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Abstract 
 
We analyze spying out a rival’s price in a Bertrand market game with incomplete information. 
Spying transforms a simultaneous into a robust sequential moves game. We provide conditions 
for profitable espionage. The spied at firm may attempt to immunize against spying by delaying 
its pricing decision if its cost is low. This, however, adversely affects beliefs and becomes self-
defeating. The spy may also be a counterspy or be fooled to report strategically distorted 
information. This gives rise to an intriguing signaling problem that admits only partially 
separating equilibria. Surprisingly, counter-espionage may aggravate the price leadership 
induced by spying. Altogether, our analysis offers an explanation and generalization of robust 
Stackelberg-Bertrand games. 
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1 Introduction

Economic espionage is a common and widely despised activity by governments and firms. Its
most common form concerns the illicit appropriation of essential inputs or technology. Prominent
historical examples range from stealing the blueprints of the British Cartwright power loom by
the American industrialist Francis Cabot Lowell to the smuggling of tea’s secrets - plants, seeds,
and fermentation techniques - by the Scottish botanist Robert Fortune, which spurred one of the
greatest episodes of early globalization, orchestrated by the British East India Company, and the
downfall of China’s tea monopoly.1

Another form of economic espionage - which is the focus of the present paper - concerns the
disclosing of operational information about a rival firm’s pricing or sales.2 While spying on tech-
nology hurts the spied at firm or nation, the disclosure of operational information may benefit
both the spying and the spied at firms, although the detailed analysis reveals some more intricate
distinctions.

In the present paper we analyze the impact and stability of spying out a rival’s play in a Bertrand
market game with differentiated products that are substitutes where firms’ unit costs are their
private information.

As a benchmark we first consider a game of complete information. There, spying out the rival’s
price induces a sequential game, with the spied at firm as Stackelberg leader and the spying firm
as follower, that benefits both firms, albeit it benefits the spying firm more. This is an immediate
implication of the well-known second-mover advantage in Bertrand games with substitutes.

However, this equilibrium is not robust. If the spy’s observation is subject to noise, the spy’s
signal is ignored and the unique equilibrium of the game is the same as that of the simultaneous
moves game without espionage. This indicates that, in the present framework (that does not admit
mixed strategy equilibria) espionage can only be explained in a robust manner if one introduces
incomplete information.

Incomplete information not only remedies this robustness problem, it also gives rise to an enhanced
role of espionage. Observing the rival’s price induces a sequential game and also eliminates the
spying firm’s uncertainty. If one knows the rival’s price, incomplete information concerning its
cost is inconsequential.

However, as the spied at firm knows that the rival observes its price, it may respond by adjusting its
price downward if its cost is low and upward if that cost is high. Therefore, it is not clear, a priori,
whether the spying firm altogether benefits from espionage.

In turn, the spied at firm benefits from having its private information disclosed if its cost is high and
may be hurt if its cost is low. This is due to the fact that a high cost is associated with a high price
which, when revealed by the spy, induces the rival to respond with a high price, and vice versa.

This suggests that, if the spied at firm’s cost is low, it should perhaps immunize against spying and
delay its pricing decision until the spying firm has set its price or fire the spy if his identity has

1Ben-Atar (2004) offers an inspiring review of the role of economic espionage in the development of the U.S.
economy during the 18th and early 19th century. A vivid account of the tea smuggling out of China into British-ruled
India is in Rose (2011).

2For a detailed review of the different kinds of economic espionage see Nasheri (2005).
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been disclosed. Again, it is not clear, whether these reactions are profitable, and indeed, we find
that they induce an adverse updating of beliefs that makes these attempts self-defeating.

The analysis becomes more intricate once we take into account that the spy may be a counterspy
who serves the interests of the spied at firm and reports strategically distorted information or,
equivalently, if the identity of the spy has been exposed, firm 1 fools him to report distorted
information. In that case, the spying firm cannot be sure that the reported price is actually the true
price. It then needs to draw an inference from the reported price about the type of spy and make
a prediction about the true price set by the spied at firm conditional on facing a counterspy. This
gives rise to an intriguing signaling problem that admits no fully revealing equilibrium.

Altogether, we identify two partially revealing equilibria: one that satisfies the intuitive criterion,
yet exhibits a disturbing discontinuity, and one that exhibits no such discontinuity, yet violates the
intuitive criterion. If one selects the equilibrium that violates the intuitive criterion the presence of
the counterspy simply preserves but weakens the price leadership induced by the spy. However, if
one selects the equilibrium that survives the intuitive criterion, the presence of the counterspy can
surprisingly enhance the price leadership induced by the spy and yield a higher expected price of
firm 1 than the expected Stackelberg leader price.

The present analysis builds on various strands of the literature, in particular the literature on
commitment and observability and on second-mover advantages in supermodular games.

In a seminal contribution Bagwell (1995) questions the value of commitment in sequential games.
He considers a Stackelberg-Cournot duopoly and shows that when the second-mover observes a
noisy signal of the first-mover’s action, the unique pure strategy equilibrium coincides with the
simultaneous moves equilibrium even if that noise is arbitrarily small.3 In the same spirit, Morgan
and Várdy (2013) show that the value of commitment is destroyed if observing the first-mover’s
action is costly, even if that cost is arbitrarily small, which however requires a particular sequence
of moves which one may judge as somewhat restrictive.

The fundamental implication of these results is that in a sequential game spying out a rival’s choice
of action can only serve a useful purpose if the spied at player’s choice cannot already be inferred
from its equilibrium strategy. This is the case if, in equilibrium, the first-mover plays a mixed
strategy or if his strategy depends on some payoff relevant parameter that is this player’s private
information.4

Type dependent strategies are behaviorally indistinguishable from mixed strategies. Therefore,
there are two frameworks to explain espionage in a robust manner: games of complete information
that have equilibria in which the first-mover randomizes and games of incomplete information.

In the present paper we rely on incomplete information to analyze espionage. Inspired by Maggi
(1999), who was the first to stress the importance of incomplete information in explaining the
value of commitment in sequential games, we focus on incomplete information and pure strategy
equilibria that are robust with respect to arbitrarily small noise or cost of spying. Under complete
information robustness fails; under incomplete information robustness is assured.

3However, due to the assumed discrete action sets, his game has also two equilibria in mixed strategies, one of which
approximates the Stackelberg-Cournot and the other the Cournot equilibrium outcome.

4If players are not sophisticated, this assessment needs to be qualified. This mirrors in the experimental literature
which reports that subjects are willing to buy costly or noisy information if the cost and noise are sufficiently small (see,
for example, Morgan and Várdy, 2004, Güth, Müller, and Spiegel , 2006).
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Games of incomplete information may, of course, also have mixed strategy equilibria. However,
as Milgrom and Weber (1985) show, for every mixed strategy one can generally find an equivalent
pure strategy that induces the same probability distribution of actions.5

The present paper is also related to the literature on second-mover advantages in games in which
prices are strategic complements (see, for example, Gal-Or, 1985, Dowrick, 1986, Amir and
Stepanova, 2006). Like that literature we assume general demand functions that are super-modular
in the price vector. However, while this literature considers games of complete information (and
does not address the robustness issue raised by Bagwell, 1995), incomplete information is essential
for our analysis.

There is a small literature on espionage in particular market games. While most contributions
consider spying out rivals’ type, some contributions also consider spying out rivals’ actions, as we
do in the present paper.

The two kinds of espionage are fundamentally different. Whereas spying out rivals’ type allows
players to sharpen their prediction of rivals’ strategy, spying out rivals’ action changes the order of
moves and transforms a simultaneous into a sequential moves game. As a byproduct of observing
a rival’s action a player may also learn about its rival’s type. Indeed, in the present model, after
observing the rival’s price, its cost can also be inferred (provided the rival’s strategy is monotone).
However, this inference is irrelevant because knowing the rival’s cost in addition to its price adds
no value.

