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Abstract 

 
We document a novel role of heterogeneity in price rigidity: It strongly amplifies the capacity of 
idiosyncratic shocks to drive aggregate fluctuations. Heterogeneity in price rigidity also 
completely changes the identity of sectors from which fluctuations originate. We show these 
results both theoretically and empirically through the lens of a multi-sector model featuring 
heterogeneous GDP shares, input-output linkages, and idiosyncratic productivity shocks. 
Quantitatively, we calibrate our model to 341 sectors and find sectoral productivity shocks can 
give rise to aggregate fluctuations that are half as large as those arising from an aggregate 
productivity shock. Heterogeneous price rigidity amplifies the aggregate fluctuations by a factor 
of more than 2 relative to a flexible-price or homogeneous sticky price economy. Hence, 
idiosyncratic shocks and heterogeneous price rigidity can account for large parts of aggregate 
fluctuations and there is hope we will not “forever remain ignorant of the fundamental causes of 
economic fluctuations” (Cochrane (1994)). 
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I Introduction

The role of price rigidity for macroeconomics has been at the center of heated discussions

for decades. Are prices sticky, and if so, does it matter? Proponents typically focus on the

transmission of nominal shocks, such as monetary policy shocks: If prices do not adjust instantly,

monetary policy shocks may have large and persistent real effects. Opponents typically argue

prices are flexible or price rigidity – even if it exists – does not imply real effects of nominal

shocks (see Head et al. (2012)).

We argue in this paper price rigidity plays a distinct, equally important role for idiosyncratic

real shocks. Heterogeneity in price rigidity can interact with other heterogeneous features of the

economy such that it crucially affects the propagation properties of the economy. In particular,

this interaction can give rise to a much higher capacity of idiosyncratic shocks to drive aggregate

fluctuations relative to an economy with flexible prices or homogeneous price stickiness across

sectors.

We document this role of price rigidity through the lens of a multi-sector model featuring

heterogeneous GDP shares, input-output linkages across sectors, and idiosyncratic sectoral

productivity shocks as the source of business cycles.1 When we calibrate the model to the U.S. for

341 sectors, sectoral TFP shocks can give rise to aggregate fluctuations that are approximately

half as large as those arising from an aggregate TFP shock. Heterogeneous price rigidity

amplifies the potency of idiosyncratic shocks to generate aggregate fluctuations by a factor of

2.6, relative to the case of flexible prices, and by a factor of 2.2 relative to homogeneously rigid

prices.2 Heterogeneity in price rigidity also completely changes the sectoral origin of aggregate

fluctuations: from “Retail Trading,” “Real Estate,” and “Wholesale Trading” with flexible prices

to “Monetary Authorities and Depository Credit Intermediation,” “Petroleum Refineries,” and

“Oil and Gas Extraction” when prices are rigid. Hence, the literature on price rigidity may have

for decades disregarded the important interaction of heterogeneity in nominal price rigidity with

other heterogeneous, real features of the economy for the potency and identity of sectors driving

aggregate fluctuations based on sectoral shocks.

Heterogeneity in price rigidity matters not only because it can substantially augment the

potency of real features of the economy to propagate idiosyncratic shocks but also because it

can also distort the price response of sectors relative to each other. Consider the example of a

1We model price rigidity à la Calvo (1983), monetary policy following a Taylor-type rule, and use data from
the Bureau of Economic Analysis (BEA) and the micro-data underlying the Producer Price Index (PPI) at the
Bureau of Labor Statistics (BLS) for the calibration.

2Gabaix (2011) and Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) show in models with flexible
prices that fat tails of sectoral size or network centrality may lead to idiosyncratic shocks generating aggregate
fluctuations.
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two-sector economy with no interlinkages, and with a larger sector with a sales weight of 51%

and a smaller sector with a weight of 49%. If the sectors receive one-time productivity shocks

of sizes +1% and -1%, the economy will experience a drop in the price level and an economic

boom. However, if the larger sector cannot adjust prices at all while the smaller sector can, the

economy will experience a recession. The cycle flips sign.

In a nutshell, we can learn about the presence and importance of price rigidity not only from

the response of the economy to aggregate shocks, but also by studying aggregate fluctuations

that originate from sectoral productivity shocks. The presence of heterogeneity in real features

of the economy matters for the aggregate effect of idiosyncratic shocks, but the interaction

with heterogeneity in price rigidity is what can substantially increase the power of sectoral

shocks to drive aggregate fluctuations. We provide formal intuition in a simplified version of

our multi-sector model, assuming firms set their prices before observing shocks, according to a

sector-specific Poisson process, and facing exogenous nominal demand. These assumptions allow

us to analytically characterize the response of aggregate output and prices up to first-order. At

the same time, we nest the results for flexible-price economies in Gabaix (2011) and Acemoglu

et al. (2012) on the importance of the size distribution and network linkages as special cases.

In the analytical model, the cross-sectional dispersion of sectoral multipliers determines

how much aggregate volatility sectoral shocks can generate. Our key finding is that the

interaction of the heterogeneous nominal and real features of the economy determine this

dispersion: Intuitively, if prices are fully flexible, a sector’s multiplier is large if the sector

has a physically large output share, and/ or when it is a physically large supplier of intermediate

inputs or a large supplier to large suppliers of intermediate inputs. However, with price rigidity,

a physically large or central sector’s multiplier becomes effectively larger if (i) its prices are more

flexible than the average sector’s prices; or (ii) sectors that buy intermediate inputs from it have

more flexible prices than the average sector’s prices; or (iii) sectors that buy from intermediate

input-demanding sectors, have more flexible prices than the average sector’s prices.

This intuition of effective importance implies sectoral shocks may generate large aggregate

volatility even when all sectors have equal physical GDP shares and input-output linkages – as

long as high cross-sectional dispersion of price rigidity exists. We provide general conditions for

price rigidity to amplify or reduce the potency of heterogeneous real features of the economy

– embodied in our setup by heterogeneous GDP shares and network centrality – to generate

aggregate fluctuations.

The interaction between heterogeneous price rigidity and real features of the economy also

directly speaks to the tension between the diversification argument of Lucas (1977) and the
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granular origin of aggregate fluctuations (see Gabaix (2011) and Acemoglu et al. (2012)). As

the number of sectors, K, increases, aggregate fluctuations may die out at a rate of
√
K – the

diversification argument of Lucas (1977) – or the rate of decay can be smaller if fat tails exists

in the relevant real features of the economy, such as sector size or network centrality.

We provide three novel results in this context. First, fat tails in sectoral price rigidity

by itself cannot generate a rate of decay slower than the central limit theorem implies,

because price rigidity is bounded: prices cannot get more flexible than fully flexible. Second,

heterogeneity in price rigidity is also irrelevant for the rate of decay when it is independent of

heterogeneous sectoral features such as size or network centrality – the joint distribution inherits

the Pareto properties of the more fat-tailed distribution. Third, however, the distributions of

friction-adjusted size or network centrality may be more or less fat-tailed than their frictionless

counterparts when we allow for correlations between price rigidities and real features. In this

case, the diversification argument of Lucas (1977) might even apply in an economy with price

rigidities – whereas the granular hypothesis of Gabaix (2011) and Acemoglu et al. (2012) applies

in the frictionless counterpart. Of course, price rigidity may also make the granular hypothesis

stronger. We provide one theoretical example for each of these cases.

Our analysis also highlights heterogeneity of price rigidity is economically important even

in cases when it is irrelevant for the rate of decay. On the one hand, it can still be quantitatively

important in a cross-sectional sense for aggregate volatility from sectoral shocks if the number

of sectors is finite. On the other hand, even in the absence of any such quantitative importance,

heterogeneity in price rigidity matters. It can dramatically change the effective aggregate

importance of each real, heterogeneous feature of the economy. The non-trivial implication

for policy-makers is that it may no longer be sufficient to identify the importance of sectors

for aggregate fluctuations according to their GDP shares or their centrality in the production

network. The interest of the recent granularity literature such as di Giovanni, Levchenko, and

Mejean (2018) or Gaubert and Itskhoki (2018) to identify where aggregate fluctuations originate

adds further emphasis to this observation.

Ultimately, whether our theoretical insights are quantitatively important is an empirical

question. We show they are. As a benchmark, we start by separately establishing the importance

of sectoral heterogeneity of price rigidity, and the two real features of the economy. Price rigidity

by itself gives rise to a quantitatively relevant “frictional” origin of aggregate fluctuations when

sectors differ only in their Calvo parameters: The multiplier of sectoral shocks on GDP volatility

is 15.7% of what an aggregate productivity shock would generate.

We can consider economies with flexible prices as a benchmark. Then the multiplier is
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5.4% when all sectors are perfectly symmetric, 11.3% when steady-state sectoral GDP shares

match U.S. data, 8% when steady-state input-output linkages match U.S. input-output tables,

and 16.9% when both match U.S. data.3 Similar magnitudes arise in case of the GDP deflator.

Hence, price rigidity by itself quantitatively generates similar aggregate effects as heterogeneous

GDP shares and input-output linkages combined.

The interaction between heterogeneous price rigidity with the heterogeneous real features

of the economy dramatically amplifies the power of idiosyncratic shocks to drive aggregate

fluctuation, confirming our main theoretical finding. The GDP multiplier is 16.9% when prices

are flexible and steady-state GDP shares and input-output linkages both match U.S. data,

but increases to 44.2% of what an aggregate productivity shock would generate when Calvo

parameters match industry-average frequencies of price changes in U.S. data. Sectoral shocks

have a 2.6 times larger effect on GDP volatility in an economy with heterogeneous sticky prices

relative to an economy with flexible prices across all sectors, and 2.2 times relative to an economy

with homogeneous price rigidity. Moreover, the multiplier is 8 times larger than in an economy

with perfect symmetry and flexible prices. Similar results emerge for the GDP deflator. Finally,

the interaction of nominal and real heterogeneities implies quantitatively, idiosyncratic shocks

can have a large impact on aggregate fluctuations compared to an aggregate productivity shock.

Our second key result is the large change in the identity of the most important sectors from

which aggregate fluctuations originate. Under fully flexible prices, the sector with the largest

multiplier is “Retail Trade” followed by “Real Estate,” “Wholesale Trade,” with minor roles

of “Monetary Authority and Depository Credit Intermediation” and “Telecommunications.”

Combined, they account for 74% of the total multiplier of sectoral shocks on GDP volatility.

Under heterogeneous, rigid prices, the sector with the largest multiplier is “Monetary Authority

and Depository Credit Intermediation,” followed by “Petroleum Refineries,” “Oil and Gas

Extraction,” “Auto Manufacturing,” with a minor role of “Wholesale Trade”. Their combined

multiplier is 93% of the total multiplier. Thus, price rigidity not only changes the identity of

the most important sectors, it also increases the overall importance of the top-5 sectors.

Our results are robust to changes in several assumptions. Theoretically, we analyze

variations in the elasticity of labor supply, sectorally segmented labor markets, and monetary

policy. Quantitative robustness checks cover variations in the elasticity of labor supply, the

elasticity of substitution within and across sectors, and alternative monetary policy rules,

including passive monetary policy, price-level targeting, a Taylor-type rule, and a binding zero

lower bound. We also calibrate the volatility of sectoral productivity shocks to estimates based on

3This joint effect is remarkably similar to the results of Gabaix (2011) for total sales, which encompasses sales
as final goods (GDP) and as intermediate inputs.
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the NBER manufacturing dataset, instead of imposing unit volatilities. All our results continue

to hold.

We also believe the simple forms of price rigidity we assume are informative for more

elaborate, endogenous forms of price setting. Endogenous price rigidity is computationally

unsolvable at the level of disaggregation we require for quantitative assessment. Yet although

the Calvo friction must be seen as a first-order approximation, we argue it provides all the

relevant intuition, because endogenous pricing will not change our mechanism qualitatively:

it is the effective importance, and not the physical importance of a sector that determines

the propagation of shocks. This effective importance will now be tied to the determinants of

endogenous price adjustment such as menu costs, elasticities, or shock volatility. We leave a

formal analysis for future research.

Next we discuss our connection with various strands of literature. Section II presents the

model and section III solves its closed-form version and provides all theoretical results. Section

IV presents the data and section V the calibrations. Section VI provides quantitative and

empirical results. Section VII concludes. The Appendix collects proofs, lengthy derivations,

tables, and figures, while additional material is relegated to an online Appendix.

A. Literature Review

Connecting heterogeneous real features of the economy and idiosyncratic shocks as drivers of

aggregate fluctuations is one central ingredient of our framework. Long and Plosser (1983)

pioneer this microeconomic origin of aggregate fluctuations, and Horvath (1998, 2000) push

this literature forward. Dupor (1999) follows Lucas (1977) and argues microeconomic shocks

matter only due to poor disaggregation. Gabaix (2011) and Acemoglu et al. (2012) provide a

frictionless benchmark for the power of heterogeneous real features of the economy to propagate

idiosyncratic shocks to the aggregate, and re-establish the importance of microeconomic shocks

by respectively invoking the empirical firm-size distribution and the sectoral network structure

of the U.S. economy. Barrot and Sauvagnat (2016), Acemoglu et al. (2016), and Carvalho et al.

(2016) provide empirical evidence, and Carvalho (2014) synthesizes this literature.

We introduce heterogeneity in price rigidity as a new focus to the above analyses, recurring

to the long-standing question about the role of price rigidity for aggregate fluctuations. In fact,

the distortionary role of frictions, and price rigidity in particular, is at the core of the business-

cycle literature that conceptualizes aggregate shocks as the driver of aggregate fluctuations,

including the New Keynesian literature. This literature has too many contributions to name

(see Gali (2015) for a recent textbook treatment). However, to the best of our knowledge, our
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paper is the first to study analytically the distortionary role of heterogeneous pricing frictions

when aggregate fluctuations have microeconomic origins, and to interact heterogeneous price

rigidity with heterogeneous real features of the economy. The disaggregated details of our

empirical analysis are also a central novel feature our paper, in particular the ability to measure

price rigidity directly in the data at a highly disaggregated level, and to study the quantitative

importance of our proposed mechanism.

That said, a few recent theoretical papers that study the microeconomic origin of aggregate

fluctuations include frictions in their analyses. Bigio and La’O (2017) study the aggregate effects

of the tightening of financial frictions in a production network. Baqaee (2018) shows entry and

exit of firms coupled with CES preferences may amplify the aggregate effect of microeconomic

shocks. Baqaee and Farhi (2018) decompose the effect of shocks into “direct” and “allocative

efficiency” effects due to reduced-form wedges, with a focus on aggregate TFP. These papers

ask different questions, but we share with them our finding that the Hulten theorem does not

apply in economies with frictions: Total sales of firms/ sectors are not sufficient statistics for

their effect on GDP.

