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Abstract 
 
The price-setting behaviour of manufacturing plants is examined using a large panel of monthly 
surveyed plant- and product-specific prices. The sample shows a high frequency of zero 
changes, relatively small price changes, and a strong seasonal price-change pattern. The 
intermittent feature of price changes is modelled with thresholds which are smaller in January, 
and a quadratic loss function associated with the distance from the target price. The findings 
show statistically significant pricing thresholds, which are only two-thirds in January, and 
partial adjustment parameters implying that 60% of the deviation between the target price and 
the current price is closed each month. 

JEL-Codes: E300, E310, E370. 

Keywords: price setting, micro data, simulated method of moments. 
 
 
 
 

Øivind A. Nilsen* 
Norwegian School of Economics 

Department of Economics 
Norway - 5045 Bergen 
oivind.nilsen@nhh.no 

Magne Vange 
Norwegian School of Economics 

Department of Economics 
Norway - 5045 Bergen 

magnevange@gmail.com 
 

  
  

 
*corresponding author 
 
 
May 2018 
We would like to thank Wilko Letterie, Matthias Meier, Dominik Menno, and Michael Weber, as well as 
participants at RES 2017 in Bristol, the Nordic Econometric Meeting 2017 in Tartu, EARIE 2017 in 
Maastricht, SAEe 2017 in Barcelona, and at the 12th Workshop on Macroeconomics and the Business 
Cycle at Ifo Institute, Dresden Branch. The paper has also benefited from thorough discussions with and 
the assistance of Eivind Bøe when testing out the ideas using annual data. We are also grateful to Magne 
K. Asphjell for providing help with preparing the dataset. Part of this work was done while Nilsen visited 
the Institute for Macroeconomics and Econometrics— University of Bonn, whose hospitality is 
gratefully acknowledged. The usual disclaimer applies. 



1 Introduction

Most modern macroeconomic models assume price stickiness, i.e., that price setters

are faced with frictions, without sufficient knowledge about the underlying microe-

conomic implications. This calls for a further empirical assessment of the theoretical

premises in the macroeconomic models we use today.

A common method for analysing price stickiness is to investigate the role of

thresholds in the pricing patterns of individual firms. In this literature, the (S, s)

rule, proposed by Sheshinski and Weiss (1977), plays an important role. These au-

thors argue that firms kept the price fixed within certain bounds, denoted (S, s). As

a result, prices exhibit a pattern of inaction followed by large price changes, so called

“zeroes and lumps”. The authors argue that this pattern is caused by the fact that

changing the price induces a fixed cost for the firm, which is referred to as the menu

cost. The (S, s) methodology has been adopted and further extended by many and,

thereby, represents a large share of the current price stickiness literature (see, e.g.,

Caballero and Engel, 1993; Ratfai, 2006; Alvarez et al., 2011; Dhyne et al., 2011). An

essential assumption in these models is that adjustment costs are independent of the

size of the price change.

One aspect to consider when searching for thresholds in pricing patterns is whether

the thresholds are symmetric, i.e., if the magnitudes of the thresholds are the same

upwards and downwards. A study on microeconometric evidence from Switzerland

by Honoré et al. (2012) finds a smaller upper than lower threshold. According to this

study, price changes are more likely to be positive than negative, ceteris paribus. The

study ignores, however, the magnitude of price changes, because only the frequency

and the duration of inaction are accounted for. Loupias and Sevestre (2012), on the

other hand, include the magnitude of price changes, and find that when firms face cost

variations, they appear to adjust their prices more often and more rapidly upwards

than downwards.

1



The counterpart of the (S, s) methodology in the price-stickiness literature assumes

that the adjustment cost is a convex function of the size of the price change, i.e., that

greater changes lead to higher costs (Rotemberg, 1982). Whereas the assumption

of fixed costs implies that one should observe large and infrequent price changes,

the convex-cost assumption implies the opposite: frequent changes of small size. As

emphasized by Zbaracki et al. (2004), most of the literature finds evidence supporting

the former. However, if there are only fixed and not convex price-adjustment costs,

we fail to see why the pricing data show a relatively high proportion of small price

changes.1 Earlier research with (S, s) pricing rules has, in part, failed to include small

price changes.

As highlighted by Klenow and Malin (2011), access to good microeconomic data

is crucial, and is a common problem in all empirical research related to pricing. The

basis of our analysis is monthly collected micro price data for Norwegian manufactur-

ers. Although consumer prices are relevant for the monitoring of inflation by central

banks, the prices at the producer level are most often modelled into the macroeco-

nomic policy models (Vermeulen et al., 2012). Accordingly, knowledge about producer

price adjustments is essential to improve macroeconomic modelling and central bank

policies.

In this paper, we propose a model where the adjustment towards the new price is

conditional on both thresholds and partial adjustments. Thus, our model—in contrast

to many other models—therefore allows for both inaction and inertia in pricing. The

hypothesis is that there are fixed costs associated with setting a new target price.

There are also two convex components: one associated with deviation from the new

target price and another that increases with the scale of the price change. These

1The study of Eichenbaum et al. (2014) on CPI data suggests that the observation of small
price changes is largely due to measurement errors and quality adjustments, and should therefore be
neglected. However, that study’s findings are contradicted by a vast majority of empirical research
suggesting that small price changes are relatively common (Klenow and Kryvtsov, 2008; Bhattarai
and Schoenle, 2014; Midrigan, 2011; Wulfsberg, 2016).
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latter convexities make the firm favour slow adjustments and small price changes, and

might be due to convexity of customer and managerial costs. Customer costs because

a larger upward price change may lead customers to search for more attractive outside

offers. When it comes to managerial coosts, Zbaracki et al. (2004) observe that:

“The greater the proposed price change, the more people are involved, the more

supporting work is done, and the more time and attention is devoted to the price

change decisions” (see their pp. 523-524)

Thus, our model sets out to explain both the occurrence of price adjustments

of different sizes, and inaction. The model is tested on a dataset based on survey

data behind the commodity price index for the Norwegian industrial sector (PPI).

These data include monthly price quotations for a representative sample of Norwegian

plants. In contrast to, for instance, Ratfai (2006), whose sample includes eight outlets

only, our sample includes more than 350 different producers. The data show a high

frequency of price change inaction, by relatively small price changes when changed,

and by a much higher occurrence of price changes in the beginning compared with the

end of a year. To analyse the intermittent nature of the model, a simulated method

of moments is used. This advantages estimations based on, for instance, maximum

likelihood methods, which are often based on quite restrictive assumptions. The

estimations reveal thresholds such that prices are changed only if the deviations from

the underlying frictionless prices are approximately 15%. When changed, the prices

are changed rather quickly with only 10% of the initial gap existent after three months.

The asymmetry between upward and downward rigidities is minor but statistically

significant. Finally, the thresholds in January are approximately two-thirds compared

with the other months.

The remainder of the paper is organized as follows. Section 2 describes the data,

whereas the model, method, and moments are presented in Section 3. Section 4

reports and discusses the results and Section 5 gives some concluding remarks.
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2 Data

The basis for our empirical analysis is the survey data behind the commodity price

index for the Norwegian manufacturing industry (PPI) obtained from Statistics Nor-

way (SSB).2 The data are collected on a monthly basis for a selection of Norwegian

plants.3 Plants with more than 100 employees are included in the sample at all times,

and the selection of producers is updated continuously, securing a high level of relev-

ance (SSB, 2015). Plants are repeatedly surveyed, participation is compulsory, and

Statistics Norway revises the data regularly to detect measurement errors and non-

conformity.4 Considering this, and that the PPI is an important tool for governing

bodies, it is fair to assume that the data are representative for Norwegian producers

and of high quality.

