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Abstract 
 
I study the optimal taxation of robots and labor income. In the model, robots substitute for 
routine labor and complement non-routine labor. I show that while it is optimal to distort robot 
adoption, robots may be either taxed or subsidized. The robot tax exploits general-equilibrium 
effects to compress the wage distribution. Wage compression reduces income-tax distortions of 
labor supply, thereby raising welfare. In the calibrated model, the optimal robot tax for the US is 
positive and generates small welfare gains. As the price of robots falls, inequality rises but the 
robot tax and its welfare impact become negligible. 
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1 Introduction

Public concern about the distributional consequences of automation is growing (see e.g.

Ford, 2015; Brynjolfsson and McAfee, 2014; Frey et al., 2017). It is feared that the “rise

of the robots” is going to disrupt the labor market and will lead to extreme income

inequality. These concerns have raised the question how redistributive policy should

respond to automation. Some policy makers and opinion leaders have suggested a “tax

on robots”.1,2 Is this a good idea? This paper tries to answer that question. I find that

while it is generally optimal to distort the use of robots, robots may be either taxed

or subsidized. The robot tax exploits general equilibrium effects to compress the wage

distribution. Wage compression makes it less distortionary to tax income, which allows for

more redistribution overall and raises welfare. If robots primarily substitute for routine

labor at medium incomes, a tax on robots decreases wage inequality at the top of the

wage distribution, but raises inequality at the bottom. The sign of the robot tax is then

theoretically ambiguous. Quantitatively, in the US, the optimal robot tax equals 1.8%

if occupations are fixed, but decreases to 0.86% with occupational choice. The welfare

impact of introducing a robot tax is small. As the price of robots falls, inequality increases

but the robot tax and its welfare impact become negligible.

To reach these conclusions, I first build intuition by studying a stylized model based

on Stiglitz (1982). The full model then embeds automation similar to Acemoglu and

Restrepo (2018a) and labor market polarization as in Autor and Dorn (2013) in an

optimal taxation framework based on Rothschild and Scheuer (2013, 2014). For the

quantitative analysis, I calibrate the full model to the US economy, using data from the

Current Population Survey (CPS), as well as evidence on the impact of robots on the

labor market from Acemoglu and Restrepo (2017).

The stylized model extends Stiglitz (1982) to three occupations: manual non-routine,

routine, and cognitive non-routine. It captures that cognitive non-routine workers earn

on average higher wages than routine workers, who in turn earn higher wages than manual

non-routine workers (see e.g. Acemoglu and Autor, 2011). Workers are fixed-assigned to

one of the three occupations. Moreover, while in Stiglitz (1982) output is produced by

labor only, I introduce robots as additional production factor. Crucially, robots are more

1See e.g. this quote from a Draft report by the Committee on Legal Affairs of the European Parlia-
ment.

“Bearing in mind the effects that the development and deployment of robotics and AI might
have on employment and, consequently, on the viability of the social security systems of the
Member States, consideration should be given to the possible need to introduce corporate
reporting requirements on the extent and proportion of the contribution of robotics and
AI to the economic results of a company for the purpose of taxation and social security
contributions;”

2Bill Gates has advocated for a tax on robots. See https://qz.com/911968/

bill-gates-the-robot-that-takes-your-job-should-pay-taxes/
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complementary to non-routine labor than to routine labor. An increase in the amount

of robots therefore lowers demand and wages for routine workers relative to non-routine

workers. The robot tax exploits this differential impact of robots on wages. I derive a

formula for the optimal robot tax which features elasticities of relative wage rates with

respect to robots and incentive effects. Under the realistic assumption that income taxes

may not be conditioned on occupation, the robot tax is in general not zero, violating

production efficiency (see Diamond and Mirrlees, 1971). However, it is theoretically

ambiguous whether robots should be taxed or subsidized. This is because the robot tax

has counteracting effects on wages at the top and the bottom of the wage distribution.

Ceteris paribus, the robot tax is larger, the more robots raise wage inequality between

cognitive non-routine workers and routine workers; it is lower, the more robots compress

the wage gap between routine workers and manual non-routine workers. The incentive

effects capture how much a change in relative wages affects income-tax distortions of labor

supply. In addition, they capture how much the government values redistribution between

workers with different incomes. Ceteris paribus: the more a reduction of inequality at

the top of the wage distribution lowers income-tax distortions of labor supply, the larger

is the optimal tax on robots; moreover, the robot tax is larger, the more the government

cares about reducing income-tax distortions at the top. In contrast, the tax on robots

is smaller, the more an expansion of inequality at the bottom of the wage distribution

worsens income-tax distortions of labor supply, and the more the government cares about

these. Optimal marginal income tax rates are adjusted if robots can be taxed. If manual

and cognitive non-routine labor are sufficiently complementary, the presence of a robot

tax leads to higher marginal tax rates at low incomes, and to lower marginal tax rates at

high incomes. The resulting labor-supply responses contribute to wage compression.

What the sign and size of the optimal robot tax should be is ultimately a quantitative

question. The stylized model misses two features which are particularly important for

a quantitative analysis: continuous wage distributions which overlap occupations, and

the possibility of switching occupations. With continuous wages, the impact of robots

on inequality can be captured more realistically, while occupational choice is a relevant

margin of adjustment to automation (Dauth et al., 2018). The full model incorporates

both features, building upon Rothschild and Scheuer (2013). Individuals now differ in

three-dimensional ability, based on which they choose labor supply and their occupation.

The expression for the optimal robot tax has a similar structure as in the stylized model:

elasticities of relative wage rates with respect to robots are again central. In addition,

a tax on robots now leads to a reallocation of labor supply within occupations, which

affects how much labor supply is distorted by income taxation. In the robot tax formula,

this is captured by effort-reallocation effects. Also, since a tax on robots drives up wages

in routine occupations relative to non-routine occupations, some non-routine workers find

it beneficial to switch to routine work. The robot-tax formula captures this by including
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occupational-shift effects. By switching occupations, individuals offset part of the wage

compression which can be achieved by taxing robots. As a result, the robot tax becomes

a less effective policy instrument.

To assess the optimal policy quantitatively, I calibrate the full model to the US econ-

omy. To do so, I use data on wages and occupational choice from the CPS. Moreover,

I calibrate the impact of robots on wages based on Acemoglu and Restrepo (2017). I

compute optimal policy for two scenarios: one in which occupations are fixed, and one in

which occupational switching is possible. Without occupational switching, the optimal

robot tax is 1.8%. The welfare gain of introducing a robot tax expressed in dollars per

person per year is 21.14$. With occupational switching, the robot tax equals 0.86%, and

its welfare impact is reduced to 9.22$. In both scenarios, optimal marginal income tax

rates are adjusted if robots can be taxed. With the robot tax, marginal income tax rates

are higher at low and medium incomes, and lower at high incomes, thereby exploiting

labor-supply responses for wage compression.

Finally, I study the impact of a drop in the price of robots for the two scenarios.

In both scenarios, wage inequality ultimately increases as the average wage of routine

workers falls, while non-routine workers experience wage gains. Moreover, if possible,

individuals switch from routine into non-routine occupations. Although wage inequality

increases, the robot tax eventually approaches a value close to zero. Without occupational

switching, the welfare gain from taxing robots increases at first as the price of robots falls,

but it never exceeds 25$ per person per year. Moreover, in both scenarios the welfare

gain of taxing robots eventually becomes negligible. In light of the small welfare gains, I

conclude that this paper does not provide a strong case for a tax on robots.

The remainder of the paper is structured as follows: Section 2 discusses the related

literature. Section 3 sets up a simplified model with discrete worker types and without

occupational choice to build intuition. Section 4 introduces continuous types and occupa-

tional choice and characterizes the optimal robot tax in the full model. Section 5 studies

the quantitative implications of the model. Section 6 concludes. Proofs and additional

material are contained in an Appendix.

2 Related literature

This paper builds upon the framework by Rothschild and Scheuer (2013, 2014) who

study optimal non-linear income taxation with multi-dimensional heterogeneity and sec-

toral choice, thereby extending and generalizing Stiglitz (1982). The modeling of the

economy in the quantitative part combines a production technology similar to Acemoglu

and Restrepo (2018a) and Autor and Dorn (2013) with a Roy (1951) model of occupa-

tional choice. In addition, this paper is related to different strands in the literature which

are discussed below.
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Optimal taxation and technological change. A growing number of papers in-

vestigates the question how taxes should respond to technological change. Most closely

related is Guerreiro et al. (2017), who in parallel and independent work also ask whether

robots should be taxed. Their model features two discrete types of workers – routine and

non-routine – who are assigned tasks. In addition, some tasks are performed by robots.

In a model like Stiglitz (1982) in which labor income is taxed non-linearly, they show

that it is optimal to tax robots (provided that some tasks are still performed by routine

labor). The rationale for taxing robots is the same as in this paper: compressing the

wage distribution to reduce income-tax distortions of labor supply. Arguing that such a

non-linear tax system can be complex and difficult to implement, Guerreiro et al. (2017)

then focus on parametric tax schedules. Under the parametric tax systems, a tax on

robots is also optimal. Finally, Guerreiro et al. (2017) introduce occupational choice by

assuming that individuals have different preferences for non-routine work.

This paper differs from Guerreiro et al. (2017) in important ways. First, by writing

technology as a function of the aggregate amount of robots, this paper arrives at optimal

tax expressions which are easily interpretable. For example, they feature the elasticities

of relative wage rates with respect to robots. Second, by considering three groups of

occupations, I allow for wage polarization. The empirical literature on the labor market

effects of technological change has highlighted that routine workers are found in the

middle of the income distribution (see e.g. Acemoglu and Autor, 2011). The sign of

the robot tax is then theoretically ambiguous. Third, my model features heterogeneity

within occupations and thus generates a realistic wage distribution, while the model

by Guerreiro et al. (2017) only features two levels of wages in the economy. Fourth, I

model occupational choice based on individuals’ earnings abilities in different occupations,

relating to the literature on employment polarization (see e.g. Acemoglu and Autor, 2011;

Autor and Dorn, 2013; Goos et al., 2014; Cortes, 2016).

What the optimal level of the robot tax should be is ultimately a quantitative question.

Here, my analysis goes beyond that of Guerreiro et al. (2017) whose numerical examples

are mostly illustrative.3 I calibrate my model based on data for the US economy and

match the distribution of incomes and employment. Moreover, I use the empirical evi-

dence on the labor market effects of robots by Acemoglu and Restrepo (2017). Based on

the calibrated model, I find an optimal robot tax which is substantially lower than the

maximum levels found by Guerreiro et al. (2017).4 Finally, while Guerreiro et al. (2017)

compare welfare across different tax systems, they do not isolate the welfare impact of

introducing a robot tax – though this is arguably a relevant number to answer the ques-

3For example, in their simulations, routine and non-routine workers initially earn the same wage and
make up equal shares of the population.

4They find an optimal robot tax of up to 10% in the model with non-linear taxes. In the version in
which they augment the parametric tax function by Heathcote et al. (2017) with a lump-sup rebate, the
robot tax reaches up to 30%.

5



tion whether robots should be taxed. Based on the small welfare gains of taxing robots,

this paper does not provide a strong case for taxing robots.

Related, Costinot and Werning (2018) ask how tax policy should respond to inequality

driven by technology or trade if the set of policy instruments is restricted, such that

production efficiency as in Diamond and Mirrlees (1971) is not optimal (see below for

more on the relation to production efficiency). As one application, they study the optimal

tax on robots, assuming that labor income can be taxed non-linearly, but may not depend

on a worker’s type. As in this paper, if wages of different workers are differentially affected

by robots, taxing robots is optimal to reduce inequality in order to dampen income-tax

distortions of labor supply. For a general production technology, Costinot and Werning

(2018) derive a sufficient-statistics formula for the optimal robot tax which depends only

on elasticities, factor shares, and marginal income tax rates. One important ingredient

is the elasticity of wages with respect to robots, which is also central for optimal robot

taxation in this paper. Using their formula, Costinot and Werning (2018) find optimal

robot taxes of very similar magnitude as this paper.

The sufficient-statistics approach makes the paper by Costinot and Werning (2018)

complementary to this paper. It allows to make statements about the optimal robot

tax without having to assume a lot of structure on the economy. However, the sufficient-

statistics formula is only valid if the economy is already at a policy optimum. In contrast,

the more structural approach in this paper does not impose that restriction. Moreover,

it allows to analyze counterfactuals, such as the impact of a drop in the robot price on

the optimal robot tax. In fact, Costinot and Werning (2018) also assume more structure

when they analyze the impact of a drop in the price of robots on the optimal robot tax in

a stylized model. They show that despite robots being used more and inequality growing,

the optimal robot tax falls. In my fully calibrated quantitative analysis, I find as well

that the optimal robot tax may drop as robots get cheaper.

Related, Tsyvinski and Werquin (2018) derive how a given tax system needs to be

adjusted to compensate individuals for the distributional effects of, for example, trade or

automation. In an application, they use the results from Acemoglu and Restrepo (2017)

to investigate how individuals should be compensated for changes in income generated by

the increased use of industrial robots. In contrast to this paper, Tsyvinski and Werquin

(2018) do not study optimal taxation. Other papers (Gasteiger and Prettner, 2017;

Hemous and Olsen, 2018) study the impact of taxing robots, taking a positive – rather

than a normative – perspective.

The implications of technological change for tax policy are also analyzed by Ales et al.

(2015) who study a model in which individuals are assigned to tasks based on comparative

advantage. However, Ales et al. (2015) do not model automation nor do they study robot

taxation.
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Production efficiency. A tax on robots violates production efficiency. This paper is

thus related to the Production Efficiency Theorem (Diamond and Mirrlees, 1971) which

states that production decisions should not be distorted, provided that the government

can tax all production factors – inputs and outputs – linearly and at different rates. In

addition, the Atkinson-Stiglitz Theorem (Atkinson and Stiglitz, 1976) states that if utility

is weakly separable between consumption and leisure and the government can use a non-

linear income tax, commodity taxes should not be used for redistribution. Combining

the two theorems implies that neither consumption nor production should be distorted

for redistributive reasons, provided the government can tax labor income non-linearly

and has access to sufficient instruments to tax inputs and outputs. This implication has

subsequently been put into perspective by Naito (1999); Saez (2004); Naito (2004); Ja-

cobs (2015); Shourideh and Hosseini (2018); Costinot and Werning (2018) who all study

settings which feature fewer tax instruments than required for achieving production effi-

ciency. Similarly, in this paper, the set of tax instruments is too restricted for production

efficiency to be optimal. In particular, income taxes may not be conditioned on occu-

pation.5 In a related setting, Scheuer (2014) studies optimal taxation of labor income

and entrepreneurial profits. He shows that when labor income and profits are subject to

the same non-linear tax schedule, it is optimal to distort production efficiency in order

to compress wages differentially. Production efficiency is restored if labor income and

profits can be subject to different tax schedules.6 This paper focuses on the realistic case

in which income taxes are not conditioned on occupation.

Robots and the labor market. A recent empirical literature studies the impact of

robots on the labor market.7 Using data on industrial robots from the International

Federation of Robotics (IFR, 2014), Acemoglu and Restrepo (2017) exploit variation in

exposure to robots across US commuting zones to identify the causal effect of industrial

robots on employment and wages between 1990 and 2007. I use their results to inform

the quantitative analysis. Other articles which study the impact of robots on labor mar-

kets are Graetz and Michaels (2018) for a panel of 17 countries and Dauth et al. (2018)

for Germany. A related literature studies labor market polarization due to technological

change (see e.g. Goos et al., 2014; Cortes et al., 2017). Autor and Dorn (2013) investigate

the impact of ICT technology on wages and employment in routine and non-routine oc-

cupations. In their model, ICT technology substitutes for routine labor and complements

5Saez (2004) refers to this as a violation of the labor-types-observability assumption.
6Gomes et al. (2018) set up a model in which workers with continuously distributed ability choose

both, intensive margin labor supply and occupation, as they do in this paper. They then study optimal
occupation-specific non-linear income taxation and show that occupational choice is optimally distorted.
They refer to this as a distortion of production efficiency. In Scheuer (2014), occupational choice is
distorted in the presence of occupation-specific taxes – however, production is efficient.

