
 

7501 
2019 
February 2019 

 

It’s not my Fault! Self-Confi-
dence and Experimentation 
Nina Hestermann, Yves Le Yaouanq 



Impressum: 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
www.cesifo-group.org/wp 

An electronic version of the paper may be downloaded 
· from the SSRN website:  www.SSRN.com 
· from the RePEc website:  www.RePEc.org 
· from the CESifo website:         www.CESifo-group.org/wp

mailto:office@cesifo.de
http://www.cesifo-group.org/wp
http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.org/wp


CESifo Working Paper No. 7501 
Category 13: Behavioural Economics 

 
 
 

It’s not my Fault! Self-Confidence and 
Experimentation 

 
 

Abstract 
 
We study the inference and experimentation problem of an agent in a situation where the 
outcomes depend on the individual’s intrinsic ability and on an external variable. We analyze 
the mistakes made by decision-makers who hold inaccurate prior beliefs about their ability. 
Overconfident individuals take too much credit for their successes and excessively blame 
external factors if they fail. They are too easily dissatisfied with their environment, which leads 
them to experiment in variable environments and revise their self-confidence over time. In 
contrast, underconfident decision-makers might be trapped in low-quality environments and 
incur perpetual utility losses. 
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1 Introduction

Individuals usually have imperfect knowledge about their ability to suc-

ceed in their projects. Since many studies have claimed that people tend to

think too highly of their intrinsic characteristics in important dimensions—

intelligence, skills, willpower—the psychology and economics literature has

devoted a lot of attention to investigating the consequences of overconfi-

dence on behavior and welfare.

In many situations, the outcomes of agents’ endeavors not only depend

on their intrinsic ability but also on some characteristics of their environ-

ment, which they may at first know imperfectly. In this paper, we show

that overconfidence distorts the process by which individuals learn about

these exogenous payoff-relevant variables. For instance, a student who ini-

tially holds confident expectations about his skills but who repeatedly fails

at exams might revise his beliefs about his ability, but also conclude that

the academic system is less fair than he had thought. This pessimistic in-

ference, in turn, conditions his future decisions, such as how much effort to

invest for the next exams, or even whether to drop out of the university.

An agent repeatedly performs a task and receives a binary outcome:

success or failure. At each date the probability of succeeding p(λ, θ) is

an increasing function of the agent’s fixed ability θ, and of an exogenous

parameter λ that summarizes the characteristics of the external contingen-

cies in which the agent operates: the difficulty of the task, the abilities

and intentions of the co-workers, the returns to human capital, etc. To

understand the causal effect of self-confidence, we compare two individuals

who only differ in their prior beliefs about θ, one being overconfident in the

monotone likelihood ratio ordering relative to the other.

In Section 3 we study the passive inferences made by individuals who

operate in a stable environment after a finite number of periods. We show

that overconfident individuals are prone to a misattribution of outcomes

when forming beliefs about λ. Perhaps surprisingly, the mistake takes a

subtle form that depends on the degree of complementarity of θ and λ in

the production function p: in particular, it is not true that overconfident in-

dividuals are always too pessimistic about the quality of their environment.

We give a precise characterization of the misattribution and we show that
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its interpretation is related to the self-serving attribution bias documented

in psychology: overconfident individuals tend to overestimate the infor-

mativeness of positive outcomes about their ability, as they take too much

merit for their achievements, and they underestimate the informativeness of

negative outcomes, as they hold external contingencies responsible for any

failures. This mistake implies a variety of related misperceptions, which we

outline in Section 3. As an example, overconfidence leads successful indi-

viduals to overestimate of the productivity of investment in human capital,

and leads less successful individuals to underestimate it.

In Section 4, we embed the baseline model into an active experimenta-

tion framework and we focus on the asymptotic properties of the process

of updating one’s beliefs. Analyzing whether endogenous learning opportu-

nities ultimately eliminate initial misperceptions is important in knowing

whether inaccurate self-assessments are a transient bias limited to inexperi-

enced decision-makers or whether this distortion can survive in the long run.