In relation to these papers, our work differs in several important dimensions. First, we study

pricing as a measurable friction. This approach allows us to pursue quantitative assessments,

explore dynamic effects of the friction, and to quantify the implications of a number of relevant

model ingredients. Then, our focus also includes the effect on price stability, which is central

for the mandate of many central banks around the world, but is absent from this literature

entirely. Finally, pricing frictions are a very special friction: Prices are key and first-order to the

transmission of shocks. While other frictions may also affect how production adjusts to shocks,

that reaction always depends on the ability of prices to pass through the relevant information.

On the empirical side, most closely related to our work are the empirical analyses in Bouakez,

Cardia, and Ruge-Murcia (2014) and Carvalho and Lee (2011) that also feature heterogeneity

in price rigidity in a New Keynesian setting. Although the focus in these papers is different,

some aspects are related to our empirical analysis. The main related result in Bouakez et al.

(2014) is the role of sectoral productivity shocks in a 30-sector economy in explaining aggregate

variables, but the quantitative importance is modest compared to monetary policy and other

shocks. Carvalho and Lee (2011) show the New Keynesian model is consistent with the findings

in Boivin, Giannoni, and Mihov (2009) that firms’ prices respond slowly to aggregate shocks

and quickly to idiosyncratic shocks.

Our model also relates to other previous work studying pricing frictions in production

networks. Basu (1995) shows nominal price rigidity introduces misallocation resulting in nominal
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demand shocks looking like aggregate productivity shocks. Basu and De Leo (2016) study

optimal monetary policy in a model of durable and non-durable goods in the presence of

price rigidity and input-output linkages. Nakamura and Steinsson (2010), Midrigan (2011),

and Alvarez, Le Bihan, and Lippi (2016), among many others, study monetary non-neutrality

in models of endogeneous price changes. As we argue above, computational burden makes

using such approaches infeasible at highly disaggregated level. In a companion paper (Pasten,

Schoenle, and Weber (2016)), we use our model to study the effect of disaggregation on monetary

non-neutrality. We generally build on some of this work, relax assumptions on the production

structure of the economy, and answer a different set of questions.

II Model

Our multi-sector model has households supplying labor and demanding goods for final

consumption, firms operating under oligopolistic competition producing varieties of goods using

labor and intermediate inputs, and a monetary authority. The economy features heterogeneity

in two real dimensions: Sectors are heterogeneous in the amount of final goods they produce,

and in their input-output linkages. We allow the frequency of price changes to be heterogeneous,

which nests cases of homogeneous price rigidity and full price flexibility.

A. Households

The representative household solves

max
{Ct,Lkt}∞t=0

E0

∞∑
t=0

βt

(
C1−σ
t − 1

1− σ
−

K∑
k=1

gk
L1+ϕ
kt

1 + ϕ

)
,

subject to

K∑
k=1

WktLkt +
K∑
k=1

Πkt + It−1Bt−1 −Bt = P ct Ct

K∑
k=1

Lkt ≤ 1,

where Ct and P ct are aggregate consumption and aggregate prices, respectively. Lkt and Wkt

are labor employed and wages paid in sector k = 1, ...,K. Households own firms and receive net

income, Πkt, as dividends. Bonds, Bt−1, pay a nominal gross interest rate of It−1. Total labor

supply is normalized to 1.
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Household demand of final goods, Ct, and goods produced in sector k, Ckt, are

Ct ≡

[
K∑
k=1

ω
1
η

ckC
1− 1

η

kt

] η
η−1

, (1)

Ckt ≡
[
n
−1/θ
k

∫
=k
C

1− 1
θ

jkt dj

] θ
θ−1

. (2)

A continuum of goods indexed by j ∈ [0, 1] exists with total measure 1. Each good belongs to one

of the K sectors in the economy. Mathematically, the set of goods is partitioned into K subsets

{=k}Kk=1 with associated measures {nk}Kk=1 such that
∑K

k=1 nk = 1.4 We allow the elasticity of

substitution across sectors η to differ from the elasticity of substitution within sectors θ.

The first real heterogeneous ingredient of our model is the vector of weights Ωc ≡

[ωc1, ..., ωcK ] in equation (1). This vector summarizes heterogeneity in sectoral GDP in steady

state. These weights show up in households’ sectoral demand

Ckt = ωck

(
Pkt
P ct

)−η
Ct. (3)

All prices are identical in steady state, so ωck ≡ Ck
C , where variables without a time subscript are

steady-state quantities. In our economy, Ct represents the total production of final goods, that

is, GDP. The vector Ωc represents steady-state sectoral GDP shares satisfying Ω′cι = 1, where ι

denotes a column vector of 1s. Away from the steady state, sectoral GDP shares depend on the

gap between sectoral prices, Pkt, and the aggregate price index, P ct

P ct =

[
K∑
k=1

ωckP
1−η
kt

] 1
1−η

. (4)

We can interpret P ct as the GDP deflator. Household demand for goods within a sector is given

by

Cjkt =
1

nk

(
Pjkt
Pkt

)−θ
Ckt for k = 1, ...,K. (5)

Goods within a sector share sectoral consumption equally in steady state. Away from steady

state, the gap betwen a firm’s price, Pjkt, and the sectoral price, Pkt, distorts the demand for

goods within a sector

Pkt =

[
1

nk

∫
=k
P 1−θ
jkt dj

] 1
1−θ

for k = 1, ...,K. (6)

4The sectoral subindex is redundant, but it clarifies exposition. We can interpret nk as the sectoral share in
gross output.
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The household first-order conditions determine labor supply and the Euler equation

Wkt

P ct
= gkL

ϕ
ktC

σ
t for all k, j, (7)

1 = Et

[
β

(
Ct+1

Ct

)−σ
It
P ct
P ct+1

]
. (8)

We implicitly assume sectoral segmentation of labor markets, so labor supply in equation (7)

holds for a sector-specific wage {Wkt}Kk=1. We choose the parameters {gk}Kk=1 to ensure a

symmetric steady state across all firms.

B. Firms

A continuum of monopolistically competitive firms exists, each producing a single good. To

facilitate exposition, firms are indexed by the good j ∈ [0, 1] they produce and the sector,

k = 1, ...K, to which they belong. The production function is

Yjkt = eaktL1−δ
jkt Z

δ
jkt, (9)

where akt is an i.i.d. productivity shock to sector k with E [akt] = 0 and V [akt] = v2 for all k,

Ljkt is labor, and Zjkt is an aggregator of intermediate inputs

Zjkt ≡

[
K∑
k′=1

ω
1
η

kk′Zjk
(
k′
)1− 1

η

] η
η−1

. (10)

Zkjt (r) is the amount of intermediate inputs firm jk demands from sector r in period t.

The second real, heterogeneous ingredient of our model is heterogeneity in input-output

weights {ωkk′}k,k′ . We denote these weights in matrix notation as Ω, satisfying Ωι = ι. The

demand of firm jk for goods produced in sector k′ is given by

Zjkt
(
k′
)

= ωkk′

(
Pk′t

P kt

)−η
Zjkt. (11)

We can interpret ωkk′ as the steady-state share of goods from sector k′ in the intermediate input

use of sector k, which determines the input-output linkages across sectors in steady state. Away

from the steady state, the gap between the price of goods in sector k′ and the aggregate price
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relevant for a firm in sector k, P kt , distorts input-output linkages

P kt =

[
K∑
k′=1

ωkk′P
1−η
k′t

] 1
1−η

for k = 1, ...,K. (12)

P kt uses the sector-specific steady-state input-output linkages to aggregate sectoral prices.

The aggregator Zjk (k′) gives the demand of firm jk for goods in sector k′

Zjk
(
k′
)
≡

[
n
−1/θ
k′

∫
=k′

Zjkt
(
j′, k′

)1− 1
θ dj′

] θ
θ−1

. (13)

Firm jk’s demand for an arbitrary good j′ from sector k′ is

Zjkt
(
j′, k′

)
=

1

nk′

(
Pj′′k′t
Pk′t

)−θ
Zjk

(
k′
)
. (14)

In steady state, all firms within a sector share the intermediate input demand of other

sectors equally. Away from steady state, the gap between a firm’s price and the respective

sectoral price index (see equation (6)) distorts the firm’s share in the production of intermediate

goods. Our economy has K + 1 different aggregate prices, one for the household sector and one

for each of the K sectors. By contrast, households and all sectors face unique sectoral prices.

The third key ingredient of our model is sectoral heterogeneity in price rigidity. For

quantitative purposes, we model price rigidity à la Calvo with parameters {αk}Kk=1 such that

the pricing problem of firm jk is

max
Pjkt

Et
∞∑
s=0

Qt,t+sα
τ
k [PjktYjkt+s −MCkt+sYjkt+s] .

Marginal costs are MCkt = 1
1−δ

(
δ

1−δ

)−δ
e−aktW 1−δ

kt

(
P kt
)δ

after we impose the optimal mix of

labor and intermediate inputs

δWktLjkt = (1− δ)P kt Zjkt, (15)

and Qt,t+s is the stochastic discount factor between periods t and t+ s.

We assume the elasticities of substitution across and within sectors are the same for

households and all firms. This assumption shuts down price discrimination across different
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customers, and firms choose a single price P ∗kt

∞∑
τ=0

Qt,t+τα
s
kYjkt+τ

[
P ∗kt −

θ

θ − 1
MCkt+τ

]
= 0, (16)

where Yjkt+τ is the total production of firm jk in period t+ τ .

We define idiosyncratic shocks {akt}Kk=1 at the sectoral level. It follows the optimal price,

P ∗kt, is the same for all firms in a given sector. Thus, aggregating all prices within sector yields

Pkt =
[
(1− αk)P ∗1−θkt + αkP

1−θ
kt−1

] 1
1−θ

for k = 1, ...,K. (17)

C. Monetary policy, equilibrium conditions, and definitions

Throughout the paper, we show results for several alternative monetary rules, always abstracting

from monetary policy shocks. Most of our analytical results assume monetary policy targets

the steady-state level of nominal aggregate demand CtP
c
t or the GDP deflator P ct . In our

quantitative exercises, we also explore results assuming a Taylor rule of the form

It =
1

β

(
P ct
P ct−1

)φπ (Ct
C

)φy
. (18)

Monetary policy reacts to inflation, P ct /P
c
t−1, with elasticity φπ and deviations of GDP from the

steady-state level, Ct/C, with elasticity φy .

We also explore quantitative results for a case in which the nominal interest rate is at zero

for 50 periods due to an aggregate preference shock.

Bonds are in zero net supply, Bt = 0, labor markets clear, and goods markets clear such

that

Yjkt = Cjkt +

K∑
k′=1

∫
=k′

Zj′k′t (j, k) dj′, (19)

implying a wedge between gross output, Yt, and GDP, Ct.

III Theoretical Results in a Simplified Model

We derive closed-form results in a simplified version of our model. Our goal is to illustrate how

the interaction of heterogeneous price rigidity and heterogeneous real features of the economy –

viewed through the lens of sectoral size and input-output differences – can affect the propagation

of idiosyncratic shocks.

Given the focus of the paper, we study log-linear deviations from steady-state GDP. The
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Online Appendix contains the steady-state solution, the full log-linear system, and solves for

the equilibrium. We discuss at the end of this section implications of a variety of simplifying

assumptions.

A. Simplified Setup

All variables in lower cases denote log-linear deviations from steady state. We make the following

simplifying assumptions:

(i) Households have log utility, σ = 1, and linear disutility of labor, ϕ = 0. Thus,

wkt = pct + ct; (20)

that is, the labor market is integrated, labor supply is fixed, and nominal wages are proportional

to nominal GDP.

(ii) Monetary policy targets steady state nominal GDP, so

pct + ct = 0; (21)

and wages remain invariant to shocks.

(iii) We replace Calvo price stickiness by a simple form of price rigidity: all prices are

flexible, but with probability λk, a firm in sector k has to set its price before observing shocks.

Thus,

Pjkt =

 Et−1

[
P ∗jkt

]
with probability λk,

P ∗jkt with probability 1− λk,
(22)

where Et−1 is the expectation operator conditional on the t−1 information set. This price-setting

technology is a simple way to capture the key ingredient in our model: sectoral heterogeneity of

the responsiveness of prices to idiosyncratic shocks.

Solution We show in the Online Appendix that under assumptions (i), (ii), and (iii),

GDP solves

ct = χ′at, (23)

where

χ ≡ (I− Λ)
[
I− δΩ′ (I− Λ)

]−1
Ωc. (24)

Λ is a diagonal matrix with price-rigidity probabilities [λ1, ..., λK ] as entries, Ωc and Ω,

respectively, are steady-state sectoral GDP shares and input-output linkages, and δ is the

13



intermediate inputs share.

Similarly, our specification of monetary policy implies the GDP deflator is pinned down by

pct = −ct = −χ′at. (25)

A linear combination of sectoral shocks describes the log-deviation of GDP and the GDP

deflator from steady state up to a first-order approximation. Thus, aggregate volatility of output

and prices are

vc = vp = v

√√√√ K∑
k=1

χ2
k = ‖χ‖2 v, (26)

because all sectoral shocks have the same volatility; that is, V [akt] = v2 for all k. ‖χ‖2 denotes

the Euclidean norm of χ. For the rest of the paper, we refer to χ and ‖χ‖2, respectively, as the

vector of sectoral multipliers and the total multiplier of sectoral shocks on the volatility of GDP

and the GDP deflator.

Below, we study the effect of the sectoral distribution of price rigidity on aggregate

fluctuations from two perspectives: first, in a cross-sectional sense for a given finite number

of sectors K; and second, with respect to distributional properties as the economy becomes

increasingly more disaggregated, K → ∞. We use these two perspectives to study in two

separate sections the interaction between price rigidity and two real features of the economy

embodied in equation (24): steady-state sectoral GDP shares Ωc and steady-state input-output

linkages Ω.

Finally, in the analysis that follows, we extensively use the following definition:

Definition 1 A given random variable X follows a power-law distribution with shape

parameter β when Pr (X > x) = (x/x0)−β for x ≥ x0 and β > 0.

B. Price Rigidity and Sectoral GDP

This subsection demonstrates how heterogeneity in price rigidity interacts with heterogeneity

in the first real feature of our economy – sectoral size – in propagating idiosyncratic shocks

abstracting from input-output linkages across sectors (δ = 0). We first establish as a benchmark

the case of interactions with homogeneous price rigidity across sectors. Then, we contrast

results with the case of heterogeneous price rigidity. Our analysis also allows us to relate to the

flexible-price results in Gabaix (2011), who establishes conditions on the distribution of firms’

size such that idiosyncratic shocks survive disaggregation.

