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Abstract 
 
We propose a nonparametric method to study which characteristics provide incremental 
information for the cross section of expected returns. We use the adaptive group LASSO to 
select characteristics and to estimate how they affect expected returns nonparametrically. Our 
method can handle a large number of characteristics, allows for a flexible functional form, and 
our implementation is insensitive to outliers. Many of the previously identified return predictors 
do not provide incremental information for expected returns, and nonlinearities are important. 
We study the properties of our method in an extensive simulation study and out-of-sample 
prediction exercise and find large improvements both in model selection and prediction 
compared to alternative selection methods. Our proposed method has higher out-of-sample 
Sharpe ratios and explanatory power compared to linear panel regressions. 
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I Introduction

In his presidential address, Cochrane (2011) argues the cross section of the expected return

“is once again descending into chaos.” Harvey et al. (2016) identify “hundreds of papers

and factors” that have predictive power for the cross section of expected returns.1 Many

economic models, such as the consumption CAPM of Lucas (1978), Breeden (1979), and

Rubinstein (1976), instead predict that only a small number of state variables suffice to

summarize cross-sectional variation in expected returns.

Researchers typically employ two methods to identify return predictors: (i)

(conditional) portfolio sorts based on one or multiple characteristics, such as size or

book-to-market, and (ii) linear regression in the spirit of Fama and MacBeth (1973). Both

methods have many important applications, but they fall short in what Cochrane (2011)

calls the multidimensional challenge: “[W]hich characteristics really provide independent

information about average returns? Which are subsumed by others?” Portfolio sorts are

subject to the curse of dimensionality when the number of characteristics is large, and

linear regressions make strong functional-form assumptions and are sensitive to outliers.2

In addition, in many empirical settings, most of the variation in characteristic values and

returns are in the extremes of the characteristic distribution and the association between

characteristics and returns appears nonlinear (see Fama and French (2008)). Cochrane

(2011) speculates, “To address these questions in the zoo of new variables, I suspect we

will have to use different methods.”

We propose a nonparametric method to determine which firm characteristics provide

incremental information for the cross section of expected returns without making strong

functional-form assumptions. Specifically, we use a group LASSO (least absolute

shrinkage and selection operator) procedure developed by Huang, Horowitz, and Wei

(2010) for model selection and nonparametric estimation. Model selection deals with the

question of which characteristics have incremental predictive power for expected returns,

1Figure 1 documents the number of discovered factors over time.
2We discuss these, and related concerns in Section A.2 and compare current methods with our proposed

framework in Section A.3 of the Online Appendix.
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given the other characteristics. Nonparametric estimation deals with estimating the effect

of important characteristics on expected returns without imposing a strong functional

form.

We show three applications of our proposed framework. First, we study which

characteristics provide incremental information for the cross section of expected returns.

We estimate our model on 62 characteristics including size, book-to-market, beta, and

other prominent variables and anomalies on a sample period from July 1965 to June

2014. Only 13 variables, including size, total volatility, and past return-based predictors,

have incremental explanatory power for expected returns for the full sample period and all

stocks. A hedge portfolio going long the stocks with the 50% highest predicted returns and

shorting the 50% of stocks with the lowest predicted returns has an in-sample Sharpe ratio

of more than 3. Only 11 characteristics have predictive power for returns in the first half

of our sample. In the second half, instead, we find 14 characteristics are associated with

cross-sectional return premia. For stocks whose market capitalization is above the 20%

NYSE size percentile, only nine characteristics, including changes in shares outstanding,

past returns, and standardized unexplained volume, remain incremental return predictors.

The in-sample Sharpe ratio is still 2.37 for large stocks.

Second, we compare the out-of-sample performance of the nonparametric model with

a linear model. Estimating flexible functional forms raises the concern of in-sample

overfitting. We estimate both the linear and the nonparametric model over a period until

1990 and select return predictors. We then use 10 years of data to estimate the models on

the selected characteristics. In the first month after the end of our estimation period, we

take the selected characteristics, predict one-month-ahead returns, and construct a hedge

portfolio similar to our in-sample exercise. We roll the estimation and prediction period

forward by one month and repeat the procedure until the end of the sample.

Specifically, we perform model selection once until December 1990 for both the linear

model and the nonparametric model. Our first estimation period is from December of

1981 until November of 1990, and the first out-of-sample prediction is for January 1991
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using characteristics from December 1990.3 We then move the estimation and prediction

period forward by one month. The nonparametric model generates an out-of-sample

Sharpe ratio of 2.83 compared to 0.75 for the linear model.4 The characteristics we study

are not a random sample, but have been associated with cross sectional return premia

in the past. Therefore, we focus mainly on the comparison across models rather than

emphasizing the overall magnitude of the Sharpe ratios.

The linear model selects 30 characteristics in-sample compared to only eleven for the

nonparametric model, but performs worse out-of-sample and nonlinearities are important.

We find an increase in out-of-sample Sharpe ratios relative to the Sharpe ratio of the

linear model when we employ the nonparametric model for prediction but use the 30

characteristics the linear model selects. The linear model appears to overfit the data

in-sample. We find an identical Sharpe ratio for the linear model when we use the 11

characteristics selected by the nonparametric model, as we do with the 30 characteristics

selected by the linear model. This latter result underscores once more the importance of

nonlinearities. With the same set of 11 characteristics the nonlinear model selects, we find

the nonparametric model has a Sharpe ratio that is larger by a factor of three relative to

the Sharpe ratio of the linear model using the same set of characteristics.

Third, we study whether the predictive power of characteristics for expected returns

varies over time. We estimate the model using 120 months of data on all characteristics we

select in our baseline analysis, and then estimate rolling one-month-ahead return forecasts.

We find substantial time variation in the predictive power of characteristics for expected

returns. As an example, momentum returns conditional on other return predictors vary

substantially over time, and we find a momentum crash similar to Daniel and Moskowitz

(2016) as past losers appreciated during the recent financial crisis. Size conditional on the

other selected return predictors, instead, has a significant predictive power for expected

returns throughout our sample period similar to the findings in Asness, Frazzini, Israel,

3We merge balance-sheet variables to returns following the Fama and French (1993) convention of
requiring a lag of at least six months, and our results are therefore indeed out-of-sample.

4The linear model we estimate and the results for the linear model are similar to Lewellen (2015).
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Moskowitz, and Pedersen (2017).

The method we propose has several “tuning” parameters and one might be concerned

that our conclusions depends on some of the choices we have to make. We document in

an extensive simulation study both aspects of our proposed method: model selection and

and return prediction. Across a wide array of choices regarding the tuning parameters,

we find the adaptive group LASSO performs well along both dimensions, that is, it

has a high probability to select the “right” set of characteristics and performs well in

predicting returns out of sample. We also compare the performance of the nonlinear

adaptive group LASSO for model selection and return prediction to a linear LASSO and

popular recent proposals like increased thresholds for t-statistics or p-value adjustments

for false-discovery rates and find along both dimensions that allowing for nonlinearities

improves performance substantially.

The paper provides a new method in empirical asset pricing to understand which

of the previously published firm characteristics provide information for expected returns

conditional on other characteristics. We see this exercise as a natural first step in the

“multidimensional challenge.” Once we understand which characteristics indeed provide

incremental information, we can aim to relate characteristics to factor exposures, estimate

factors and stochastic discount factors directly, or relate characteristics and factors to

economic models.

A Related Literature

The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin

(1966) predicts that an asset’s beta with respect to the market portfolio is a sufficient

statistic for the cross section of expected returns. Subsequently, researchers identified

many variables that contain additional independent information for expected returns.

Fama and French (1992) synthesize these findings, and Fama and French (1993) show that

a three-factor model with the market return, a size factor, and a value factor can explain

cross sections of stocks sorted on characteristics that appeared anomalous relative to the
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CAPM. In this sense, Fama and French (1993) achieve a significant dimension reduction:

researchers who want to explain the cross section of stock returns only have to explain

the size and value factors.

In the 20 years following the publication of Fama and French (1992), many researchers

joined a “fishing expedition” to identify characteristics and factor exposures that the

three-factor model cannot explain. Harvey, Liu, and Zhu (2016) provide an overview of

this literature and list over 300 published papers that study the cross section of expected

returns. They propose a t-statistic of 3 for new factors to account for multiple testing

on a common data set. However, even employing the higher threshold for the t-statistic

still leaves approximately 150 characteristics as useful predictors for the cross section of

expected returns.

The large number of significant predictors is not a shortcoming of Harvey et al.

(2016), who address the issue of multiple testing. Instead, authors in this literature

usually consider their proposed return predictor in isolation without conditioning on

previously discovered return predictors. Haugen and Baker (1996) and Lewellen (2015)

are notable exceptions. They employ Fama and MacBeth (1973) regressions to combine

the information in multiple characteristics. Lewellen (2015) jointly studies the predictive

power of 15 characteristics and finds that only few are significant predictors for the

cross section of expected returns. Green, Hand, and Zhang (2017) adjust Fama-MacBeth

regressions to avoid overweighting microcaps and adjust p-values for data snooping bias

and find for a sample starting in 1980 that many return predictors do not provide

independent information. Although Fama-MacBeth regressions carry a lot of intuition,

they do not offer a formal method of model selection. We build on Lewellen (2015) and

provide a framework that allows for nonlinear associations between characteristics and

returns, provide a formal framework to disentangle important from unimportant return

predictors, and study many more characteristics.

We build on a large literature in economics and statistics using penalized regressions.

Horowitz (2016) gives a general overview of model selection in high-dimensional models,
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and Huang, Horowitz, and Wei (2010) discuss variable selection in a nonparametric

additive model similar to the one we implement empirically. Recent applications of LASSO

methods in finance are Huang and Shi (2016), who use an adaptive group LASSO in

a linear framework and construct macro factors to test for determinants of bond risk

premia. Chinco, Clark-Joseph, and Ye (2018) use a linear model for high-frequency

return predictability using past returns of related stocks, and find their method increases

predictability relative to OLS. Goto and Xu (2015) use a LASSO to obtain a sparse

estimator of the inverse covariance matrix for mean variance portfolio optimization.

Gagliardini, Ossola, and Scaillet (2016) develop a weighted two-pass cross-sectional

regression method to estimate risk premia from an unbalanced panel of individual stocks.

Giglio and Xiu (2016) instead propose a three-pass regression method that combines

principal component analysis and a two-stage regression framework to estimate consistent

factor risk premia in the presence of omitted factors when the cross section of test assets

is large. DeMiguel, Martin-Utrera, Nogales, and Uppal (2016) extend the parametric

portfolio approach of Brandt et al. (2009) to study which characteristics provide valuable

information for portfolio optimization. Kelly, Pruitt, and Su (2017) generalize standard

PCA to allow for time-varying loadings and extract common factors from the universe of

individual stocks. Kozak, Nagel, and Santosh (2017) exploit economic restrictions relating

expected returns to covariances to construct stochastic discount factors.

We, instead, are mainly concerned with formal model selection, that is, which

characteristics provide incremental information in the presence of other characteristics.

II Current Methods and Nonparametric Models

A Expected Returns and Current Methods

One aim of the empirical asset-pricing literature is to identify characteristics that predict

expected returns, that is, find a characteristic in period t− 1 that predicts excess returns

of firm i in the following period, Rit. Formally, we try to describe the conditional mean
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function, mt defined as

mt(c1, . . . , cS) = E[Rit | C1,it−1 = c1, . . . , CS,it−1 = cS]. (1)

where C1,it−1, . . . , CS,it−1 are the S firm characteristics.

We often use portfolio sorts to approximate mt for a single characteristic. We

typically sort stocks into 10 portfolios and compare mean returns across portfolios.

Portfolio sorts are simple, straightforward, and intuitive, but they also suffer from several

shortcomings. They suffer from the curse of dimensionality, they do not offer formal

guidance to discriminate between characteristics, and they assume returns do not vary

within portfolio.

An alternative to portfolio sorts is to assume linearity of mt and run linear panel

regressions of excess returns on characteristics, namely,

Rit = α +
S∑
s=1

βsCs,it−1 + εit. (2)

Linear regressions allow us to study the predictive power for expected returns of many

characteristics jointly, but they also have potential pitfalls. Most importantly, no a priori

reason exists why the conditional mean function should be linear.

We discuss many of these shortcomings in more detail in Section A.2 of the online

appendix and how researchers typically address some of the shortcomings. Cochrane

(2011) synthesizes many of the challenges that portfolio sorts and linear regressions face

in the context of many return predictors, and suspects “we will have to use different

methods.”

B Nonparametric Estimation

Cochrane (2011) conjectures in his presidential address, “[P]ortfolio sorts are really the

same thing as nonparametric cross-sectional regressions, using nonoverlapping histogram
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weights.” We establish a formal equivalence result between portfolio sorts and regressions

in the online appendix. Specifically, suppose we have a single characteristic C1,it−1 and

we sort stocks into L portfolios depending on the value of the characteristic. We show in

the appendix a one-to-one relationship exists between the portfolio returns and regression

coefficients in a regression of returns on L indicator functions, where indicator function l

is equal to 1 if stock i is in portfolio l for l = 1, . . . , L. Hence, portfolio sorts are equivalent

to approximating the conditional mean function with a step function. The nonparametric

econometrics literature also refers to these functions as constant splines. We use a smooth

extension of this estimation strategy with many possible regressors.

Estimating the conditional mean function, mt, fully nonparametrically with many

regressors results in a slow rate of convergence and imprecise estimates in practice.5

Specifically, the optimal rate of convergence decreases as the number of characteristics

increases. Consequently, we get an estimator with poor finite sample properties

if the number of characteristics is large.6 Nevertheless, if we are interested in

which characteristics provide incremental information for expected returns given other

characteristics, we cannot look at each characteristic in isolation. A natural solution in

the nonparametric regression framework is to assume an additive model, that is,

mt(c1, . . . , cS) =
S∑
s=1

mts(cs),

where mts(·) are unknown functions. The main theoretical advantage of the additive

specification is the rate of convergence does not depend on the number of characteristics

S (see Stone (1985), Stone (1986), and Horowitz et al. (2006)).

An important restriction of any additive model, including multivariate linear models

5The literature refers to this phenomenon as the “curse of dimensionality” (see Stone (1982) for a
formal treatment).

6The online appendix contains in Section A.4 some concrete examples.
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or Fama-MacBeth regressions, is

∂2mt(c1, . . . , cS)

∂cs∂cs′
= 0

for all s 6= s′; therefore, the additive model does not allow for cross dependencies

between characteristics. For example, the predictive power of the book-to-market ratio

for expected returns does not vary with firm size (conditional on size). One way around

this shortcoming is to add certain interactions as additional regressors. For instance, we

could interact every characteristic with size to see if small firms are really different. An

alternative solution is to estimate the model separately for small and large stocks. Brandt

et al. (2009) make a similar assumption, but also stress that we can always interpret

characteristics as the cross product of a more basic set of characteristics. In our empirical

application, we show results for all stocks and all-but micro caps, but also show results

when we interact each characteristic with size.

Although the assumption of an additive model is somewhat restrictive, it provides

desirable econometric advantages. In addition, this assumption is far less restrictive than

assuming additivity and linearity, as we do in Fama-MacBeth regressions. Another major

advantage of an additive model is that we can jointly estimate the model for a large

number of characteristics, select important characteristics, and estimate the summands

of the conditional mean function, mt, simultaneously, as we explain in subsection C below.

Before providing the formal model selection procedure, we describe a normalization

of the characteristics, which will allow us to map our nonparametric estimator directly to

portfolio sorts and ensures our results are insensitive to outliers. For each characteristic

s, let C̃s,it−1 be the rank transformation of Cs,it−1, which maps the cross-sectional

distribution of the characteristic to the unit interval; that is, C̃s,it−1 ∈ [0, 1]. It is easy to

show that there exists a function m̃t, such that

m̃t(C̃1,it−1, . . . , C̃S,it−1) = mt(C1,it−1, . . . , CS,it−1).
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Hence, knowledge of the conditional mean function mt is equivalent to knowing the

transformed conditional mean function m̃t, which is the function we estimate.7 Similar to

portfolio sorting, we are typically not interested in the actual value of a characteristic in

isolation, but rather in the rank of the characteristic in the cross section. Consider firm

size. Size grows over time, and a firm with a market capitalization of USD 1 billion in the

1960s was considered a large firm, but today it is not. Our normalization considers the

relative size in the cross section rather than the absolute size, similar to portfolio sorting.

C Adaptive Group LASSO

We use a group LASSO procedure developed by Huang et al. (2010) for estimation and

to select those characteristics that provide incremental information for expected returns,

that is, for model selection. To recap, we are interested in modeling excess returns as a

function of characteristics; that is,

Rit =
S∑
s=1

m̃ts(C̃s,it−1) + εit, (3)

where m̃s(·) are unknown functions and C̃s,it−1 denotes the rank-transformed character-

istic.

The idea of the group LASSO is to estimate the functions m̃ts nonparametrically,

while setting functions for a given characteristic to 0 if the characteristic does not help

predict returns. Therefore, the procedure achieves model selection; that is, it discriminates

between the functions m̃ts, which are constant, and the functions that are not constant.8

We can interpret portfolio sorts as estimating m̃ts by a constant within each portfolio.

We also partition the support of each characteristic into L intervals similar to portfolio

7We show in Section A.5 of the online appendix that the general econometric theory we discuss
in subsection C below (model selection, consistency, etc.) also applies to any other monotonic
transformation or the non-transformed conditional mean function.