We show that the agent’s initial beliefs about his ability have a long-lasting

influence on his behavior and beliefs. This result contrasts with standard

Bayesian models with one-dimensional uncertainty, where the influence of

prior beliefs vanishes in the long run.

The agent’s ability θ is fixed throughout the infinite horizon. At each

period the agent decides whether to stay in the current environment or to

replace it by another (randomly drawn) environment, for instance changing

jobs, re-orienting one’s academic career, etc. The individual is patient and

faces a trade-off between exploration, that is, acquiring knowledge about

himself and the current environment, and exploitation, that is, maximizing

the expected reward. Our main result is that overconfidence and under-

confidence have different implications for long-run beliefs, behavior, and

welfare. An overconfident individual tends to be too easily dissatisfied

with the external conditions and to expect (incorrectly) higher rewards

elsewhere. A consequence of this is to tend to switch too early from one

environment to another. This experimentation effort provides the agent

with a large data set of outcomes received in variable external conditions.

Accordingly, blaming external factors for his failure is no longer credible in

the long run, and the agent’s overconfidence is asymptotically reduced to

the point where his decisions and payoffs are optimal. In contrast, under-
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confident decision-makers are too easily satisfied with their environment. A

consequence might be that they—wrongly—stop experimenting, and never

learn the truth about their ability, as they perpetually and incorrectly at-

tribute their surprisingly high success rate to the quality of their current

conditions. Underconfident individuals might therefore be trapped in low-

quality environments and incur utility losses forever due to their misper-

ception (Proposition 4).

Contrary to common wisdom, our analysis therefore suggests that un-

derconfidence is more problematic than overconfidence, since these two dis-

tortions have different implications for long-run learning. We believe that

this finding is consistent with the existing evidence. First, our model pre-

dicts that overconfidence generates utility losses in the short run in any

new environment. Second, the theory also predicts that the rate of learn-

ing about one’s ability is slowed down by the identification challenge which

is at the core of the model, and that complete learning is not achieved

in the long run for individuals who stay in stable conditions. This might

explain why even experienced decision-makers, e.g., CEOs (Malmendier

and Tate, 2005), are sometimes found to be overconfident. Finally, the

prediction that overconfidence is reduced by active learning while under-

confidence persists is compatible with the fact that underconfident reports

are rarely encountered in field data. This latter finding might be due to

selection effects. Since underconfident individuals endogenously stay away

from ability-intensive activities, they might be underrepresented in the sam-

ples studied by researchers: for instance, individuals who are unconfident

about their skills as CEOs endogenously choose a different career path.

Our model suggests that these individuals, who are absent from the field

evidence, are those who incur the largest welfare costs in the long run since

their decisions endogenously prevent them from correcting their beliefs.

Our paper connects the literature on self-confidence with the litera-

ture on learning with misperceptions. We use the term overconfidence to

describe the inflated beliefs that many individuals hold about their own

skills, talent, or personal traits, as suggested by a large literature in psy-

chology and economics.1 Early evidence, such as the better-than-average

1This definition is conceptually distinct from others used in the economics literature,
for instance individuals’ tendency to overestimate the precision of their information
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effect (Svenson, 1981; Thaler, 2000; Weinstein, 1980) or behavioral ineffi-

ciencies in competitive environments (Camerer and Lovallo, 1999; Hoelzl

and Rustichini, 2005), has led many scholars to conclude that overconfi-

dence is widespread, an observation corroborated by field data, e.g., on

CEOs (Malmendier and Tate, 2005), truck drivers (Burks et al., 2013), and

professional chess or poker players (Park and Santos-Pinto, 2010).2 A large

theoretical literature has been devoted to analyzing the costs of overconfi-

dent beliefs. An unreasonably high self-confidence might lead individuals

to exert too much effort with little chance of succeeding (Bénabou and Ti-

role, 2002), set unrealistic goals (Baumeister et al., 1993), or compete too

much. As an illustration, Barber and Odean (2001) link overconfidence to

excessive trading and show that men, who are known for being more over-

confident, trade 45% more than women and incur important losses from

this. In this literature, the effect of overconfidence generally comes down

to making the individual too optimistic about future outcomes.