The initial dataset contains price observations ranging from year 2002 until 2009.

In the construction of the final dataset for this study, plants with observations for

less than 24 months have been omitted, as well as plants with less than 10 employees.

Furthermore, only years with observations for all months in a given year are included.

Due to the implementation of a new sampling procedure at Statistics Norway, there

was a clear shift in the reported price change frequency in 2004. We therefore discard

the data prior to January 2004. Furthermore, plants related to the energy sector

(oil, gas, electricity, etc.), and mining and quarrying have been left out of the sample

because they are known to have an abnormally high adjustment frequency. The ori-

ginal dataset contains prices for both domestic and export markets, but to prevent

interference by exchange- rate movements and international competition, export mar-

ket prices are omitted. Additionally, because very large price changes are likely to

2See SSB (2015) for more information about the PPI.
3In the remainder of the paper, we use the terms plant, firm, producer, and establishment

interchangeably.
4One plant might be recorded with one or multiple products. It should be noted that for data

collection purposes, firms may be targeted for some, but not all of the products they manufacture.
If Statistics Norway regards a subset of the products to be important to obtain an accurate estimate
of the price index, data will be requested for these ones only.
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reflect changes to design or quality of the product rather than to common pricing

decisions, price growth observations outside the [0.01, 0.99] interval we consider to be

new products. Finally, we focus on single-plant firms only.5 This leaves us with a final

sample of 76,804 observations for 1,676 products over the years 2004–2009 covering

21 two-digit SIC2002 industry codes.

2.1 Descriptives

[Figure 1 "Distribution of Price Change Rates" about here]

Figure 1 shows the proportion of observations in different price change intervals,

both for the actual data and for the later preferred simulated model (black and grey

columns, respectively). Observations with price changes with absolute values less than

0.005 represent the majority of the dataset (80%).6 In other words, most observations

are characterized as price change inaction (later, we refer to this as the “zero price-

change” interval). This indicates the existence of fixed or non-convex price-adjustment

costs. At the same time, we observe a substantial proportion of small price-change

observations, i.e. 0.5% <
∣∣∣4p
p

∣∣∣ ≤ 5.0%. If there is only a fixed cost independent of

the magnitude of the price change, one would not expect to see these small price

changes.7 This observation could, however, be an indication of convex adjustment

costs, which put a penalty on large adjustments and, thereby, force the producers to

adjust gradually. The observation of several periods of inaction, combined with series

of small price changes, may tell a story of firms being faced with both non-convex

and convex price adjustment costs.
5With this choice, we are sure that the price decisions are not made beyond the plant level.
6The percentage of exactly zero prices in the actual data is 75%. This is in line with numbers

from the Euro area and the USA (see Vermeulen et al. (2012), Table 2). In the simulated data, there
are no observations with exactly zero changes because of numerical precision.

7Our definition of small price changes (less than 5% in absolute value) is consistent with the
assumptions of Klenow and Kryvtsov (2008) and Eichenbaum et al. (2014). Note, however, as
recognized by these latter authors: “The definition of what constitutes a "small" price change is,
inevitably, somewhat arbitrary” (p. 138). They, therefore, study small price changes defined as 1%,
2.5%, and 5%, whereas Midrigan (2011) uses thresholds of 3% and 5%.

5



To identify lumpy adjustment behaviour, we rank, for each product and each year,

the 12 monthly price changes from lowest to highest.8 Rank 1 thereby represents the

largest monthly price change, Rank 2 the second largest price change, and so on.

For each rank, we then calculate the average price change over all products and all

years. The intuition is that if there is a large gap between the largest (smallest) and

the second largest (second smallest) price change compared with the other ranks,

this indicates that producers are faced with fixed costs of adjustment and, therefore,

change the price quite substantially when first changing it. Otherwise, with normally

distributed shocks to the fundamentals, and no adjustment costs, one would expect

the mean price change of adjacent observations to be rather similar and, therefore,

that there is a downward-sloping linear relationship between the ranks (for more

details, see Doms and Dunne 1998).

[Figure 2 "Ranked Price-Change Rates" about here]

Figure 2 shows the ranking of the monthly price changes. As seen from the figure,

there is a gap of approximately three percentage points between the first and second

ranks, and two percentage points between the eleventh and twelfth ranks. In contrast,

the differences between the intermediate ranks are modest. As already pointed out,

this is consistent with non-convexities in adjustment costs, even though coexistence

of both fixed and convex adjustment costs cannot be excluded. That means, even if

fixed adjustment costs are preventing the firms from adjust continuously, when they

actually do change their price, convex costs are forcing them to do so gradually.9

[Figure 3 "The Occurrence of Price Changes by Months" about here]

Figure 3 shows the average frequency of price-change quotations greater than
8Such a measure has been used in the investment and labour demand literature (see, for instance,

Doms and Dunne (1998), Nilsen and Schiantarelli (2003), and Varejão and Portugal (2007)).
9We also observe that all the ranks are shifted to the left, because only rank five is below zero.

This is expected because inflation will cause the producers to have more positive price changes than
negative ones.
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|0.005| within each month. There is a relatively high price-change frequency in the

beginning of the year compared with the remaining months, a pattern also described

by Nakamura and Steinsson (2008) and Vermeulen et al. (2012). This seasonality

could be explained by the producers’ economic environments, for instance, seasonal

demand effects. Furthermore, it may be explained by the costs of information acquis-

ition and processing (see Maćkowiak and Wiederholt (2009) and Mankiw and Reis

(2002)), and the pricing season effect related to negotiation and of signing of price

contracts, described by for instance, Zbaracki et al. (2004). Finally, it is also consist-

ent with the theories focusing on staggered contracts (see, for instance, Taylor (1980,

1999)) with a duration of one year, and that a majority of these contracts start in

January.

3 Model, Method, and Moments

As already discussed, several theories have been proposed to explain the intermittent

price-adjustment patterns observed in many datasets at both the consumer level and

at the producer level. Here, we suggest a simple reduced-form model that describes

the price-adjustment behaviour of production plants with the following three features:

plants adjust prices infrequently where only 20% of the price observations change from

one month to another; there are a lot of small price changes; and there is a seasonal

pattern in the incidence of price changes, with most price changes taking place in

January.

3.1 Model Specification and Predefined Parameters

Because firms require a degree of monopoly power to be able to set prices, we assume

that producers operate in monopolistic competitive markets. Furthermore, it is as-

sumed that each firm is able to continuously observe and monitor its frictionless price

without any costs.
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We start from the observations of high frequencies of zero price adjustments. This

would be observed if there were some menu costs, and if it was costly to continuously

adjust the product prices. The firm operates with a target price (in logs) for product

i at time t, denoted by p#
it , and leaves this unchanged unless the distance from the

frictionless price p∗it (also in logs) becomes too large. The latter price p∗it represents the

frictionless equilibrium price if there are no price-change costs. The costs associated

with setting a new target price is F · I
(
p#
it 6= p#

it−1

)
, where F is the actual cost

and I
(
p#
it 6= p#

it−1

)
is an indicator function. The formation of the target price is

determined by:

p#
it =


p∗it if | p∗it − p

#
it−1 |> τ

p#
it−1 otherwise

(1)

where τ denotes a threshold. Thus, if the shock to the frictionless price is large enough

relative to its target value, in absolute value, the firm finds it profitable to set a new

target price and to start to adjust its price. The formulation in eq. (1) states that

the threshold is symmetric, i.e., that the “band of inaction” is the same whether the

price shock is positive or negative. We relax this restriction and allow the thresholds

for price increases and price decreases to be different. With this modification, the

formation of the target price is determined by:

p#
it =


p∗it if p∗it − p

#
it−1 > U or p∗it − p

#
it−1 < L,

p#
it−1 otherwise

(2)

where U denotes the upper threshold and L denotes the lower threshold, i.e., L ≤ 0 ≤

U . It means that the target price is changed only if the frictionless price moves outside

the interval determined by L and U . Otherwise, if the frictionless price is greater than

L and smaller than U , the producer leaves its target price p#
it unchanged.