7Also related are papers which study the impact of robots on the economy theoretically (see Berg
et al., 2018; Acemoglu and Restrepo, 2018b).
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non-routine labor. To capture the differential impact of robots on routine and non-routine

occupations, I model production in a similar way. Moreover, to capture automation, I

use elements from Acemoglu and Restrepo (2018a) (see also Guerreiro et al., 2018).

Taxation of capital. Robots are a specific type of capital, which relates this paper

to the literature on capital taxation. However, most arguments for taxing capital do

not depend on the differential impact of capital on wages. Such arguments are therefore

orthogonal to the reason for which robots are taxed in this paper. An exception is Slav́ık

and Yazici (2014) who give a similar argument for taxing equipment capital as this paper

does for taxing robots. Due to capital-skill complementarity (Krusell et al., 2000), a tax on

equipment capital depresses the skill-premium, thereby reducing income-tax distortions of

labor supply. In contrast, structures capital, which is equally complementary to low and

high-skilled labor, should not be taxed. In their quantitative analysis for the US economy,

they find an optimal tax on equipment capital of almost 40%. Moreover, they find large

welfare gains of moving from non-differentiated to differentiated capital taxation. One

reason for the different welfare implications is that I study the effect of introducing a

robot tax into a system which taxes labor income optimally, whereas Slav́ık and Yazici

(2014) start out from the current US tax system in which this is not the case. Moreover,

I allow for robots to polarize the wage distribution, which leads to counteracting effects

of the robot tax on the top and the bottom of the wage distribution.8

3 Model with discrete types and no occupational

choice

To develop intuition, I first discuss a simple model which features discrete types and

abstracts from occupational choice. The model extends Stiglitz (1982) to three sectors (or

occupations) and features endogenous wages. The model illustrates the key arguments for

taxing robots. However, it is too stylized for a quantitative analysis, and by abstracting

from occupational choice leaves out an important adjustment margin. In Section 4, I

discuss a richer model with continuous types and occupational choice which is amenable

to a realistic calibration, and thus suitable to analyze the optimal taxation of robots

quantitatively.

8In Slav́ık and Yazici (2014) the returns to capital are taxed, whereas in my model the tax is levied
on the stock of robots, which is another reason for the smaller magnitude of taxes in my paper.
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3.1 Setup

3.1.1 Workers, occupations and preferences

There are three types of workers i ∈ I ≡ {M,R,C} with corresponding mass fi. A

worker’s type corresponds to his occupation, where M refers to an occupation which re-

quires manual non-routine labor, R refers to an occupation requiring routine labor, and

C denotes a cognitive non-routine occupation. The distinction between routine and non-

routine occupations is motivated by the empirical literature which has established that

in recent decades technology has substituted for routine work, and has complemented

non-routine work (see e.g. Autor et al., 2003). Moreover, the literature on labor mar-

ket polarization suggests to distinguish between low-skilled and high-skilled non-routine

occupations (see e.g. Cortes, 2016; Cortes et al., 2017). Workers derive utility from

consumption c and disutility from labor supply `, according to the quasi-linear utility

function

U (c, `) = c− `1+ 1
ε

1 + 1
ε

, (1)

where ε is the labor-supply elasticity.

3.1.2 Technology

Denote by L ≡ (LM , LR, LC) the vector of aggregate labor supplies with Li = fi`i for all

i ∈ I. Let B denote robots. The final good is produced by a representative firm according

to a constant-returns-to-scale production function Y (L, B). The firm maximizes profits

by choosing the amount of total labor of each type i ∈ I and the number of robots, taking

wages wi and the price of robots p as given. Normalizing the price of the final good to

one, the firm’s profit maximization problem is

max
L,B

Y (L, B)−
∑
i∈I

wiLi − pB. (2)

Denote the marginal products of total effective labor as

Yi (L, B) ≡ ∂Y (L, B)

∂Li
∀i ∈ I, (3)

and the marginal product with respect to robots as

YB (L, B) ≡ ∂Y (L, B)

∂B
. (4)

In equilibrium, we then have wi (L, B) = Yi (L, B) ∀i ∈ I and p = YB (L, B). Unless

stated otherwise, I assume throughout that robots are better substitutes for routine work

than for non-routine work. More specifically, I make the following assumption
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Assumption 1. A marginal increase in the amount of robots raises the marginal product

of non-routine labor relative to routine labor.

• ∂
∂B

(
YM (L,B)
YR(L,B)

)
> 0,

• ∂
∂B

(
YC(L,B)
YR(L,B)

)
> 0.

Due to constant returns to scale, equilibrium profits are zero. Robots are produced

linearly with the final good, according to

B (x) =
1

q
x, (5)

where I denote by x the amount of the final good allocated to the production of robots,

and where 1/q is the marginal rate of transformation between robots and the consumption

good. In the absence of taxes, we then have p = q in equilibrium. Later, when taxes

drive a wedge between p and q, I refer to q as the producer price of robots and to p as

the user price of robots.

3.1.3 Government and tax instruments

There is a benevolent government whose objective it is to maximize social welfare

W ≡ fMψMVM + fRψRVR + fCψCVC , (6)

where ψi is the Pareto weight attached to workers of type i, where the weights satisfy∑
fiψi = 1, and Vi ≡ U (ci, `i) are indirect utilities. While the government is aware of the

structure of the economy, it cannot observe an individual’s occupation. This assumption

is satisfied by real-world tax systems which also do not condition taxes on occupation,

for example, because enforcement may be difficult. However, the government can observe

individual income and consumption, as well as the value of robots purchased by the

final goods producer. Accordingly, I assume that the government has access to two tax

instruments: a non-linear income tax, and a tax on the value of robots.

Denote by yi ≡ wi`i gross labor income earned by an individual of type i. The

government levies a non-linear income tax T (y) on gross labor income y. Taking the

wage and income tax schedule as given, a worker of type i then maximizes utility (1) by

choosing consumption and labor supply subject to a budget constraint:

max
ci,`i

U (ci, `i) s.t. ci ≤ wi`i − T (wi`i) . (7)

The value of robots purchased by the final goods producer is given by qB, on which

the government may levy a proportional tax τ , to which I refer as robot tax.9 The user

9I focus on a linear tax on robots, since with a non-linear tax and constant returns to scale there

10



price of robots is then p = (1 + τ) q. While throughout this paper I refer to τ as a tax on

robots, I highlight that τ may be negative, and may thus be a subsidy. The government

faces the budget constraint

fMT (yM) + fRT (yR) + fCT (yC) + τqB = 0, (8)

stating that by raising tax revenue with the income tax and the robot tax, it must break

even. Introducing an exogenous revenue requirement does not change the analysis.

3.2 Optimal policy

The government chooses tax instruments T (·) and τ such as to maximize social welfare (6)

subject to budget constraint (8). To characterize optimal taxes, I follow the conventional

approach of first solving for the optimal allocation from a mechanism design problem.

Afterward, prices and optimal taxes that decentralize the allocation are determined.

The optimal allocation can be implemented using a linear tax on the value of robots (in

conjunction with the optimal non-linear income tax). To see this, note that since firms

maximize profits, they equate the marginal return to robots with the price of robots.

Under laissez-faire, we thus have

YB (L, B) = q. (9)

However, given L, the planner might want to distort the choice of robots such that (9) is

no longer satisfied. By setting a linear tax τ on the value of robots, profit maximization

of the firm leads to

YB (L, B) = (1 + τ) q. (10)

Since YB (L, B) is strictly monotone in B, for each B there exists a unique robot tax

τ such that (10) holds. For given optimal L, the optimal robot tax τ thus uniquely

implements the optimal B.

In a direct mechanism, workers announce their type i, and then get assigned consump-

tion ci and labor supply `i. Here, I consider the equivalent problem in which instead of

consumption, the planner allocates indirect utilities Vi and define c (Vi, `i) as the inverse

of U (ci, `i) with respect to its first argument.

The allocation must induce workers to truthfully report their type and thus needs to be

incentive compatible. Since there is no heterogeneity of types within occupations, the only

way in which workers can imitate one another is by mimicking incomes of workers in other

occupations. I assume that the primitives of the model are such that wC > wR > wM is

satisfied. Moreover, I limit attention to those cases in which only the downward adjacent

would be incentives for firms to break up into parts until each part faces the same minimum tax burden.
With linear taxes, such incentives are absent.
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incentive constraints may be binding, while all other incentive constraints are slack. This

case is the relevant one for gaining intuition which carries over to the continuous-type

model.10 To induce a cognitive worker to truthfully report his type, the following must

hold

VC ≥ U

(
c (VR, `R) , `R

wR (L, B)

wC (L, B)

)
, (11)

where `R
wR
wC

is the amount of labor which a cognitive worker needs to supply to mimic

the income of a routine worker. Similarly, a routine worker has to be prevented from

mimicking the income of manual workers, and thus

VR ≥ U

(
c (VM , `M) , `M

wM (L, B)

wR (L, B)

)
. (12)

3.2.1 Separation into inner and outer problem

I follow Rothschild and Scheuer (2013, 2014) and separate the mechanism design problem

into an inner problem and an outer problem.11 In the inner problem, the planner takes the

tuple of inputs (L, B) as given and maximizes welfare W (L, B) over {Vi, `i}i∈I subject

to constraints (specified below). In the outer problem, the planner chooses the vector

L = (LM , LR, LC) and robots B such that W (L, B) is maximized. The mechanism

design problem can thus be written as

max
L,B
W (L, B) ≡ max

{Vi,`i}i∈I
fMψMVM + fRψRVR + fCψCVC (13)

subject to the incentive constraints (11) and (12), the consistency conditions

fi`i − Li = 0 ∀i ∈ I, (14)

and the resource constraint∑
i∈I

fi`iYi (L, B) + YB (L, B)B −
∑
i∈I

fici − qB = 0. (15)

The consistency conditions (14) restate the definition of aggregate labor supplies. Since

the inner and outer problem separate optimization over individual labor supplies and

aggregate labor supplies, including the consistency conditions ensures that the labor

market clears. The first two terms in the resource constraint (15) sum to total output

Y (L, B). The final term captures that x = qB units of the final good have to be used to

10See also the discussion in Stiglitz (1982) regarding downward-binding incentive constraints.
11The approach has the advantage of generating expressions for the optimal income tax similar to

models without occupations. While I could characterize optimal policy in this simple framework without
this separation, the approach will turn out to be useful in the full model. Already applying it here leads
to expressions which can be easily compared to those in the full model, as the structure of the problem
remains the same.
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produce B robots.

3.2.2 Optimal robot tax

I first characterize the optimal robot tax by using that in the outer problem at the

optimum ∂W (L, B) /∂B = 0, hence a change in robots may not lead to a change in

welfare.

Proposition 1. The optimal tax on robots is characterized by

τqB =εwC/wR,B ICR − εwM/wR,B IRM (16)

with elasticities of relative wages with respect to the number of robots defined as

εwC/wR,B ≡
∂ (wC/wR)

∂B

B

wC/wR
> 0, (17)

εwM/wR,B ≡
∂ (wM/wR)

∂B

B

wM/wR
> 0, (18)

and incentive effects

ICR ≡ fC (1− ψC)

(
`R
wR
wC

)1+ 1
ε

, (19)

IRM ≡ fM (ψM − 1)

(
`M

wM
wR

)1+ 1
ε

. (20)

Proof. See Appendix A.1.

The left-hand side of (16), τqB, is the tax revenue raised with the robot tax. Ceteris

paribus, the robot tax is thus larger in magnitude, the smaller the cost of producing

robots, q, and the lower the number of robots, B. At the optimum, robot-tax revenue

is equal to the difference in incentive effects ICR and IMR, weighted by the respective

elasticity terms, εwC/wR,B and εwM/wR,B. The elasticity terms capture the percentage

increase in wages of non-routine workers relative to the wage of routine workers due to

a one-percent increase in the number of robots. By Assumption 1, an increase in robots

raises the equilibrium-wage of non-routine workers relative to routine workers. As a

consequence, εwC/wR,B > 0 and εwM/wR,B > 0. The incentive effects ICR and IRM capture

how incentive constraints (11) and (12) are affected by a marginal increase in robots, and

how this, in turn, affects welfare.

I first focus on ICR. Raising the number of robots increases wC/wR, and since wC >

wR, wage inequality at the top of the wage distribution rises.12 Regular welfare weights

12There are only three levels of wages, wM , wR, wC . With inequality at the top of the distribution,
I refer to the gap between wC and wR. Inequality at the bottom of the distribution refers to the gap
between wR and wM .
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decrease with income, leading to ψC < 1. The government thus attaches a lower-than-

average weight to cognitive non-routine workers. In this case, it is desirable to redistribute

income from cognitive non-routine workers to workers who earn less. The increase in wage

inequality at the top then tightens the incentive constraint (11): cognitive non-routine

workers now need to put in less labor than before to imitate the income of a routine

worker. This tightening of (11) corresponds to increased income-tax distortions of labor

supply, which limits redistribution and lowers welfare.

The robot tax has the opposite effect to an increase in B. By increasing the user price

of robots p, the equilibrium number of robots falls. As a consequence, wC/wR drops,

which corresponds to a reduction in wage inequality at the top of the wage distribution;

and to a relaxation of incentive constraint (11). Relaxing (11) is welfare improving: it

becomes less distortionary to use the income tax to redistribute income from cognitive

non-routine workers to other workers. Ceteris paribus, a larger incentive effect ICR calls

for a higher tax on robots. If labor supply is more elastic (higher ε) income taxation

is more distortionary. As a result, ICR is larger, and so is the optimal robot tax. The

weighting of incentive effect ICR by elasticity εwC/wR,B captures how effective taxing

robots is in reducing the wage gap wC/wR.

I now turn to the second term on the right-hand side of (16). The incentive effect IRM

captures how reducing the wage gap between wR and wM affects welfare via the incentive

constraint (12). With regular welfare weights we have ψM > 1, hence the government

values redistributing income to manual non-routine workers. In this case, lowering the gap

between wR and wM relaxes (12), and makes it less distortionary to redistribute income

with the income tax, captured by IRM > 0. The weighting with elasticity εwM/wR,B > 0

captures how effective the robot tax is in changing the wage gap between wR and wM .

The minus sign is crucial: a tax on robots increases the wage of routine workers relative

to manual non-routine workers. As inequality at the bottom of the wage distribution

increases, the incentive constraint (12) tightens. Redistributing to manual non-routine

workers with the income tax becomes more distortionary, thereby lowering welfare. This

effect, ceteris paribus, calls for a lower tax on robots.

To summarize: it is welfare-maximizing to distort the price of robots to make income

redistribution less distortionary – and to thereby violate production efficiency (Diamond

and Mirrlees, 1971). A tax on robots decreases wage inequality between cognitive and

routine workers, thereby reducing income-tax distortions of labor supply and increasing

welfare. At the same time, a tax on robots raises the wage gap between routine and

manual workers, which worsens income-tax distortions of labor supply and lowers welfare.

Due to these opposing forces, the sign of the robot tax is ambiguous. If the first effect

dominates, robots should be taxed, whereas if the second effect is more important, robots

should be subsidized.

Ceteris paribus, several factors make it more likely for the optimal robot tax to be
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positive: if robots increase wage inequality at the top of the distribution more than

they reduce inequality at the bottom; if the share of cognitive non-routine workers is

large, whereas the share of manual non-routine workers is small; if the wage gap between

cognitive and routine workers is small, whereas the wage gap between routine and manual

workers is large; finally, if the government attaches relatively little weight ψC and ψM to

cognitive workers and manual workers, respectively. The final point can be restated as

the government attaching relatively more weight ψR to routine workers. This is intuitive:

as routine workers gain relative to non-routine workers when robots are taxed, putting

relatively more weight on them calls for a larger tax on robots.