Absent input-output linkages (δ = 0), the vector of sectoral multipliers χ in equation (24)

14



solves

χ = (I− Λ) Ωc, (27)

or, simply, χk = (1− λk)ωck for all k where ωck ≡ Ck/C. This expression immediately implies

that steady-state sectoral GDP shares ωck fully determine sectoral multipliers only when prices

are fully flexible (λk = 0). In general, sectoral multipliers also depend on the sectoral distribution

of price rigidity. Sales alone are no longer a sufficient statistic for the importance of sectors

for aggregate volatility of output and prices. This interaction result breaks the Hulten (1978)

theorem that sales are a sufficient statistic for the sectoral contribution to aggregate fluctuations.

B.1 Homogeneous Price Rigidity and Sectoral GDP

The following lemma presents our first, cross-sectional result when prices are homogeneously

rigid across sectors.

Lemma 1 When δ = 0 and λk = λ for all k,

vc = vp =
(1− λ) v

CkK1/2

√
V (Ck) + C

2
k,

where Ck and V (·) are the sample mean and sample variance of {Ck}Kk=1.5

This lemma follows from equation (26) for δ = 0 and serves as a benchmark for the case

of full heterogeneity in price rigidity, nesting the analysis in Gabaix (2011). GDP volatility and

price stability depend on K and the dispersion of sectoral size, here V (Ck), for a given number

of sectors. Equal price rigidity across sectors only enters as a scale effect through the 1−λ term.

In most of the analysis, we abstract from this scale effect for two reasons. First, we

show below that active monetary policy offsets this scale effect for GDP fluctuations and even

completely eliminates it in the case of price-level targeting. Therefore, we view it as an artifact

of the passive monetary policy we assume here to facilitate exposition of our core idea. Second,

because we focus on the effect of heterogeneous price rigidity on the capacity of sectoral shocks to

become drivers of aggregate fluctuations, we are interested in keeping constant the effect of price

rigidity per se on the response of GDP and the GDP deflator to aggregate productivity shocks.

This scale effect also exists for aggregate productivity shocks, in which case, vc = vp = (1− λ) v.

We now show results for the rate of decay of the total multiplier of sectoral shocks on

aggregate volatility of output and prices as the economy becomes increasingly more disaggregated

(K →∞). Again, we assume the degree of price rigidity is homogeneous across sectors.

5We define V (Xk) of a sequence {Xk}Kk=1 as V (Xk) ≡ 1
K

∑K
k=1

(
Xk −X

)2
. The definition of the sample mean

is standard.
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Proposition 1 If δ = 0, λk = λ for all k, and {Ck}Kk=1 follows a power-law distribution with

shape parameter βc ≥ 1, then

vc = vp ∼

 u0
Kmin{1−1/βc,1/2} v for βc > 1

u0
logK v for βc = 1,

where u0 is a random variable independent of K and v.

Proof. See Online Appendix.

Proposition 1 shows homogeneous price rigidity plays no role for the rate of decay in output

and price volatility, except for the scale effect of Lemma 1. The intuition for this result becomes

clear when we compare it to the fully flexible price result in Gabaix (2011): When the size

distribution of sectors is Pareto fat-tailed with βc < 2, aggregate volatility converges to zero

at a rate slower than predicted by the central limit theorem, K1/2. The rate of decay becomes

slower as βc → 1. Intuitively, when the size distribution is Pareto fat-tailed, few sectors remain

disproportionately large at any level of disaggregation. However, a constant rate of price rigidity

does not change the fatness of the tails – the distribution is only multiplied by a constant.

B.2 Heterogeneous Price Rigidity and Sectoral GDP

We next consider the effect of heterogeneity in price rigidity. First, we study the cross-sectional

interaction effect of heterogeneous price rigidity with heterogeneity in sector size.

Lemma 2 When δ = 0 and price rigidity is heterogeneous across sectors,

vc = vp =
v

CkK1/2

√
V ((1− λk)Ck) +

[(
1− λ

)
Ck − COV (λk, Ck)

]2
,

where λ is the sample mean of {λk}Kk=1 and COV (·) is the sample covariance of {λk}Kk=1 and

{Ck}Kk=1.6

Lemma 2 states the volatility of output and prices depends on the sectoral dispersion of

the convolved variable (1− λk)Ck, as well as the covariance between sectoral price rigidity and

sectoral GDP. This lemma points to the key insight of the paper: Heterogeneity of price rigidity

has the power to increase or decrease aggregate volatility of output and prices relative to the

case of homogeneous price rigidity in Lemma 1. A scale effect implicitly also exists in Lemma 2

but now depends on the average price rigidity in the economy, λ, rather than λ as in Lemma 1.

6We define COV (Xk, Qk) of sequences {Xk}Kk=1 and {Qk}Kk=1 as COV (Xk, Qk) ≡
1
K

∑K
k=1

(
Xk −X

) (
Qk −Q

)
.

16



Depending on the cross-sectional dispersion of price rigidity, sectoral shocks may even

generate sizable aggregate volatility when all sectors have equal size. To illustrate this possible

implication, consider Ck = C/K for all k, so that Lemma 2 implies

vc = vp =
v

K1/2

√
V (1− λk) +

(
1− λ

)2
.

This result highlights the potential of heterogeneous price rigidity across sectors to become

a “frictional” force that increases the propagation of sectoral productivity shocks on GDP and

price volatility at a finite degree of disaggregation. However, heterogeneity in price rigidity does

not have the power to affect the rate of decay itself – absent heterogeneity in another real feature

– as the next proposition points out.

Proposition 2 If δ = 0, Ck/C = 1/K, and the distribution of λk satisfies

Pr [1− λk > y] =
y−βλ − 1

y−βλ0 − 1
for y ∈ [y0, 1] , βλ > 0,

then vc = vp ∼ v/K1/2.

Proof. See Online Appendix.

This proposition shows that if all sectors have equal size (here, GDP shares), the central

limit theorem governs the rate at which shocks die out, independent of the distribution of

price rigidity. This result is due to the boundedness of price rigidity. If λk followed a Pareto

distribution with support unbounded below, the rate of decay would depend on the shape

parameter βλ, exactly as in Proposition 1. However, the bound of λk at 0 implies the second

moment of the distribution exists for any shape parameter.

The next proposition shows a similar result when GDP shares and price rigidity follow

independent Pareto distributions.

Proposition 3 If δ = 0, λk and Ck are independently distributed, the distribution of λk satisfies

Pr [1− λk > y] =
y−βλ − 1

y−βλ0 − 1
for y ∈ [y0, 1] , βλ > 0,

and Ck follows a power-law distribution with shape parameter βc ≥ 1, then

vc = vp ∼

 u0
Kmin{1−1/βc,1/2} v for βc > 1

u0
logK for βc = 1,

where u0 is a random variable independent of K and v.
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Proof. See Online Appendix.

As in Proposition 2, this result is due to the lower bound on the support of price rigidity,

which implies the convolution (1− λk)Ck follows a Pareto distribution with relevant shape

parameter βc, the shape parameter of the sectoral GDP Pareto distribution.

Yet two remarks about the economic importance of heterogeneous price rigidity are in order.

First, at any degree of disaggregation, heterogeneity of price rigidity through its interaction with

sector size changes the identity of sectors from which aggregate fluctuations originate. This

observation is important given the emphasis of the recent granularity literature that aims at

identifying the microeconomic origin of aggregate fluctuations, for example, for stabilization

purposes. If shocks are idiosyncratic, re-weighting sectoral shocks of potentially opposite signs

can easily change the sign of business cycles relative to a frictionless economy. The intuition is

that a large (small) sector can become effectively small (large) if it has rigid (flexible) prices;

that is, price rigidity reduces (increases) its effective size through the convolution of (1−λk)Ck.

Second, propositions 2 and 3 are consistent with Lemma 2 because they are silent on the degree

of disaggregation for which they apply. This distinction is important for our later quantitative

analysis where heterogeneity of price rigidity will generate relevant aggregate volatility from

sectoral productivity shocks when all sectors have equal size.

Finally, consider the case when price rigidity and GDP shares are not independently

distributed.

Proposition 4 If δ = 0, {(1− λk)Ck}Kk=1 follows a power-law distribution with shape

parameter βλc ≥ 1, then

vc = vp ∼


u0

Kmin{1−1/βλc,1/2}
v for βλc > 1

u0
logK v for βλc = 1,

where u0 is a random variable independent of K and v.

This proposition requires no explicit proof because it is identical to Proposition 1. It simply

states that, in the general case, if the convolution (1− λk)Ck follows a Pareto distribution, the

rate of decay as K → ∞ depends on the shape parameter of the joint distribution, βλc. This

result holds despite the bounded support of price rigidity.

For illustration, consider the following example. Assume Ck follows a Pareto distribution

with shape parameter βc, and price rigidity is given by

λk = max
{

0, 1− φCµk
}
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for µ ∈ (−1, 0) and φ > 0. This relationship implies larger sectors have more rigid prices. In this

case, (1− λk)Ck is Pareto distributed with shape parameter βλc = βc/ (1 + µ). Hence, price

rigidity accelerates the rate of decay relative to a frictionless economy or one with homogeneous

price rigidity. The rate of decay might even be slower than
√
K in an economy with flexible

prices, whereas the central limit theorem applies in an economy with rigid prices.

An illustrative, slightly more complicated example of the converse holds when we assume

µ ∈ (0, 1) and the same functional relationship between λk and Ck as above. Now, any sector

with GDP higher than φ−1/µ has fully flexible prices. In other words, price rigidity and sectoral

GDP become independent for sectors larger than φ−1/µ. As a result, (1− λk)Ck follows a Pareto

distribution with shape parameter βλc = βc/ (1 + µ) for Ck < φ−1/µ but βc for Ck ≥ φ−1/µ.

Following the same steps as before, one can show the rate of decay depends on βc/ (1 + µ) for

K < K∗ and on βc for K ≥ K∗ with K∗ ≡
(
x0φ

1/µ
)−βc

. Intuitively, this condition means

when the number of sectors is large enough, K > K∗, sectors with fully flexible prices dominate

the upper tail of the sectoral GDP distribution. Then, the rate of decay is the same as in a

frictionless economy.

This result is weaker than when µ ∈ (−1, 0), but this example is still relevant if the cut-

off number of sectors, K∗, is large. This happens for a level of disaggregation where fully

flexible sectors do not dominate the upper tail of the sectoral GDP distribution. Indeed, in our

quantitative analysis with 341 sectors, no single sector exists with fully flexible prices.7

C. Price Rigidity and Input-Output Linkages

We now demonstrate how the interaction of heterogeneity in price rigidity and our second

real feature of the economy – heterogeneity in input-output linkages – interact in propagating

idiosyncratic shocks. To show this point, we assume a positive intermediate input share, δ ∈

(0, 1), but shut down the heterogeneity of sectoral GDP shares; that is, Ck = C/K.

The vector of multipliers χ in equation (24) now solves

χ ≡ 1

K
(I− Λ)

[
I− δΩ′ (I− Λ)

]−1
ι. (28)

This expression shows a non-trivial interaction exists between price rigidity and input-

7Although we have assumed examples with a deterministic relationship between sectoral GDP and price rigidity
for expositional convenience, the arguments extend to a stochastic relationship. Similarly, a stochastic relationship
between price rigidity and sectoral GDP implies price rigidity has an effect on the identity of the most important
sectors for GDP volatility.
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output linkages across sectors in general.8 To study this interaction, we use a second-order

approximation of the vector of multipliers, following Acemoglu et al. (2012)

χ ' 1

K
(I− Λ)

[
I+δΩ′ (I− Λ) + δ2

[
Ω′ (I− Λ)

]2]
ι. (29)

C.1 Homogeneous Price Rigidity and Input-Output Linkages

The following lemma presents our first cross-sectional result when price rigidity is homogeneous

across sectors.

Lemma 3 If δ ∈ (0, 1), Ωc = 1
K ι, and λk = λ for all k, then

vc = vp ≥
(1− λ) v

K1/2

√
κ+ δ′2V (dk) + 2δ′3COV (dk, qk) + δ′4V (qk), (30)

where κ ≡ 1+2δ′+3δ′2 +2δ′3 +δ′4, δ′ ≡ δ (1− λ), V (·) and COV (·) are the sample variance and

covariance statistics across sectors, and {dk}Kk=1 and {qk}Kk=1 are the outdegrees and second-order

outdegrees, respectively, defined for all k = 1, ...,K as

dk ≡
K∑
k′=1

ωk′k,

qk ≡
K∑
k′=1

dk′ωk′k.

Lemma 3 follows from equation (26), d = Ω′ι and q = Ω′2ι. The inequality sign holds

because the exact solution for χ is strictly larger than the approximation. “Outdegrees” and

“second-order outdegrees” measure the centrality of sectors in the production network, as in

Acemoglu et al. (2012): dk measures the importance of sectors as suppliers of intermediate

inputs, whereas qk measures the importance of sectors as suppliers of large suppliers of

intermediate inputs. Upstream effects through demand of intermediate inputs do not play

any role here due to our focus on GDP and the GDP deflator, and our assumptions that imply

unresponsiveness of wages to shocks. We discuss below what happens when we relax these

assumptions.

This lemma establishes two important insights: First, for a finite level of disaggregation,

aggregate volatility due to sectoral shocks is higher if the production network is more asymmetric,

that is, if a higher cross-sectional dispersion of outdegrees and second-order outdegrees exists.

8This expression nests the solution for the “influence vector” in Acemoglu et al. (2012) when prices are fully
flexible, that is, λk = 0 for all k = 1, ...,K. The only difference here is χ′ι = 1/ (1− δ), because Acemoglu et al.
(2012) normalize the scale of shocks such that the sum of the influence vector equals 1.
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Homogeneous price rigidity across sectors has, similar to Lemma 1, a scale effect on aggregate

volatility. Second, price rigidity adds the following new insight: Price rigidity penalizes more

strongly the quantitative effect of heterogeneity in second-order outdegrees than in first-order

outdegrees. This result is important because the flexible-price analysis of Acemoglu et al. (2012)

stresses second-order outdegrees contribute more to aggregate fluctuations from idiosyncratic

shocks than first-order outdegrees. In general, inter-connections of order τ are penalized by a

factor (1− λ)τ .

The next proposition shows results for the rate of decay of aggregate volatility as K →∞,

still under the benchmark assumption of homogeneous price rigidity.