We go beyond this literature by showing that overconfident individuals

have a tendency to attribute their achievements to their own merits, but

their failures to external factors. This self-serving attribution bias has been

noted by psychologists in various contexts: academic outcomes (Arkin and

Maruyama, 1979), car accidents (Stewart, 2005), collective or individual

performance in sport (Lau and Russell, 1980), outcome of joint projects,

for instance among couples (Ross and Sicoly, 1979).3 We give a precise

(Grubb, 2009).
2Two criticisms have been addressed to this literature. First, several explanations for

the existing evidence based on rational individual Bayesian learning have been offered
(see in particular Van den Steen, 2004; Zabojnik, 2004; Kőszegi, 2006; Santos-Pinto
and Sobel, 2005; Benôıt and Dubra, 2011). Recent research provides tests that over-
come these limitations, (for instance Benôıt et al., 2015; Eil and Rao, 2011; Möbius
et al., 2013). Second, the evidence for aggregate overconfidence appears to be mixed:
overconfidence is commonly observed for easy tasks, but several studies report aggregate
underconfidence for difficult tasks (see for instance Moore, 2007; Moore and Healy, 2008;
Kruger et al., 2008; Benôıt and Dubra, 2011).

3To our knowledge, the only literature in economics that has explored the conse-
quences of self-serving attribution biases has focused on financial applications. Gervais
and Odean (2001) model traders who become overconfident by taking too much credit
for successes; they show that the attribution bias leads them to make overconfident
decisions and incur losses in the long run. Billett and Qian (2008) present empirical
results consistent with self-serving attributions. Libby and Rennekamp (2012) verify
experimentally that overconfident beliefs due to biased attributions influence financial
decisions. In all these papers, biased attributions are the channel by which people be-
come overconfident and—contrary to our setting—have no direct effect on decisions.
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definition and characterization of the attribution bias as a function of the

degree of complementarity between the ability of the individual and the

quality of the environment. Our model shows that the attribution bias does

not necessarily indicate motivated reasoning at the inference stage (Kunda,

1990; Zuckerman, 1979), since an individual who applies Bayes’ rule to

incorrect prior beliefs makes inferences that appears biased to an external

observer, as documented in the experiment by Grossman and Owens (2012).

Our second contribution is to analyze the effects of overconfidence on

asymptotic posterior beliefs. Our result that passive learning is not neces-

sarily complete asymptotically complements a literature that questions and

extends the standard results on the consistency of posterior beliefs. Some

of the papers in this literature assume a departure from Bayesian updating

(Rabin and Schrag, 1999; Schwartzstein, 2014; Gottlieb, 2017; Benjamin

et al., 2016), while others analyze the updating of an agent who initially

attaches a null probability to the true data-generating process (Berk, 1966;

Bunke and Milhaud, 1998). Our model is instead based on an identification

issue: an agent provided with an infinite number of signals received in a

stable environment cannot learn about two dimensions at the same time,

as several distinct theories can explain the outcomes. A related result by

Acemoglu et al. (2016) shows that two Bayesian agents can disagree about

the data-generating process in the long run when they have different initial

beliefs about the signal likelihood ratio.

That active experimentation need not result in complete learning is

already well-known (Aghion et al., 1991; Easley and Kiefer, 1988). The de-

cision problem that we study extends the standard experimentation frame-

works (Banks and Sundaram, 1992) by assuming that the decision-maker

learns about two uncertain parameters, one of which (λ) influences only the

value of the current arm, while the other (θ) conditions the rewards to all

arms. Our model is also distinct from recent work on active learning with

a misspecified model (Esponda and Pouzo, 2016; Fudenberg et al., 2017),

which assumes that agents’ beliefs assign zero probability to the true map-

ping between actions and consequences. We assume that prior beliefs have

full support, which guarantees that learning is feasible and in turn implies

that agents who face a stable process are no longer surprised by their out-

comes in the long run. We see two benefits of this specification. First,
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incompleteness in long-run learning can be attributed to endogenous data

limitations resulting from the agent’s own choices rather than to inconsis-

tent prior beliefs. Second, our model circumvents the standard criticism

addressed to theories of misspecified learning, according to which decision-

makers should reconsider their prior beliefs after a sufficiently long history

that contradicts their expectations.