Only in special cases is the tax on robots zero. First, it is zero if the government can

condition income taxes on occupation, which restores production efficiency (Diamond

and Mirrlees, 1971). Moreover, since in the simple model worker types and occupations

coincide, occupation-specific income taxes correspond to individualized lump-sum taxes,

leading to the first-best outcome. Similarly, the optimal robot tax is zero if income

taxation does not distort labor supply, corresponding to ε→ 0. The robot tax is also zero

if the effect of reducing labor-supply distortions at the top of the wage distribution exactly

cancels against the effect of raising labor-supply distortions at the bottom. Finally, if in

contrast to what I have assumed so far, robots are equally complementary to labor in all

occupations, the optimal robot tax is zero, since in this case εwC/wR = εwR/wM = 0.13

The ambiguous sign of the robot tax is in contrast to Guerreiro et al. (2017) who argue

that the robot tax should be positive. This is due to Guerreiro et al. (2017) considering

only two groups of workers: routine and non-routine. In their model, taxing robots

unambiguously relaxes the single binding incentive constraint. My result highlights that

aggregating workers into just two groups can be misleading as it masks heterogeneous

effects of robots on wages along the income distribution. The empirical literature (see

e.g. Autor and Dorn, 2013) finds that routine workers are not found at the very bottom of

the income distribution. Instead, those who earn least often perform manual non-routine

work which is hard to automate. In this case, taxing robots will widen inequality at the

bottom of the wage distribution, thereby worsening income-tax distortions of labor supply.

If these effects are taken into account, the sign of the robot tax becomes ambiguous.

3.2.3 Optimal income taxes

I now use the inner problem, taking L and B as given, to characterize optimal marginal

income taxes.

Proposition 2. Let µ denote the multiplier on the resource constraint (15). Let µηCR

be the multiplier on incentive constraint (11) and µηRM the multiplier on (12). Define

13Along the same lines, Slav́ık and Yazici (2014) show that structures capital which is equally comple-
mentary to labor in all occupations should not be taxed.
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µξi as the multiplier on the consistency condition for occupation i in (14). The optimal

marginal income tax rates satisfy

T ′M + ξM
YM

1− T ′M
= (ψM − 1)

(
1−

(
wM
wR

)1+ 1
ε

)
(21)

T ′R + ξR
YR

1− T ′R
=
fC
fR

(1− ψC)

(
1−

(
wR
wC

)1+ 1
ε

)
(22)

T ′C = − ξC
YC
, (23)

with

ξi = ε̃wR/wC ,LiICR + ε̃wM/wR,LiIRM , (24)

where the semi-elasticities of relative wages with respect to Lj are defined as

ε̃wR/wC ,Li ≡
∂

∂Li

(
wR
wC

)
wC
wR

(25)

and

ε̃wM/wR,Li ≡
∂

∂Li

(
wM
wR

)
wR
wM

. (26)

Proof. See Appendix A.2

First, note that each expression for optimal marginal income tax rates features a

correction for general-equilibrium effects, ξi/Yi. Suppose for the moment that general-

equilibrium effects are absent. We then have ξi = 0 ∀i ∈ I. Moreover, assume that

welfare weights satisfy ψM > 1 and ψC < 1, as will be the case with a welfarist gov-

ernment which attaches higher weights to individuals who earn lower incomes. As a

consequence, marginal tax rates T ′M and T ′R are positive.14 This is in line with the

function of marginal income tax rates: the role of the marginal tax rate at income y is

to redistribute income from individuals who earn more than y to individuals earnings

equal to, or less than, y. Consider (21): the social marginal value of distributing income

from fR routine workers and fC cognitive workers to a mass of fM manual workers is

(ψM − 1) = f−1
M [fR (1− ψR) + fC (1− ψC)]. Similarly, in (22), the term f−1

R fC (1− ψC)

captures the social marginal value of redistributing income from fC cognitive workers to

a mass of fR routine workers. However, marginal tax rates distort labor supply, which

is captured by the terms 1 − (wM/wR)1+1/ε and 1 − (wR/wM)1+1/ε. With ε > 0, both

terms are smaller than 1 and thus scale down marginal tax rates, whereas in the absence

14Note that there are three discrete income levels in the economy. The income tax function T is thus

not differentiable. Marginal tax rates T ′ are defined as T
′

i ≡ 1 + U`(c(Vi,`i),`i)
Uc(c(Vi,`i),`i)

1
wi
.
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of labor supply responses ε → 0, and both terms tend to 1. Finally, without general-

equilibrium effects T ′C = 0. This is the famous result of “no distortion at the top” (Sadka,

1976; Seade, 1977). Since there are no individuals who earn more than cognitive workers,

setting a positive marginal tax rate has no distributional benefits but would distort labor

supply. It is thus optimal to set a marginal tax rate of zero.

Now consider the case with general-equilibrium effects. Under special conditions, it

is possible to sign the multiplier terms ξM and ξC .

Corollary 1. With general-equilibrium effects, the multiplier terms ξM and ξC can be

signed as follows:

• if ∂
∂LM

(
wR
wC

)
< 0, ξM < 0,

• if ∂
∂LC

(
wM
wR

)
> 0, ξC > 0.

Proof. See Appendix A.2.4

Suppose that manual and cognitive non-routine labor are sufficiently complementary,

such that ε̃wR/wC ,LM < 0, and thus ξM < 0. In this case T ′M is larger than in the

absence of general-equilibrium effects. The intuition has again to do with the relaxation

of incentive constraints. A higher marginal tax rate T ′M discourages labor supply of

manual workers, which increases their wage relative to routine workers, thereby relaxing

incentive constraint (11). Moreover, since by assumption ε̃wR/wC ,LM < 0, a reduction in

the supply of manual labor also increases the wage of routine workers relative to cognitive

workers, which relaxes incentive constraint (11). A similar reasoning applies to the case

in which ε̃wM/wR,LC > 0 and thus ξC > 0. Now T ′C becomes negative, as in Stiglitz (1982),

which encourages labor supply of cognitive workers. As a result, their wage drops relative

to routine workers, whereas, by assumption, the wage of manual workers increases relative

to routine workers. Again, this overall wage compression relaxes incentive constraints,

and is therefore welfare improving. Whether the marginal income tax for routine workers

is scaled up or down in the presence of general-equilibrium effects is ambiguous. Consider

an increase in T ′R: As a result, labor supply of routine workers falls, raising their wage

relative to manual and cognitive workers. This change has opposing effects on incentive

constraints: it relaxes (11) but tightens (12). Whether an increase in T ′R is desirable thus

depends on which of the two effects is more relevant for welfare.

3.2.4 Effect of robot tax on marginal income taxes

How are marginal income taxes affected by the presence of the robot tax? To answer

this question, I first derive expressions for the case in which taxing robots is not possible.

To do so, I impose the additional constraint YB (L, B) = q, which corresponds to τ = 0.
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The expressions in (21), (22) and (23) are not affected by the absence of the robot tax.

However, the multipliers on the consistency conditions are now different.

Corollary 2. In the absence of the robot tax, let µκ denote the multiplier on the additional

constraint YB (L, B) − q = 0. Let µξi be the multiplier on the consistency condition for

occupation i, µηCR the multiplier on incentive constraint (11) and µηRM the multiplier

on incentive constraint (12). The following condition holds for ξi:

ξi =ε̃wR/wC ,LiICR + ε̃wM/wR,LiIRM + κ
∂YB (L, B)

∂Li
∀i, (27)

with

κ
∂YB (L, B)

∂B
B =εwC/wR,B ICR − εwM/wR,B IMR. (28)

Without the robot tax, ξi is thus adjusted by κ∂YB (L, B) /∂Li. Note that the right-

hand-side of (28) is the same as in the expression for the optimal robot tax (16). Since

∂YB (L, B) /∂B < 0, κ thus has the opposite sign of the optimal robot tax which would

result if we were not to rule out robot taxation. Suppose that the optimal robot tax

would be positive, and thus κ < 0. I first focus on the unambiguous cases i ∈ {M,C}.
We then have ∂YB (L, B) /∂Li > 0 and hence ξi is lower in the absence of the robot

tax. It thus follows that with the robot tax, both T ′M and T ′C are lower. Intuitively, a

tax on robots lowers the wages of manual and cognitive workers, which induces them to

reduce their labor supply. Lower marginal income tax rates encourage labor supply, which

partly offset the reduction. Moreover, in the case of cognitive workers, the drop in wages

which results from increased labor supply further compresses the wage distribution. Now

consider routine workers. The sign of ∂YB (L, B) /∂LR is ambiguous, and as a result it

is not clear in which direction the marginal income tax for routine workers is adjusted

if robots are taxed. Suppose that ∂YB (L, B) /∂LR > 0, which will be the case if the

difference in elasticities of substitution between robots and routine workers on the one

hand and robots and cognitive or manual workers on the other hand is not too large. ξR

is now lower without the robot tax, and thus, T ′R will be lower if robots can be taxed.

4 Continuous types and occupational choice

Having developed intuition, I now extend the model to allow for continuous types as well

as for occupational choice. To do so, I build on the framework by Rothschild and Scheuer

(2013, 2014).
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4.1 Setup

4.1.1 Skill Heterogeneity

There is a unit mass of individuals. Each individual is characterized by three-dimensional

skill-vector θ ∈ Θ ≡ ΘM × ΘR × ΘC , with Θi ≡ [θi, θi] and i ∈ I ≡ {M,R,C}. As

before, each dimension of skill determines an individual’s productivity in one of the three

occupations: manual non-routine (M), routine (R), and cognitive non-routine (C). Skills

are distributed according to a continuous cumulative distribution function F : Θ→ [0, 1]

with corresponding density f .

4.1.2 Technology

The final good is produced using aggregate effective labor in the three occupations, L ≡
(LM , LR, LC), and robots B according to a constant-returns-to-scale production function

Y (L, B). As before, robots are better substitutes for routine labor than for non-routine

labor, and Assumption 1 holds. Aggregate effective labor is now defined as

LM ≡
ˆ
M
θM` (θ) dF (θ) , LR ≡

ˆ
R
θR` (θ) dF (θ) , LC ≡

ˆ
C
θC` (θ) dF (θ) , (29)

where M, R and C are the sets of individuals θ working in occupations M , R and C,

respectively. Robots are produced linearly with the final good, as described in Section

3.1.2. The representative firm maximizes profits

max
L,B

Y (L, B)−
∑
i∈I

ωiLi − pB, (30)

taking wage rates ωi and the user price of robots, p, as given. As before, we have

p = (1+τ)q, with τ the tax on robots and q the producer price of robots. In contrast to the

firm problem in the simple model, wages and wage rates now differ due to heterogeneity

within occupations, and wi has thus been replaced by ωi. In equilibrium, ωi = Yi(L, B),

and p = YB(L, B).

4.1.3 Preferences and occupational choice

Individuals derive utility from consumption c and disutility from supplying labor ` accord-

ing to the strictly concave utility function U (c, `) with Uc > 0, U` < 0. Let y denote an

individual’s gross income and w the wage. I assume that U satisfies the standard Spence-

Mirrlees single-crossing property (Mirrlees, 1971; Ebert, 1992; Hellwig, 2004), that is, the

marginal rate of substitution between income and consumption, −U`
(
c, y

w

)
/
(
wUc

(
c, y

w

))
,

decreases in w. Moreover, I assume that the monotonicity condition is satisfied, that is,
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gross-income needs to increase in w.15 Individuals choose their occupation according to

a Roy (1951) model, such that their wage is maximized and, in equilibrium, given by

wL,B (θ) = max {YM (L, B) θM , YR (L, B) θR, YC (L, B) θC} , (31)

where the subscript indicates that the wage for individual θ is pinned down by factor

inputs L and B.

4.2 Optimal taxation

4.2.1 Reducing dimensionality

I follow Rothschild and Scheuer (2013) to reduce the dimensionality of the problem:

Given factor inputs L and B, wage rates and sectoral choice are determined, and the

three-dimensional heterogeneity in skill can be reduced to one-dimensional heterogeneity

in wages. The distribution of skills F (θ) corresponds to the wage distribution

FL,B (w) = F

(
w

YM (L, B)
,

w

YR (L, B)
,

w

YC (L, B)

)
(32)

with occupational wage densities16

fML,B (w) =
1

YM (L, B)

ˆ w/YC(L,B)

θC

ˆ w/YR(L,B)

θR

f

(
w

YM (L, B)
, θR, θC

)
dθRdθC , (33)

fRL,B (w) =
1

YR (L, B)

ˆ w/YC(L,B)

θC

ˆ w/YM (L,B)

θM

f

(
θM ,

w

YR (L, B)
, θC

)
dθMdθC , (34)

fCL,B (w) =
1

YC (L, B)

ˆ w/YR(L,B)

θR

ˆ w/YM (L,B)

θM

f

(
θM , θR,

w

YC (L, B)

)
dθMdθR. (35)

The wage density for occupation i at wage w is thus obtained by evaluating the skill

density at that skill θi which corresponds to earning w in occupation i, θi = w/Yi (L, B),

and by integrating over the mass of individuals whose skill is not sufficient to earn more in

any occupation other than i. I denote the support of the wage distribution for any given

L, B by
[
wL,B, wL,B

]
, where wL,B = wL,B (θM , θR, θC) and wL,B = wL,B

(
θM , θR, θC

)
are

the wages earned by the least and most skilled individuals, respectively. The overall wage

density is given by f (w) = fML,B (w) + fRL,B (w) + fCL,B (w).

Like in the discrete model, the social planner attaches general cumulative Pareto

15With non-linear taxes, first-order conditions are necessary, but generally not sufficient for utility
maximization. The single-crossing and monotonicity conditions ensure that second-order conditions for
utility maximization hold.

16Technically, the expressions are not densities, since they do not integrate to one. Instead, the
expressions integrate to the mass of individuals in the respective occupation.
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weights to types, which I now denote by Ψ (θ) with the corresponding density ψ (θ).

Since for given L, B there is a unique mapping from types to wages, Pareto weights can

be written as function of wages, ΨL,B (w), with occupation-specific densities ψML,B (w),

ψRL,B (w), and ψCL,B (w) such that the overall density is ψL,B (w) = ψML,B (w) + ψRL,B (w) +

ψCL,B (w). Moreover, once L, B is fixed, all endogenous variables which depend on an

individual’s type can be written in terms of wages. This feature allows for a useful

separation of the planner problem.

4.2.2 Separation into inner and outer problem

As in Section 3, I separate the planner problem into an inner problem which maximizes

welfare over labor supply and indirect utilities for given L and B, and an outer problem

which maximizes welfare over L and B.

Inner problem. Denote by V (θ) the indirect utility of type θ. Social welfare is defined

as an integral over weighted indirect utilities
´

Θ
V (θ) dΨ (θ), which given L, B can be

written as
´ wL,B

wL,B
V (w) dΨL,B (w). As is common, I maximize social welfare by directly

choosing an allocation of indirect utilities and labor supplies, subject to incentive and

resource constraints. In addition, the allocation needs to be consistent with L and B to

make sure that the market for robots and labor clears. Labor-market clearing is ensured

by consistency conditions. Apart from these consistency conditions, the problem is a

standard Mirrlees (1971) problem. I define the inner problem as

W (L, B) ≡ max
V (w),`(w)

ˆ wL,B

wL,B

V (w) dΨL,B (w) (36)

subject to

V ′ (w) + U` (c (V (w) , ` (w)) , ` (w))
` (w)

w
= 0 ∀w ∈

[
wL,B, wL,B

]
(37)

1

YM (L, B)

ˆ wL,B

wL,B

w` (w) fML,B (w) dw − LM =0 (38)

1

YR (L, B)

ˆ wL,B

wL,B

w` (w) fRL,B (w) dw − LR =0 (39)

1

YC (L, B)

ˆ wL,B

wL,B

w` (w) fCL,B (w) dw − LC =0 (40)
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ˆ wL,B

wL,B

(w` (w)− c (V (w) , ` (w))) fL,B (w) dw + YB (L, B)B − qB = 0. (41)

Here, (37) is the set of incentive constraints, and (38), (39), and (40) are the consistency

conditions for occupations M , R and C, respectively. Equation (41) is the resource

constraint and the continuous-type equivalent of (15).

