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1 Introduction

In the early days of the Great Depression, soft demand and the recent discovery of a large deposit

in East Texas (the so-called “Black Giant”) combined to push many firms to the brink of failure.

This situation was complicated by the tension between larger firms, often referred to as majors,

and smaller firms, often called independents. In particular, the majors struggled to rein in what

they saw as “overproduction” on the part of the independents. Ultimately, the majors turned to

the government for help; in response, the Texas Railroad Commission set up a quota system.

Notably, these quotas were biased towards small producers (Cave and Salant, 1995, p. 98).1 The

difficulty suffered by majors in successfully restricting output was echoed in the 1980s, when the

Organization of Petroleum Exporting Countries (OPEC) struggled to prop up oil prices. As new

sources of supply entered the market, particularly from the North Sea, OPEC tried to promulgate

a quota system. It is instructive to consider the pattern of quotas and production associated with

the largest player – Saudi Arabia – and two smaller players – Iran and Venezuela. The Saudis

were allocated a quota of 7,650 barrels per day (bpd) in 1982, and produced only 6,961 bpd. Iran

and Venezuela were allocated quotas of 1,200 bpd and 1,500 bpd, respectively; they each over-

produced, delivering outputs of 2,397 and 1,954 bpd, respectively. In response, OPEC adjusted the

three countries’ quotas for 1983, to 5,000 bpd for Saudi Arabia – which they again honored – and

2,400 bpd for Iran and 1,675 bpd for Venezuela, which they again violated.2

1 The majors first looked to the Federal government for assistance; this resulted in passage of the “National
Industrial Recovery Act”. When this act was ruled to be unconstitutional, the majors hit on a scheme whereby each
large firm would buy up output from smaller firms, remove it from the market (holding it in stockpile reserves), in
order to prop up profits. This in turn lead to a challenge under the Sherman Antitrust Act, with an ultimate finding
against the majors United States v. Socony-Vacuum Oil Co., 310 U.S. 150 (1940), reversing 105 F.2d 809 (7th Cir.
1939), reversing 23 F. Supp. 937 (W.D. Wisc. 1938)).

2 Although Iran’s over-production was minor – they produced 2,454 bpd – Venezuela’s substantially exceeded
their quota, producing 1,852 bpd. See Adelman (1995, Ch. 4) for discussion.
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Many oligopoly markets have producers of different sizes. Examples of this phenomenon

include soft drinks, where private-label soft drink producers are loath to cooperate with well-

known branded sellers like Coke and Pepsi; similarly, private brand cereals generally undercut

prices charged by Kellogg, General Mills, and Post. In both examples, private-label sellers have

significantly smaller market shares than their better known counterparts. In the American steel

industry, the major seller – U.S. Steel – promulgated a scheme that favored its smaller rivals for

decades, allowing them increased market share (Adams and Mueller, 1982).

These examples all point to the difficulties associated with crafting a successful cooperative

agreement to raise profits in asymmetric markets – where sellers differ in size, and that the smaller

sellers are often the source of difficulties, demanding relatively larger shares or failing to honor

any arrangements. Because any arrangement requires firms agree on the division of any gains, and

because marginal output reductions yield different impacts on firms’ relative profits, determining

the distribution of these gains can be a thorny problem (Schmalensee, 1987).

One might imagine firms varying in size for a variety of reasons: they could have different

assets, or they might have access to different technologies; in any event, they are likely to exhibit

asymmetries in costs. My goal in this paper is to shed light on the behavior of heterogeneous firms,

which I interpret as resulting from different marginal costs. To this end, I analyze data from an

experimental analysis based on a relatively simple linear-quadratic payoff structure. I find that sub-

ject choices in the presence of heterogeneous costs are significantly closer to the (non-cooperative)

Cournot/Nash equilibrium than are choices in a symmetric structure. Moreover, smaller sellers

(i.e., those with greater marginal costs) appear to be “tougher negotiators”, in the sense that their

observed market shares exceed those from the Cournot/Nash equilibrium. Indeed, the evidence

from these experimental data shows that the small agent making output choices chooses outputs
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slightly above the Cournot/Nash level and the large agent chooses outputs below the Cournot/Nash

level. In other words, it is the small producer that spoils the cooperative efforts of rivals.