Proposition 5 If δ ∈ (0, 1), λk = λ for all k, Ωc = 1
K ι, the distribution of outdegrees

{dk}, second-order outdegrees {qk}, and the product of outdegrees {zk = dkqk} follow power-law

distributions with respective shape parameters βd, βq, βz > 1 such that βz ≥ 1
2 min {βd, βq}, then

vc = vp ≥


u3
K1/2 v for min {βd, βq} ≥ 2,

u3

K1−1/min{βd,βq}
v for min {βd, βq} ∈ (1, 2) ,

where u3 is a random variable independent of K and v.

Proof. See Online Appendix.

Proposition 5 shows homogeneous sectoral price rigidity has no impact on the rate of decay.

The intuition from the previous section continues to hold: multiplying the distributions of a

real feature with a constant does not change the fatness of the tails. Therefore, the rate of

decay only depends on the shape parameters of measures of network centrality, d and q, as

in the flexible-price case of Acemoglu et al. (2012). The fattest tail among these distributions

determines the rate of decay of aggregate volatility of output and prices.9

C.2 Heterogeneous Price Rigidity and Input-Output Linkages

Next, we study the interaction of heterogeneous price rigidity with heterogeneous input-output

linkages. Again, we start with aggregate volatility for a finite level of disaggregation.

9Acemoglu et al. (2012) document in the U.S. data that βd ≈ 1.4 and βq ≈ 1.2. We find very similar numbers.
Thus, we abstract from the case min {βd, βq} = 1 in Proposition 5.
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Lemma 4 If δ ∈ (0, 1), Ωc = 1
K ι, and price rigidity is heterogeneous across sectors, then

vc = vp ≥
v

K1/2



(
1
K

∑K
k=1 (1− λk)2

) [
κ̃+ δ2V

(
d̃k

)
+ 2δ′3COV

(
d̃k, q̃k

)
+ δ′4V (q̃k)

]
−
(

1
K

∑K
k=1 (1− λk)2

)[
2δ2
(

1 + δ̃ + δ̃2
)
COV

(
λk, d̃k

)
+ δ4COV

(
λk, d̃k

)2
]

+COV
(

(1− λk)2 ,
(

1 + δd̃k + δ2q̃k

)2
)



1
2

,

(31)

where κ̃ ≡ 1+2δ̃+3δ̃+2δ̃+ δ̃, δ̃ ≡ δ
(
1− λ

)
, λ is the sample mean of {λk}Kk=1, V (·) and COV (·)

are the sample variance and covariance statistics across sectors, and
{
d̃k

}K
k=1

and {q̃k}Kk=1 are

the modified outdegrees and modified second-order outdegrees, respectively, defined for

all k = 1, ...,K as

d̃k ≡
(
1− λ

) K∑
k′=1

(
1− λk′
1− λ

)
ωk′k,

q̃k ≡
(
1− λ

) K∑
k′=1

(
1− λk′
1− λ

)
d̃k′ωk′k.

Lemma 4 embodies the central result in this section, derived directly from equation (26)

with d̃ = Ω′ (I− Λ) ι and q̃ = [Ω′ (I− Λ)]2 ι. What matters for aggregate volatility is now the

effective centrality of sectors in the production network – after adjusting nodes by their degree

of price rigidity. In particular, d̃k measures the importance of sectors as large suppliers of sectors

with highly flexible prices. Similarly, q̃k measures the importance of sectors as large suppliers

of highly flexible sectors that are large suppliers of highly flexible sectors. A key implication of

this result is that – depending on the cross-sectoral distribution of price rigidity – d̃ and q̃ may

be heterogeneous across sectors even when the production network is perfectly symmetric. This

result reinforces the importance of the interaction of the nominal and real heterogenous features

of the economy and perfectly resembles the result above when we focus on sectoral GDP.

As in the case of heterogeneity in size, we again find a scale effect that depends on the average

degree of price rigidity in the economy. On top of this scale effect, the first line on the right-hand

side of equation (31) for heterogeneous price rigidity is similar to the one in equation (30) for

homogeneous price rigidity in Lemma 3, with two differences. First, by Jensen’s inequality,

1

K

K∑
k=1

(1− λk)2 ≥
(
1− λ

)2
.

Thus, price rigidity mutes aggregate volatility by less if price rigidity is heterogeneous across
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sectors relative to an economy with λk = λ for all k.

Second, we now compute key statistics using modified outdegrees, that is, d̃ and q̃ instead

of d and q. To see the implications, note

d̃k =
(
1− λ

)
dk −KCOV (λk′ , ωk′k) ,

q̃k =
(
1− λ

)2
qk −KCOV

(
λk′ , d̃kωk′k

)
−
(
1− λ

) K∑
k′=1

ωk′kCOV
(
λs, d̃sωsk′

)
.

The dispersion of d̃ is higher than the dispersion of
(
1− λ

)
d when COV (λk′ , ωk′k) is more

dispersed across sectors and when it is negatively correlated with d. In words, the dispersion of

d̃ is high when the intermediate input demand of the most flexible sectors is highly unequal across

supplying sectors, and when large intermediate input-supplying sectors are also large suppliers

to flexible sectors. Similarly, the dispersion of q̃ is higher than the dispersion of
(
1− λ

)2
q when

COV
(
λk′ , d̃kωk′k

)
is more dispersed and is negatively correlated with q.

The second and third lines on the right-hand side of the lower bound in equation (31)

capture new effects. In particular, aggregate volatility is higher when COV
(
λk, d̃k

)
< 0, that

is, if sectors with high modified outdegrees, d̃k, are the most flexible sectors (second line), and

if Jensen’s inequality effect is stronger (third line).

Analyzing the effect of the heterogeneous price rigidity on the rate of decay as K → ∞ is

more intricate than in the case with no intermediate inputs (δ = 0).

Proposition 6 If δ ∈ (0, 1), Ωc = 1
K ι, price rigidity is heterogeneous across sectors, the

distribution of modified outdegrees
{
d̃k

}
, modified second-order outdegrees {q̃k}, and the product{

zk = d̃kq̃k

}
follow power-law distributions with respective shape parameter β̃d, β̃q, β̃z > 1 such

that β̃z ≥ 1
2 min

{
β̃d, β̃q

}
, then

vc = vp ≥


u4
K1/2 v for min

{
β̃d, β̃q

}
≥ 2,

u4

K1−1/min{β̃d,β̃q}
v for min

{
β̃d, β̃q

}
∈ (1, 2),

where u4 is a random variable independent of K and v.

This result resembles Proposition 4, but in the context of production networks. Although

heterogeneous price rigidity interacts with heterogeneous input-output linkages in a more

complicated way than with heterogeneity in size, the fundamental intuition is very similar to

that in the previous section: If sectors with the most rigid (flexible) prices are also the most

central in the effective, price-rigidity-adjusted production network such that min
{
β̃d, β̃q

}
>
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(<) min {βd, βq}, then volatility may decay at a rate faster (slower) than when price rigidity is

homogeneous across sectors or is independent of network centrality. Just as for the interaction

with sectoral size, heterogeneity in price rigidity does have an effect for a finite degree of

disaggregation, as stressed in Lemma 4. This result holds regardless of whether or not

price rigidity affects the rate of decay. Moreover, akin to the interaction with sectoral size,

price rigidity distorts the identity of sectors from which aggregate fluctuations originate when

idiosyncratic shocks drive aggregate volatility through the network. Re-weighting sectoral shocks

of potentially opposite signs can easily change the sign of business cycles. What matters is the

effective not the physical network structure.

D. Relaxing Simplifying Assumptions

We now discuss the implications of relaxing several simplifying assumptions.

Elastic labor supply Our first sensitivity analysis allows labor supply to respond

elastically to shocks, with the inverse-Frisch elasticity ϕ > 0. This possibility opens up new

channels for GDP shares, input-output linkages, and price rigidity to affect the propagation

of sectoral shocks. However, the qualitative interaction between heterogeneous price rigidity

and the heterogeneous real channels remains unaffected. We explore the additional feedback

mechanisms below. First, labor supply and demand now jointly determine wages such that

wkt = ct + pct + ϕlkt (32)

becomes the log-linear counterpart to equation (7). Thus, with monetary policy targeting ct +

pct = 0, it no longer holds that sectoral productivity shocks have no effect on wages.10 Because the

labor market is sectorally segmented, wages may vary across sectors. The production function

implies the log-linear deviation in labor demand is

ldkt = ykt − akt − δ
(
wkt − pkt

)
. (33)

Conditioning on sectors’ gross output ykt, productivity shocks have a negative direct effect

on labor demand of the shocked sector. But shocks also have an indirect negative effect in all

sectors as prices respond to the shock through sector-specific aggregate prices of intermediate

inputs, pkt , which depend on the input-output linkages across sectors.

10The Online Appendix contains details of the derivations.
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In turn, sectoral gross output ykt depends on prices according to

ykt = yt − η (pkt − [(1− ψ) pct + ψp̃t]) , (34)

such that, conditioning on total gross output yt, a productivity shock in sector k increases its

own demand to the extent that its price pkt responds to the shock. This increase in demand is a

force pushing wages up in the shocked sector, in opposition to all others forces described so far.

But the shock in sector k decreases demand (and thus wages) in all other sectors, depending on

the overall responses of prices and GDP shares captured by the GDP deflator, pct , and the share

of sectors in the production of intermediate inputs, captured by p̃t

p̃t =
K∑
k′=1

ζk′pk′t, (35)

where {ζk}Kk=1 are the steady-state shares of sectors in total production of intermediate inputs

ζk ≡
K∑
k′=1

nk′ωk′k, (36)

and {nk}∞k=1 are the steady-state shares of sectors in aggregate gross output

nk = (1− ψ)ωck + ψζk for all k = 1, ...,K. (37)

ψ ≡ Z/Y is the fraction of total gross output used as intermediate input in steady state.

Finally, the response of total gross output yt to shocks depends on the response of GDP,

ct, and production of intermediate inputs, zt, according to

yt = (1− ψ) ct + ψzt, (38)

such that zt solves

zt = (1 + Γc) ct + Γp (pct − p̃t)− Γa

K∑
k′=1

nk′ak′t (39)

and Γc ≡ (1−δ)(σ+ϕ)
(1−ψ)+ϕ(δ−ψ) ,Γa ≡

1+ϕ
(1−ψ)+ϕ(δ−ψ) ,Γp ≡

1−δ
(1−ψ)+ϕ(δ−ψ) . The total production of

intermediate inputs zt depends positively on the production of final goods ct and the relative

price of final goods and intermediate inputs, pct−p̃t, and depends negatively on the economy-wide

change in productivity,
∑K

k′=1 nk′ak′t.

Summing up, equation (23) still gives the solution for ct, and combined with exogenous
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nominal demand, the GDP deflator, pct , but the vector of multipliers χ is now

χ ≡ (I− Λ)
[
γ1I + γ2ℵι′

] [
I− ϕ

[
γ3ιΩ

′
c + γ4ιϑ

′ − γ5ι
′] (I− Λ)− γ6Ω′ (I− Λ)

]−1
Ωc, (40)

with γ1 ≡ 1+ϕ
1+δϕ , γ2 ≡ ψ(1−δ)Γa

1+δϕ , γ3 ≡ (1−δ)[(1−ψ)η−1]
1+δϕ ,γ4 ≡ ψ(1−δ)(η−Γp)

1+δϕ , γ5 ≡ γ2
Γa

, γ6 ≡ δγ1,

ℵ ≡ (n1, ..., nK)′, and ϑ = (ζ1, ..., ζK)′.

Relative to the solution for χ in equation (28), multipliers take a richer functional form,

capturing all new channels elastic labor demand introduces on the propagation of sectoral shocks.

But the effect of price rigidity still operates through its interaction with sectoral GDP shares

and input-output linkages, just like before.

To explore the quantitative effect of elastic labor supply, consider the case of no input-output

linkages (δ = 0), in which case

χ = (I−Θ) Ωc,

where Θ is a diagonal matrix with entries

1− λk
1 + ϕη (1− λk)

[
1− ϕ (η − 1)

K∑
k′=1

ωck′ (1− λk′)
1 + ϕη (1− λk′)

]−1

,

for k = 1, ...,K in its diagonal. Note Θ = Λ when ϕ = 0. According to equation (26), the

inverse-Frisch elasticity ϕ has two opposite effects on the capacity of price rigidity to generate

aggregate volatility from sectoral productivity shocks. On the one hand, if sector k has more

flexible prices, its demand responds by more to its own productivity shocks, so wages in the

shocked sector respond by more. This effect is captured by the denominator of the term outside

the brackets. On the other hand, the response of prices in the shocked sector has an effect on

demand of other sectors. This effect is captured by the term in brackets, which, because it is

common to all sectors, enters as part of a scale effect. Thus, in the absence no input-output

linkages (δ = 0), more elastic labor supply reduces the quantitative importance of price rigidity

to generate fluctuations. However, because both effects operate through sectoral demand, the

effect of ϕ depends on the elasticity of substitution across sectors, η. Quantitatively, empirical

estimates suggest η is small (see Atalay (2017) and Feenstra, Luck, Obstfeld, and Russ (2018)).

With input-output linkages (δ > 0), another force exists that reduces the importance of

price rigidity: ϕ [γ3ιΩ
′
c + γ4ιϑ

′ − γ5ι
′] (I− Λ) in equation (40). This term collects the common

effect of price rigidity on sectoral multipliers that reduce the additional cross-sectoral dispersion

of multipliers that price rigidity generates.
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Active Monetary Policy The specification of monetary policy crucially affects the

response of aggregate output and prices. Because our exogenous nominal demand specification

mainly aims at providing intuition, we perform a detailed analysis of various monetary policy

specification in the calibration section. Here, we focus on the ability of active monetary policy

to eliminate the scale effect emphasized in lemmas 1 and 3.

Consider the general solution for log-linear deviations of GDP for an arbitrary monetary

policy assuming the monetary policy instrument is money supply

ct =
(
1− χ′ι

)
mt + χ′at, (41)

where mt is the log-linear deviation of money supply from steady state. This expression is valid

for any assumptions on the inverse-Frisch elasticity, ϕ ≥ 0, and the joint distribution of sectoral

GDP, input-output linkages, and price rigidity.

We can directly see from equation (41) that monetary policy does not interact with the

effect of heterogeneous price rigidity for the aggregate implication of sectoral shocks; it only

introduces a scale effect regardless of whether shocks are aggregate or sector-specific. As the

negative sign in the first term indicates, this effect partially offsets the level effect due to the

average level of price rigidity in the economy, which we established in lemmas 1 and 3.