The effect of overconfident beliefs on learning about exogenous variables

was independently explored by Heidhues et al. (2018), who characterize

the vicious circle of suboptimal actions and incorrect attributions resulting

from the joint evolution of beliefs and behavior. Our model studies this

question with a different angle. Heidhues et al. (2018) rule out learning

about one’s ability, which we allow for throughout the paper and which

is the main focus of Section 4. They also restrict attention to decisions

made in a stable environment while the problem that we study consists in

deciding whether to opt out of one’s current environment. Interestingly,

the effects of overconfidence are distinct in the two models. Heidhues et al.

(2018) show that, in a stable environment and under some assumptions on

the technology, overconfidence results in greater utility losses than under-

confidence. Our model shows that exactly the opposite is true for an agent

who has the opportunity to experiment in different environments. While

most of the literature has focused on the costs of overconfidence, our results

suggest that in dynamic settings underconfidence is the most problematic

distortion due to its self-confirming nature.4

The paper is organized as follows. Section 2 presents the environment.

Section 3 analyzes the attribution bias in finite time. Section 4 focuses on

asymptotic learning. Section 5 discusses some interpretations of the model

and concludes.

4Dubra (2004) and Zabojnik (2004) also analyze the link between self-confidence and
insufficient sampling. Dubra (2004) studies a search model and shows that optimism
is less harmful than pessimism, as optimists are less likely to accept suboptimally low
offers. Zabojnik (2004) assume that individuals are information-loving when their self-
confidence is low but information-averse when their self-confidence is high, and thus
stop sampling in the latter case. The lack of complete learning in our model is instead
based on the identification issue that arises in stable environments, as individuals keep
receiving information in every period.
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2 Environment

Payoffs An individual is engaged in a repeated task over an infinite hori-

zon indexed by t ∈ {1, 2, · · · }. On each date t, the individual receives a

binary outcome πt: a success is denoted by πt = 1, whereas a failure is

denoted by πt = 0. The agent’s outcome at date t is stochastic and de-

pends on two variables. The first variable is the agent’s intrinsic ability at

the task, written θ and drawn on the non-degenerate support Θ = [θ, θ̄].

The second variable is a task-specific parameter λ that is exogenous to

the agent. The variable λ is distributed according to the continuous full-

support pdf g0 on the non-degenerate interval Λ = [λ, λ̄]. The variable λ

describes some permanent features of the task or the environment about

which the agent learns by experimenting. The variables λ and θ are inde-

pendent. Conditional on a pair (λ, θ), the outcomes are independently and

identically distributed across periods. The agent’s probability of succeed-

ing at the task is therefore stationary and written p(λ, θ), and increases

with the agent’s ability θ and with the quality of the environment λ. The

function p is of class C2 and bounded away from 0 and 1. We write pλ and

pθ for the partial derivatives of p, and assume that pλ > 0 and pθ > 0.

Stability of the environment We assume that θ is fixed. In Section

3 we also assume that λ is fixed, reflecting the idea that the nature of

the environment remains stable over time. In Section 4 we allow for the

possibility that the environment changes, which we model as a new random

draw of λ from Λ, either for exogenous reasons (automatic job rotation,

beginning of a new academic year with new instructors, etc.), or as the

result of the agent’s own decisions.