8The “adaptive” part indicates a two-step procedure, because the LASSO selects too many
characteristics in the first step and is therefore not model-selection consistent unless restrictive conditions
on the design matrix are satisfied (see Meinshausen and Bühlmann (2006) and Zou (2006) for an in-depth
treatment of the LASSO in the linear model).
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sorts. The endpoints of the intervals are knots and we set them to the quantiles of the

rank transformed characteristic distribution. We then approximate each function m̃ts by

a quadratic function on each of the intervals, such that the whole function is continuously

differentiable on [0, 1], that is, we approximate m̃ts by quadratic splines. We use these

splines for our baseline results because these are the lowest-order splines such that m̃ts is

continuously differentiable. Thus, we can interpret our estimator as a smooth extension

of portfolio sorts. Interestingly, we can then approximate m̃ts as a linear combination of

L+ 2 basis function, i.e.,

m̃ts(c̃) ≈
L+2∑
k=1

βtskpk(c̃), (4)

where pk(c) are known functions and βtsk are parameters we estimate. We provide a formal

definition of splines and the corresponding basis functions in Section A.2 of the online

appendix. The number of intervals L is a user-specified smoothing parameter, analogous

to the number of portfolios. As L increases, the precision of the approximation increases,

but so does the number of parameters we have to estimate and hence the variance. We

discuss these and other choices we have to make and the robustness of our empirical

results in an extensive simulation study in Section IV.

We now discuss the two steps of the adaptive group LASSO. In the first step, we

obtain estimates of the coefficients as

β̃t = arg min
bsk:s=1,...,S;k=1,...,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk(C̃s,it−1)

)2

+ λ1

S∑
s=1

(
L+2∑
k=1

b2
sk

) 1
2

, (5)

where β̃t is an (L+ 2)× S vector of estimates and λ1 is a penalty parameter.

The first part of equation (5) is just the sum of the squared residuals as in ordinary

least squares regressions; the second part is the LASSO group penalty function. Rather

than penalizing individual coefficients, bsk, the LASSO penalizes all coefficients associated

with a given characteristic. Thus, we can set the point estimates of an entire expansion

of m̃t to 0 when a given characteristic does not provide incremental information for

expected returns. Due to the penalty, the LASSO is applicable even when the number

12



of characteristics is larger than the sample size. Yuan and Lin (2006) propose to choose

λ1 in a data-dependent way to minimize Bayesian Information Criterion (BIC) which we

follow in our application.

However, the first step of the LASSO may select too many characteristics. Informally

speaking, the LASSO selects all characteristics that predict returns, but also selects

some characteristics that have no predictive power. A second step which introduces

characteristic-specific weights in the LASSO group penalty function as a function of

first-step estimates addresses this problem. The online appendix discusses in Section A.3

the second step, the consistency conditions, and the efficiency properties of the resulting

estimates in detail.

If the cross section is sufficiently large, we could perform model selection and

estimation period by period. Hence, the method allows for the importance of

characteristics and the shape of the conditional mean function to vary over time. For

example, some characteristics might lose their predictive power for expected returns over

time. McLean and Pontiff (2016) show that for 97 return predictors, predictability

decreases by 58% post publication. However, if the conditional mean function was

time-invariant, pooling the data across time would lead to more precise estimates of the

function and therefore more reliable predictions. In our empirical application in Section

III, we estimate our model over subsamples and also estimate rolling specifications to

investigate the variation in the conditional mean function over time.

D Interpretation of the Conditional Mean Function

In a nonparametric additive model, the locations of the functions are not identified.

Consider the following example. Let αs be S constants such that
∑S

s=1 αs = 0. Then,

m̃t(c̃1, . . . , c̃S) =
S∑
s=1

m̃ts(c̃s) =
S∑
s=1

(m̃ts(c̃s) + αs) .
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Therefore, the summands of the transformed conditional mean function, m̃s, are only

identified up to a constant. The model-selection procedure, expected returns, and the

portfolios we construct do not depend on these constants. However, the constants matter

when we plot an estimate of the conditional mean function for one characteristic.

We report estimates of the functions using the common normalization that the

functions integrate to 0, which is identified.

Section A.6 of the online appendix discusses how we construct confidence bands for

the figures which we report and how we select the number of interpolation points in the

empirical application of Section III below.

III Empirical Application

We now discuss the universe of characteristics we use in our empirical application and

study which of the 62 characteristics provide incremental information for expected returns,

using the adaptive group LASSO for selection and estimation.

A Data

Stock return data come from the Center for Research in Security Prices (CRSP) monthly

stock file. We follow standard conventions and restrict the analysis to common stocks of

firms incorporated in the United States trading on NYSE, Amex, or Nasdaq.

Balance-sheet data are from the Standard and Poor’s Compustat database. We use

balance-sheet data from the fiscal year ending in calendar year t−1 for estimation starting

in June of year t until May of year t+ 1 predicting returns from July of year t until June

of year t+ 1.

Table 1 provides an overview of the 62 characteristics we apply our method to.

We group them into six categories: past return based predictors such as momentum

(r12−2) and short-term reversal (r2−1), investment-related characteristics such as the

annual percentage change in total assets (Investment) or the change in inventory over
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total assets (IVC), profitability-related characteristics such as gross profitability over the

book-value of equity (Prof) or return on operating assets (ROA), intangibles such as

operating accruals (OA) and tangibility (Tan), value-related characteristics such as the

book-to-market ratio (BEME) and earnings-to-price (E2P), and trading frictions such

as the average daily bid-ask spread (Spread) and standard unexplained volume (SUV).

We follow Hou, Xue, and Zhang (2015) in the classification of characteristics.

To alleviate a potential survivorship bias due to backfilling, we require that a firm

has at least two years of Compustat data. Our sample period is July 1965 until June 2014.

Table 2 reports summary statistics for various firm characteristics and return predictors.

We calculate all statistics annually and then average over time. On average we have 1.6

million observations in our analysis.

Section A.1 in the online appendix contains a detailed description of the characteris-

tics, the construction, and the relevant references.

B Selected Characteristics and Their Influence

The purpose of this section is to show different applications of the adaptive group LASSO.

We do not aim to exhaust all possible combinations of characteristics, sample periods,

and firm sizes, or all possible applications but rather aim to provide some insights into

the flexibility of the method in actual data. Section IV contains an extensive simulation

to study the choices researchers have to make when implementing the method, such as

the number of interpolation points, the order of the spline functions, or the information

criterion. Another goal of the simulation is to compare in detail the performance

to alternative (linear) models and model selection techniques such as the t-statistic

adjustment of Harvey et al. (2016) or the false-discovery rate p-value adjustment of Green

et al. (2017).

Table 3 reports average annualized returns with standard errors in parentheses of

10 equally-weighted portfolios sorted on the characteristics we study. Most of the 62

characteristics individually have predictive power for expected returns in our sample
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period and result in large and statistically significant hedge portfolio returns and alphas

relative to the Fama and French three-factor model (Table 4). Thirty-one sorts have

annualized hedge returns of more than 5%, and 13 characteristics are even associated

with excess returns of more than 10%. Thirty-six characteristics have a t-statistic above

2. Correcting for exposure to the Fama-French three-factor model has little impact on

these findings. The vast majority of economic models, that is, the ICAPM (Merton (1973))

or consumption-based models, as surveyed in Cochrane (2007), suggest a low number of

state variables can explain the cross section of returns. Therefore, all characteristics are

unlikely to provide incremental information for expected returns.

To tackle the “multidimensional challenge,” we now estimate the adaptive group

LASSO with 10, 15, 20, and 25 knots. The number of knots corresponds to the smoothing

parameter we discuss in Section II. Ten knots corresponds to 11 portfolios in sorts.

We first show in a series of figures a few characteristics which provide large cross

sectional return premia univariately. However, some of the characteristics do not provide

incremental predictive power once we condition on other firm characteristics.

Figure 2 and Figure 3 plot estimates of the function m̃(C̃it−1) for adjusted turnover

(DTO), idiosyncratic volatility (Idio vol), the change in inventories (IVC), and net

operating assets (NOA). The left panels report the unconditional mean functions, whereas

the right panels plot the associations between the characteristics and expected returns

conditional on all selected characteristics.9

Stocks with low change in inventories, low net operating assets but high turnover

and high idiosyncratic volatility have higher expected returns than stocks with high

change in inventories, net operating assets, and low turnover or idiosyncratic volatility

unconditionally. These results are consistent with our findings for portfolio sorts in Table

3. Portfolio sorts result in average annualized hedge portfolio returns of around 13%, 3%,

8%, and 9% for sorts on turnover, idiosyncratic volatility, change in inventories, and net

operating profits, respectively. Change in inventories, net operating assets, and turnover

9We estimate the plots over the full sample and all firms using 20 interpolations points, see column
(1) of Table 5.
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have t-stats relative to the Fama-French three-factor model substantially larger than the

threshold Harvey et al. (2016) suggest (see Table 4).

These characteristics, however, are correlated with other firm characteristics. We now

want to understand whether they have marginal predictive power for expected returns

conditional on other firm characteristics. We see in the right panels that the association

of these characteristics with expected returns vanishes once we condition on other stock

characteristics. The estimated conditional mean functions are now close to constant

and do not vary a lot with the value of the characteristics. The constant conditional

mean functions imply turnover, idiosyncratic volatility, the change in inventories, and net

operating assets have no marginal predictive power for expected returns once we condition

on other firm characteristics.

The examples of turnover, idiosyncratic volatility, the change in inventories, and net

operating assets show the importance of conditioning on other characteristics to infer

the predictive power of characteristics for expected returns. We now study this question

systematically for 62 firm characteristics using the adaptive group LASSO.

Table 5 reports the selected characteristics of the nonparametric model for different

numbers of knots, sets of firms, and sample periods. Theory does not tell us what the right

number of interpolation points is similar to the number of portfolios in sorts but only that

we should use more interpolation points when the sample grows large. Allowing for more

interpolation points allows for a better approximation of the conditional mean function

but comes at the cost of having to estimate more parameters and, hence, higher estimation

uncertainty. Previous research also documents that some firm characteristics have larger

predictive power for smaller firms and that the predictive power of characteristics varies

over time.

We see in column (1) that the baseline estimation for all stocks over the full sample

period using 20 knots selects 13 out of the universe of 62 firm characteristics. The change

in shares outstanding, investment, size, share turnover, the adjusted profit margin, short-

term reversal, momentum, intermediate momentum, closeness to the 52 weeks high, the
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return on cash, standard unexplained volume, and total volatility all provide incremental

information conditional on all other selected firm characteristics. When we allow for a

wider grid in column (2) with only 15 knots, we also select the book to market ratio, net

operating assets, and long-term reversal. We instead select the same characteristics when

we impose a finer grid and estimate the group LASSO with 25 interpolation points (see

column (3)).

Figure 6 shows how the number of characteristics we select varies with the number

of interpolation points. We see the number of selected characteristics is stable around

20 interpolation points and varies between 16 when we use only 10 knots and 12 when

we use 30 interpolation points. We consider the stability of the number and identity of

selected characteristics a success documenting the method we propose is not sensitive to

the choice of tuning parameters but we provide substantially more robustness checks in

the controlled environment of a simulation.

We estimate the nonparametric model only on large stocks above the 10%- and

20%-size quantile of NYSE stocks in columns (4) to (6), reducing the sample size from

more than 1.6 million observations to around 760,000.

The change in shares outstanding, investment, short-term reversal, momentum,

intermediate momentum, the return on cash, standard unexplained volume, and total

volatility are significant return predictors both for a sample of firms above the 10%-size

threshold and the sample of all stocks in column (1), whereas the sales to price ratio

becomes a significant return predictor. For firms above the 20%-size threshold of NYSE

firms, we also see momentum losing predictive power, but returns over the last six months

becoming a significant return predictor. When we impose a coarser grid with only 10 knots

for a sample of firms above the 20%-size threshold of NYSE firms in column (6), we see

closeness to the 52 weeks high and long-term reversal regaining predictive power, whereas

standard momentum driving out intermediate momentum.10

Columns (7) and (8) split our sample in half and re-estimate our benchmark

10The number of knots increases with the sample size. The penalty function instead increases in the
number of knots, which is why we select fewer characteristics with more knots.
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nonparametric model in both sub-samples separately to see whether the importance

of characteristics for predicted returns varies over time. Only 11 characteristics have

predictive power for expected returns in the sample until 1990, whereas 14 characteristics

provide incremental predictive power in the second half of the sample until 2014.

The change in shares outstanding, short-term reversal, momentum, the closeness to

the previous 52-week high, the return on cash, standardized unexplained volume, and

total volatility are the most consistent return predictors across different sample periods,

number of interpolation points, and sets of firms.

Figure 4 and Figure 5 plot the conditional and unconditional mean functions for

short-term reversal, the closeness to the previous 52-week high, size, and standard

unexplained volume. We see in Figure 4 both for reversal and closeness to the 52 weeks

high a monotonic association between the characteristic distribution and expected returns

both unconditionally and once we condition on other characteristics in the right panel.

Size matters for returns for all firms in the right panel of Figure 5 and the conditional

association is more pronounced than the unconditional relationship in the left panel. This

finding is reminiscent of Asness, Frazzini, Israel, Moskowitz, and Pedersen (2017), who

argue “size matters, if you control your junk.” We see in the lower panels, standardized

unexplained volume is both unconditionally and conditionally positively associated with

expected returns.

This section shows that many of the univariately significant return predictors do not

provide incremental predictive power for expected returns once we condition on other

stock characteristics. In particular, out of the 62 firm characteristics we study, we never

selected 41 of them! The other 21 characteristics were selected at least for some sample

periods, cuts by firm size or number of interpolation points with three of them being

selected for each single cut of the data.
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C Interactions of Firm Characteristics and Selection in the

Linear Model

We discuss in Section II the impact of estimating our model fully nonparametrically on

the rate of convergence of the estimator, the so-called curse of dimensionality, and that

imposing an additive structure on the conditional mean function offers a solution. The

additive structure implies the effect of one characteristic on returns is independent of

other characteristics once we condition on them, a form of conditional independence, just

as in any multivariate regression. Creating pseudo characteristics, which are themselves

interactions of firm characteristics, offers a possible solution to the additive structure

and we now show a simple application. Specifically, we interact each of the 61 firm

characteristics other than firm size with firm size for a total of 123 firm characteristics.

For example, one of the new characteristics is LME ×BEME, firm size interacted with

the book-to-market ratio.

Table 6 tabulates the results. Instead of selecting 13 characteristics as in the

baseline (see column (1) of Table 5), we now select a total of 25 out of the 123 firm

characteristics. The model selects 10 of the 13 characteristics it already selected in

the baseline. Interestingly, return on cash, which is one of the most consistent return

predictors in our baseline table across specifications, is no longer a significant return

predictor once we allow for interactions with firm size. Contrary to our baseline, we

also no longer select firm size in levels in the model with interactions. Among the 25

characteristics we select in the new model with interactions, almost half are interactions

with firm size.

We see in columns (2) to (4) of Table 6 that interactions with firm size are mainly

important among small stocks. Once we focus on stocks above the 10%- and 20%-size

quantile of NYSE stocks only short-term reversal, momentum, and return over the

previous six months interact with firms size and provide incremental information for

expected returns.

These results are reassuring for previous research which relied on multivariate
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regressions to dissect anomalies, especially for papers which tested models on different

parts of the firm-size distribution.

Table 7 estimates a linear model with the adaptive LASSO to gain some intuition for

the importance of nonlinearities. Specifically, we endow the linear model with the same

two-step LASSO machinery we use for our nonparametric model and report how many

and which characteristics the linear model selects in-sample. We also implement the false

discovery rate p-value adjustment to benchmark our selection results to the influential

findings in Green et al. (2017).

When we compare column (1) in Table 5 for the nonparametric model with column

(1) in Table 7 for the linear model, we see the linear model selects nine more characteristics

in-sample for a total of 24. Interestingly, the linear model selects eight of the 13

characteristics the nonparametric model selects but, e.g., also selects the book-to-market

ratio, the earnings-to-price ratio, or the average bid-ask spread over the previous month.

So far, we used raw characteristics for the linear model, whereas we applied the

rank transformation to characteristics we discuss above in the nonparametric model. We

now estimate a linear model with the adaptive LASSO to see whether the use of raw

characteristics might explain the larger number of characteristics we select in the linear

model. We see in column (2) of Table 7 that estimating a linear model on rank-transformed

characteristics results in an even larger number of characteristics which seem to provide

incremental information for expected returns.

Table 7 shows nonlinearities between characteristics and returns might result in a

larger number of selected characteristics in a linear model, even when we endow it with

the same two-step LASSO machinery that we use for the nonlinear model. Hence, allowing

for nonlinearities between characteristics and returns is important from the perspective

of a data reduction. We explore these features more below in simulations. The selection

of more characteristics for the linear model is something which we will see again below

when we compare the out-of-sample performance of our nonparametric model with the

linear model.
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Column (3) of Table 7 uses the false-discovery rate (FDR) p-value adjustment Green

et al. (2017) suggest for model selection. Similar to the linear LASSO model, we find

FDR selects many more characteristics compared to the nonlinear models. We will study

in detail the differences between linear and nonlinear selection methods in a simulation

study below (see Section IV).

D Time Variation in Return Predictors

McLean and Pontiff (2016) document substantial variation over time in the predictive

power of many characteristics for expected returns. Figure 7 to Figure 10 show the

conditional mean function for a subset of characteristics for our baseline nonparametric

model for all stocks and ten knots over time. We perform model selection on the first 10

years of data. We then fix the selected characteristics and estimate the nonparametric

model on a rolling basis using 10 years of data.

We see in the top panel of Figure 7 that the conditional mean function is non-constant

throughout the sample period for lagged market cap. Small firms have higher expected

returns compared to large firms, conditional on all other selected return predictors.

Interestingly, the size effect seems largest during the end of our sample period, contrary

to conventional wisdom (see Asness et al. (2017) for a related finding). The bottom

panel shows that firms with higher profit margin relative to other firms within the same

industry have higher expected returns conditional on other firm characteristics, contrary

to the unconditional association (see Table 3).