More concretely, consider an extreme version of a price-level targeting such that monetary

policy stabilizes the GDP deflator, by setting pct = 0. In this case,

ct =
χ′at
χ′ι

. (42)

Price-level targeting reproduces the flexible-price response of the economy to aggregate

productivity shocks for any joint distribution of sectoral GDP, input-output linkages, and price

rigidity. As a result, this monetary policy rule perfectly offsets the scale effect stressed in lemmas

1 and 3, so the multiplier of aggregate productivity shocks on GDP volatility is 1. Clearly,

this specification also has an effect on aggregate price stability. Under alternative, inefficient

monetary policy rules, the scale effect is not completely offset, because the joint distribution of

sectoral GDP, input-output linkages, and price rigidity does affect the response of ct to aggregate

productivity shocks. At the same time, the interactions of heterogeneity in nominal and real

features will continue to affect the GDP deflator.

Pricing Friction Our analytical model uses a simplified form of price-setting. However,

modeling price rigidities à la Calvo does not change our analytical results. We study the exact
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quantitative effects in our subsequent calibrations. Calvo pricing adds serial correlation in the

response of prices even when shocks are i.i.d.

pkt = (1 + β + ξk)
−1 [ξkmckt + βE [pkt+1] + pkt−1] fork = 1, ...,K, (43)

where ξk ≡ (1− αk) (1− βαk) /αk.

The exact monetary policy specification will determine how much of the serial correlation

the Calvo friction introduces transmits to the response of output. Parallel to our analytical

results above, we adjust the definitions of the multipliers to capture possible serial correlation

for our calibrations in the next section. Using a general representation of the solution for ct,

ct =
∞∑
τ=0

K∑
k=1

ρkτakt−τ , (44)

we redefine multipliers as

χk ≡

√√√√ ∞∑
τ=0

ρ2
kτ , (45)

such that vc = ‖χ‖2 v still holds. We compare the multiplier of sectoral shocks to the multiplier

of aggregate shocks, which now is given by

√
∞∑
τ=0

(
K∑
k=1

ρkτ

)2

. For the monetary policy rule that

targets the GDP deflator (pct = 0), this comparison does not add any information, because the

multiplier of aggregate productivity shocks on GDP volatility is 1, exactly as in our analytical

model with static price rigidity. This result validates the use of our analytical model to shed

light on the interaction of price rigidity with sectoral GDP and input-output linkages to generate

aggregate fluctuations even when the pricing friction has dynamic effects as with Calvo.

Endogenous Price Adjustment In our setup, price rigidity is exogenous, and thus the

degree of price rigidity and the process of sectoral shocks are unrelated. With an endogenous

pricing friction, a link could exist between price flexibility and the volatility of shocks, or other

moments of the distribution of shocks, or model elements that pin down the sS bands. However,

how this concern would change our results is not clear.

First, the key theoretical mechanism of our model would qualitatively remain unchanged:

Again, the effective not the physical importance of a sector would determine the propagation

of shocks. The effective importance would now only be differently defined: It would depend on

the interaction of the real features with the primitives that pin down the width of the sS bands,

such as menu costs, elasticities, or shock volatilities.
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Second, this theoretical possibility thus comes with several degrees of freedom. A priori in

which direction – if any – it would change our subsequent quantitative results is unclear. We

cannot quantify such effects without implementing a state-dependent pricing model. Empirically,

no strong relationship exists between volatility of shocks and the frequency of price changes

for manufacturing sectors. A regression of the frequency of price changes on the volatility of

productivity shocks results in an R2 of less than 2%, which shows these shocks explain very

little of the variation in the frequency of price changes in our data.

Third, such an analysis would face major computational challenges. Our level of

disaggregation makes endogenous pricing models such as menu-cost models computationally

infeasible because the intermediate input price index represents a different state variable for

each sector. Therefore, we leave a formal analysis of the implications of endogenous price

rigidity for future research, and our results should be seen as a first-order approximation.

Independent of these considerations, differences in pass-through of shocks – however micro-

founded – will change the effective real structure of the economy.

IV Data

This section describes the data we use to construct the input-output linkages, and sectoral GDP,

and the micro-pricing data we use to construct measures of price stickiness at the sectoral level.

A. Input-Output Linkages and Sectoral Consumption Shares

The Bureau of Economic Analysis (BEA) produces input-output tables detailing the dollar flows

between all producers and purchasers in the U.S. Producers include all industrial and service

sectors, as well as household production. Purchasers include industrial sectors, households, and

government entities. The BEA constructs the input-output tables using Census data that are

collected every five years. The BEA publishes input-output tables every five years beginning in

1982 and ending the most recent tables in 2016. The input-output tables are based on NAICS

industry codes. Prior to 1997, the input-output tables were based on SIC codes.

The input-output tables consist of two basic national-accounting tables: a “make” table

and a “use” table. The make table shows the production of commodities by industry. Rows

present industries, and columns present the commodities each industry produces. Looking across

columns for a given row, we see all the commodities a given industry produces. The sum of the

entries comprises industry output. Looking across rows for a given column, we see all industries

producing a given commodity. The sum of the entries is the output of a commodity. The use
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table contains the uses of commodities by intermediate and final users. The rows in the use table

contain the commodities, and the columns show the industries and final users that utilize them.

The sum of the entries in a row is the output of that commodity. The columns document the

products each industry uses as inputs and the three components of value added: compensation

of employees, taxes on production and imports less subsidies, and gross operating surplus. The

sum of the entries in a column is industry output.

We utilize the input-output tables for 2002 to create an industry network of trade flows.

The BEA defines industries at two levels of aggregation: detailed and summary accounts. We

use the detailed levels of aggregation to create industry-by-industry trade flows. The BEA also

provides the data to calibrate sectoral GDP shares.

The BEA provides concordance tables between NAICS codes and input-output industry

codes. We follow the BEA’s input-output classifications with minor modifications to create our

industry classifications. We account for duplicates when NAICS codes are not as detailed as

input-output codes. In some cases, an identical set of NAICS codes defines different input-output

industry codes. We aggregate industries with overlapping NAICS codes to remove duplicates.

We combine the make and use tables to construct an industry-by-industry matrix that

details how much of an industry’s inputs other industries produce. We use the make table

(MAKE) to determine the share of each commodity each industry k produces. We define the

market share (SHARE) of industry k’s production of commodities as

SHARE = MAKE � (I−MAKE)−1
k,k′ .

We multiply the share and use tables (USE) to calculate the dollar amount industry k′

sells to industry k. We label this matrix revenue share (REV SHARE), which is a supplier

industry-by-consumer industry matrix,

REV SHARE = SHARE × USE.

We then use the revenue-share matrix to calculate the percentage of industry k′ inputs

purchased from industry k, and label the resulting matrix SUPPSHARE

SUPPSHARE = REV SHARE �
(

(I−MAKE)−1
k,k′

)′
. (46)

The input-share matrix in this equation is an industry-by-industry matrix and therefore
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consistently maps into our model.11

B. Frequencies of Price Adjustments

We use the confidential microdata underlying the producer price data (PPI) from the BLS to

calculate the frequency of price adjustment at the industry level.12 The PPI measures changes in

prices from the perspective of producers, and tracks prices of all goods-producing industries, such

as mining, manufacturing, and gas and electricity, as well as the service sector. The BLS started

sampling prices for the service sector in 2005. The PPI covers about 75% of the service-sector

output. Our sample ranges from 2005 to 2011.

The BLS applies a three-stage procedure to determine the sample of goods. First, to

construct the universe of all establishments in the U.S., the BLS compiles a list of all firms

filing with the Unemployment Insurance system. In the second and third stages, the BLS

probabilistically selects sample establishments and goods based on either the total value of

shipments or the number of employees. The BLS collects prices from about 25,000 establishments

for approximately 100,000 individual items on a monthly basis. The BLS defines PPI prices as

“net revenue accruing to a specified producing establishment from a specified kind of buyer

for a specified product shipped under specified transaction terms on a specified day of the

month.” Prices are collected via a survey that is emailed or faxed to participating establishments.

Individual establishments remain in the sample for an average of seven years until a new sample

is selected to account for changes in the industry structure.

We calculate the frequency of price changes at the goods level, FPA, as the ratio of the

number of price changes to the number of sample months. For example, if an observed price

path is $10 for two months and then $15 for another three months, one price change occurs

during five months, and the frequency is 1/5. We aggregate goods-based frequencies to the BEA

industry classification.

The overall mean monthly frequency of price adjustment is 16.78%, which implies an

average duration, −1/ log(1 − FPA), of 5.44 months. Substantial heterogeneity is present in

the frequency across sectors, ranging from as low as 2.74% for the semiconductor manufacturing

sector (duration of 35.96 months) to 96.47% for dairy production (duration of 0.30 months).

11Ozdagli and Weber (2016) follow a similar approach.
12The data have been used before in Nakamura and Steinsson (2008), Goldberg and Hellerstein (2011), Bhattarai

and Schoenle (2014), Gorodnichenko and Weber (2016), Gilchrist, Schoenle, Sim, and Zakraǰsek (2017), Weber
(2015), and D’Acunto, Liu, Pflueger, and Weber (2016), among others.
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V Calibration

We calibrate the steady-state input-output linkages of our model, Ω, to the U.S. input-output

tables in 2002. The same 2002 BEA data allow us to calibrate steady-state sectoral GDP

shares, Ωc. The Calvo parameters match the industry-average frequency of price adjustments

between 2005 and 2011, using the micro data underlying the PPI from the BLS, for the same

classification of industries the BEA uses.13 After we merge the input-output and the frequency-

of-price-adjustment data, we end up with 341 industries, which we refer as “sectors.”

The 2002 BEA data have 407 unique sectors. We lose some of them for three reasons.

First, some sectors almost exclusively produce final goods, so the BLS data do not contain

enough observations to compute reliable average frequencies of price adjustment. Second, the

goods some sectors produce do not trade in a formal market, so the BLS has no prices to

record. Examples of missing sectors are (with input-output industry codes in parentheses)

“Military armored vehicle, tank, and tank component manufacturing” (336992) or “Religious

organizations” (813100). Third, the BEA data for some sectors are not available at the six-digit

level.

All our calibration exercises are at the monthly frequency, so the discount factor is β =

0.9975 (3% annual risk-free interest rate). The elasticity of substitution across sectors is η = 0.5.

No good estimates of this elasticity are available at the level of disaggregation we require. Atalay

(2017) reports an average elasticity of substitution of 0.15 for 30 industries; presumably a higher

level of disaggregation implies a higher elasticity of substitution across sectors. As a robustness

check, we also report results for η = 1. We set the elasticity of substitution within sectors to

θ = 6 in our baseline calibration, which implies a markup of 20%. We also report results for

θ = 11, implying a 10% markup. We set δ = 0.5 so the intermediate-input share in steady state

is δ ∗ (θ − 1)/θ = 0.42, which matches the 2002 BEA data.

We report several versions of our model depending on assumptions for the labor market

and monetary policy.

MODEL1 has linear disutility of labor, ϕ = 0, and monetary policy targeting a constant

price level. This model is the closest parametrization of our full-blown New Keynesian model

to the simplified model we study in section III, with a monetary rule that eliminates the scale

effect of price rigidity on GDP volatility from productivity shocks, either sectoral or aggregate.

MODEL2 is identical to MODEL1, but we set the inverse Frisch elasticity to ϕ = 2. This

model allows for elastic labor supply and sectoral segmentation of the labor market. The analysis

in section III shows these features introduce new effects of sectoral GDP and input-output

13We interpret the frequencies of price adjustments as the probability a sector can adjust prices after the shock.
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linkages, and their interaction with price rigidity.

MODEL3 is an intermediate case in which ϕ = 0, and a passive monetary policy targets

constant nominal GDP at steady-state level. This case allows us to isolate the level effect in

the tractable analytical setup with inelastic labor supply by comparing results to MODEL1.

MODEL4 assumes the Taylor rule specified in section II with parameters φc = 0.33/12 = 0.0275

and φπ = 1.34. MODEL5 assumes a preference shock that implies the zero-lower-bound

constraint on nominal interest rate binds for 50 months and the Taylor rule for MODEL4

governs monetary policy afterwards. The Online Appendix also reports results for η = 1 and

θ = 11.

VI Quantitative Results

This section provides quantitative evidence for the importance of the interaction of heterogeneity

in price rigidity with heterogeneity in real features of the economy for propagating idiosyncratic

shocks. We analyze this interaction through the lens of heterogeneity in sectoral GDP shares

and input-output linkages. The main focus is on the size of the volatility of aggregate GDP

from idiosyncratic shocks, but we also study the importance for price stability in a separate

subsection when we consider alternative monetary policy rules that do not perfectly stabilize

the aggregate price level. Finally, we also analyze the distortionary role price rigidities have on

the identity of the most important sectors for aggregate volatility. This latter angle is especially

important for policy-makers.

To highlight the effects at work in our model, we go through three cases on the nominal

side: a flexible price case that serves as a benchmark for price rigidity per se, a homogeneously

rigid price case as well as a case of heterogeneous price rigidity. A comparison between the latter

two shows the precise role of heterogeneity in price rigidity. On the real side, we assume all

sectors are equally large or connected, or fully heterogeneous as in the data.

A. Multipliers

We base our analysis on two variations of our model, which we label MODEL1 and MODEL2.

Both of these model variations assume Calvo price stickiness and monetary policy targeting a

constant GDP deflator. The models differ in assuming fixed and elastic labor supply, respectively.

We focus on the magnitude of the total multiplier ‖χ‖2 in Table 1. This total multiplier maps

the volatility of sectoral shocks into aggregate volatility.
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A.1 Multipliers: Flexible Prices

This subsection shows variations in sector size and input-output linkages can substantially

propagate idiosyncratic shocks even when prices are fully flexible. The total multiplier can

be as large as 1/5 of the multiplier aggregate productivity shocks generate.

To arrive at these results, we first abstract from price rigidity in MODEL 1, which has

fixed labor supply. We report this case in panel A, column 1 of Table 1. Line 1 shows the total

multiplier is only 5.42% when all sectors have equal GDP shares and equal input-output linkages

in steady state. Consistent with section III, the total multiplier in this case equals K−1/2 for

K = 341. Line 2 isolates the role of heterogeneous sectoral GDP shares by shutting down

intermediate input use (δ = 0) and calibrating Ωc to U.S. data. The multiplier is now 20.47%,

which is 1/5 of the volatility an aggregate productivity shock generates, and four times larger

than the effect of idiosyncratic shocks in an economy with perfect symmetry. This multiplier falls

to 11.26% in line 3 when we allow for input-output linkages (δ = 0.5) but assume these linkages

are perfectly symmetric. The drop happens because the symmetry in input-output linkages

across sectors reduces the cross-sectional dispersion of sectoral multipliers heterogeneous GDP

shares introduce.