Following Alvarez et al. (2011); Nakamura and Steinsson (2008) and others, we
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let the logarithm of the frictionless nominal price for product i at time t, denoted by

p∗it, follow a random walk with drift:

p∗it = α + p∗it−1 + εit, where εit ∼ N(0, σ2
ε) (3)

The random walk process implies that the frictionless price is adjusted immediately as

a consequence of new information in the idiosyncratic shocks εit with variance σ2
ε . And

unless new information arrives, the frictionless price will follow α the deterministic

drift. This latter component is meant to capture trend inflation either in output

prices or input factors—or productivity growth. Thus, current frictionless price (plus

the trend α) is the best prediction about next periods’ frictionless price. If α were not

included, the trend inflation would be embedded into the threshold parameters and,

therefore, bias the results. If α is set too low (too high) compared with the actual trend

inflation, the estimated threshold parameters L and U would be biased downwards

(upwards). The deterministic trend parameter α, is set as close to the actual inflation

as possible to limit the effect of inflation bias.10 The idiosyncratic shock parameter,

εit, is meant to reflect any shocks to either demand, cost, or technology excess of the

underlying trend captured by the trend parameter α.11 It is, of course, possible to

allow for serial correlation in εit, and thus, to make the frictionless price less persistent.

However, as a richer specification would require more parameters to be estimated and

therefore raise additional identification issues, and also make the exposition more

complicated, we keep the simpler process.

10We could also include α as a parameter to be estimated. A simpler approach, adopted here,
is to perform a series of simulations with different values for α. We comment on this further when
testing the robustness of our model.

11An argument against letting demand shocks from technology and/or costs be treated identically
is that firms react quicker to positive than to negative cost shocks, but slower to positive than to
negative demand shocks (see, for instance, Dias et al. (2015) and Loupias and Sevestre (2012)). Dif-
ferencing between types of shocks would require a more sophisticated model than the one presented
here. Furthermore, with the available data, it might be difficult to identify different types of shocks.
Thus, we choose to include the shocks as an aggregate effect (the Appendix shows how the prices
are affected by demand, technology, and cost shocks.).
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Even though the firm has decided to change its target price and, therefore, also

to change the price of the given product, it does not move directly to the new target

price. As discussed by Zbaracki et al. (2004), price-change costs also include convex

components such that it is costlier to make one greater price change compared with

several smaller ones. Two characteristics of the data support the convexity assump-

tion. First, the descriptive evidence given in Figure 1 indicates that small prices

changes are not that uncommon, whereas greater price changes are. Second, a more

detailed look at the actual data states that the probability of observing a price change,

conditional that a price change also took place during the previous period, is 0.525.

Comparing this with the unconditional probability of a price change of 0.200, it is

a forceful indication that the price changes in the data are strongly correlated over

time. In addition to the convexity of costs related to price changes, there might also

be losses for being too far away from the new target price p#
it . A formulation that

encompasses both these elements, given that the deviation between the new friction-

less price, p∗it, and the target price, p#
it , is large enough to initiate price changes, the

“out-of-equilibrium costs” is as follows:

AC(pit) = C ·
{

(1− θ)
(
pit − p#

it

)2
+ θ (pit − pit−1)2

}
(4)

Thus, the formulation consists of a weighted sum (where 0 ≤ θ ≤ 1) of two

quadratic terms, which denotes the difference between the new price and the target

price, and the difference between the new price and the previous price, respectively.

A plant seeks to minimize these “out-of-equilibrium costs” AC(.). The first-order

condition of equation (4) with respect to the new current price pit rearranged is

therefore:

(pit − pit−1) = (1− θ)
(
p#
it − pit−1

)
(5)

Thus, we have the traditional partial adjustment model where the “out-of-equilibrium

costs” AC(.) prevent the producer from adjusting immediately to its target price,
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except that the “usual” frictionless seen in partial adjustment models is exchanged

with the target price p#
it . An implication is that the producer will close (1− θ) of the

deviation between the target price and the old actual price. For example, θ = 0.10 will

indicate that the producer closes 90% of the desired price change in the first period.

If the target price remains unchanged in the subsequent period, the producer will

close 90% of the remaining price gap. This will continue until the producer decides

to set a new target price or when the target price is reached.

To avoid the restriction that the weights in equation (4), (1− θ) and θ, are com-

mon to price increases and price decreases, we allow for asymmetric inertia in addition

to the already-discussed asymmetric thresholds. This reflects asymmetric adjustment

costs discussed and analysed in the microeconomic literature (e.g., Peltzman, 2000;

Yang and Ye, 2008; Lewis, 2011; Loy et al., 2016).12 If the price is increasing, θup is

supposed to capture upward inertia and, conversely, if the price is decreasing, θdown

is supposed to capture downward inertia. Thus, we let the logarithm of the nominal

price of product i at time t be given by:

(pit − pit−1) =



(1− θup)(p#
it − pit−1) if p#

it − pit−1 > 0.005,

0 if |p#
it − pit−1| ≤ 0.005,

(1− θdown)(p#
it − pit−1) if p#

it − pit−1 < −0.005,

(6)

As seen from (6), we associate price deviations relative to the target price within the

[−0.005, 0.005] interval with zero price changes because such minor deviations are

likely to be of little economic importance.13 Furthermore, the numerical simulations

described in a subsequent section, make it necessary to define very small actual or

desired price changes as inaction.
12See also Laxton et al. (1999); Dolado et al. (2005); Dobrynskaya (2008).
13Managers are likely to abstain from closing minor price gaps also because of the uncertainty

related to the manager-calculated target prices. Such uncertainty exists because the target prices
are functions of current and future general market conditions, and of static, dynamic, and stra-
tegic (price, quantity, technology, and input prices) considerations of both the firm itself and its
competitors (see also Mankiw and Reis (2010), p. 190 and their FN 6).
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It should be mentioned that if θup 6= 0, θdown 6= 0, U = L = 0, the model specific-

ation reduces to a partial adjustment model (because then p∗it = p#
it and eqs. (1) and

(2) would be irrelevant). Conversely, if θup = θdown = 0, U 6= 0, L 6= 0, the model

reduces to a (S, s) pricing model.14 Note also, that if the target price p#
it had not been

introduced explicitly, the (symmetric) threshold specification would be as follows:

pit =


p∗it if | p∗it − pit−1 |> τ

pit−1 otherwise

(7)

Furthermore, the (symmetric) partial adjustment expression would then be:

(pit − pit−1) =


(1− θ)(p∗it − pit−1), if |p∗it − pit−1| > 0.005,

0 if |p∗it − pit−1| ≤ 0.005,
(8)

Note however, that the price-adjustment process would stop when p∗it − pit−1 reaches

the threshold τ . Thus, without the target price p#
it in the model, we would not observe

many small price changes and p∗it would never be fully reached.15

[Figure 4: Illustration of Price-Change Process - about here]

In Figure 4, we illustrate how our model works. Starting with the evolvement

of the frictionless price, p∗, we see clearly the upward trend, but with an interim

period with sudden price decreases. The thresholds have a constant distance relative

to the actual price (bold line). We see that, in period t = tA, the frictionless price

has evolved such that it is greater than the upper threshold U and, consequently, the

target price and the actual price both changed. We see, however, that the actual

price is moving slowly towards the new target price. This is caused by the inertia

parameter(s) θ. In period t = tB, a sudden negative shock occurs, pushing the target

price below the lower threshold L. Subsequently, the price reaches this new target
14Eq. (5) then states that, conditional on changing, one immediately goes to the new target price.
15Dhyne et al. (2011) have such a model, but with asymmetries. To be able to incorporate the

existence of small price changes, they let the threshold be stochastic.

