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Abstract 
 
We integrate a market microstructure model with an exchange competition model with entry in 
which exchanges supply technological services that enhance market participation, and have 
market power. We find that technological services can be strategic substitutes or complements 
in platform competition. Free entry of platforms delivers a superior outcome in terms of 
liquidity and (generally) welfare compared to the case of an unregulated monopoly. Controlling 
entry or, even better, platform fees may serve as an instrument to limit market power, further 
increasing welfare. The market may deliver excessive or insufficient entry. 
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“We are now living in a much different world, where many are questioning

whether the pendulum has swung too far and we have too many venues,

creating unnecessary complexity and costs for investors.” Mary Jo White,

Economic Club of New York, June 2014.

“The cost of market data and exchange access has been a cause of debate

and concern for the industry for many years, and those concerns have grown

as these costs have risen dramatically in the last several years [...] Exchanges

also have been able to charge more for the data center connections [...] since

they control access at the locations where the data is produced.” Brad

Katsuyama, U.S. House of Representatives Committee on Financial Services,

June 2017.

1 Introduction

Over the past two decades, governments and regulators moved to foster competition

among trading venues, leading to an increase in market fragmentation. However, there

is now a concern that the entry of new platforms may have been excessive, and that

exchanges exercise too much market power in the provision of technological services. In

this paper we show that the move from monopoly to competition has increased liquidity

and the welfare of market participants but that the market does not deliver a (constrained)

efficient outcome. We characterize how structural and conduct regulation of exchanges

has the potential to improve welfare.

The profit orientation of exchanges, when they converted into publicly listed com-

panies, led to regulatory intervention both in the US (Reg NMS in 2005) and the EU

(Mifid in 2007), to stem their market power in setting fees. Regulation, together with

the removal of barriers to international capital flows and technological developments, led

in turn to an increase in fragmentation and competition among trading platforms. In-

cumbent exchanges such as the NYSE reacted to increased competition by upgrading

technology (e.g, creating, NYSE Arca), or merging with other exchanges (e.g., the NYSE

merged with Archipelago in 2005 and with Euronext in 2007).1

As a result, the trading landscape has changed dramatically. On the one hand, large-

cap stocks nowadays commonly trade in multiple venues, a fact that has led to an inex-

orable decline in incumbents’ market shares, giving rise to a “cross-sectional” dimension

1See Foucault et al. (2013), Chapter 1.
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of market fragmentation (see Figure 1). The automation of the trading process has also

spurred fragmentation along a “time-series” dimension, in that some liquidity providers’

market participation is limited (Duffie (2010), SEC (2010)), endogenous (Anand and

Venkataraman (2015)), or impaired because of the existence of limits to the access of

reliable and timely market information (Ding et al. (2014)).2 On the other hand, trading

fees have declined to competitive levels (see, e.g., Foucault et al. (2013), Menkveld (2016),

and Budish et al. (2017)), and exchanges have steered their business models towards the

provision of technological services (e.g., proprietary data, and co-location space).3

Such a paradigm shift has raised a number of concerns highlighted by the fact that

even tough there are 13 lit stock venues in the US (and 30 alternative ones), 12 of them,

which account for two-thirds of daily trading, are controlled by three major players:

Intercontinental Exchange, Nasdaq, and CBOE.4 Indeed, market participants allege that

exchanges exercise market power in the provision of technological services.5 Additionally,

regulators and policy makers such as the SEC and the antitrust authorities have also

expressed concern about the existence of potential monopoly restrictions or excess entry.6

2Limited market participation of liquidity providers also arises because of shortages of arbitrage
capital (Duffie (2010)) and/or traders’ inattention or monitoring costs (Abel et al. (2013)).

3Increasing competition in trading services has squeezed the profit margins exchanges drew from
traditional activities, leading them to gear their business model towards the provision of technological
services (Cantillon and Yin (2011)). There is abundant evidence testifying to such a paradigmatic shift.
For example, according to the Financial Times, “After a company-wide review Ms Friedman [Nasdaq
CEO] has determined the future lies in technology, data and analytics, which collectively accounted for
about 35 per cent of net sales in the first half of this year.” (see, “Nasdaq’s future lies in tech, data and
analytics, says Nasdaq CEO” Financial Times, October 2017). Additionally, according to Tabb Group,
in the US, exchange data, access, and technology revenues have increased by approximately 62% from
2010 to 2015 (Tabb Group, 2016).

4See FT January 8, 2019, where it is also reported that large brokers and banks are setting MEMX
a competing exchange to lower costs of trading.

5“ ‘Information wants to be free,’ the technology activist Stewart Brand once said. ‘Information also
wants to be expensive.’ That is proving true on Wall Street, where stock exchanges–in particular the
New York Stock Exchange and Nasdaq–both publicly traded and for-profit, stand accused by rivals and
some users of unfairly increasing the price of market data.” (Business Insider, November 2016). In
December 2016 Chicago-based Wolverine Trading LLC stated to the SEC that its total costs related to
NYSE equities market data had more than tripled from 2008 to 2016 (“This is a monopoly.”)

6Responding to a NYSE request to change the fees it charges for premium connectivity services, the
SEC in November 2016 stated: “The Commission is concerned that the Exchange has not supported
its argument that there are viable alternatives for Users inside the data center in lieu of obtaining such
information from the Exchange. The Commission seeks comment on whether Users do have viable
alternatives to paying the Exchange a connectivity fee for the NYSE Premium Data Products.” The
SEC statement echoes industry concerns “ ‘We are pleased that the Commission will be subjecting this
incremental fee application to review,’ Doug Cifu, the CEO of electronic trading firm Virtu [...] ‘As we
have repeatedly said we think exchange market data and connectivity fees have ‘jumped the shark’ as
an excessive cost burden on the industry.’ ” (Business Insider, November 2016.) In October 2018, the
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Q3 2010 was duplicate trades already reported elsewhere. A major source of double 
counting in trading data is that “give up/give in” trades, which transfer ownership of stocks 
from one broker to another to execute an order on behalf of the broker, are reported by both 
of the two brokers involved.

In an attempt to provide a more comparable picture between trading in US and 
European equity markets, we have collected firm-level data on the trading volume of 
individual stocks that are included in three major European stock indices (i.e. FTSE 100 in 
the United Kingdom, CAC 40 in France and DAX 30 in Germany) for the period from 
1 December 2015 to 31 March 2016. Based on this data, we have calculated how the trading 
is distributed among all the individual trading venues, including exchanges, MTFs and 
other OTC trading. 

Given the difficulties with analysing the trading data in Europe, potentially double-
counted trades have been excluded, based on the explanations provided for each trading 
category in the dataset, including give up/give in trades. Each trading category has also 
been categorised as on/off exchange and lit/dark volume using the same explanations. The 
aggregated results are summarised in Figure 4.7. 

Using this method, the figure shows that the share of on-exchange volume is similar 
across the three markets, between 48%-52% of all trading volume, but considerably lower 
than in Figure 4.6. This also includes on exchange off-order book trading and hidden orders 
on exchanges, which are both classified as dark volume. With respect to off-exchange 
venues, the market share of MTFs is around 12% in the United Kingdom, 10% in France 
and 8% in Germany, while the lion’s share of the off-exchange volume was executed on 
non-MTF OTC centres. 

Figure 4.6.  Market shares among trading venues in Europe, 2015

Source: BATS Global Markets.
1 2 http://dx.doi.org/10.1787/888933362490
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Equity market structure in the United States

Stock trading in the United States is fragmented into a number of different venues that 
fall into three main categories: 1) 12 national securities exchanges; 2) 44 ATSs,3 including 
off-exchange visible trading venues (ECNs) and dark pools; and 3) various OTC systems, 
including internal trading systems of firms. It is worth noting that trading in off-exchange 
venues is not a new phenomenon. Already in 1990, 17% of the volume traded in shares that 
were listed on the New York Stock Exchange (NYSE) took place in venues other than NYSE 
itself.4 This share remained stable until 2005 when it started to successively increase. 
Figure 4.3, shows that in 2015 only 33% of the trade in NYSE-listed shares actually took 
place on the three NYSE Group exchanges. The remaining two thirds of all trades were 
carried out in other venues. Similarly, the three NASDAQ exchanges’ share of the total 
trading in NASDAQ Stock Market listed firms was just 31% in 2015.

Out of the 18 national securities exchanges registered with the US SEC at the end of 
2015, 12 exchanges traded equity securities in the United States. However, 10 of these 
12 exchanges belong to one of three exchange groups (Intercontinental Exchange/New York 
Stock Exchange [ICE/NYSE], NASDAQ and Bats Global Markets [BATS]).5 Figure 4.3 shows 
how the trading volume in companies that are listed on NYSE and NASDAQ is distributed 
among these three exchange groups and the only independent securities exchange, the 
Chicago Stock Exchange (CHX). CHX share of trading volume was less than 1% in both NYSE 
and NASDAQ-listed shares.

Figure 4.3 also shows the off-exchange trading in shares listed on NYSE and NASDAQ. 
In 2015, 31% of all trading in NYSE-listed and 35% of all trading in NASDAQ-listed shares 
took place in off-exchange venues. 

In January 2014, the US SEC approved a rule that requires all broker-dealers that operate an 
ATS to report the aggregate weekly trading information for each security to the Financial Industry 
Regulatory Authority (FINRA). FINRA has made this information available since July 2014.

Figure 4.3.  Market shares in the trading of NYSE and NASDAQ-listed shares 
among trading venues in the United States, 2015

Note: Off-exchange volume includes ATS, internal trading systems of firms and other OTC trading that are reported to the FINRA. This is 
primarily done through the two Trade Reporting Facilities (TRFs) operated by the two exchanges or through the Alternative Display 
Facility (ADF) directly operated by FINRA.
Source: BATS Global Markets.

1 2 http://dx.doi.org/10.1787/888933362472
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Figure 1: Market shares among trading venues in Europe (Panel (a)), and the US (Panel
(b)). Source: OECD Business and Finance Outlook 2016.

The questions we want to address in this paper are the following: what is the character

of platform competition in the supply of technological services? What is the impact of

platform competition on the overall quality of the market and on the end users of trading

services? If the market outcome is suboptimal, which regulatory tools are more effective?

Entry controls (merger policy), or fee regulation?

We assess the consequences for market quality and the welfare of market participants

of different exchanges’ entry regimes and pricing policies in a context of limited market

participation. To this end we propose a stylized framework that captures the above

dimensions of market fragmentation and competition among trading venues, integrating

a simple two-period, market microstructure model à la Grossman and Miller (1988), with

one of platform competition with entry, featuring a finite number of exchanges competing

to attract dealers’ orders.

The microstructure model defines the liquidity determination stage of the game.

SEC did not approve the fee increase for data sought by the NYSE and Nasdaq. See also Okuliar (2014)
on whether US competition authorities should intervene more in financial exchange consolidation.
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There, two classes of risk averse dealers provide liquidity to two cohorts of rational liq-

uidity traders, who sequentially enter the market. Depending on the structure of the

market, at each round traders can submit their orders only to an “established” venue,

or also to one of the competing venues. Dealers in the first class are endowed with a

technology enabling them to act at both rounds, absorbing the orders of both liquidity

traders’ cohorts, and are therefore called ‘full’ (FD); those in the second class can only

act in the first round, and are called ‘standard’ (SD). The possibility to trade in the

two rounds captures in a simple way both the limited market participation of standard

dealers, and FDs’ ability to take advantage of short term return predictability. We as-

sume that there is a best price rule ensuring that the second period price is identical

across all the competing trading platforms. This is the case in the US where the combi-

nation of the Unlisted Trading Privilege (which allows a security listed on any exchange

to be traded by other exchanges), and Regulation National Market System (RegNMS)

protection against “trade-throughs,” implies that, despite fragmentation, there virtually

exists a unique price for each security.7 We also assume that trading fees are set at the

competitive level by the exchanges.8

The platform competition model features a finite number of exchanges which, upon

incurring a fixed entry cost, offer “technological services” to the full dealers which allow

them to trade in the second round. A standard dealer becomes full by paying a fee

that reflects the incremental payoff he earns by operating in the second round.9 This

defines an inverse demand for technological capacity; upon entry, each exchange incurs a

constant marginal cost to produce a unit of technological service capacity, receiving the

corresponding fee from the attracted full dealers. This defines a Cournot game with free

entry which represents the technological capacity determination stage of the game.

We now describe in more detail the main features of the model and findings. Due to

their ability to trade in both rounds, full dealers exhibit a higher risk bearing capacity

7Price protection rules were introduced to compensate for the potential adverse effects of price frag-
mentation when the entry of new platforms was encouraged to limit market power of incumbents. In
particular, RegNMS requires market centers to route orders at the top of the book to the trading platform
that posts the best price, and exchanges to provide accessible electronic data about their price quota-
tions. The aim is to enforce price priority in all markets. However, for large orders execution pricing
may not be the same in all exchanges except if traders have in place cross-exchange order-routing tech-
nology. In Europe there is no order protection rule similar to RegNMS. Foucault and Menkveld (2008)
show empirically the existence of trade-thoroughs in Amsterdam and London markets. Hendershott and
Jones (2005) find that in the US price protection rules improve market quality.

8We abstract therefore from competition for order flow issues (see Foucault et al. (2013) for an
excellent survey of the topic).