This outcome can not be explained by standard theoretical treatments, as those generally

allocate a larger share of market output to the low-cost firm.3 But this result is broadly consis-

tent with other experimental papers. For example, while the Equity, Reciprocity and Competition

(ERC) model coincides with the Cournt/Nash equilibrium in a symmetric structure, it may not do

so with asymmetric costs because “the [low cost player] may choose a smaller output in order to

boost relative payoff” (Bolton and Ockenfels, 2000, p. 181). The outcomes I observe from these

experimental data have this flavor: while the typical higher-cost player’s long-run output is close

to its Cournot/Nash level, the typical lower-cost player’s output is smaller than the Cournot/Nash

level.4 By contrast, behavior in the symmetric design is more in accord with the “win continue,

lose reverse” model discussed by Huck et al. (2003) or the “trial and error” approach suggested by

Huck et al. (1999) and Huck et al. (2004).5

The paper is organized as follows. Section 2 presents a theoretical framework for coop-

erative arrangements in the use of a common property resource. I suggest a two-phase strategy,

based on a cooperative, or “carrot”, action that delivers higher payoffs to parties; deviation from

the carrot phase triggers a punishment, or “stick”, regime. The ability of this strategy to deliver

improvements, via reduced harvesting efforts, requires that two incentive constraints be satisfied –

3 See, for example, Schmalensee (1987, Table 1), which shows that the increased profit earned by the larger cost
firm is smaller than would obtain under “proportional reduction” – in which case the firms’ shares would correspond
to the Cournot/Nash levels.

4 It is also possible that it might take the high-cost player longer to figure out the potential gains from cutting
output, as suggested by Friedman (1983). While I can not rule out this explanation, the econometric model I employ
below is sufficiently flexible as to pick up evidence of tendencies in that direction, and the results I find do not point
towards such.

5 Shapiro (1980) provides an alternative conceptual approach that models convergence from an initially non-
collusive situation to a collusive regime.
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one for each player. I argue that the incentive constraint for the larger player is the more likely to

bind, thereby requiring the arrangement to be disproportionately more favorable to the large player.

In particular, such a regime would afford the large player a larger share than would obtain under

a pro-rata sharing rule; this fact makes agreement less probable. I then investigate the empirical

plausibility of these predictions, drawing on previously published experimental work. Section 3

offers a discussion of that experimental structure, while section 4 offers empirical results based on

econometric analysis of the data. Section 5 offers discussion.

2 Modeling cooperation in an asymmetric industry

To flesh out the theoretical backdrop to the experimental design discussed below, I consider a ho-

mogeneous goods duopoly, with firms i = 1,2 that produce outputs qi, patterned after Schmalensee

(1987). Inverse market demand is p = a−bQ, where market output Q = q1+q2. Firm i bears costs

ciqi, i.e., it faces constant marginal costs ci. To fix ideas, I let firm 1 be the low-cost firm, and set

c1 = 0. In a symmetric structure c2 = 0, while in an asymmetric structure c2 > 0. It is well

known that the Cournot/Nash equilibrium is such a setting entails outputs qN
i =

a−2ci+c j
3b with prof-

its πN
i = b

(
qN

i
)2. Both firms employ a discount factor δ to evaluate payoffs one period into the

future. Mildly abusing notiation, I denote the output selected by firm k = 1,2 in period t as qkt .