12



price. Thus, we see that price changes can be caused by accumulated small shocks,

or one large shock to the underlying frictionless price. We also see intermittence, and

small price changes consistent with the descriptive statistics. Finally, the figure shows

that the thresholds change across time.

The values of the descriptive statistics show that the incidence of price changes is

31% in January, whereas the average over the other eleven months is 19%. To control

for this seasonal effect, we include a January-specific parameter, defined as 0 ≤ y ≤ 1,

which is multiplied with the threshold parameters U and L if the current month is

January. This decreases the thresholds in the beginning of each year and, thereby,

increases the probability of a price change. Furthermore, this might also reflect the

potential existence of staggered contracts starting in January and with 12 months’

duration.16

This leaves us with the following parameters to be estimated:

Upper threshold: U

Lower threshold: L

Inertia upwards: θup

Inertia downwards: θdown

January-specific scalar: y

Standard deviation of idiosyncratic shocks: σε

In our main estimates, we set α =0.0025, which gives an annual inflation equal

to 0.03, close to the average annual inflation rate of the producer price index (PPI)

between the years 2004 and 2009. We have also made the mean and standard deviation

of the initial (log) frictionless price, p∗i0, corresponding to the distribution of the actual

prices in June 2006 (after having taken into account the underlying annual inflation).

16Nilsen et al. (2016) show, using the same data used in this paper, a flat price change hazard
with a peak after 12 months.
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3.2 Estimation Method

Given that the empirical model includes the thresholds, the model does not have

an analytical closed-form solution. This again prevents us from using “standard”

regression techniques. We therefore use a simulated method of moments (SMM).

In short, SMM seeks to minimize the distance between two sets of moments—the

moment vector generated conditional on a vector of parameters to be estimated β,

and the corresponding moment vector in the actual data, i.e., to find the vector of l

unknown parameters β that minimizes the following quadratic form J(β):

J(β) = [ΦA − 1
κ

κ∑
j=1

ΦS(β)]′W [ΦA − 1
κ

κ∑
j=1

ΦS(β)] (9)

where ΦA and ΦS(β) denote the vectors of m actual moments and simulated coun-

terparts, respectively; W denotes an optimal weighting matrix; and κ denotes the

number of panels with the same size as the actual data. The distance between two

sets of moments J(β), has a χ2 distribution with m− l degrees of freedom, where m

is the number of moments.17

3.3 Selection of Moments

The model should explain both inaction and small price changes at the same time.

Thus, the proportion of observations within the following intervals are included:

−0.050 ≤ pit − pit−1 < −0.025

−0.025 ≤ pit − pit−1 < −0.005

−0.005 ≤ pit − pit−1 ≤ 0.005 (10)

0.005 < pit − pit−1 ≤ 0.025

0.025 < pit − pit−1 ≤ 0.050

17See the Appendix for more details about the simulated method of moments approach.
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These moments should contribute to identifying all the parameters, especially the

threshold parameters and inertia parameters: non-zero U and L will cause zero-

inflated price changes, and positive θup and θdown will cause small price changes.

Larger inertia parameters, θup and θdown, will make plants smooth their adjust-

ments over time, which indicates that there will be several consecutive periods of

small price changes. A consequence of this gradual adjustment is serial correlation

in price changes. We therefore choose to include the following correlation coefficient

moments:

Corr[pit − pit−1, pit−1 − pit−2] if pit − pit−1 > 0.005 (11)

Corr[pit − pit−1, pit−1 − pit−2] if pit − pit−1 < −0.005 (12)

On the other hand, the threshold parameters U and L will also be affected by these

moments, as larger |U | and larger |L| will lead to more inaction and smaller serial

correlation. The asymmetry is such that the moment in (11) should identify θup,

whereas the moment in (12) should identify θdown.

The standard deviation of the shocks to the frictionless price, σε, is likely to be

directly related to the standard deviation of price changes, sd(pit−pit−1). We therefore

choose to include the standard deviation of price changes as a moment. The standard

deviation of price changes is also likely to be affected by the friction parameters: as

already pointed out, larger |U | and |L| lead to more inaction and, thereby, smaller

variance of the observed price changes. Equation (5) shows that greater values of θ

lead to price changes of more similar size which, again, will reduce the variance of

price changes. Thus, the standard deviation of price changes will not only identify

σε, but will also contribute to the identification of U, L, θup and θdown.

The January-specific scalar, y, is supposed to capture the abnormally high adjust-

ment frequency in the beginning of the year. As a primary identifier, the following
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moment is therefore included:

Number of price quotations with |pit − pit−1| > 0.005 in January
Total number of price quotations in January

As previously mentioned, ranked price changes can be a good indicator of lumpy

adjustment behaviour. We include the first two and the last two ranks as moments.

These are meant to be the primary identifiers of the threshold parameters U and L.

The ranks are likely to be affected by σε and the inertia parameters as well: more

variation in the frictionless price will cause more variation in the ranks and greater

inertia parameters will bring the ranks closer to each other. Hence, the rank moments

will also affect θup, θdown and σε.18

One might think that the use of ranks is just another way of describing the seasonal

effects and, thus, that there is not much gain in adding ranks for identification.

When holding for each month the share of the highest-ranked price changes (rank

1 observations), the evolvement of these shares mimics very much the frequency of

price changes by months. Formal testing on monthly aggregates shows a correlation

coefficient of 0.99 (and z-value = 21.7). On the other hand, the correlation of the

share of the lowest- ranked price changes, and the frequency of price changes by

month is small (0.11) and statistically insignificant. Thus, there are likely benefits

with regard to identification from including both the January effect and information

about the highest and lowest ranks.

18The moments in our data (Table 1 Column 8) are quite close to those found in other relevant
studies. The frequency of zero-price changes is 75.0% in our actual data, which is quite similar to
corresponding numbers from other studies using PPI data. For example, Vermeulen et al. (2007,
Table 2) report 79.2% in the Euro area, Nakamura and Steinsson (2008, Supplementary Material
Table 11) and Bhattarai and Schoenle (2014, Figure 1) report 71% to 81% for the US. Regarding
the timing of price changes, in our data 31.5% (19.0%) of all price changes take place in January
(February to December). The seasonal variation is supported by the studies on the Euro area and
the US. Vermeulen et al. (2007) report 31.2% (20.2%) frequency of changes in January (February
to December), while Nakamura and Steinsson (2008, Supplementary material, page 10) state that
“producer prices are more than twice as likely to change in January than on average in other months
of the year”.
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4 Results

Table 1 shows the parameter estimates for the various model specifications by columns.

Standard errors are presented in parentheses. The parameter estimates and standard

errors are presented in the upper part of the table. The corresponding moments of the

various model specifications are presented in the lower part of the table. We estimate

all specifications against the 13 moments already described, i.e., distribution of4p/p,

January effect, serial correlations, standard error of 4p/p, and rank moments.

[Table 1 "Parameter Estimates and Moments" about here]

Starting with a broad look at this table, we see that all the estimated parameters

are statistically significant (with the exception of those in Column (5)). In Column

(1), we report the results of the full model which include both thresholds and partial

adjustment parameters, and that their magnitudes depend on whether prices are

increasing/decreasing relative to the previous month.

The estimates of U = 0.140 means that the distance between the frictionless price

and the existing target price, p∗it−p
#
it−1, has to be 14% before a price-adjustment pro-

cess is initiated. Then, the actual price changes are decided by the partial adjustment

model. The value of θup = 0.370 is interpreted as meaning that the producer will close

63% (= 1−0.370) of the desired price change, p#
it − pit−1(= p∗it − pit−1), in the same

period as the firm decides to reset the target price and start a price increase process.