9Actually, FDs may have to invest on their own also on items such as speed technology. In our model
we will abstract from such investments.
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compared to standard dealers. As a consequence, an increase in their mass improves mar-

ket liquidity. This has two countervailing effects on the welfare of market participants.

On the one hand, it lowers the cost of trading and leads traders to hedge more aggres-

sively, increasing their welfare. On the other hand, it hurts standard dealers who face

a heightened competitive pressure, and experience a welfare reduction. As liquidity de-

mand augments for both dealers’ classes, however, SDs effectively receive a smaller share

of a larger pie. This mitigates the negative impact of increased competition on dealers,

implying that on balance the increased liquidity benefits in the aggregate first period

market participants other than FDs. In turn, this contributes to make gross welfare (i.e.,

the weighted sum of all market participants’ welfare) increasing in the proportion of full

dealers, implying that liquidity becomes a measurable welfare indicator.

An important feature of the platform competition stage of the model is that deal-

ers’ demand for technological services is log-convex for a wide range of deep parameters.

Intuitively, when the proportion of full dealers in the market is small, the margin from

acquiring the technology to participate in the second round of trade is way larger than in

the polar case when the market is almost exclusively populated by full dealers. Thus, an

increase in the proportion of full dealers yields a price reduction which becomes increas-

ingly smaller. We show that this has important implications for the nature of exchange

competition. In particular, when two platforms are in the market and their marginal

costs are small, strategic complementarities in the supply of technological services arise.

Hence, a shock that lowers technology costs can prompt a strong response in technolog-

ical capacity. Furthermore, log-convexity of the demand function can lead a monopoly

platform to step up its technological capacity in the face of an entrant. This magnifies

the positive impact of an increase in the number of competing platforms on the aggregate

technological service capacity. Given that at equilibrium the latter matches the propor-

tion of full dealers, this in turn amplifies the positive liquidity and welfare impact of

heightened platform competition.

An insight of our analysis is that technological services can be viewed as an essential

intermediate input in the “production” of market liquidity. This warrants a welfare

analysis of the impact of platform competition, which is the subject of the last part of the

paper. There, we use our setup to compare the market solution arising with no platform

competition (monopoly), and with entry (Cournot free entry), with three different planner

solutions which vary depending on the restrictions faced by the planner. An unrestricted

planner attains the First Best by choosing the number of competing exchanges as well as

the industry technological service fee; a planner who can only regulate the technological

6



service fee but not entry, achieves the Behavioral Second Best; finally, if the planner is

unable to affect the way in which exchanges compete but can set the number of exchanges

who can enter the market, she achieves the Structural Second Best solution (restricted

or unrestricted, depending on whether the planner regulates entry making sure that

platforms break even or not).

Insulated from competition, a monopolistic exchange seeks to restrict the supply of

technological services to increase the fees it extracts from FDs.10 Thus, the market at

a free entry Cournot equilibrium delivers a superior outcome in terms of liquidity and

(generally) welfare. However, compared to the case in which the regulator can control

entry, the market solution can feature excessive or insufficient entry. Indeed, in the ab-

sence of regulation, an exchange makes its entry decision without internalizing the profit

reduction it imposes on its competitors. This “profitability depression” effect is con-

ducive to excessive entry.11 As new platform entry spurs liquidity, however, it also has

a positive “liquidity creation” effect which can offset the profitability depression effect,

and lead to insufficient entry. Entry regulation is however typically inferior compared to

the alternative of regulating the technological service fee charged by a monopolistic ex-

change. This is because in this case the planner generally minimizes the setup cost borne

by the industry and can more effectively limit market power by forcing the monopolistic

exchange to charge the lowest possible technological service fee that is compatible with

a break-even condition.

Overall, our analysis suggests that fee regulation achieves the highest and cheapest

provision of technological services. However, this form of intervention is subject to rent-

seeking efforts by market participants, which indicates that entry regulation can at times

work as a simpler alternative instrument.12 Indeed, spurring entry achieves two objec-

tives. First, it works as a corrective against exchanges’ market power in the provision

of technological services; additionally, by creating competitive pressure, it achieves the

objective of keeping exchanges’ trading fees in check.

In the last part of the paper, we use our model to investigate the effects of platforms’

10In a similar vein, Cespa and Foucault (2014) find that a monopolistic exchange finds it profitable to
restrict the access to price data, to increase the fee it extracts from market participants.

11This effect is similar to the “business stealing” effect highlighted by the Industrial Organization
literature (see, e.g., Mankiw and Whinston (1986)). Note, however, that business stealing refers to the
depressing impact that a firm entry has on its competitors’ output. In our context, this effect is not
warranted: due to strategic complementarity, heightened competitive pressure can lead an exchange to
respond by installing more capacity.

12The evidence presented in footnote 6 suggests that regulators’ ability to weigh on the technological
fee-setting process is far from perfect.

7



technological capacity decisions on liquidity provision. As usual in models with risk averse

dealers, a reduction in risk tolerance reduces liquidity. However, insofar as it penalizes

comparatively more SDs than FDs, the same can also boost the demand for technological

services, potentially leading to an increase in its supply, which, in some of our simulations

is strong enough to produce a liquidity improvement.

Our paper is related to the literature on the welfare effects of platform competition,

and investment in technological capacity. Pagnotta and Philippon (2018), consider a

framework where trading needs arise from shocks to traders’ marginal utilities from asset

holding, yielding a preference for different trading speeds. In their model, venues verti-

cally differentiate by speed, with faster venues attracting more speed sensitive investors

and charging higher fees. This relaxes price competition, and the market outcome is in-

efficient. The entry welfare tension in their case is between business stealing and quality

(speed) diversity, like in the models of Gabszewicz and Thisse (1979) and Shaked and

Sutton (1982). In this paper, as argued above, the welfare tension arises instead from the

profitability depression and liquidity creation effects associated with entry.13 Biais et al.

(2015) study the welfare implications of investment in the acquisition of High Frequency

Trading (HFT) technology. In their model HFTs have a superior ability to match orders,

and possess superior information compared to human (slow) traders. They find excessive

incentives to invest in HFT technology, which, in view of the negative externality gener-

ated by HFT, can be welfare reducing. Budish et al. (2015) argue that HFT thrives in

the continuous limit order book, which is however a flawed market structure since it gen-

erates a socially wasteful arms’ race to respond faster to (symmetrically observed) public

signals. The authors advocate a switch to Frequent Batch Auctions (FBA) instead of a

continuous market. Budish et al. (2017), introduce exchange competition in Budish et al.

(2015) and analyze whether exchanges have enough incentives to implement the technol-

ogy required to run FBA. Also building on Budish et al. (2015), Baldauf and Mollner

(2017) show that heightened exchange competition has two countervailing effects on mar-

ket liquidity, since it lowers trading fees, but magnifies the opportunities for cross-market

arbitrage, increasing adverse selection.

Our paper is also related to the literature on the Industrial Organization of secu-

rities’ trading. This literature has identified a number of important trade-offs due to

competition among trading venues. On the positive side, platform competition exerts a

beneficial impact on market quality because it forces a reduction in trading fees (Foucault

and Menkveld (2008) and Chao et al. (2017)), and can lead to improvements in margin

13Pagnotta and Philippon (2018) also study the market integration impact of RegNMS.
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requirements (Santos and Scheinkman (2001)); furthermore, it improves trading technol-

ogy and increases product differentiation, as testified by the creation of “dark pools.” On

the negative side, higher competition can lower the “thick” market externalities arising

from trading concentration (Chowdhry and Nanda (1991) and Pagano (1989)), and in-

crease adverse selection risk for market participants (Dennert (1993)). We add to this

literature, by pointing out that market incentives may be insufficient to warrant a welfare

maximizing solution. Indeed, heightened competition can lead to the entry of a subopti-

mal number of trading venues, because of the conflicting impact of entry on profitability

and liquidity.

The rest of the paper is organized as follows. In the next section, we outline the model.

We then turn our attention to study the liquidity determination stage of the game. In

section 4, we analyze the payoffs of market participants, and the demand and supply of

technological services. We then concentrate on the impact of platform competition with

free entry, and contrast the welfare and liquidity effects of different regulatory regimes.

A final section contains concluding remarks.

2 The model

A single risky asset with liquidation value v ∼ N(0, τ−1v ), and a risk-less asset with unit

return are exchanged during two trading rounds.

Three classes of traders are in the market. First, a continuum of competitive, risk-

averse, “Full Dealers” (denoted by FD) in the interval (0, µ), who are active at both

rounds. Second, competitive, risk-averse “Standard Dealers” (denoted by SD) in the

interval [µ, 1], who instead are active only in the first round. Finally, a unit mass of

traders who enter at date 1, taking a position that they hold until liquidation. At date

2, a new cohort of traders (of unit mass) enters the market, and takes a position. The

asset is liquidated at date 3. We now illustrate the preferences and orders of the different

players.

2.1 Trading venues

The organization of the trading activity depends on the competitive regime among venues.

With a monopolistic exchange, both trading rounds take place on the same venue. When

platforms are allowed to compete for the provision of technological services, we assume

that a best price rule ensures that the price at which orders are executed is the same

9



across all venues: trading can seamlessly occur on each venue at a unique price at both

trading rounds. We thus assume away “cross-sectional” frictions, implying that we have a

virtual single platform where all exchanges provide identical access to trading, and stock

prices are determined by aggregate market clearing.14

We model trading venues as platforms that prior to the first trading round (date 0),

supply technology which offers market participants the possibility to trade in the second

period. For example, it is nowadays common for exchanges to invest in the supply of

co-location facilities which they rent out to traders to store their servers and networking

equipment close to the matching engine; additionally, platforms invest in technologies

that facilitate the distribution of market data feeds. In the past, when trading was

centralized in national venues, exchanges invested in real estate and the facilities that

allowed dealers and floor traders to participate in the trading process.

At date t = −1 trading venues decide whether to enter and if so they incur a fixed

cost. Suppose that there are N entrants, that each venue i = 1, 2, . . . , N produces a

technological service capacity µi, and that

N∑

i=1

µi = µ, (1)

so that the proportion of FDs coincides with the total technological service capacity

offered by the platforms. Consistently with the evidence discussed in the introduction

(see also Menkveld (2016)), we assume that trading fees are set to the competitive level.

2.2 Liquidity providers

A FD has CARA preferences, with risk-tolerance γ, and submits price-contingent orders

xFDt , to maximize the expected utility of his final wealth: W FD = (v − p2)xFD2 + (p2 −
p1)x

FD
1 , where pt denotes the equilibrium price at date t ∈ {1, 2}.15 A SD also has

CARA preferences with risk-tolerance γ, but is in the market only in the first period.

He thus submits a price-contingent order xSD1 to maximize the expected utility of his

wealth W SD = (v− p1)xSD1 . The inability of a SD to trade in the second period is a way

to capture limited market participation in our model. In today’s markets, this friction

14Holden and Jacobsen (2014) find that in the US, only 3.3% of all trades take place outside the
NBBO. See also Li (2015) for indirect evidence that the single virtual platform assumption is compelling
on non-announcement days.

15We assume, without loss of generality with CARA preferences, that the non-random endowment of
FDs and dealers is zero. Also, as equilibrium strategies will be symmetric, we drop the subindex i.
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could be due to technological reasons, as in the case of standard dealers with impaired

access to a technology that allows trading at high frequency. In the past, two-tiered

liquidity provision occurred because only a limited number of market participants could

be physically present in the exchange to observe the trading process and react to demand

shocks.16

2.3 Liquidity demanders

Liquidity traders have CARA preferences, with risk-tolerance γL.

In the first period a unit mass of traders enters the market. A trader receives a random

endowment of the risky asset u1 and submits an order xL1 in the asset that he holds until

liquidation.17 A first period trader posts a market order xL1 to maximize the expected

utility of his profit πL1 = u1v + (v − p1)xL1 :

E[− exp{−πL1 /γL}|u1]. (2)

In period 2, a new unit mass of traders enters the market. A second period trader observes

p1, receives a random endowment of the risky asset u2, and posts a market order xL2 to

maximize the expected utility of his profit πL2 = u2v + (v − p2)xL2 :

E[− exp{−πL2 /γL}|p1, u2]. (3)

We assume that ut ∼ N(0, τ−1u ), Cov[ut, v] = Cov[u1, u2] = 0. To ensure that the payoff

functions of the liquidity demanders are well defined (see Section 4.1), we impose

(γL)2τuτv > 1, (4)

an assumption that is common in the literature (see, e.g., Vayanos and Wang (2012)).

16Alternatively, we can think of SD as dealers who only trade during the day, and FD as dealers who,
thanks to electronic trading, can supply liquidity around the clock.

17Recent research documents the existence of a sizeable proportion of market participants who do not
rebalance their positions at every trading round (see Heston et al. (2010), for evidence consistent with
this type of behavior at an intra-day horizon).
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2.4 Market clearing and prices

Market clearing in periods 1 and 2 is given respectively by xL1 + µxFD1 + (1− µ)xSD1 = 0

and xL2 + µ(xFD2 − xFD1 ) = 0. We restrict attention to linear equilibria where

p1 = −Λ1u1 (5a)

p2 = −Λ2u2 + Λ21u1, (5b)

where the price impacts of endowment shocks Λ1, Λ2, and Λ21 are determined in equi-

librium. According to (5a) and (B.1b), at equilibrium, observing p1 and the sequence

{p1, p2} is informationally equivalent to observing u1 and the sequence {u1, u2}.
The model thus nests a standard stock market trading model in one of platform

competition. Figure 2 displays the timeline of the model.