Like the present paper, Solan and Yariv (2004), Barrachina , Tauman, and Urbano (2014) consider
spying out actions. They consider an entry game played by an incumbent and a potential entrant. In
Barrachina , Tauman, and Urbano (2014) the incumbent may expand production capacity to deter
entry and the potential entrant can spy out the first-mover’s investment in capacity. In equilibrium,
the incumbent randomizes his investment and the entrant engages in spying even though spying is
costly. Whereas in Solan and Yariv (2004) the incumbent commits to either fight or accommodate
entry and the entrant’s spy imperfectly observes that decision.

Similar to the present paper, spying out the incumbent’s action confers the spied at firm a commit-
ment device that yields first- and second-mover advantages. However, whereas these contributions
rely on complete information coupled with mixed strategies, the present model admits no equilib-
rium in mixed strategies and thus relies on incomplete information coupled with pure strategies.

Spying out rivals’ type is considered in several contributions. Wang (2016) considers a linear
Cournot duopoly where one firm has private information concerning its unit cost while the other
firm can spy out the rival’s unit cost which results in an noisy observation. Similarly, Kozlovskaya
(2018) assumes that firms can learn about demand by conducting their own market research and
by spying out the results of rivals’ market research.

5For a casual review of this “purification theorem” see Fudenberg and Tirole (1991, Theorem 6.2). Milgrom and
Weber (1985) require finite action sets; however, recent extensions require only compactness (see Podczeck, 2009).
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Zhang (2015) and Chen (2017, Ch. 2) analyze spying out rivals’ types in two-player contests where
types are represented by valuations for the given prize.6 In some cases both the spying and the
spied at firm benefit; mutual spying may then be viewed as a form of information sharing.7

Apart from these contributions, the larger literature on industrial espionage has addressed a range
of complementary issues. Whitney and Gaisford (1999) analyze spying of technology where the
spy contributes to lower the cost of the spying firm, inspired by the relationship between Airbus
and Boeing. Matsui (1989) analyzes an infinitely repeated two-person zero-sum game where, at
the outset, one or both players will be perfectly informed of each other’s supergame strategy with
a given small probability and then have the chance to revise their strategies.

The plan of the paper is as follows: Section 2 states the model. Section 3 explains why, in the
present context, incomplete information is essential for a robust explanation of spying. Section 4
disentangles the informational and the strategic impact of spying and states conditions that assure
that spying is profitable. Section 5 explores what happens if the spied at firm attempts to immunize
against the adverse impact of spying by delaying its pricing decision or by firing the spy when
its cost is low. These attempts are shown to adversely affect beliefs to such an extent that they
become self-defeating. Section 6 takes into account that the spy may be a counterspy, solves the
resulting signaling game, and shows that the presence of the counterspy may surprisingly aggravate
the price leadership induced by the spy. We close with a discussion in Section 7. Various proofs
are relegated to the Appendix.

2 Model

Consider a duopoly with firms 1 and 2 (where 1 is mnemonic for first-mover and 2 for second-
mover) that play a Bertrand market game with differentiated products that are substitutes, subject
to linear cost functions. Firm 2 has access to the services of a spy who observes the unit price
chosen by firm 1, p1, and who may report his observation to firm 2 before it sets its own price, p2.
The presence of the spy is common knowledge although his identity is unknown.

The time-line of the base model is as follows:8

1. “Nature” independently draws unit costs, x1 and x2, from the probability distribution F . The
realized unit costs are firms’ private information.

2. Firm 1 sets its unit price, p1; the spy observes it, firm 2 does not.

3. The spy reports his observation to firm 2.

4. Firm 2 sets its unit price, p2, and payoffs are realized.

In a first extension we allow firm 1 to immunize against the adverse impact of being spied at by
delaying its pricing decision or by firing the spy if his identity has been exposed.

6See also Baik and Shogren (1995) who pioneered the analysis of spying in contests.
7Zhang (2015) also considers that the spy may be a double spy. This resonates with our analysis of counter-espionage

which, however, raises very distinct signaling issues. Double spying is also considered in Ho (2008) who, however,
focuses on the design of contracts that deter double spying in an agency setting.

8We do not specify whether the spy is procured before the game is played or offers his service in the course of the
game, because this does not matter for our analysis.
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In a second major extension we take into account that the spy may be a counterspy who serves the
interests of firm 1 and reports strategically distorted information or, equivalently, firm 1 may have
fooled the spy to report distorted information.

Firms’ demand functions Qi(pi, p j) are twice continuously differentiable with ∂piQi(pi, p j) < 0,
∂p j Qi(pi, p j)> 0, ∂pi p j Qi(pi, p j)≥ 0, ∂pi piQi(pi, p j)≤ 0.9 These properties assure that firms’ profit
functions, πi(pi, p j,xi) := (pi−xi)Qi(pi, p j), are strictly supermodular in the price vector (see, for
example, Vives, 2005) and best replies are unique. By a well-known result due to Topkis (1978),
this implies that firms’ best reply functions are non-decreasing. It also follows that “single-crossing”
resp. “increasing differences” conditions (see Athey, 2001, Van Zandt and Vives, 2007, p. 344),
∂pixiπi(pi, p j,xi)> 0, ∂pi p j πi(pi, p j,xi)> 0, are satisfied.

For simplicity we also assume strict concavity of π1(p1,R(p1,x2),x1) in p1, with R(p1,x2) :=
argmaxp π2(p, p1,x2). This rules out equilibria in mixed strategies.10

The probability distribution F is continuous with support [α,β ], 0 ≤ α < β and expected value
x̄ := E[X ].

The parameters of the demand functions and the probability distribution of unit costs are such that
no firm is ever crowded out of the market as firms play the duopoly game.

3 Why incomplete information is essential

At the outset we emphasize that, in the present model, incomplete information is essential to explain
espionage. We briefly examine the case of complete information and explain why spying does not
occur in robust equilibria that pertain when the spy’s observation is subject to noise.

If firms have the same unit cost, the presence of the spy transform the game from a simultaneous
to a sequential moves game and makes the spied at firm Stackelberg leader and the spying firm
Stackelberg follower. As is well-known, in a symmetric Stackelberg game with substitutes both
firms are better off than in the simultaneous moves game and the Stackelberg follower is even
better off than the Stackelberg leader (see Gal-Or, 1985, Dowrick, 1986).

If the game is asymmetric, the firm that has a substantially lower unit cost may have a first-mover
advantage. In general, at least one firm has a second-mover advantage but it is not always the case
that both firms have a second-mover advantage (see Amir and Stepanova, 2006).

In either case spying is a quasi-collusive scheme that supports higher equilibrium prices that benefit
both the spying and the spied at firm.

However, these equilibria are not robust. If the spy’s observation is subject to noise, his observation
is ignored and the unique equilibrium of the game is that of the simultaneous moves Bertrand game,
no matter how small the noise. This result follows from a prominent result in the literature on the
value of commitment in sequential games that is due to Bagwell (1995) who, however, considers a
model with discrete action sets that admits also mixed strategy equilibria (one of which approaches
the Stackelberg equilibrium and thus restores the value of commitment).

9Throughout this paper we write ∂x f (x,y) for ∂ f (x,y)/∂x and ∂xy f (x,y) for ∂ 2 f (x,y)/∂x∂y and denote random variables
by capital and realizations by lower case letters.

10In lieu of ruling out mixed equilibria, one can use the fact that in games of incomplete information a mixed strategy
equilibrium can generally be purified, and then focus on pure strategy equilibria.
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We mention that Morgan and Várdy (2013) have similarly shown that firm 2 is not willing to
pay for information and the only equilibrium that survives if information is costly is that of the
simultaneous moves Bertrand game, no matter how small the cost. However, this requires the
additional assumption that firm 1 does not know whether firm 2 has procured the service of the spy
when it sets its price, whereas the Bagwell test requires no such qualification.11 Like the present
paper Morgan and Várdy (2013) consider a continuum of actions and concavity of the leader’s
reduced form payoff function which rules out mixed strategy equilibria.