The parameter estimates of U = 0.140 and θup = 0.370 together state that the initial

price increase will be at least 0.088 of the current price.19 Thus, the new prices are

reached quite quickly.20 The estimate of the lower threshold L = −0.170 means that

the (absolute) distance between the frictionless price and the existing target price,∣∣∣p∗it − p#
it−1

∣∣∣, has to be almost 17% before a price decrease process is initiated. The

19The initial price increase is found by multiplying U with (1− θup): 0.140×(1−0.370)≈ 0.088.
20The negative autocorrelation moments imply that an above (below) average positive (negative)

price adjustment is likely to come subsequent to a below (above) average price adjustment.
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producer will again quite quickly adjust to the new smaller price, seen from the θdown

= 0.409.21

The values of θup = 0.370 and θdown = 0.409 mean that the producers find it more

important to close the gap relative to the new target price,
(
pit − p#

it

)
, than reducing

the implied convex adjustment costs associated with the period-to-period adjustment,

(pit − pit−1).

The findings suggest that adjustments are faced with two different forms of friction.

First, the effect of the threshold is that it must be desired to change the price by at

least the size of the threshold before the firm decides to adjust. Second, the effect of

the inertia is that the initial price change will be equal to (1− θ) of the target price

gap p∗it − pit−1, whereas subsequent adjustments will be smaller. The January effect,

meant to capture the fact that the incidence of price changes is higher in January

compared with the other months, means that the thresholds U and L are two-thirds

in January compared with the other months. This is consistent with theories focusing

on the costs of information acquisition and processing, i.e pricing season effects, and

seasonal demands.

The model performs relatively well, as seen from the J-statistic in the last row.22

This reflects that the empirical moments, reported in the lower part of the table, are

matched quite well with the empirical ones reported in the last column of the table,

Column (8)

In Column (1) are the magnitude of the parameter estimates for the pairs U and

L, and θup and θdown, which are very similar, even though their significance clearly

21The initial price decrease will be at least 0.099 of the current price, and there will subsequently
be several smaller adjustments downwards until the firm reaches the target price or decides to set
a new one. Thus, one may think that price changes of 8.5% and 10.0% (initial price changes for
positive and negative price adjustments, respectively) are definitely not ignorable.

22While the J-statistics reported in Table 1 are low compared to related studies, the numbers
imply that all specifications are rejected. This is not surprising given that the moments are very
precise (see our Table A1) and, consequently, the weighting matrix has very large values. Further-
more, we are admittedly conflating the parameter estimates across all different types of products,
which also affects the J-statistic.
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states that they are statistically different (|L| 6= U , and θup 6= θdown). Still, when

forcing the parameters within each pair to be the same (in absolute values), reported

in Column (2), the J-statistic indicates a worse model fit.23

We have also tested a frictionless model, reported in Column (3). What we see

is a very bad model fit, both measured by the J-statistic, and by comparing the

individual moments of the simulated model with the empirical ones. Thus, a model

without any price-adjustment frictions is inferior compared with the two former mod-

els. The frictionless model in Column (3) states that the estimated standard error

σ̂frictionlessε = 0.0012 and that the frequency of zero price changes is 0.981. In our

model, we have 4p∗it = p∗it − p∗it−1 = 0.0025 + εit where εit ∼ N(0, σ2
ε) (see eq. (3)).

Note also that a frictionless model has pit = p∗it, i.e., the new price is equal to the fric-

tionless price. Simple calculation shows that σε = 0.0029 is necessary in a frictionless

model to get 80% of the observations of 4p∗it (and therefore also 4pit) within the

interval [-0.005, 0.005], the “zero price changes”-interval moment. When our friction-

less model gives the best fit with a frequency of zero price changes of 0.981, it is due

to the other moments which force the standard error σ̂frictionlessε = 0.0012 for the best

possible weighted match with all of the empirical moments.24 We have also tested

specifications where only some of the friction parameters are present. In Column (4),

we include only the threshold parameters U and L, whereas in Column (5) we have

estimated a pure partial adjustment model. The results of the latter are identical to

those reported in Column (3).25 The overall finding, based on the results reported in

23Clearly, the difference in J-statistic = 59.7 (=235.5-175.8), df = 2, indicates that this restriction
largely distorts the performance of the model.

24The J-statistic is 2546.3 for the estimated frictionless model, whereas it is J = 16805.0 when we
set σε = 0.0029. It turns out that when we force the magnitude of σε going from the σ̂frictionless

ε =
0.0012 up to σε = 0.0029, we get too many small positive price adjustments 〈0.5%, 2.5%] very
quickly. This indicates that the moments describing the distribution are good for identification of
the variance of the underlying process of the frictionless nominal prices.

25The similarity of the two sets of results is as expected. The two serial correlation moments,
meant to capture inertia, are based on the autocovariance of 4p∗

it = p∗
it − p∗

it−1. When the process
of p∗

it is a random walk with drift, the two autocovariances—upwards and downwards—should both
be zero. Thus, when U = L = 0, there is nothing in the model nor moments that help distinguish
the frictionless model from the partial adjustment model. The results should therefore be the same
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Columns (1)–(5), is that a full model with both asymmetric price thresholds and an

asymmetric partial adjustment process, is the preferred specification.

As an additional way to show the model fit, in addition to the J- statistics and the

individual moments compared with their empirical counterpart, we report the whole

distribution of price changes, the share of price changes in a given month, and the

mean price change for all ranks for the simulated data. Going back to Figures 1–3,

we show the simulated moments for the full model (grey bars) reported in Table 1,

Column (1). Starting with the predictions of average share of price changes, Figure

3 shows that the seasonal pattern is reasonably good. For the distribution of price

changes and the ranks (Figures 1 and 2, respectively) in particular, the fit is also

very good for the moments not used when estimating the model. We interpret this

as supporting evidence for our model formulation.

4.1 Robustness Checks and Discussion

In our underlying frictionless price, the predetermined trend parameter α = 0.0025,

which corresponds to an annual price increase of 3%. Two alternative simulations are

done where α is set equal to 0.0016 and 0.0035. These are denoted as αlow and αhigh

and correspond to underlying annual price increases of 2% and 4%. The results of

these two alternative trends, and using the full specification, are reported in Table

1, Columns (6) and (7). The model fit, measured by the J-statistic, is worse when

using αlow. U and L are both somewhat smaller compared with the full model when

α = 0.0025. The largest, but moderate, difference is for the θup (0.370 and 0.298, in

Columns (1) and (6), respectively). Turning to the αhigh results, we see that both the

J-statistic and the estimated coefficients are very close to the initial model reported

in Column (1). The conclusion we draw from this robustness check, is that the initial

guess of α = 0.0025 is not too wrong and, if any changes should be made, the α

for the two model specifications, as we obtain.
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should be set somewhat greater rather than smaller compared with 0.0025.26 We

have considered estimating α, instead of predetermining it, as in this paper. The

small deviation between the estimates based on different values of α tells us that the

gain from doing this is limited.

So far, we have assumed that the friction parameters U, L, θup and θdown are all

independent of product characteristics. There is a broad agreement in the literature

that price setting is heterogeneous across sectors, firms, and products (see, for in-

stance, the overview by Klenow and Malin (2011)). Two exercises are performed to

address heterogeneity. First, for each product, the share of price-change observations

(outside the zero-price-change interval [-0.005, 0.005]) relative to the total number of

observations for that product is computed. The distribution (based on all products)

of this share of price-change observations per product is right-skewed and has the

following properties: mean = 0.207, median = 0.087, standard deviation = 0.258.

