSd).

Derivation of the distribution of KPt,d for arbitrary d. Again, this can be shown

by induction and again for simplicity we consider a sequence of independent U(0, 1) ran-

dom variables U1, U2, . . ..

Step 1 (d = 2): Consider the change of variables

KP2 = (U1 − 0.5)(U2 − 0.5) = U∗1U
∗
2 .

The determinant of the Jacobian is

J =
1

U∗2
,

so the joint density of KP2 and U∗2 is given by

fKP2,U∗2
=

∣∣∣∣ 1

U∗2

∣∣∣∣ .
Integrating out U∗2 gives

fKP2(KP2) =

∫ 1/2

−1/2

∣∣∣∣ 1

U∗2

∣∣∣∣ 2 · U∗2 = 2 ·
∫ 1/2

|2KP2|

1

U∗2
= 2 log(U∗2 )

∣∣∣∣1/2
|2KP2|

= 2 log

∣∣∣∣ 1

4KP2

∣∣∣∣ ,
where the second equality follows from the symmetry around 0 and the fact that |2KP2| <
|U∗2 | < 1/2.

Step 2 (d→ d+ 1): Consider the following change of variables

KPd+1 = KPd(Ud+1 − 0.5) = KPdU
∗
d+1.
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The determinant of the Jacobian is

J =
1

U∗d+1

,

and therefore the joint density of KPd+1 and U∗d+1 is

fKPd+1,U
∗
d+1

= fKPd

(
KPd+1

U∗d+1

) ∣∣∣∣ 1

U∗d+1

∣∣∣∣ .
The PDF of KPd+1 then is

fKPd+1
(KPd+1) =

∫ 1/2

−1/2
fKPd

(
KPd+1

U∗d+1

) ∣∣∣∣ 1

U∗d+1

∣∣∣∣ d · U∗d+1

= 2 ·
∫ 1/2

|2dKPd+1|

2d−1

(d− 1)!
logd−1

(
U∗d+1

2d |KPd+1|

)
1

Ud+1

d · Ud+1

= 2 · 2d−1

(d− 1)!

1

d
logd

(
U∗d+1

2d |KPd+1|

) ∣∣∣∣1/2
|2dKP2|

=
2d

(d)!
logd

∣∣∣∣ 1

2d+1KPd+1

∣∣∣∣ .
Again the symmetry around 0 and the fact that |2dKPd+1| < |U∗d+1| < 1/2 was used.

Now consider the CDF. Note that

f ′KPd(KPd)

2d−1
=

1

(d− 2)!
log

∣∣∣∣ 1

2dKPd

∣∣∣∣ (−1)
1

Pd
.

Then using the product rule

F ′KPd(KPd) = 2d−1
d∑
i=1

1

(d− i)!
logd−i

∣∣∣∣ 1

2dKPd

∣∣∣∣KPd −KPd d∑
i=2

1

(d− i)!
logd−i

∣∣∣∣ 1

2dKPd

∣∣∣∣ 1

KPd

=
2d−1

(d− 1)!
logd−1

∣∣∣∣ 1

2dKPd

∣∣∣∣ = fKPd(KPd).

The addition of 1/2 ensures that the CDF lies between 0 and 1.

Proof of Proposition 3. Consider the generic term Φ−1
(
U
i|γki
t

)
∼ N (0, 1), where γki

stands for a set of indices representing the conditioning variables. Under normality, these

terms are also jointly normally distributed. Then the fact that Z∗2t has a mixture of

independent χ2
1 random variables follows directly from Lemma 17.1 in van der Vaart

(1998). The weights of the mixture are given by the eigenvalues of the covariance matrix

of the terms Φ−1
(
U
i|γki
t

)
for all i = 1, . . . , d and k = 1, . . . , 2d−1. This matrix is actually

a correlation matrix due to the unit variance of the inverse normal transformation.