Outer problem. In the outer problem, the planner chooses inputs L and B such that

welfare is maximized, that is, he solves maxL,BW (L, B). It is useful that W (L, B)

corresponds to the value of the Lagrangian of the inner problem, evaluated at optimal

indirect utilities and labor supplies.

4.2.3 Optimal robot tax

I obtain a condition for the optimal robot tax from the outer problem by differentiating

the maximized Lagrangian with respect to robots, B. Using (10), I characterize the

optimal robot tax as follows.

Proposition 3. Let µ denote the multiplier on the resource constraint and µξi the mul-

tiplier on the consistency condition for occupation i ∈ {M,R,C}. Let µη (w) denote

the multiplier on the incentive constraint at wage w. Denote by qiE the income share in

occupation i. The optimal tax on robots, τ , is characterized by

τqB =

εYC/YR,B (L, B)

(
IC (L, B) +

∑
i∈I

ξi (CCi (L, B) + SCi (L, B))

)

+εYM/YR,B (L, B)

(
IM (L, B) +

∑
i∈I

ξi (CMi (L, B) + SMi (L, B))

)
,

(42)

where for i ∈ {M,R,C}

Ii (L, B) ≡
ˆ wL,B

wL,B

η (w)

Uc (w)
V ′ (w)w

d

dw

(
f iL,B (w)

fL,B (w)

)
dw, (43)

and for i, j ∈ {M,R,C}

Cij (L, B) ≡ 1

Yj (L, B)

ˆ wL,B

wL,B

w2`′ (w) Cov
(
qiL,B(θ), qjL,B(θ)|w

)
fL,B (w) dw, (44)
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with

qiL,B (θ) =

1, if θ works in i

0, otherwise,

and Sij as defined in the Appendix. The elasticities of equilibrium wage rates with respect

to the amount of robots are defined as

εYM/YR,B (L, B) ≡ ∂ (YM (L, B) /YR (L, B))

∂B

B

YM (L, B) /YR (L, B)
> 0, (45)

and

εYC/YR,B (L, B) ≡ ∂ (YC (L, B) /YR (L, B))

∂B

B

YC (L, B) /YR (L, B)
> 0. (46)

Proof. See Appendix B

The expression in (42) characterizes the optimal tax revenue raised with the robot tax.

First, note the similarity between (42) and the corresponding expression in the simplified

model, (16). In both cases, the effect of robots on relative wage rates plays a crucial

role.17 Due to Assumption 1, an increase in the number of robots leads to higher wage

rates in non-routine occupations relative to routine occupations. As a consequence, the

elasticities of relative wage rates εYM/YR,B (L, B) and εYC/YR,B (L, B) are both positive.

As in the simple model, these elasticities multiply the incentive effects Ii. In addition,

they multiply terms which emerge due to heterogeneous types and occupational choice.

Following Rothschild and Scheuer (2013), I refer to these as effort-reallocation effects

Cij and occupational-shift effects Sij, where i, j ∈ {M,R,C}. Incentive effects, effort-

reallocation effects and occupational-shift effects ultimately affect welfare for the same

reason: a change in relative wage rates leads to a change in the wage distribution, which

affects incentive constraints – and thus – income-tax distortions of labor supply. If income-

tax distortions are reduced, more income can be redistributed overall, which raises welfare.

It is instructive to think about incentive effects as capturing the first-round welfare

impact of a tax on robots on relative wage rates. In response to changed relative wage

rates, individuals adjust their behavior, which then has second-round effects on relative

wage rates and on welfare.18 These second-round effects are captured by the effort-

reallocation and occupational-shift effects. They originate from the effect of robots on

the consistency conditions. Intuitively, reallocation and occupational-shift effects reduce

the effectiveness of the robot tax, by counteracting initial wage compression.

Incentive effects. The incentive effects capture how changes in relative wage rates

affect tax-distortions of labor supply, and thus welfare. If Ii (L, B) > 0, an increase

17In the simplified model elasticities of relative wages coincide with elasticities of relative wage rates.
Due to heterogeneity of wages within occupations, this is no longer the case here.

18In the model, equilibrium is determined simultaneously, hence there are no actual first and second
rounds.
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in the robot tax leads to welfare-improving wage compression. Ceteris paribus, larger

incentive effects thus call for a higher tax on robots. To determine the sign of the

incentive effect, suppose that the incentive constraint (37) is downward-binding, and thus

η (w) ≥ 0. Since indirect utilities V (w) increase in w, the sign of Ii (L, B) is determined

by d
dw

(
f iL,B(w)/fL,B(w

)
. This term captures how the share of individuals earning wage

w in occupation i changes with a marginal increase in w.19

Consider IC . Since workers in cognitive occupations are concentrated at high wages,

the term d
dw

(
fCL,B(w)/fL,B(w

)
is positive at most w. As a consequence, we find IC > 0.

By reducing YC/YR, a tax on robots thus compresses wages at the top of the wage

distribution, which increases welfare. The intuition is similar as in the stylized model.

Wage compression at the top of the distribution makes it more costly for cognitive workers

to imitate types who earn marginally lower incomes in routine occupations – which locally

relaxes incentive constraints. In other words, income-tax distortions of labor supply are

locally alleviated. This allows for more redistribution overall, which raises welfare.

Next, consider IM and suppose that manual non-routine workers are concentrated at

low wages, as observed empirically. The term d
dw

(
fML,B(w)/fL,B(w

)
is then negative at

most w, leading to IM < 0. The negative sign captures that a tax on robots lowers welfare

by locally tightening incentive constraints at the bottom of the wage distribution. As in

the stylized model, a tax on robots thus has opposing effects on incentive constraints –

and thus labor-supply distortions – at the top and at the bottom of the wage distribution.

As a consequence, the sign of the robot tax is again ambiguous.

Effects on the consistency conditions. Both, effort-reallocation and occupational-

shift effects capture changes in aggregate labor supplies, which affect welfare via the

consistency conditions. The welfare impact of a marginal increase in Li via the consistency

condition is µξi, with µ > 0. The multiplier µξi thereby captures how the change in Li

affects welfare by changing relative wage rates, and as a consequence incentive constraints.

Different from the simple model, it is not anymore possible to sign ξi analytically.

19Note that if Ii ≥ 0 for some occupation i, it has to hold that there is at least one other occupation
j 6= i, for which Ij ≤ 0. To see this, write

Ii (L, B) =

ˆ wL,B

wL,B

η (w)

Uc (w)
V ′ (w)w

d

dw

(
f iL,B (w)

fL,B (w)

)
dw

=

ˆ wL,B

wL,B

η (w)

Uc (w)
V ′ (w)w

d

dw

(
fL,B (w)−

∑
j 6=i f

j
L,B (w)

fL,B (w)

)
dw

=−
∑
j 6=i

ˆ wL,B

wL,B

η (w)

Uc (w)
V ′ (w)w

d

dw

(
f jL,B (w)

fL,B (w)

)
dw.
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Effort-reallocation effects. The effort-reallocation effect Cij captures the welfare-

relevant impact of a marginal increase in Yi on aggregate labor supply Lj which arises due

to individuals adjusting their labor supply within occupations, while keeping occupational

choice fixed.

Recall that the expression for the optimal robot tax is derived from the outer problem,

taking as given `(w) which is chosen optimally in the inner problem. Still, by affecting

relative wage rates, a change in the number of robots has an impact on labor supplies

within occupations since individuals move along the schedule `(w), leading to a change

in the wage density f(w) at w. Instead of deriving changes in Lj by keeping `(w) fixed

and adjusting the densities, I follow Rothschild and Scheuer (2014) and construct a

variation of the `(w) schedule which, at each w, neutralizes average changes in `(w)

across occupations. As a result, the wage density f(w) is unaffected. Moreover, at the

margin, the schedule variation has no effect on welfare.

Consider for example CCM . The term captures how an increase in YC – ceteris paribus

– affects aggregate labor supply LM due to effort-reallocation. At each w, individuals

increase their labor supply in occupation C, whereas labor supply remains unchanged in

occupations M and R. As a result, at each w, labor supply increases more than average

in C and less than average in M . Intuitively, this negative correlation of changes in labor

supplies in C and M at w gives rise to the covariance term in CCM . After neutralizing

average changes, LM decreases, which is captured by CCM < 0.

Occupational-shift effects. The set of occupational-shift effects Sij (L, B) capture

the welfare-relevant impact of a marginal increase in Yi on aggregate labor supply Lj

due to individuals switching between occupations i and j, while keeping the labor supply

schedule `(w) fixed and ruling out shifts along `(w) within occupations.20 Since a marginal

increase in Yi lets individuals shift from occupation j to occupation i (with i 6= j),

aggregate labor supply Lj is reduced. This is captured by Sij < 0 for i 6= j. In contrast,

Sii > 0 accounts for the inflow into occupation i due to an increase in Yi, leading to an

increase in Li.

4.2.4 Marginal income taxes

Turning to optimal marginal income taxes, I note that the only difference with the inner

problem in Rothschild and Scheuer (2014) is the presence of the term qB in the resource

constraint. In the inner problem this term is kept fixed and does therefore not influence

the optimal allocation of indirect utilities and labor supply. As a consequence, the char-

acterization of optimal marginal income taxes is the same as in Rothschild and Scheuer

20If, instead, one wanted to compute the total change in income due to individuals switching, one
would also have to account for changes in labor supply within occupations. However, these effects have
already been taken into account in the effort-reallocation effects.
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(2014).

Proposition 4. Let µ be the multiplier on the resource constraint and denote by µξi the

multiplier on the consistency condition pertaining to occupation i. Let εu be the uncom-

pensated labor-supply elasticity and εc the compensated labor-supply elasticity. Given L

and B, optimal marginal tax rates are characterized by

1− T ′ (w) =

(
1−

∑
i∈I

ξi
Yi (L, B)

f iL,B (w)

fL,B (w)

)(
1 +

η (w)

wfL,B (w)

1 + εu (w)

εc (w)

)−1

(47)

with

η (w) =

ˆ wL,B

wL,B

(
1− ψL,B (z)

fL,B (z)

Uc (z)

µ

)
exp

(ˆ z

w

(
1− εu (s)

εc (s)

)
dy (s)

y (s)

)
fL,B (z) dz. (48)

Proof. See Rothschild and Scheuer (2014)

As highlighted by Rothschild and Scheuer (2014), the formula closely resembles the

optimal income tax expression in the standard Mirrlees model. The only difference is the

correction term 1−
∑

i∈I
ξi

Yi(L,B)

f iL,B(w)

fL,B(w)
, which adjusts retention rates 1−T ′ (w) to account

for general-equilibrium effects. The fact that the expression for optimal marginal income

tax rates in my model is the same as in Rothschild and Scheuer (2014) does not mean

that the tax on robots does not interact with optimal income taxes. As in the simple

model, the presence of a robot tax changes the multipliers ξi. Since it not possible to

solve for ξi, I only study the effect of the robot tax on marginal income taxes as part of

the quantitative analysis below.

5 Quantitative analysis

In this section, I study optimal taxes on robots and labor income quantitatively. To do

so, I first calibrate the model to the US economy for the existing tax system. While some

parameters are set directly from the data, other parameters are set by minimizing the

sum of squared distances between model and data moments. The calibrated model is

then used for optimal tax analysis.

The theoretical results are derived using a very general definition of robots, expressed

in Assumption 1. In the quantitative analysis, I study the taxation of industrial robots.21

Industrial robots are an important automation technology. Moreover, their impact on

the economy has been studied empirically. Acemoglu and Restrepo (2017) analyze the

21An industrial robot is defined as “an automatically controlled, reprogrammable, multipurpose ma-
nipulator programmable in three or more axes, which can be either fixed in place or mobile for use
in industrial automation applications.” See https://ifr.org/img/office/Industrial_Robots_2016_

Chapter_1_2.pdf
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impact of industrial robots on employment and wages in the US. I use their findings to

guide the quantitative analysis. In addition to being specific about robots, I make specific

functional form assumptions for the distribution of skills, the production function, and

preferences.

5.1 Functional forms

5.1.1 Skill-distribution

I follow Heckman and Sedlacek (1990) and Heckman and Honoré (1990) by assuming

that skills θ follow a joint log-Normal distribution. Moreover, I normalize the mean to

be the zero vector. Log skills are then distributed according to ln θM

ln θR

ln θC

 ∼ N

 0

0

0

 ,
 σ2

M ρMRσMσR ρMCσMσC

ρMRσMσR σ2
R σRCσRσC

ρMCσMσC ρRCσRσC σ2
C


 , (49)

where I denote by σi the standard deviation of latent skill for occupation i and by ρij the

correlation between skills in occupations i and j. The distribution of skills in (49) gives

rise to occupational wage densities fML,B, fRL,B, fCL,B which I provide in Appendix C.

5.1.2 Production function

Robots are produced linearly as described in Section 3.1.2. The production function for

the consumption good combines elements from Acemoglu and Restrepo (2018a) (see also

Guerreiro et al., 2017) and Autor and Dorn (2013) to capture the assignment of routine

tasks to robots and routine labor, as well as the contribution of manual and cognitive

non-routine labor. Acemoglu and Restrepo (2018a) argue that automation differs from

factor-augmenting technical change. Under factor-augmenting technical change, the sub-

stitution between labor and capital – such as robots – is governed only by the elasticity

of substitution. In such models, the scope for a reduction in demand for routine labor is

limited. This changes if automation is not only thought of as a change in the amount of

capital, but also as a shift of tasks from labor to capital. Such a model of task assignment

endogenizes the weight given to capital and labor. As the price of capital drops, the firm

not only uses more capital, but also gives it more weight in production. As a result,

demand for routine labor falls relative to a model which only features factor-augmenting

technical change.

In addition to modeling automation similar to Acemoglu and Restrepo (2018a) and

Guerreiro et al. (2017), I build on Autor and Dorn (2013) to capture that robots have a

different impact on manual non-routine, routine and cognitive non-routine occupations, as

has been documented by Acemoglu and Restrepo (2017) and Dauth et al. (2018). Autor
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and Dorn (2013) study the role of ICT capital for wage polarization.Their production

function has the feature that ICT capital substitutes for routine labor and complements

non-routine labor, thereby affecting wages in the three occupations differentially.22 In

Autor and Dorn (2013), production of services and goods takes place in separate sectors.

In contrast, in my model, a single consumption good is produced by combining all factors

on the production side, according to

Y (L, B) ≡A

(
µML

γ−1
γ

M + (1− µM)

×
(
µCL

ρ−1
ρ

C + (1− µC)

×
(
µB(LR, B)

1
σB

σ−1
σ + (1− µB(LR, B))

1
σL

σ−1
σ

R

) σ
σ−1

ρ−1
ρ
) ρ
ρ−1

γ−1
γ

) γ
γ−1

,

(50)

with

µB(LR, B) ≡ B

LR +B
∈ [0, 1]. (51)

This is a nested constant-elasticity-of-substitution (CES) production function with three

layers. The innermost layer captures output of routine tasks, where σ is the elasticity

of substitution between robots B and routine labor LR. Different from a standard CES

production function, the firm’s assignment of tasks to robots and routine labor gives

rise to endogenous weight µB(LR, B) (see Appendix D for the derivations). The second

layer combines cognitive non-routine labor LC and output of routine tasks, where ρ is

the substitution elasticity. The outermost layer combines manual non-routine labor LM

with the combined output of routine tasks and cognitive labor, where the elasticity of

substitution is γ. The production function implies that in equilibrium the marginal

products of robots and routine labor are equalized, that is YB(L, B) = YR(L, B). As a

consequence, a marginal increase in the number of robots – for example due to a drop in

the price of robots – lowers both, the returns to robots as well as the return to routine

labor.

5.1.3 Preferences and labor supply

Preferences over consumption and labor supply are quasi-linear and given by

U (c, `) = c− `1+ 1
ε

1 + 1
ε

, (52)

where c is consumption, ` is individual labor supply and ε is the labor-supply elasticity.

Let T ′ (y) denote the marginal income tax rate at income y. Using that preferences are

22Autor and Dorn (2013) refer to manual non-routine as ‘services’ and to cognitive non-routine as
‘abstract’.