Next, we show heterogeneous sectoral input-output linkages alone can also propagate

idiosyncratic shocks but are a less powerful mechanism than heterogeneity in the sectoral size.

We impose equal steady-state GDP shares across sectors in line 4 but calibrate the input-output

matrix, Ω, to the actual, heterogeneous U.S. input-output linkages. The multiplier is now

8.01%. Comparing the size of the multiplier with the multiplier in line 2, we see heterogeneous

input-output linkages are quantitatively less powerful than heterogeneity in sectoral size as a

source of aggregate GDP fluctuations.

When we put both heterogeneities together, we find idiosyncratic shocks can be a substantial

driver of aggregate fluctuations. Line 5 reports the multiplier when we calibrate both GDP

shares, Ωc, and input-output linkages, Ω, to U.S. data. The total multiplier is now 16.88%,

indicating GDP shares and input-output linkages interact and jointly affect the capacity of

sectoral shocks to generate aggregate fluctuations. This multiplier is remarkably close to the

one in Gabaix (2011), who uses a measure of firms’ total sales. This similarity arises because total

sales encompass sales as final goods (i.e., GDP) and as intermediate inputs (i.e., input-output

linkages).

Finally, results are almost identical when we relax the assumption of inelastic labor supply

(MODEL 2). Panel B of Table 1 summarizes the details.

34



A.2 Multipliers: Homogeneous Sticky Prices

We now study the role of price rigidity that is homogeneous across sectors for the importance of

idiosyncratic shocks as a driver of aggregate fluctiations. Specifically, we calibrate the sectoral

Calvo parameters to the average frequency of price changes using PPI micro data. As the theory

section predicts, almost all results are identical to the flexible-price case. Column 2 of Table 1

reports the details.

Section III shows price rigidity introduces a scale effect dampening the total multiplier, but

this scale effect is completely offset when monetary policy targets a constant price level just as

we do in Table 1. Indeed, the total multipliers in column 1 – under perfectly flexible prices –

and column 2 – under homogeneously sticky prices – are identical when sectors are perfectly

symmetric (line 1) or when labor is the only input in production (line 2). In both cases, the

only effect of homogeneous price rigidity is the introduction of the scale effect.

Second, when steady-state GDP shares are heterogeneous across sectors but the production

network is symmetric, homogeneous price rigidity increases the total multiplier relative to the

case of frictionless prices. Comparing columns (1) and (2) in line 3 shows this increase. The

total multiplier increases from 11.26% in column 1 to 20.2% in column 2. This result follows

because symmetric input-output linkages reduce the cross-sectional dispersion of multipliers, but

the sectoral weight of this reduction is the frequency of price changes, which is 100% for flexible

prices but only 16.78% in the case of homogeneous price rigidity.

Asymmetry in the production network introduces another, important effect of homogeneous

price rigidity, dampening the total multiplier of sectoral shocks. As our theory section predicts,

average price rigidity in the economy enters as a penalty on the quantitative importance of

heterogeneity in network centrality. In particular, the higher the order of centrality, the stronger

this penalty is. We can see this dampening effect when comparing line 4 across columns (1) and

(2): The total multiplier falls from 8.01% when prices are flexible to 5.42% when sectoral prices

are equally sticky. This effect is new and important relative to the literature on input-output

linkages such as Acemoglu et al. (2012). Quantitatively, homogeneous price rigidity makes the

pure network source of aggregate fluctuations irrelevant.

Next, we allow for these two opposite forces jointly. Calibrating our model to steady-state

GDP shares and input-output linkages shows the overall effect of homogeneous price rigidity

increases the total multiplier. The total multiplier is 20.35% with homogeneous price rigidity

(line 5, column 2), whereas it is 16.88% with flexible prices (line 5, column 1).

Once again, results are almost identical for MODEL 2 (panel B), implying elastic labor

supply plays a minor quantitative role when all sectoral prices are equally sticky.
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A.3 Multipliers: Heterogeneous Sticky Prices

This subsection presents our main empirical result: Heterogeneity in price rigidity is a powerful

ingredient to propagate idiosyncratic shocks to the aggregate level. This result holds true

both for heterogeneity in price rigidity by itself, as well as for the interaction with our two

heterogeneous real features of the economy. Column 3 of Table 1 presents these main results.

First, heterogeneity in price rigidity alone becomes a quantitatively important source of

aggregate fluctuations: Focusing on line 1 (equal GDP and input-output linkages across sectors

in steady state), the total multiplier goes from 5.42% when prices are fully flexible in column 1 to

15.65% in column 3 when Calvo parameters match the sectoral frequency of price changes in U.S.

data. This magnitude of the multiplier is similar to the one obtained in a flex-price economy

for the joint effect of heterogeneity in sectoral GDP and input-output linkages. Despite the

fact that the theoretical results show price rigidity by itself does not affect the rate of decay

of shocks, heterogeneity in price rigidity is quantitatively important for the idiosyncratic origin

of aggregate fluctuations and represents a “frictional” origin of aggregate fluctuations that is

conceptually different from heterogeneity in sector size or network centrality.

Second, an interaction exists between heterogeneity in size and heterogeneity in price

rigidity. In line 2 (no intermediate inputs, δ = 0), the total multiplier goes from 20.47% when

prices are fully flexible in column 1 to 51.53% when price rigidity is heterogeneous across sectors

in column 3. This change represents a 2.5-fold increase relative to the flex-prices economy and

a 10-fold increase relative to the perfectly symmetric case where the multiplier is 5.42%. In line

3 (δ = 0.5 and symmetric input-output linkages), the effect of heterogeneous price stickiness is

even stronger: The total multiplier goes from 11.26% in column 1 to 50.32% in column 3. This

increase is due to the combined effect of two forces: the average rigidity dampening the effect

of symmetric input-output linkages on reducing cross-sectional dispersion in multipliers and the

contribution of the heterogeneity in price stickiness to increasing such dispersion.

Third, a strong interaction arises between heterogeneity in price rigidity and the potency of

input-output linkages for generating aggregate fluctuations: In line 4, the total multiplier goes

from 8.01% when prices are flexible (column 1) to 16.35% when price stickiness is heterogeneous

(column 3). This increase is large once we take into account the effect of homogeneous price

rigidity on reducing the quantitative importance of input-output linkages (column 2).

Overall, when our calibration matches jointly the sector-size distribution, input-output

linkages, and the heterogeneity in price rigidity in the U.S. economy, we find the total multiplier

that maps volatility of sectoral productivity shocks into GDP volatility is 44.24% (line 5, column

3). This multiplier is 2.6 times larger than the multiplier in an economy with flexible prices
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(16.88%, line 5, column 1) and 8.2 times larger relative to the perfectly symmetric case (5.42%,

line 1, columns (1) or( 2)).

When we allow for elastic labor demand, all of our results are still qualitatively and

quantitatively valid. Additionally, some minor differences exist with respect to MODEL 1

(panel A). As our theory section predicts, relaxing the assumption of inelastic labor supply

reduces the quantitative effect of price rigidity via two channels. First, shocks are negatively

correlated with the response of wages in the shocked sector. We can see the quantitative effect

of this channel by comparing the total multiplier in line 2, column 3 in panel A (51.53%) and

panel B (41.57%). Second, elastic labor supply creates aggregate forces from price rigidity that

reduce the cross-sectional dispersion of sectoral multipliers when intermediate inputs are used

for production. We can see this channel by comparing column 3 in panels A and B in all cases

when δ = 0.5 (all lines but line 2).

A.4 Multipliers: Robustness

Our results continue to hold for alternative monetary policy rules and other parameter variations.

Table 2 presents results for the inelastic labor-supply version of our model with a monetary policy

rule that targets constant steady-state nominal GDP, for a Taylor rule, and for the case when

the zero lower bound on the nominal interest rate is binding for 50 periods (and later monetary

policy responds according to a Taylor rule.) We label these variations MODEL 3, MODEL 4,

and MODEL 5, respectively.

The main difference now is that under these alternative rules, the scale effect of average

price rigidity on GDP volatility is not offset by monetary policy. However, this difference is

of only minor quantitative importance. All our results described above for Table 1 continue to

hold. Magnitudes of multipliers are slightly smaller when monetary policy targets steady-state

nominal GDP, as well as for a Taylor rule. When the zero lower bound is binding, they are very

close to the baseline results reported in panel A of Table 1.

Results are also robust to further parameter variations: First, given these monetary

policy rules, the online appendix reports our results for elastic labor supply (see Table A.1).

The dampening effect of elastic labor supply remains similar in magnitude to our baseline

specification. Second, regarding sensitivity to other parameters, a low elasticity of substitution

within sectors partially driving our findings might be a concern.14 Table A.2 in the Online

Appendix shows our findings for MODEL 1 and MODEL 2 in Panels A and B when we increase

the within-sector elasticity of substitution, θ, from a baseline value of 6 to 11. This increase

14We thank Susanto Basu for raising this point.
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reduces the markup from 20% to 10%. Results for MODEL 1 remain identical to Table 1. The

reason for the similarity is that θ only plays a role when wages respond to labor demand. For

MODEL 2, multipliers are somewhat lower than in Table 1, but all results remain qualitatively

the same and quantitatively relevant. The same applies when the elasticity of substitution η

increases from 0.5 to 1 (Panel C and D).

A final robustness check concerns the volatility of sectoral shocks. In our analysis, we are

interested in multipliers that represent elasticities, that is, responses to unit shocks. Although

these multipliers allow us to answer the questions we are after, a quantitative variation that

calibrates the volatility of sectoral shocks is equally interesting. Therefore, we also use the

CES-NBER manufacturing dataset to estimate sectoral volatility of productivity shocks based

on AR(1) processes. When we use these estimated volatilities to give differently large one-

standard-deviation shocks to sectors, all our results hold. Table A.3 in the appendix presents

the results.

B. Multipliers: Price Stability

Price stability is a policy goal of central banks around the world. Our results show the interaction

of heterogeneous price rigidity with our two heterogeneous real features of the economy can have

an important impact on the propagation of idiosyncratic shocks into aggregate price stability.

We find the impact of idiosyncratic shocks on the volatility of the GDP deflator can be similarly

large as in the case of output volatility.

We find a large effect of heterogeneity in price rigidity and its interactions with sectoral

size and input-output linkages on aggregate price stability when we consider the alternative

monetary policy rules discussed above. Trivially, if the policy-maker targets a constant price

level, no effect arises by definition. Therefore, the results we present in Table 3 derive from a

constant nominal GDP target, and our Taylor-rule specification. All multipliers in Table 3 are

multipliers of idiosyncratic shocks into GDP deflator volatility, relative to the multiplier of an

aggregate productivity shock.

First, a qualitative impact similar to that in Table 1 is evident. As our analytical model

showed, the intuition for the effects on price stability is the same as for the volatility of aggregate

output given the monetary policy specification in the analytical model. The only difference under

the monetary policy rules we analyze here is the extent of fluctuations in aggregate prices versus

in aggregate GDP. They no longer necessarily fluctuate one for one as is the case under the

assumptions of the analytical model.

Second, the quantitative impact on price stability is similar in magnitude to the impact

38



on GDP volatility. Although it is slightly muted, the effect in some cases more than triples

when we allow for heterogeneous price rigidity. For example, in Panel A with constant nominal

GDP target, GDP deflator volatility increases from 5.42% under flexible prices to 12.36% under

fully heterogeneous prices when sectoral size and linkages are homogeneous (line 1). However,

when sectoral size is heterogeneous and linkages are homogeneous (line 3), the multiplier goes

from 11.26% under flexible prices to 17% under homogeneous price rigidity to 33.73% under

heterogeneous price rigidity. When we allow both real features to be fully heterogeneous (line

5), GDP deflator volatility increases from 16.88% to 31.78% of what an aggregate productivity

shock would generate.

If we instead consider a Taylor rule as our monetary policy specification (Panel B), our

results continue to hold qualitatively and quantitatively. Heterogeneity in price rigidity interacts

with heterogeneity in the real features of the economy in important ways. The propagation of

idiosyncratic shocks into CPI volatility is large relative to what an aggregate productivity shock

generates.

C. Distorted Idiosyncratic Origin of Fluctuations

We now turn to another central result of our quantitative analysis: Sectoral heterogeneity in price

rigidity dramatically changes the identity of sectors from which aggregate fluctuations originate.

It also increases granularity in the sense that a few sectors account for a larger fraction of the

total multiplier.

Table 4 shows the contribution of the five most important sectors for aggregate fluctuations.

We report sectoral shares relative to the total multiplier ‖χ‖2 in MODEL1 under different

assumptions on steady-state sectoral GDP shares, steady-state input-output linkages, and Calvo

parameters. We also report the overall contribution of the five most important sectors; the overall

contribution of all sectors is 1 by construction.15

We first focus on price rigidity alone. Column 1 shows results when we calibrate

Calvo parameters to the sectoral frequency of price changes in the U.S. but impose equal

steady-state GDP shares and input-output linkages across sectors. The five sectors with the

largest multipliers are those with the most flexible prices, which are mostly commodities and

farming products: “Dairy cattle and milk production” (112120), “Alumina refining and primary

aluminum production” (33131A), “Primary smelting and refining of copper” (331411), “Oil and

gas extraction” (211000), and “Poultry and egg production” (1121A0). Their contributions to

the total multiplier range from 13.74% to 7.35%, and together they account for about half of

15Results for MODEL 2 are very similar, so we do not report them here.
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the GDP volatility from sectoral shocks (their overall contribution is 48.6%). By contrast, if all

prices were perfectly flexible (or equally sticky), each sector would have a contribution of 0.29%

(341−1), so the overall contribution of any five sectors would only be 1.47%. Heterogeneity in

price rigidity has a quantitatively strong effect on aggregate GDP volatility.