To compute this correlation matrix, we start with the covariance between Y t
i|γki

and
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Y t
j|γlj

. Then, dropping the time index, Yi conditional on the vector Yγki is

Yi|Yγki = Yi − Σi,γki
Σ−1
γki ,γ

k
i
Yγki ,

which has variance equal to Σii − Σi,γki
R−1
γki ,γ

k
i
Σγki ,i

. Consequently,

Φ−1
(
U
i|γki
t

)
=

Yi − Σi,γki
Σ−1
γki ,γ

k
i
Yγki

(Σii − Σi,γki
Σ−1
γki ,γ

k
i
Σγki ,i

)1/2

and analogously for Φ−1
(
U
j|γlj
t

)
. Then the computation of the covariance/correlation

is straightforward. The reduced rank of RZ∗ follows from the fact that all conditional

variables Y t
i|γki

are a linear combination of the original d variables.
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Appendix B Further Simulation Results

B.1 Multivariate t Distribution under the Null Hypothesis

In addition to the results in Section 3.1.1, we also investigate the test performances

when Yt follows a multivariate t distribution with 5 degrees of freedom under the null.

We modify the alternatives 1–7 such that the innovations also follow a multivariate t

distribution in the case of alternatives 1–4 and 7 (keeping variances and correlations as in

the simulations with the Gaussian null model) and a multivariate normal distribution in

the case of alternatives 5 and 6. Results are given in Table B.1 and confirm the relative

performance that we find in our baseline simulations.

B.2 GARCH Dynamics under the Null Hypothesis

In addition to the results in Section 3.1.2, we also investigate the test performances when

the innovations under the null follow a Gaussian CCC-GARCH(1,1) process while they

are generated by CCC-t-GARCH(1,1) models with 8 and 4 degrees of freedom under the

alternatives:

• Alternative 11 (H11): The innovations are generated from a multivariate CCC-

t-GARCH(1,1) model with 8 degrees of freedom.

• Alternative 12 (H12): The innovations are generated from a multivariate CCC-

t-GARCH(1,1) model with 4 degrees of freedom.

The unconditional variances and correlations are the same as in the baseline simulations.

We consider one set of simulations where dynamic misspecification in the conditional

mean is present and one set of simulations where it is not. Since we need more data to

reliably estimate the GARCH models and want to hold λ = 1/4 fix, we also consider

P = 500 in these simulations. Again, we use a fixed estimation scheme and the modified

smooth test.
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Table B.1: Size and power when the null is a multivariate t distribution with known parameters

Size P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.047 0.044 0.050 0.049 0.052 0.054 0.047 0.050 0.047 0.049 0.046 0.050 0.051 0.052 0.051 0.047 0.050 0.048
d = 3 0.050 0.052 0.053 0.053 0.053 0.059 0.053 0.049 0.051 0.052 0.058 0.052 0.054 0.048 0.050 0.051 0.051 0.047
d = 4 0.055 0.048 0.049 0.053 0.051 0.049 0.053 0.053 0.046 0.047 0.051 0.054 0.054 0.051 0.052 0.050 0.049 0.050
d = 5 0.052 0.049 0.048 0.052 0.052 0.053 0.050 0.050 0.051 0.053 0.052 0.052 0.045 0.049 0.047 0.049 0.050 0.051
d = 6 0.051 0.045 0.050 0.048 0.049 0.047 0.048 0.050 0.052 0.051 0.055 0.051 0.055 0.054 0.051 0.054 0.062 0.060
d = 10 0.046 0.049 0.049 0.046 0.047 0.048 0.046 0.053 0.046 0.048 0.053 0.052 0.047 0.054 0.047 0.047 0.049 0.049
d = 20 0.054 0.051 0.048 0.050 - 0.048 0.048 0.048 0.043 0.049 - 0.048 0.048 0.051 0.047 0.048 - 0.053
d = 50 0.048 0.048 0.051 0.052 - 0.054 0.052 0.050 0.052 0.049 - 0.044 0.050 0.049 0.052 0.050 - 0.062