We see in the top panel of Figure 8 that intermediate momentum has a significant

conditional association with expected returns throughout the sample period. Interestingly,

we do not observe a crash for intermediate momentum, because intermediate losers

have always lower returns compared to intermediate winners. In the bottom panel, we

see momentum conditional on other firm characteristics was a particular strong return

predictor in the middle sample but lost part of the predictive power for expected returns

in the more recent period because of high returns of past losers, consistent with findings
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in Daniel and Moskowitz (2016).

Figure 9 shows the effect of short-term reversal on expected returns has been strongest

in the early sample period because recent losers used to appreciate more than they

currently do. The bottom panel shows the association of the change in shares outstanding

and returns has been almost flat until the early 1990s and only afterwards did stocks

with the highest level of issuances earn substantially higher returns than all other stocks

conditional on other firm characteristics.

Figure 10 plots the conditional mean function for turnover and standard unexplained

volume over time. Both high unexplained volume and turnover are associated with high

returns but whereas the effect of unexplained volume conditional on other characteristics

appears stronger early on, the predictive power of turnover seems stronger in the second

part of the sample.

We see those figures as one application of our proposed method for the cross section

of stock returns and do not want to put too much weight on the eyeball econometrics

we performed in the previous section. Ultimately, we cannot tell causal stories and the

results might change when we condition on additional firm characteristics. Nevertheless,

we consider those three-dimensional surface plots for a given characteristic conditional

on other characteristics useful for providing some insights into the time variation of and

possible drivers for disappearing or (re-)appearing predictability of a given characteristic.

E Out-of-Sample Performance and Model Comparison

We argued above the nonparametric method we propose overcomes potential shortcomings

of more traditional methods, and show potential advantages of the adaptive group LASSO

in simulations below.

We now want to compare the performance of the nonparametric model with the linear

model out-of-sample. The out-of-sample context ensures that in-sample overfit does not

explain a potentially superior performance of the nonparametric model.

We estimate the nonparametric model for a period from 1965 to 1990 and carry
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out model selection with the adaptive group LASSO with ten knots, but also use the

adaptive LASSO for model selection in the linear model over the same sample period,

that is, we give both the nonparametric model and the linear model the same machinery

and, hence, equal footing. We then use 10 years of data to estimate the model on the

selected characteristics. In the next month, we take the selected characteristics and

predict one-month-ahead returns and construct a hedge portfolio going long stocks with

the highest predicted returns and shorting stocks with the lowest predicted returns. We

then roll the estimation and prediction period forward by one month and repeat the

procedure until the end of the sample.

Specifically, in our first out-of-sample predictions, we use return data from January

1981 until December 1990 and characteristics data from January 1981 until December

1990 to get estimates of β.11 We then take the estimated coefficients and characteristics

data of December 1990 to predict returns for January 1991 and form two portfolios for

each method. We buy the stocks with the highest predicted returns and sell the stocks

with the lowest predicted returns. We then move our estimation sample forward by one

month from February 1981 until January 1991, get new estimates β̂, and predict returns

for February 1991.

Panel A of Table 8 reports the out-of-sample Sharpe ratios for both the nonparametric

and linear models for different sample periods and firms when we go long the 50% of firms

with highest predicted returns and short the 50% of firms with lowest predicted return.

For a sample from 1991 to 2014 and ten knots, the nonparametric model generates an

out-of-sample Sharpe ratio for an equally-weighted hedge portfolio of 2.83 compared to

0.75 for the linear model (compare columns (1) and (2)). The linear model selects 30

characteristics in-sample compared to only 11 for the nonparametric model, but performs

worse out-of-sample.12 Splitting the Sharpe ratio into a return part and a standard

deviation part, we see the nonlinear model generates hedge returns that are twice as large

11To be more precise, for returns until June 1981, many of the balance-sheet variables will be from the
fiscal year ending in 1979.

12The linear model might be misspecified and therefore select more variables (see discussion and
simulation results below in Section IV).
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as the returns the linear mode generates but with only half the standard deviation. The

linear model has slightly higher positive skewness but also substantially larger kurtosis.

When we calculate average turnover statistics over time, we find the nonlinear model

has slightly larger turnover. Turnover1 follows Koijen, Moskowitz, Pedersen, and Vrugt

(2018) and is defined as turnt = 1
4

∑Nt

i |(1 + rit)wit−1 − wit| where wit is the portfolio

weight of stock i at time t and Nt is the number of stocks and Turnover2 corresponds to

turnt = 1
4

1
Nt

∑Nt

i |ωit−1−ωit| where ωit ∈ {−1, 0, 1} and hence corresponds to the fraction

of stocks that change portfolios. When then follow Lewellen (2015) to study how accurate

the individual models are in predicting returns. Specifically, we regress realized returns at

the stock level on predicted returns months by months and report average slopes and R2s

over time. Ideally, we want to find slope coefficients close to 1 and high predictive power.

Lewellen (2015) discusses slope coefficients below 1 indicate predictive models exaggerate

expected return dispersion. The nonlinear adaptive group LASSO has a slope coefficient

of 0.71 and a R2 of about 1%. The slope coefficient for the full sample is very similar to

Lewellen (2015) but the predictive power is somewhat larger. The linear model instead

has an average slope which is only half the size and the predictive power for realized

returns is almost 20% lower. Panel B and C repeat the same statistics but for the long

and the short leg of the hedge portfolio separately. In general, we find higher returns for

the long leg and more negative skewness for the short leg with similar kurtosis.

Nonlinearities are important. We find a substantial increase in out-of-sample Sharpe

ratios relative to the Sharpe ratio of the linear model when we employ the nonparametric

model for prediction on the 30 characteristics the linear model selects (see column (3)).

The linear model appears to overfit the data in-sample. When we use the 11

characteristics we select with the nonparametric model, we find the Sharpe ratio for

the linear model is identical to the one we find when we use the 30 characteristics the

linear model selects (see column (4)). But even with the same set of 11 characteristics,

we find the Sharpe ratio for the linear model is still substantially smaller compared to

the Sharpe ratio of the nonparametric model. In line with our findings above, it appears
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the linear model selects many characteristics in-sample that do not provide incremental

information for return prediction, but also that nonlinearities are important.

Columns (5) and (6) focus on a longer out-of-sample period starting in 1973 to be

comparable to results in the literature (see, e.g., Lewellen (2015)). Results are very similar

to when we split the sample in half.

We see in columns (7) to (10) that Sharpe ratios drop substantially for both models

when we exclude firms below the 10th or 20th percentile of NYSE stocks. Lewellen (2015)

also finds Sharpe ratios for an equally-weighted hedge portfolio that are lower by 50%

when he excludes “all but tiny stocks.” The Sharpe ratios are still close to 1 for the

nonparametric model for both sets of stocks, whereas Sharpe ratios are only around 0.10

for the linear model.

So far, we invested in all stocks. Table A.1 in the online appendix reports qualitatively

and quantitatively very similar results when we only go long in the 10% of stocks with

highest predicted returns and short the 10% of stocks with lowest predicted returns.

Hedge returns become larger for the more extreme cutoffs but the portfolio volatility also

increases.

Results are also similar when we perform rolling selection. So far, we performed model

selection once, fixed the selected characteristics for the nonparametric and linear model,

and performed rolling model estimation and return prediction. In robustness check, we

also perform annual model selection on a constant sample size of 26 years, fix the selected

characteristics for 12 months and perform rolling monthly estimation and prediction. We

then roll forward the selection period by one year. The first selection period is from

January 1965 until December 1990 and the first out-of-sample return prediction is for

January 1991.

Table 9 reports the results for the rolling selection with 10 knots. Overall, the results

for the rolling selection are very similar to before. The nonlinear model selects fewer

characteristics but has higher out-of-sample Sharpe ratios, higher predictive power for

future returns, and higher R2s. Figure 11 plots the characteristics the nonlinear adaptive
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group LASSO selects over time and Figure 12 the corresponding figure for the linear

adaptive LASSO. Selected characteristics are indicated in dark blue. The nonlinear model

consistently selects a lower number of characteristics over time relative to the linear model

throughout the period and the identity of characteristics the nonlinear model selects

is surprisingly consistent over time suggesting that certain firm characteristics reliably

provide information for return prediction.

IV Simulation

Section III shows the nonlinear adaptive group LASSO achieves a large data reduction

relative to the linear model and increases out-of-sample predictability but so far, we do not

know the assumptions on the data-generating process under which the nonlinear adaptive

group LASSO performs well and what happens to model selection and out-of-sample

prediction when we change assumptions. The aim of this section is to discuss some of

the tuning parameters of the method we lay out in Section II such as the choice of the

penalty parameter or the number of interpolation points and compare the adaptive group

LASSO to alternative model selection methods.

Specifically, we want to simulate returns using our full set of return predictors and

compare model selection techniques and the choices of penalty parameters, knots, and

order of splines in the LASSO. We consider the following selection methods:

• Conventional t-statistic cutoff of 2

• t-statistic cutoff of 3 to account for multiple testing (Harvey et al. (2016))

• The false discovery rate (FDR) p-value adjustment of Green et al. (2017)

• Linear single-step LASSO

• Linear adaptive LASSO

• Nonlinear group LASSO

• Nonlinear adaptive group LASSO.

The single-step LASSO only estimates the first step of the method we outline in
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Section II. The adaptive LASSO consists of two stages. The group LASSO treats a given

characteristic across the whole distribution as a joint return predictor.

Regarding the choice of penalty parameter, we consider:

• Akaike information criterion (AIC)

• Bayesian information criterion (BIC)

• BIC as in Yuan and Lin (2006)

• Ten fold cross validation.

All three information criteria trade off the costs of a larger number of parameters

against the better fit. AIC and BIC differ in how they penalize additional parameters. For

AIC, the penalty is twice the number of parameters, whereas for BIC, it is the number

of parameters times the natural logarithm of the number of observations. Yuan and

Lin (2006) develop an adjusted BIC for the case of grouped variables. In ten fold cross

validation, we partition our data into ten subset, estimate the models on nine subsets

and use the remaining one for out-of-sample return prediction, that is, model validation.

We repeat the procedure nine times, using each sample exactly once for validation and

then average across samples. Cross validation then chooses to penalty parameter which is

associated with the lowest mean-square prediction error. We also study the importance

of the number of knots, the order of the polynomial, and the firm-size distribution, both

for selection and out-of-sample prediction.

Our simulation then proceeds in the following steps:

1. Take the full data set of 62 characteristics, Cit from Section III

2. Focus on a sample from 1965 to 2012

3. Assume the 13 characteristics of column (1) of Table 5 are the “true” predictors

4. Transform all characteristics to be standard normal distributed

5. Fit a fifth-order polynomial on the true characteristics to estimate gs(Cs,it−1) for

each characteristic
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6. Generate returns according to: rit =
∑13

s=1 gs(Cs,it−1) + εit

7. εit ∼ N (0, σ2)

8. σ is the empirical standard deviation of the residuals of step 5 (15% per month)

9. Estimate nonparametric model on rank-transformed data with 20 knots

10. Estimate linear model on data from step 4

11. Redo steps 6 to 10 500 times

A Model Selection

The advantage of this setup is that we directly take into account the cross sectional and

time series correlation structure of the actual data in the simulation and do not have to

make any assumption on whether the true model is linear or nonlinear. The aim of the

simulation is then to see how the different methods for model selection perform, which in

our context means: does a given model select on average the right number and identify

of characteristics and does not select characteristics that do not provide information for

returns according to the data generating process. For the selected characteristics, we then

also study the out-of-sample predictive power using two years of data for 2013 to 2014.

Figure 13 graphically illustrates the results of the simulations for the different model

selection methods. We indicate the different models on the x-axis and the characteristics

on the left y-axis. The color scheme on the right y-axis indicates the frequency with

which a given characteristic is selected. The darker the color, the more frequently a

given selection method selects a given characteristic. The darkest blue indicates a given

characteristic is selected in 100% of the simulations and white indicates the characteristic

was never selected. The red horizontal line below Total vol represents the cut-off for

return predictors. The 13 characteristic above the line indicate true return predictors,

whereas the 49 other characteristics below the line do not predict returns.
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Given the structure of the data, we want a model selection method which selects all

relevant return predictors with high probability and does not select all irrelevant return

predictors. Hence, ideally we want to have methods for selection that have dark blue

shaded areas above the red line and white areas below the line. We see in column (1)

the adaptive group LASSO, which corresponds to our baseline model in the empirical

application with 20 interpolation points and second-order polynonial using the BIC of

Yuan and Lin (2006) tends to select 11 out of the 13 true characteristics almost always

and the remaining two with high probability, and it does not select the irrelevant return

predictors. On average, across the 500 simulations, the nonlinear adaptive group LASSO

selects 11.84 characteristics. Column (2) employs the same basic setup for model selection,

but estimates only a single-step LASSO. We see the group LASSO tends to select all

relevant return predictors, but also few irrelevant ones as we would expect from the

irrepresentable condition of Meinshausen and Bühlmann (2006). On average, it selects

15.73 characteristics.

Columns (3) and (4), endow the linear model with the same LASSO method we

used for the nonlinear model. Similar to our empirical application, we see that the linear

LASSO tends to select the relevant return predictors but also many characteristics that are

not associated with returns. The adaptive LASSO tends to select 29.57 characteristics

across simulation and the single-step LASSO even 48. The last three columns of the

figure use the FDR p-value adjustment of Green et al. (2017), a t-statistic cutoff of 3

(t3) to account for multiple testing as Harvey et al. (2016) suggest, and the conventional

t-statistics cutoff of 2 (t2). Across the three selection methods, we see a high probability of

selecting relevant return predictors, but also a high probability to select irrelevant return

predictors. FDR selects 26.58 characteristics, t3 25.81, and t2 of 35.54.

In the online appendix, we graphically illustrates the results of the simulations for

different choices of tuning parameters. Figure A.4 shows the result for the adaptive group

LASSO for different information criteria. Column (1) repeats our baseline choice. In

column (2), we use an AIC to determine the penalty parameters. Using AIC tends to

30



result in a high probability of selecting relevant returns predictors, but does also select

a few irrelevant predictors for a total of 15.37 on average. When we use the standard

BIC instead of the one proposed by Yuan and Lin (2006) for group LASSO applications,

we find the standard BIC tends to underselect, that is, it does not select a few relevant

return characteristics, in total only 8.69 on average. The last column uses cross validation

to determine the penalty parameters. We see that for the context of return prediction

when using the actual characteristics data, cross validation does not result in a desirable

model selection. It tends to select all characteristics with high probability for an average

of 54.92.

Figure A.5 studies the effect of choosing a different number of interpolation points

– ranging from 10 to 25 – on the number and identity of selected characteristics. Across

columns, we see a high probability of selecting relevant return predictors and not selecting

irrelevant return predictors. On average, we select 12.77 for 10 knots, 12.44 for 15

knots, 11.84 for 20 knots, and 12.44 for 25 knots. In Figure A.6 instead, we study

how the choice of the order of the splines affects the selection results for our baseline

adaptive group LASSO with 20 knots where order 0 corresponds to a step function,

order 1 to a piecewise linear function, etc. Across orders, splines tend to perform well

in selecting relevant return predictors with the second-order splines that we use for our

baseline empirical analysis underselecting slightly relevant return predictors but the other

splines overselecting slightly irrelevant return predictors. The average number of selected

characteristics across simulations are 12.77 (order 0), 16.58 (order 1), 11.84 (order 2),

16.08 (order 3) and 15.88 (order 4). Selection results for large stocks are similar to results

for all stocks (see Table A.7 in the online appendix).

The simulation study using the true underlying data and functional relationship

between characteristics and returns so far shows that: (i) t-statistics based selection

methods have little power; (ii) nonlinearities are important for selection; and (iii) the

second-stage of the LASSO matters, that is, the irrepresentability condition does not hold

in our data; (iv) the adjusted BIC perform best in selecting relevant return predictors
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and not selecting irrelevant return predictors.

Instead of using the approximated true functional relationship between characteristics

and returns with a fifth-order polynomial on the true characteristics, we can also assume

the true data generating process is linear and simulate returns under this assumption.

Unfortunately, the actual relationship in the data is nonlinear and we do not know the

“true” number and identity of characteristics for a linear model. To ensure the simulation

setup is comparable to the true data-generating process we simulate above, we do the

following: (i) we assume also in the linear model 13 characteristics predict returns; (ii)

we choose the 13 characteristics by “walking along the LASSO path”, that is, we vary the

penalty parameter until the adaptive LASSO in the linear model selects 13 characteristics;

and (iii) we estimate the linear association between these 13 characteristics and returns.

Figure 14 plots the selection results. Again, the 13 characteristics above the red

horizontal line represent the “true” return predictors. In column (1), we see that even

when we assume the data-generating process is linear, allowing for nonlinearities with

the nonlinear adaptive group LASSO does no harm in the model selection stage. The

model selects 12 out of 13 return predictors with high probability and does not the select

irrelevant return predictors. In particular, we also see that the nonlinear adaptive group

LASSO performs as well as the linear adaptive LASSO, FDR, or t3 on a dataset which

by construction favors linear models. Both single-step LASSO procedures and t2 tend

to select too many characteristics that do not provide information for return prediction.

On average, across 500 simulation, the nonlinear adaptive group LASSO selects 11.18

characteristics, the group LASSO 15.67, the linear adaptive LASSO 12.65, the linear

LASSO 16.48, FDR 10.47, t3 10.64 and t2 14.33 characteristics.