We then focus on the interaction between price rigidity and the sectoral GDP shares of

granularity. Columns (2) and (3) in Table 4 assume steady-state sectoral GDP shares in the

model matching U.S. data, but symmetric steady-state input-output linkages. Column 2 assumes

flexible prices, whereas column 3 matches the sectoral frequency of price changes. The identity

and contribution of the sectors with the largest multiplier changes across calibrations: with

flexible prices, the most important sector is “Retail trade” (4A0000), followed by “Wholesale

trade” (420000), “Real estate” (531000), “Officies of physicians, dentists and other health

practitioners” (621A00), and “Hospitals” (622000). With sticky prices instead, the most

important sectors become “Oil and gas extraction” (211000), “Monetary authorities and

depository credit intermediation” (52A000),“Petroleum refineries” (324110), “Primary smelting

and refining of copper” (331411) and “Wholesale trade” (420000). With flexible prices, “Retail

trade” (4A0000) accounts for 32.84% of the total multiplier; with sticky prices, it only accounts

for 2.22%. In turn, “Oil and gas extraction” (211000) contributes with 0.15% when prices are

flexible but with 30% when prices are as sticky as in U.S. data. The overall contribution of the

five most important sectors is 70.14% with flexible prices and 94.1% with sticky prices. Thus,

heterogeneity in price rigidity changes the sectors with the largest multiplier and it increases

the effective granularity of the top-5 sectors.

Next, we turn to the interaction between price rigidity and input-output linkages. Columns

(4) and (5) of Table 4 assume equal steady-state sectoral GDP across sectors and steady-state

input-output linkages matching 2002 U.S. Input-Output tables. Column 4 assumes flexible

prices, whereas column 5 also matches sectoral frequencies of price adjustment. Again,

the identity of the five sectors with the largest multiplier changes dramatically: With

flexible prices, they are “Wholesale trade” (420000), “Real estate” (531000), “Electric power

generation, transmission, and distribution” (221100), “Monetary authorities and depository

credit intermediation” (52A000), and “Retail trade” (4A0000). With sticky prices, they are

“Dairy cattle and milk production” (112120),“Electric power generation, transmission, and

distribution” (211000), “Primary smelting and refining of copper” (331411), “Cattle ranching

and farming” (1121A0), and “Sugar cane miles and refining” (31131A). The overall contribution

of the top-5 sectors increases from 43.24% with flexible prices to 52.48% with heterogeneous

sticky prices. The contribution of “Wholesale trade” (420000) falls from 24.58% with flexible
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prices to 0.21% with sticky prices. In turn, “Dairy cattle and milk production” (112120) increases

its contribution from 0.12% to 12.67% when prices are flexible or sticky, respectively.

Finally, we look at the interaction of price rigidity with both our heterogeneous real

features of the economy combined. Columns (6) and (7) in Table 4 report results for

flexible prices and when the model matches the empirical industry-average frequency of price

changes. The key message is once again the same: With flexible prices, the five sectors

with the largest multipliers are “Retail trade” (4A0000), “Real estate” (531000), “Wholesale

trade” (420000), “Monetary authorities and depository credit intermediation” (52A000), and

“Telecommunications” (517000). Their combined contribution to the total multiplier is 73.66%.

With sticky prices, the most important sector by far is “Monetary authorities and depository

credit intermediation” (52A000), whose contribution increases from 6.46% with flexible prices

to 25.3% with prices sticky as in the data. This sector mainly refers to “businesses engaged

in accepting deposits and in lending funds from these deposits.” The other sectors in the top-5

with sticky prices are “Petroleum refineries” (324110), “Oil and gas extraction” (211000), “Auto

manufacturing” (336111), and “Wholesale trade” (420000). The contribution of “Retail trade”

(4A0000), the most important sector with flexible prices, falls from 22.49% with flexible prices to

2.46% with sticky prices. The overall contribution of the five most important sectors is 73.66%

with flexible prices and 93.33% with rigid prices.

The discussion has so far focused on the five most important sectors. But the distorting

nature of heterogeneous price stickiness is a more general phenomenon. Figure 1 is a scatter

plot of the sectoral rank in the contribution of sectors to the total multiplier. Along both axes,

the steady-state sectoral GDP shares and input-output linkages in the model are calibrated to

match 2002 U.S. data; the x-axis assumes homogeneously rigid prices, whereas the y-axis matches

Calvo parameters to the empirical frequency of price changes. If heterogeneity in price rigidity

had no effect, we would see no change in ranks and a 45-degree line in the figure. However,

although a positive correlation exists in both rankings, the figure shows high dispersion and

some dramatic changes in rank, underlining the message from the five most important sectors

alone. Heterogeneity in price rigidity has a dramatic effect on the identity of sectors that drive

aggregate fluctuations.

VII Concluding Remarks

Are prices sticky and does it matter? We typically answer those questions empirically by looking

at moments in micro pricing data and the response of real variables to identified nominal shocks,

or quantitatively by studying whether nominal shocks are an important driver of business cycles.
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In the paper, we show another, novel, dimension along which price rigidity has first-order

importance for macroeconomic research: Heterogeneity in price stickiness across sectors interacts

with other heterogeneous real features of the economy and becomes a powerful amplification

mechanism for idiosyncratic technology shocks to drive aggregate fluctuations.

We show these results theoretically and quantitatively in a calibrated 341-sector New

Keynesian model with intermediate inputs and heterogeneity in sector size, sector input-output

linkages, and output-price stickiness.

Heterogeneity in price rigidity has first-order effects: It generates a frictional origin of

aggregate fluctuations, it amplifies the effect of idiosyncratic shocks due to the distributions of

sectoral GDP and the input-output structure of the economy, and it changes the identity and

relative importance of sectors from which fluctuations originate. Importantly, sector sales are

no longer a sufficient statistic for sectoral contributions to aggregate fluctuations, as in Hulten

(1978). Interestingly, in our most realistic calibration, which allows for heterogeneous price

rigidities across sectors matched to U.S. data, we find “Monetary authorities and depository

credit intermediation” to be the most important sector for aggregate fluctuations.

To date, the implications of heterogeneous price rigidity, and frictions in general, and its

interactions with heterogeneous real features of the economy remain largely unexplored. Our

analysis suggests heterogeneity in price rigidity has direct and important implications for the

modeling and understanding of aggregate fluctuations originating from idiosyncratic shocks.

The interaction also has important implications for the conduct of monetary policy. A central

bank that aims to stabilize sectoral prices of “big” or “central” sectors might make systematic

policy mistakes if it does not take into account the “frictional” origin of aggregate fluctuations.

Although beyond the scope of this paper, future work could explore the design of optimal

monetary policy in our heterogeneous production economy.
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Figure 1: Ranking of Sectors: Heterogeneous versus Homogeneous Price Stickiness
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This figure plots the ranking of sectors for aggregate fluctuations originating from sectoral

shocks for an economy with heterogeneous price stickiness across sectors (y-axis) and an

economy with identical price stickiness for all sectors (x-axis). We assume heterogeneous

GDP shares and input-output linkages calibrated to the U.S. in both cases.
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Table 1: Multipliers of Sectoral Shocks into Aggregate Volatility

This table reports multipliers of sectoral productivity shocks on GDP volatility. Multipliers are defined as the Euclidean norm

of vector χ with elements χk =

√
∞∑
τ=0

ρ2kτ , relative to the multiplier of an aggregate productivity shock which equals 1 in our

baseline. Ωc represents the vector of GDP shares, Ω the matrix of input-output linkages, and δ the intermediate input share.

We calibrate a 341-sector version of our model to the input-output tables and sector size from the BEA and the frequencies

of price adjustment from the BLS.

Flexible Prices Homogeneous Calvo Heterogeneous Calvo

(1) (2) (3)

Panel A: MODEL1

(1) hom Ωc hom Ω 5.42% 5.42% 15.65%

(2) het Ωc δ = 0 20.47% 20.47% 51.53%

(3) het Ωc hom Ω 11.26% 20.20% 50.32%

(4) hom Ωc het Ω 8.01% 5.42% 16.35%

(5) het Ωc het Ω 16.88% 20.35% 44.24%

Panel B: MODEL2

(1) hom Ωc hom Ω 5.42% 5.42% 10.44%

(2) het Ωc δ = 0 20.47% 20.47% 41.57%

(3) het Ωc hom Ω 10.97% 17.41% 32.13%

(4) hom Ωc het Ω 8.18% 5.73% 11.38%

(5) het Ωc het Ω 16.79% 19.11% 29.27%
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Table 2: Multipliers of Sectoral Shocks into Aggregate Volatility

This table reports multipliers of sectoral productivity shocks on GDP volatility. Multipliers are defined as the Euclidean norm

of vector χ with elements χk =

√
∞∑
τ=0

ρ2kτ , relative to the multiplier of an aggregate productivity shock which equals 1 in our

baseline. Ωc represents the vector of GDP shares, Ω the matrix of input-output linkages, and δ the intermediate input share.

We calibrate a 341-sector version of our model to the input-output tables and sector size from the BEA and the frequencies

of price adjustment from the BLS.

Flexible Prices Homogeneous Calvo Heterogeneous Calvo

(1) (2) (3)

Panel A: MODEL3

(1) hom Ωc hom Ω 5.42% 5.42% 12.36%

(2) het Ωc δ = 0 20.47% 20.47% 37.18%

(3) het Ωc hom Ω 11.26% 17.00% 33.73%

(4) hom Ωc het Ω 8.01% 6.09% 13.16%

(5) het Ωc het Ω 16.88% 18.96% 31.78%

Panel B: MODEL4

(1) hom Ωc hom Ω 5.42% 5.42% 15.26%

(2) het Ωc δ = 0 20.47% 20.47% 46.11%

(3) het Ωc hom Ω 11.26% 18.51% 44.82%

(4) hom Ωc het Ω 8.01% 6.00% 15.87%

(5) het Ωc het Ω 16.88% 19.60% 39.81%

Panel C: MODEL5

(1) hom Ωc hom Ω 5.42% 5.42% 16.53%

(2) het Ωc δ = 0 20.47% 20.47% 53.36%

(3) het Ωc hom Ω 20.47% 20.33% 52.22%

(4) hom Ωc het Ω 5.42% 5.42% 16.87%

(5) het Ωc het Ω 20.47% 19.76% 45.26%
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Table 3: Multipliers of Sectoral Shocks into Price Stability

This table reports multipliers of sectoral productivity shocks into GDP deflator volatility. Multipliers are defined as the

Euclidean norm of vector χ with elements χk =

√
∞∑
τ=0

ρ2kτ , relative to the multiplier of an aggregate productivity shock on

GDP deflator volatility,

√
∞∑
τ=0

(
K∑
k=1

ρkτ

)2

. Ωc represents the vector of GDP shares, Ω the matrix of input-output linkages,

and δ the intermediate input share. We calibrate a 341-sector version of our model to the input-output tables and sector size

from the BEA and the frequencies of price adjustment from the BLS. We consider two monetary policy rules: a constant

nominal GDP target in Panel A and a Taylor rule in Panel B.

Flexible Prices Homogeneous Calvo Heterogeneous Calvo

(1) (2) (3)

Panel A: Constant Nominal GDP Target

(1) hom Ωc hom Ω 5.42% 5.42% 12.36%

(2) het Ωc δ = 0 20.47% 20.47% 37.18%

(3) het Ωc hom Ω 11.26% 17.00% 33.73%

(4) hom Ωc het Ω 8.01% 6.09% 13.16%

(5) het Ωc het Ω 16.88% 18.96% 31.78%

Panel B: Taylor Rule

(1) hom Ωc hom Ω 5.42% 5.42% 9.97%

(2) het Ωc δ = 0 20.47% 20.47% 28.75%

(3) het Ωc hom Ω 11.26% 13.74% 25.64%

(4) hom Ωc het Ω 8.01% 6.94% 10.87%

(5) het Ωc het Ω 16.88% 17.70% 25.77%
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Online Appendix:

Price Rigidities and the Granular Origins of Aggregate
Fluctuations

Ernesto Pasten, Raphael Schoenle, and Michael Weber

Not for Publication

I Steady-State Solution and Log-linear System

A. Steady-State Solution

Without loss of generality, set ak = 0. We show below conditions for the existence of a symmetric

steady state across firms in which

Wk = W, Yjk = Y, Ljk = L, Zjk = Z, Pjk = P for all j, k.

Symmetry in prices across all firms implies

P c = P k = Pk = P

such that, from equations (1), (2), (10), and (13) in the main body of the paper,

Ck = ωckC,

Cjk =
1

nk
Ck,

Zjk
(
k′
)

= ωkk′Z,

Zjk
(
j′, k′

)
=

1

nk′
Zjk

(
k′
)
.

The vector Ωc ≡ [ωc1, ..., ωcK ]′ represents steady-state sectoral shares in value-added C, Ω =

{ωkk′}Kk,k′=1 is the matrix of input-output linkages across sectors, and ℵ ≡ [n1, ..., nK ]′ is the

vector of steady-state sectoral shares in gross output Y .
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It also holds that

C =

K∑
k=1

∫
=k
Cjkdj,

Zjk =
K∑
k′=1

∫
=k′

Zjk
(
j′, k′

)
dj′ = Z.

From Walras’ law in equation (19) and symmetry across firms, it follows

Y = C + Z. (A.1)

Walras’ law also implies for all j, k

Yjk = Cjk +

K∑
k′=1

∫
=k′

Zj′k′ (j, k) dj′,

Y =
ωck
nk

C +
1

nk

(
K∑
k′=1

nk′ωk′k

)
Z,

so ℵ satisfies

nk = (1− ψ)ωck + ψ

K∑
k′=1

nk′ωk′k,

ℵ = (1− ψ)
[
I − ψΩ′

]−1
Ωc,

for ψ ≡ Z
Y . Note by construction ℵ′ι = 1, which must hold given the total measure of firms is 1.

Steady-state labor supply from equation (7) is

Wk

P
= gkL

ϕ
kC

σ.

In a symmetric steady state, Lk = nkL, so this steady state exists if gk = n−ϕk such that

Wk = W for all k. Thus, steady-state labor supply is given by

W

P
= LϕCσ. (A.2)

Households’ budget constraint, firms’ profits, production function, efficiency of production
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(from equation (15)) and optimal prices in steady state are, respectively,

CP = WL+ Π (A.3)

Π = PY −WL− PZ (A.4)

Y = L1−δZδ (A.5)

δWL = (1− δ)PZ (A.6)

sP =
θ

θ − 1
ξW 1−δP δ (A.7)

for ξ ≡ 1
1−δ

(
δ

1−δ

)−δ
.

Equation (A.7) solves

W

P
=

(
θ − 1

θξ

) 1
1−δ

. (A.8)

This latter result together with equations (A.5), (A.6), and (A.7) solves

Π

P
=

1

θ
Y.

Plugging the previous result in equation (A.4) and using equation (A.1) yields

C =

[
1− δ

(
θ − 1

θ

)]
Y (A.9)

Z = δ

(
θ − 1

θ

)
Y,

such that ψ ≡ δ
(
θ−1
θ

)
.