28



quasi-linear, optimal labor supply ` is then implicitly given by the solution to

` (w)
1
ε = (1− T ′ (y (w)))w. (53)

In the calibration, I use the parametric tax function proposed by Heathcote et al. (2017)

as an approximation to the US income tax schedule, with

T (y) = y − λy−t, (54)

where t is referred to as the progressivity parameter, while λ can be used to calibrate

total tax revenue. Based on (54), marginal tax rates are given by

T ′ (y) = 1− (1− t)λy−t. (55)

Using that y = `w and substituting (55) in (53), one can explicitly solve for

` (w) =
[
(1− t)λw1−t] ε

1+tε . (56)

5.2 Calibration

5.2.1 Data and calibration targets

The calibration aims to accurately capture the key determinants of the optimal robot

tax. To do so, I target moments of the distribution of wages and employment, as well as

moments related to the impact of industrial robots on the economy.

Moments for the distribution of wages and employment are based on the CPS Merged

Outgoing Rotation Groups (MORG) as prepared by the National Bureau of Economic

Research (NBER).23 I focus on the year 1993, since the effect of robots on the labor

market studied by Acemoglu and Restrepo (2017) is also based on data from this year.24

Occupations are categorized into three groups: manual non-routine, routine, and cogni-

tive non-routine following Acemoglu and Autor (2011).25 I provide an overview of the

occupations contained in the three categories as well as summary statistics in Tables 4

and 5 in the Data Appendix F. For the model to generate a realistic wage and employment

distribution, I target the mean, standard deviation and skewness of wages by occupation

as well as employment shares.

To capture the impact of robots on the wage distribution, I use results from Acemoglu

and Restrepo (2017) who compute the impact of an additional robot per thousand workers

23See http://www.nber.org/data/morg.html
24The data on industrial robots from the IFR (2014) which Acemoglu and Restrepo (2017) use start

in 1993. For labor market outcomes, Acemoglu and Restrepo (2017) use Census Data for 1990 and 2000
and Amercian Community Survey Data for 2007.

25Acemoglu and Autor (2011) use the labels ‘abstract’ for cognitive non-routine and ‘services’ for
manual non-routine. See Cortes (2016) for the same classification and labels as used in this paper.
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on deciles of the wage distribution (Acemoglu and Restrepo, 2017, Figure 13). I use

results from their long-differences specification and convert the reported semi-elasticities

to elasticities by using that in 1993 there were 0.36 robots per thousand workers in the

US (IFR, 2014).26

I also target the impact of a change in the price of robots on robot adoption. This is an

important moment since a tax on robots affects robot adoption via the same channel: by

changing the (user) price of robots. According to data from the IFR (2006), the quality-

adjusted price of robots dropped by about 60% between 1993 and 2005 (the latest date

for which I have quality-adjusted price data), while the stock of robots roughly tripled.

For lack of better evidence, I treat the price change in the data as exogenous, and as the

only driver of robot adoption, implying a price-elasticity of robot adoption of 3.33.

Finally, in the calibration I need to take a stance on the role of occupational switching

in response to a change in the number of robots. Using cross-sectional data for the

US, Acemoglu and Restrepo (2017) do not find evidence for occupational switching. In

contrast, using panel data for Germany, Dauth et al. (2018) find that many workers adjust

by switching occupation while staying at their original employer. Since the calibration

aims to capture the impact of robots in the US, I rule out the possibility of individuals

switching occupation. To do so, I assume that individuals choose their wage-maximizing

occupation given the initial number of robots, but do not adjust their occupation as the

number of robots changes. Still, the results by Dauth et al. (2018) demonstrate that

occupational switching can be an important adjustment mechanism. When computing

optimal policy, I therefore also explore the role of occupational switching.

Based on evidence reported by Blundell and McCurdy (1999) and Meghir and Phillips

(2010), I set the labor-supply elasticity to ε = 0.3. The tax progressivity parameter in

(54) is set to t = 0.181 as estimated by Heathcote et al. (2017). To calibrate the revenue

parameter λ, I target the share of income-tax revenue in GDP which in the US in 1993

was 9.3% (OECD, 2017).27

5.2.2 Approach

All parameters which are not directly set from the data are based on minimizing the

sum of weighted distances between model and data moments. To compute moments in

the model, first, factor market equilibrium is computed for a given set of parameters.

Then, model moments are computed given the equilibrium. In the model, factor market

equilibrium is determined by the price of robots. In the data, no clear target for this price

exists (the price index from the IFR (2006) is only meaningful for relative price changes,

26Note that Acemoglu and Restrepo (2017) have multiplied all figures by 100.
27When computing optimal policy below, I introduce an exogenous revenue requirement into the

resource constraint (41) whose level is set to the level of tax revenue raised by the calibrated tax system.
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Table 1: Calibration - Moments

Moment Model Data Source of data moment

Employment share: manual 0.12 0.11
Computed based on US CPSEmployment share: routine 0.57 0.59

Employment share: cognitive 0.32 0.30

Income-tax revenue as share of GDP 0.09 0.09 OECD (2017)
Price-elasticity of robot adoption 18.41 3.33 Computed based on IFR (2006)

Note: Model moments are based on the calibrated model. All values are rounded. Matching of the
remaining calibration targets is illustrated in Figures 1 and 2, and in Table 3 in the Appendix.

but not for levels). I therefore treat the price of robots as additional parameter (which

is equivalent to treating the number of robots as a parameter).

Moments of the distribution of wages and employment are based on the equilibrium

which corresponds to the year 1993. In contrast, the elasticities of the wage-distribution-

deciles, as well as the price-elasticity of robot adoption are computed based on changes to

a new equilibrium which is brought about by a drop in the price of robots. To compute the

new equilibrium, I treat the new price of robots as additional parameter, while keeping

all other parameters fixed.28

5.2.3 Results

Table 2 in the Appendix summarizes the calibrated parameters. I highlight the substitu-

tion elasticity σ between routine labor and robots which is calibrated at 4.41, implying a

high degree of substitutability. In contrast, cognitive labor is more complementary to the

output of routine labor and robots, captured by ρ = 1.67, while the substitution elasticity

of manual labor and all other factors is calibrated at 2.06. The calibrated production

function implies elasticities εYC/YR,B = 0.17 and εYM/YR,B = 0.15. Assumption 1 is thus

satisfied – and robots are better substitutes for routine labor than for non-routine labor.

Moreover, the marginal product of cognitive labor increases relatively more with robots

than the marginal product of manual labor.

To assess how well the calibration works, I report model and data moments for em-

ployment shares, the income-tax share in GDP, and the price-elasticity of robot adoption

in Table 1. The performance regarding levels and changes of the wage distribution is

illustrated in Figures 1 and 2. As reported in Table 1, employment shares as well as the

share of income-tax revenue in GDP are matched well. However, the price-elasticity of

robot adoption in the model is much larger than in the data. The inability to match

the price-elasticity better is a result of also targeting changes in the wage distribution.

28While I describe the calibration as a sequence of steps, it is implemented in a single step as an
equality-constrained non-linear minimization problem, in which the equality constraints ensure factor
market clearing. The problem is solved using the optimization software Knitror.
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Figure 1: Calibration – Densities in the model vs. data
Note: The densities in blue are based on the calibrated model. The histograms in gray are based on US
CPS data. The corresponding moments are provided in Table 3 in the Appendix.

The better the model matches the price-elasticity, the worse it does in matching changes

in the wage distribution, and vice versa. The calibration is a compromise which, as I

argue below, is likely to make taxation of robots more desirable than it would be if both

types of targets were matched perfectly. Figure 1 plots the density of wages as implied

by the calibration against a histogram of the data. Both line up well, and the model thus

generates a realistic wage distribution. The plots also reveal considerable overlap of wage

distributions across occupations.29

Figure 2 plots the elasticities of wage-distribution-deciles with respect to robots as

implied by the calibration against the elasticities obtained from Acemoglu and Restrepo

(2017). Qualitatively, the calibration matches the data: an increase in robots reduces

deciles at the bottom of the wage distribution and raises deciles at the top. However,

quantitatively, the impact of robots on wage deciles in the model is more negative at

the bottom and more positive at the top than in the data. An increase in the number

of robots thus generates too much inequality. As discussed above, matching changes in

the wage distribution better would come at the expense of generating an even larger

price-elasticity of robot adoption.

I will now argue that exaggerating the impact of robots on wage inequality and gen-

erating a too large price-elasticity of robot adoption makes taxation of robots more de-

sirable than it would be otherwise: First, it is the goal of the robot tax to distort the

use of robots, and a high price-elasticity of robot adoption makes the robot tax more

distortionary – and as a consequence more desirable. Suppose, to the contrary, that the

price-elasticity was zero. In this case, a tax on robots could not achieve any welfare gains.

Second, the more inequality robots generate, the more a robot tax can achieve desirable

wage compression. As a consequence, the welfare impact of the robot tax in the optimal

tax simulations should be viewed as an upper bound. When it comes to the level of the

robot tax, the effect of exaggerating the price-elasticity as well as the wage impact of

29The moments which correspond to the wage distributions are reported in Table 3 in the Appendix.
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Figure 2: Elasticities of wage-distribution-deciles with respect to a change in robots
Note: Model moments are based on the calibrated model. Data moments are based on Figure 13 in
Acemoglu and Restrepo (2017).

robot adoption is less clear. A high price-elasticity suggests a lower robot tax, whereas

the generation of more inequality is a force for a higher robot tax.

5.3 Optimal policy

5.3.1 Social Welfare Weights

Before I can compute optimal policy, welfare weights need to be specified. I follow

Rothschild and Scheuer (2013) and assume relative social welfare weights according to

Ψ (w) = 1− (1− F )r , (57)

where r parametrizes the government’s desire to redistribute. Here, r = 1 corresponds to

utilitarian preferences, which combined with quasi-linear utility would imply no redistri-

bution. As r →∞, the welfare weights approach that of a Rawlsian social planner. I set

r = 1.2 such as to generate average marginal tax rates similar to those in the data. In

the optimal tax simulations, average marginal tax rates are around 27%. For the US in

1993, the NBER reports an average marginal tax rate of 28%.30

5.3.2 Results

I compute optimal policy – non-linear income taxes and the robot tax – for two scenar-

ios: without and with occupational switching.31 One interpretation is that the scenario

without occupational switching captures the short-run, whereas the scenario with occu-

pational switching captures the medium-run. The two scenarios only differ by one factor:

whether or not individuals respond to the introduction of a robot tax by switching oc-

cupation. The first scenario which rules out occupational switching corresponds to the

30See http://users.nber.org/~taxsim/allyup/fixed-ally.html
31Optimal policy is computed using the software package GPOPS-II (see Patterson and Rao, 2013).
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Figure 3: Effect of robot tax on optimal marginal income taxes
Note: The wage corresponds to hourly earnings in 2016-dollars. Results are for moderate redistributive
preferences with r = 1.2. A wage of 100 corresponds to a value above the 99th percentile of the wage
distribution. To obtain the U-shape, a mass point at the bottom has been imposed. Without this mass
point, the optimal marginal income tax rate at the bottom is zero.

approach taken in the calibration. To prevent individuals from switching occupation in

response to a tax on robots, I proceed as follows: first, equilibrium is computed for a

model with occupational choice, but in which it is not possible to tax robots; next, I fix

individuals’ occupations, but allow for a tax on robots. In the second scenario, individuals

always choose their occupation optimally.

For the case without occupational switching, I find an optimal tax on the stock of

robots of 1.8%. It is thus optimal to distort the use of robots downward. Next, I compute

the consumption-equivalent welfare gain of introducing a robot tax, provided that the

income tax is already set optimally. Being able to tax robots is worth 0.04% of GDP,

which based on US per capita GDP in 2016 translates into 21.14$ per person per year.

In contrast, in the scenario with occupational switching, the optimal robot tax is 0.86%.

Intuitively, individuals adjust their occupation in response to changes in wages which

are brought about by the robot tax – and thereby partly offset those changes. With

occupational switching, the robot tax is thus less effective in compressing wages, and is

therefore optimally smaller. Moreover, occupational switching reduces the welfare gains

to a share of 0.02% of GDP or 9.22$ per person per year.

Figure 3 plots optimal marginal income tax rates both for the case in which robots

can and cannot be taxed. First, note that marginal tax rates follow the common U-shape

as for example in Saez (2001). In both scenarios, if robots can be taxed, marginal income

tax rates are slightly higher at low-to-medium wages, and slightly lower at high wages.

However, the effect is stronger if occupational switching is ruled out. For the simple

model in Section 3, I derive that marginal income taxes in the presence of a robot tax are

ceteris paribus lower for manual and cognitive workers. The effect on marginal income
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Figure 4: Effect of drop in price of robots on employment and wages
Note: The horizontal axis measures the percentage drop in the (producer) price of robots with respect
to the calibrated initial price. All outcomes are computed given the optimal non-linear income tax and
the optimal robot tax at each level of the price of robots.

taxes for routine workers is ambiguous. As cognitive workers are concentrated at high

wages, the result of lower taxes carries over to the full model. Moreover, in terms of

the simple model, lower marginal tax rates for manual workers are overturned by higher

marginal taxes for routine workers. Of course, the equivalence with the simple model is

imperfect as wage distributions now overlap occupations.

Effect of a drop in the price of robots. Next, I study the effect of productivity in-

creases in robot production. To do so, I ask how the corresponding drop in the (producer)

price of robots affects the economy, as well as the optimal tax on robots. I start from

the calibrated robot price and then compute optimal policy and other outcomes while

gradually lowering the price of robots. Again, I consider two scenarios: one without and

one with occupational switching. In the scenario without occupational switching, I fix

employment shares at the optimal choice, given the initial price of robots, and given that

income is taxed optimally, but ruling out robot taxation. As a result, the optimal robot

tax at the initial robot price is 1.8% as above. In the second scenario, individuals choose

their occupation optimally at each level of the robot price. The optimal robot tax at the

initial robot price is therefore 0.86% like before.

Figure 4 shows the impact of a drop in the price of robots on employment shares and

average wages. The horizontal axis measures the drop in the robot price relative to its

initial level, hence 0 corresponds to the initial price of robots, while 40 corresponds to

a robot price which is 40% lower than its initial level. Without occupational switching,

employment shares are constant (Panel 4a). With occupational switching, cheaper robots

substitute more and more for routine workers, who then switch to either manual or cog-

nitive work. Eventually, the share of routine occupations goes to zero. If one interprets
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the employment changes as changes in the cross-section, then they correspond qualita-

tively to the empirically documented employment polarization. For example, Acemoglu

and Autor (2011) report that the employment share of cognitive non-routine workers

increased by 4.6 percentage points between 1989 and 2007, whereas the share of manual

non-routine workers increased by 3.5 percentage points. In contrast, the share of routine

workers dropped by 8.1 percentage points.32

Panel 4b shows that in both scenarios the average wage of routine workers decreases

and eventually drops below the initial average wage of manual workers. Average wages

for non-routine occupations increase, and more so for cognitive workers. Without oc-

cupational switching, average wages are driven by changing wage rates alone, as the

composition of skills within occupations remains constant. With occupational switching,

the wage impact of cheaper robots is dampened for two reasons: first, due to occupational

switching, aggregate labor supply increases in non-routine occupations relative to rou-

tine occupations; second, the skill-composition within non-routine occupations worsens,

whereas the skill-composition within routine occupations improves.

Figure 5 illustrates how a drop in the price of robots affects the number of robots, as

well as optimal policy, robot-tax revenue and welfare. Panel 5a shows a strong increase

in the number of robots per thousand workers, from below 1 to more than 50. The

increase is stronger if occupational switching is possible. There are two reasons for this

difference. First, with occupational switching, the allocation of skills is more efficient. As

individuals move into occupations which are more complementary to robots, the return to

robot adoption is higher. Second, the robot tax is lower in the scenario with occupational

switching.

Panel 5b shows how the optimal robot tax changes as the price of robots falls. If

occupational switching is ruled out, the robot tax first increases slightly, but then falls.

With occupational switching, the robot tax declines monotonically to approach a level

close to zero.