−1

− Exchanges

make costly

entry decision;

N enter.

1

− Liquidity
traders receive
u1 and submit
market order xL1 .

− FDs submit
limit order
µxFD1 .

− SDs submit
limit order
(1− µ)xSD1 .

0

− Dealers

acquire FD

technology.

− Platforms

make techno-

logical capacity

decisions (µi).

2

− New cohort of
liquidity traders
receives u2,
observes p1, and
submits market
order xL2 .

− FDs submit
limit order
µxFD2 .

Liquidity determination
stage (virtual single
platform)

Entry and ca-
pacity determi-
nation stage

3

− Asset liquidates.

Figure 2: The timeline.

3 Stock market equilibrium

In this section we assume that a positive mass µ ∈ (0, 1] of FDs is in the market, and

present a simple two-period model of liquidity provision à la Grossman and Miller (1988)

where dealers only accommodate endowment shocks, but where all traders are expected

utility maximizers.

12



Proposition 1. For µ ∈ (0, 1], there exists a unique equilibrium in linear strategies in the

stock market, where xSD1 = −γτvp1, xFD1 = γτuΛ
−2
2 (Λ21 + Λ1)u1 − γτvp1, xFD2 = −γτvp2,

xL1 = a1u1, xL2 = a2u2 + bu1,

p1 = −Λ1u1 (6a)

p2 = −Λ2u2 + Λ21u1, (6b)

Λ1 =

(
1−

(
1 + a1 + µγτu

Λ21 + Λ1

Λ2
2

))
1

γτv
> 0 (7a)

Λ2 = − a2
µγτv

> 0 (7b)

Λ21 = −(1− ((1− µ)γ + γL)τvΛ1)Λ2 < 0, (7c)

where

Λ21 + Λ1 > 0. (8)

The coefficient Λt in (6a) and (6b) denotes the period t endowment shock’s negative

price impact, and is our (inverse) measure of liquidity:

Λt = −∂pt
∂ut

. (9)

As we show in the appendix (see (A.3), and (A.14)), a trader’s order is given by

XL
1 (u1) = γL

E[v − p1|u1]
Var[v − p1|u1]︸ ︷︷ ︸
Speculation

− u1
︸ ︷︷ ︸

Hedging

XL
2 (u1, u2) = γL

E[v − p2|u1, u2]
Var[v − p2|u1, u2]︸ ︷︷ ︸

Speculation

− u2
︸ ︷︷ ︸

Hedging

.

According to the above expressions, a trader speculates and hedges his position to avert

the risk of a decline in the endowment value occurring when the return from speculation

is low. Substituting the equilibrium prices (6a) and (6b) in the above expressions implies

that the trading aggressiveness is given by |at|:

at = γLτvΛt − 1 ∈ (−1, 0). (10)
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Additionally, second period traders put a positive weight b on the first period endowment

shock:

b = −γLτvΛ21 ∈ (0, 1). (11)

SD and FD provide liquidity, taking the other side of traders’ orders. In the first period,

standard dealers earn the spread from loading at p1, and unwinding at the liquidation

price. FDs, instead, also speculate on short-term returns. Indeed,

xFD1 = γ
E[p2 − p1|u1]

Var[p2|u1]
− γτvp1.

To interpret the above expression, suppose u1 > 0. Then, liquidity traders sell the asset,

depressing its price (see (6a)) and, as E[p2 − p1|u1] = (Λ21 + Λ1)u1 > 0, FDs anticipate

a positive short-term return from buying it. When FD unwind their position, the effect

of the first period price pressure has not completely disappeared (see (7c)). This induces

second period traders to partly absorb FD position, explaining the positive sign of the

coefficient b in (11). Thus, in expectation, FD unload inventory risk from their first

period trade to second period liquidity traders.

FDs supply liquidity both by posting a limit order, and a contrarian market order

at the equilibrium price, to exploit the predictability of short term returns.18 In view of

this, Λ1 in (7a) reflects the risk compensation dealers require to hold the portion of u1

that first period traders hedge and FDs do not absorb via speculation:

Λ1 =

(
1−

(
1 + a1
︸ ︷︷ ︸

L1 holding of u1

+ µγτu
Λ21 + Λ1

Λ2
2︸ ︷︷ ︸

FD aggregate speculative position

))
1

γτv
.

In the second period, liquidity traders hedge a portion a2 of their order, which is absorbed

by a mass µ of FDs, thereby explaining the expression for Λ2 in (7b).

Therefore, at both trading rounds, an increase in µ, or in dealers’ risk tolerance,

increases the risk bearing capacity of the market, leading to a higher liquidity:

Corollary 1. An increase in the proportion of FDs, or in dealers’ risk tolerance increases

the liquidity of both trading rounds: ∂Λt/∂µ < 0, and ∂Λt/∂γ < 0 for t ∈ {1, 2}.

According to (6b) and (7c), due to FD short term speculation, the first period endow-

18This is consistent with the evidence on HFT liquidity supply (Brogaard et al. (2014), and Biais et al.
(2015)), and on their ability to predict returns at a short term horizon based on market data (Harris
and Saad (2014), and Menkveld (2016)).
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ment shock has a persistent impact on equilibrium prices: p2 reflects the impact of the

imbalance FD absorb in the first period, and unwind to second period traders. Indeed,

substituting (7c) in (6b), and rearranging yields:

p2 = −Λ2u2 + Λ2((1− µ)xSD1 + xL1︸ ︷︷ ︸
=−µxFD

1

). (12)

Corollary 2. First period traders hedge the endowment shock more aggressively than

second period traders: |a1| > |a2|. Furthermore, |at| and b are increasing in µ.

Comparing dealers’ strategies shows that SD in the first period trade with the same

intensity as FD in the second period. In view of the fact that in the first period the latter

provide additional liquidity by posting contrarian market orders, this implies that

Λ1 < Λ2, (13)

explaining why traders display a more aggressive hedging behavior in the first period. The

second part of the above result reflects the fact that an increase in µ improves liquidity at

both dates, but also increases the portion of the first period endowment shock absorbed

by FD (see (12)). This, in turn, leads second period liquidity traders to step up their

response to u1.

In view of (7a) and (8), it is easy to see that the price reversion due to FD short term

speculation implies

Cov[p2 − p1, p1] = −Λ1(Λ21 + Λ1)τ
−1
u < 0,

so that returns mean revert across trading rounds. A larger FD participation, mitigates

price impacts, and attenuates return reversal:

Corollary 3. An increase in the proportion of FD reduces the mean reversion in the

asset returns: ∂|Cov[p2 − p1, p1]|/∂µ < 0.

Summarizing, an increase in µ has two effects: it heightens the risk bearing capacity of

the market, and it strengthens the propagation of the first period endowment shock to the

second trading round. The first effect makes the market deeper, leading traders to step

up their hedging aggressiveness, and lowering the mean reversion in returns. The second

effect reinforces second period traders’ speculative responsiveness. When all dealers are

FDs, liquidity is maximal, and the mean reversion in returns is minimal.
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Remark 1. The variance of the first period price is given by Var[p1] = Λ2
1τ
−1
u . Therefore,

a less liquid market increases price volatility.

Remark 2. In Appendix B we consider a variation of the liquidity provision model in

which we assume that SD enter the market at the second round of the game.

4 Traders’ welfare, technology demand, and exchange

equilibrium

In this section we study traders’ payoffs, derive demand and supply for technological

services, and obtain the platform competition equilibrium.

4.1 Traders’ payoffs and the liquidity externality

We measure a trader’s payoff with the certainty equivalent of his expected utility:

CEFD ≡ −γ ln(−EUFD), CESD ≡ −γ ln(−EUSD), CEL
t ≡ −γL ln(−EUL

t ), t ∈ {1, 2},

where EU j, j ∈ {SD,FD} and EUL
t , t ∈ {1, 2} denote respectively the unconditional

expected utility of a standard dealer, a full dealer, and a first and second period trader.

The following results present explicit expressions for the certainty equivalents.

Proposition 2. The payoffs of a SD and a FD are given by

CESD =
γ

2
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

)
(14a)

CEFD =
γ

2

(
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

+
Var[E[p2 − p1|p1]]

Var[p2 − p1|p1]

)

+ ln

(
1 +

Var[E[v − p2|p1, p2]]
Var[v − p2|p1, p2]

))
.

(14b)

Furthermore:

1. For all µ ∈ (0, 1], CEFD > CESD.

2. CESD and CEFD are decreasing in µ.
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3. limµ→1CE
FD > limµ→0CE

SD.

According to (14a) and (14b), dealers’ payoffs reflect the accuracy with which these

agents anticipate their strategies’ unit profits. A SD only trades in the first period, and

the accuracy of his unit profit forecast is given by Var[E[v − p1|p1]]/Var[v − p1|p1] (the

ratio of the variance explained by p1 to the variance unexplained by p1).

A FD instead trades at both rounds, supplying liquidity to first period traders,

as a SD, but also absorbing second period traders’ orders, and taking advantage of

short-term return predictability. Therefore, his payoff reflects the same components

of that of a SD, and also features the accuracy of the unit profit forecast from short

term speculation (Var[E[p2 − p1|p1]]/Var[p2 − p1|p1]), and second period liquidity supply

(Var[E[v − p2|p1, p2]]/Var[v − p2|p1, p2]). In sum, as FD can trade twice, benefiting from

more opportunities to speculate and share risk, they enjoy a higher expected utility.

Substituting (10) and (11) in (14a) and (14b), and rearranging yields:

CESD =
γ

2
ln

(
1 +

(1 + a1)
2

(γL)2τuτv

)
(15a)

CEFD =
γ

2

(
ln

(
1 +

(1 + a1)
2

(γL)2τuτv
+

(
1 + a1

1 + µγτuτv(µγ + γL)

)2
)

+ ln

(
1 +

(1 + a2)
2

(γL)2τuτv

))
.

(15b)

An increase in µ has two offsetting effects on the above expressions for dealers’ welfare.

On the one hand, as it boosts market liquidity, it leads traders to hedge more, increasing

dealers’ payoffs (Corollaries 1 and 2). On the other hand, as it induces more competition

to supply liquidity it lowers them. The latter effect is stronger than the former. Impor-

tantly, even in the extreme case in which µ = 1, a FD receives a higher payoff than a SD

in the polar case µ ≈ 0.

Proposition 3. The payoffs of first and second period traders are given by

CEL
1 =

γL

2
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

+ 2
Cov[p1, u1]

γL

)
(16a)
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CEL
2 =

γL

2
ln

(
1 +

Var[E[v − p2|p1, p2]]
Var[v − p2|p1, p2]

+

2
Cov[p2, u2|p1]

γL
+

Var[E[v − p2|p1]]
Var[v]

−
(

Cov[p2, u1]

γL

)2)
.

(16b)

Furthermore:

1. CEL
1 and CEL

2 are increasing in µ.

2. For all µ ∈ (0, 1], CEL
1 > CEL

2 .

Similarly to SDs, liquidity traders only trade once (either at the first, or at the sec-

ond round). This explains why their payoffs reflect the precision with which they can

anticipate the unit profit from their strategy (see (16a) and (16b)). Differently from

SDs, these traders are however exposed to a random endowment shock. As a less liquid

market increases hedging costs, it negatively affects their payoff (Cov[p1, u1] = −Λ1τ
−1
u ,

and Cov[p2, u2|p1] = −Λ2τ
−1
u ). Finally, (16b) shows that a second period trader ben-

efits when the return he can anticipate based on u1 is very volatile compared to v

(Var[E[v − p2|p1]]/Var[v]), since this indicates that he can speculate on the propagated

endowment shock at favorable prices. However, a strong speculative activity reinforces

the relationship between p2 and u1, (Cov[p2, u1]
2), leading a trader to hedge little of his

endowment shock u2, and keep a large exposure to the asset risk, thereby reducing his

payoff.

Substituting (10) and (11) in (16a) and (16b), and rearranging yields:

CEL
1 =

γL

2
ln

(
1 +

a21 − 1

(γL)2τuτv

)
(17)

CEL
2 =

γL

2
ln

(
1 +

a22 − 1

(γL)2τuτv
+
b2((γL)2τuτv − 1)

(γL)4τ 2uτ
2
v

)
. (18)

An increase in the proportion of FDs µ makes the market more liquid and leads traders

to hedge and speculate more aggressively (Corollary 2), benefiting first period traders

(Proposition 3). At the same time, it heightens the competitive pressure faced by SDs,

lowering their payoffs (Proposition 2). As liquidity demand augments for both dealers’

classes, however, SDs effectively receive a smaller share of a larger pie. This mitigates

the negative impact of increased competition, implying that on balance the positive effect

of the increased liquidity prevails:
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Corollary 4. The positive effect of an increase in the proportion of FDs on first period

traders’ payoffs is stronger than its negative effect on SDs’ welfare:

∂CEL
1

∂µ
≥ −∂CE

SD

∂µ
, (19)

for all µ ∈ (0, 1].