Power against H1 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.130 0.100 0.102 0.121 0.100 0.093 0.196 0.134 0.149 0.185 0.182 0.159 0.344 0.212 0.227 0.345 0.304 0.241
d = 3 0.151 0.102 0.111 0.135 0.113 0.099 0.234 0.133 0.150 0.231 0.262 0.195 0.442 0.208 0.240 0.447 0.395 0.302
d = 4 0.165 0.101 0.115 0.155 0.160 0.126 0.270 0.127 0.152 0.264 0.326 0.248 0.495 0.205 0.252 0.511 0.487 0.383
d = 5 0.171 0.096 0.114 0.158 0.170 0.137 0.290 0.127 0.161 0.289 0.277 0.227 0.542 0.199 0.258 0.559 0.566 0.458
d = 6 0.177 0.098 0.111 0.169 0.167 0.138 0.312 0.130 0.162 0.319 0.279 0.223 0.581 0.193 0.268 0.609 0.552 0.437
d = 20 0.195 0.086 0.117 0.192 - 0.196 0.327 0.111 0.159 0.393 - 0.395 0.682 0.179 0.280 - 0.711

Power against H2 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 3 0.146 0.099 0.107 0.127 0.141 0.115 0.232 0.128 0.141 0.225 0.213 0.151 0.436 0.204 0.237 0.444 0.482 0.387
d = 6 0.180 0.093 0.112 0.168 0.158 0.141 0.310 0.126 0.158 0.320 0.321 0.245 0.577 0.192 0.270 0.603 0.553 0.436
d = 10 0.185 0.091 0.113 0.180 0.173 0.161 0.350 0.122 0.167 0.362 0.357 0.307 0.641 0.190 0.275 0.684 0.723 0.673
d = 20 0.197 0.088 0.112 0.193 - 0.195 0.362 0.112 0.170 0.393 - 0.389 0.680 0.186 0.287 0.724 - 0.668
d = 50 0.166 0.069 0.111 0.167 - 0.226 0.327 0.098 0.149 0.338 - 0.437 0.613 0.154 0.238 0.669 - 0.835

Power against H3 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.060 0.046 0.093 0.062 0.058 0.087 0.073 0.052 0.127 0.065 0.070 0.136 0.081 0.058 0.203 0.083 0.078 0.146
d = 3 0.079 0.051 0.078 0.074 0.078 0.122 0.096 0.058 0.088 0.098 0.094 0.187 0.145 0.083 0.111 0.147 0.153 0.319
d = 4 0.091 0.054 0.085 0.091 0.099 0.149 0.136 0.064 0.106 0.140 0.159 0.252 0.223 0.094 0.139 0.231 0.309 0.468
d = 5 0.108 0.053 0.091 0.104 0.139 0.189 0.169 0.075 0.120 0.174 0.240 0.332 0.304 0.115 0.171 0.320 0.454 0.616
d = 6 0.122 0.059 0.101 0.120 0.205 0.249 0.204 0.079 0.128 0.216 0.329 0.388 0.369 0.123 0.186 0.392 0.474 0.624

Power against H4 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.195 0.091 0.192 0.185 0.195 0.253 0.326 0.118 0.314 0.318 0.392 0.481 0.578 0.181 0.547 0.587 0.631 0.708
d = 3 0.284 0.102 0.192 0.278 0.301 0.360 0.515 0.136 0.300 0.519 0.522 0.608 0.826 0.233 0.539 0.833 0.900 0.946
d = 4 0.372 0.111 0.207 0.378 0.384 0.437 0.633 0.158 0.348 0.659 0.744 0.800 0.929 0.280 0.599 0.938 0.948 0.969
d = 5 0.428 0.116 0.231 0.435 0.534 0.571 0.747 0.181 0.398 0.761 0.827 0.844 0.969 0.338 0.671 0.977 0.991 0.993
d = 6 0.482 0.123 0.245 0.494 0.560 0.569 0.800 0.197 0.417 0.821 0.899 0.892 0.984 0.369 0.707 0.990 0.996 0.997

Power against H5 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.087 0.080 0.087 0.116 0.121 0.095 0.136 0.104 0.120 0.242 0.275 0.196 0.256 0.156 0.203 0.495 0.534 0.322
d = 3 0.104 0.074 0.095 0.197 0.176 0.104 0.175 0.103 0.146 0.442 0.447 0.250 0.349 0.172 0.259 0.808 0.795 0.544
d = 4 0.119 0.079 0.106 0.300 0.242 0.142 0.215 0.108 0.177 0.652 0.646 0.435 0.427 0.177 0.311 0.953 0.966 0.822
d = 5 0.128 0.080 0.118 0.408 0.379 0.257 0.251 0.119 0.194 0.803 0.745 0.499 0.508 0.186 0.361 0.993 0.994 0.929
d = 6 0.138 0.079 0.123 0.519 0.461 0.304 0.280 0.115 0.221 0.907 0.871 0.704 0.578 0.200 0.417 0.999 0.996 0.957