The fundamental conclusion from these results is that espionage can only serve a useful purpose
if the spied at firm’s choice of action cannot already be inferred from its equilibrium strategy.
This is the case if the first-mover plays a mixed strategy or his strategy depends on some payoff
relevant parameter that is this firm’s private information. Type dependent strategies are behaviorally
indistinguishable from mixed strategies. Therefore, there are two frameworks to explain espionage
in a robust manner: games of complete information that exhibit equilibria in which the first-mover
randomizes and games of incomplete information.

The present model admits no mixed strategy equilibrium. Therefore, in the present model, espi-
onage can only be explained if firms are subject to incomplete information.

Games of incomplete information may, of course, also have mixed strategy equilibria. However,
as we documented already in the introduction, for every mixed strategy one can generally find
an equivalent pure strategy that induces the same probability distribution of actions. Therefore,
focusing on pure strategy equilibria involves no loss of generality.

4 Espionage under incomplete information

Now suppose each firm has private information concerning its unit cost. In that case, firms’ pure
strategies are functions of their privately observed cost, pi(xi). Correctly predicting the equilibrium
strategy of firm 1, i.e., the function p1(x1), does not reveal its choice of action. Therefore, observing
the first-mover’s price is valuable (unless p1(x1) is flat), even if using the spy is subject to a small
cost or if the spy’s observation is subject to small noise.

In a seminal contribution, Maggi (1999) analyzes the value of commitment in games of incomplete
information, where firms’ unit costs are their private information. His main finding is that, if the
noise is arbitrarily small, the equilibrium is arbitrarily close to the equilibrium in the corresponding
sequential game with perfect observability. This explains why the equilibrium of a game in which
the spy perfectly observes the action of the first-mover is robust with respect to introducing small
noise; it is also clear that it is robust with respect to introducing a small cost. This justifies that, in
the following, we assume that the spy perfectly observes the price of firm 1 at zero cost.

As a benchmark we first solve the simultaneous moves Bertrand game to which we refer as game
GB. The symmetric Bayesian equilibrium strategies of that game, pB(xi), solve the requirements:

pB(xi) = argmax
p

(p− xi)EX j

[
Qi(p, pB(X j))

]
, i ∈ {1,2} . (1)

Existence of a monotone equilibrium strategy is assured by the fact that profit functions exhibit
“increasing differences”.

11We thank a referee for stressing this important distinction between Bagwell (1995) and Morgan and Várdy (2013).
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In the case of linear demand, Qi(pi, p j) := 1− pi+ sp j, with 0 < s < 1, and β < 1, the equilibrium
prices, their expected value, and firms’ expected profits, ΠB

i (xi), are:

pB(xi) =
2+ x̄s

2(2− s)
+

1
2

xi, p∗ := E
[
pB(X)

]
=

1+ x̄
2− s

(2)

Π
B
i (xi) :=

(
pB(xi)− xi

)
EX j

[
Qi(pB(xi), pB(X j))

]
= (pB(xi)− xi)

2. (3)

Now we solve the sequential game with espionage where the presence of the spy is common
knowledge, although the identity of the spy has not been exposed. We refer to the resulting game
as game GS (where S is mnemonic for “Stackelberg-Bertrand”).

The second-mover’s payoff is strictly concave in its own action, p2, for all prices quoted by firm 1:
∂p2 p2π2(p2, p1,x2) < 0. This implies that the second-mover will never randomize in equilibrium.
Similarly, the first-mover’s expected payoff is strictly concave in p1 which implies that he does
not randomize either. Existence of a pure strategy equilibrium in monotone increasing strategies
is assured by the “increasing differences” assumption. Therefore, we can focus on pure strategy
equilibria, without loss of generality.

Firms’ pure strategy equilibrium strategies (pS
1(x1), pS

2(x2, p1)) solve the requirements:

pS
2(x2, p1) = argmax

p
(p− x2)Q2(p, p1)

pS
1(x1) = argmax

p
(p− x1)EX2

[
Q1(p, pS

2(X2, p))
]

and the equilibrium expected payoffs are:

Π
S
1(x1) : =

(
pS

1(x1)− x1
)

EX2

[
Q1(pS

1(x1), pS
2(X2, pS

1(x1)))
]

Π
S
2(x2) : = EX1

[(
pS

2(x2, pS
1(X1))− x2

)
Q2(pS

2(x2, pS
1(X1)), pS

1(X1))
]
.

Compared to the Bertrand game with two-sided private information, there are two effects: 1)
firm 2 becomes second-mover in a sequential game (strategic effect), and 2) it becomes common
knowledge that firm 2 is no longer subject to uncertainty about its rival’s cost (information effect).

In order to disentangle these effects, we introduce a hypothetical Bertrand game with one-sided
private information, to which we refer as game Gb, where firm 2 knows its rival’s cost but firm 1
does not know the cost of firm 2. Therefore, as one compares game GS with game Gb, one captures
exclusively the strategic effect of moving from the simultaneous to the sequential moves game.

The equilibrium solution of the game Gb must solve the requirements:

pb
1(x1) = argmax

p
(p− x1)EX2

[
Q1(p, pb

2(X2,x1))
]

pb
2(x2,x1) = argmax

p
(p− x2)Q2(p, pb

1(x1)),

and the interim and ex ante equilibrium expected payoffs are:

Π̃
b
2(x2,x1) : = (pb

2(x2,x1)− x2)Q2(pb
2(x2,x1), pb

1(x1))

Π
b
2(x2) : = EX1

[
Π̃

b
2(x2,X1)

]
8



Π
b
1(x1) : = (pb

1(x1)− x1)EX2

[
Q1(pb

1(x1), pb
2(X2,x1))

]
.

The following result shows that there are first- and second-mover advantages provided one controls
for the information effect:

Proposition 1. In equilibrium both firms are better off in game GS than in Gb:

Π
S
1(x1)≥Π

b
1(x1), Π

S
2(x2)≥Π

b
2(x2), ∀(x1,x2). (4)

Proof. In four steps:

1) By playing pb
1(x1) player 1 can induce the equilibrium outcome of game Gb:

(
pb

1(x1), pb
2(x2,x1)

)
,

because pb
2(x2,x1) = pS

2(x2, pb
1(x1)). However, player 1 can do better. Therefore,

Π
S
1(x1) = (pS

1(x1)− x1)EX2

[
Q1
(

pS
1(x1), pS

2(X2, pS
1(x1))

)]
≥ (pb

1(x1)− x1)EX2

[
Q1

(
pb

1(x1), pb
2(X2,x1)

)]
= Π

b
1(x1).

(5)

2) Because
(

pb
1(x1), pb

2(x2,x1)
)

is an equilibrium of game Gb, unilateral deviations do not pay;
therefore,

Π
b
1(x1)≥ (pS

1(x1)− x1)EX2

[
Q1(pS

1(x1), pb
2(X2,x1))

]
. (6)

Combining (5) and (6) gives:

EX2

[
Q1
(

pS
1(x1), pS

2(X2, pS
1(x1))

)]
≥ EX2

[
Q1

(
pS

1(x1), pb
2(X2,x1)

)]
. (7)

3) Next we prove that pS
1(x1) ≥ pb

1(x1), for all x1. Suppose, pS
1(x1) < pb

1(x1) for some x1. If this
were the case, because the reaction function of player 2 is increasing in p1, one would have:

pS
2(x2, pS

1(x1))< pS
2(x2, pb

1(x1)) = pb
2(x2,x1). (8)

However, because Q1 is increasing in p2, (8) contradicts (7).

4) Having shown that pS
1(x1)≥ pb

1(x1) for all x1, it follows immediately that ΠS
2(x2)≥Πb

2(x2).

However, in order to assess whether firm 2 overall benefits from using the spy one has to combine
the strategic effect captured in Proposition 1 with the information effect.