To support a cooperative regime (qc
1,q

c
2) let us suppose the firms each play the grim strategy:

firm i chooses qc
i in period 1; in any subsequent period t > 1, i chooses qit = qc

i if qks = qc
k,k = 1,2

in all previous periods s < t, otherwise choose qkt = qN
k . With this strategy, there are two subgames

of note: those where no player has deviated in any previous period, and those where one player
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has deviated in some previous period.6 By design, the strategy dictates a best-reply to the rival’s

strategy in the latter type of subgame (i.e., choosing the Cournot/Nash output is by definition a

best-reply to the Cournot/Nash output), so the combination that obtains when both firms play the

grim strategy induces a subgame-perfect Nash equilibrium when the strategy pair generates a Nash

equilibrium. That in turn requires the present discount flow of profits associated with honoring the

strategy, V c
i , not be smaller than the present discounted flow of profits associated with defecting,

V d
i . The former is well known to be V c

i =
πc

i
1−δ

. Since defection will trigger reversion to the

Cournot/Nash equilibrium, and play will stay there forever after, the present discounted value of

defection is easily seen to be V d
i = πd

i +
δ

1−δ
πN

i , where πd
i are the profits earned by selecting the one-

shot best-reply to the rival firm’s (cooperative) output. There are many combinations of outputs

(qc
1,q

c
2) that satisfy V c

i ≥V d
i ; the boundary, where the firm is just willing to play the grim strategy,

is defined by V c
i =V d

i . In the linear demand, constant marginal cost framework adopted here, this

frontier is implicitly defined by a quadratic relation between qc
i and qc

j. I refer to this relatiOn as

the “incentive constraint” in the subsequent discussion.

Figure 1 illustrates the general principle. Here, I plot the incentive constraints for each of

the two players. Choices for the larger player are plotted on the x−axis, while choices for the

smaller player are plotted on the y−axis. The incentive constraints intersect at two places: the

one-shot Cournot/Nash equilibrium (the point farthest to the northeast) and the most cooperative

outcome (the point farthest to the southwest). Also indicated in this diagram are combinations

with the same ratio of outputs as in the Cournot/Nash equilibrium, represented by the dashed

line labeled “pro-rata sharing”. The key point is that the pro-rata sharing locus crosses the large

6 If both players defected in the previous period, the typical convention is to treat such a period as if no defection
occurred (Fudenberg and Tirole, 1991).
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players incentive constraint at a point well above the most cooperative regime, and so in general

one might expect the large player to press for sharing rules that are seemingly disproportionately

to its advantage. If, as seems intuitive, the smaller player insists on a more “equitable” sharing

arrangement, it will be difficult to craft an agreement that exerts much influence on the levels

of activity. In particular, it seems unlikely that a voluntary agreement will do much to reduce

aggregate production.

3 The Experimental Data

To evaluate the predictions of the model I above, I make use of experimental data from Mason et al.

(1992), which contains details on the execution of the experiment. Here I restrict the discussion to

details regarding the experimental designs.7

Subjects were placed in one of two market structures, each of which was based on linear

demand and constant marginal costs. In both designs, a = 4,b = 1
24 ,c1 = 0. In the symmetric

design, both players have marginal costs c1, while in the asymmetric design the “large” firm has

marginal costs c1 and the “small” firm has marginal costs c2 =
1
2 . The Cournot/Nash equilibrium

outputs are then qN
1 = qN

2 = 32 in the symmetric design and qN
1 = 36,qN

2 = 24 in the asymmetric

7 A copy of the experimental instructions is available in the appendix. Some key aspects of the experimental
design are as follows: Subjects were recruited for a length of time 30 to 45 minutes greater than an experimental
actually ran. After the instructions were read, a practice period was conducted. A monitor randomly chose the
counterpart value while all subjects simultaneously selected their row value from a sample payoff table. Then, half
of the subject pool was moved to another room. Each person was matched with an anonymous opponent in the other
room. Subjects were told they would be paired with the same person for the duration of the experiment. In each
market period the subjects wrote their choice on a record sheet and a colored piece of paper. These colored slips were
then exchanged by a monitor, and earnings for the period were tabulated from the payoff table. They had many more
record sheets and colored slips of paper than required for a session. Each subject was given a starting cash balance
of $5.00 to cover potential losses, and was told that if their balance went to zero they would be discussed from the
experiment with a $2.00 participation fee (the remaining participant would then be allowed to operate as an unfettered
monopolist). Although it was feasible for a lost-cost player to dispatch a high-cost opponent without suffering losses,
this never happened.
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design. Profits were presented to subjects in the form of payoff tables which show the profit

accruing from various output combinations. Subjects were told the experiment would run at least

35 periods, with a random termination rule (corresponding to a 20% chance that the experiment

would be stopped) applied at the end of each period starting with period 35. Thus, the design

mimics a repeated game with discount factor 0.8.