Hence, when nonlinearities matter as in the actual data, the nonlinear adaptive group

LASSO performs best in model selection compared to linear methods but when we force

the data-generating process to be linear, the nonlinear adaptive group LASSO does just

as well. Hence, it seems natural to at least allow for nonlinearities.
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B Out-of-Sample Prediction

Overall, we saw that the nonlinear adaptive group LASSO does a good job in selecting

relevant return predictors and not selecting irrelevant return predictors across different

assumptions on the underlying data generating process and tuning parameters. The good

performance in model selection, however, does not necessarily mean that the nonlinear

adaptive group LASSO performs well in out-of-sample return predictions. To study the

latter, we now predict returns out-of-sample for all model selection methods, tuning

parameters, and assumptions regarding the data generating process for a sample from

2013 to 2014. We simulate returns again for 500 times, perform model selection and

estimate the model using the sample form 1964 until 2012 and predict returns. To study

how well the models predict returns, we regress realized returns on predicted returns and

report R2s but also report root mean squared prediction errors (RMSPE).

Panel A of Table 10 reports the results. The first line first reports results for the

true parametric model underlying the simulation. When we regress realized returns that

include sampling uncertainty on predicted returns, we find a R2 of 1.5% and a RMSPE

of 0.12. In the following, we directly report R2s and RMSPEs for the different model

selection methods relative to these “true” numbers. The second line reports results for the

“true” nonparametric model, that is, we endow the nonlinear model with the knowledge

on the actual 13 return predictors but estimate the nonlinear functions from the data

before predicting returns. The true nonparametric model without selection uncertainty

achieves a relative R2 of almost 88.86% and a RMSPE that is larger by 0.09% relative

to the true model. Line three now reports results for nonlinear adaptive group LASSO.

We see the model achieves a relative R2 of almost 88% and a relative RMSPE of 0.1%

which documents the high model selection accuracy of the method. In case we are purely

interested in predicting returns out-of-sample, then we see a group LASSO performs

almost equally well. The following lines show all of the linear models do substantially

worse predicting returns out-of-sample when we follow the true data-generating process.

Independent of whether we use LASSO-based methods for the linear mode, t-statistics
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based methods, or the FDR p-value adjustment of Green et al. (2017), the relative R2

is never larger than 59%, thirty percentage points less than for the nonlinear LASSO

methods and the RMSPE is larger by a factor of 3 relative to the nonlinear LASSO: 0.1%

versus 0.3%.

Panel B of Table 10 reports the results for the linear data-generating process.

We see the true parametric model now achieves a R2 of slightly below 1% and the

true nonparametric model, that is, the nonlinear model endowed with the true 13

characteristics, achieves a relative R2 of 94%. Both the nonlinear adaptive group and

group LASSO achieve a relative R2 which is almost identical. Hence, even when we

counterfactually assume that the data-generating process is linear, we still find a good

out-of-sample return prediction for the nonlinear model. In the following lines, we

see the linear model selection methods have relative out-of-sample R2s between 97%

and almost 100%. Interestingly, from a pure out-of-sample prediction perspective, a

t-statistics threshold of 2 has a higher out-of-sample predictive power than the FDR

p-value adjustment of Green et al. (2017) or a threshold of 3 similar to out-of-sample

prediction results in Green et al. (2017). Both linear and nonlinear models achieve low

relative RMSPE. The linear selection methods achieve a relative RMSPE of around 0.01%,

whereas the nonlinear methods achieve a relative RMSPE of around 0.03%.

When we simulate the true, nonlinear data-generating process, we find large increases

in out-of-sample R2s for the nonlinear models relative to the linear models. When we

instead assume that the data-generating process is linear, we find out-of-sample R2 for

the nonlinear models which are almost identical to the linear models. Hence, it appears

natural to us to at least allow for nonlinearities ex-ante in situations in which it is not

clear whether nonlinearities matter.

Table A.2 and Table A.3 show robustness tests for different information criteria,

number of knots, order of splines or only firms above the 20th NYSE size percentile.

Out-of-sample prediction results mirror the model selection conclusions: the BIC of Yuan

and Lin (2006) performs better in out-of-sample prediction relative to a standard BIC,
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results are not very sensitive to the number of knots initially but start to deteriorate

with 25 knots, order 0 and order 1 spline perform worse than our baseline model but

higher-order splines even improve the out-of-sample forecasting performance, and results

for large firms are similar in that the nonlinear models outperform substantially linear

models in out-of-sample predictions.

V Conclusion

We propose a nonparametric method to tackle the challenge posed by Cochrane (2011)

in his presidential address, namely, which firm characteristics provide incremental

information for expected returns. We use the adaptive group LASSO to select important

return predictors and to estimate the model.

We document the properties of our framework in three applications: (i) Which

characteristics have incremental forecasting power for expected returns? (ii) Does the

predictive power of characteristics vary over time? (iii) How does the nonparametric

model compare to a linear model out-of-sample?

Our results are as follows: (i) Out of 62 characteristics, only nine to 16 provide

incremental information depending on the number of interpolation points (similar to the

number of portfolios in portfolio sorts), sample period, and universe of stocks (large

versus small stocks). (ii) Substantial time variation is present in the predictive power of

characteristics. (iii) The nonparametric model selects fewer characteristics than the linear

model in-sample and has a Sharpe ratio that is larger by a factor of 3 out-of-sample.

In a simulation study, we document the nonlinear adaptive group LASSO performs

well in model selection, that is, identifying true return predictors with high probability

and not selecting irrelevant return predictors. Linear model selection methods including

t-statistic based cutoffs or false-discovery rate p-value adjustments result in large

over-selection, that is, they also classify as return predictors characteristics that do

not predict returns. We also show the nonlinear models outperform linear models in
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out-of-sample return prediction and show our conclusions are robust to variations in the

tuning parameters our method has.

We see our paper as a starting point only and pose the following questions for future

research. Are the characteristics we identify related to factor exposures? How many

factors are important? Can we achieve a dimension reduction and identify K factors that

can summarize the N independent dimensions of expected returns with K << N similar

to Fama and French (1993) and Fama and French (1996)?
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Figure 1: Numbers of Published Factors
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period from 1980 to 1991, only about one factor is discovered per year. This
number has grown to around five for the 1991–2003 period, during which
time a number of papers, such as Fama and French (1992), Carhart (1997),
and Pastor and Stambaugh (2003), spurred interest in studying cross-sectional
return patterns. In the last nine years, the annual factor discovery rate has
increased sharply to around 18. In total, 164 factors were discovered in the past
nine years, roughly doubling the 84 factors discovered in all previous years. We
do not include working papers in Figure 2. In our sample, there are 63 working
papers covering 68 factors.

We obtain t-statistics for each of the 316 factors discovered, including the
ones in the working papers.26 The overwhelming majority of t-statistics exceed
the 1.96 benchmark for 5% significance.27 The nonsignificant ones typically
belong to papers that propose a number of factors. These likely represent
only a small subsample of nonsignificant t-statistics for all tried factors.
Importantly, we take published t-statistics as given. That is, we assume they are
econometrically sound with respect to the usual suspects (data errors, coding
errors, misalignment, heteroscedasticity, autocorrelation, clustering, outliers,
etc.).

26 The sign of a t-statistic depends on the direction of the long/short strategy. We usually calculate p-values based
on two-sided t-tests, so the sign does not matter. From an investment perspective, the sign of the mean return of
a long/short strategy does not matter as we can always reverse the direction of the strategy. Therefore we use
absolute values of these t-statistics.

27 The multiple testing framework is robust to outliers. The procedures are based on either the total number of tests
(Bonferroni) or the order statistics of t-statistics (Holm and BHY).
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Figure 2: Unconditional and Conditional Mean Function: Adjusted Turnover
(DTO) and Idiosyncratic Volatility (Idio vol)
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Effect of normalized adjusted turnover (DTO) and idiosyncratic volatility (Idio

vol) on average returns (see equation (3)). The left panels report unconditional

associations between a characteristic and returns, and the right panels report

associations conditional on all other selected characteristics. The sample period is

January 1965 to June 2014. See Section A.1 in the online appendix for variable

definitions.
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Figure 3: Unconditional and Conditional Mean Function: Change in Inventories
(IVC) and Net Operating Assets (NOA)
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Effect of normalized change in inventories (IVC) and net operating assets (NOA)

on average returns (see equation (3)). The left panels report unconditional

associations between a characteristic and returns and the right panels report

associations conditional on all other selected characteristics. The sample period is

January 1965 to June 2014. See Section A.1 in the online appendix for variable

definitions.
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Figure 4: Unconditional and Conditional Mean Function: Short-Term Reversal
(r2−1) and Closeness to 52 week’s High (Rel to high price)

0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Estimated function
95% confidence band

0 0.5 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

Estimated function
95% confidence band

Effect of normalized short-term reversal (r2−1) and closeness to 52 week’s high

(Rel to high price) on average returns (see equation (3)). The left panels

report unconditional associations between a characteristic and returns, and the

right panels report associations conditional on all other selected characteristics.

The sample period is January 1965 to June 2014. See Section A.1 in the online

appendix for variable definitions.
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Figure 5: Unconditional and Conditional Mean Function: Size (LME) and
Standard Unexplained Volume (SUV)
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Effect of normalized size (LME) and standard unexplained volume (SUV)

on average returns (see equation (3)). The left panels report unconditional

associations between a characteristic and returns, and the right panels report

associations conditional on all other selected characteristics. The sample period is

January 1965 to June 2014. See Section A.1 in the online appendix for variable

definitions.
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Figure 6: Number of Selected Characteristics versus Number of Interpolation
Points
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This figure plots the number of firms characteristics we select against the number

of interpolation points in our baseline analysis. We use the adaptive group LASSO

to select significant return predictors out of a universe of 63 characteristics during

a sample period from 1965 to 2014. We detail the method in Section A.3.

47



Figure 7: Time-varying Conditional Mean Function: Size (LME) and adjusted
Profit Margin (PM adj)

Effect of normalized size (LME) and adjusted profit margin (PM adj) on

average returns over time (see equation (3)) conditional on all other selected

characteristics. The sample period is January 1965 to June 2014. See Section

A.1 in the online appendix for variable definitions.
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Figure 8: Time-varying Conditional Mean Function: Intermediate Momentum
(r12−7) and Standard Momentum (r12−2)

Effect of normalized intermediate momentum (r12−7) and standard momentum

(r12−2) on average returns over time (see equation (3)) conditional on all other

selected characteristics. The sample period is January 1965 to June 2014. See

Section A.1 in the online appendix for variable definitions.
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Figure 9: Time-varying Conditional Mean Function: Short-Term Reversal
(r2−1) and Change in Shares Outstanding (∆Shrout)

Effect of normalized short-term reversal (r36−13) and the percentage change in

shares outstanding (∆Shrout) on average returns over time (see equation (3))

conditional on all other selected characteristics. The sample period is January

1965 to June 2014. See Section A.1 in the online appendix for variable definitions.
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Figure 10: Time-varying Conditional Mean Function: Turnover (Lturnover)
and Standard Unexplained Volume (SUV)

Effect of normalized turnover (Lturnover) and standard unexplained volume

(SUV) on average returns over time (see equation (3)) conditional on all other

selected characteristics. The sample period is January 1965 to June 2014. See

Section A.1 in the online appendix for variable definitions.
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Figure 11: Selected Characteristics in Rolling Selection: Nonlinear Model
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The figure graphically shows over time which characteristics from the universe of

62 firm characteristics we discuss in Section A.1 of the online appendix are selected

by the nonlinear adaptive group LASSO. The first selection period is from January

1965 until December 1990. Subsequently, we roll forward the selection period by

one year keeping the selection window constant. Blue indicates the characteristic

is selected. The average number of selected characteristics is 14.13. The sample

period is January 1965 to June 2014.
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Figure 12: Selected Characteristics in Rolling Selection: Linear Model
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The figure graphically shows over time which characteristics from the universe

of 62 firm characteristics we discuss in Section A.1 of the online appendix are

selected by the linear adaptive LASSO. The first selection period is from January

1965 until December 1990. Subsequently, we roll forward the selection period by

one year keeping the selection window constant. Blue indicates the characteristic

is selected. The average number of selected characteristics is 26.58. The sample

period is January 1965 to June 2014.
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Figure 13: Selected Characteristics in Simulations: Empirical Data-Generating
Process
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The figure graphically shows for different model selection methods the frequency

with which characteristics from the universe of 62 firm characteristics we discuss

in Section A.1 of the online appendix are selected by each method. The darker the

color, the more frequently a given selection method selects a given characteristic.

The true model is nonlinear and consists of the 13 characteristics above the red

vertical line. The average number of selected characteristics for the different

methods across 500 simulations are: adaptive group LASSO: 11.84; group LASSO:

15.73; adaptive LASSO linear model: 29.57; LASSO linear model: 48.08; FDR:

26.58; t3 25.81; t2 35.54. The sample period is January 1965 to June 2014.
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Figure 14: Selected Characteristics in Simulations: Linear Data-Generating
Process
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The figure graphically shows for different model selection methods the frequency

with which characteristics from the universe of 62 firm characteristics we discuss

in Section A.1 of the online appendix are selected by each method. The darker the

color, the more frequently a given selection method selects a given characteristic.

The true model is linear and consists of the 13 characteristics above the red vertical

line. The average number of selected characteristics for the different methods

across 500 simulations are: adaptive group LASSO: 11.18; group LASSO: 15.67;

adaptive LASSO linear model: 12.65; LASSO linear model: 16.48; FDR: 10.47;

t3 10.64; t2 14.22. The sample period is January 1965 to June 2014.
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Table 2: Descriptive Statistics for Firm Characteristics

This table reports average returns, medians, and time series standard deviations for the firm characteristics

discussed in Section A.1 of the online appendix. Frequency is the frequency at which the firm characteristics

varies. m is monthly and y is yearly. The sample period is January 1965 to June 2014.

Mean Median Std Freq Mean Median Std Freq

Past-returns: Value:

r2−1 0.01 0.00 (0.13) m A2ME 3.04 1.62 (5.75) y

r6−2 0.06 0.03 (0.31) m BEME 0.94 0.77 (0.80) y

r12−2 0.14 0.07 (0.51) m BEMEadj 0.01 −0.13 (0.77) m

r12−7 0.08 0.04 (0.34) m C 0.13 0.07 (0.15) y

r36−13 0.35 0.17 (0.96) m C2D 0.17 0.17 (1.26) y

∆SO 0.03 0.00 (0.12) y

Investment: Debt2P 0.86 0.34 (2.37) y

Investment 0.14 0.08 (0.44) y E2P 0.01 0.07 (0.36) y

∆CEQ 0.18 0.06 (2.00) y Free CF −0.23 0.05 (9.70) y

∆PI2A 0.09 0.06 (0.22) y LDP 0.02 0.01 (0.05) m

∆Shrout 0.01 0.00 (0.10) m NOP 0.01 0.01 (0.12) y

IVC 0.02 0.01 (0.06) y O2P 0.03 0.02 (0.13) y

NOA 0.67 0.67 (0.38) y Q 1.63 1.20 (1.47) y

S2P 2.75 1.60 (4.38) y

Profitability: Sales g 0.37 0.09 (9.81) y

ATO 2.52 1.94 (21.51) y

CTO 1.35 1.18 (1.11) y Trading frictions:

∆(∆GM-∆Sales) −0.29 0.00 (17.42) y AT 2, 906.94 243.22 (19, 820.90) y

EPS 1.76 1.19 (21.66) y Beta 1.05 0.99 (0.55) m

IPM −1.01 0.07 (35.76) m Beta daily 0.89 0.81 (1.52) m

PCM −0.60 0.32 (34.01) y DTO 0.00 0.00 (0.01) m

PM −0.99 0.08 (35.90) y Idio vol 0.03 0.02 (0.02) m

PM adj 0.39 0.09 (35.79) m LME 1, 562.03 166.44 (7, 046.08) m

Prof 1.01 0.64 (11.50) y LME adj 287.02 −683.49 (6, 947.60) m

RNA 0.21 0.14 (6.79) y Lturnover 0.08 0.05 (0.12) m

ROA 0.03 0.04 (0.15) y Rel to high price 0.75 0.79 (0.18) m

ROC −6.86 −1.44 (332.86) m Ret max 0.07 0.05 (0.07) m

ROE 0.06 0.10 (1.42) y Spread 0.03 0.02 (0.04) m

ROIC 0.06 0.07 (0.12) y Std turnover 0.31 0.16 (0.68) m

S2C 84.77 15.32 (970.18) y Std volume 162.84 33.51 (583.97) m

SAT 1.21 1.08 (0.93) y SUV 0.22 −0.15 (2.39) m

SAT adj 0.02 −0.06 (0.74) m Total vol 0.03 0.02 (0.02) m

Intangibles:

AOA 5.23 0.07 (285.41) y

OL 1.10 0.95 (0.91) y

Tan 0.54 0.55 (0.12) y

OA −0.47 −0.03 (78.52) y
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Table 4: Fama & French Three-Factor alphas for Characteristic-sorted
Portfolios

This table reports Fama&French three-factor alphas of long-short portfolios sorted on the characteristics we describe

in Section A.1 of the online appendix with standard errors in parentheses and t-statistics. The sample period is

July 1965 to June 2015.