Power against H6 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.456 0.188 0.371 0.454 0.496 0.528 0.767 0.310 0.635 0.786 0.827 0.841 0.975 0.567 0.907 0.983 0.987 0.987
d = 3 0.691 0.209 0.417 0.721 0.734 0.745 0.951 0.362 0.699 0.969 0.969 0.965 1.000 0.646 0.950 1.000 1.000 1.000
d = 4 0.830 0.241 0.493 0.878 0.858 0.850 0.994 0.437 0.796 0.998 0.998 0.999 1.000 0.744 0.982 1.000 1.000 1.000
d = 5 0.917 0.275 0.553 0.960 0.969 0.961 0.999 0.495 0.853 1.000 1.000 1.000 1.000 0.823 0.992 1.000 1.000 1.000
d = 6 0.961 0.303 0.600 0.987 0.990 0.983 1.000 0.558 0.897 1.000 1.000 1.000 1.000 0.878 0.997 1.000 1.000 1.000

Power against H7 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.479 0.306 0.376 0.504 0.501 0.445 0.644 0.487 0.567 0.676 0.674 0.614 0.796 0.660 0.749 0.826 0.842 0.806
d = 3 0.554 0.300 0.349 0.586 0.564 0.487 0.701 0.468 0.520 0.737 0.728 0.677 0.848 0.650 0.720 0.882 0.867 0.823
d = 4 0.589 0.296 0.366 0.624 0.633 0.567 0.743 0.462 0.560 0.787 0.780 0.722 0.895 0.643 0.765 0.926 0.923 0.891
d = 5 0.632 0.299 0.392 0.671 0.649 0.596 0.780 0.462 0.583 0.813 0.803 0.754 0.912 0.649 0.792 0.942 0.944 0.924
d = 6 0.664 0.306 0.406 0.698 0.686 0.646 0.806 0.458 0.615 0.840 0.849 0.806 0.934 0.651 0.822 0.955 0.942 0.922

Notes: Rejection frequencies of Neyman’s smooth test based on the transformations introduced in Sections 2.3 and 2.4 for the null hypothesis of a
multivariate t distribution with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. All Monte Carlo simulations are based on 10,000 iterations. The
alternative models deviate from the null in terms of wrong variances (H1), partly wrong variances (H2), wrong correlations (H3), wrong variances and
wrong correlations (H4), normal distribution (H5), normal distribution, wrong variances, and wrong correlations (H6), and GARCH effects (H7).
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Table B.2: Size and power – CCC-GARCH vs. CCC-t-GARCH

Only estimation uncertainty
Size P = 50 P = 200 P = 500

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.097 0.068 0.076 0.090 0.084 0.081 0.079 0.055 0.048 0.061 0.068 0.055 0.056 0.047 0.051 0.043 0.041 0.031
d = 3 0.132 0.081 0.070 0.107 0.098 0.092 0.066 0.054 0.044 0.068 0.065 0.058 0.065 0.051 0.041 0.051 0.061 0.043
d = 4 0.142 0.064 0.057 0.122 0.102 0.099 0.084 0.048 0.059 0.073 0.068 0.060 0.066 0.046 0.045 0.049 0.053 0.048
d = 5 0.146 0.078 0.057 0.121 0.104 0.094 0.089 0.051 0.048 0.069 0.068 0.075 0.072 0.042 0.042 0.070 0.056 0.048
d = 6 0.180 0.069 0.043 0.127 0.094 0.118 0.081 0.054 0.036 0.065 0.062 0.066 0.062 0.050 0.052 0.065 0.047 0.063