One reason for the falling robot tax in Panel 5b is mechanical: since the number of

robots increases faster than their price falls, the value of robots goes up – which according

to the optimal robot-tax formula (42) calls for a lower tax on robots for a given level of

robot-tax revenue. However, as shown in Panel 5c, robot-tax revenue is not constant.

Instead, it is hump-shaped in both scenarios. Since robot-tax revenue represents the

left-hand side of (42), the right-hand side of (42) follows the same pattern. Incentive and

effort reallocation effects (and occupational shift effects in the scenario with occupational

switching) thus first become more important as the price of robots falls, but eventually

decline.

32Based on Table 3a in Acemoglu and Autor (2011), where I consider professional, managerial and
technical workers as cognitive non-routine, service workers as manual non-routine, and clerical, sales,
and production workers as well as operators as routine.
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Figure 5: Effect of drop in price of robots on various outcomes
Note: The horizontal axis measures the percentage drop in the (producer) price of robots with respect
to the calibrated initial price. All outcomes are computed given the optimal non-linear income tax and
the optimal robot tax at each level of the price of robots. Robot-tax revenue is expressed as share of
initial GDP.

Next, I turn to the welfare impact of introducing a robot tax, provided that income is

taxed optimally. Panel 5d plots the consumption-equivalent welfare gain of introducing a

robot tax expressed in 2016-dollars per capita per year. The pattern mirrors that of the

robot tax: without occupational switching, the welfare gain first increases to about 23$,

but then declines; with occupational switching, welfare gains are lower to begin with, and

monotonically approach a value close to zero.

5.4 Discussion

The quantitative results show that a positive robot tax is optimal. However, its welfare

impact is small. Moreover, even though inequality increases as robots become cheaper,

this does not warrant larger robot taxes. To the contrary, the robot tax and its welfare

impact become negligible. The optimal robot tax is in the same order of magnitude as the

tax found by Costinot and Werning (2018) who – using their sufficient-statistics formula

– find an optimal robot tax of 2.7% for a labor-supply elasticity of ε = 0.3. Moreover, for
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a stylized model they show that a drop in the price of robots leads to greater inequality,

but may reduce the optimal robot tax. I confirm these results in my fully calibrated

model.

Guerreiro et al. (2017) also find that the robot tax eventually decreases as the price

of robots falls. In their paper, the optimal robot tax becomes zero once there are no

routine workers left. The reason is that the remaining non-routine workers are homoge-

neously affected by robots. As a result, a tax on robots cannot anymore compress wage

differentials, and should therefore no longer be used. In this paper, manual and cognitive

non-routine workers are differentially affected by robots, and a tax on robots can thus

still achieve desirable wage compression, even if there are no routine workers left. As a

consequence, while becoming negligible, the robot tax in this paper does not reach zero.

6 Conclusion

This paper studies the optimal taxation of robots and labor income in a model in which

robots substitute for routine labor and complement non-routine labor. Intuition is devel-

oped in a stylized model based on Stiglitz (1982), which features intensive-margin labor

supply and endogenous wages, but in which types are discrete and occupations are fixed.

The full model then introduces continuous wage distributions and occupational choice,

building upon Rothschild and Scheuer (2013, 2014).

I find that in general, the optimal robot tax is not zero, thereby violating production

efficiency (Diamond and Mirrlees, 1971). The robot tax exploits general-equilibrium

effects to compress the wage distribution. As a consequence, income taxation becomes

less distortionary – which allows for more redistribution overall, and increases welfare.

Since workers in routine occupations are concentrated at medium incomes, the sign of the

optimal robot tax is theoretically ambiguous. Taxing robots reduces inequality at high

incomes, thereby locally lowering income-tax distortions of labor-supply; but it increases

inequality at low incomes, and thus locally worsens labor-supply distortions. If manual

and cognitive non-routine labor are sufficiently complementary, the presence of a robot

tax leads to optimal marginal income tax rates which are higher at incomes earned by

routine workers, and lower at incomes earned by non-routine workers.

To assess the optimal robot tax quantitatively, I calibrate the full model to the US

economy. The calibration matches the distribution of wages and employment across

manual non-routine, routine, and cognitive non-routine occupations. Moreover, it is

informed by the labor-market impact of industrial robots studied by Acemoglu and Re-

strepo (2017). I compute optimal policy for two scenarios, one in which occupational

switching is ruled out, and one in which individuals can switch occupation in response

to the introduction of a robot tax. Without occupational switching, the optimal tax on

the stock of robots is 1.8% and the consumption-equivalent welfare gain of introducing
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the tax is 21.14$ per person per year. With occupational switching, the effectiveness of

the robot tax for compressing wages is reduced. The optimal robot tax and its welfare

impact are then 0.86% and 9.22$. In both scenarios, optimal marginal income taxes are

higher at low-to-medium incomes and lower at high incomes if robots can be taxed.

Finally, I study the effect of a drop in the price of robots for the two scenarios.

With occupational switching, the share of routine workers approaches zero, as they move

into non-routine occupations. Moreover, in both scenarios, wage inequality increases.

Nevertheless, the robot tax eventually approaches a value close to zero. The same holds

for the welfare gains of taxing robots: they never exceed 25$ per capita and eventually

go to (almost) zero.

In light of the small welfare gains from taxing robots, this paper does not provide a

strong case for a robot tax. Additional costs cast doubt on the optimality of a robot tax

in practice. For example, with a tax on robots come considerable administrative costs as

machinery needs to be classified into robots and non-robots. Moreover, I have abstracted

from implications which a tax on robots would have in an open economy. As any tax on

capital, a tax on robots could impact a firm’s location choice with additional implications

for inequality and welfare.
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Appendix

A Derivations for simple model

A.1 Optimal robot tax

Assuming that only the adjacent downward-binding incentive constraints are relevant,

maximized social welfare is given by the Lagrangian

L =fMψMVM + fRψRVR + fCψCVC

+µηCR

(
VC − U

(
cR (VR, `R) , `R

YR (L, B)

YC (L, B)

))
+µηRM

(
VR − U

(
cM (VM , `M) , `M

YM (L, B)

YR (L, B)

))
+µξM (fM`M − LM) + µξR (fR`R − LR) + µξC (fC`C − LC)

+µ

(∑
i∈I

fi`iYi (L, B) + YB (L, B)B −
∑
i∈I

fici − qB

)
,

(58)

with I ≡ {M,R,C}, where µ is the multiplier on the resource constraint, µηCR is the

multiplier on the incentive constraint for cognitive workers, and µηRM is the multiplier

on the incentive constraint for routine workers. Moreover, µξi is the multiplier on the

consistency condition for occupation i. To find an expression for the optimal robot tax,

first write the resource constraint as Y (L, B) −
∑

i∈I fici − qB = 0. Then differentiate

the Lagrangian with respect to B to obtain

∂L
∂B

=− µηCRU`
(
cR (VR, `R) , `R

YR (L, B)

YC (L, B)

)
`R

∂

∂B

(
YR (L, B)

YC (L, B)

)
− µηRMU`

(
cM (VM , `M) , `M

YM (L, B)

YR (L, B)

)
`M

∂

∂B

(
YM (L, B)

YR (L, B)

)
+ µ (YB (L, B)− q) .

(59)

Define elasticities of relative wage rates with respect to robots as

εYC/YR,B = −εYR/YC ,B ≡
∂

∂B

(
YR (L, B)

YC (L, B)

)
YC (L, B)

YR (L, B)
B, (60)

εYM/YR,B ≡
∂

∂B

(
YM (L, B)

YR (L, B)

)
YR (L, B)

YM (L, B)
B. (61)

Use that

YB (L, B) = p = (1 + τ) q ⇔ YB (L, B)− q = τq, (62)

set (59) equal to zero, rearrange and divide by µ to get
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τqB =− ηCRU`
(
cR (VR, `R) , `R

YR (L, B)

YC (L, B)

)
`R
YR (L, B)

YC (L, B)
εYC/YR,B

+ ηRMU`

(
cM (VM , `M) , `M

YM (L, B)

YR (L, B)

)
`M

YM (L, B)

YR (L, B)
εYM/YR,B.

(63)

Now define the incentive effects in a similar way as Rothschild and Scheuer (2013) (using

that wi = Yi and suppressing some arguments)

ICR ≡ −ηCRU`
(
cR, `R

wR
wC

)
`R
wR
wC

(64)

and

IRM ≡ −ηRMU`
(
cM , `M

wM
wR

)
`M

wM
wR

. (65)

to write

τqB =εYC/YR,BICR − εYM/YR,BIRM . (66)

A.1.1 Expressions for incentive effects

To obtain expressions for the incentive effects (64) and (65), one needs to derive expres-

sions for the multipliers ηCR and ηRM . To do so, differentiate the Lagrangian in (58) with

respect to indirect utilities to obtain

∂L
∂VM

= fMψM − µηRMUc
(
cM , `M

wM
wR

)
∂cM
∂VM

− µfM
∂cM
∂VM

. (67)

Equating to zero, using that ∂cM/∂VM = 1/Uc (cM , `M) and rearranging yields

ηRM = fM

(
1

µ
ψM −

1

Uc (cM , `M)

)
Uc (cM , `M)

Uc

(
cM , `M

wM
wR

) . (68)

Analogously, we obtain

∂L
∂VR

= fRψR − µηCRUc
(
cR, `R

wR
wC

)
∂cR
∂VR

+ µηRM − µfR
∂cR
∂VR

, (69)

which after equating to zero, substituting for ∂cR/∂VR = 1/Uc (cR, `R) and rearranging

yields

ηRM = fR

(
1

Uc (cR, `R)
− 1

µ
ψR

)
+ ηCRUc

(
cR, `R

wR
wC

)
1

Uc (cR, `R)
. (70)

Finally, we have
∂L
∂VC

= fCψC + µηCR − µfC
∂cC
∂VC

, (71)
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which after equating to zero, using ∂cC/∂VC = 1/Uc (cC , `C) and rearranging becomes

ηCR = fC

(
1

Uc (cC , `C)
− 1

µ
ψC

)
. (72)

With quasi-linear utility as in (1) we have µ = 1 and Uc = 1. As a result, one obtains

ηCR = fC (1− ψC) , (73)

and

ηRM = fM (ψM − 1) = fR (1− ψR) + ηCR = fR (1− ψR) + fC (1− ψC) . (74)

Moreover, quasi-linear utility leads to U` = −` 1
ε such that the incentive effects are

ICR = fC (1− ψC)

(
`R
wR
wC

)1+ 1
ε

, (75)

and

IRM = fM (ψM − 1)

(
`M

wM
wR

)1+ 1
ε

. (76)

A.2 Optimal income tax

To derive expressions for the optimal marginal income tax rates, I differentiate the La-

grangian (58) with respect to individual labor supplies `i .

A.2.1 Expression for T ′M

First consider ∂L/∂`M , using that Yi = wi for i ∈ I and suppressing some arguments

∂L
∂`M

=− µηRM

[
Uc

(
c (VM , `M) , `M

wM
wR

)
∂c (VM , `M)

∂`M

+ U`

(
c (VM , `M) , `M

wM
wR

)
wM
wR

]
+ µξMfM + µfM

(
wM −

∂c

∂`M

)
.

(77)

Use that
∂c

∂`i
= −U` (c (Vi, `i) , `i)

Uc (c (Vi, `i) , `i)
= wi (1− T ′i ) , (78)
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where the last step is based on the definition of marginal tax rates. Substituting in (77),

I obtain

∂L
∂`M

=− µηRM

[
Uc

(
c (VM , `M) , `M

wM
wR

)
wM (1− T ′M)

+ U`

(
c (VM , `M) , `M

wM
wR

)
wM
wR

]
+ µξMfM + µfM (wM − wM (1− T ′M))

(79)

Setting equal to zero, dividing by µ and collecting terms yields

T ′M + ξM
YM

1− T ′M
=

1

fM
ηRM

[
Uc

(
c (VM , `M) , `M

wM
wR

)

− Uc (c (VM , `M) , `M)

U` (c (VM , `M) , `M)
U`

(
c (VM , `M) , `M

wM
wR

)
wM
wR

]
.

(80)

With quasi-linear utility the expression becomes

T ′M + ξM
YM

1− T ′M
= (ψM − 1)

(
1−

(
wM
wR

)1+ 1
ε

)
. (81)

A.2.2 Expression for T ′R

The first-order condition with respect to `R is

∂L
∂`R

=− µηCR
[
Uc

(
c (VR, `R) , `R

wR
wC

)
∂c

∂`R
+ U`

(
c (VR, `R) , `R

wR
wC

)
wR
wC

]
+ µξRfR + µfR

(
wR −

∂c

∂`R

)
.

(82)

I thus obtain

T ′R + ξR
YR

1− T ′R
=

1

fR
ηCR

[
Uc

(
c (VR, `R) , `R

wR
wC

)

− Uc (c (VR, `R) , `R)

U` (c (VR, `R) , `R)
U`

(
c (VR, `R) , `R

wR
wC

)
wR
wC

]
,

(83)

which with quasi-linear utility translates into

T ′R + ξR
YR

1− T ′R
=
fC
fR

(1− ψC)

(
1−

(
wR
wC

)1+ 1
ε

)
. (84)
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A.2.3 Expression for T ′C

Finally, the first-order condition with respect to `C is

∂L
∂`c

=µξCfC + µfC

(
wC −

∂c

∂`C

)
. (85)

Setting equal to zero, using (78) and rearranging leads to

T ′C = − ξC
YC
. (86)

A.2.4 Expressions for multipliers ξi

To derive expressions for the multipliers ξi, differentiate the Lagrangian (58) with respect

to aggregate effective labor supplies Li to obtain

∂L
∂Li

=− µηCRU`
(
c (VR, `R) , `R

wR
wC

)
`R

∂

∂Li

(
wR
wC

)
− µηRMU`

(
c (VM , `M) , `M

wM
wR

)
`M

∂

∂Li

(
wM
wR

)
− µξi + µ

(∑
j∈I

fj`j
∂Yj
∂Li

+
∂YB
∂Li

B

)
.

(87)

Substitute fj`j = Lj. By Euler’s Theorem, the effect on the resource constraint is zero.

Using that at the optimum, a change in Li has no effect on welfare and rearranging, I

obtain

ξi =− ηCRU`
(
c (VR, `R) , `R

wR
wC

)
`R

∂

∂Li

(
wR
wC

)
− ηRMU`

(
c (VM , `M) , `M

wM
wR

)
`M

∂

∂Li

(
wM
wR

)
.

(88)

Using the definitions of the incentive effects (75) and (76), we arrive at

ξi =ICR
∂

∂Li

(
wR
wC

)
wC
wR

+IRM
∂

∂Li

(
wM
wR

)
wR
wM

.

(89)

Now define the semi-elasticities of relative wages with respect to Li as

ε̃wR/wC ,Li ≡
∂

∂Li

(
wR
wC

)
wC
wR

(90)
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and

ε̃wM/wR,Li ≡
∂

∂Li

(
wM
wR

)
wR
wM

(91)

to write

ξi = ε̃wR/wC ,LiICR + ε̃wM/wR,LiIRM . (92)

Signing the multipliers. The sign of the multiplier is determined by the terms ∂
∂Li

(
wR
wC

)
and ∂

∂Li

(
wM
wR

)
. The sign of ξi is unambiguous if both of these terms have the same

sign. Consider ξM . We have ∂
∂LM

(
wM
wR

)
< 0. A sufficient condition for ξM < 0 is thus

∂
∂LM

(
wR
wC

)
< 0. Now consider ξC . We have ∂

∂LC

(
wR
wC

)
> 0, and hence ∂

∂LC

(
wM
wR

)
> 0 is a

sufficient condition for ξC > 0. Finally, since ∂
∂LR

(
wR
wC

)
< 0, and ∂

∂LR

(
wM
wR

)
> 0 the sign

of ξR is ambiguous and depends on the magnitudes of the different terms in (92).