The median is very close to 0.083 (= 1/12) and indicates that almost half of the

product prices are changed only once a year. The right-skewness implies that some

of the products have a much higher frequency of price changes (see Figure A1 for a

density plot of the share of price-change observations outside the zero-price-change

interval). Thus, there is heterogeneity in our data.27

A further exercise to address heterogeneity involves estimating the model for five

26A regression model where the dependent variable is log-transformed product prices and where
a time trend is used, together with product-specific dummies, month-specific dummies, and year-
specific dummies, gives a time trend α = 0.0029, which corresponds to a 3.5% annual increase.

27We have done a simulation where we randomly assign a product to be either high- or low-
spread shock type, with equal probability of being assigned to one of the two types. Having included
the st.dev. of share of price-change observations as an additional moment, we find the st.dev. of
the idiosyncratic shocks for the low-spread shock type is only 0.433 (st.error = 0.033) out of the
st.dev. of the high-spread shock type (σlow−spread

ε = 0.433σhigh−spread
ε ). As a consequence, about

80 percent (20 percent) of price changes occur in high-spread shock type products (low-spread shock
type products). More importantly, the parameters and simulated moments are of the same order
of magnitude as for our benchmark model. Thus, one potential source of heterogeneity might be
related to business environment and demand fluctuations. When randomly assigning the threshold
parameters U and L either high or low values to each product (to create a wide or narrow zero
price-change interval), we have problems in getting convergence. The conclusion we draw from the
investigation of heterogeneity, both based on our own simulations and seen in the literature, is that
which model fits best the “stylized facts” - and in particular heterogeneity - remains an open issue.
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different product groups. These results are reported in Table 2.

[Table 2: Empirical Results by Product Groups - about here]

We see a very good model fit, seen from the low J-statistics, much better than

the J-statistics found when estimating the model with the sample of all product

types (Table 1, Column 1). This shows that there are differences in the pricing

patterns among products, both when it comes to the threshold parameters U and

L, the inertia parameters θup and θdown, and the January-specific parameter y. In

particular, “Capital goods” stand out with much greater thresholds compared with

our previous results and a significantly different January effect. The overall pattern

shown in Table 2 implies that there are huge differences in price-change patterns

across product groups.

[Table 3: Counterfactual Analyses Results - about here]

Even though heterogeneity is important, we are also interested in obtaining “av-

erage” parameters for macro simulations. Thus, we go back to the model where

heterogeneity is ignored to analyse the importance of the respective price-adjustment

parameters in explaining the main characteristics of observed price changes. To shed

some light on this, we simulate the preferred asymmetric model under exactly the

same circumstances as the estimated preferred model (Table 1, Column 1), but set

different price-adjustment cost parameters to zero, and measure the impact on the

set of moments used for identification. Table 3 shows the results of this exercise. The

first thing to notice is the huge increases in the J-statistics, meaning that overall

model fits are much worse when some of the friction parameters are ignored. A more

detailed look, starting with Column (1) where the two θs are set equal to zero, we see

an increased share of zero price changes, no small price changes, and also an increase

in the observations outside the [-5%, 5%] interval. The two inertia parameters, θs,

are, therefore, very important for creating small price changes, 0.5% <
∣∣∣4p
p

∣∣∣ ≤ 5.0%.
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Omitting them from a model, leads to the conclusion that the dynamics of price

changes are best described as zeroes and lumps driven by a fixed- costs model. Turn-

ing to Column (2) where the thresholds U and L are ignored, the model fit is ex-

tremely bad, especially in producing a large enough share of inaction. Thus, both

sets of friction parameters, inertia and thresholds, are important for understanding

the dynamics of price changes. 28

As already mentioned, each plant may produce one or several products.29 In our

model, we have treated each product as independent from each other. This means

that we assume that the products within a plant’s product portfolio are sufficiently

differentiated and we, therefore, abstract from strategic complementarity and substi-

tution between the various products.30 We have analysed the various components of

the variance of price changes in the dataset by using a multi-level mixed-effects linear

regression model (see Baltagi et al., 2001). The analysis shows that the plant-specific

share of the overall price variation is approximately 40%, and that 60% of the vari-

ation is related to product-specific shocks. One modification to control for this effect

would be to introduce two variance components in our idiosyncratic shocks σ2
ε , such

that σ2
ε = σ2

p + σ2
u, where σ2

p denotes variance of plant-specific shocks and σ2
u denotes

idiosyncratic product shocks. One could also consider modelling frictions at the level

of the plant rather than at the level of products. Our simplification to treat each

product independently is likely to affect the magnitude of the threshold parameters,

because they will pick up the effect of both price-change costs and, to some degree,

shocks that are common to all products of a producer. Nevertheless, we leave these

28We have also estimated a model where we look at annual data—i.e., the price changes from June
one year to June the subsequent year— and estimated with a different moment vector. Unsurpris-
ingly, these results indicate much smaller thresholds, asymmetric but still statistically significant.
The downward inertia parameter θdown is significant, whereas θup = 0. Thus, time aggregation
blurs the price-changing picture compared with using a model that is able to take advantage of the
monthly frequencies.

29The mean number of products per producer is 3.8, whereas the maximum is 20.
30See also Woodford (2003) and Gertler and Leahy (2008) for discussions about strategic com-

plementarity and “real rigidity” but then, in relation to firms’ competitors.
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potential extensions for a later paper.

Our estimates show that price-adjustment frictions are important for understand-

ing the intermittent price-adjustment pattern seen in the data, and that ignoring

frictions biases our results. Furthermore, our findings, of both thresholds and inertia

together, indicate that different forms of rigidities exist, which are only partly con-

sistent with the assumptions of most existing macroeconomic pricing models. For

instance, models such as those in Golosov and Lucas (2007) and Gertler and Leahy

(2008) explain patterns of inaction, followed by large price changes, by assuming

thresholds; however, these models seem to neglect small price adjustments. While

the threshold parameters in our model enable inaction, the inertia parameters implic-

ate that a large initial price change is followed by smaller adjustments. Accordingly,

the results imply that our model is able to account for periods of inaction, as well as

both large and small price changes. The existing literature, discussed in the earlier

sections, is not conclusive when it comes to whether nominal price rigidities are sym-

metric or not. Our findings indicate that prices are almost similarly flexible upwards

and downwards. The seasonal effect, picked up by our January parameter, y, may

have implications for the effectiveness of monetary policy interventions depending on

the month of the year in which the intervention takes place (for related findings, see

Olivei and Tenreyro (2007)).

5 Concluding Remarks

In this paper, we specify and estimate a model that describes production plants’ price-

adjustment behaviour. The model includes thresholds that are smaller in January

than in the other months, together with a quadratic loss function associated with

the distance from a target price. The simplistic reduced form model is tested on a

sample based on repeated monthly plant- and product-specific survey data from the

Norwegian manufacturing industry. The model is meant to reproduce the following
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features of the data. First, plants adjust prices infrequently as only 20% of the price

observations change from one month to another. Second, there is a seasonal pattern

in the incidence of price changes, with most price changes taking place in January.

Third, there are also many small price changes.

The simulated method-of-moment estimates reveal thresholds such that prices

are only changed if the deviation from the target price to the underlying frictionless

price is greater than approximately 15%. However, if the shocks are such that the

prices should be changed, the gap between the current price and the new target price

is reduced quite quickly and only 10% of the initial gap exists after three months.

There are statistically significant cost differences whether the prices move upwards

or downwards. However, the magnitudes of these differences are very moderate.

Furthermore, the January-specific effect, indicating that the thresholds are only two-

thirds for this month, is consistent with theories focusing on the costs of information

acquisition and processing, and seasonality in the signing of price contracts.