Power against H11 P = 50 P = 200 P = 500

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.204 0.097 0.141 0.229 0.216 0.194 0.300 0.155 0.244 0.532 0.521 0.408 0.657 0.376 0.517 0.905 0.886 0.816
d = 3 0.239 0.096 0.102 0.332 0.315 0.253 0.459 0.223 0.310 0.847 0.819 0.693 0.815 0.449 0.683 1.000 0.997 0.973
d = 4 0.284 0.104 0.110 0.452 0.404 0.331 0.549 0.239 0.342 0.965 0.934 0.869 0.926 0.546 0.824 1.000 1.000 0.999
d = 5 0.276 0.100 0.110 0.523 0.473 0.379 0.656 0.286 0.507 0.993 0.986 0.969 0.956 0.642 0.898 1.000 1.000 1.000
d = 6 0.346 0.105 0.112 0.626 0.577 0.487 0.702 0.296 0.558 1.000 0.997 0.984 0.983 0.735 0.942 1.000 1.000 1.000

Power against H12 P = 50 P = 200 P = 500

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.434 0.227 0.321 0.587 0.567 0.493 0.937 0.681 0.864 0.997 0.993 0.983 1.000 0.842 0.999 1.000 1.000 1.000
d = 3 0.574 0.242 0.351 0.790 0.755 0.686 0.992 0.733 0.957 1.000 1.000 1.000 1.000 0.774 1.000 1.000 1.000 1.000
d = 4 0.655 0.248 0.347 0.891 0.874 0.801 0.998 0.769 0.985 1.000 1.000 1.000 1.000 0.767 1.000 1.000 1.000 1.000
d = 5 0.730 0.245 0.440 0.924 0.909 0.859 1.000 0.772 0.992 1.000 1.000 1.000 1.000 0.700 1.000 1.000 1.000 1.000
d = 6 0.758 0.243 0.447 0.930 0.922 0.897 1.000 0.774 0.994 1.000 1.000 1.000 1.000 0.664 1.000 1.000 1.000 1.000

Estimation uncertainty and dynamic misspecification
Size P = 50 P = 200 P = 500

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.042 0.011 0.050 0.053 0.063 0.046 0.118 0.071 0.111 0.121 0.117 0.090 0.131 0.096 0.103 0.109 0.102 0.079
d = 3 0.070 0.012 0.031 0.046 0.056 0.032 0.110 0.060 0.060 0.116 0.103 0.091 0.114 0.073 0.079 0.101 0.096 0.082
d = 4 0.086 0.018 0.031 0.041 0.037 0.024 0.114 0.061 0.060 0.109 0.095 0.081 0.113 0.079 0.060 0.088 0.080 0.078
d = 5 0.095 0.013 0.017 0.023 0.024 0.016 0.105 0.058 0.053 0.112 0.078 0.066 0.130 0.074 0.075 0.119 0.084 0.078
d = 6 0.097 0.008 0.009 0.022 0.021 0.013 0.151 0.081 0.068 0.105 0.078 0.070 0.127 0.081 0.055 0.131 0.097 0.097

Power against H11 P = 50 P = 200 P = 500

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.069 0.014 0.044 0.025 0.027 0.034 0.171 0.103 0.136 0.228 0.198 0.151 0.316 0.157 0.234 0.532 0.400 0.380
d = 3 0.108 0.011 0.034 0.020 0.023 0.020 0.245 0.127 0.145 0.383 0.273 0.235 0.396 0.181 0.287 0.873 0.733 0.650
d = 4 0.113 0.017 0.028 0.020 0.019 0.015 0.276 0.111 0.165 0.588 0.451 0.396 0.545 0.211 0.385 0.974 0.918 0.873
d = 5 0.157 0.009 0.032 0.009 0.014 0.006 0.373 0.124 0.193 0.752 0.597 0.512 0.646 0.229 0.501 0.995 0.977 0.962
d = 6 0.160 0.010 0.015 0.014 0.010 0.007 0.402 0.095 0.218 0.859 0.721 0.642 0.709 0.280 0.583 1.000 0.999 0.997