Self-confidence Our analysis consists in comparing the beliefs and de-

cisions of two agents who differ only in their initial self-confidence. Agents

1 and 2 share the same prior distribution over λ, given by the pdf g0, but

hold different initial beliefs about their ability. Agent i (i = 1, 2) starts

the game with a prior pdf f0,i that represents his beliefs about θ. The

functions f0,1 and f0,2 are linked by a monotone likelihood ratio property,

which introduces a notion of comparative self-confidence. We write ≽ for
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the monotone likelihood ordering applied to pdfs: if u and v are two func-

tions of a real variable x defined on the same interval, u ≽ v means that

the function x → u(x)/v(x) is well-defined and nondecreasing. We assume

that f0,1 ≽ f0,2.

We also assume throughout the paper that f0,1 and f0,2 have full support

on Θ. This assumption ensures that learning is not impeded by the fact

that the agent’s prior beliefs ascribe probability zero to the true state of

the world as in misspecified learning models (Esponda and Pouzo, 2016;

Fudenberg et al., 2017; Heidhues et al., 2018).

Our results can be interpreted in two different ways. In the first inter-

pretation, f0,2 is the “correct” prior distribution, and the behavior of f0,1

reflects the mistakes caused by overconfidence in an absolute sense. In the

second interpretation, the disagreement is considered in a relative sense

only, and comparing the behaviors of the two agents informs us about the

causal effect of self-confidence on attributions and experimentation behav-

ior without taking a stance as to which of f0,1 or f0,2 is more correct. Under

both interpretations, we refer to agent 1 as being overconfident.

For each date t, a history ht is characterized by the identity of the

environment tried out at any date s up to date t and the resulting outcome

πs. We use the subscripts t and i to write agent i’s posterior beliefs at date

t. For instance, ft,ht,i is agent i’s posterior pdf regarding θ following history

ht, and Ft,ht,i is the corresponding cdf.

Claim 1 establishes that the monotone likelihood ratio ordering is pre-

served by Bayes’ rule. Our definition of comparative self-confidence is thus

robust to learning: agent 1 remains more confident than agent 2 after any

common sequence of observations.

Claim 1.

For any (t, ht), ft,ht,1 ≽ ft,ht,2.

3 Attribution bias

We begin by analyzing the agents’ inferences in a situation where they

repeatedly perform the task in a stable environment. A value of λ is drawn

at date 0 from Λ and remains fixed for several periods.
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3.1 General results

Our first result characterizes the direction of the misperception of λ

that results from overconfidence about θ. To build intuition, consider the

example of a manager of ability θ who works on a project together with an

employee of unknown ability λ. Manager 1 believes that he is high-skilled

(θ = θ), while manager 2 believes that he is low-skilled (θ = θ); both

believe that the employee is high-skilled (λ = λ) or low-skilled (λ = λ)

with probability 0.5 each.

Suppose that the project fails. Will manager 1 become more or less

optimistic about the type of the employee than manager 2? We show

that the answer to this question depends on the degree of complementarity

between θ and λ. Suppose first that θ and λ are complements in the

production function p. For instance, there exists ϵ close to zero such that

p(λ, θ) = 1 − ϵ while p(λ, θ) = ϵ for all other values of (λ, θ): that is (in

approximation), the project succeeds if and only if both the manager and

the employee are skilled. After a failure, manager 1 infers that the employee

is high-skilled with probability close to zero, while manager 2 infers very

little about λ: the first manager explains the failure by the low skills of

the employee, while the more realistic manager takes responsibility for it.

That is, manager 1 believes that he is working with an employee whose

type makes his own skills irrelevant for the success of the venture, while

manager 2 believes that the project would be more successful if he were

himself more skilled.

Suppose instead that θ and λ are substitutes in the production function

p. For instance, p(λ, θ) = ϵ while p(λ, θ) = 1 − ϵ for all other values of

(λ, θ): the project succeeds if and only if at least one of the team members

is high-skilled. The direction of the attribution bias is opposite to the

previous case: after a failure, manager 2 infers that the employee is not

skilled, while manager 1 does not update at all about λ. However, the

intuition is similar: while manager 2 believes that his own ability makes a

large difference for a project with this employee, manager 1 underestimates

the importance of his ability for the collective venture.