Several checks are applied to test the robustness of the model and our findings.

First, the preferred specification outperforms a frictionless model or models with

only some parts of the price-adjustment friction parameters present. A counterfac-

tual analysis, where some of the friction parameters are set equal to zero, shows that

the moment fit becomes much worse compared with the preferred model specification.

Furthermore, the model seems to be fairly robust to changes in the underlying determ-

inistic trend, as our approximation of the trend gives a better a fit than alternative

approximations.

While our evidence implies both large and small price changes, many model contri-

butions in the literature are only able to account for one of these two characteristics.

However, a few of the models that assume thresholds in the price setting are able

to explain small price changes. These models assume either stochastic thresholds or

economies of scope in price setting, and represent an increasingly sophisticated group
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of pricing models in which more micro evidence is incorporated. However, our model

is rather simple and transparent, and computationally easy.

There are a few issues we have not addressed that need to be explored in future

work. The model is admittedly a reduced-form model. A structural model would be

more informative. This would call for a full dynamic specification and optimization.

However, with the current dataset, there is no information about quantities, even

though annual revenues and costs are available at plant level. Furthermore, the only

information available at product level with monthly frequency are prices themselves.

Thus, a structural model would partly require unverifiable assumptions about inputs

and outputs. Still, our findings strongly indicate that such a model needs to include

both convex and non-convex price-adjustment costs. The analyses also point in the

direction for taking into account and controlling for product- (and plant-) specific

heterogeneity. Note however, the mixed frequency of price information, and other

plant- or firm-specific information (monthly versus annually), present some econo-

metric challenges. However, the evidence provided in this paper, based on a simple

and transparent simulation model, shows the importance and potential fruitfulness of

using model formulations and estimation techniques that can take into account the

non-convexities in the price-adjustment costs function.
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Figures

Figure 1: Distribution of Price Change Rates, Empirical and Simulated
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Figure 2: Ranked Price Change Rates, Empirical and Simulated
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Figure 3: The Occurrence of Price Changes by Months, Empirical and Simulated
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Figure 4: Illustration of the Price Changing Process
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Tables

Specifications: (1) (2) (3) (4) (5) (6) (7) (8)

U 0.140 0.144 - 0.044 - 0.118 0.128 -
(0.003) (0.003) - (0.001) - (0.002) (0.003) -

L -0.167 -0.144 - -0.129 - -0.180 -0.162 -
(0.004) (0.003) - (0.025) - (0.003) (0.004) -

θup 0.370 0.379 - - 0.000 0.298 0.358 -
(0.003) (0.003) - - (0.000) (0.007) (0.005) -

θdown 0.409 0.379 - - 0.000 0.372 0.386 -
(0.010) (0.003) - - (0.000) (0.007) (0.010) -

y 0.712 0.732 - 0.6346 - 0.681 0.693 -
(0.017) (0.016) - (0.0221) - (0.015) (0.017) -

σε 0.042 0.040 0.001 0.016 0.001 0.041 0.041 -
(0.0007) (0.001) (1.98E-05) (0.001) (1.98E-05) (0.001) (0.001) -

Moments
[−5.0%,−2.5%〉 0.019 0.023 0.000 0.000 0.000 0.019 0.019 0.017
[−2.5%,−0.5%〉 0.041 0.039 0.000 0.000 0.000 0.038 0.037 0.033
[−0.5%, 0.5%] 0.779 0.775 0.981 0.939 0.981 0.790 0.774 0.800
〈0.5%, 2.5%] 0.059 0.065 0.019 0.000 0.019 0.050 0.058 0.047
〈2.5%, 5.0%] 0.038 0.037 0.000 0.028 0.000 0.035 0.043 0.036
Chgs in Jan 0.333 0.332 0.019 0.200 0.019 0.335 0.348 0.315
Serial corr (up) -0.364 -0.309 0.011 -0.059 0.011 -0.488 -0.445 -0.136
Serial corr (down) -0.264 -0.321 0.000 0.000 0.000 -0.292 -0.291 -0.385
sd(pit − pit−1) 0.028 0.027 0.001 0.014 0.001 0.028 0.028 0.041
Rank 12 -0.026 -0.026 0.001 -0.005 0.001 -0.030 -0.026 -0.029
Rank 11 -0.011 -0.010 0.001 0.000 0.001 -0.011 -0.010 -0.010
Rank 2 0.022 0.021 0.004 0.010 0.004 0.020 0.024 0.021
Rank 1 0.043 0.042 0.005 0.027 0.005 0.042 0.046 0.053

J : 175.8 235.5 2546.3 819.2 2546.3 347.7 188.8 -
The column numbers represent the following specifications: (1): Full model, (2): Full model with symmetric
friction parameters, (3): Frictionless, (4): No inertia parameters, (5): No threshold parameters, (6): Full model
with α = 0.0017, (7): Full model with α = 0.0033, (8): Empirical moments.

Table 1: Parameter Estimates and Moments
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(1) (2) (3) (4) (5)

Specifications:
Capital
goods Durables

Intermediate
goods

Non-durables,
food

Non-durables,
non-food

U 0.282 0.119 0.156 0.153 0.170
(0.061 ) (0.006) (0.004) (0.004) (0.015)

L -0.265 -0.240 -0.212 -0.162 -0.206
(0.070) (0.031) (0.008) (0.006) (0.161)

θup 0.305 0.299 0.356 0.407 0.026
(0.023) (0.025) (0.004) (0.018) (0.002)

θdown 0.252 0.443 0.478 0.376 0.003
(0.034) (0.020) (0.014) (0.017) (0.171)

y 0.418 0.820 0.712 0.883 0.616
(0.086) (0.087) (0.026) (0.039) (0.065)

σe 0.030 0.041 0.051 0.048 0.019
(0.002) (0.004) (0.002) (0.002) (0.004)

Moments
[−5.0%,−2.5%〉 0.005 0.011 0.022 0.024 0.000
[−2.5%,−0.5%〉 0.011 0.023 0.043 0.052 0.000
[−0.5%, 0.5%] 0.913 0.826 0.750 0.731 0.981
〈0.5%, 2.5%] 0.024 0.041 0.062 0.079 0.001
〈2.5%, 5.0%] 0.017 0.036 0.038 0.036 0.000
Chgs in Jan 0.340 0.230 0.354 0.307 0.178
Serial corr(up) -0.358 -0.503 -0.340 -0.259 0.000
Serial corr(down) -0.401 -0.119 -0.106 -0.277 0.000
sd(pit − pit−1) 0.022 0.027 0.033 0.032 0.020
Rank 12 -0.011 -0.021 -0.031 -0.036 -0.003
Rank 11 -0.003 -0.009 -0.015 -0.014 0.000
Rank 2 0.010 0.019 0.026 0.026 0.003
Rank 1 0.033 0.040 0.050 0.048 0.032

N 243 134 807 359 133
J 93.7 75.9 85.7 40.5 75.7
Note: standard errors in parentheses, N denotes number of products, J denotes the
criterion value.