I use data from six experimental sessions. In three sessions based on the symmetric design,

a total of 38 subjects (19 pairs) made choices for between 35 and 46 periods. In three asymmetric

sessions, a total of 50 subjects (25 pairs) made choices for between for 36 to 46 periods. These data

then induce an unbalanced panel; to avoid the potential for overly large influence on the results by

subject pairs who were particularly fast at making decisions, or lucky in terms of the sequence of

random termination actions, I restrict attention to the first 35 periods in the econometric analysis

discussed below.

A visual summary of the experimental data is provided in Figures 2–4. Figure 2 shows the

average choices made by subjects in the symmetric design, which I refer to as “LL.” The Figure

includes two reference levels of note: 32, the Cournot/Nash equilibrium level, and 24, the joint

profit maximizing choice, Average choices tend to lie between these two reference levels, though

closer to the Cournot/Nash output. Figure 3 compares average market choices in the two designs.

To facilitate comparison, I plot the choices as fractions of the market Cournot/Nash equilibrium

levels. The average market choices for the symmetric design are shown by the solid line, while

the average choices for the asymmetric design are shown by the dashed line. On balance, the

symmetric choices are a smaller fraction of the Cournot/Nash equilibrium output. Figure 4 explores

this latter pattern at the individual player level. Here, I plot the average choices for L (low cost)

players as the solid line, with the average choices for H (high cost) players as the dashed line. The
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panel on the left shows the levels of choices, while the panel on the right shows these choices as

fractions of the respective Cournot/Nash equilibrium choices. That H player choices are smaller

than L player choices, as depicted in the left panel, is to be expected in light of the cost disparity.

But the interesting feature here is that H player choices are a larger fraction of the Cournot/Nash

equilibrium choice, on average, than are the L player choices. This pattern is at odds with the

theoretical design articulated above, and indeed earlier conceptual analyses; this disparity merits

deeper investigation, a task I undertake with a formal econometric analysis in the next section.

4 Econometric Analysis

The econometric model I employ treats the database as a pooled cross-section/time series sample.

In this vein, I analyze choices made in each period for each of the subjects in a particular design,

and analyze systematic differences in behavior to asymmetries in subjects’ payoff functions.

I assume that an individual’s choice in period t is related to the rival’s choice in period t -

1, via a dynamic reaction function; this framework is similar to the empirical model discussed in

Huck et al. (1999, eq. (4)). Because human subjects are likely to be boundedly rational, I allow

for noise in this relation. Moreover, as there is a potential for learning or signaling (Mason and

Phillips, 2001), the noise affecting the dynamic reaction function is likely to be serially correlated.

Correspondingly, I allow the disturbance to follow an autoregressive process; in that way, the

dynamic strategies can be rewritten as including N lags:

qit = ϕi0 +Σ
N
n=1 µnhqi,t−n +Σ

N
n=1 νnhq j,t−n +ωkt +ηit , (1)
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where qit is player i’s period t choice, j is i′s rival, k indexes the players’ subject pair, h = L

(respectively, H) if player i is low (respectively, high) cost, and I allow for individual-specific fixed

effects (via ϕi0) and pair-specific variance (i.e., random effects, via ω2
kt). The individual-specific

residual, ηit , is assumed to be white noise. I assume there is no cross-equation covariance between

subject pairs. In the results reported below, I allow for N = 3 lags; with that structure the residuals

display no serial correlation.8

I estimate the parameters in eq. (1) using random effects, including pair-specific dummy

variables, while imposing robust standard errors (equivalently, clustering at the subject pair level).

This approach yields consistent, asymptotically efficient estimates (Fomby et al., 1988).