Aggregating across market participants’ welfare yields the following Gross Welfare

function:

GW (µ) = µCEFD + (1− µ)CESD + CEL
1 + CEL

2 (20)

= µ(CEFD − CESD)︸ ︷︷ ︸
Surplus earned by FDs

+ CESD + CEL
1 + CEL

2︸ ︷︷ ︸
Welfare of other market participants

Corollary 5.

1. The welfare of market participants other than FDs is increasing in µ.

2. Gross welfare is higher at µ = 1 than at µ ≈ 0.

The first part of the above result is a direct consequence of Corollary 4: as µ increases,

SDs’ losses due to heightened competition are more than compensated by traders’ gains

due to higher liquidity. The second part, follows from Proposition 2 (part 3), and Propo-

sition 3. Note that it rules out the possibility that the payoff decline experienced by FDs

as µ increases, leads gross welfare to be higher at µ ≈ 0. Therefore, a solution that favors

liquidity provision by FDs is also in the interest of all market participants. Finally, we

have:

Numerical Result 1. Numerical simulations show that GW (µ) is monotone in µ.

Therefore, µ = 1 is the unique maximum of the gross welfare function GW (µ).

In view of Corollaries 1 and 3, gross welfare is maximal when liquidity (mean reversion

in returns) is at its highest (lowest) level.19 Furthermore, because of monotonicity, the

above market quality indicators, become “measurable” welfare indexes.

19Numerical simulations where conducted using the following grid: γ, µ ∈ {0.01, 0.02, . . . , 1}, τu, τv ∈
{1, 2, . . . , 10}, and γL ∈ {1/√τuτv + 0.001, 1/

√
τuτv + 0.101, . . . , 1}, in order to satisfy (4).
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4.2 The demand for technological services

We define the value of becoming a FD as the extra payoff that such a dealer earns

compared to a SD. According to (14a) and (14b), this is given by:

φ(µ) ≡ CEFD − CESD (21)

=
γ

2

(
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

+
Var[E[p2 − p1|p1]]

Var[p2 − p1|p1]

)
− ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

)

︸ ︷︷ ︸
Competition

+ ln

(
1 +

Var[E[v − p2|p1, p2]]
Var[v − p2|p1, p2]

)

︸ ︷︷ ︸
Liquidity supply

)
.

FDs rely on two sources of value creation: first, they compete business away from

SDs, extracting a larger rent from their trades with first period traders (since they can

supply liquidity and speculate on short-term returns); second, they supply liquidity to

second period traders.

The function φ(µ) can be interpreted as the (inverse) demand for technological ser-

vices:20

Corollary 6. The inverse demand for technological services φ(µ) is decreasing in µ.

A marginal increase in µ heightens the competition FDs face among themselves, and

vis-à-vis SDs. The former effect lowers the payoff of a FD. In the appendix, we show that

the same holds also for the latter effect. Thus, an increase in the mass of FDs erodes the

rents from competition, implying that φ(µ) is decreasing in µ.

Numerical Result 2. When µ, τu, and τv are sufficiently large and γ is large above γL,

φ(µ) is log-convex in µ:
∂2 lnφ(µ)

∂µ2
≥ 0. (22)

In Figure 3 (panel (a)) we plot ln(φ(µ)) for a set of parameters yielding log-convexity.

When this occurs, the price reduction corresponding to an increase in µ becomes increas-

ingly smaller as µ increases.21

20As φ(µ) reflects the extra margin that FD obtain vis-à-vis D, it formalizes in a simple manner the
way in which Lewis (2014) describes Larry Tabb’s estimation of traders’ demand for the high speed, fiber
optic connection that Spread laid down between New York and Chicago in 2009.

21We checked log-convexity of the function φ(µ), assuming τu, τv ∈ {1, 6, 11}, γ, γL ∈
{0.01, 0.02, . . . , 1}, and for µ ∈ {0.2, 0.4, . . . , 1}. The second derivative of ln(φ(µ)) turns negative for
µ, τu, or τv low, and for γL > γ (e.g., this happens when τu = 1, τv = 6, µ = 0.2, and γL = 0.41,
γ = 0.01).
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Corollary 7. An increase in γ has two contrasting effects on the inverse demand for

technological services φ(µ) = γ ln(EUFD/EUSD)1/2:

∂φ(µ)

∂γ
=

1

2
ln

(
EUFD

EUSD

)

︸ ︷︷ ︸
>0

+
γ

2

(
(∂EUFD/∂γ)EUSD − (∂EUSD/∂γ)EUFD

EUFDEUSD

)

︸ ︷︷ ︸
<0

(23)

As argued in Corollary 2, as FDs trade twice, they enjoy a larger payoff compared to

SDs. An increase in γ leads dealers to trade more aggressively, and for a given expected

utility difference, has a positive effect on φ. However, a higher risk-tolerance reduces

the value of the additional risk-sharing opportunity offered by the second trading round,

which has a negative effect on φ.

4.3 The supply of technological services and exchange equilib-

rium

Depending on the industrial organization of exchanges, the supply of technological ser-

vices is either controlled by a single platform, acting as an “incumbent monopolist,” or

by N ≥ 2 venues who compete à la Cournot in technological capacities.

In the former case, the monopolist profit is given by

π(µ) = (φ(µ)− c)µ, (24)

where c denotes the marginal cost of producing a capacity µ. Denoting by µM the optimal

capacity decision of the monopolist exchange:

µM ∈ arg max
µ∈(0,1]

(φ(µ)− c)µ. (25)

In the latter case, denoting by µi and µ−i =
∑N

j 6=i µj, respectively the capacity installed

by exchange i and its rivals, and by f and c the fixed and marginal cost incurred by an

exchange to enter and produce capacity µi, an exchange i’s profit function is given by

π(µi, µ−i) = (φ(µ)− c)µi − f. (26)

We define a symmetric Cournot equilibrium as follows:

Definition 1. A symmetric Cournot equilibrium in technological service capacities is a
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set of capacities µCi ∈ (0, 1], i = 1, 2, . . . , N , such that (i) each µCi maximizes (26), for

given capacity choice of other exchanges µC−i:

µCi ∈ arg max
µi

π(µi, µ
C
−i), (27)

(ii) µC1 = µC2 = · · · = µCN , and (iii)
∑N

i=1 µ
C
i = µC(N).

We have the following result:

Proposition 4. There exists at least one symmetric Cournot equilibrium in technological

service capacities and no asymmetric ones.

Proof. See Amir (2018), Proposition 7, and Vives (1999), Section 4.1. 2

Numerical simulations show that the equilibrium is unique and stable.22

4.3.1 Strategic complementarity in capacity decisions

With Cournot competition, log-convexity of the inverse demand function implies that the

(log of the) revenue of an exchange displays increasing differences in the pair (µi, µ−i).

Indeed,

ln(φ(µi, µ−i)µi) = ln(φ(µi, µ−i)) + lnµi,

and ln(φ(µi, µ−i)) has increasing differences in (µi, µ−i) since this is equivalent to φ being

log-convex.

Thus, with a zero marginal cost, a larger capacity installed by rivals has a negative

impact on an exchange profit which decreases in the exchange capacity choice. This leads

a platform to respond to an increase in its rivals’ capacity choice by increasing the capacity

it installs (in this situation a Cournot oligopoly is a game of strategic complements, see

e.g., Amir (2018), Proposition 3). This is because when FDs demand is log-convex, the

intensive margin effect of a capacity increase is more than offset by the corresponding

extensive margin effect. Hence, a platform’s decision to step up capacity in the face of

rivals’ capacity increase, induces a mild price decline that is more than compensated by

22In our setup, a sufficient condition for stability (Section 4.3 in Vives (1999)) is that the elasticity of
the slope of the FDs inverse demand function is bounded by the number of platforms (plus one):

E|µ=µC(N) ≡ − µ
φ′′(µ)

φ′(µ)

∣∣∣∣
µ=µC(N)

< 1 +N.
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the exchange increase in market share, allowing the platform to boost its revenue (and

cut its losses). By continuity, when the marginal cost is sufficiently small, log-convexity

of φ(µ) can make an exchange best response

BR(µ−i) = arg max
µi

{π(µi, µ−i)|µi ∈ (0, 1]}, (28)

increasing in its rivals’ choices (see Figure 3, panel (b)).23

Numerical Result 3. When N = 2, strategic complementarities in capacity decisions

can arise for some range of exchanges’ best response (see (28)).

For example, assuming a low value for the marginal cost (c = 0.0002), the model

easily displays strategic complementarities (see Figure 3, panel (b)).
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Figure 3: Log-convexity of the demand function (Panel (a)), and strategic complemen-
tarities in platforms’ capacity decisions (Panel (b)).

For N > 2 (when c > 0, albeit small) we find instead that an exchange’s best response

is downward sloping. At a symmetric Cournot equilibrium, we have:

∂BRi(µ−i)

∂µ−i

∣∣∣∣
µ=µC(N)

= − φ′′(µ)(µ/N) + φ′(µ)

φ′′(µ)(µ/N) + 2φ′(µ)

∣∣∣∣
µ=µC(N)

. (29)

23Parameter values are consistent with Leland (1992).
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As N increases, the platform’s marginal gain in market share from a capacity increase

shrinks (the weight of the positive effect due to demand convexity in (29) declines),

yielding a negatively sloped best response.

4.3.2 Comparative statics with respect to N

At a stable Cournot equilibrium, standard comparative statics results apply (see, e.g.,

Section 4.3 in Vives (1999)). In particular, an increase in the number of exchanges leads

to an increase in the aggregate technological service capacity, and a decrease in each

exchange profit:

∂µC(N)

∂N
≥ 0 (30a)

∂πi(µ)

∂N

∣∣∣∣
µ=µC(N)

≤ 0. (30b)

If the number of competing platforms is exogenously determined, condition (30a)

implies that spurring competition in the intermediation industry has positive effects in

terms of liquidity and gross welfare (Proposition 1 and Numerical Result 1):

Corollary 8. At a stable Cournot equilibrium, an exogenous increase in the number of

competing exchanges has a positive impact on liquidity and gross welfare: ∂Λt/∂N < 0,

∂GW/∂N > 0.

Degryse et al. (2015) study 52 Dutch stocks in 2006-2009 (listed on Euronext Am-

sterdam and trading on Chi-X, Deutsche Börse, Turquoise, BATS, Nasadaq OMX and

SIX Swiss Exchange) and find a positive relationship between market fragmentation (in

terms of a lower Herfindhal index, higher dispersion of trading volume across exchanges)

and the consolidated liquidity of the stock. Foucault and Menkveld (2008) also find that

consolidated liquidity increased when in 2004 the LSE launched EuroSETS, a new limit

order market to allow Dutch brokers to trade stocks listed on Euronext (Amsterdam).

Upward sloping best responses can lead a platform to respond to a heightened com-

petitive pressure, with an increase in installed capacity, strengthening the aggregate effect

in (30a), and the resulting impact this has on liquidity and gross welfare.24 To illustrate

this effect, in Figure 4 we use the same parameters of Figure 3 (panel (b)), and study the

impact of an increase in competition. Panel (a) in the figure shows that platforms step

24The necessary and sufficient condition for an increase in N to lead to an increase in individual
capacity is that N < E|µ=µC < 1 +N (see Section 4.3 in Vives (1999)).
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up their individual capacity, with a positive effect on liquidity (panels (b) and (c)), and

welfare (panel (d)).
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Figure 4: Effect of entry on each platform capacity decisions (panel (a)), liquidity (panels
(b) and (c)), and gross welfare (panel (d)) (parameter values as in Figure 3).

25



5 Endogenous platform entry and welfare

In this section we endogenize platform entry, and study its welfare implications.25 As-

suming that platforms’ technological capacities are identical (µ = Nµi), a social planner

who takes into account the costs incurred by the exchanges faces the following objective

function:

P(µ,N) ≡ GW (µ)− cµ− fN (31)

= π(µi)N + ψ(µ).

Expression (31) is the sum of two components. The first component reflects the profit

generated by competing platforms, who siphon out FDs surplus, and incur the costs

associated with running the exchanges:

π(µi)N = ((φ(µ)− c)µi − f)N = φ(µ)µ︸ ︷︷ ︸
(CEFD−CESD)µ

−cµ− fN,

implying that FDs surplus only contributes indirectly to the planner’s function, via plat-

forms’ total profit. The second component in (31) reflects the welfare of other market

participants:

ψ(µ) = CESD + CEL
1 + CEL

2 ,

and highlights the welfare effect of technological capacity choices via the liquidity exter-

nality.26

We consider five possible outcomes:

1. Cournot with free entry (CFE). In this case, we look for a symmetric Cournot equi-

librium in µ, as in Definition 1, and impose the free entry constraint:

(φ(µC(N))− c)µ
C(N)

N
≥ f > (φ(µC(N + 1))− c)µ

C(N + 1)

N + 1
, (32)

25For example, according to the UK Competition Commission (2011), a platform entry fixed cost covers
initial outlays to acquire the matching engine, the necessary IT architecture to operate the exchange,
the contractual arrangements with connectivity partners that provide data centers to host and operate
the exchange technology, and the skilled personnel needed to operate the business. The Commission
estimated that in 2011 this roughly corresponded to £10-£20 million.