A priori it is not clear whether firm 2 altogether benefits from using the spy. Although firm 2 benefits
from observing the rival’s price, p1, because that removes its uncertainty about the behavior of firm
1, it may however be hurt by the fact that firm 1 knows about this and adjusts its price strategy.

In non-strategic decisions it is a well established principle, known as Blackwell’s Theorem, that
more information is better. However, in a strategic game context, it is not uncommon that more
information actually hurts the player who obtains that information if other players know about this
change of information and respond to it.12

12The only class of games where this seemingly paradoxical property can never occur is the class of zero sum games
with common beliefs of players (see Bassan, Scarsini, and Zamir , 1997).
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However, the following conditions assure that firm 2 altogether benefits from using the spy. To-
gether with Proposition 1, this provides sufficient conditions for a second-mover advantage in
models of price leadership under incomplete information.

Proposition 2. In equilibrium, the spying firm altogether benefits from spying: ΠS
2(x2)> ΠB

2 (x2),
if its interim equilibrium expected payoff function satisfies the conditions:
(i) Π̃b

2(x2,x1) is convex in x1 for all x2, and
(ii) Π̃b

2(x2, x̄)≥ΠB
2 (x2), for all x2.

Proof. The convexity assumption implies that in the game Gb firm 2 benefits from uncertainty
concerning x1. Combining the two conditions gives:

Π
b
2(x2) := EX1

[
Π̃

b
2(x2,X1)

]
≥ Π̃

b
2(x2, x̄)≥Π

B
2 (x2). (9)

Using the fact that ΠS
2(x2)> Πb

2(x2) (by Proposition 1) we conclude:

Π
S
2(x2)−Π

B
2 (x2)≡Π

S
2(x2)−Π

b
2(x2)+Π

b
2(x2)−Π

B
2 (x2)> 0. (10)

As we show in Appendix A, the conditions stated in Proposition 2 are satisfied for a class of demand
functions that include linear demand as a special case.

In turn,

Proposition 3. Firm 1 benefits from being spied at if its cost is sufficiently high but may be hurt if
its cost is sufficiently low.

Proof. To show that firm 1 benefits if its cost is high, it is sufficient to show that:

Π
B
1 (β ) = (pB(β )−β )EX2

[
Q1
(

pB(β ), pB(X2)
)]

< (pB(β )−β )EX2

[
Q1
(

pB(β ), pS
2(X2, pB(β ))

)]
≤ argmax

p
(p−β )EX2

[
Q1(p, pS

2(X2, p))
]
≡Π

S
1(β ).

The first inequality applies because pS
2(x2, pB(β )) > pB(x2), which follows from the fact that

pB(β )> pB(x1) for all x1 < β .

To show that firm 1 may be hurt if its cost is low consider the linear example below.

The intuition for this result is that firm 1 is happy to reveal its price if its cost and thus price is high
because it thus triggers firm 2 to respond with a high price; conversely, it may not wish to reveal
a low price because this triggers a low price response by firm 2. However, the chain of effects is
complicated by the fact that firm 2 responds as well.

In the case of linear demand we find specifically:

pS
1(x1) =

1
2

(
2+ s(1+ x̄)

2− s2 + x1

)
, pS

2(p1,x2) =
1
2
(1+ sp1 + x2) (11)

10



Π
S
2(x2)−Π

B
2 (x2) =

s3(1− (1− s)x̄)
(
8(2− s2)(1− x2)+8s(x2 + x̄)+ s3(1−4x2−5x̄)+ s4x̄

)
16(2− s)2 (2− s2)2

+
s2Var(X)

16
> 0 (12)

Π
S
1(x1)−Π

B
1 (x1) =

s2
(
2(1− (1− s)x̄)2−

(
2− s2

)
((2− s)x1− x̄−1) 2

)
8(2− s)2 (2− s2)

. (13)

There, ∆(x1) := ΠS
1(x1)−ΠB

1 (x1), is a quadratic, concave function of x1 which is positive at x1 = β .
If ∆(α)> 0, ∆(x1) is positive everywhere. If ∆(α)< 0, there exists a unique x̂ ∈ (α,β ) at which
∆(x̂) = 0. Therefore, ∆(x1) T 0 ⇐⇒ x1 T x̂. Because ∆(x̄) is positive, it follows that x̂ < x̄.
One can easily construct examples where ∆(x1) is positive for all x1 and where there is a threshold
x̂∈ (α,β ). As an example consider the uniform distribution and (s,β ) = (1/2, 1/2). Then, ∆(x1)> 0
everywhere if 1/20(14−3

√
14)< α < 1/2 and x̂ ∈ (α,β ) if α ∈ [0, 1/20(14−3

√
14)).

Remark 1. If firm 1 believes that a spy is present only with positive probability λ less than one,
firm 1 chooses a price strictly in between the Bertrand and Stackelberg leader price and the benefit
of spying is, of course, reduced. In the linear model, the equilibrium prices are:

pλ
1 (x1) =

2+ s
4− (1+λ )s2 +

s(2+ s(1−λ ))x̄
8−2(1+λ )s2 +

x1

2
< pS

1(x1)

pλ
2 (x2, pλ

1 (x1)) = pS
2(x2, pλ

1 (x1))< pS
2(x2, pS

1(x1)), if firm 2 has a spy

pλ
2 (x2) = pλ

2 (x2, pλ
1 (x̄)), otherwise.

There, the first inequality follows from the fact that x̄ < 1/1−s which follows from the requirement
that equilibrium prices must be higher than the unit cost, in particular, pS

1(x̄)> x̄.

Remark 2. What if both firms may have access to a spy? In that case only one firm can have the
opportunity to respond to the price reported by its spy before it sets its own price. Of course, one
could think of a model, where it is determined at random who is chosen to respond, but it cannot
happen that both firms respond.

5 What if firm 1 can delay its pricing decision (or fire the spy)?

Because firm 1 may be hurt by being spied at if its cost is low it may attempt to immunize against
spying if its cost is low by delaying its pricing decision until after firm 2 has set its price. Equiva-
lently, it could fire the spy if his identity has been exposed. We now examine whether firm 1 can
actually benefit from immunizing against spying.

We refer to the game that is played if firm 1 delays pricing (or fires the spy) if its cost is low as
game Gd (where d is mnemonic for “delay”). Naturally, firm 2 knows whether firm 1 has delayed
pricing (or fired the spy).

If firm 1 delays pricing it thus reveals information about its cost, which in turn induces firm 2 to
adjust its price. Taking this signaling effect into account, it turns out that complete unraveling
occurs and it never pays to delay pricing at any level of x1.

Proposition 4. There is no equilibrium in which firm 1 delays its pricing decision (or fires the spy)
with positive probability.
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Proof. From the above we know that firm 1 will only contemplate to delay pricing if its cost is
sufficiently low. Suppose, per absurdum, that there is an equilibrium in which firm 1 delays pricing
with positive probability when its cost is low. Then this attempt to neutralize the spy must occur in
some measurable set M ⊆ [α,β ]. Let m = supM. We may assume that m ∈M (otherwise one can
consider an element in M arbitrarily close to m).

If firm 1 delays pricing at x1 = m, firm 2 learns that x1 ∈M. In that case, the equilibrium strategies,
denoted by (pd

1(x1), pd
2(x2)), of the subsequent Bertrand game solve the conditions:

pd
1(x1) = argmax

p

∫
β

α

Q1(p, pd
2(x2))(p− x1)dF(x2)

pd
2(x2) = argmax

p

∫
M

Q2(p, pd
1(x1))(p− x2)dFM(x1),

where FM is the conditional distribution of F on M.