Results from this regression analysis are collected in Table 1. Here I display parameter

estimates for the asymmetric structure in regression 1 (the second column) and for the symmetric

structure regression 2 in (the third column). To economize on space, I denote the explanatory

variables in regression 2 as xnL and ynL,n = 1,2,3 (though all subjects in that treatment were type

L). In both regressions, subjects tend to respond positively to their own past choices and negatively

to their rival’s past choices. In addition, in the asymmetric design subjects with the high marginal

cost, i.e., subjects playing the role of high cost firms, choose markedly smaller values than do low

cost subjects.

Once consistent and efficient estimates of the parameters are obtained, one can develop

estimates of the carrot by considering the deterministic analogues to eq. (1). If agents choose the

steady state values, q∗L and q∗H , for several consecutive periods this gives a system of two equations

8 The approach I took here was to collect the residuals eit and then regress residuals at time t on residuals from
time t− 1; i.e., eit = ρeit−1 + uit . Observing a statistically important parameter estimate ρ̂ indicates the presence of
serial correlation. In the variant with N = 3 the parameter estimate ρ̂ was not statistically significant (ρ̂ = .178; t-
statistic = 1.44). I also estimated a variant of equation 1 with N = 2 lags; the residuals from that regression did display
serial correlation (ρ̂ = .196; t-statistic = 7.99). I conclude from this exercise that the appropriate version of equation 1
has N = 3.
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in two unknowns:

q∗L = ϕ0L +µ1Lq∗L +µ2Lq∗L +µ3Lq∗L +ν1Lq∗H +ν2Lq∗H +ν3Lq∗H , (2)

q∗H = ϕ0H +µ1Hq∗H +µ2Hq∗H +µ3Lq∗H +ν1Hq∗L +ν2Hq∗L +ν3Lq∗L, (3)

where ϕ0L (respectively, ϕ0H) refers to the average value of ϕ0i across all L (respectively, H)

subjects. Define µ̃ = µ1 + µ2 + µ3 and ν̃ = ν1 +ν2 +ν3. Solving the system of equations (2)–(3)

yields:

q∗L =
(1− µ̃)ϕ0L + ν̃ϕ0H

(1− µ̃L)(1− µ̃H)− ν̃2 , (4)

q∗H =
ν̃ϕ0L +(1− µ̃)ϕ0H

(1− µ̃L)(1− µ̃H)− ν̃2 . (5)

Inserting the estimates for the relevant parameters (taken from Table 1) into eqs. (4)–(5)

then yields maximum likelihood estimates of the underlying equilibrium values.9 Here, the resul-

tant values are q∗L = 33.21 and q∗H = 24.51 for the asymmetric structure. These outputs are close to

the one-shot Nash combination, indicating that subjects in the asymmetric structure were unable to

effect much of a reduction in output. Moreover, most of the burden is carried by the larger player,

as q∗L is almost three units below player L’s Nash choice, while q∗H is slightly larger than H’s Nash

choice.

A similar approach may be used to estimate the carrot output in the symmetric structure.

9 See Fomby et al. (1988) for details. Dynamic stability requires that all of the µ and ν parameters, as well as
1− µ̃h and 1− ν̃h,h = L,H, are also less than one in magnitude – which they are here. This is a substantive concern,
for dynamic stability allows one to interpret the carrot choices derived in eqs.eqs. (4)–(5) as equilibrium choices.
Covariance information from the maximum likelihood estimates of the a’s and b’s can similarly be used to construct
consistent estimates of the covariance structure for the steady state values (Fomby et al., 1988, Corollary 4.2.2).
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Here, however, the regression equation is

qit = ϕi0 +Σ
N
n=1 µnqi,t−n +Σ

N
n=1 νnq j,t−n +ωkt +ηit , (6)

as all agents are type L. Accordingly, the steady state choice for subjects in the symmetric design

is

q∗L =
ϕ0

1− µ̃− ν̃
, (7)

where as above µ̃ = µ1 + µ2 + µ3 and ν̃ = ν1 + ν2 + ν3, and where ϕ0 refers to the average value

of ϕ0i across all subjects. Using the parameter values from Table 1, one obtains q∗∗L = 29.22.

Comparing this estimate against the estimate for q∗L, I conclude that subjects in the symmetric

structure were more successful at reducing output.