This result and equation (A.7) gives

L =

[
δ

(
θ − 1

θ

)]− δ
1−δ

Y,

where Y from before together with equations (A.2), (A.9) and (A.8) solves

Y =

(
θ − 1

θξ

) 1
(1−δ)(σ+ϕ)

[
δ

(
θ − 1

θ

)] δϕ
(1−δ)(σ+ϕ)

[
1− δ

(
θ − 1

θ

)]− σ
σ+ϕ

.
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B. Log-linear System

B.1 Aggregation

Aggregate and sectoral consumption which we interpret as value-added, given by equations (1)

and (2), are

ct =
K∑
k=1

ωckckt, (A.10)

ckt =
1

nk

∫
=k
cjktdj.

Aggregate and sectoral production of intermediate inputs are

zt =
K∑
k=1

nkzkt, (A.11)

zkt =
1

nk

∫
=k
zjktdj,

where equations (10) and (13) imply that zjk =
∑K

r=1 ωkrzjk (r) and zjk (r) =

1
nr

∫
=r zjk (j′, r) dj′.

Sectoral and aggregate prices are (equations (4), (6), and (12)),

pkt =

∫
=k
pjkdj for k = 1, ...,K

pct =
K∑
k=1

ωckpkt,

pkt =
K∑
k′=1

ωkk′pk′t.

Aggregation of labor is

lt =
K∑
k=1

lkt, (A.12)

lkt =

∫
=k
ljktdj.
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B.2 Demand

Households’ demands for goods in equations (3) and (5) for all k = 1, ...,K become

ckt − ct = η (pct − pkt) , (A.13)

cjkt − ckt = θ (pkt − pjkt) .

In turn, firm jk’s demands for goods in equation (11) and (14) for all k, r = 1, ...,K,

zjkt
(
k′
)
− zjkt = η

(
pkt − pk′t

)
, (A.14)

zjkt
(
j′, k′

)
− zjkt

(
k′
)

= θ
(
pk′t − pj′k′t

)
.

Firms’ gross output satisfies Walras’ law,

yjkt = (1− ψ) cjkt + ψ
K∑
k′=1

∫
=k′

zj′k′t (j, k) dj′. (A.15)

Total gross output follows from the aggregation of equations (19),

yt = (1− ψ) ct + ψzt. (A.16)

B.3 IS and Labor Supply

The household Euler equation in equation (8) becomes

ct = Et [ct+1]− σ−1
{
it −

(
Et
[
pct+1

]
− pt

)}
.

The labor supply condition in equation (7) is

wkt − pct = ϕlkt + σct. (A.17)

B.4 Firms

Production function:

yjkt = akt + (1− δ) ljkt + δzjkt (A.18)
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Efficiency condition:

wkt − pkt = zjkt − ljkt (A.19)

Marginal costs:

mckt = (1− δ)wkt + δpkt − akt (A.20)

Optimal reset price:

p∗kt = (1− αkβ)mckt + αkβEt
[
p∗kt+1

]
Sectoral prices:

pkt = (1− αk) p∗kt + αkpkt−1

B.5 Taylor Rule:

it = φπ
(
pct − pct−1

)
+ φcct

6



II Solution of Key Equations in Section III

A. Solution of Equation (28)

Setting σ = 1 and ϕ = 0 in equation (A.17) yields

wkt = ct + pct = 0,

where the equality follows from the assumed monetary policy rule, so equation (A.20) becomes

mckt = δpkt − akt.

Here, sectoral prices for all k = 1, ...,K are governed by

pkt = (1− λk)mckt

= δ (1− λk) pkt − (1− λk) akt,

which in matrix form solves

pt = − [I− δ (I− Λ) Ω]−1 (I− Λ) at.

pt ≡ [p1t, ..., pKt]
′ is the vector of sectoral prices, Λ is a diagonal matrix with the vector

[λ1, ..., λK ]′ on its diagonal, Ω is the matrix of input-output linkages, and at ≡ [a1t, ..., aKt]
′

is the vector of realizations of sectoral technology shocks.

The monetary policy rule implies ct = −pct , so

ct =
(
I− Λ′

) [
I− δ

(
I− Λ′

)
Ω′
]−1

Ω′cat.

Solution of Equation (40)

Setting σ = 1 and ϕ > 0 in (A.17) yields

wkt = ϕlskt + ct + pct = ϕldkt,

which follows from the assumed monetary policy rule.

Labor demand is obtained from the production function in equation (A.18), the efficiency

7



condition for production in equation (A.19), and the aggregation of labor in equation (A.12)

ldkt = ykt − akt − δ
(
wkt − pkt

)
.

ykt follows from equations (A.10), (A.11), (A.13), (A.14), and (A.15)

ykt = yt − η

(
pkt −

[
(1− ψ) pct + ψ

K∑
k=1

nkp
k
t

])
,

where

p̃t ≡
K∑
k=1

nkp
k
t =

K∑
k=1

ζkpkt,

with ζk ≡
∑K

k′=1 nk′ωk′k.

To solve for yt, we use equations (A.11), (A.12), (A.16) and yt =
∑K

k=1

∫
=k yjktdj to get

yt = ct + ψ

[
Γcct − Γp (p̃t − pct)− Γa

K∑
k=1

nkakt

]
,

where Γc ≡ (1−δ)(1+ϕ)
(1−ψ)+ϕ(δ−ψ) ,Γp ≡

1−δ
(1−ψ)+ϕ(δ−ψ) , Γa ≡ 1+ϕ

(1−ψ)+ϕ(δ−ψ) .

Putting together all these equations, sectoral wages solve

wkt =
ϕ

1 + δϕ

 (1 + ψΓc) ct − akt − ψΓa
∑K

k′=1 nk′ak′t

[(1− ψ) η + ψΓp] p
c
t + ψ (η − Γp) p̃t + δpkt − ηpkt

 .
With this expression, the solution to equation (40) follows the same steps as the solution

to equation (28).
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III Proofs

Most proofs below are extensions of the arguments in Gabaix (2011), Proposition 2, which in

turn rely heavily on Levy’s Theorem (as in Theorem 3.7.2 in Durrett (2013) on p. 138).

Theorem 5 (Levy’s Theorem) Suppose X1, ..., XK are i.i.d. with a distribution that satisfies

(i) limx→∞ Pr [X1 > x] /Pr [|X1| > x] = θ ∈ (0, 1)

(ii) Pr [|X1| > x] = x−ζL (x) with ζ < 2 and L (x) satisfies limx→∞ L (tx) /L (x) = 1.

Let SK =
∑K

k=1Xk,

aK = inf {x : Pr [|X1| > x] ≤ 1/K} and bK = KE
[
X11|X1|≤aK

]
, (A.21)

As K →∞, (SK − bK) /aK
d−→ u, where u has a nondegenerated distribution.

A. Proof of Proposition 1

In the following proofs, we go through three cases: first, when both first and second moments

exist, second, when only the first moment exists, and third, when neither first nor second

moments exist.

Generally, when there are no intermediate inputs (δ = 0) and price rigidity is homogeneous

across sectors (λk = λ for all k),

‖χ‖2 =
1− λ
K1/2Ck

√√√√ 1

K

K∑
k=1

C2
k .

Given the power-law distribution of Ck, the first and second moments of Ck exist when

βc > 2, so

K1/2 ‖χ‖2 −→

√
E
[
C2
k

]
E [Ck]

.

In contrast, when βc ∈ (1, 2), only the first moment exists. In such cases, by the Levy’s

theorem,

K−2/βc

K∑
k=1

C2
k

d−→ u2
0,

where u2
0 is a random variable following a Levy’s distribution with exponent βc/2 since

Pr
[
C2
k > x

]
= xβ0x

−βc/2.
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Thus,

K1−1/βc ‖χ‖2
d−→ u0

E [Ck]
.

When βc = 1, the first and second moments of Ck do not exist. For the first moment, by

Levy’s theorem, (
Ck − logK

) d−→ g,

where g is a random variable following a Levy distribution.

The second moment is equivalent to the result above and hence

(logK) ‖χ‖2
d−→ u′.

B. Proof of Proposition 2

Given the distribution of (1− λk), E[(1− λk)2] exists, so the central limit theorem applies.

C. Proof of Proposition 3

Let λk and Ck be two independent random variables distributed as specified in the Proposition,

the counter-cumulative distribution of zk = (1− λk)Ck is given by

fZ (z) =

∫ z/y0

z
fCk (z/y) f1−λk (y) dy,

which follows a Pareto distribution with shape parameter βλc. The proof of the Proposition

then follows the proof of Proposition 1 for

‖χ‖2 =
1

K1/2Ck

√
1

K
z2
k. (A.22)

D. Proof of Proposition 4

Analogous to the proof of Proposition 1.
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E. Proof of Proposition 5

When δ ∈ (0, 1), λk = λ for all k, and Ωc = 1
K ι, we know

‖χ‖2 ≥ 1− λ
K

√√√√ K∑
k=1

[1 + δ′dk + δ′2qk]
2

≥ (1− λ)

√√√√1 + 2δ′ + 2δ′2

K
+
δ′2

K2

K∑
k=1

[
d2
k + 2δ′dkqk + δ′2q2

k

]
.

Following the same argument as in Proposition 2,

K−2/βd

K∑
k=1

d2
k −→ u2

d,

K−2/βq

K∑
k=1

q2
k −→ u2

q ,

K−1/βz

K∑
k=1

dkqk −→ u2
z,

where u2
d, u

2
q and u2

z are random variables. Thus, if βz ≥ 2 min {βd, βq},

vc ≥
u3

K1−1/min{βd,βq}
v

where u2
3 is a random variable.

F. Proof of Proposition 6

This proposition follows from the dispersion of price stickiness across sectors and hence, the

same steps as in the discussion of sectoral GDP.
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Table A.1: Multipliers of Sectoral Shocks into Aggregate Volatility

This table reports multipliers of sectoral productivity shocks on GDP volatility. Multipliers are defined as the Euclidean norm

of vector χ with elements χk =

√
∞∑
τ=0

ρ2kτ . Ωc represents the vector of GDP shares, Ω the matrix of input-output linkages,

and δ the intermediate input share. We calibrate a 341-sector version of our model to the input-output tables and sector size

from the BEA and the frequencies of price adjustment from the BLS.

Flexible Prices Homogeneous Calvo Heterogeneous Calvo

(1) (2) (3)

Panel A: MODEL6

(1) hom Ωc hom Ω 5.42% 5.42% 8.88%

(2) het Ωc δ = 0 20.47% 20.47% 34.57%

(3) het Ωc hom Ω 10.97% 15.60% 24.65%

(4) hom Ωc het Ω 8.18% 6.31% 10.05%

(5) het Ωc het Ω 16.79% 18.39% 24.65%

Panel B: MODEL7

(1) hom Ωc hom Ω 5.42% 5.42% 10.23%

(2) het Ωc δ = 0 20.47% 20.47% 38.96%

(3) het Ωc hom Ω 10.97% 16.26% 29.51%

(4) hom Ωc het Ω 8.18% 6.20% 11.14%

(5) het Ωc het Ω 16.79% 18.65% 27.51%

Panel C: MODEL8

(1) hom Ωc hom Ω 5.42% 5.42% 10.93%

(2) het Ωc δ = 0 20.47% 20.47% 42.79%

(3) het Ωc hom Ω 17.65% 17.53% 33.11%

(4) hom Ωc het Ω 5.69% 5.68% 11.51%

(5) het Ωc het Ω 19.21% 18.55% 28.69%
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Table A.2: Multipliers of Sectoral Shocks into Aggregate Volatility

This table reports multipliers of sectoral productivity shocks on GDP volatility. Multipliers are defined as the Euclidean norm

of vector χ with elements χk =

√
∞∑
τ=0

ρ2kτ . Ωc represents the vector of GDP shares, Ω the matrix of input-output linkages,

and δ the intermediate input share. We calibrate a 341-sector version of our model to the input-output tables and sector size

from the BEA and the frequencies of price adjustment from the BLS.

Flexible Prices Homogeneous Calvo Heterogeneous Calvo

(1) (2) (3)

θ = 11

Panel A: MODEL1

(1) hom Ωc hom Ω 5.42% 5.42% 15.65%

(2) het Ωc δ = 0 20.47% 20.47% 51.53%

(3) het Ωc hom Ω 11.26% 20.20% 50.32%

(4) hom Ωc het Ω 8.01% 5.42% 16.35%

(5) het Ωc het Ω 16.88% 20.35% 44.24%

Panel B: MODEL2

(1) hom Ωc hom Ω 5.42% 5.42% 7.87%

(2) het Ωc δ = 0 20.47% 20.47% 26.22%

(3) het Ωc hom Ω 11.26% 15.13% 23.61%

(4) hom Ωc het Ω 8.01% 6.35% 9.06%

(5) het Ωc het Ω 16.88% 18.19% 23.82%

η = 1

Panel C: MODEL1

(1) hom Ωc hom Ω 5.42% 5.42% 15.65%

(2) het Ωc δ = 0 20.47% 20.47% 51.53%

(3) het Ωc hom Ω 11.26% 20.20% 50.32%

(4) hom Ωc het Ω 8.01% 5.42% 16.35%

(5) het Ωc het Ω 16.88% 20.35% 44.24%

Panel D: MODEL2

(1) hom Ωc hom Ω 5.42% 5.42% 8.30%

(2) het Ωc δ = 0 20.47% 20.47% 26.22%

(3) het Ωc hom Ω 11.26% 15.85% 25.44%

(4) hom Ωc het Ω 8.01% 6.12% 9.31%

(5) het Ωc het Ω 16.88% 18.47% 25.00%
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Table A.3: Multipliers of Sectoral Shocks into Aggregate Volatility: Calibrated
Shocks

This table reports multipliers of sectoral productivity shocks on GDP volatility. Multipliers are defined as the Euclidean norm

of vector χ with elements χk =

√
∞∑
τ=0

ρ2kτ . Ωc represents the vector of GDP shares, Ω the matrix of input-output linkages,

and δ the intermediate input share. We calibrate a 341-sector version of our model to the input-output tables, sector size

from the BEA and the frequencies of price adjustment from the BLS. The size of the shocks is calibrated to sectoral TFP

shocks from the CES manufacturing database.

Flexible Prices Homogeneous Calvo Heterogeneous Calvo

(1) (2) (3)

(1) hom Ωc hom Ω 7.73% 7.73% 19.71%

(2) het Ωc δ = 0 15.44% 15.44% 38.29%

(3) het Ωc hom Ω 9.97% 13.12% 36.90%

(4) hom Ωc het Ω 9.80% 8.28% 19.74%

(5) het Ωc het Ω 11.82% 13.49% 36.94%
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