αFF3 SE t-stat αFF3 SE t-stat

Past-return based: Value:

r2−1 −26.48 (2.94) -8.99 A2ME 2.75 (1.93) 1.42

r6−2 9.13 (3.34) 2.73 BEME 7.80 (1.56) 5.00

r12−2 12.73 (3.48) 3.66 BEME adj 8.60 (1.56) 5.50

r12−7 10.79 (2.46) 4.39 C 4.48 (1.69) 2.65

r36−13 −6.68 (2.59) -2.58 C2D 0.23 (2.23) 0.10

∆SO −9.14 (1.54) -5.95

Investment: Debt2P −3.21 (1.63) -1.97

Investment −11.85 (1.76) -6.74 E2P 0.56 (2.19) 0.25

∆CEQ −8.02 (1.78) -4.50 Free CF 3.29 (2.04) 1.61

∆PI2A −9.32 (1.53) -6.07 LDP 0.99 (1.68) 0.59

∆Shrout 3.57 (1.17) 3.04 NOP 5.74 (1.61) 3.56

IVC −7.30 (1.34) -5.45 O2P 2.74 (1.34) 2.04

NOA −9.56 (1.50) -6.36 Q −8.09 (1.50) -5.40

S2P 5.44 (1.91) 2.85

Profitability: Sales g −7.52 (1.50) -5.02

ATO 0.85 (1.45) 0.59

CTO 0.57 (1.52) 0.37 Trading frictions:

∆(∆Gm-∆Sales 3.15 (1.18) 2.66 AT −7.01 (2.27) -3.09

EPS 1.01 (2.14) 0.47 Beta −7.83 (2.38) -3.29

IPM −0.41 (2.47) -0.17 Beta daily −6.39 (1.97) -3.24

PCM 1.87 (1.36) 1.37 DTO 13.08 (1.56) 8.37

PM −0.88 (2.59) -0.34 Idio vol −2.92 (2.74) -1.06

PM adj 3.96 (1.70) 2.32 LME −15.30 (2.76) -5.53

Prof 1.73 (1.69) 1.03 LME adj −4.76 (1.51) -3.14

RNA −0.37 (1.81) -0.21 Lturnover 0.44 (2.03) 0.22

ROA −1.70 (2.36) -0.72 Rel to high price −5.46 (3.54) -1.54

ROC −4.07 (1.37) -2.96 Ret max −8.41 (2.40) -3.51

ROE −1.89 (2.39) -0.79 Spread 3.06 (2.74) 1.12

ROIC −1.75 (2.49) -0.70 Std turnover 4.03 (1.79) 2.26

S2C −0.45 (1.56) -0.29 Std volume −3.55 (1.85) -1.92

SAT 4.43 (1.52) 2.91 SUV 21.88 (1.89) 11.59

SAT adj 5.36 (1.10) 4.88 Total vol −3.94 (2.74) -1.43

Intangibles:

AOA −4.34 (1.24) -3.48

OL 4.01 (1.67) 2.39

Tan 4.29 (1.67) 2.58

OA −5.92 (1.34) -4.41
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Table 6: Selected Characteristics in Nonparametric Model: Size Interactions

This table reports the selected characteristics from the universe of 62 firm characteristics we discuss in Section

A.1 of the online appendix for different numbers of knots, the sample size, and in-sample Sharpe ratios of an

equally-weighted hedge portfolio going long stocks with the highest predicted returns and shorting stocks with lowest

predicted returns. We interact each firm characteristic with the previous month’s market capitalization. q indicates

the size percentile of NYSE firms. The sample period is January 1965 to June 2014.

Firms All Size > q10 Size > q20 Size > q20
Sample Full Full Full Full

Knots 20 15 15 10

Sample Size 1,629,155 959,757 763,850 763,850

# Selected 25 15 9 13

Sharpe Ratio 3.41 2.98 2.42 2.69

Characteristics # Selected (1) (2) (3) (4)

BEME 1 BEME

∆Shrout 4 ∆Shrout ∆Shrout ∆Shrout ∆Shrout

∆SO 4 ∆SO ∆SO ∆SO ∆SO

DTO 1 DTO

Investment 1 Investment

Lturnover 2 Lturnover Lturnover

NOA 1 NOA

PM adj 1 PM adj

r2−1 1 r2−1

r6−2 2 r6−2 r6−2

r12−2 1 r12−2

r12−7 4 r12−7 r12−7 r12−7 r12−7

r36−13 3 r36−13 r36−13 r36−13

Rel to high price 2 Rel to high price Rel to high price Rel to high price

S2P 3 S2P S2P S2P

SUV 4 SUV SUV SUV SUV

Total vol 4 Total vol Total vol Total vol Total vol

Characteristics × Size

A2ME 1 A2ME

BEME adj 1 BEME adj

DTO 1 DTO

EPS 1 EPS

NOA 1 NOA

r2−1 4 r2−1 r2−1 r2−1 r2−1

r6−2 4 r6−2 r6−2 r6−2 r6−2

r12−2 4 r12−2 r12−2 r12−2 r12−2

Rel to high price 1 Rel to high price

Ret max 1 Ret max

ROC 1 ROC

ROE 1 ROE

SUV 1 SUV
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Table 7: Selected Characteristics in Linear Model

This table reports the selected characteristics from the universe of 62 firm characteristics we discuss in Section A.1 of

the online appendix for a linear model and raw characteristics in column (1), a linear model and ranked-transformed

characteristics in column (2), and the false discovery rate adjusted p value selection model of Green et al. (2017) in

(3) and in-sample Sharpe ratios of an equally-weighted hedge portfolio going long stocks with the highest predicted

returns and shorting stocks with lowest predicted returns. The sample period is January 1965 to June 2014.

Firms All All All

Model Linear Model Linear Model: rank normalized Linear Model: FDR

Sample Full Full Full

Sample Size 1,629,155 1,629,155 1,629,155

# Selected 24 35 32

Sharpe Ratio 1.26 2.44 1.46

Characteristics # Selected (1) (2) (3)

A2ME 1 A2ME

AOA 1 AOA

AT 1 AT

BEME 2 BEME BEME BEME

BEME adj 1 BEME adj BEME adj

Beta 1 Beta Beta

C 2 C C C

CTO 1 CTO

∆CEQ 1 ∆CEQ

∆PI2A 1 ∆PI2A

∆Shrout 2 ∆Shrout ∆Shrout ∆Shrout

∆SO 1 ∆SO ∆SO

Debt2P 1 Debt2P

DTO 2 DTO DTO DTO

E2P 2 E2P E2P E2P

EPS 1 EPS

Idio vol 2 Idio vol Idio vol Idio vol

Investment 2 Investment Investment Investment

IPM 1 IPM

IVC 1 IVC

LDP 2 LDP LDP LDP

LME 1 LME

Lturnover 2 Lturnover Lturnover

NOA 1 NOA

OA 1 OA

OL 1 OL OL

PCM 1 PCM

PM 1 PM

PM adj 1 PM adj PM adj

Prof 1 Prof

Q 1 Q Q

r2−1 2 r2−1 r2−1 r2−1

r6−2 1 r6−2 r6−2

r12−2 1 r12−2

r12−7 2 r12−7 r12−7 r12−7

r36−13 2 r36−13 r36−13 r36−13

Rel to high price 2 Rel to high price Rel to high price Rel to high price

Ret max 1 Ret max Ret max

ROA 1 ROA

ROE 1 ROE

ROIC 2 ROIC ROIC

S2C 1 S2C

S2P 1 S2P

SAT 1 SAT

SAT adj 2 SAT adj SAT adj SAT adj

Spread 2 Spread Spread Spread

Std turnover 1 Std turnover

Std volume 1 Std volume

SUV 2 SUV SUV SUV

Tan 1 Tan

Total vol 1 Total vol
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Table 10: Out-of-Sample Predictability in Simulation

This table reports results from an out-of-sample prediction exercise for different model selection methods and data

generating processes. Column (1) reports first the out-of-sample R2 of regressing ex-post realized returns on ex-ante

predicted returns for the true model and then the out-of-sample R2 for the different model selection techniques

relative to the true out-of-sample R2. Column (2) reports the root mean squared prediction error (RMSPE) of

the true model and the % differences between the RMSPEs of the true model and the different specifications. The

sample period is January 1965 to June 2012 for model selection and 2013 to 2014 for out-of-sample prediction. We

simulate each model 500 times. Panel A reports results for the nonparametric data generating process and Panel

B reports results for the linear data generating process.

(Relative) R2 (Relative) RMSPE

(1) (2)

Panel A: Nonlinear Data-Generating Process

True parametric model 0.0152 0.1213

True nonparametric model 88.86% 0.089%

Adaptive group LASSO 87.76% 0.098%

Group LASSO 87.75% 0.099%

Adaptive LASSO linear 57.67% 0.326%

LASSO linear 57.92% 0.324%

FDR 57.91% 0.324%

t3 57.83% 0.320%

t2 58.50% 0.325%

Panel B: Linear Data-Generating Process

True parametric model 0.0089 0.1212

True nonparametric model 94.32% 0.027%

Adaptive group LASSO 94.39% 0.026%

Group LASSO 93.03% 0.034%

Adaptive LASSO linear 99.96% 0.000%

LASSO linear 99.82% 0.001%

FDR 97.41% 0.012%

t3 97.86% 0.003%

t2 99.35% 0.010%

68



Online Appendix:
Dissecting Characteristics Nonparametrically

Not for Publication

A.1 Data

This section details the construction of variables we use in the main body of the paper
with CRSP and Compustat variable names in parentheses and the relevant references.
Unless otherwise specified, we use balance-sheet data from the fiscal year ending in year
t− 1 for returns from July of year t to June of year t+ 1 following the Fama and French
(1993) timing convention.

A2ME: We follow Bhandari (1988) and define assets-to-market cap as total assets
(AT) over market capitalization as of December t-1. Market capitalization is the product
of shares outstanding (SHROUT) and price (PRC).

AOA: We follow Bandyopadhyay et al. (2010) and define AOA as absolute value of
operation accruals (OA) which we define below.

AT Total assets (AT) as in Gandhi and Lustig (2015).

ATO: Net sales over lagged net operating assets as in Soliman (2008). Net operating
assets are the difference between operating assets and operating liabilities. Operating
assets are total assets (AT) minus cash and short-term investments (CHE), minus
investment and other advances (IVAO). Operating liabilities are total assets (AT), minus
debt in current liabilities (DLC), minus long-term debt (DLTT), minus minority interest
(MIB), minus preferred stock (PSTK), minus common equity (CEQ).

BEME: Ratio of book value of equity to market value of equity. Book equity
is shareholder equity (SH) plus deferred taxes and investment tax credit (TXDITC),
minus preferred stock (PS). SH is shareholders’ equity (SEQ). If missing, SH is the
sum of common equity (CEQ) and preferred stock (PS). If missing, SH is the difference
between total assets (AT) and total liabilities (LT). Depending on availability, we use
the redemption (item PSTKRV), liquidating (item PSTKL), or par value (item PSTK)
for PS. The market value of equity is as of December t-1. The market value of equity is
the product of shares outstanding (SHROUT) and price (PRC). See Rosenberg, Reid,
and Lanstein (1985) and Davis, Fama, and French (2000).

BEME adj: Ratio of book value of equity to market value of equity minus
the average industry ratio of book value of equity to market value of equity at the
Fama-French 48 industry level as in Asness et al. (2000). Book equity is shareholder
equity (SH) plus deferred taxes and investment tax credit (TXDITC), minus preferred
stock (PS). SH is shareholders’ equity (SEQ). If missing, SH is the sum of common equity
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(CEQ) and preferred stock (PS). If missing, SH is the difference between total assets
(AT) and total liabilities (LT). Depending on availability, we use the redemption (item
PSTKRV), liquidating (item PSTKL), or par value (item PSTK) for PS. The market
value of equity is as of December t-1. The market value of equity is the product of shares
outstanding (SHROUT) and price (PRC).

Beta: We follow Frazzini and Pedersen (2014) and define the CAPM beta as
product of correlations between the excess return of stock i and the market excess return
and the ratio of volatilities. We calculate volatilities from the standard deviations of
daily log excess returns over a one-year horizon requiring at least 120 observations. We
estimate correlations using overlapping three-day log excess returns over a five-year
period requiring at least 750 non-missing observations.

Beta daily: Beta daily is the sum of the regression coefficients of daily excess
returns on the market excess return and one lag of the market excess return as in
Lewellen and Nagel (2006).

C: Ratio of cash and short-term investments (CHE) to total assets (AT) as in
Palazzo (2012).

C2D: Cash flow to price is the ratio of income and extraordinary items (IB) and
depreciation and amortization (dp) to total liabilities (LT).

CTO: We follow Haugen and Baker (1996) and define capital turnover as ratio of
net sales (SALE) to lagged total assets (AT).

Debt2P: Debt to price is the ratio of long-term debt (DLTT) and debt in current
liabilities (DLC) to the market capitalization as of December t-1 as in Litzenberger
and Ramaswamy (1979). Market capitalization is the product of shares outstanding
(SHROUT) and price (PRC).

∆ceq: We follow Richardson et al. (2005) in the definition of the percentage change
in the book value of equity (CEQ).

∆(∆Gm-∆Sales): We follow Abarbanell and Bushee (1997) in the definition of the
difference in the percentage change in gross margin and the percentage change in sales
(SALE). We define gross margin as the difference in sales (SALE) and costs of goods
sold (COGS).

∆So: Log change in the split adjusted shares outstanding as in Fama and
French (2008). Split adjusted shares outstanding are the product of Compustat shares
outstanding (CSHO) and the adjustment factor (AJEX).

∆shrout: We follow Pontiff and Woodgate (2008) in the definition of the percentage
change in shares outstanding (SHROUT).
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∆PI2A: We define the change in property, plants, and equipment following
Lyandres, Sun, and Zhang (2008) as changes in property, plants, and equipment
(PPEGT) and inventory (INVT) over lagged total assets (TA).

DTO: We follow Garfinkel (2009) and define turnover as ratio of daily volume
(VOL) to shares outstanding (SHROUT) minus the daily market turnover and de-trend
it by its 180 trading day median. We follow Anderson and Dyl (2005) and scale down
the volume of NASDAQ securities by 38% after 1997 and by 50% before that to address
the issue of double-counting of volume for NASDAQ securities.

E2P: We follow Basu (1983) and define earnings to price as the ratio of income
before extraordinary items (IB) to the market capitalization as of December t-1. Market
capitalization is the product of shares outstanding (SHROUT) and price (PRC).

EPS: We follow Basu (1977) and define earnings per share as the ratio of income
before extraordinary items (IB) to shares outstanding (SHROUT) as of December t-1..

Free CF: Cash flow to book value of equity is the ratio of net income (NI),
depreciation and amortization (DP), less change in working capital (WCAPCH), and
capital expenditure (CAPX) over the book-value of equity defined as in the construction
of BEME (see Hou et al. (2011)).

Idio vol: Idiosyncratic volatility is the standard deviation of the residuals from a
regression of excess returns on the Fama and French (1993) three-factor model as in Ang,
Hodrick, Xing, and Zhang (2006). We use one month of daily data and require at least
fifteen non-missing observations.

Investment: We define investment as the percentage year-on-year growth rate in
total assets (AT) following Cooper, Gulen, and Schill (2008).

IPM: We define pre-tax profit margin as ratio of pre-tax income (PI) to sales (SALE).

IVC: We define IVC as change in inventories (INVT) between t − 2 and t − 1 over
the average total assets (AT) of years t−2 and t−1 following Thomas and Zhang (2002).

Lev: Leverage is the ratio of long-term debt (DLTT) and debt in current liabilities
(DLC) to the sum of long-term debt, debt in current liabilities, and stockholders’ equity
(SEQ) following Lewellen (2015).

LDP: We follow Litzenberger and Ramaswamy (1979) and define the dividend-price
ratio as annual dividends over last months price (PRC). We measure annual dividends as
the sum of monthly dividends over the last 12 months. Monthly dividends are the scaled
difference between returns including dividends (RET) and returns excluding dividends
(RETX).
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LME: Size is the total market capitalization of the previous month defined as price
(PRC) times shares outstanding (SHROUT) as in Fama and French (1992).

LME adj: Industry-adjusted-size is the total market capitalization of the previous
month defined as price (PRC) times shares outstanding (SHROUT) minus the average
industry market capitalization at the Fama-French 48 industry level as in Asness et al.
(2000).

LTurnover: Turnover is last month’s volume (VOL) over shares outstanding
(SHROUT) (Datar, Naik, and Radcliffe (1998)).

NOA: Net operating assets are the difference between operating assets minus
operating liabilities scaled by lagged total assets as in Hirshleifer, Hou, Teoh, and Zhang
(2004). Operating assets are total assets (AT) minus cash and short-term investments
(CHE), minus investment and other advances (IVAO). Operating liabilities are total
assets (AT), minus debt in current liabilities (DLC), minus long-term debt (DLTT),
minus minority interest (MIB), minus preferred stock (PSTK), minus common equity
(CEQ).

NOP: Net payout ratio is common dividends (DVC) plus purchase of common and
preferred stock (PRSTKC) minus the sale of common and preferred stock (SSTK) over
the market capitalization as of December as in Boudoukh, Michaely, Richardson, and
Roberts (2007).

O2P: payout ratio is common dividends (DVC) plus purchase of common and
preferred stock (PRSTKC) minus the change in value of the net number of preferred
stocks outstanding (PSTKRV) over the market capitalization as of December as in
Boudoukh, Michaely, Richardson, and Roberts (2007).

OA: We follow Sloan (1996) and define operating accruals as changes in non-cash
working capital minus depreciation (DP) scaled by lagged total assets (TA). Non-cash
working capital is the difference between non-cash current assets and current liabilities
(LCT), debt in current liabilities (DLC) and income taxes payable (TXP). Non-cash
current assets are current assets (ACT) minus cash and short-term investments (CHE).

OL: Operating leverage is the sum of cost of goods sold (COGS) and selling, general,
and administrative expenses (XSGA) over total assets as in Novy-Marx (2011).

PCM: The price-to-cost margin is the difference between net sales (SALE) and
costs of goods sold (COGS) divided by net sales (SALE) as in Gorodnichenko and Weber
(2016) and D’Acunto, Liu, Pflueger, and Weber (2017).

PM: The profit margin is operating income after depreciation (OIADP) over sales
(SALE) as in Soliman (2008).
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PM adj: The adjusted profit margin is operating income after depreciation
(OIADP) over net sales (SALE) minus the average profit margin at the Fama-French 48
industry level as in Soliman (2008).

Prof: We follow Ball, Gerakos, Linnainmaa, and Nikolaev (2015) and define
profitability as gross profitability (GP) divided by the book value of equity as defined
above.