26Even incumbent exchanges may have to incur an entry cost to supply liquidity in the second round.
For example, faced with increasing competition from alternative trading venues, in 2009 LSE decided to
absorb Turquoise, a platform set up about a year before by nine of the world’s largest banks. (See “LSE
buys Turquoise share trading platform,” Financial Times, December 2009).

26

https://www.ft.com/content/3234208e-ed72-11de-ba12-00144feab49a


which pins down N . We denote by µCFE, and NCFE the pair that solves the Cournot

case. Note that, given Proposition 4 and (30b), a unique Cournot equilibrium with

free entry obtains in our setup if (30b) holds and for a given N the equilibrium is

unique.

2. Structural Second Best (STR). In this case we posit that the planner can determine the

number of exchanges that operate in the market. As exchanges compete à la Cournot

in technological capacities, we thus look for a solution to the following problem:

max
N≥1
P(µC(N), N) s .t. µC(N) is a Cournot equilibrium with πCi (N) ≥ 0, (33)

and denote by µSTR, and NSTR the pair that solves (33).

3. Unrestricted Structural Second Best (USTR). In this case we relax the non-negativity

constraint in (33), thereby assuming that the planner can make side-payments to

exchanges if they do not break-even. Thus, we look for a solution to the following

problem:

max
N≥1
P(µC(N), N) s .t. µC(N) is a Cournot equilibrium, (34)

and denote by µUSTR, and NUSTR the pair that solves (34).

4. Behavioral Second Best (BEH). In this case, we let the planner set the fee that ex-

changes charge to FDs, assuming free entry of platforms. Because of Corollary 6, φ(µ)

is invertible in µ, implying that setting the fee is equivalent to choosing the aggregate

technological capacity µ. Thus, we look for a solution to the following problem:

max
µ∈(0,1]

P(µ,N) s.t. (φ(µ)− c) µ
N
≥ f ≥ (φ(µ)− c) µ

N + 1
, (35)

and denote by µBEH and NBEH the pair that solves (35).27

5. First Best (FB). In this case, we assume that the planner can regulate the market

choosing the fee and the number of competing platforms:

max
µ∈(0,1],N≥1

P(µ,N). (36)

We denote by µFB and NFB the pair that solves (36).

27We assume for simplicity that if the second inequality holds with equality, then only N firms enter.
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We contrast the above four cases with the “Unregulated Monopoly” outcome (M) defined

in Section 4.3.

We make the maintained assumption that both the monopoly profit and P(µ, 1) are

single-peaked in µ.28 Our first set of results compares the FB and BEH solutions with

the monopoly one.

Proposition 5. 1. NFB = 1; µFB ≥ µM and Λt(µ
M) ≥ Λt(µ

FB).

2. NBEH = 1 and µFB ≥ µBEH if at µFB the monopoly profit is negative; µBEH ≥ µM

and Λt(µ
M) ≥ Λt(µ

BEH).

At the FB the planner minimizes entry costs by letting a single exchange satisfy the

industry demand for technological services. Furthermore, it limits the monopolist market

power by imposing a fee that is lower than the market solution. A similar logic underpins

the BEH solution. More in detail, suppose that at µFB the monopoly profit is negative.

As for a given (aggregate) µ, the profit of an exchange is decreasing in N , the maximum

profit for a given µ is when N = 1. We have then that NBEH = 1. Furthermore, given

that P is single peaked in µ, it is optimal for µBEH to be set as large as possible so that

monopoly profits are zero. The solution is then µM < µBEH ≤ µFB.29

Regulating the fee can however be complicated, as our discussion in the introduction

suggests. With this in mind, we now focus on the case in which the planner cannot

set the technological service fee, but can decide on the number of competing exchanges.

In the absence of regulation, a Cournot equilibrium with free entry arises (see (32)).

We thus compare this outcome to the Structural Second Best, in both the unrestricted

and restricted cases. Evaluating the first order condition of the planner at N = NCFE

28This condition is satisfied in all of our simulations (see Table 2).
29We have numerically verified the above sufficient condition for NBEH = 1, and found in our simu-

lations that it is always satisfied. In the reverse order of actions model, in some cases πM (µBEH) > 0,
but the planner still sets NBEH = 1. See Table 2 for details.

28



(ignoring the integer constraint) yields:

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

= πi(µ
C(N), N)︸ ︷︷ ︸
= 0

∣∣∣∣∣∣
N=NCFE

(37)

+NCFE ∂πi(µ
C(N), N)

∂N︸ ︷︷ ︸
Profitability depression < 0

∣∣∣∣∣∣∣∣
N=NCFE

+ ψ′(µ)
∂µC(N)

∂N︸ ︷︷ ︸
Liquidity creation > 0

∣∣∣∣∣∣∣∣
N=NCFE

.

According to (37), if the Cournot equilibrium is stable, platform entry has two counter-

vailing welfare effects.30 The first one is a “profitability depression” effect, and captures

the profit decline associated with the demand reduction faced by each platform as a result

of entry. This effect is conducive to excessive entry, as each competing exchange does not

internalize the negative impact of its entry decision on competitors’ profits. The second

one is a “liquidity creation” effect and is instead peculiar to a financial market setup

in which end users benefit from the possibility to hedge endowment shocks. This effect

reflects the welfare creation of an increase in N via the liquidity externality (recall that

at a stable equilibrium an increase in N increases µC(N), which has a positive effect on

liquidity), and is conducive to insufficient entry since each exchange does not internalize

the positive impact of its entry decision on other market participants’ payoffs.

These effects differ from the standard ones arising in a Cournot equilibrium with

free entry (Mankiw and Whinston (1986)). Liquidity creation relates to the increase in

consumer surplus that comes about with an increase in the number of firms because of the

quasicompetitiveness property of regular equilibria (that is, total output increasing with

the number of firms, see section 4.3 in Vives (1999)). In the Cournot case it so happens

that with business stealing (i.e., with individual output decreasing in the number of

firms), the profitability depressing effect of entry always dominates, inducing excessive

entry (except for the integer problem, insufficient entry can occur by at most one firm).

A similar result obtains in our setup, when we compare NCFE with NSTR; however, when

NCFE is stacked against NUSTR, this conclusion does not necessarily hold.

More in detail, NCFE is the the largest N so that platforms break even at a Cournot

30This is because at a stable equilibrium (30a) and (30b) hold.
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equilibrium. At the STR solution, platforms break even too, but the planner internalizes

the profitability depression effect of entry. Thus, we have that

NCFE ≥ NSTR.

Conversely, removing the break even constraint, the planner achieves the Unrestricted

STR, and depending on which of the effects outlined above prevails, both excessive or

insufficient entry can occur:

Proposition 6. When the planner regulates entry, for stable Cournot equilibria:

1. NCFE ≥ NSTR, µCFE ≥ µSTR, and Λt(µ
CFE) ≤ Λt(µ

STR).

2. When the profitability depression effect is stronger than the liquidity creation effect,

NCFE ≥ NUSTR, µCFE ≥ µUSTR, and Λt(µ
CFE) ≤ Λt(µ

USTR). Otherwise, the

opposite inequalities hold.

3. The technological capacity at CFE is higher than at STR, which is in turn higher

than at M: µCFE ≥ µSTR ≥ µM . The technological capacity at USTR is higher than

at M: µUSTR ≥ µM . Therefore,

Λt(µ
M) ≥ Λt(µ

STR) ≥ Λt(µ
CFE), and Λt(µ

M) ≥ Λt(µ
USTR). (38)

4. Welfare ranking: PUSTR ≥ PSTR ≥ PCFE.

Item 3 in the proposition shows that the technological capacity offered at the CFE

is higher than at the STR, a natural consequence of excessive entry with respect the

STR benchmark. The comparison with the USTR is however inconclusive. Indeed, as

explained above, in this case entry can be insufficient, implying that the planner may

push entry beyond the break-even level, subsidising the loss-making platforms. Thus,

while liquidity maximization is generally at odds with welfare maximization in the STR

case, the two may be aligned in the USTR case.31

To verify the possibility of excessive or insufficient entry compared to the USTR, we

run two sets of numerical simulations. In the first set, as in Figure 3 we assume standard

risk aversion (γ = 0.5, γL = 0.25), a 10% annual volatility for the endowment shock,

and consider a “high” and a “low” payoff volatility scenario (respectively, τv = 3, which

31Note that at the USTR the non-negativity constraint of the exchanges profit is relaxed. Thus, it
must hold that PUSTR ≥ PSTR.
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which corresponds to a 60% annual volatility for the liquidation value, and τv = 25 which

corresponds to a 20% annual volatility). Platform costs are set to f ∈ {1 × 10−6, 2 ×
10−6, . . . , 31× 10−6}, and c = 0.002.32 In the second set, we assume lower values for risk

aversion (γ = 25, γL = 12) which are consistent with the literature on price pressure,

and recent results on the structural estimation of risk aversion based on insurance market

data,33 and set τv = τu = 0.1 (corresponding to a 316% annual volatility for both the

endowment shock and the liquidation value), f ∈ {1 × 10−2, 2 × 10−2, . . . , 31 × 10−2},
and c = 2. For both sets of simulations, we solve for the technological capacity and

the number of platforms, in both the “Original” and “Reverse” order of actions cases,

(respectively, OO and RO), and perform robustness analysis (see Tables 1 and 2).

Numerical Result 4. 1. With standard risk aversion values:

(a) With high payoff volatility, entry is excessive: NCFE > NUSTR, and µCFE >

µUSTR.

(b) With low payoff volatility, when the marginal cost of technological capacity is

low, and for sufficiently large values of the entry cost, entry is insufficient:

NCFE < NUSTR and µCFE < µUSTR.

2. With low risk aversion values, for sufficiently large values of the entry cost, entry

is insufficient.

Furthermore, at all solutions N and µ are decreasing in f .34

Figure 5 illustrates the output of two simulations in which insufficient entry occurs

(when c = 0.005, a case we do not display, insufficient entry disappears). Insufficient

entry implies that platforms enjoy stronger market power compared to a social planner

objective. This situation appears to be in line with the complaints raised by many market

participants, as we argue in the introduction, but also with the view of some regulators.35

The next result provides a welfare comparison of the different outcomes finessing

the entry constraint for the BEH solution to be fulfilled with exactly zero profits (this is

32Analyzing the US market, Jones (2018) argues that barriers to entry to the intermediation industry
are very low, a consideration that is corroborated by the current state of the market, where 13 cash
equity exchanges compete with over 30 ATS. This suggests that entry cost must be low.

33See respectively Hendershott and Menkveld (2014), and Cohen and Einav (2007).
34Assuming γ = 0.25 < γL = 0.5 yields qualitatively similar results in the high volatility case, whereas

in the low volatility case insufficient entry disappears.
35“[. . . ] For example, one exchange, EDGX, has raised the price on its standard 10GB connection five

times since 2010–in total, leaving the price of the connection seven times higher than it was in that year.”
Unfair Exchange: The State of America’s Stock Markets, speech of Commissioner Robert J. Jackson Jr.,
George Mason University, September 2018.

31
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essentially equivalent to the monopoly profit being non-positive at µFB, πM(µFB) ≤ 0–see

Lemma 2, in the Appendix).

Proposition 7. Comparing all solutions when πM(µFB) ≤ 0:

1. µFB ≥ µBEH ≥ µCFE ≥ µSTR ≥ µM . Therefore,

Λt(µ
FB) ≤ Λt(µ

BEH) ≤ Λt(µ
CFE) ≤ Λt(µ

STR) ≤ Λt(µ
M).

2. The number of exchanges entering the market with Cournot free entry or with entry

regulation is no lower than with fee regulation (NBEH = 1).

3. Welfare comparison:

PFB ≥ PBEH ≥ PM , (39a)

and

PFB ≥ max{PUSTR,PBEH} ≥ min{PUSTR,PBEH} ≥ PSTR ≥ PCFE. (39b)

Note that under the assumption of the proposition, NBEH = 1 from which it follows

that

PBEH ≥ PM ,

and we have also that PBEH ≥ PSTR since both at the BEH and the STR exchanges

break even, and µBEH ≥ µCFE ≥ µSTR.

The results under the assumption of Proposition 7 imply that, if unregulated, the

monopoly outcome yields lower liquidity compared to any other alternative. Furthermore,

in our simulations, the planner’s objective function evaluated at µM is always the lowest

compared to the other five alternatives. Thus, both from a liquidity, and welfare point

of view the monopoly solution is the worst possible.

5.1 A permanent shock to dealers’ risk tolerance

We conclude this section using our model to study the effect of a permanent shock to

liquidity providers’ risk tolerance. As is usual in a setup where dealers are risk averse, a

lower γ reduces market liquidity (Corollary 1). However, liquidity also depends positively

on the proportion of FDs (Corollary 1), which is pinned down by the equilibrium arising
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at the technological capacity determination stage of the game. This implies that if a

lower γ leads to a positive shift in the demand for technological services (Corollary 7) it

can also have an indirect, positive effect on liquidity, via its effect on platforms’ capacity

decisions.

To fix ideas, consider the unregulated monopoly case. At the optimum, the monopolist

supplies

µM =
φ− c
−φ′ .