If firm 1 deviates, does not delay pricing at x1 = m, and sets the price it would choose in the
Bayesian game after delaying pricing, i.e., p = pd

1(m), firm 2 optimally responds with the price
p2 = pS

2(x2, pd
1(m)) which satisfies:

pS
2(x2, pd

1(m)) = argmax
p

(p− x2)Q2(p, pd
1(m))

= argmax
p

(p− x2)
∫

M
Q2(p, pd

1(m))dFM(x1)

> argmax
p

(p− x2)
∫

M
Q2(p, pd

1(x1))dFM(x1) = pd
2(x2),

by the strict supermodularity of the profit function (which is preserved under integration). There-
fore, by not delaying its pricing decision, firm 1 induces firm 2 to respond with higher price, which
benefits firm 1. This contradicts the existence of such an equilibrium.

Essentially, if firm 1 delays pricing if its cost is in set M ⊆ [α,β ], when firm 2 observes that pricing
has been delayed, it updates its beliefs and adjusts its price in such a way that the high cost types in
set M would always like to reveal their type by not delaying pricing. After successive application
of this reasoning, complete unraveling occurs.

Altogether we conclude from Sections 4 and 5:

Corollary. Firm 2 benefits from using the spy if the conditions stated in Proposition 2 are satisfied,
and firm 1 can never benefit from immunizing against being spied at by delaying its pricing decision
or firing the spy.

6 What if the spy may have been fed with distorted information?

Now suppose the spied at firm may have fed the spy with strategically distorted information because
the spy is a counterspy (or, equivalently, because the identity of the spy has been exposed and firm
1 fools him to report distorted information).13 In that case, firm 2 cannot be sure that the reported

13Counter-espionage figures prominently in military history. See, for example, the fascinating story of Duško Popov
who enlisted in Germany’s military intelligence service during WWII to spy on the British military but actually fed the
German “Abwehr” with disinformation in the service of the British “MI6” (see Popov, 1974, Loftis, 2016).
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price is actually the true price and it needs to draw an inference from the reported price about
the type of spy and make a prediction about the true price if the spy happens to be a counterspy.
Naturally, the counterspy hides his type and the reported price is only an imperfect signal of the
type of spy.

To keep the analysis tractable, we switch to a binary model with Xi ∈ {0,x}, x ∈ (0,1), and linear
demand: Qi(pi, p j) := 1− pi + sp j, with s ∈ (0,1).

Let ρ0 ∈ (0,1) be the prior probability that the spy is a counterspy and h∈ (0,1) the prior probability
that firms’ cost is equal to x. After observing the price reported by the spy, firm 2 updates its beliefs
and chooses its own price.

For ease of exposition we refer to firm 1 with counterspy as type c and without counterspy as type
n, and to firm 1 type n with cost 0 as type nl and with cost x as type nh .

The posterior beliefs concerning the type of spy and the cost of firm 1 type c are denoted by ρ(p1)
and µ(p1) (and if there is no risk of confusion simply by ρ and µ). If firm 1 is type n, its reported
price is also its true price. In that case, the payoff of firm 2 does not depend on x1. Belief updating
concerning the cost of firm 1 matters only for predicting the behavior of firm 1 type c.

We consider perfect Bayesian Nash equilibria, (pn
1(x1), pc

1(x1), pr
1(x1),P2(p1,x2,ρ,µ),ρ,µ). There,

pn
1(x1) denotes the prices set by firm 1 type n, pc

1(x1) the prices set by firm 1 type c, pr
1(x1) the

prices reported by the counterspy, and P2(p1,x2,ρ,µ) the prices set by firm 2.

As a benchmark we refer to the simultaneous moves game without spy as “Bertrand game” and the
sequential game with spy but without counterspy (ρ0 = 0) as “Stackelberg game”; their equilibrium
strategies were already stated in equations (2) and (11), which apply also to the present binary
model.

We employ the following solution procedure: As a working hypothesis assume the game has a
partially separating equilibrium where the price reported by the counterspy is independent of x1,
pr(0) = pr(x) =: pr. Consistent with such an equilibrium we stipulate the belief updating rule:

µ(p1) : = Pr{X1 = x | p1 is reported and firm 1 is type c}= h. (14)

We use these to construct partially separating equilibria and show that the hypothesis confirms.14

All omitted proofs are relegated to Appendix B.

In a first step we solve the duopoly subgames that are played between firm 1 type c and firm 2 after
the spy has reported a price p1 and firm 2 updated its beliefs. There, type c secretly sets its price,
pc

1(x1), whereas the price of firm 1 type n coincides with the reported price.

Lemma 1 (Duopoly subgames). Given any price reported by the spy, p1, updated beliefs ρ and µ

(as stipulated in (14)), firm 1 type c and firm 2 simultaneously choose their prices (firm 1 type n is
bound to set p1). Their equilibrium strategies solve the conditions, for x1,x2 ∈ {0,x}:

pc
1(p1,x1,ρ,µ) = argmax

p
EX2

[
π1(p,P2(p1,X2,ρ,µ),x1)

]
(15)

P2(p1,x2,ρ,µ) = argmax
p

(
ρEX1

[
π2(p, pc

1(p1,X1,ρ,µ),x2)
]
+(1−ρ)π2(p, p1,x2)

)
. (16)

14We mention that the game also admits pooling equilibria and partially separating equilibria where the price reported
by firm 1 type c depends on its cost.
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The solutions are linear and increasing in p1 (see (B.1), (B.2) in Appendix B).

Define the “expected best reply functions” of firm 2:

R̃(p1,ρ,µ) := EX2

[
P2(p1,X2,ρ,µ)

]
, R(p1,ρ) := R̃(p1,ρ,h). (17)

Due to the linearity of P2(p1,x2,ρ,µ) in p1 and of π1 in p2, in the following we always write the
expected profit of firm 1 type n as π1(p1,R(p1,ρ),x1) and firm 1 type c as π1(pc

1(x1),R(p1,ρ),x1).

Lemma 2. For all ρ ∈ [0,1) the expected best reply functions of firm 2 are increasing in p1, with a
slope that is decreasing in ρ and flat if ρ = 1; they have the common fixed-point p∗ := E

[
pB(X)

]
:

∂p1R(p1,ρ)> 0 and ∂ρ p1R(p1,ρ)< 0, ∀ρ ∈ [0,1) (18)

R(p∗,ρ) = p∗, ∀ρ ∈ [0,1] (19)

R(p1,1) = p∗, ∀p1. (20)

Evidently, the most favorable belief for firm 1 is ρ = 0 if p1 > p∗ and ρ = 1 if p1 < p∗.

Proposition 5. In the assumed partially separating equilibrium firm 1 type c mimics firm 1 type
nh and reports the price pr = pn

1(x)> pn
1(0).

To complete the construction of a partially separating equilibrium, we now adapt the two-step
procedure introduced by Cho and Sobel (1990) and Sobel (2009) to compute pn

1(0), pn
1(x). In a

standard signaling game this procedure finds the unique strategically stable equilibrium.

Two-step procedure: Consider the belief system (14) together with:

ρ(p1) =


0 if p1 ≤ pn

1(0)
ρ0

ρ0+(1−ρ0)h
=: ρ1 if p1 ∈ (pn

1(0), pn
1(x)]

1 if p1 > pn
1(x),

(21)

which are consistent with equilibrium strategies and Bayes’ rule.

Step 1: Set pn
1(x) at the efficient level, pn

1(x) = argmaxp π1 (p,R(p,ρ1),x) , and define the associ-
ated expected payoff: Πn

1(x) := π1(pn
1(x),R(pn

1(x),ρ1),x).

Step 2 Set the most profitable pn
1(0) subject to the requirements that firm 1 type nh does not benefit

from switching to that price and firm 1 type c does not benefit from reporting pr = pn(0)
rather than pr = pn(x):

pn
1(0) =argmax

p
π1(p,R(p,0),0)

s.t. π1(p,R(p,0),x)≤Π
n
1(x) and R(pn

1(0),0)≤ R(pn
1(x),ρ1).