Power against H12 P = 50 P = 200 P = 500

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.120 0.026 0.051 0.041 0.041 0.033 0.516 0.293 0.457 0.792 0.688 0.615 0.896 0.584 0.838 0.999 0.988 0.983
d = 3 0.207 0.023 0.055 0.041 0.023 0.019 0.686 0.334 0.522 0.961 0.901 0.834 0.975 0.631 0.946 1.000 1.000 1.000
d = 4 0.274 0.030 0.041 0.036 0.024 0.017 0.793 0.296 0.628 0.992 0.972 0.947 0.997 0.653 0.992 1.000 1.000 1.000
d = 5 0.326 0.018 0.024 0.046 0.027 0.017 0.881 0.348 0.728 1.000 0.998 0.984 1.000 0.667 0.998 1.000 1.000 1.000
d = 6 0.373 0.015 0.021 0.046 0.023 0.015 0.938 0.394 0.826 1.000 0.999 0.998 1.000 0.681 0.998 1.000 1.000 1.000

Notes: Rejection frequencies of Neyman’s smooth test based on the transformations introduced in Sections 2.3 and 2.4 for the null hypothesis of a
Gaussian CCC-GARCH(1,1). The alternatives are CCC-t-GARCH(1,1) models with 8 (H11) and 4 (H11) degrees of freedom, respectively. All Monte
Carlo simulations are based on 10,000 iterations.
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B.3 Jointly testing for Multivariate Normality and Independence

For this set of simulations, we use similar DGPs as in Section 3.1.2. What is different is

the formulation of the null hypothesis and that we rely on G-ACRs to implement a joint

test of the combined null hypothesis (see Section 2.6.3). The null model is the multivariate

normal distribution given by equation (3.1). We consider the following alternatives:

• Alternative 13 (H13): The data is generated according to equation (3.2). To

simulate dynamic misspecication, we generate predictive densities ignoring the au-

tocorrelation in the conditional mean.

• Alternative 14 (H14): The data is generated by a static model with innovations

following a multivariate t distribution with 8 degrees of freedom.

• Alternative 15 (H15): The data is generated according to equation (3.2) but

with innovations following a multivariate t distribution with 8 degrees of freedom.

To simulate dynamic misspecication, we generate predictive densities ignoring the

autocorrelation in the conditional mean.

• Alternative 16 (H16): The data is generated according to equation (3.2) but

with innovations following a multivariate t distribution with 4 degrees of freedom.

To simulate dynamic misspecication, we generate predictive densities ignoring the

autocorrelation in the conditional mean.

Like above, we consider a fixed estimation scheme with λ = 1/4 and evaluation samples

of size P={50,100,200}. Results are given in Table B.3. All tests are properly sized.

If only distributional deviations from the null model but no dynamic misspecification is

present (H14) the new transformations clearly outperform the established ones also with

the G-ACR approach. When both features are present under the alternative, the new

test and tests based on S clearly outperform the other two tests. The ranking of the

former depend on whether the distributional deviation from the null is moderate (H15,

power is highest for S) or strong (H16, power is highest for the new tests). The new

tests are clearly dominated by tests based on S and interestingly also CS when the only

deviation from the null hypothesis is given by dynamic misspecification (H13); hence in

this—rather unlikely—case there is apparently a price that one has to pay to make tests

order invariant.
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Table B.3: Size and power – Tests using the G-ACR approach

Size P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.051 0.048 0.052 0.050 0.050 0.054 0.051 0.051 0.049 0.049 0.051 0.052 0.053 0.051 0.050 0.048 0.048 0.049
d = 3 0.049 0.051 0.045 0.050 0.051 0.053 0.051 0.048 0.051 0.049 0.052 0.048 0.050 0.053 0.049 0.050 0.047 0.051
d = 4 0.049 0.050 0.051 0.051 0.050 0.051 0.051 0.051 0.051 0.049 0.046 0.050 0.049 0.047 0.051 0.049 0.052 0.052
d = 5 0.051 0.050 0.051 0.050 0.048 0.050 0.053 0.052 0.047 0.049 0.052 0.050 0.050 0.051 0.048 0.052 0.051 0.048
d = 6 0.051 0.053 0.052 0.048 0.049 0.052 0.050 0.048 0.049 0.048 0.048 0.048 0.049 0.044 0.048 0.044 0.049 0.048