Table 2: Empirical Results by Product Groups
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(1) (2) (3)

Specifications: No inertia No thresholds
No friction
parameters

U 0.140 - -
(0.003) - -

L -0.167 - -
(0.006) - -

θup - 0.370 -
- (0.020) -

θdown - 0.409 -
- (0.019) -

y 0.712 - -
(0.014) - -

σε 0.042 0.042 0.042
(0.001) (0.001) (0.0001)

[−5%,−2.5%) 0.000 0.133 0.151
[−2.5%,−0.5%) 0.000 0.241 0.173
[−0.5%, 0.5%] 0.940 0.143 0.096
(0.5%, 2.5%] 0.000 0.248 0.181
(2.5%, 5.0%] 0.000 0.163 0.168
Chgs in Jan 0.189 0.857 0.905
Serial corr (up) -0.019 0.233 0.001
Serial corr (down) 0.000 0.234 0.001
sd(pit − pit−1) 0.041 0.028 0.042
Rank 12 -0.042 -0.039 -0.065
Rank 11 -0.003 -0.026 -0.044
Rank 2 0.018 0.034 0.052
Rank 1 0.066 0.046 0.071

J 3 213.8 28 850.6 27 037.6

Table 3: Counterfactual Analysis
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A Appendices
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Note: For each product the share of price-change observations outside the zero-price-change-interval
[-0.005, 0.005] relative to the total number of observations per product is computed. The distribution
of this share of price-change observations per product has the following properties; mean = 0.207,
median = 0.087, st.dev. = 0.258.

Figure A1: The share of price-change observations outside the zero-price-change in-
terval per product
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Mean Std. dev. Z-value 95% Conf. Interval

[−5%,−2.5%) 0.017 0.001 19.000 0.015 0.019
[−2.5%,−0.5%) 0.033 0.002 19.040 0.030 0.037
[−0.5%, 0.5%] 0.800 0.006 128.670 0.788 0.812
(0.5%, 2.5%] 0.047 0.002 21.810 0.043 0.051
(2.5%, 5.0%] 0.036 0.001 36.040 0.034 0.038

Chgs in Jan 0.315 0.009 33.370 0.296 0.333

Serial corr (up) -0.136 0.028 -4.770 -0.192 -0.080
Serial corr (down) -0.385 0.134 -2.870 -0.648 -0.122

sd(pit − pit−1) 0.0413 0.003 15.020 0.036 0.047

Rank 12 -0.029 0.001 -22.910 -0.031 -0.026
Rank 11 -0.010 0.001 -16.720 -0.011 -0.009
Rank 2 0.021 0.001 28.690 0.020 0.023
Rank 1 0.053 0.001 38.020 0.050 0.055

Note: The first five rows represent the total shares of observations within the
given intervals and the following row represents the share of price changes in
January.

Table A1: Bootstrapped Moments with Std. Errors
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A.1 A Simple Model for Frictionless Price
Assume a Cobb–Douglas production technology with a flexible input factor, K. The
costs of this factor are exogenous to the plant and denoted r. Assume also that the
plants have some market power and demand is given by an isoelastic function. Also,
assume that goods are sufficiently differentiated to abstract from substitution within
a multi-product firm’s portfolio of products. For notational convenience, we abstract
from subindices for the plant, product, and time. Then, production is determined by
QS(K) = A · Ka where 0 < a < 1 and the isoelastic demand function is given by
QD(P ) = B ·

(
P/PC

)−ε
where ε > 1. The price of a plant’s product is given by P , and

PC denotes the general price level in the industry. The price level PC is exogenous
to the plant which implies that we employ a partial equilibrium model. Abstracting
from inventory, profit for a single product is then given by

π(A,B, PC , r) = P ·B ·
(
P/PC

)−ε
− r ·

(
B

A

)1/a
·
(
P/PC

)−ε/a
,

where A captures supply shocks, and B captures demand shocks. With these assump-
tions, the first-order derivative of profit π(.) with respect to price P can be expressed
as follows:

P ∗ =
[

ε

a(ε− 1) B
1−a
a A−

1
a

] a
ε(1−γ)

︸ ︷︷ ︸
(1)

×r
a

ε(1−γ)︸ ︷︷ ︸
(2)

× (PC)
1−a
ε(1−γ)︸ ︷︷ ︸

(3)

, where γ = a(1− 1
ε
)

This expression is a nonlinear function of the state of supply A, the state of demand
B, the input costs r, and the general price in the industry PC . Given that a < 1, we
see that a positive supply shock, A ↑, will implicate a smaller price, as expression (1)
will get a smaller value. This could be, for example, because the producer obtains
better technology that increases productivity. We also see that a positive demand
shock, B ↑, will implicate a higher price, because the net effect on expression (1)
will be positive. Furthermore, if producers are faced with a positive cost shock, r ↑,
the frictionless equilibrium price will increase, as expression (2) will be more positive.
Note however that the degree of pass-through, the share of the cost increase that
will be borne by costumers, depends on the parameter values. Higher competitors’
prices, PC ↑, also induce a price increase. In our model setup, presented in the main
text, part of this latter effect—that the general price level increases—is picked up by
the trend parameter α. The remaining supply, demand, and cost shocks, together
with the nondeterministic part of a competitor’s prices, will all be picked up by the
idiosyncratic shocks, εit, in the model presented in the main text. Finally, we see that
the marginal effects of the various shocks affect the price differently.
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A.2 Simulated Method of Moments
In the simulated method of moments (SMM) approach, κ simulated datasets are
generated for N panels and 96 + T time periods. N and T are set equal to the
number of panels and time periods in the empirical data.31 To limit the impact of
initial conditions, the first 96 time periods (eight years) are discarded when calculating
the simulated moments, leaving only T time periods.32

If we let the vector of l unknown parameters be denoted by the vector β, the
optimal vector of unknown parameters, β̂, is given by:

β̂ = argmin
β

[ΦA − 1
κ

κ∑
j=1

ΦS(β)]′W [ΦA − 1
κ

κ∑
j=1

ΦS(β)] (13)

where W denotes the optimal weighting matrix, and ΦA and ΦS(β) denote the vector
of m actual moments and the vector of m simulated counterparts, respectively. The
weighting matrix W is given by the inverse of the variance–covariance matrix of
[ΦA− 1

κ

∑κ
j=1 ΦS(β)], which is best estimated using the following matrix (see Lee and

Ingram (1991)):
W = [(1 + 1

κ
)Ω]−1 (14)

Here, Ω denotes the variance–covariance matrix of the empirical moments, ΦA. Ω is
obtained by a block bootstrap with replacement of empirical data. An implication of
using this weighting matrix is that moments with a large variation are given less weight
than moments with a small variation. The distance between two sets of moments
ΦAand 1

κ

∑κ
j=1 ΦS(β), J(β), has a χ2 distribution with m − l degrees of freedom,

where m is the number of moments.
When searching for values of β, an annealing cooling algorithm is used. On the

basis of starting values for the estimated parameters, this routine takes random jumps
in a predefined parameter space. The routine accepts worse solutions with a decreas-
ing probability, which ensures that the global optimum is found. As the solution
is somewhat sensitive to initial values, we do several computations with different
starting values to ensure that we find the global maxima.

The standard errors of the parameters are given by the square roots of the diag-
onals of the variance–covariance matrix for β̂, which is given by:

Qs(W ) = (1 + 1
κ

)[∂ΦS(β̂)
∂β

′

W
∂ΦS(β̂)
∂β

]−1 (15)

Here, ∂ΦS(β̂)
∂β

is the Jacobian m × l matrix of the moment vector with respect to the
parameter vector β, evaluated at β̂. Given the lack of an analytical solution for the
components of this matrix, numerical derivatives are used. More specifically, we use
the symmetric difference quotient which is given by:

f ′(x) ≈ f(x+ h)− f(x− h)
2h (16)

31See, for instance, McFadden (1989); Pakes and Pollard (1989) for more details regarding the
approach.

32In our estimations, we use κ = 10, and have N = 1676 and T = 60.
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In the expression (16), x denotes the components of β̂, f(x) denotes the components
of ΦS(β̂), and h is a small positive number. A problem with this approach is that
the approximation depends on the size of h. We therefore follow Bloom (2009) and
calculate four values of the numerical derivative with steps of 0.1%, 1%, 2.5%, and
5% from β̂, and use the median value of these numerical derivatives.
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