Q: Tobin’s Q is total assets (AT), the market value of equity (SHROUT times PRC)
minus cash and short-term investments (CEQ), minus deferred taxes (TXDB) scaled by
total assets (AT).

Rel to High: Closeness to 52-week high is the ratio of stock price (PRC) at the
end of the previous calendar month and the previous 52 week high price defined as in
George and Hwang (2004).

Ret max: Maximum daily return in the previous month following Bali, Cakici, and
Whitelaw (2011).

RNA: The return on net operating assets is the ratio of operating income after
depreciation to lagged net operating assets (Soliman (2008)). Net operating assets are
the difference between operating assets minus operating liabilities. Operating assets are
total assets (AT) minus cash and short-term investments (CHE), minus investment and
other advances (IVAO). Operating liabilities are total assets (AT), minus debt in current
liabilities (DLC), minus long-term debt (DLTT), minus minority interest (MIB), minus
preferred stock (PSTK), minus common equity (CEQ).

ROA: Return-on-assets is income before extraordinary items (IB) to lagged total
assets (AT) following Balakrishnan, Bartov, and Faurel (2010).

ROC: ROC is the ratio of market value of equity (ME) plus long-term debt (DLTT)
minus total assets to Cash and Short-Term Investments (CHE) as in Chandrashekar and
Rao (2009).

ROE: Return-on-equity is income before extraordinary items (IB) to lagged
book-value of equity as in Haugen and Baker (1996).

ROIC: Return on invested capital is the ratio of earnings before interest and taxes
(EBIT) less nonoperating income (NOPI) to the sum of common equity (CEQ), total
liabilities (LT), and Cash and Short-Term Investments (CHE) as in Brown and Rowe
(2007).

r12−2 : We define momentum as cumulative return from 12 months before the return
prediction to two months before as in Fama and French (1996).
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r12−7 : We define intermediate momentum as cumulative return from 12 months
before the return prediction to seven months before as in Novy-Marx (2012).

r6−2 : We define r6−2 as cumulative return from 6 months before the return prediction
to two months before as in Jegadeesh and Titman (1993).

r2−1 : We define short-term reversal as lagged one-month return as in Jegadeesh
(1990).

r36−13 : Long-term reversal is the cumulative return from 36 months before the
return prediction to 13 months before as in De Bondt and Thaler (1985).

S2C: Sales-to-cash is the ratio of net sales (SALE) to Cash and Short-Term
Investments (CHE) following Ou and Penman (1989).

S2P: Sales-to-price is the ratio of net sales (SALE) to the market capitalization as
of December following Lewellen (2015).

Sales g: Sales growth is the percentage growth rate in annual sales (SALE)
following Lakonishok, Shleifer, and Vishny (1994).

SAT: We follow Soliman (2008) and define asset turnover as the ratio of sales
(SALE) to total assets (AT).

SAT adj: We follow Soliman (2008) and define adjusted asset turnover as the ratio
of sales (SALE) to total assets (AT) minus the average asset turnover at the Fama-French
48 industry level.

SGA2S: SG&A to sales is the ratio of selling, general and administrative expenses
(XSGA) to net sales (SALE).

Spread: The bid-ask spread is the average daily bid-ask spread in the previous
months as in Chung and Zhang (2014).

Std turnover: Std turnover is the standard deviation of the residuals from a
regression of daily turnover on a constant as in Chordia, Subrahmanyam, and Anshuman
(2001). Turnover is the ratio of volume (VOL) times shares outstanding (SHROUT) We
use one month of daily data and require at least fifteen non-missing observations.

Std volume: Std volume is the standard deviation of the residuals from a regression
of daily volume on a constant as in Chordia, Subrahmanyam, and Anshuman (2001). We
use one month of daily data and require at least fifteen non-missing observations.

SUV: Standard unexplained volume is difference between actual volume and
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predicted volume in the previous month. Predicted volume comes from a regression of
daily volume on a constant and the absolute values of positive and negative returns.
Unexplained volume is standardized by the standard deviation of the residuals from the
regression as in Garfinkel (2009).

Tan: We follow Hahn and Lee (2009) and define tangibility as (0.715 × total
receivables (RECT) + 0.547 × inventories (INVT) + 0.535 × property, plant and
equipment (PPENT) + cash and short-term investments (CHE)) / total assets (AT).

Total vol: Total volatility is the standard deviation of the residuals from a

regression of excess returns on a constant as in Ang, Hodrick, Xing, and Zhang (2006).

We use one month of daily data and require at least fifteen non-missing observations.
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A.2 Current Methodology

A Expected Returns and the Curse of Dimensionality

One aim of the empirical asset-pricing literature is to identify characteristics that predict

expected returns, that is, find a characteristic C in period t−1 that predicts excess returns

of firm i in the following period, Rit. Formally, we try to describe the conditional mean

function,

E[Rit | C1,it−1, . . . , CS,it−1]. (A.1)

We often use portfolio sorts to approximate equation (1) for a single characteristic.

We typically sort stocks into 10 portfolios and compare mean returns across portfolios.

Portfolio sorts are simple, straightforward, and intuitive, but they also suffer from

several shortcomings. First, we can only use portfolio sorts to analyze a small set of

characteristics. Imagine sorting stocks jointly into five portfolios based on CAPM beta,

size, book-to-market, profitability, and investment. We would end up with 55 = 3125

portfolios, which is larger than the number of stocks at the beginning of our sample.1

Second, portfolio sorts offer little formal guidance to discriminate between characteristics.

Consider the case of sorting stocks into five portfolios based on size, and within these,

into five portfolios based on the book-to-market ratio. If we now find the book-to-market

ratio only leads to a spread in returns for the smallest stocks, do we conclude it does

not matter for expected returns? Fama and French (2008) call this second shortcoming

“awkward.” Third, we implicitly assume expected returns are constant over a part of the

characteristic distribution, such as the smallest 10% of stocks, when we use portfolio sorts

as an estimator of the conditional mean function. Fama and French (2008) call this third

shortcoming “clumsy.”2 Nonetheless, portfolio sorts are by far the most commonly used

technique to analyze which characteristics have predictive power for expected returns.

1The curse of dimensionality is a well-understood shortcoming of portfolio sorts. See Fama and French
(2015) for a recent discussion in the context of the factor construction for their five-factor model. They
also argue not-well-diversified portfolios have little power in asset-pricing tests.

2Portfolio sorts are a restricted form of nonparametric regression. We will use the similarities of
portfolio sorts and nonparametric regressions to develop intuition for our proposed framework below.
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Instead of (conditional) double sorts, we could sort stocks into portfolios and perform

spanning tests, that is, we regress long-short portfolios on a set of risk factors. Take 10

portfolios sorted on profitability and regress the hedge return on the three Fama and

French (1993) factors. A significant time-series intercept would correspond to an increase

in Sharpe ratios for a mean-variance investor relative to the investment set the three Fama

and French (1993) factors span (see Gibbons, Ross, and Shanken (1989)). The order

in which we test characteristics matters, and spanning tests cannot solve the selection

problem of which characteristics provide incremental information for the cross section of

expected returns.

An alternative to portfolio sorts and spanning tests is to assume linearity of equation

(1) and run linear panel regressions of excess returns on S characteristics, namely,

Rit = α +
S∑
s=1

βsCs,it−1 + εit. (A.2)

Linear regressions allow us to study the predictive power for expected returns of many

characteristics jointly, but they also have potential pitfalls. First, no a priori reason

exists why the conditional mean function should be linear.3 Fama and French (2008)

estimate linear regressions as in equation (2) to dissect anomalies, but raise concerns

over potential nonlinearities. They make ad hoc adjustments and use, for example, the

log book-to-market ratio as a predictive variable. Second, linear regressions are sensitive

to outliers and extreme observations of the characteristics might drive point estimates.

Researchers often use ad hoc techniques to mitigate these concerns, such as winsorizing

observations and estimating linear regressions separately for small and large stocks (see

Lewellen (2015) for a recent example).

Cochrane (2011) synthesizes many of the challenges that portfolio sorts and linear

regressions face in the context of many return predictors, and suspects “we will have to

3Fama and MacBeth (1973) regressions also assume a linear relationship between expected returns and
characteristics. Fama-MacBeth point estimates are numerically equivalent to estimates from equation (2)
when characteristics are constant over time.
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use different methods.”

B Equivalence between Portfolio Sorts and Regressions

Cochrane (2011) conjectures in his presidential address, “[P]ortfolio sorts are really the

same thing as nonparametric cross-sectional regressions, using nonoverlapping histogram

weights.” Additional assumptions are necessary to show a formal equivalence, but his

conjecture contains valuable intuition to model the conditional mean function formally.

We first show a formal equivalence between portfolio sorts and regressions and then use

the equivalence to motivate the use of nonparametric methods.4

Suppose we observe excess returns Rit and a single characteristic Cit−1 for stocks

i = 1, . . . , Nt and time periods t = 1, . . . , T . We sort stocks into L portfolios depending on

the value of the lagged characteristic, Cit−1.5 Specifically, stock i is in portfolio l at time t if

Cit−1 ∈ Itl, where Itl indicates an interval of the distribution for a given firm characteristic.

For example, take a firm with lagged market cap in the 45th percentile of the firm size

distribution. We would sort that stock in the 5th out of 10 portfolios in period t. For each

time period t, let Ntl be the number of stocks in portfolio l, Ntl =
∑Nt

i=1 1(Cit−1 ∈ Itl).

The excess return of portfolio l at time t, Ptl, is then

Ptl =
1

Ntl

N∑
i=1

Rit1(Cit−1 ∈ Itl).

Alternatively, we can run a pooled time-series cross-sectional regression of excess

returns on dummy variables, which equal 1 if firm i is in portfolio l in period t. We

denote the dummy variables by 1(Cit−1 ∈ Itl) and write,

Rit =
L∑
l=1

βl1(Cit−1 ∈ Itl) + εit.

4Cattaneo et al. (2016) develop inference methods for a portfolio-sorting estimator and also show the
equivalence between portfolio sorting and nonparametric estimation.

5We only consider univariate portfolio sorts in this example to gain intuition.
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Let R be the NT × 1 vector of excess returns and let X be the NT ×L matrix of dummy

variables, 1(Cit−1 ∈ Itl). Let β̂ be an OLS estimate, β̂ = (X ′X)−1X ′R. It is easy to show

that

β̂l =
1

T

T∑
t=1

Ntl

1
T

∑T
t=1Ntl

Ptl.

Now suppose we have the same number of stocks in each portfolio l for each time

period t, that is, Ntl = N̄l for all t. Then

β̂l =
1

T

T∑
t=1

Ptl

and

β̂l − β̂l′ =
1

T

T∑
t=1

(Ptl − Ptl′).

Hence, the slope coefficients in pooled time-series cross-sectional regressions are equivalent

to average portfolio returns, and the difference between two slope coefficients is the excess

return between two portfolios.

If the number of stocks in the portfolios changes over time, then portfolio sorts and

regressions typically differ. We can restore equivalence in two ways. First, we could take

the different number of stocks in portfolio l over time into account when we calculate

averages, and define excess return as

1∑T
t=1Ntl

T∑
t=1

NtlPtl −
1∑T

t=1Ntl′

T∑
t=1

Ntl′Ptl′ ,

which equals β̂l − β̂l′ .

Second, we could use the weighted least squares estimator, β̃ = (X ′WX)−1X ′WR,

where the NT × NT weight matrix W is a diagonal matrix with the inverse number of
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stocks on the diagonal, diag(1/Ntl). With this estimator, we again get

β̃l − β̃l′ =
1

T

T∑
t=1

(Ptl − Ptl′).

A.3 Nonparametric Estimation

We now use the relationship between portfolio sorts and regressions to develop intuition

for our nonparametric estimator, and show how we can interpret portfolio sorts as a

special case of nonparametric estimation. We then show how to select characteristics

with incremental information for expected returns within that framework.

Suppose we knew the conditional mean function mt(c) ≡ E[Rit | Cit−1 = c].6 Then,

E[Rit | Cit−1 ∈ Ilt] =

∫
Itl

mt(c)fCit−1|Cit−1∈Itl(c) dc,

where fCit−1|Cit−1∈Itl is the density function of the characteristic in period t−1, conditional

on Cit−1 ∈ Itl. Hence, to obtain the expected return of portfolio l, we can simply

integrate the conditional mean function over the appropriate interval of the characteristic

distribution. Therefore, the conditional mean function contains all information for

portfolio returns. However, knowing mt(c) provides additional information about

nonlinearities in the relationship between expected returns and characteristics, and the

functional form more generally.

To estimate the conditional mean function, mt, consider again regressing excess

returns, Rit, on L dummy variables, 1(Cit−1 ∈ Itl),

Rit =
L∑
l=1

βl1(Cit−1 ∈ Itl) + εit.

6We take the expected excess return for a fixed time period t.
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In nonparametric estimation, we call indicator functions of the form 1(Cit−1 ∈ Itl) constant

splines. Estimating the conditional mean function, mt, with constant splines, means we

approximate it by a step function. In this sense, portfolio sorting is a special case of

nonparametric regression. A step function is nonsmooth and therefore has undesirable

theoretical properties as a nonparametric estimator, but we build on this intuition to

estimate mt nonparametrically.7

Figures A.1–A.3 illustrate the intuition behind the relationship between portfolio

sorts and nonparametric regressions. These figures show returns on the y-axis and book-

to-market ratios on the x-axis, as well as portfolio returns and the nonparametric estimator

we propose below for simulated data.

We see in Figure A.1 that most of the dispersion in book-to-market ratios and returns

is in the extreme portfolios. Little variation in returns occurs across portfolios 2-4 in line

with empirical settings (see Fama and French (2008)). Portfolio means offer a good

approximation of the conditional mean function for intermediate portfolios. We also see,

however, that portfolios 1 and 5 have difficulty capturing the nonlinearities we see in the

data.

Figure A.2 documents that a nonparametric estimator of the conditional mean

function provides a good approximation for the relationship between book-to-market

ratios and returns for intermediate values of the characteristic, but also in the extremes

of the distribution.

Finally, we see in Figure A.3 that portfolio means provide a better fit in the tails of

the distribution once we allow for more portfolios. Portfolio mean returns become more

comparable to the predictions from the nonparametric estimator the larger the number

of portfolios.

7We formally define our estimator in Section A.3. C below.
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A Multiple Regression & Additive Conditional Mean Function

Both portfolio sorts and regressions theoretically allow us to look at several characteristics

simultaneously. Consider small (S) and big (B) firms and value (V ) and growth (G) firms.

We could now study four portfolios: (SV ), (SG), (BV ), and (BG). However, portfolio

sorts quickly become infeasible as the number of characteristics increases. For example,

if we have four characteristics and partition each characteristic into five portfolios, we

end up with 54 = 625 portfolios. Analyzing 625 portfolio returns would, of course, be

impractical, but would also result in poorly diversified portfolios.

In nonparametric regressions, an analogous problem arises. Estimating the

conditional mean function, mt, fully nonparametrically with many regressors results in

a slow rate of convergence and imprecise estimates in practice.8 Specifically, with S

characteristics and Nt observations, assuming technical regularity conditions, the optimal

rate of convergence in mean square is N
−4/(4+S)
t , which is always smaller than the rate of

convergence for the parametric estimator of N−1
t . Notice the rate of convergence decreases

as S increases.9 Consequently, we get an estimator with poor finite sample properties if

the number of characteristics is large.

As an illustration, suppose we observe one characteristic, in which case, the rate of

convergence is N
−4/5
t . Now suppose instead we have 11 characteristics, and let N∗t be the

number of observations necessary to get the same rate of convergence as in the case with

one characteristic. We get,

(N∗t )−4/15 = N
−4/5
t ⇒ N∗t = N3

t .

Hence, in the case with 11 characteristics, we have to raise the sample size to the power

of 3 to obtain the same rate of convergence and comparable finite sample properties as

in the case with only one characteristic. Consider a sample size, Nt, of 1,000. Then, we

8The literature refers to this phenomenon as the “curse of dimensionality” (see Stone (1982) for a
formal treatment).

9We assume the conditional mean function, mt, is twice continuously differentiable.
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would need 1 billion return observations to obtain similar finite sample properties of an

estimated conditional mean function with 11 characteristics.

Conversely, suppose S = 11 and we have N∗t = 1, 000 observations. This combination

yields similar properties as an estimation with one characteristic and a sample size Nt =

(N∗t )1/3 of 10.

Nevertheless, if we are interested in which characteristics provide incremental

information for expected returns given other characteristics, we cannot look at each

characteristic in isolation. A natural solution in the nonparametric regression framework

is to assume an additive model,

mt(c1, . . . , cS) =
S∑
s=1

mts(cs),

where mts(·) are unknown functions. The main theoretical advantage of the additive

specification is that the rate of convergence is always N
−4/5
t , which does not depend on

the number of characteristics S (see Stone (1985), Stone (1986), and Horowitz et al.

(2006)).

An important restriction of the additive model is

∂2mt(c1, . . . , cS)

∂cs∂cs′
= 0

for all s 6= s′. For example, the predictive power of the book-to-market ratio for

expected returns does not vary with firm size (conditional on size). One way around

this shortcoming is to add certain interactions as additional regressors. For instance,

we could interact every characteristic with size to see if small firms are really different.

An alternative solution is to estimate the model separately for small and large stocks.

Brandt et al. (2009) make a similar assumption, but also stress that we can always

interpret characteristics c as the cross product of a more basic set of characteristics.

In our empirical application, we show results for all stocks and all-but micro caps, but

also show results when we interact each characteristic with size.
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Although the assumption of an additive model is somewhat restrictive, it provides

desirable econometric advantages. In addition, we always make this assumption when we

estimate multivariate regressions and in our context this assumption is far less restrictive

than assuming linearity right away, as we do in Fama-MacBeth regressions. Another

major advantage of an additive model is that we can jointly estimate the model for a large

number of characteristics, select important characteristics, and estimate the summands

of the conditional mean function, mt, simultaneously, as we explain in Section C .