Differentiating the above expression with respect to γ (and denoting φ′ by ∂φ/∂µ) yields

∂µM

∂γ
=

1

(∂φ/∂µ)2

(
− ∂φ

∂γ

∂φ

∂µ
+ (φ− c) ∂

2φ

∂µ∂γ

){
> 0 amplification

< 0 attenuation

If a permanent shock to γ shifts φ upwards (∂φ/∂γ > 0) and makes it flatter (∂2φ/∂γ∂µ <

0) it leads the monopolist to increase its supply of technological services, inducing an

amplification of the initial shock. Conversely, a sufficient condition for attenuation is

∂φ/∂γ < 0 and ∂2φ/∂γ∂µ > 0.

We run simulations to gauge the effect of platform capacity decisions on liquidity, in

the presence of a permanent reduction in dealers’ risk aversion. For γ decreasing from

γorig to γ̂ < γorig, we define the percentage of the direct positive effect on Λt mitigated

by the indirect-platform competition effect as follows:

%mit ≡ 1− Total Effect

Direct Effect
= 1− Λt(γ̂, µ(γ̂))− Λt(γ

orig, µ(γorig))

Λt(γ̂, µ(γorig))− Λt(γorig, µ(γorig))
,

where the Direct Effect at the denominator in the above expression captures the change

in liquidity that obtains when only γ changes, and µ is kept at the value it had prior

to the the shock to risk-tolerance. Accordingly, if %mit < 0 (> 0), the direct effect is

enhanced (mitigated) by the indirect effect, and if %mit > 1, the indirect effect overturns

the direct effect. Figure 6 displays the result of a simulation in which the mitigation effect

can be strong enough to overturn the direct negative liquidity impact of a reduction of

dealers’ risk tolerance for Λ2.

Numerical Result 5. For second period liquidity, with standard risk aversion, a 10%

decrease in γ leads to

1. Mitigation in the case of the unregulated monopolist.
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Initial parametrization
Alternative parameter values
c γ γL

c = 0.002, γ = 0.5, γL = 0.25, τu = 100, τv = 25 0.001 {0.45, 0.35, 0.3, 0.25} 0.15
c = 0.002, γ = 0.5, γL = 0.25, τu = 100, τv = 3 0.003 {0.45, 0.35, 0.3, 0.25} 0.15
c = 2, γ = 25, γL = 12, τu = 0.1, τv = 0.1 2.5 {22.5, 17.5, 15, 12.5} 18

Table 1: Parametrizations used in the simulations.

2. Both mitigation and amplification are possible at the CFE when payoff volatility is

low.

A shock to γ does not lead to a parallel shift in φ (see Figure 6, Panel (a)). Thus, its

ultimate effect on second period liquidity (amplification vs. attenuation) depends on the

value of µM or µCFE pre-shock. For example, for a range of values close to the origin,

to which µM belongs, a 10% shock shifts φ up, and flattens the inverse demand curve.

These two effects are responsible for the observed attenuation at the monopoly solution

which occurs at all f , since µM is independent of f (see Figure 6, Panel (b)).

For larger values of µ, to which µCFE belongs, the effect of the shock on liquidity

is more complicated because the pre-shock value of µ depends on (i) f and (ii) N . For

the values of µCFE that correspond to f ∈ {1 × 10−7, 2 × 10−7}, the shock shifts φ

mildly down (∂φ/∂γ > 0) and makes it steeper (∂2φ/∂γ∂µ < 0). Each platform faces

a smaller mark-up and a steeper demand curve, and cuts down on µi. This induces a

profit increase that prompts entry. The paradoxical result is that we observe entry with

a reduction in aggregate µ, and thus amplification (see Figure 6, Panels (c) and (d)). As

f increases, both attenuation and amplification can obtain, because the pre-shock value

of µ shrinks, but stays in the region where the shock to γ has a complex effect on φ.

When parameter values are such that the industry supply increases and entry occurs (as

in the cases f ∈ {2×10−6, 2.1×10−6, 2.2×10−6}, in Figure 6, Panel (c)) attenuation is so

strong that a reduction in γ leads to an increase in second period liquidity (see Figure 6,

Panel (d)).
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6 Concluding remarks

We nest a two-period market microstructure model into one of exchange platform com-

petition where trading venues compete à la Cournot in technological services allowing

(full) dealers the ability to supply liquidity at both trading rounds to liquidity traders.

We show that full dealers have a higher risk bearing capacity compared to those who can

only trade in the first round. This implies that as their mass increases, market liquid-

ity and traders’ welfare improve. At equilibrium, the mass of full dealers matches the

industry technological service capacity. Since at a stable Cournot equilibrium a height-

ened competition increases industry capacity, this implies that traders’ welfare increases

in the number of trading venues. We use the model to analyze the welfare effects of

different entry regimes. A monopolistic exchange exploits its market power, and under

supplies technological services, thereby negatively affecting liquidity and welfare. Allow-

ing competition among trading platforms is beneficial for market quality and (generally)

for welfare. However, the market outcome can overprovide or underprovide technological

capacity with the corresponding effects on liquidity. If the regulator cannot make trans-

fers to platforms, then entry is never insufficient and the market never underprovides

capacity when the benchmark is regulated entry. If, on the other hand, side payments

are possible, depending on parameter values entry can also be insufficient. Fee regulation

is often superior to entry regulation. Typically, the regulator limits market power by

setting a fee low enough so that only one platform can survive and provide a larger (and

cheaper) capacity than the market outcome. Both fee and entry regulation are subject to

high informational requirements and to lobbying efforts. The choice between them has

to weigh the respective costs and benefits.

Our results suggest that exchanges’ technological capacity decisions can be an impor-

tant driver of market liquidity, adding to the usual, demand-based factors highlighted by

the market microstructure literature (e.g., arbitrage capital, risk bearing capacity of the

market). An example is the fact that when a decrease in dealers’ risk tolerance increases

the demand for technological services, it can prompt a capacity increase which leads in

turn to an increase in the mass of FD, attenuating or offsetting the negative direct im-

pact on liquidity. This can provide an explanation for the contrasting liquidity findings

of post-crisis regulations aimed at reducing investment banks’ trading activities.36 From

36Reviewing the literature on the market liquidity impact of post crisis regulations such as the Volcker
Rule, an SEC report finds that while dealers in the corporate bond markets have, in aggregate, reduced
their capital commitment since the 2007 peak, liquidity measures such as trading activity and average
transaction costs have remained flat (see Access to Capital and Market Liquidity , SEC report to the US

36

https://www.sec.gov/files/access-to-capital-and-market-liquidity-study-dera-2017.pdf


this point of view, any argument about market liquidity should also be anchored to the

framework in which exchanges interact, and the type of regulatory intervention of the pol-

icy maker. Furthermore, we show the limits of the view that aligns liquidity to welfare.

Indeed, when excessive entry obtains, even though the market is more liquid, a social

planner that internalizes the welfare of exchanges as well as that of market participants,

chooses to restrict competition, in this way reducing market liquidity.

Our modelling has integrated industrial organization and market microstructure meth-

ods taking technological services as homogeneous. An extension of our approach is to

consider that exchanges offer differentiated capacities and introduce asymmetries among

exchanges. Differentiation could be both in terms of quality (e.g., speed of connection)

and horizontal attributes (e.g., lit vs. dark venues).37

Congress, August 2017).
37This would also allow to more directly contrast our results with the differentiated approach of Pag-

notta and Philippon (2018).
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A Appendix

The following is a standard results (see, e.g., Vives (2008), Technical Appendix, pp. 382–

383) that allows us to compute the unconditional expected utility of market participants.

Lemma 1. Let the n-dimensional random vector z ∼ N(0,Σ), and w = c + b′z + z′Az,

where c ∈ R, b ∈ Rn, and A is a n × n matrix. If the matrix Σ−1 + 2ρA is positive

definite, and ρ > 0, then

E[− exp{−ρw}] = −|I + 2ρΣA|−1/2 exp{−ρ(c− ρb′(Σ + 2ρA)−1b)}.

Proof of Proposition 1

We start by assuming that at a linear equilibrium prices are given by

p2 = −Λ2u2 + Λ21u1 (A.1a)

p1 = −Λ1u1, (A.1b)

with Λ1, Λ21, and Λ2 to be determined in equilibrium. In the second period a new mass

of liquidity traders with risk-tolerance coefficient γL > 0 enter the market. Because of

CARA and normality, the objective function of a second period liquidity trader is given

by

E[− exp{−πL2 /γL}|ΩL
2 ] = − exp

{
− 1

γL

(
E[πL2 |ΩL

2 ]− 1

2γL
Var[πL2 |ΩL

2 ]

)}
, (A.2)

where ΩL
2 = {u1, u2}, and πL2 ≡ (v − p2)xL2 + u2v. Maximizing (A.2) with respect to xL2 ,

yields:

XL
2 (u1, u2) = γL

E[v − p2|ΩL
2 ]

Var[v − p2|ΩL
2 ]
− Cov[v − p2, v|ΩL

2 ]

Var[v − p2|ΩL
2 ]

u2. (A.3)

Using (A.1a):

E[v − p2|ΩL
2 ] = Λ2u2 − Λ21u1 (A.4a)

Var[v − p2|ΩL
2 ] = Cov[v − p2, v|ΩL

2 ] =
1

τv
. (A.4b)

Substituting (A.4a) and (A.4b) in (A.3) yields

XL
2 (u1, u2) = a2u2 + bu1, (A.5)
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where

a2 = γLτvΛ2 − 1 (A.6a)

b = −γLτvΛ21. (A.6b)

Consider the sequence of market clearing equations

µxFD1 + (1− µ)xSD1 + xL1 = 0 (A.7a)

µ(xFD2 − xFD1 ) + xL2 = 0. (A.7b)

Condition (A.7b) highlights the fact that since first period liquidity traders and SD

only participate at the first trading round, their positions do not change across dates.

Rearrange (A.7a) as follows:

(1− µ)xSD1 + xL1 = −µxFD1 .

Substitute the latter in (A.7b):

µxFD2 + xL2 + (1− µ)xSD1 + xL1 = 0. (A.8)

To pin down p2, we need the second period strategy of FD and the first period strategies

of SD and liquidity traders. Starting from the former, because of CARA and normality,

the expected utility of a FD is given by:

E

[
− exp

{
− 1

γ

(
(p2 − p1)xFD1 + (v − p2)xFD2

)}
|p1, p2

]
= (A.9)

= exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ

(
E[v − p2|p1, p2]xFD2 − (xFD2 )2

2γ
Var[v − p2|p1, p2]

)})
,

For given xFD1 the above is a concave function of xFD2 . Maximizing with respect to xFD2

yields:

XFD
2 (p1, p2) = −γτvp2. (A.10)

Similarly, due to CARA and normality, in the first period a traditional market maker
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maximizes

E

[
−exp

{
− 1

γ
(v−p1)xSD1

}
|p1
]

= − exp

{
− 1

γ

(
E[v−p1|p1]xSD1 −

(xSD1 )2

2γ
Var[v−p1|p1]

)}
.

(A.11)

Hence, his strategy is given by

XSD
1 (p1) = −γτvp1. (A.12)

Finally, consider a first period liquidity trader. CARA and normality imply

E[− exp{−πL1 /γL}] = − exp

{
− 1

γ

(
E[πL1 |u1]−

1

2γL
Var[πL1 |u1]

)}
, (A.13)

where πL1 ≡ (v− p1)xL1 + u1v. Maximizing (A.13) with respect to xL1 , and solving for the

optimal strategy, yields

XL
1 (u1) = γL

E[v − p1|u1]
Var[v − p1|u1]

− Cov[v − p1, v|u1]
Var[v − p1|u1]

u1. (A.14)

Using (A.1b):

E[v − p1|u1] = Λ1u1 (A.15a)

Cov[v − p1, v|u1] =
1

τv
. (A.15b)

Substituting the above in (A.14) yields

XL
1 (u1) = a1u1, (A.16)

where

a1 = γLτvΛ1 − 1. (A.17)

Substituting (A.5), (A.10), (A.12), and (A.16) in (A.8) and solving for p2 yields

p2 = − 1− γLτvΛ2

µγτv︸ ︷︷ ︸
Λ2

u2 +
((1− µ)γ + γL)τvΛ1 − 1− γLτvΛ21

µγτv︸ ︷︷ ︸
Λ21

u1. (A.18)
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Identifying the price coefficients:

Λ2 =
1

(µγ + γL)τv
(A.19a)

Λ21 = Λ2

(
((1− µ)γ + γL)τvΛ1 − 1

)
. (A.19b)

Substituting the above expressions in (A.18), and using (A.12) yields:

p2 = −Λ2u2 + Λ2

(
(1− µ)xSD1 + xL1

)
.

Consider now the first period. We start by characterizing the strategy of a FD.

Substituting (A.10) in (A.9), rearranging, and applying Lemma 1 yields the following

expression for the first period objective function of a FD:

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2
× (A.20)

exp

{
−1

γ

(
γτv
2
ν2 + (ν − p1)xFD1 − (xFD1 + γτvν)2

2γ

(
1

Var[p2|u1]
+

1

Var[v]

)−1)}
,

where, due to (A.1a) and (A.1b)

ν ≡ E[p2|u1] = Λ21u1 (A.21a)

Var[p2|u1] =
Λ2

2

τu
. (A.21b)

Maximizing (A.20) with respect to xFD1 and solving for the first period strategy yields

XFD
1 (p1) = γ

E[p2|u1]
Var[p2|u1]

− γ
(

1

Var[p2|u1]
+

1

Var[v]

)
p1 (A.22)

= γ
Λ21τu

Λ2
2

u1 − γ
τu + Λ2

2τv
Λ2

2

p1.