B Optimal tax on robots with continuous types and

occupational choice

In order to derive an expression for the optimal tax on robots, I use that at the optimum,

a marginal change in robots B, has no first-order welfare effect. The welfare effect of a

marginal change in B corresponds to differentiating the Lagrangian of the inner problem,

evaluated at the optimal allocation, with respect to B. The Lagrangian of the inner

problem is given by

L =

ˆ wL,B

wL,B

V (c (w) , ` (w)) dΨ (w)

+ µ

ˆ wL,B

wL,B

η (w)U` (c (V (w) , ` (w)) , ` (w))
` (w)

w
dw

+ µξM

(
LM −

1

YM (L, B)

ˆ wL,B

wL,B

w` (w) fML,B (w) dw

)

+ µξR

(
LR −

1

YR (L, B)

ˆ wL,B

wL,B

w` (w) fRL,B (w) dw

)

+ µξC

(
LC −

1

YC (L, B)

ˆ wL,B

wL,B

w` (w) fCL,B (w) dw

)

+ µ

(ˆ wL,B

wL,B

w` (w) f (w) dw + YB (L, B)B −
ˆ wL,B

wL,B

c (V (w) , ` (w)) f (w) dw − qB

)
.

(93)
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The impact of a marginal change in B can be decomposed into four effects. First, there is

a direct effect on the resource constraint. The other three effects result from the impact

which a change in B has on wages: The second effect is the direct result from a change

in wages, leading to changes in ` (w) and V (w). The third effect is the indirect result of

changing wages. As wages change, individuals move along the schedules ` (w) and V (w).

Finally, as relative wage rates change, some individuals switch occupation, which has an

effect on the consistency conditions.

Instead of computing the effects by holding the schedules ` (w) and V (w) fixed, using

the envelope theorem, I follow Rothschild and Scheuer (2014) and construct variations

in the schedules ` (w) and V (w) which simplify the derivations. The idea is as follows:

Instead of having to take into account that changes in B alter the wage densities, the

adjustment of ` (w) and V (w) is chosen such that it offsets, at each w, changes which

otherwise would require adjusting the densities. Denote the adjusted schedules by ˜̀(w)

and Ṽ (w).

Schedule variations. In what follows, I first derive ˜̀(w) and Ṽ (w) which requires

some preparation: Indicate occupations by i ∈ I ≡ {M,R,C} and denote by

βiB (L, B) ≡ ∂Yi (L, B)

∂B

1

Yi (L, B)
, (94)

the semi-elasticity of the skill-price Yi (L, B) with respect to B. I define the indicator

qiL,B (θ) such that

qiL,B (θ) =

1, if θ works in i

0, otherwise.
(95)

Using that wages are given by

wL,B (θ) = max {YM (L, B) θM , YR (L, B) θR, YC (L, B) θC} , (96)

the wage of individual θ can thus be written as

wL,B (θ) =
∑
i∈I

qiL,B (θ) θYi (L, B) . (97)

The semi-elasticity of wages with respect to B for individual θ is thus

∂wL,B (θ)

∂B

1

wL,B (θ)
=
∑
i∈I

qiL,B (θ)
∂Yi (L, B)

∂B

1

Yi (L, B)

=
∑
i∈I

qiL,B (θ) βiB (L, B) .
(98)
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Like Rothschild and Scheuer (2014), I now construct ˜̀(w) and Ṽ (w) such that at each w,

changes in average labor supply and indirect utility which come from individuals shifting

along ` (w) and V (w) are offset. I focus on deriving ˜̀(w). The derivations for Ṽ (w)

are analogue. First, consider an individual θ. A change dB, which leads to a change in

wL,B (θ), causes θ to adjust labor supply by

`′ (w)
∂wL,B (θ)

∂B
dB = `′ (w)w

∑
i∈I

qiL,B (θ) βiB (L, B) dB, (99)

where I use (98). Now, note that the same wage w can be earned by different individ-

uals if wage distributions overlap across occupations. In order to compute the average

adjustment in labor supply, we need to compute the expected adjustment over all types

θ earning w, that is

`′ (w)w
∑
i∈I

E
[
qiL,B (θ) |w

]
βiB (L, B) dB = `′ (w)w

∑
i∈I

f iL,B (w)

fL,B (w)
βiB (L, B) dB, (100)

where I use that E
[
qiL,B (θ|w)

]
corresponds to the share of individuals who earn w in

occupation i, that is f i (w) /f (w). I now obtain the adjusted schedule ˜̀(w) by subtracting

the change in ` (w), induced by a change dB, from ` (w), that is

˜̀(w) ≡ ` (w)− `′ (w)wδBL,B (w) dB,

where I define

δBL,B (w) ≡
∑
i∈I

f iL,B (w)

fL,B (w)
βiB (L, B) . (101)

The adjusted schedule Ṽ (w) is

Ṽ (w) = V (w)− V ′ (w)wδBL,B (w) dB. (102)

Since l (w) and V (w) are chosen optimally, by the envelope theorem, a marginal ad-

justment to ˜̀(w) and Ṽ (w) brought about by a marginal change dB has no first-order

effect on welfare. I now consider the effect of a change dB on the different parts of the

Lagrangian. The objective is not affected by a change dB.33

33An exception is the case in which the planner redistributes based on non-welfarist principles. For
example, the planner might favor redistribution to certain occupations based on criteria other than the
distribution of indirect utilities. In this case, effects on the objective need to be taken into account, to
which Rothschild and Scheuer (2013, 2014) refer to as redistributive effects.
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Incentive constraint effect. The incentive constraint is as in Rothschild and Scheuer

(2014), who show that the schedule modification to ˜̀(w) and Ṽ (w) changes

V ′ (w)− U` (c (w) , ` (w)) ` (w) /w (103)

by −V ′ (w)w dδiL,B (w) /dw dB. Integrating over all wages then leads to the following

effect on the incentive constraint

−
∑
i∈I

βiB (L, B)µ

ˆ wL,B

wL,B

η (w)

Uc (w)
V ′ (w)w

d

dw

(
f iL,B (w)

fL,B (w)

)
dw dB

=− µ
∑
i∈I

βiB (L, B) Ii (L, B) dB,
(104)

with the incentive effect

Ii (L, B) ≡
ˆ wL,B

wL,B

η (w)

Uc (w)
V ′ (w)w

d

dw

(
f iL,B (w)

fL,B (w)

)
dw. (105)

Resource constraint effect. The expression in (93) pertaining to the resource con-

straint is

µ

(ˆ wL,B

wL,B

w` (w) f (w) dw −
ˆ wL,B

wL,B

c (V (w) , ` (w)) f (w) dw + YB (L, B)B − qB

)
.

(106)

First, a change in B has a direct effect on YB (L, B)B − qB, given by

∂YB (L, B)

∂B
B + YB (L, B)− q. (107)

Second, there is a direct effect on w in the first integrand, leading to

ˆ wL,B

wL,B

δBL,B (w)w` (w) f (w) dw. (108)

Next, there are direct effects on ` (w) and V (w), and thus on c (V (w) , ` (w)). However,

these effects are exactly canceled out by varying the schedules to ˜̀(w) and Ṽ (w) to offset
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the indirect effect. Use δBL,B (w) =
∑

i β
i
B

f iL,B(w)

f iL,B(w)
to rewrite (108) as

ˆ wL,B

wL,B

δiB (w)w` (w) f (w) dw

=
∑
i∈I

βiB (L, B)

ˆ wL,B

wL,B

w` (w) f iL,B (w) dw

=
∑
i∈I

∂Yi (L, B)

∂B

1

Yi (L, B)

ˆ wL,B

wL,B

w` (w) f iL,B (w) dw

=
∑
i∈I

∂Yi (L, B)

∂B
Li.

(109)

Now use that due to linear homogeneity of the production function,

∑
i∈I

∂Yi (L, B)

∂B
Li +

∂YB (L, B)

∂B
B = 0, (110)

hence adding (107) and (108) and multiplying by µ yields the resource constraint effect

µ (YB (L, B)− q) . (111)

Consistency condition effects. Next, I turn to the effects on the consistency con-

ditions. There are effort-reallocation effects and occupational-shift effects. Consider the

consistency condition for M . The derivations for the other consistency conditions are

analogue.

Effort-reallocation effect. First, rather than writing the condition in terms of wages,

write it in terms of types θ as

LM −
ˆ

Θ

θM`M (θ) dF (θ) . (112)

Now use that in the Roy model individuals fully specialize and write

`M (θ) = ` (w) qML,B (θ) , (113)

where w = YM (L, B) θM . The integrand can then be written as

θMq
M
L,B (θ) ` (w) . (114)

A change in B affects the expression via three channels: First, there is a direct effect on

` (w) as a change in B affects wages. Second, there is an indirect effect, as due to a change

in wages, individuals move along the schedule ` (w). Third, a change in B affects relative
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wage rates across sectors, and thus occupational choice, captured by qML,B (θ). Here, I

focus on the first two effects. The third effect will be discussed as occupational-shift

effect below.

For a single individual θ, the direct effect changes (114) by

θMq
M
L,B (θ) `′ (w)w

∑
i∈I

qiL,B (θ) βiB (L, B) dB

=
1

YM (L, B)

∑
i∈I

βiB (L, B) `′ (w)w2qML,B (θ) qiL,B (θ) dB,
(115)

where the second step substituted θM = w
YM (L,B)

and rearranged. To compute the effect

at w = YM (L, B) θM , one needs to take the expectation over all individuals θ who earn

w, leading to

1

YM (L, B)

∑
i∈I

βiB (L, B) `′ (w)w2E
[
qML,B (θ) qiL,B (θ) |w

]
dB. (116)

To offset the indirect effect on (114), change the schedule ` (w) to ˜̀(w) by subtracting

`
′
(w)w

∑
i∈I

E
[
qiL,B (θ) |w

]
βiB (L, B) dB (117)

from ` (w), which changes (114) by

− θMqML,B (θ) `
′
(w)w

∑
j∈I

E
[
qiL,B (θ) |w

]
βiB (L, B) dB. (118)

Again, this expression is for a single individual. To compute the effect at w, take the

expectation over all θ earning w, which by the law of iterated expectations yields

− θM`
′
(w)w

∑
j∈I

E
[
qML,B (θ) |w

]
E
[
qiL,B (θ) |w

]
βiB (L, B) dB

=− 1

YM (L, B)

∑
i∈I

βiB (L, B) `
′
(w)w2E

[
qML,B (θ) |w

]
E
[
qiL,B (θ) |w

]
dB.

(119)

Combine (116) and (119) to arrive at the change in (114) due to the direct and indirect

effect

1

YM (L, B)

∑
i∈I

βiB (L, B) `′ (w)w2×

(
E
[
qML,B (θ) qiL,B (θ) |w

]
− E

[
qML,B (θ) |w

]
E
[
qiL,B (θ) |w

])
dB

=
1

YM (L, B)

∑
i∈I

βiB (L, B) `′ (w)w2Cov
[
qiL,B (θ) , qML,B (θ) |w

]
dB.

(120)
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Integrate over wages to obtain

∑
i∈I

βiB (L, B)
1

YM (L, B)

ˆ wL,B

wL,B

`′ (w)w2Cov
[
qiL,B (θ) , qML,B (θ) |w

]
f (w) dw dB, (121)

and define

CiM ≡
1

YM (L, B)

ˆ wL,B

wL,B

`′ (w)w2Cov
[
qiL,B (θ) , qML,B (θ) |w

]
f (w) dw, (122)

and generally for j ∈ I

Cij ≡
1

Yj (L, B)

ˆ wL,B

wL,B

`′ (w)w2Cov
[
qiL,B (θ) , qjL,B (θ) |w

]
f (w) dw. (123)

The effort-reallocation effect for the consistency condition which corresponds to occupa-

tion j ∈ I is then

− µξj
∑
i∈I

βiB (L, B)Cij dB. (124)

No effort-reallocation effect if wage distributions do not overlap. Now suppose

that wage distributions do not overlap sectors, that is, qiL,B (θ) |w = 0 for i 6= M . The

expression in (120) then becomes

1

YM (L, B)
βMB (L, B) `′ (w)w2×(

E
[
qML,B (θ) qML,B (θ) |w

]
− E

[
qML,B (θ) |w

]
E
[
qML,B (θ) |w

])
dB.

(125)

Now use that qML,B (θ) qML,B (θ) = qML,B (θ). Moreover, with no overlap of distributions all

individuals who earn w = YM (L, B) θM are in occupation M , and thus qML,B (θ) |w = 1.

As a result, the term in parenthesis becomes

E
[
qML,B (θ) qML,B (θ) |w

]
− E

[
qML,B (θ) |w

]
E
[
qML,B (θ) |w

]
=E

[
qML,B (θ) |w

]
− E

[
qML,B (θ) |w

]
E
[
qML,B (θ) |w

]
=1− 1,

(126)

and hence there is no effort-reallocation effect if wage distributions do not overlap across

occupations.

Occupational-shift effect. To derive the impact of occupational change on the consis-

tency conditions, I focus on the effect on the condition for occupation M . The derivations

for the other consistency conditions are analogue. Instead of writing the consistency con-

ditions in terms of types θ, now write them again in terms of wages. The condition for
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occupation M is thus

LM −
ˆ w̄L,B

wL,B

1

YM (L, B)
w` (w) f (w) dw = 0. (127)

Focus on the effect on 1
YM (L,B)

y (w) , with income y (w) ≡ w` (w). I first derive how income

y (w) earned in occupationM changes due to occupational shifts in response to an increase

in B. A change in B alters wage rates Yi (L, B), which in turn affect occupational choice.

Write the impact of a marginal increase in B on wage rate Yi (L, B) as Yi (L, B) βiB (L, B).

Now, first consider how a marginal increase in YR (L, B) affects occupational choice, and

thus income y (w) earned in occupation M . As YR (L, B) increases, individuals are going

to shift from occupation M to R. Since I consider a marginal change in YR, I focus on

those individuals who are indifferent between M and R, which implies that they earn the

same wage in both occupations, and thus

θMYM (L, B) = θRYR (L, B)⇔ θR = θM
YM (L, B)

YR (L, B)
. (128)

Moreover, individuals need to be better off working in occupation M than working in

occupation C, thus

θMYM (L, B) ≥ θCYC (L, B)⇔ θC ≤ θM
YM (L, B)

YC (L, B)
. (129)

Having characterized the affected individuals, I next, consider how a change in relative

prices due to a change in YR, ∆YR, affects conditions (128) and (129). We get

θ∗R = θM
YM (L, B)

YR (L, B)
+ θM

∂

∂YR

(
YM (L, B)

YR (L, B)

)
∆YR, (130)

while (129) is not affected.

At a given point (θM , θC , θR), geometrically, the height of the polyhedron of individuals

changing from occupation M to occupation R due to an increase in YR is given by (see

Figure 6 for an illustration)

θ∗R − θR = θM
∂

∂YR

(
YM (L, B)

YR (L, B)

)
∆YR. (131)

The density at this point is

f (θM , θR, θC) = f

(
θM , θM

YM (L, B)

YR (L, B)
, θC

)
. (132)
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(a) Before increase in YR (b) After increase in YR

Figure 6: Illustration of occupational shifting due to increase in YR
Note: The axes correspond to the three dimensions of skill, θM , θR, θC . The green volume corresponds
to the mass of manual workers, the yellow volume to the mass of cognitive workers, and the blue volume
to the mass of routine workers. As YR increases, manual and cognitive workers move into routine
occupations.

In order to compute the mass of individuals who switch from occupation M to R at a

given θM with θR = θM
YM (L,B)
YR(L,B)

, we first need to integrate over all values θC for which

individuals do not work in occupation C. This range of values is given by [θC , θM
YM (L,B)
YC(L,B)

).