(22)

Proposition 6. The strategies pn
1(x1), pc

1(p1,x1,ρ), pr = pn
1(x), together with the belief systems

(14), (21) are a partially separating equilibrium. The equilibrium price pn
1(x1) continuously

approaches the Stackelberg leader price, pS
1(x1), from below as ρ0 goes to zero.
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That equilibrium is either an interior or a corner solution, as illustrated in Fig. 1. There, I1(x), I1(0)
are the indifference curves of firms 1 type nh and nl . The lines (part solid, part dashed) are the
expected best replies of firm 2 , R(p1,ρ1), R(p1,0), R(p1,1)≡ p∗. In both cases, the first constraint
in (22) restricts firm 1 type nl to choose a point on the graph of the R(p1,0) line, up to the point
where it intersects the indifference curve I1(x). In case (a) that constraint binds; in case (b) the
solution is at the unconstrained efficient level.

The solid parts of the expected reaction functions display how the reported price impacts the beliefs
of firm 2 and thus its expected price. As the reported price p1 moves from p∗ to pn

1(0), the expected
best response of firm 2 moves along the R(p1,0) function. If p1 is further increased up to pn

1(x),
that expected best response jumps down to the R(p1,ρ1) function, and as p1 is further increased it
jumps down again to the R(p1,1) ≡ p∗ function. This shows clearly that it never pays for firm 1
type c to deviate from the asserted equilibrium and report a price p1 6= pn

1(x) (optimality for type
nl and nh is obviously satisfied by construction).
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Figure 1: Equilibrium prices (pn
1(0), pn

1(x)).

Like other signaling problems, the present model has multiple equilibria because the perfect equi-
librium does not pin down the beliefs of firm 2 for out-of-equilibrium prices p1. To “refine” away
implausible equilibria the literature proposed various equilibrium refinements. The most commonly
used refinement is the intuitive criterion by Cho and Kreps (1987).

Adapted to the present context, the idea of that equilibrium refinement is that an out-of-equilibrium
price, p1, should be viewed as a signal that the spy is not a counterspy if, conditional on this belief,
only a firm 1 type n (type nl or nh ) has an incentive to deviate to that price. Stated formally:

Intuitive Criterion For any out-of-equilibrium price, p′1, the belief system should prescribe
ρ(p′1) = 0 if the following conditions are satisfied:15

π1(p′1,R(p′1,0),x1)> Π
n
1(x1), for some x1 ∈ {0,x} (23)

max
p

π1(p,R(p′1,0),x1)< Π
c
1(x1), for all x1 ∈ {0,x} , (24)

15If p′1 < (2+s+(2+hs)x)/(4−s2), the most favorable belief system for firm 1 is ρ = 1,µ = 1; therefore, in this case,
replace R(p′1,0) by R̃(p′1,1,1).
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where Πc
1(x1) := π1(pc

1(x1),R(pn
1(x),ρ1),x1), Πn

1(x1) := π1(pn
1(x1),R(pn

1(x1),ρ(pn
1(x1))),x1) de-

note the equilibrium expected payoffs of firm 1 with and without counterspy.

The equilibrium summarized in Proposition 6 has some merit (see the discussion below); yet, it
violates the intuitive criterion, for the following reasons.

First, consider the corner solution, displayed in Figure 1(a). Select an out-of-equilibrium price
p′1 slightly higher than pn

1(0). That price is more profitable for firm 1 type nl if it triggers the
belief ρ = 0, but not for firm 1 type c, because R(p′1,0)< R(pn

1(x),ρ1). Therefore, by the intuitive
criterion, the belief system should prescribe ρ(p′1) = 0, which destroys that equilibrium. This holds
true not only for the belief system (21) but for any belief system that supports that equilibrium.

Next, consider the interior solution displayed in Figure 1(b). Let pA be the price at which the
indifference curve of type nh intersects the R(p1,0) function and pB > pA the price at which the
belief ρ = 0 triggers the same expected response as the price pn

1(x).

Select any out-of-equilibrium price p′1 ∈ (pA, pB). That price is more profitable for firm 1 type
nh if it triggers the belief ρ(p′1) = 0, but not for firm 1 type c. Therefore, by the intuitive criterion,
the belief system should prescribe ρ(p′1) = 0, which destroys that equilibrium. Again this holds
true not only for the belief system (21) but for any belief system that supports that equilibrium.

We now propose an alternative two-step procedure which finds an equilibrium that is compatible
with the intuitive criterion. In order to distinguish that equilibrium we denote its equilibrium prices
of firm 1 type n by p̂n

1(x1).

To prepare that alternative procedure, consider the pair of prices, (p̃1(0), p̃1(x)), that make both
firm 1 type nh and type c indifferent between the price p̃1(x) combined with the belief ρ1 and the
price p̃1(0) combined with the belief ρ = 0:

π1(p̃1(x),R(p̃1(x),ρ1),x) = π1(p̃1(0),R(p̃1(0),0),x) (25)

R(p̃1(x),ρ1) = R(p̃1(0),0). (26)

These prices have a unique solution p̃1(x)> p̃1(0)> p∗; p̃1(x) is increasing and p̃1(0) decreasing
in ρ1, and limρ1→0 (p̃1(x)− p̃1(0)) = 0 (see (B.10) and (B.11) in Appendix B).

Alternative two-step procedure: Consider the belief system (14) together with:

ρ(p1) =


0 if p1 ≤ pn

1(0)
ρ0

ρ0+(1−ρ0)h
=: ρ1 if p1 = pn

1(x)

1 otherwise,

(27)

which are consistent with equilibrium strategies and Bayes’s rule.

Step 1 Set p̂n
1(x) = p̃1(x).

Step 2 Set the most profitable p̂n
1(0) subject to the requirement that firm 1 type nh does not benefit

from switching to that price, i.e.,

p̂n
1(0) = argmax

p
π1(p,R(p,0),0), s.t. p≤ p̃1(0). (28)
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Proposition 7. The strategies p̂n
1(x1), pc(x1), pr = p̂n

1(x), together with the belief systems (14), (27)
are a partially separating equilibrium. That equilibrium is consistent with the intuitive criterion,
yet exhibits a discontinuity at ρ0 = 0.

The solution is either a boundary solution, illustrated in Figure 2(a), or an interior solution, illus-
trated in Figure 2(b) (there Ic is an indifference curve of firm 1 type c).
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Figure 2: Equilibrium prices (p̂n
1(0), p̂n

1(x)) that survive the intuitive criterion

Again, the solid parts of the expected reaction functions summarize how the reported price p1
impacts the beliefs of firm 2 and thus its expected price. As p1 moves from p∗ to pn

1(0), the
expected best response of firm 2 moves along the R(p1,0) function. If p1 is further increased that
expected best response jumps down to the R(p1,1) ≡ p∗ function that can only be displayed in
Figure 2(b) because p∗ is outside the displayed range of Figure 2(a). As p1 reaches pn

1(x) the
expected best reply jumps up to R(p1,ρ1) and then, as p1 is further increased, jumps down again to
R(p1,1)≡ p∗. This shows clearly that for firm 1 type c it never pays to deviate from the asserted
equilibrium and report a price p1 6= pn

1(x). Optimality for type nl and nh is obviously satisfied
and, adapting the reasoning spelled out above, it is also obvious that this equilibrium satisfies the
intuitive criterion.

The discontinuity at ρ = 0 occurs for the following reasons, illustrated for the case of the interior
solution in Figure 2(b): As ρ0 (and thus ρ1) is reduced, p̃1(0) increases and p̃1(x) decreases until
these two prices coincide as ρ0 approaches zero. At p̄1 := limρ0→0 pn

1(x) the indifference curve
of firm 1 type nh has a minimum (the marginal rate of substitution is equal to zero) and its graph
intersects the best response line R(p1,0). Therefore, the Stackelberg leader price, pS

1(x), that
maximizes the payoff of firm 1 type nh on R(p1,0), exceeds p̄1.