B Normalization of Characteristics

We now describe a suitable normalization of the characteristics, which will allow us to map

our nonparametric estimator directly to portfolio sorts. As before, define the conditional

mean function mt for S characteristics as

mt(C1,it−1, . . . , CS,it−1) = E[Rit | C1,it−1, . . . , CS,it−1].

For each characteristic s, let Fs,t(·) be a known strictly monotone function and denote its

inverse by F−1
s,t (·). Define C̃s,it−1 = Fs,t(Cs,it−1) and

m̃t(C1, . . . , CS) = mt(F
−1
1,t (C1), . . . , F−1

S,t (CS)).

Then,

mt(C1,it−1, . . . , CS,it−1) = m̃t(C̃1,it−1, . . . , C̃S,it−1).

Knowledge of the conditional mean function mt is equivalent to knowing the transformed

conditional mean function m̃t. Moreover, using a transformation does not impose any

additional restrictions and is therefore without loss of generality.

Instead of estimating mt, we will estimate m̃t for a rank transformation that has

desirable properties and nicely maps to portfolio sorting. When we sort stocks into

portfolios, we are typically not interested in the value of a characteristic in isolation,
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but rather in the rank of the characteristic in the cross section. Consider firm size. Size

grows over time, and a firm with a market capitalization of USD 1 billion in the 1960s

was considered a large firm, but today it is not. Our normalization considers the relative

size in the cross section rather than the absolute size, similar to portfolio sorting.

Hence, we choose the rank transformation of Cs,it−1 such that the cross-sectional

distribution of a given characteristic lies in the unit interval; that is, Cs,it−1 ∈ [0, 1].

Specifically, let

Fs,t(Cs,it−1) =
rank(Cs,it−1)

Nt + 1
.

Here, rank(mini=1...,Nt Cs,it−1) = 1 and rank(maxi=1...,Nt Cs,it−1) = Nt. Therefore, the α

quantile of C̃s,it−1 is α. We use this particular transformation because portfolio sorting

maps into our estimator as a special case.10

Although knowing mt is equivalent to knowing m̃t, in finite samples, the estimates

of the two typically differ; that is,

m̂t(c1, . . . , cS) 6= ̂̃mt(F
−1
1,t (c1), . . . , F−1

S,t (cS)).

In simulations and in the empirical application, we found m̃t yields better out-of-sample

predictions than mt. The transformed estimator appears to be less sensitive to outliers

thanks to the rank transformation, which could be one reason for the superior out-of-

sample performance.

In summary, the transformation does not impose any additional assumptions, directly

relates to portfolio sorting, and works well in finite samples because it appears more robust

to outliers.11

10The general econometric theory we discuss in Section C (model selection, consistency, etc.) also
applies to any other monotonic transformation or the non-transformed conditional mean function.

11Cochrane (2011) stresses the sensitivity of regressions to outliers. Our transformation is insensitive
to outliers and nicely addresses his concern.
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C Adaptive Group LASSO

We use a group LASSO procedure developed by Huang et al. (2010) for estimation and

to select those characteristics that provide incremental information for expected returns,

that is, for model selection. To recap, we are interested in modeling excess returns as a

function of characteristics; that is,

Rit =
S∑
s=1

m̃ts(C̃s,it−1) + εit, (A.3)

where m̃s(·) are unknown functions and C̃s,it−1 denotes the rank-transformed character-

istic.

The idea of the group LASSO is to estimate the functions m̃ts nonparametrically,

while setting functions for a given characteristic to 0 if the characteristic does not help

predict returns. Therefore, the procedure achieves model selection; that is, it discriminates

between the functions m̃ts, which are constant, and the functions that are not constant.12

In portfolio sorts, we approximate m̃ts by a constant within each portfolio. We

instead propose to estimate quadratic functions over parts of the normalized characteristic

distribution. Let 0 = t0 < t1 < · · · < tL−1 < tL = 1 be a sequence of increasing numbers

between 0 and 1 similar to portfolio breakpoints, and let Ĩl for l = 1, . . . , L be a partition

of the unit interval, that is, Ĩl = [tl−1, tl) for l = 1, . . . , L − 1 and ĨL = [tL−1, tL]. We

refer to t0, . . . , tL−1 as knots and choose tl = l/L for all l = 0, . . . , L− 1 in our empirical

application. Because we apply the rank transformation to the characteristics, the knots

correspond to quantiles of the characteristic distribution and we can think of Ĩl as the lth

portfolio.

To estimate m̃t, we use quadratic splines; that is, we approximate m̃t as a quadratic

function on each interval Ĩl. We choose these functions so that the endpoints are connected

and m̃t is differentiable on [0, 1]. We can approximate each m̃ts by a series expansion with

12The “adaptive” part indicates a two-step procedure, because the LASSO selects too many
characteristics in the first step and is therefore not model-selection consistent unless restrictive conditions
on the design matrix are satisfied (see Meinshausen and Bühlmann (2006) and Zou (2006) for an in-depth
treatment of the LASSO in the linear model).
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these properties, i.e.,

m̃ts(c̃) ≈
L+2∑
k=1

βtskpk(c̃), (A.4)

where pk(c) are known basis functions.13

The number of intervals L is a user-specified smoothing parameter, similar to the

number of portfolios. As L increases, the precision of the approximation increases, but so

does the number of parameters we have to estimate and hence the variance. Recall that

portfolio sorts can be interpreted as approximating the conditional mean function as a

constant function over L intervals. Our estimator is a smooth and more flexible estimator,

but follows a similar idea (see again Figures A.1 – A.3).

We now discuss the two steps of the adaptive group LASSO. In the first step, we

obtain estimates of the coefficients as

β̃t = arg min
bsk:s=1,...,S;k=1,...,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk(C̃s,it−1)

)2

+ λ1

S∑
s=1

(
L+2∑
k=1

b2
sk

) 1
2

, (A.5)

where β̃t is an (L+ 2)× S vector of estimates and λ1 is a penalty parameter.

The first part of equation (5) is just the sum of the squared residuals as in ordinary

least squares regressions; the second part is the LASSO group penalty function. Rather

than penalizing individual coefficients, bsk, the LASSO penalizes all coefficients associated

with a given characteristic. Thus, we can set the point estimates of an entire expansion

of m̃t to 0 when a given characteristic does not provide incremental information for

expected returns. Due to the penalty, the LASSO is applicable even when the number

of characteristics is larger than the sample size. Yuan and Lin (2006) propose to choose

λ1 in a data-dependent way to minimize Bayesian Information Criterion (BIC) which we

follow in our application.

However, as in a linear model, the first step of the LASSO selects too many

characteristics unless restrictive conditions on the design matrix hold. Informally

13In particular, p1(c) = 1, p2(c) = c, p3(c) = c2, and pk(c) = max{c − tk−3, 0}2 for k = 4, . . . , L + 2.
See Chen (2007) for an overview of series estimation.
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speaking, the LASSO selects all characteristics that predict returns, but also selects some

characteristics that have no predictive power. A second step addresses this problem.

We first define the following weights:

wts =


(∑L+2

k=1 β̃
2
sk

)− 1
2

if
∑L+2

k=1 β̃
2
sk 6= 0

∞ if
∑L+2

k=1 β̃
2
sk = 0.

(A.6)

Intuitively, these weights guarantee we do not select any characteristic in the second step

that we did not select in the first step.

In the second step of the adaptive group LASSO, we solve

β̆t = arg min
bsk:s=1,...,S;k=1,...,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk(C̃s,it−1)

)2

+ λ2

S∑
s=1

(
wts

L+2∑
k=1

b2
sk

) 1
2

.

(A.7)

We again follow Yuan and Lin (2006) and choose λ2 to minimize BIC.

Huang et al. (2010) provide conditions under which β̆t is model-selection consistent;

that is, it correctly selects the non-constant functions with probability approaching 1 as

the sample size grows large.

Denote the estimated coefficients for characteristic s by β̂ts. The estimator of the

function m̃ts is then ̂̃mts(c̃) =
L+2∑
k=1

β̂tskpk(c̃).

If the cross section is sufficiently large, model selection and estimation could

be performed period by period. Hence, the method allows for the importance of

characteristics and the shape of the conditional mean function to vary over time. For

example, some characteristics might lose their predictive power for expected returns over

time. McLean and Pontiff (2016) show that for 97 return predictors, predictability

decreases by 58% post publication. However, if the conditional mean function was

time-invariant, pooling the data across time would lead to more precise estimates of the

function and therefore more reliable predictions. In our empirical application in Section
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III, we estimate our model over subsamples and also estimate rolling specifications to

investigate the variation in the conditional mean function over time.

D Interpretation of the Conditional Mean Function

In a nonparametric additive model, the locations of the functions are not identified.

Consider the following example. Let αs be S constants such that
∑S

s=1 αs = 0. Then,

m̃t(c̃1, . . . , c̃S) =
S∑
s=1

m̃ts(c̃s) =
S∑
s=1

(m̃ts(c̃s) + αs) .

Therefore, the summands of the transformed conditional mean function, m̃s, are only

identified up to a constant. The model-selection procedure, expected returns, and the

portfolios we construct do not depend on these constants. However, the constants matter

when we plot an estimate of the conditional mean function for one characteristic.

We report estimates of the functions using the common normalization that the

functions integrate to 0, which is identified.

Section A.6 of the online appendix discusses how we construct confidence bands for

the figures which we report and how we select the number of interpolation points in the

empirical application of Section III.

A.4 Additive Conditional Mean Function

Estimating the conditional mean function, mt, fully nonparametrically with many

regressors results in a slow rate of convergence and imprecise estimates in practice.14

Specifically, with S characteristics and Nt observations, assuming technical regularity

conditions, the optimal rate of convergence in mean square is N
−4/(4+S)
t , which is always

smaller than the rate of convergence for the parametric estimator of N−1
t . Notice the rate

14The literature refers to this phenomenon as the “curse of dimensionality” (see Stone (1982) for a
formal treatment).
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of convergence decreases as S increases.15 Consequently, we get an estimator with poor

finite sample properties if the number of characteristics is large.

As an illustration, suppose we observe one characteristic, in which case, the rate of

convergence is N
−4/5
t . Now suppose instead we have 11 characteristics, and let N∗t be the

number of observations necessary to get the same rate of convergence as in the case with

one characteristic. We get,

(N∗t )−4/15 = N
−4/5
t ⇒ N∗t = N3

t .

Hence, in the case with 11 characteristics, we have to raise the sample size to the power

of 3 to obtain the same rate of convergence and comparable finite sample properties as

in the case with only one characteristic. Consider a sample size, Nt, of 1,000. Then, we

would need 1 billion return observations to obtain similar finite sample properties of an

estimated conditional mean function with 11 characteristics.

Conversely, suppose S = 11 and we have N∗t = 1, 000 observations. This combination

yields similar properties as an estimation with one characteristic and a sample size Nt =

(N∗t )1/3 of 10.

Nevertheless, if we are interested in which characteristics provide incremental

information for expected returns given other characteristics, we cannot look at each

characteristic in isolation. A natural solution in the nonparametric regression framework

is to assume an additive model,

mt(c1, . . . , cS) =
S∑
s=1

mts(cs),

where mts(·) are unknown functions. The main theoretical advantage of the additive

specification is that the rate of convergence is always N
−4/5
t , which does not depend on

the number of characteristics S (see Stone (1985), Stone (1986), and Horowitz et al.

(2006)).

15We assume the conditional mean function, mt, is twice continuously differentiable.
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An important restriction of the additive model is

∂2mt(c1, . . . , cS)

∂cs∂cs′
= 0

for all s 6= s′; therefore, the additive model does not allow for cross dependencies

between characteristics. For example, the predictive power of the book-to-market ratio

for expected returns does not vary with firm size (conditional on size). One way around

this shortcoming is to add certain interactions as additional regressors. For instance,

we could interact every characteristic with size to see if small firms are really different.

An alternative solution is to estimate the model separately for small and large stocks.

Brandt et al. (2009) make a similar assumption, but also stress that we can always

interpret characteristics c as the cross product of a more basic set of characteristics.

In our empirical application, we show results for all stocks and all-but micro caps, but

also show results when we interact each characteristic with size.

Although the assumption of an additive model is somewhat restrictive, it provides

desirable econometric advantages. In addition, we always make this assumption when we

estimate multivariate regressions and in our context this assumption is far less restrictive

than assuming linearity right away, as we do in Fama-MacBeth regressions. Another

major advantage of an additive model is that we can jointly estimate the model for a large

number of characteristics, select important characteristics, and estimate the summands

of the conditional mean function, mt, simultaneously, as we explain in Section C .

A.5 Normalization of Characteristics

We now describe a suitable normalization of the characteristics, which will allow us to map

our nonparametric estimator directly to portfolio sorts. As before, define the conditional

mean function mt for S characteristics as

mt(C1,it−1, . . . , CS,it−1) = E[Rit | C1,it−1, . . . , CS,it−1].
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For each characteristic s, let Fs,t(·) be a known strictly monotone function and denote its

inverse by F−1
s,t (·). Define C̃s,it−1 = Fs,t(Cs,it−1) and

m̃t(C1, . . . , CS) = mt(F
−1
1,t (C1), . . . , F−1

S,t (CS)).

Then,

mt(C1,it−1, . . . , CS,it−1) = m̃t(C̃1,it−1, . . . , C̃S,it−1).

Knowledge of the conditional mean function mt is equivalent to knowing the transformed

conditional mean function m̃t. Moreover, using a transformation does not impose any

additional restrictions and is therefore without loss of generality.

Instead of estimating mt, we will estimate m̃t for a rank transformation that has

desirable properties and nicely maps to portfolio sorting. When we sort stocks into

portfolios, we are typically not interested in the value of a characteristic in isolation,

but rather in the rank of the characteristic in the cross section. Consider firm size. Size

grows over time, and a firm with a market capitalization of USD 1 billion in the 1960s

was considered a large firm, but today it is not. Our normalization considers the relative

size in the cross section rather than the absolute size, similar to portfolio sorting.

Hence, we choose the rank transformation of Cs,it−1 such that the cross-sectional

distribution of a given characteristic lies in the unit interval; that is, Cs,it−1 ∈ [0, 1].

Specifically, let

Fs,t(Cs,it−1) =
rank(Cs,it−1)

Nt + 1
.

Here, rank(mini=1...,Nt Cs,it−1) = 1 and rank(maxi=1...,Nt Cs,it−1) = Nt. Therefore, the α

quantile of C̃s,it−1 is α. We use this particular transformation because portfolio sorting

maps into our estimator as a special case.16

Although knowing mt is equivalent to knowing m̃t, in finite samples, the estimates

16The general econometric theory we discuss in subsection C below (model selection, consistency, etc.)
also applies to any other monotonic transformation or the non-transformed conditional mean function.
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of the two typically differ; that is,

m̂t(c1, . . . , cS) 6= ̂̃mt(F
−1
1,t (c1), . . . , F−1

S,t (cS)).

In simulations and in the empirical application, we found m̃t yields better out-of-sample

predictions than mt. The transformed estimator appears to be less sensitive to outliers

thanks to the rank transformation, which could be one reason for the superior out-of-

sample performance.

In summary, the transformation does not impose any additional assumptions, directly

relates to portfolio sorting, and works well in finite samples because it appears more robust

to outliers.17

A.6 Confidence Bands

We also report uniform confidence bands for the estimated functions in the plots later to

gain some intuition for estimation uncertainty. Note that the set of characteristics the

LASSO selects does not rely on these confidence bands. As explained above, we assume

that

Rit =
S∑
s=1

m̃ts(C̃s,it−1) + εit.

In a linear model, we could report confidence intervals for the individual slope coefficients.

Analogously, because we are mainly interested in the slopes of the functions m̃ts and

because the levels of the functions are not separately identified, we report estimates and

confidence bands for the functions m̃ts(c̃s) −
∫
m̃ts(c̃s)dc̃s. That is, we normalize the

functions such that they are 0 on average. By inspecting the confidence bands we can

then test hypotheses that do not depend on the levels of the functions, such as whether a

constant function or a linear function is consistent with the data. However, the bands are

not informative about the levels of the estimated functions similar to confidence intervals

17Cochrane (2011) stresses the sensitivity of regressions to outliers. Our transformation is insensitive
to outliers and nicely addresses his concern.
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for slope coefficients in a linear model.

Recall that we approximate m̃ts(c̃s) by
∑L+2

k=1 βtskpk(c̃s) and estimate it by∑L+2
k=1 β̂tskpk(c̃s). Let p̃k(c̃s) = pk(c̃s)−

∫
pk(c̃s)dc̃s be the normalized basis functions and

let p̃(c̃s) = (p̃1(c̃s), . . . , p̃L+2(c̃s))
′ be the corresponding vector of basis functions. Next

let Σts be the L + 2 × L + 2 covariance matrix of
√
n(β̂ts − βts). We define Σ̂ts as the

heteroscedasticity-consistent estimator of Σts and define σ̂ts(c̃s) =

√
p̃(c̃s)′Σ̂tsp̃(c̃s), which

is the estimated standard error of
∑L+2

k=1 β̂tskp̃k(c̃s). Just as in the linear model, σ̂ts(c̃)

depends on which other characteristics are included in the model. For example, if two

characteristics are highly correlated, the standard deviations of the estimated functions

are typically high.