Substituting (A.12), (A.16), and (A.22) in (A.7a) and solving for the price yields p1 =

−Λ1u1, where

Λ1 =

((
1 +

µγLτu
Λ2 + µγτu

)
γ + γL

)−1
1

τv
. (A.23)
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The remaining equilibrium coefficients are as follows:

a1 = γLΛ1τv − 1 (A.24)

a2 = − µγ

µγ + γL
(A.25)

b = −γLτvΛ21 (A.26)

Λ21 = −µγ(Λ2
2τv + τu)

µγτu + Λ2

Λ1 (A.27)

Var[p2|u1] =
Λ2

2

τu
, (A.28)

where Λ2 is given by (A.19a). 2

Proof of Corollary 2

The first part of the corollary follows from (13). Also, since Λt is decreasing in

µ, because of (10), |at| is increasing in µ. Finally, substituting (A.27) in (A.26) and

rearranging yields

b =
µγγL(1 + (µγ + γL)2τuτv)

(µγ + γL)(γ + γL + (γ + 2γL)µγτuτv)
,

which is increasing in µ. 2

Proof of Corollary 3

Computing the covariance between first and second period returns and using (A.23),

and (A.27) yields

Cov[p2 − p1, p1] = −Λ1 (Λ1 + Λ21) τ
−1
u

= − γLΛ1Λ2

(γ + γL + (γ + 2γL)(µγ + γL)µγτuτv)τu
,

which, in view of the fact that Λ∗t is decreasing in µ, proves the result. 2
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Proof of Proposition 2

We start by obtaining an expression for the unconditional expected utility of Ds and

FDs. Because of CARA and normality, a dealer’s conditional expected utility evaluated

at the optimal strategy is given by

E[U((v − p1)xSD1 )|p1] = − exp

{
−(E[v|p1]− p1)2

2Var[v]

}

= − exp

{
−τvΛ

2
1

2
u21

}
. (A.29)

Thus, traditional dealers derive utility from the expected, long term capital gain obtained

supplying liquidity to first period hedgers.

EUSD ≡ E
[
U
(
(v − p1)xSD1

)]
= −

(
1 +

Var[p1]

Var[v]

)−1/2

= −
(

τu1
τu1 + τvΛ2

1

)1/2

, (A.30)

and

CESD =
γ

2
ln

(
1 +

Var[p1]

Var[v]

)
. (A.31)

Differentiating CESD with respect to µ yields:

∂CESD

∂µ
=
γτv
2

(
1 +

Var[p1]

Var[v]

)−1
∂Var[p1]

∂µ
(A.32)

=
γτv
2τu1

(
1 +

Var[p1]

Var[v]

)−1
2Λ1

∂Λ1

∂µ
< 0,

since Λ1 is decreasing in µ.

Turning to FDs. Replacing (A.22) in (A.20) and rearranging yields

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2
× exp

{
−g(u1)

γ

}
,

(A.33)

where

g(u1) =
γ

2

(
(E[p2|p1]− p1)2

Var[p2|p1]
+

(E[v|p1]− p1)2
Var[v]

)
.
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The argument at the exponential of (A.33) is a quadratic form of the first period endow-

ment shock. We can therefore apply Lemma 1 and obtain

EUFD ≡ E[U((p2 − p1)xFD1 + (v − p2)xFD2 )] =

= −
(

1 +
Var[p2|p1]

Var[v]

)−1/2(
1 +

Var[p1]

Var[v]
+

Var[E[p2|p1]− p1]
Var[p2|p1]

)−1/2
,

(A.34)

where, because of (A.21a),

Var [E[p2 − p1|p1]] = (Λ21 + Λ1)
2 τ−1u , (A.35)

so that:
Var[E[p2 − p1|u1]]

Var[p2|u1]
=

(
Λ21 + Λ1

Λ2

)2

.

Therefore, we obtain

CEFD =
γ

2

{
ln

(
1 +

(Λ2)
2τv

τu

)
+ ln

(
1 +

(Λ1)
2τv

τu
+

(
Λ21 + Λ1

Λ2

)2
)}

. (A.36)

Computing,
Λ21 + Λ1

Λ2

=
γL

γ + γL + (γ + 2γL)(µγ + γL)µγτuτv
. (A.37)

Thus, the arguments of the logarithms in (A.36) are decreasing in µ, which proves that

CEFD is decreasing in µ.

Finally, note that taking the limits for µ→ 0 and µ→ 1 in (A.31) and (A.36) yields

lim
µ→0

CESD =
γ

2
ln

(
1 +

1

(γ + γL)2τuτv

)

lim
µ→1

CEFD =
γ

2

{
ln

(
1 +

1

(γ + γL)2τuτv

)
+ ln

(
1 +

(Λ1)
2τv

τu
+

(
Λ21 + Λ1

Λ2

)2
)}

,

which proves the last part of the corollary. 2

Proof of Proposition 3

Consider now first period liquidity traders. Evaluating the objective function at op-
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timum and rearranging yields

− exp

{
− 1

γL

(
E[πL1 |u1]−

1

2γL
Var[πL1 |u1]

)}
= − exp

{
−u

2
1

γL

(
a21 − 1

2γLτv

)}
,

where u1 ∼ N(0, τ−1u1
). The argument at the exponential is a quadratic form of a normal

random variable. Therefore, applying again Lemma 1 yields

E

[
− exp

{
πL1
γL

}]
= −

(
(γL)2τuτv

(γL)2τuτv − 1 + a21

)1/2

, (A.38)

so that

CEL
1 =

γL

2
ln

(
1 +

a21 − 1

(γL)2τuτv

)
. (A.39)

Note that a higher a21 increases traders’ expected utility, and thus increases their payoff.

Next, for second period liquidity traders, substituting the optimal strategy (A.3) in

the objective function (A.2) yields

E

[
− exp

{
−π

L
2

γL

}
|ΩL

2

]
= − exp

{
− 1

γL

(
(xL2 )2 − u22

2γLτv

)}
(A.40)

= − exp

{
− 1

γL

(
xL2 u2

)( 1

2γL2 τv

(
1 0

0 −1

))(
xL2

u2

)}
.

The argument of the exponential is a quadratic form of the normally distributed random

vector (
xL2 u2

)
∼ N

((
0 0

)
,Σ
)
,

where

Σ ≡
(

Var[xL2 ] a2Var[u2]

a2Var[u2] Var[u2]

)
. (A.41)

Therefore, we can again apply Lemma 1 to (A.40), obtaining

E

[
E

[
− exp

{
−π

L
2

γL

}
|ΩL

2

]]
= −|I + (2/γL)ΣA|−1/2, (A.42)

where

A ≡ 1

2γLτv

(
1 0

0 −1

)
, (A.43)
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Var[xL2 ] =
a22 + b2

τu
. (A.44)

Substituting (A.41), (A.43), and (A.44) in (A.42) and computing the certainty equivalent,

yields:

CEL
2 =

γL

2
ln

(
1 +

a22 − 1

(γL)2τuτv
+
b2((γL)2τuτv − 1)

(γL)4τ 2uτ
2
v

)
. (A.45)

For µ = 0, b = 0 and, in view of Corollary 2, CEL
1 > CEL

2 . The same condition holds

when evaluating (A.39) and (A.45) at µ = 1. As CEL
t is increasing in µ, we have that

for all µ ∈ (0, 1], CEL
1 (µ) > CEL

2 (µ). 2

Proof of Corollary 4

We need to prove that:

∂CEL
1 (µ)

∂µ
≥ −∂CE

SD(µ)

∂µ
.

Computing:

∂CEL
1 (µ)

∂µ
=

γLa1a
′
1

(γL)2τuτv − 1 + a21
(A.46)

and

∂CESD(µ)

∂µ
=

γ(1 + a1)a
′
1

(γL)2τuτv + (1 + a1)2
. (A.47)

First, note that the denominator in (A.47) is higher than the one in (A.46). Next,

comparing the numerators in the above expressions yields:

γLa1a
′
1 > −γ(1 + a1)a

′
1 ⇐⇒ (γLa1 + γ(1 + a1)︸ ︷︷ ︸

<0

) a′1︸︷︷︸
<0

> 0,

as can be checked by substituting (A.24) in the above. 2
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Proof of Corollary 5

The first part of the result follows immediately from (20), and Corollary 4. Next,

because of Propositions 2 and 3, GW (1) > limµ→0GW (µ), which rules out the possibility

that gross welfare is maximized at µ ≈ 0. 2

Proof of Corollary 6

Note that because of (A.37), we can write

Λ21 + Λ1

Λ2

=
Λ1γ

Lτv
1 + µγ(µγ + γL)τuτv

.

Therefore, substituting the expressions for dealers’ payoffs in (21), we have:

φ(µ) = CEFD − CED (A.48)

=
γ

2

{
ln

(
1 +

Λ2
2τv
τu

)
+ ln

(
1 +

Λ2
1τv
τu

K

)
− ln

(
1 +

Λ2
1τv
τu

)}
> 0.

where K = 1 + (γL/(1 +µγ(µγ+ γL)τuτv))
2τuτv > 1, and decreasing in µ. The first term

inside curly braces in the above expression is decreasing in µ since Λ2 is decreasing in µ.

The difference between the second and third terms can be written as follows:

ln

(
1 +

Λ2
1τv
τu

K

)
− ln

(
1 +

Λ2
1τv
τu

)
= ln

(
τu + Λ2

1τvK

τu + Λ2
1τv

)
.

Differentiating the above logarithm and rearranging yields:

τvΛ1

(τu + Λ2
1τvK)(τu + Λ2

1τv)

(
2(K − 1)τu

∂Λ1

∂µ
+ (τu + Λ2

1τu)Λ1
∂K

∂µ

)
< 0,

since K > 1, and both Λ1 and K are decreasing in µ. 2

Proof of Corollary 7

As shown in the text following Corollary 7, the derivative of φ(µ; γ) with respect to

γ can be written as the sum of two components, the first one being positive. Consider

50



now the effect of the change in γ on the dealers’ expected utilities’ ratio. Computing this

derivative yields:

∂(EUFD/EUSD)

∂γ
∝
(
− τuτv(γµ+ γL)3

(
γµτ 2uτ

2
v (γµ+ γL)

(
γ2
(
µ2 + 2

)
+ γγL(µ+ 6) + 4(γL)2

)

+ γ2µ2τ 3uτ
3
v (γ + 2γL)2(γµ+ γL)2 + τuτv

(
2γ2µ2 + 2γγLµ+ (γ + γL)2

)
+ 1
)2
)−1
×

(
2
(
γ4µ5τ 6uτ

6
v (γ + 2γL)4(γµ+ γL)4 + µτuτv

(
γ2
(
4µ2 + 2

)

+ 4γγL(µ+ 1) + 3(γL)2
)

+ τ 2uτ
2
v

(
γ4
(
6µ5 + 8µ3 + µ

)
+ 4γ3γLµ(µ(µ+ 1)(3µ+ 2) + 1)

+ 2γ2(γL)2µ(µ(11µ+ 10) + 4) + γ(γL)3(µ(17µ+ 7) + 1) + (γL)4(3µ+ 1)
)
+

γµ2τ 5uτ
5
v (γ + 2γL)(γµ+ γL)3

(
2γ5µ2

(
µ2 + 2

)
+ 2γ4γLµ2

(
2µ2 + µ+ 10

)
+

γ3(γL)2µ2(4µ+ 35) + 5γ2(γL)3µ(4µ+ 1) + 2γ(γL)4(3µ+ 1) + 2(γL)5
)
+

τ 3uτ
3
v (γµ+ γL)

(
4γ5
(
µ6 + 3µ4 + µ2

)
+ 4γ4γLµ2(µ(µ(2µ+ 9) + 3) + 5)+

γ3(γL)2µ2(µ(35µ+ 36) + 43) + γ2(γL)3µ(µ(35µ+ 44) + 5)+

γ(γL)4(µ(21µ+ 8) + 1) + (γL)5(3µ+ 1)
)

+ µτ 4uτ
4
v (γµ+ γL)2

(
γ6µ2

(
µ4 + 8µ2 + 6

)
+

2γ5γLµ2(µ(µ(µ+ 14) + 4) + 18) + γ4(γL)2µ2(µ(27µ+ 28) + 86)+

γ3(γL)3µ(µ(29µ+ 95) + 9) + γ2(γL)4(µ(44µ+ 21) + 3)+

γ(γL)5(11µ+ 6) + 2(γL)6
)

+ µ
))

< 0, (A.49)

proving our claim. 2

Proof of Proposition 5

In the First Best case, for given µ, the objective function (31) is decreasing in N .

Thus, to economise on fixed costs, the planner allows a monopolistic exchange to provide

trading services. To see that µFB ≥ µM , evaluate the FOC of the FB planner at µM to

obtain:
∂P(µ, 1)

∂µ

∣∣∣∣
µ=µM

=
∂π

∂µ︸︷︷︸
=0

+
∂ψ(µ)

∂µ︸ ︷︷ ︸
≥0

≥ 0 =⇒ µFB ≥ µM .