The intuitive criterion is an important plausibility test of an equilibrium. However, as a caveat, the
discontinuity of the equilibrium that satisfies the intuitive criterion is disturbing. It does not appear
reasonable that the outcome in a game with a one in a million chance of facing a counterspy differs
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significantly from that in a game without counterspy.16 Therefore, the equilibrium that survives the
intuitive criterion does not appear to be plausible if ρ0 is “small”.

Conversely, the equilibrium summarized in Proposition 6 that fails the intuitive criterion converges
to the Stackelberg equilibrium as ρ0 goes to zero.

This suggests that both kinds of equilibria have merit and one should perhaps select the equilibrium
that survives the intuitive criterion if the prior probability ρ0 is sufficiently large and instead select
the equilibrium that violates the intuitive criterion if ρ0 is close to zero.

We conclude with an assessment of the overall impact of the presence of a counterspy. One may
expect that the introduction of the counterspy essentially preserves but weakens the price leadership
induced by the spy. This conjecture confirms if one selects the equilibrium that violates the intuitive
criterion:

Proposition 8. Consider the equilibrium summarized in Proposition 6 which violates the intuitive
criterion. If the spy is a counterspy with positive probability less than one, the price leadership
induced by the presence of a spy is weakened but does not vanish, i.e.,

p∗ < ρ0EX1

[
pc

1(pn
1(x),X1,ρ1)

]
+(1−ρ0)EX1

[
pn

1(X1)
]
< EX1

[
pS

1(X1)
]
. (29)

However, if one selects the equilibrium that survives the intuitive criterion (summarized in Propo-
sition 7), the presence of the counterspy may surprisingly enhance the price leadership induced by
the spy and yield a higher expected price of firm 1 than the expected Stackelberg leader price.

A case in point is the parameter profile (s,h,ρ0,x) = (0.4,0.04,0.026,0.4), which yields:

ρ0EX1

[
pc

1(p̂n
1(x),X1,ρ1)

]
+(1−ρ0)EX1

[
p̂n

1(X1)
]
= 0.66246> 0.66193=EX1

[
pS

1(X1)
]
> 0.635= p∗.

In that case the expected price of firm 1 is higher than the expected Stackelberg leader price because
p̂n

1(x) exceeds pS
1(x) and ρ1 is “small”, so that the price p̂n

1(x) that exceeds pS
1(x) is indeed the true

price with high probability.

7 Discussion

The results of the present paper indicate that spying may serve as a quasi-collusive scheme that
supports high prices. This suggests that antitrust authorities should keep an eye on spying activities
and perhaps probe them as potential antitrust violations.

The significance of this antitrust issue is underscored if one embeds the analysis in a repeated
game context. Considering an infinitely repeated Bertrand game, Mouraviev and Rey (2011) show
that once price leadership has been achieved, simple trigger strategies supports collusive pricing,
essentially for all levels of the discount rate, whereas simultaneous pricing supports collusion only
when the discount rate is sufficiently low.

Our analysis assumes that firms compete in a Bertrand market game. If Bertrand is replaced by
Cournot competition it is well-known that, under complete information, the first-mover is better
off than the second-mover who in turn is worse off than in the corresponding simultaneous moves

16Similar criticism of the intuitive criterion has been expressed by Mailath, Okuno-Fujiwara, and Postlewaite (1993)
when they assess separating vs. pooling equilibria.
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game (see, for example, Gal-Or, 1985, Dowrick, 1986, Amir and Grilo, 1999). In that case it is only
the spied at firm that benefits from the presence of a spy. However, in the presence of incomplete
information, spying has the benefit of removing uncertainty about the rival’s cost. It remains to be
seen whether this information benefit may outweigh the strategic disadvantage.

In our analysis the firm that engages a spy is given exogenously. This is appropriate insofar as
an opportunity to tap into the service of a spy comes up more or less at random. However, in the
framework of an asymmetric model one may also explain endogenously which firm is likely to be
more proactive procuring the service of a spy. There, the firm that has a significant cost advantage
prefers to be the first-mover whereas the other firm prefers to be second-mover. This suggests that
the firm with the higher cost is more eager to procure the services of a spy while the firm with the
cost advantage is content to be spied at.17 However, this rule obviously needs to be modified if
firms’ cost is their private information.

A Appendix

Here we show that the conditions stated in Proposition 2 are satisfied for the demand functions
Qi(pi, p j) = 1− pi + sp j +θ pi p j with θ ≥ 0 (which includes linear demand as a special case).

Assuming these demand functions we find the following equilibrium prices of the games GB and
Gb:

pB(xi) =
γ(x̄)−

√
γ(x̄)2−4θ(sx̄+2)

4θ
+

xi

2
(A.1)

pb
1(x1) =

1
4θ

(
γ(x1)−

√
γ(x1)2−8(θ + s)

λ (x1)

λ (x̄)
+4s(2−θx1)

)
+

x1

2
(A.2)

pb
2(x2,x1) =

1
4θ

(
γ(x̄)−

√
γ(x̄)2−8(θ + s)

λ (x̄)
λ (x1)

+4s(2−θ x̄)

)
+

x2

2
(A.3)

∂x1x1 pb
1(x1) =

4θ(θ + s)2λ (x̄)(
λ (x1)λ (x̄)

(
λ (x1)λ (x̄)−8(θ + s)

))3/2
(A.4)

where γ(x) := 2− s−θx, λ (x) := 2+ s−θx.

Using l’Hôpital’s rule one can confirm that, as θ goes to zero, one obtains the solutions of pB and
pb

1, pb
2 that apply in the case of linear demand.

For θ > 0 the above solutions apply only if θ is bounded from above. In order to assure existence
of a solution of pB(xi) we require that:

θ < θ̄ :=
1

β 2

(
4+2β +β s−

√
8(2+2β +β s+β 2s)

)
> 0. (A.5)

This parameter restriction also assures that ∂x1x1 pb
1(x1)> 0 for all x1. Further upper-bound restric-

tions apply to assure existence of pb
1, pb

2.

17There is a somewhat related literature on the endogenous timing in oligopoly games in which equilibrium refine-
ments such as risk dominance play a key role (see, for example, Hamilton and Slutsky, 1990, van Damme and Hurkens,
1996, 2004).
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Assuming that θ is sufficiently small to assure that these upper-bound restrictions are satisfied, we
find that Π̃b

2(x2, x̄) = ΠB
2 (x2), for all x2 which confirms condition (ii) in Proposition 2.

By the envelope property, the total derivative of the interim equilibrium expected payoff function
Π̃b

2 with respect to x1 is:

d
dx1

Π̃
b
2 =

(
pb

2− x2

)
∂p1Q2 ·∂x1 pb

1. (A.6)

Therefore, Π̃b
2 is convex in x1 if

0 <
d2

(dx1)2 Π̃
b
2 = ∂x1 pb

2 ·∂p1Q2 ·∂x1 pb
1

+
(

pb
2− x2

)(
∂p1 p1Q2 ·∂x1 pb

1 +∂p1 p2Q2 ·∂x1 pb
2
)
∂x1 pb

1

+
(

pb
2− x2

)
∂p1Q2 ·∂x1x1 pb

1.

(A.7)

Given the properties of the assumed demand functions and the solutions of pb
1, pb

2, all terms in the
first and second lines of (A.7) are positive, and the third line is positive if ∂x1x1 pb

1 ≥ 0, which holds
true because the parameter restriction (A.5) implies ∂x1x1 pb

1 ≥ 0. Therefore, the interim equilibrium
expected payoff functions is convex in x1 for all x2, as asserted.

B Appendix

Here we prove results in Section 6. The application of the intuitive criterion and the proofs of the
(dis)continuity of equilibria are in the main text.