Power against H13 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.394 0.265 0.144 0.078 0.070 0.061 0.591 0.379 0.189 0.088 0.093 0.095 0.799 0.523 0.237 0.102 0.097 0.114
d = 3 0.485 0.278 0.104 0.072 0.067 0.073 0.725 0.402 0.123 0.078 0.078 0.080 0.923 0.518 0.131 0.127 0.110 0.115
d = 4 0.593 0.287 0.089 0.099 0.087 0.084 0.808 0.409 0.092 0.107 0.102 0.102 0.977 0.549 0.102 0.101 0.121 0.092
d = 5 0.659 0.294 0.072 0.096 0.088 0.104 0.883 0.388 0.078 0.090 0.094 0.082 0.984 0.527 0.081 0.126 0.117 0.112
d = 6 0.710 0.281 0.068 0.111 0.098 0.113 0.914 0.390 0.071 0.094 0.091 0.097 0.994 0.547 0.068 0.118 0.115 0.133

Power against H14 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.104 0.044 0.065 0.217 0.232 0.181 0.118 0.065 0.087 0.352 0.367 0.289 0.189 0.072 0.108 0.564 0.549 0.415
d = 3 0.101 0.041 0.084 0.350 0.349 0.301 0.143 0.047 0.100 0.562 0.535 0.429 0.296 0.075 0.147 0.811 0.806 0.665
d = 4 0.111 0.036 0.080 0.459 0.458 0.365 0.234 0.054 0.110 0.734 0.713 0.608 0.387 0.057 0.210 0.926 0.925 0.842
d = 5 0.149 0.029 0.083 0.564 0.546 0.464 0.242 0.047 0.126 0.831 0.820 0.727 0.497 0.060 0.259 0.984 0.980 0.942
d = 6 0.161 0.044 0.099 0.680 0.666 0.556 0.281 0.045 0.166 0.895 0.879 0.823 0.566 0.074 0.295 0.996 0.989 0.984

Power against H15 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.376 0.254 0.162 0.262 0.245 0.216 0.585 0.355 0.202 0.373 0.354 0.291 0.794 0.472 0.288 0.547 0.538 0.450
d = 3 0.506 0.237 0.115 0.322 0.326 0.282 0.702 0.330 0.157 0.477 0.487 0.405 0.901 0.426 0.171 0.755 0.748 0.616
d = 4 0.584 0.260 0.097 0.426 0.410 0.353 0.782 0.277 0.119 0.618 0.609 0.536 0.967 0.463 0.159 0.868 0.859 0.793
d = 5 0.650 0.253 0.103 0.475 0.469 0.420 0.861 0.335 0.114 0.736 0.756 0.642 0.987 0.446 0.154 0.939 0.935 0.867
d = 6 0.734 0.275 0.120 0.580 0.564 0.491 0.933 0.337 0.134 0.826 0.800 0.759 0.993 0.461 0.191 0.978 0.966 0.948

Power against H16 P = 50 P = 100 P = 200

S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

d = 2 0.416 0.218 0.191 0.561 0.554 0.469 0.630 0.321 0.274 0.789 0.785 0.692 0.866 0.473 0.434 0.967 0.959 0.918
d = 3 0.539 0.224 0.183 0.735 0.720 0.640 0.780 0.273 0.282 0.931 0.934 0.878 0.959 0.400 0.461 0.999 0.996 0.991
d = 4 0.633 0.235 0.176 0.822 0.816 0.720 0.845 0.277 0.291 0.972 0.971 0.948 0.991 0.352 0.514 1.000 0.999 0.999
d = 5 0.719 0.224 0.193 0.897 0.901 0.820 0.942 0.280 0.333 0.998 0.995 0.969 0.999 0.389 0.655 1.000 1.000 1.000
d = 6 0.790 0.218 0.228 0.936 0.921 0.862 0.959 0.284 0.380 0.998 0.996 0.993 0.999 0.397 0.696 1.000 1.000 1.000

Notes: Rejection frequencies for joint tests of uniform distribution and independence of UW
t using the G-ACR approach described in Section 2.6.3.

All Monte Carlo simulations are based on 10,000 iterations. H13 involves only dynamic misspecification. H14 involves only a misspecification of the
distribution. H15 and H16 involve dynamic misspecification plus a deviation from the null distribution.
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