We now show that µBEH ≥ µM . We will prove this considering three cases for µM .

1. µM = 0; that is the monopolist has a corner solution with zero profit. Then, clearly

µBEH ≥ µM .
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2. µM > 0 such that the monopoly profit is zero (µM = 0 will also be a solution in

this case); then for any µ ∈ (0, µM)∪(µM , 1], the monopoly profit is negative (given

that it is single-peaked), and so will be for any number of firms with such aggregate

µ, which cannot be a BEH solution. Then, given that P(µ, 1) is increasing for

µ ∈ [0, µFB] ⊇ [0, µM ], µBEH will be equal to µM and not zero.

3. µM > 0 such that the monopoly profit is positive, that is (φ(µM)− c)µM > f ; sup-

pose by contradiction that µBEH < µM . The pair (µBEH , NBEH) satisfies the two

BEH constraints: (φ(µBEH)− c)µBEH/NBEH ≥ f ≥ (φ(µBEH)− c)µBEH/(NBEH +

1). Then, if the right constraint does not bind, by continuity, single-peakedness of

monopoly profit at µM and µBEH < µM there exists ε > 0 small enough such that

µBEH + ε ≤ µM and f > (φ(µBEH + ε)− c)(µBEH + ε)/(NBEH + 1). µBEH + ε ≤ µM

guarantees that (φ(µBEH + ε) − c)(µBEH + ε)/NBEH > f . Thus, the BEH con-

staints are satisfied at (µBEH +ε,NBEH) and given that µBEH +ε ≤ µM ≤ µFB and

single-peakedness of P(µ) at µFB, P(µBEH + ε,NBEH) > P(µBEH , NBEH), a con-

tradiction to (µBEH , NBEH) being the BEH solution. If the right constraint binds,

(φ(µBEH)−c)µBEH/NBEH > f = (φ(µBEH)−c)µBEH/(NBEH+1) and the planner’s

function takes the value P(µBEH , NBEH) = ψ(µBEH) + f . We can increase NBEH

by one and µBEH to µBEH
′
> µBEH such that (φ(µBEH

′
)− c)µBEH′

/(NBEH + 1) ≥
f ≥ (φ(µBEH

′
)−c)µBEH′

/(NBEH +2) and the planner’s function will take the value

P(µBEH
′
, NBEH + 1) ≥ ψ(µBEH

′
) + f > ψ(µBEH) + f = P(µBEH , NBEH), given

that ψ(µ)′ > 0 and µBEH
′
> µBEH , a contradiction.

2

Proof of Proposition 6

Let µC(N) denote the total co-location capacity at a symmetric Cournot equilibrium

for a given number of exchanges N . The objective function of a planner that controls

entry can be written as follows:

P(µC(N), N) = Nπi(µ
C(N)) + ψ(µC(N)), (A.50)

where ψ(µC(N)) denotes the welfare of other market participants at the Cournot solution:

ψ(µC(N)) = CESD(µC(N)) + CEL
1 (µC(N)) + CEL

2 (µC(N)).
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Consider now the first order condition of the planner, and evaluate it at NCFE:

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

= πi(µ
C(N), N)︸ ︷︷ ︸
=0

∣∣∣∣
N=NCFE

(A.51)

+NCFE ∂πi(µ
C(N), N)

∂N︸ ︷︷ ︸
<0

∣∣∣∣∣∣∣
N=NCFE

+ ψ′(µC(N))
∂µC(N)

∂N︸ ︷︷ ︸
>0

∣∣∣∣∣∣∣
N=NCFE

.

The first term on the right hand side of (A.51) is null at NCFE (modulo the integer

constraint). At a stable, symmetric Cournot equilibrium, an increase in N has a negative

impact on the profit of each exchange, and a positive impact on the aggregate tech-

nological capacity (see, e.g., Vives (1999)). Therefore, the second and third terms are

respectively negative and positive. Given our definitions, NCFE is the largest N such that

platforms break even. NSTR, instead, reflects the planner’s choice of N in Cournot equi-

libria that keep exchanges from making negative profits and maximizes welfare. Hence,

it can only be that

NCFE ≥ NSTR and µCFE ≥ µSTR,

since a planner can decide to restrict entry. At a USTR, the planner can make side

payments to an unprofitable exchange. This has two implications: first, the planner can

push entry beyond the level at which platforms break even, so that

NUSTR ≥ NSTR and µUSTR ≥ µSTR.

Additionally, depending on which of the two terms in (A.51) prevails, we have

∂P(µC(N), N)

∂N

∣∣∣∣
N=NCFE

≷ 0 =⇒ NCFE ≶ NUSTR.

Finally, µC(N) ≥ µM , for N ≥ 1 because at a stable CFE the total capacity is an

increasing function of the number of platforms. A similar argument holds at both the

STR and USTR, since in this case the planner picks N subject to µ being a Cournot

equilibrium

We have that PUSTR ≥ PSTR, because STR imposes an additional constraint on the

planner’s objective function compared to STR. Finally, PSTR ≥ PCFE, because CFE

does not account for other traders’ welfare, and the planner may choose to favour these

market participants when at the margin this creates a larger increase in GW (µ). 2
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Lemma 2. πM(µFB) ≤ 0 =⇒ πBEH(µBEH) = 0 and the converse is also true generically.

Proof. First we prove the direction =⇒. Since πM(µFB) ≤ 0, then, given that the

monopoly profit is single-peaked, the BEH constraints can only be satisfied for µ ≤ µFB.

Note that for a given (aggregate) µ, the profit (given that it is non-negative) of an

exchange is non-increasing in N , so for a given µ, N = 1 maximizes profit. Then, given

that P(µ) is single-peaked at µFB, it is optimal for µBEH to be set as large as possible

with NBEH = 1, so that πBEH(µBEH) = 0.

Next we prove the opposite direction (⇐=) generically by proving the contrapositive.

Suppose that at µFB the monopoly profit is positive, that is (φ(µFB)− c)µFB > f , then:

1. If (φ(µFB) − c)µFB/2 ≤ f , then µBEH = µFB, NBEH = NFB = 1 and thus

πBEH(µBEH) > 0.

2. If (φ(µFB)−c)µFB/2 > f , then given that from Proposition 5 we know that µBEH ≥
µM , and monopoly profit is single peaked at µM (thus, we work in the decreasing

part of monopoly profit), we only need to examine whether it is optimal to choose

NBEH > 1 and/or µBEH > µFB in order to satisfy the right BEH constraint.

(a) Assume that for N > 2, we do not have that (φ(µFB) − c)µFB/N = f . We

prove that it cannot be NBEH > 1 with µBEH ≤ µFB. Suppose by contradic-

tion that the latter holds. Then with µBEH = µFB, the left BEH constraint

cannot bind and πBEH(µBEH) > 0. If µBEH < µFB, then the left BEH con-

straint must bind (and the right not): (φ(µBEH) − c)µBEH/NBEH = f >

(φ(µBEH)− c)µBEH/(NBEH + 1). (To see this, observe that if the left did not

bind, we could increase µBEH to bring it closer to µFB with both constraints

still satisfied.) But then consider a new candidate BEH solution resulting from

reducing NBEH by one and increasing µBEH to µBEH
′
> µBEH . From the pre-

vious left BEH constraint we know that the new right BEH constraint will not

bind. Thus, it has to either be that µBEH
′
= µFB, in which case (µBEH , NBEH)

is rejected as a solution and we have a contradiction, or that the new left BEH

constraint will bind—to see the latter, it suffices to observe that if neither con-

straint binds and µBEH
′ 6= µFB, there is ε > 0 small enough such that either

µBEH
′
+ ε or µBEH

′ − ε increases the planner’s function. In the case that the

new left constraint binds, we have that (φ(µBEH
′
) − c)µBEH′

/(NBEH − 1) =

f > (φ(µBEH
′
) − c)µBEH

′
/(NBEH), so µBEH

′
< µFB (consider a similar ar-

gument of reducing µBEH
′

by ε to exclude µBEH
′
> µFB). This case also
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induces P (µBEH
′
, NBEH − 1) > P (µBEH , NBEH), as µBEH < µBEH

′
< µFB.

We conclude that it cannot be that NBEH > 1 with some µBEH < µFB.

(b) Now consider the case NBEH ≥ 1 with µBEH > µFB. Then the right BEH

constraint must bind (and the left not): (φ(µBEH) − c)µBEH/NBEH > f =

(φ(µBEH)− c)µBEH/(NBEH + 1). To see this, observe that if the right did not

bind, we could reduce µBEH to bring it closer to µFB with both constraints

still satisfied. Thus, πBEH(µBEH) = (φ(µBEH)− c)µBEH/NBEH − f > 0.

Proof of Proposition 7

Saying that profits are zero at the BEH solution means that the left BEH constraint binds

and µFB ≥ µBEH . We now prove that µBEH ≥ µCFE. Suppose, by contradiction, that

µCFE > µBEH . Supposing that at the Behavioral Second Best exchanges break even, as

ψ′(µ) > 0, this implies that

(φ(µCFE)− c)µCFE < f. (A.52)

However, at a CFE with N > 1 exchanges, we have

(φ(µCFE)− c)µ
CFE

N
= f. (A.53)

Putting together (A.52) and (A.53) yields

f = (φ(µCFE)− c)µ
CFE

N
< (φ(µCFE)− c)µCFE < f,

which is impossible. Thus, if the monopolist profit is single-peaked we must have µBEH ≥
µCFE.

From Proposition 6 we have µCFE ≥ µSTR. Together with what we have proved above,

it must be that µBEH ≥ µCFE ≥ µSTR. Now, with the zero profit constraint binding for

the BEH solution it must be that NBEH = 1 since profits given µ are decreasing in N . It

follows that P(µBEH) ≥ P(µM) since µFB ≥ µBEH ≥ µM and P is single-peaked at µFB.

2
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B A model with SD at the second round

In this appendix we consider a variation of the model presented in Section 3, in which we

assume that SD enter the market at the second round of the liquidity determination stage

of the game (the proofs of the results involve minor variations from the ones in Appendix

A, and are available upon request). This captures the intuition that through technological

services FD are quicker in accommodating liquidity traders’ demand shocks than SD. In

this case, the market clearing conditions in periods 1 and 2 are given respectively by

xL1 + µxFD1 = 0 and xL2 + µ(xFD2 − xFD1 ) + (1− µ)xSD2 = 0 (see Figure 7 for the modified

timeline). We restrict attention to linear equilibria where

p1 = −Λ̃1u1 (B.1a)

p2 = −Λ̃2u2 + Λ̃21u1, (B.1b)

where we use ∼ to denote variables related to the model with SD entering at the second

round.

−1

− Exchanges

make costly

entry decision;

N enter.

1

− Liquidity
traders receive
u1 and submit
market order xL1 .

− FDs submit
limit order
µxFD1 .

0

− Dealers

acquire FD

technology.

− Platforms

make techno-

logical capacity

decisions (µi).

2

− New cohort of
liquidity traders
receives u2,
observes p1, and
submits market
order xL2 .

− FDs submit
limit order
µxFD2 .

− SDs submit
limit order
(1− µ)xSD2 .

Liquidity determination
stage (virtual single
platform)

Entry and ca-
pacity determi-
nation stage

3

− Asset liquidates.

Figure 7: Timeline in the model where SD enter at the second round.

We obtain the following result:

Proposition 8. For µ ∈ (0, 1], there exists a unique equilibrium in linear strategies in

the stock market where SD enter at the second round. Compared to the baseline case,

Λ̃1 > Λ1, Λ1 < Λ̃2 < Λ2, and |Λ̃21| > |Λ21|.
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Thus, SD entry at the second round reduces (increases) the competitive pressure faced

by FD at the first (second) round, explaining the decrease (increase) in first (second)

period liquidity. Comparing dealers’ payoffs across the two models, we find

Proposition 9. C̃E
FD

> C̃E
SD

, and SD have a higher payoff when entering in the

second round, whereas the result for FD is ambiguous: C̃E
SD

> CESD, and C̃E
FD

≷

CEFD.

As in the baseline model, more access to the liquidity supply market has value for

dealers. In the baseline model, in the first round FD supply liquidity anticipating the

possibility to rebalance their position at the second round. This heightens the competitive

pressure they exert on SD compared to the model studied in this section, explaining why

C̃E
SD

> CESD. Conversely, the payoff comparison for FD is less clear cut. Indeed,

compared to the baseline model, liquidity is lower (higher) at the first (second) round.

We define the demand for technological services as φ̃(µ) = C̃E
FD − C̃ESD

.

Proposition 10. In the model where SD enter at the second round, φ̃(µ) is decreasing

in µ.

Furthermore, numerical simulations show that even in this case, the demand for tech-

nological services can be log-convex, implying that strategic complementarities in plat-

form capacity decisions can arise.
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Figure 5: Panels (a) and (c) illustrate two cases in which insufficient entry occurs. In
Panel (b) and (d), entry is always excessive.
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Figure 6: Liquidity impact of a reduction in dealers’ risk tolerance. In panel (a) we plot
the effect of the shock on the demand for technological services; in panel (b) we plot the
mitigation effect in the M case. In panels (c) and (d) we plot the impact on entry and the
mitigation effect in the CFE case. Parameter values: c = 0.002, γorig = 0.5, γL = 0.25,
τu = 100, τv = 25.
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