A clear implication of these results is that, at least in these experimental markets, it is

difficult for the low-cost player to induce the high-cost player to act cooperatively. This result

comports to the predictions from the theoretical analysis above.

5 Discussion

This paper highlights the importance of asymmetry in compromising cooperative voluntary behav-

ior in common property resource use (Scherer and Ross, 1990). Both the analytics, and experi-

mental evidence, point to small sellers as the root cause of these difficulties. While a cooperative

regime would require tilting extraction in the direction of the larger firm, small sellers resist. This

intransigence ultimately undercuts the ability to form an arrangement that limits harvesting.

There is some disagreement in the literature as to whether the difficulty for parties to con-
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struct voluntary cooperative arrangements, such as field unitization, warrants some form of gov-

ernment intervention. Libecap and Wiggins (1985) take the position that difficulties in forming

voluntary unitization agreements may reflect the importance of asymmetric information. To the

extent this explanation carries weight it would argue against government intervention, for example

by mandating unitization agreements. By contrast, Weaver (1986) offers arguments in support of

government imposed unitization arrangements. It is interesting to note that two of the arguments

she offers are: that “profitable obstructionism” can easily undermine voluntary unitization, and

the importance of “mistrust of the majors” (Weaver, 1986, p. 101). Placed in the context of my

analysis, these features point to the likely difficulty of forming an arrangement that will preclude

opportunism, particularly if such an arrangement is perceived to disproportionately favor the larger

firm.

One explanation for the results articulated above is that subjects’ utility is based on both

the payoffs they receive and the payoffs their rival receives. For example, if subjects bear disutility

when there is disparity in payoffs, then subject i’s utility can be expressed as

Ui(πi,π j) = πi + γ|πi−π j|.

Denoting the low-cost player as subject 1, and the high-cost player as subject 2, and assuming

π1 > π2, the two subjects’ utilities can be written as

U1 = (1− γ)π1 + γπ2;

U2 = (1+ γ)π2− γπ1.

12



Grafting such a scenario onto the linear-quadratic framework introduced above, the one-shot Nash

equilibrium would be

q̃∗1 =
a+ c− γ(a− c)

3−4γ2)b
; (8)

q̃∗2 =
a−2c+aγ

3−4γ2)b
. (9)

It is easy to see that this pushes the Nash equilibrium towards a smaller (respectively, higher)

output for the low-cost (respectively, high-cost) player. It also induces a similar effect on the

quasi-cooperative player.

An alternative explanation for the experimental outcome I describe in this paper is that

small sellers are less patient, i.e. they use a smaller discount factor. As in the previous adaptation,

this change will induce the high-cost (respectively, low-cost) player to select a larger (respectively,

smaller) output in the quasi-cooperative arrangement than is predicted in the model with a common

discount factor.
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6 APPENDIX: EXPERIMENTAL INSTRUCTIONS

This is an experiment in the economics of market decision making. The National Science Foun-

dation and other funding agencies have provided funds for the conduct of this research. The in-

structions are simple. If you follow them carefully and make good decisions you may earn a

CONSIDERABLE AMOUNT OF MONEY which will be PAID TO YOU IN CASH at the end of

the experiment.

In this experiment you will be paired at random with one other person known to you as ”the

other participant”. The identity of this person will not be revealed during the experiment, nor will

this person know who you are.

Over several market periods each of you will choose at the same time values of X in a table.

The two selected values of X will then be used to determine the payments made to you and the

other participant.

Both of you will be selecting X from tables consisting of rows and columns. The values

YOU may select are written down on the left hand side of the table and are row values. You will

always pick a row value. Treat the values selected by the other participant as column values. The

intersection of the row and column value determines your earnings for that period. Earnings are

recorded in a fictitious currency called tokens. At the end of the experiment tokens are converted

into cash at the exchange rate of 1000 tokens= $1.00.