Proof of Lemma 1 Solving the system of first order conditions of (15)-(16) yields the following
solutions that are linear in p1 and in firms’ own cost (second order conditions are satisfied):

pc
1(p1,x1,ρ,µ) =

1
8−2s2ρ

(γ0 + γ1 p1)+
x1

2
, x1 ∈ {0,x} . (B.1)

P2(p1,x2,ρ,µ) =
1

8−2s2ρ
(δ0 +δ1 p1)+

x2

2
, x2 ∈ {0,x} , (B.2)

with γ0 := 4+ s(2+ x(2h+ sρµ)), γ1 := 2s2(1− ρ), and δ0 := 4+ sρ(2+ x(2µ + hs)), δ1 :=
4s(1−ρ). Both pc

1 and p2 are increasing in p1 and in the own unit cost as well as in µ . Of course,
pc

1(p1,x1,1) = pB(x1), independent of p1, i.e., the expected reaction function of firm 2 is flat if
ρ = 1.

Proof of Lemma 2 Using (B.2) one obtains

R(p1,ρ) =
(1+ x̄)(2+ sρ)

4− s2ρ
+

2s(1−ρ)

4− s2ρ
p1. (B.3)

Evidently, ∂p1R(p1,ρ)> 0 and ∂ρ∂p1R(p1,ρ) =− 2s(4−s2)
(4−s2ρ)2 < 0, for all ρ < 1, R(p1,1) = p∗, and

R(p∗,ρ) = p∗ for all ρ .
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Proof of Proposition 5 The proof builds up in several steps (Lemmas B.1 to B.4):

Lemma B.1. Suppose pr /∈ {pn
1(0), pn

1(x)}. Then, after observing pr firms play the unique equilib-
rium strategies of the benchmark Bertrand game,

(
pB(x1), pB(x2)

)
.

Proof. If firm 2 observes pr /∈ {pn
1(0), pn

1(x)} it infers that firm 1 has a counterspy with probability
one. Therefore firm 2 ignores the spy’s report and, because this fact is common knowledge, firms
play

(
pB(x1), pB(x2)

)
.

Lemma B.2. Suppose pr /∈ {pn
1(0), pn

1(x)}. Then, pn
1(x) = p∗.

Proof. In two steps: 1) we show that pr /∈ {pn
1(0), pn

1(x)} ⇒ pn
1(x) ≤ p∗; 2) we show that pn

1(x)
cannot be less than p∗.

1) Suppose, per absurdum that pn
1(x)> p∗. Then, p2 (pn

1(x),x2,0)> pB(x2). Therefore, firm 1 with
counterspy is better off setting pn

1(x). Therefore, one must have pn
1(x)≤ p∗.

2) Because π1(p1,R(p1,0),x1) is strictly increasing in p1 for all p1 below the Stackelberg leader
price and p∗ is below that price, it follows that firm 1 type n is better off by raising its price to p∗.
Therefore, the inequality cannot apply.

Lemma B.3. The game does not admit an equilibrium with pr /∈ {pn
1(0), pn

1(x)}.

Proof. Suppose there is such an equilibrium. Then, by Lemma B.2, pn
1(x) = p∗. Firm 1 type nl can

raise its profit by raising its price to pB(x)> p∗ because, by Lemma 2,

π1(pB(x),R2(pB(x),ρ),x)≥ π1(pB(x),R2(p∗,ρ),x) = π1(pB(x), p∗,x)> π1(p∗, p∗,x).

Lemma B.4. pn
1(0) 6= pn

1(x) ⇒ pn
1(x)> pn

1(0).

Proof. Let Q̄ := Q(pn
1(x),R(pn

1(x),ρ)) and
¯
Q := Q(pn

1(0),R(pn
1(0),ρ

′)), where ρ,ρ ′ denote the
updated beliefs after observing pn

1(x), resp. pn
1(0). Suppose, per absurdum, that pn

1(x) < pn
1(0).

Then, by definition of an equilibrium, one must have:

(pn
1(x)− x) Q̄≥ (pn

1(0)− x)
¯
Q (B.4)

⇒ Q̄ >
¯
Q. (B.5)

By the same reasoning and using (B.4):

(pn
1(0)−0)

¯
Q≥ (pn

1(x)−0) Q̄ (B.6)

⇒ (pn
1(0)− x)

¯
Q+(x−0)

¯
Q≥ (pn

1(x)− x) Q̄+(x−0) Q̄ (B.7)

⇒
¯
Q≥ Q̄. (B.8)

This is a contradiction.

As a final step of the proof of Proposition 5, note that in the assumed partially separating equilibrium
one must have pn

1(0) 6= pn
1(x). By Lemma B.3 pr ∈ {pn

1(0), pn
1(x)} and therefore by Lemma B.4

pn
1(x)> pn

1(0). Suppose pr = pn
1(0), then firm 1 type c can increase its profit by raising pr to pn

1(x),
because P2(pn

1(x),x2,0)> P2(pn
1(0),x2,ρ), and we conclude that pr = pn

1(x).
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Proof of Proposition 6 Here we supplement the proof in the main text and explain 1) why we
need to impose the constraint R(pn

1(0),0)≤ R(pn
1(x),ρ1) in step 2 of the two-stage procedure and

2) why pn
1(x1) continuously approaches the Stackelberg leader price pS

1(x1) as ρ0 goes to zero.

1) In Lemma B.3 and Lemma B.4 we show that pr = pn
1(0) cannot be part of an equilibrium,

because firm 1 type c would then benefit from switching to pn
1(x). However, for an equilibrium one

must also assure that firm 1 type c cannot benefit by switching from pr = pn
1(x) to pr = pn

1(0). This
requires that by thus switching firm 1 cannot trigger a higher expected response of firm 2, which
requires that R(pn

1(0),0)≤ R(pn
1(x),ρ1).

2) The solution of pn
1(x) is:

pn
1(x) =

4(1+ x)+ s(2− sx(2−ρ1)+ x̄(2+ sρ1))

8−2s2(2−ρ1)
. (B.9)

pn
1(x) is decreasing in ρ1 and pn

1(x) converges to pS
1(x) as ρ1 goes to zero. Moreover, pn

1(0) is
equal to pS

1(0) if pn
1(0) is an interior solution and otherwise converges to pS

1(0) as ρ1 goes to zero.
Therefore, that equilibrium continuously approaches the Stackelberg equilibrium as ρ1 goes to
zero.

Supplement to the alternative two-step procedure The unique solution of the prices, p̃1(0), p̃1(x),
that satisfy the conditions (25)-(26) is:

p̃n
1(0) =

4+ s(1+ x̄)(2−ρ1)−2ρ1− sx(2− (2−h)ρ1)

(4− s2)(2−ρ1)
(B.10)

p̃n
1(x) = p̃n

1(0)+
ρ1(x− x̄)

2−ρ1
. (B.11)

These prices are used in the construction of the equilibrium that satisfies the intuitive criterion.

Evidently, p̃n
1(0) is decreasing and p̃n

1(x) is increasing in ρ1 and, as ρ0 (and thus ρ1) approaches
zero, these prices coincide at the level p̄1 = (1+x+s(1+hx)/(4−s2), illustrated in Figure 2(b). Obviously,
at p1 = p̄1 the marginal rate of substitution (slope of the indifference curve) of firm 1 type nh is
equal to zero.

Proof of Proposition 8 The proof is in three steps:

1) Because pr = pn
1(x) we find, using (11), (B.1), and (B.9): pc

1(pr
1,x1,ρ1)< pS

1(x1).

2) pn
1(x) is decreasing in ρ1 and approaches pS

1(x) from below as ρ1 goes to zero. Similarly, pn
1(0)

approaches pS
1(0) as ρ1 goes to zero (in the case of the boundary solution pn

1(0) is already equal to
pS

1(0) and does not change as ρ1 is reduced to zero).

Combining 1) and 2) implies ρ0EX1

[
pc

1(pn
1(x),X1,ρ1)

]
+(1−ρ0)EX1

[
pn

1(X1)
]
< EX1

[
pS

1(X1)
]
.

3) Similarly, one can show that pc
1(pn

1(x),x1,ρ1)> pB(x1).

Combining 1) to 3) proves (29).
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