Integrating over the density yields

ˆ θM
YM (L,B)

YC (L,B)

θC

f

(
θM , θM

YM (L, B)

YR (L, B)
, θC

)
dθC , (133)

which at a given θM corresponds to a slice of the surface of indifference between sectors

M and R. To arrive at the first expression for the mass of switchers, we need to multiply

this slice of the surface by the height of the polyhedron of switchers, θ∗M − θM , leading to

θM
∂

∂YR

(
YM (L, B)

YR (L, B)

)
∆YR ×

ˆ θM
YM (L,B)

YC (L,B)

θC

f

(
θM , θM

YM (L, B)

YR (L, B)
, θC

)
dθC . (134)

In order to compute the income moving from occupation M to occupation R, due to

∆YR, write income as θMYM (L, B) ` (θMYM (L, B)) , multiply by the mass of switchers

at θM with θR = θM
YM (L,B)
YR(L,B)

and integrate over θM , leading to

ˆ θM

θM

θMYM (L, B) ` (θMYM (L, B))×

θM
∂

∂YR

(
YM (L, B)

YR (L, B)

)
∆YR ×

ˆ θM
YM (L,B)

YC (L,B)

θC

f

(
θM , θM

YM (L, B)

YR (L, B)
, θC

)
dθC dθM .

(135)
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Next, apply the change of variables w = θMYM (L, B), which implies dθM = dw 1
YM (L,B)

,

to obtain

1

YM (L, B)2

ˆ wL,B

wL,B

w2` (w)×

∂

∂YR

(
YM (L, B)

YR (L, B)

)
∆YR ×

ˆ w
YC (L,B)

θC

f

(
w

YM (L, B)
,

w

YR (L, B)
, θC

)
dθC dw.

(136)

Now use that ∆YR = YR (L, B) βRB (L, B) ∆B to get

βRB (L, B)
YR (L, B)

YM (L, B)2

ˆ wL,B

wL,B

w2` (w)×

∂

∂YR

(
YM (L, B)

YR (L, B)

)
×
ˆ w

YC (L,B)

θC

f

(
w

YM (L, B)
,

w

YR (L, B)
, θC

)
dθC dw∆B.

(137)

Use that ∂
∂YR

(
YM (L,B)
YR(L,B)

)
= − YM (L,B)

YR(L,B)2
to write

− βRB (L, B)
1

YM (L, B)YR (L, B)

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YC (L,B)

θC

f

(
w

YM (L, B)
,

w

YR (L, B)
, θC

)
dθC dw∆B.

(138)

Finally, use that in order to obtain the effect on 1
YM (L,B)

y (w) I have to divide by YM (L, B),

leading to

− βRB (L, B)
1

YM (L, B)2 YR (L, B)

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YC (L,B)

θC

f

(
w

YM (L, B)
,

w

YR (L, B)
, θC

)
dθC dw∆B.

(139)

Now define

SRM (L, B) ≡ − 1

YM (L, B)2 YR (L, B)

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YC (L,B)

θC

f

(
w

YM (L, B)
,

w

YR (L, B)
, θC

)
dθC dw.

(140)

In an analogue way, derive
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SCM (L, B) ≡ − 1

YM (L, B)2 YC (L, B)

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YR(L,B)

θR

f

(
w

YM (L, B)
, θR,

w

YC (L, B)

)
dθR dw.

(141)

Before providing expressions for the other terms, I repeat (part of) a Lemma from Roth-

schild and Scheuer (2014):34

Lemma 1. With I ≡ {M,R,C},
∑

i∈I = Cij (L, B) =
∑

i∈I Sij (L, B) = 0 for all j ∈ I.

By Lemma 1

SMM (L, B) = −SRM (L, B)− SCM (L, B) . (142)

This is intuitive: the inflow into occupation M is equal to the flows from occupations R

and C into M .

Similarly, derive

SMR (L, B) ≡− 1

YM (L, B)YR (L, B)2

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YC (L,B)

θC

f

(
w

YM (L, B)
,

w

YR (L, B)
, θC

)
dθC dw,

(143)

SCR (L, B) ≡− 1

YR (L, B)2 YC (L, B)

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YM (L,B)

θM

f

(
θM ,

w

YR (L, B)
,

w

YC (L, B)

)
dθM dw,

(144)

and by Lemma 1

SRR (L, B) = −SMR (L, B)− SCR (L, B) . (145)

Finally, derive

SMC (L, B) ≡− 1

YM (L, B)YC (L, B)2

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YR(L,B)

θR

f

(
w

YM (L, B)
, θR,

w

YC (L, B)

)
dθR dw,

(146)

34The corresponding Lemma in Rothschild and Scheuer (2014) is (the second part of) Lemma 6.
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SRC (L, B) ≡− 1

YR (L, B)YC (L, B)2

ˆ wL,B

wL,B

w2` (w)×

ˆ w
YM (L,B)

θM

f

(
θM ,

w

YR (L, B)
,

w

YC (L, B)

)
dθM dw,

(147)

and

SCC (L, B) = −SMC (L, B)− SRC (L, B) . (148)

Having derived all occupational-shift effects, it remains to combine them. The occupational-

shift effect which corresponds to the consistency condition for occupation j is

− µξj
∑
i∈I

βiB (L, B)Sij dB. (149)

Putting everything together. Combining the terms derived above, we get

∂L (L, B)

∂B
=

µ

[
YB (L, B)− q −

∑
i∈I

βiB (L, B)

(
Ii (L, B) +

∑
j∈I

ξj (Cij (L, B) + Sij (L, B))

)]
.

(150)

Now use that

YB (L, B) = (1 + τ) q ⇔ YB (L, B)− q = τq. (151)

Since at the optimum ∂L (L, B) /∂B = 0, we get

τq =
∑
i∈I

βiB (L, B)

(
Ii (L, B) +

∑
j∈I

ξj (Cij (L, B) + Sij (L, B))

)
. (152)

To further rewrite the expression, first focus on

βRB (L, B)

(
IR (L, B) +

∑
j∈I

ξj (CRj (L, B) + SRj (L, B))

)
=− βRB (L, B)

[
IM (L, B) + IC (L, B)

− ξM (CRM (L, B) + SRM (L, B))

− ξR (CRR (L, B) + SRR (L, B))

− ξC (CRC (L, B) + SRC (L, B))
]

=− βRB (L, B)
[
IM (L, B) + IC (L, B)

+ ξM (CMM (L, B) + CCM (L, B) + SMM (L, B) + SCM (L, B))

+ ξR (CMR (L, B) + CCR (L, B) + SMR (L, B) + SCR (L, B))

+ ξC (CMC (L, B) + CCC (L, B) + SMC (L, B) + SCC (L, B))
]
,

(153)
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where the first step uses
∑

i∈I Ii =
∑

i∈I Ri = 0 and the second step uses Lemma 1.

Substituting (153) for the respective expression in (152) and collecting terms yields

τq =
(
βCB (L, B)− βRB (L, B)

)(
IC (L, B) +

∑
j∈I

ξj (CCj (L, B) + SCj (L, B))

)

+
(
βMB (L, B)− βRB (L, B)

)(
IM (L, B) +

∑
j∈I

ξj (CMj (L, B) + SMj (L, B))

)
.

(154)

Finally, use that

εYC/YR,B (L, B) ≡∂ (YC (L, B) /YR (L, B))

∂B

B

YC (L, B) /YR (L, B)

=B
(
βCB (L, B)− βRB (L, B)

)
,

(155)

and

εYM/YR,B (L, B) ≡∂ (YM (L, B) /YR (L, B))

∂B

B

YM (L, B) /YR (L, B)

=B
(
βMB (L, B)− βRB (L, B)

)
,

(156)

to arrive at

τqB =εYC/YR,B (L, B)

(
IC (L, B) +

∑
j∈I

ξj (CCj (L, B) + SCj (L, B))

)

+εYM/YR,B (L, B)

(
IM (L, B) +

∑
j∈I

ξj (CMj (L, B) + SMj (L, B))

)
.

(157)

C Wage densities

The wage densities by occupation are given by35

fML,B(w) ≡ 1

σM
φ

(
lnw − YM

σM

)
Φ

(
lnw−YR
σR

− ρMR
lnw−YM
σM√

1− ρ2
MR

,

lnw−YC
σc

− ρMC
lnw−YM
σM√

1− ρ2
MC

; ρRC,M

)
,

(158)

fRL,B(w) ≡ 1

σR
φ

(
lnw − YR

σR

)
Φ

(
lnw−YM
σM

− ρMR
lnw−YR
σR√

1− ρ2
MR

,

lnw−YC
σC

− ρRC lnw−YR
σR√

1− ρ2
RC

; ρMC,R

)
,

(159)

fCL,B(w) ≡ 1

σC
φ

(
lnw − YC

σC

)
Φ

(
lnw−YM
σM

− ρMC
lnw−YC
σC√

1− ρ2
MC

,

lnw−YR
σR

− ρRC lnw−YC
σC√

1− ρ2
RC

; ρMR,C

)
.

(160)

35Technically, the expressions are not densities, since they do not integrate to one. Instead, the
expressions integrate to the mass of individuals in the respective occupation.
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Here, φ is the standard Normal density and Φ is the CDF of a bivariate standard Normal

distribution with covariance ρab,c. Following Bi and Mukherjea (2010), we have

ρRC,M ≡
ρRC − ρMRρMC√

1− ρ2
MR

√
1− ρ2

MC

, ρMC,R ≡
ρMC − ρMRρRC√
1− ρ2

MR

√
1− ρ2

RC

, ρMR,C ≡
ρMR − ρMCρRC√
1− ρ2

MC

√
1− ρ2

RC

.

D Production of routine tasks

Consider a continuum of tasks i ∈ [0, 1] which can be either produced linearly by robots or

by routine labor. Denote by b(i) output of task i produced by robots, and by l(i) output

of task i produced by routine labor. Since all tasks are symmetric, assume without loss

of generality that the production of tasks i ∈ [0, µB] is assigned to robots, whereas tasks

i ∈ (µB, 1] are assigned to routine labor. The combined output of robots and routine

labor is assumed to satisfy

(ˆ µB

0

b(i)
σ−1
σ di+

ˆ 1

µB

l(i)
σ−1
σ di

) σ
σ−1

. (161)

Since tasks are produced linearly with robots and routine labor, we have

B =

ˆ µB

0

b(i)di, LR =

ˆ 1

µB

l(i)di.

Since all tasks produced by robots cost the same to produce, it follows that b(i) = b =
B
µB

. Similarly, we have l(i) = l = LR
1−µB

. Moreover, since the firm is technologically

indifferent between producing tasks with robots or routine labor, it follows that µB is

chosen such that the price of producing a task with routine labor or robots is equalized.

As a consequence, b = l, and thus

LR
1− µB

=
B

µB
⇒ µB(LR, B) ≡ B

LR +B
.

We can thus rewrite (161) as
(
µB(LR, B)

1
σB

σ−1
σ + (1− µB(LR, B))

1
σL

σ−1
σ

R

) σ
σ−1

.
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E Tables for calibration

Table 2: Calibration - Parameters

Parameter Description Value

Labor supply and taxes

ε Labor supply elasticity (Blundell and McCurdy, 1999; Meghir and

Phillips, 2010)

0.3

t Tax progressivity (Heathcote et al., 2017) 0.181

λ Revenue parameter 1.83

Skill distribution

σM Standard deviation: manual 0.67

σR Standard deviation: routine 0.53

σC Standard deviation: cognitive 0.75

ρMR Correlation: manual vs. routine -0.61

ρMC Correlation: manual vs. cognitive 0.12

ρRC Correlation: routine vs cognitive 0.69

Production function

γ Elasticity of substitution: manual labor vs. all other factors 2.06

ρ Elasticity of substitution: cognitive labor vs. routine labor and

robots

1.67

σ Elasticity of substitution: routine labor vs. robots 4.41

A Productivity shifter 28.46

µM Share parameter: manual labor 0.10

µC Share parameter: cognitive labor 0.43

q0 Producer price of robots at time 0 13.33

q1 Producer price of robots at time 1 12.49

Note: Parameters ε and t are set directly. All other parameters are calibrated to match the following

moments: mean, standard deviation, and skewness of wages by occupation, employment shares, elastici-

ties of wage-distribution-deciles with respect to a change in robots, the price-elasticity of robot adoption,

and the share of income-tax revenue in GDP.
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Table 3: Calibration - Moments of wage distribution

Moment Occupation Model Data

Mean of wages manual 12.51 11.89

routine 16.42 16.91

cognitive 25.87 25.36

St. dev. of wages manual 6.19 6.15

routine 8.67 9.31

cognitive 16.02 14.24

Skewness of wages manual 2.47 3.47

routine 2.01 2.99

cognitive 2.55 2.26

Note: Data moments are based on the CPS for 1993. Wages are in 2016-dollars.
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F Data Appendix

I obtain data on wages and occupational choice from the Current Population Survey

(CPS) Merged Outgoing Rotation Groups (MORG) as prepared by the National Bu-

reau of Economic Research (NBER).36 To make results comparable with Acemoglu and

Restrepo (2017), I focus on data from 1993 which is the first in year in which data on

industrial robots is available for the US.

F.1 Sample

Selection of the sample follows Acemoglu and Autor (2011). I include individuals aged

16 to 64 whose usual weekly hours worked exceed 35. Hourly wages are obtained by

dividing weakly earnings by usual hours worked. All wages are converted into 2016 dollar

values using the personal consumption expenditures chain-type price index.37 The high-

est earnings in the CPS are top-coded. I therefore windsorize earnings by multiplying

top-coded earnings by 1.5. Like Acemoglu and Autor (2011), I exclude those individu-

als who earn less than 50% of the 1982 minimum wage (3.35$) converted to 2016-dollars.

Self-employed individuals are excluded, as are individuals whose occupation does not have

an occ1990dd classification. Like Acemoglu and Autor (2011), I exclude individuals em-

ployed by the military as well as agricultural occupations. As will be discussed in Section

F.2, I also exclude the following occupations: Police, detectives and private investiga-

tors, Fire fighting, prevention and inspection, Other law enforcement: sheriffs, bailiffs,

correctional institution officers. Observations are weighted by CPS sample weights.

F.2 Classifying occupations

I classify occupations into three categories: manual non-routine, manual routine and

cognitive. To do so, I proceed in several steps.

Two-digit classification as in Acemoglu and Autor (2011). First, I apply the

classification from David Dorn.38 Next, I follow Acemoglu and Autor (2011) and group

occupations into the following categories: Managers, Professionals, Technicians, Sales,

Office and admin, Personal care and personal services, Protective service, Food prep,

buildings and grounds, cleaning, Agriculture, Production, craft and repair, Operators,

fabricators and laborers. Autor and Dorn (2013) highlight that protective services is

a heterogeneous category with wages in police, firefighters and other law enforcement

occupations being substantially higher than in other protective services occupations. I

36See http://www.nber.org/data/morg.html
37I obtain the price index from https://fred.stlouisfed.org/series/DPCERG3A086NBEA
38See http://www.ddorn.net/data.htm
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log hourly wage

Figure 7: Distribution of log wages for 2-digit occupations
Note: NBER CPS Merged Outgoing Rotation Groups. The sample is explained in Section F.1. Data is
for the year 1993. Wages are in 2016-Dollars.

therefore exclude the former occupations from the analysis. Figure 7 shows a box-plot of

log wages for the different recoded occupations, ordered by median wage.

Classification into three categories. I base my classification of occupations on Ace-

moglu and Autor (2011). The classification is described in Table 4. Summary statistics

are given in Table 5.
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Table 4: Occupation classification based on Acemoglu and Autor (2011)

Three-group classification Contained occupations

Cognitive non-routine Managers
Professionals
Technicians

Routine Sales
Office and admin
Production, craft and repair
Operators, fabricators and laborers

Manual non-routine Protective service
Food prep, buildings and grounds, cleaning
Personal care and personal services

Table 5: Summary Statistics for CPS Sample

man.
non-rout.

rout. cogn.
non-rout.

all

Employment share in pct 10.98 58.68 30.34 100

Wage in 2016-$
Mean 11.89 16.91 25.36 18.98
St. dev. 6.15 9.31 14.24 11.74

Schooling Shares in pct
Less than high school 24.73 13.63 1.3 11.11
High school 44.78 46.15 13.53 36.1
Some college 19.31 21.72 14.31 19.21
College 10.37 16.91 46.42 25.15
More than college 0.82 1.58 24.45 8.44

Note: Based on data from the NBER CPS Merged Outgoing Rotation Groups. The sample is explained
in Section F.1. The classification into three categories is explained in Section F.2. Data is for the year
1993. Wages are in 2016-Dollars.
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