As mentioned, all earnings will be paid to you in cash at the end of the experiment. At the

beginning of the experiment you will be given an initial balance of 3,000 tokens ($3.00). Earnings

will be added and losses will be subtracted from this balance. If your balance should go to zero or

become negative, you will be excused from the experiment and paid a participation fee of $5.00.
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This fee will be paid to everyone and cannot be influenced by what happens during the session. In

the event the other participant’s balance becomes zero or negative, he or she will be excused from

the experiment and for the duration of the experiment your column value will be fixed at zero.

A sample payment table is provided below. Down the left side of this table you may select

values from 0 to 20. The other participant also selects values from 0 to 20, which become column

values to you. For example, if you pick 8 and the other participant picks 10, then at the intersection

of row 8 and column 10 the entry 376 represents your earnings in tokens. Or, you might have

picked 15 and the other persons might have chosen 19. At the intersection of row 15 and column

19 your earnings would be -33, and you would take a loss.

During each market period you will be asked to keep a record of all choices and earnings.

There is a sample record sheet at the end of these instructions. It is filled in for two market periods

labeled Sl and S2. You will be given several record sheets with many more market periods than

you will need in the experiment. Everyone will receive a beginning balance of 3000 tokens as

shown in the first period of row 2. In row 3 you record your choice of X. Suppose you choose 8, as

discussed above, this value is entered on row 3 and also written on a red or blue slip of paper with

the market period shown. The color of your payment table is the same as the color of the paper

on which you write your choices. Once you have made a choice, an experimenter will take your

choice and then deliver to you on a different colored slip of paper your counterpart’s choice. You

can then complete entries (4) - (6), recording the value selected by the other participant (4), and

your earnings from the payment table (5). Since the other participant picked 10 in this example,

your earnings in row 5 are 376. Your balance in row (6) is the sum of entries on row (2) and (5) or

3376.

This balance is carried to the top of the next column in period S2. In period S2, the sample
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record sheet shows your choice of 15 while the other person chooses 19. By looking at the inter-

section of row 15 and column 19, it can be verified that you earn -33. Thus your balance in this

market period falls to 3343 tokens.

Are there any questions about this procedure?

SUMMARY

1. Each period you must select a value for X from the table. Your choice is always a row value.

2. Your earnings from the table will depend on the value you choose and what the other person

chooses.

3. The payment you receive can be found at the intersection of the row value you choose and

column value chosen by the other participant in the table.

4. Record your choices and those of the other participant on a record sheet write down your

earnings and keep a record of your total balance as shown on the record sheet.

At this time we will do a practice trial with the Sample Payment Table. Choose a value of X

between 0 and 20 and record it on the Sample Record Sheet for period S3. One of the experimenters

will act as the other participant, and randomly choose the other participant’s value for X. Based on

your choice and that of the other participant, determine your earnings from the Sample payment

Table and fill out the record sheet for the third sample period. One of the experimenters will come

to check your record sheet. If you have any questions on how to fill out the sample record sheet or

how to calculate earnings, the experimenter can answer your questions.
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Figure 1: Asymmetric Incentives to Cooperate.
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Figure 2: Experimental results: symmetric firms.
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Figure 3: Experimental results: symmetric vs. asymmetric markets.
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Figure 4: Experimental results: asymmetric firms.
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Table 1: Random Effects Regression Results: Asymmetric vs. Symmetric Experimental Designs.

asymmetric symmetric
xlL -0.264*** -0.327***

(0.069) (0.074)
xl2L 0.151 0.026

(0.107) (0.072)
xl3L -0.040 -0.131***

(0.050) (0.030)
ylL 0.253** 0.210***

(0.099) (0.060)
yl2L -0.033 -0.022

(0.070) (0.040)
yl3L 0.075 0.103**

(0.066) (0.046)
xlH -0.050

(0.055)
xl2H 0.100

(0.141)
xl3H -0.059

(0.064)
ylH 0.182***

(0.065)
yl2H -0.141***

(0.048)
yl3H 0.029

(0.048)
constant 21.064*** 42.757***

(4.233) (4.300)
QL∗ 33.21 29.22

(1.986) (0.945)
QH∗ 24.51 —

(4.312)
N 1600 1216
R2 0.5375 0.4350
All regressions include individual-specific dummy variables
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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