The uniform confidence band for m̃ts(c̃s)−
∫
m̃ts(c̃s)dc̃s is of the form

[
L+2∑
k=1

β̂tskp̃k(c̃s)− dtsσ̂ts(c̃s) ,
L+2∑
k=1

β̂tskp̃k(c̃s) + dtsσ̂ts(c̃s)

]
,

where dts is a constant. Thus, the width of the confidence band is proportional to the

standard deviation of the estimated function. To choose the constant, let Z ∼ N(0, Σ̂ts)

and let d̂ts be such that

P

(
sup

c̃s∈[0,1]

∣∣∣∣Z ′p̃(c̃s)σ̂ts(c̃s)

∣∣∣∣ ≤ d̂ts | Σ̂ts

)
= 1− α.

We can calculate the probability on the left-hand side using simulations.

Given consistent model selection and under the conditions in Belloni, Chernozhukov,

Chetverikov, and Kato (2015), it follows that

P

(
m̃ts(c̃s)−

∫
m̃ts(c̃s)dc̃s ∈

[
L+2∑
k=1

β̂tskp̃k(c̃s)− d̂tsσ̂ts(c̃s) ,
L+2∑
k=1

β̂tskp̃k(c̃s) + d̂tsσ̂ts(c̃s)

]
∀c̃s ∈ [0, 1]

)

converges to 1− α as the sample size increases.

To better understand why these bands are useful, suppose that no linear function fits

in the confidence band. Then, we can reject the null hypothesis that m̃ts(c̃s)−
∫
m̃ts(c̃s)dc̃s
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is linear at a significance level of 1 − α. But since m̃ts(c̃s) −
∫
m̃ts(c̃s)dc̃s is linear if and

only if m̃ts(c̃s) is linear, we can then also reject the null hypothesis that m̃ts(c̃s) is linear.

Similar, by inspecting the band we can test if m̃ts(c̃s) is constant.

We want to stress that the selection of characteristics in the LASSO does not rely on

these confidence bands and we report the confidence bands only to provide intuition and

to summarize sampling uncertainty.

A Knot Selection

Theory tells us the number of interpolation points should grow as the sample size grows.

Empirically, this statement is not too helpful in guiding our choices. We therefore

document that the number and identify of characteristics is stable for reasonable variations

in the number of knots (see Figure 6 which we discuss below).
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Figure A.1: 5 Portfolios Sorted on Book-to-Market
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This figure plots returns on the y-axis against the book-to-market ratio on the x-axis

as well as portfolio mean returns for simulated data.
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Figure A.2: 5 Portfolios Sorted on Book-to-Market and Nonparametric

Estimator
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This figure plots returns on the y-axis against the book-to-market ratio on the x-axis

as well as portfolio mean returns and a nonparametric conditional mean function

for simulated data.
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Figure A.3: 10 Portfolios sorted on Book-to-Market and Nonparametric

Estimator
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This figure plots returns on the y-axis against the book-to-market ratio on the x-axis

as well as portfolio mean returns and a nonparametric conditional mean function

for simulated data.
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Figure A.4: Selected Characteristics in Simulations: Empirical Data-Generating

Process (different Information Criteria)
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The figure graphically shows for the nonlinear adaptive group LASSO for different

information criteria the frequency with which characteristics from the universe of

62 firm characteristics we discuss in Section A.1 of the online appendix are selected

by each information criteria. The darker the color, the more frequently a given

selection method selects a given characteristic. The true model is nonlinear and

consists of the 13 characteristics above the red vertical line. The average number of

selected characteristics for the different information criteria across 500 simulations

are: BIC: 11.84; AIC: 15.37; BIC alternative: 8.69; CV (cross validation): 54.92.

The sample period is January 1965 to June 2014.
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Figure A.5: Selected Characteristics in Simulations: Empirical Data-Generating

Process (different Knot Numbers)
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The figure graphically shows for the nonlinear adaptive group LASSO for different

number of knots the frequency with which characteristics from the universe of 62

firm characteristics we discuss in Section A.1 of the online appendix are selected

by each information criteria. The darker the color, the more frequently a given

selection method selects a given characteristic. The true model is nonlinear and

consists of the 13 characteristics above the red vertical line. The average number of

selected characteristics for the different information criteria across 500 simulations

are: 10 knots: 12.77; 15 knots: 12.44; 20 knots: 11.84; 25 knots: 12.44. The

sample period is January 1965 to June 2014.
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Figure A.6: Selected Characteristics in Simulations: Empirical Data-Generating

Process (different Order Splines)
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The figure graphically shows for the nonlinear adaptive group LASSO for different

order splines the frequency with which characteristics from the universe of 62 firm

characteristics we discuss in Section A.1 of the online appendix are selected by each

information criteria. The darker the color, the more frequently a given selection

method selects a given characteristic. The true model is nonlinear and consists of

the 13 characteristics above the red vertical line. The average number of selected

characteristics for the different information criteria across 500 simulations are: 0

order: 12.77; 1 order: 16.58; 2 order: 11.84; 3 order: 16.08; 4 order: 15.88. The

sample period is January 1965 to June 2014.
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Figure A.7: Selected Characteristics in Simulations: Empirical Data-Generating

Process (large Firms)
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The figure graphically shows for different model selection methods the frequency

with which characteristics from the universe of 62 firm characteristics we discuss

in Section A.1 of the online appendix are selected by each method for firms above

the 20th size percentile. The darker the color, the more frequently a given selection

method selects a given characteristic. The true model is nonlinear and consists of

the 9 characteristics above the red vertical line. The average number of selected

characteristics for the different methods across 500 simulations are: adaptive group

LASSO: 9.49; group LASSO: 11.89; adaptive LASSO linear model: 10.66; LASSO

linear model: 15.62; FDR: 9.08; t3 9.72; t2 17.90. The sample period is January

1965 to June 2014.

34



T
ab

le
A

.1
:

O
u
t-

o
f-

S
a
m

p
le

R
e
tu

rn
P

re
d
ic

ti
o
n
(9

0
–
1
0
)

T
h
is

ta
bl

e
re

po
rt

s
o
u

t-
o
f-

sa
m

p
le

S
h
a
rp

e
ra

ti
o
s

o
f

h
ed

ge
po

rt
fo

li
o
s

go
in

g
lo

n
g

th
e

1
0
%

o
f

st
oc

ks
w

it
h

h
ig

h
es

t
p
re

d
ic

te
d

re
tu

rn
s

a
n

d
sh

o
rt

in
g

th
e

1
0
%

o
f

st
oc

ks
w

it
h

lo
w

es
t

p
re

d
ic

te
d

re
tu

rn
fo

r
d
iff

er
en

t
se

ts
o
f

fi
rm

s,
o
u

t-
o
f-

sa
m

p
le

pe
ri

od
s,

n
u

m
be

r
o
f

in
te

rp
o
la

ti
o
n

po
in

ts
,

fo
r

th
e

n
o
n

pa
ra

m
et

ri
c

a
n

d
li

n
ea

r
m

od
el

s.
T

h
e

T
a
bl

e
a
ls

o

re
po

rt
s

m
ea

n
re

tu
rn

s,
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s,
h
ig

h
er

-o
rd

er
m

o
m

en
ts

,
tu

rn
o
ve

r,
a
n

d
p
re

d
ic

ti
ve

sl
o
pe

s
a
n

d
R

2
s

fo
r

th
e

h
ed

ge
po

rt
fo

li
o
s

in
P

a
n

el
A

,
a
n

d
se

pa
ra

te
ly

fo
r

th
e

lo
n

g
le

gs
in

P
a
n

el
B

a
n

d
th

e
sh

o
rt

le
gs

in
P

a
n

el
C

.
q

in
d
ic

a
te

s
th

e
si

ze
pe

rc
en

ti
le

o
f

N
Y

S
E

fi
rm

s.
W

e
pe

rf
o
rm

m
od

el
se

le
ct

io
n

fr
o
m

J
a
n

u
a
ry

1
9
6
5

u
n

ti
l

th
e

m
o
n

th
s

be
fo

re
st

a
rt

o
f

th
e

o
u

t-
o
f-

sa
m

p
le

p
re

d
ic

ti
o
n

.

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

F
ir

m
s

A
ll

A
ll

A
ll

A
ll

A
ll

A
ll

S
iz
e
>
q 1

0
S
iz
e
>
q 1

0
S
iz
e
>
q 2

0
S
iz
e
>
q 2

0

o
o
s

p
er

io
d

1
9
9
1
-2

0
1
4

1
9
9
1
-2

0
1
4

1
9
9
1
-2

0
1
4

1
9
9
1
-2

0
1
4

1
9
7
3
-2

0
1
4

1
9
7
3
-2

0
1
4

1
9
9
1
-2

0
1
4

1
9
9
1
-2

0
1
4

1
9
9
1
-2

0
1
4

1
9
9
1
-2

0
1
4

K
n

o
ts

1
0

1
0

1
0

1
0

1
0

S
a
m

p
le

S
iz

e
1
,0

2
5
,4

9
7

1
,0

2
5
,4

9
7

1
,0

2
5
,4

9
7

1
,0

2
5
,4

9
7

1
,5

4
1
,9

2
2

1
,5

4
1
,9

2
2

9
5
9
,7

5
7

9
5
9
,7

5
7

7
6
3
,8

5
0

7
6
3
,8

5
0

M
o
d

el
N

P
L

in
ea

r
N

P
L

in
ea

r
N

P
L

in
ea

r
N

P
L

in
ea

r
N

P
L

in
ea

r

#
S

el
ec

te
d

1
1

3
0

3
0

1
1

1
2

3
0

9
2
4

9
2
4

M
o
d

el
fo

r
S

el
ec

ti
o
n

N
P

L
in

ea
r

L
in

ea
r

N
P

N
P

L
in

ea
r

N
P

L
in

ea
r

N
P

L
in

ea
r

S
h

a
rp

e
R

a
ti

o
2
.7

5
1
.0

6
2
.6

1
1
.0

9
3
.1

1
1
.4

1
1
.2

2
0
.1

3
0
.8

9
0
.0

6

P
a
n

e
l

A
:

L
o
n

g
-S

h
o
r
t

P
o
r
tf

o
li

o

M
ea

n
R

et
u

rn
(m

o
n
th

ly
)

3
.8

2
1
.9

5
3
.5

9
2
.0

9
4
.3

6
2
.1

7
1
.5

5
0
.1

9
1
.2

0
0
.0

9

S
ta

n
d

a
rd

D
ev

ia
ti

o
n

(m
o
n
th

ly
)

4
.8

1
6
.3

7
4
.7

5
6
.6

3
4
.8

5
5
.3

1
4
.4

0
4
.9

2
4
.6

4
5
.2

2

S
h

a
rp

e
R

a
ti

o
2
.7

5
1
.0

6
2
.6

1
1
.0

9
3
.1

1
1
.4

1
1
.2

2
0
.1

3
0
.8

9
0
.0

6

S
k
ew

n
es

s
2
.7

7
2
.2

7
1
.5

4
3
.1

4
3
.5

9
2
.1

2
0
.5

4
1
.1

8
0
.7

4
-0

.5
1

K
u

rt
o
si

s
1
9
.5

6
1
9
.2

1
7
.6

9
2
9
.8

4
3
4
.0

7
2
2
.3

4
8
.4

5
2
0
.3

6
1
0
.2

1
1
6
.9

2

T
u

rn
o
v
er

1
6
9
.2

6
5
5
.2

4
6
5
.0

4
6
2
.1

7
7
3
.4

6
5
5
.4

7
7
4
.2

9
5
5
.5

7
7
3
.7

7
5
0
.6

8

T
u

rn
o
v
er

2
3
3
.1

1
2
5
.7

2
3
1
.0

7
2
9
.4

8
3
5
.5

1
2
5
.9

6
3
6
.1

7
2
6
.3

2
3
5
.9

4
2
3
.8

5

β
0
.7

8
0
.3

8
0
.5

6
0
.4

5
0
.8

8
0
.3

9
0
.5

1
0
.1

0
0
.4

4
0
.0

3

R
2

1
.9

5
%

1
.3

7
%

1
.7

8
%

1
.1

9
%

2
.7

8
%

1
.6

0
%

2
.1

2
%

1
.6

4
%

2
.3

8
%

2
.2

7
%

P
a
n

e
l

B
:

L
o
n

g
L

e
g

M
ea

n
R

et
u

rn
(m

o
n
th

ly
)

8
.6

1
9
.0

2
8
.2

7
9
.1

7
8
.5

5
8
.3

7
5
.9

1
7
.0

2
6
.1

1
6
.7

8

S
ta

n
d

a
rd

D
ev

ia
ti

o
n

(m
o
n
th

ly
)

0
.4

6
0
.3

3
0
.4

6
0
.3

2
0
.4

5
0
.3

3
0
.3

4
0
.2

0
0
.2

9
0
.2

0

S
h

a
rp

e
R

a
ti

o
1
.6

0
1
.1

5
1
.6

0
1
.1

1
1
.5

7
1
.1

3
1
.1

7
0
.6

8
1
.0

1
0
.6

9

S
k
ew

n
es

s
2
.7

7
2
.2

7
1
.5

4
3
.1

4
3
.5

9
2
.1

2
0
.5

4
1
.1

8
0
.7

4
-0

.5
1

K
u

rt
o
si

s
1
2
.2

3
1
3
.1

6
6
.3

6
1
1
.0

4
1
4
.8

0
1
2
.4

5
5
.4

3
7
.6

9
6
.1

8
7
.3

0

β
1
.5

8
0
.4

6
1
.5

3
0
.2

3
1
.7

2
0
.4

0
0
.5

4
0
.0

5
0
.6

3
0
.2

2

R
2

2
.3

9
%

0
.9

8
%

2
.1

9
%

0
.6

8
%

1
.6

3
%

1
.0

0
%

0
.7

9
%

1
.0

1
%

1
.1

7
%

1
.5

6
%

P
a
n

e
l

C
:

S
h

o
r
t

L
e
g

M
ea

n
R

et
u

rn
(m

o
n
th

ly
)

6
.5

1
7
.0

0
6
.3

7
6
.0

8
6
.2

2
7
.2

1
6
.6

3
7
.1

7
6
.3

8
7
.1

5

S
ta

n
d

a
rd

D
ev

ia
ti

o
n

(m
o
n
th

ly
)

0
.0

2
0
.1

5
0
.0

4
0
.1

4
-0

.0
8

0
.0

8
0
.0

7
0
.1

7
0
.0

9
0
.1

8

S
h

a
rp

e
R

a
ti

o
0
.0

8
0
.5

1
0
.1

2
0
.4

8
-0

.2
7

0
.2

7
0
.2

3
0
.5

8
0
.3

1
0
.6

2

S
k
ew

n
es

s
-0

.0
8

0
.0

3
-0

.2
8

0
.1

5
-0

.2
5

-0
.0

4
-0

.1
3

-0
.1

0
-0

.1
5

0
.2

6

K
u

rt
o
si

s
4
.7

3
5
.4

2
5
.4

4
5
.2

9
5
.4

2
5
.6

7
4
.4

3
4
.2

1
4
.7

3
6
.0

4

β
0
.8

7
0
.3

8
0
.4

5
0
.4

9
1
.0

7
0
.3

1
0
.2

9
0
.2

2
0
.3

9
0
.0

7

R
2

0
.6

9
%

1
.3

5
%

0
.7

8
%

0
.8

6
%

0
.8

9
%

1
.1

7
%

1
.0

1
%

1
.4

1
%

1
.1

8
%

2
.0

6
%

35



Table A.2: Out-of-Sample Predictability in Simulation: Robustness Nonlinear
Model

This table reports results from an out-of-sample prediction exercise for different model selection methods and data

generating processes. Column (1) reports first the out-of-sample R2 of regressing ex-post realized returns on ex-ante

predicted returns for the true model and then the out-of-sample R2 for the different model selection techniques

relative to the true out-of-sample R2. Column (2) reports the root mean squared prediction error (RMSPE) of

the true model and the % differences between the RMSPEs of the true model and the different specifications. The

sample period is January 1965 to June 2012 for model selection and 2013 to 2014 for out-of-sample prediction.

We simulate each model 500 times. Panel A reports results for different information criteria, Panel B for different

number of knots, and Panel C for different order splines. We use the nonparametric adaptive group LASSO for

model selection with the BIC of Yuan and Lin (2006), 20 knots, and order 2 splines as baseline model.

Relative R2 Relative RMSPE

(1) (2)

Panel A: Different Information Criteria

BIC 87.76% 0.098%

AIC 87.74% 0.100%

BIC alternative 81.38% 0.146%

CV 60.85% 0.598%

Panel B: Different Knots Numbers

10 knots 86.93% 0.099%

15 knots 88.27% 0.089%

20 knots 87.76% 0.098%

25 knots 79.46% 0.183%

Panel C: Different Order Splines

Order 0 71.17% 0.222%

Order 1 83.52% 0.129%

Order 2 87.76% 0.098%

Order 3 90.69% 0.073%

Order 4 91.53% 0.068%
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Table A.3: Out-of-Sample Predictability in Simulation: Large Firms

This table reports results from an out-of-sample prediction exercise for different model selection methods and data

generating processes. Column (1) reports first the out-of-sample R2 of regressing ex-post realized returns on ex-ante

predicted returns for the true model and then the out-of-sample R2 for the different model selection techniques

relative to the true out-of-sample R2. Column (2) reports the root mean squared prediction error (RMSPE) of

the true model and the % differences between the RMSPEs of the true model and the different specifications. The

sample period is January 1965 to June 2012 for model selection and 2013 to 2014 for out-of-sample prediction. We

simulate each model 500 times. Large firms are all firms above the 20th size percentile.

(Relative) R2 (Relative) RMSPE

(1) (2)

True parametric 0.0063 0.0830

True nonparametric 90.63% 0.034%

Adaptive group LASSO 90.03% 0.036%

Group LASSO 86.98% 0.049%

Adaptive LASSO linear 78.78% 0.067%

LASSO linear 78.52% 0.067%

FDR 75.86% 0.076%

t3 76.26% 0.072%

t2 77.05% 0.075%
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