These examples illustrate that the distortion implied by overconfidence

depends on whether the outcomes are more informative about the agent’s
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ability in a favorable or in an unfavorable environment. Overconfident

agents who fail have a tendency to think that their own ability is not

important. Conversely, overconfident agents who succeed believe that their

own skills were instrumental to the success. This distortion does not require

any inferential mistake, as it is implied by Bayes’ rule applied to potentially

incorrect prior beliefs.

The formal characteristic of the technology that determines the nature

of the attribution bias is linked to the value of the cross-partial derivative

pλθ. We say that p is log-submodular (or log-sbm) if pλθp ≤ pλpθ. We say

that p is log-supermodular (or log-spm) if the inequality is reversed, and

use the adjective strict when the inequality is strict on Λ×Θ.

We assume that pλθp− pλpθ and pλθ(1− p) + pλpθ have constant signs,

which leaves three possible cases. In the first case, both p and 1−p are log-

sbm. This implies that, for any λ > λ, the likelihood ratios p(λ, θ)/p(λ, θ)

and (1− p(λ, θ))/(1− p(λ, θ)) are both nonincreasing in θ: a success (good

news) in a good environment is then less informative about θ than a success

in a bad environment, while a failure (bad news) contains more information

if it is obtained in a good environment. The usual additive (p(λ, θ) =

u(λ) + v(θ)) and multiplicative (p(λ, θ) = u(θ)v(λ)) forms belong to this

category.

In the second case, p is strictly log-spm, which implies that 1 − p is

strictly log-sbm. The likelihood ratio p(λ, θ)/p(λ, θ) is then increasing in θ.

This assumption describes situations where succeeding in a good environ-

ment is more informative about the agent’s ability than succeeding in a bad

environment: this can be due to the fact that even high-skilled individuals

are very unlikely to succeed in an unfavorable environment, which implies

that a successful outcome would be attributed to an unlikely lucky break

rather than to intrinsic dispositions.

In the third case, 1−p is strictly log-spm, which implies that p is strictly

log-sbm. The likelihood ratio (1 − p(λ, θ))/(1 − p(λ, θ)) is then increasing

in θ: failing in a bad environment is more informative about the agent’s

ability than failing in a good environment. This can be due to the fact that

succeeding in the good conditions is extremely likely even for low-skilled

individuals, which implies that failures are attributed to an adverse random

shock.
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Proposition 1 summarizes the direction of the bias in these three cases.

We write ht = nt for a history composed of nt successes out of t attempts

and gt,nt,i for the conditional posterior beliefs about λ. Except when p

and 1 − p are log-sbm, we can only compare gt,nt,1 and gt,nt,2 for extreme

scenarios (large success rate, or small success rate), as a comparison in the

monotone likelihood ordering is not possible in general for intermediate

success frequencies.

Proposition 1. 1. If p and 1− p are log-sbm, then gt,nt,1 ≼ gt,nt,2

for any (nt, t).

2. If p is strictly log-spm, there exists α0, β0 ∈ (0, 1) such that

gt,nt,1 ≽ gt,nt,2 if nt/t ≥ α0, and gt,nt,1 ≼ gt,nt,2 if nt/t ≤ β0.

3. If 1− p is strictly log-spm, there exists α1, β1 ∈ (0, 1) such that

gt,nt,1 ≼ gt,nt,2 if nt/t ≥ α1, and gt,nt,1 ≽ gt,nt,2 if nt/t ≤ β1.

Proposition 1 states that the overconfident agent misperceives his envi-

ronment relative to the more realistic agent. This result does not require

any correlation between θ and λ from the ex ante perspective, and follows

from the correct application of Bayes’ rule to heterogeneous prior beliefs.

3.2 Misperception of the informativeness

As Proposition 1 shows, the bias in inference due to overconfidence thus

takes different forms depending on the shape of p. We now argue that this

set of results relies on a similar intuition, which is closely linked to the

notion of self-serving attribution bias in psychology. In this section, we

give a precise definition of the attribution bias and provide a result that

unifies the three cases considered in Proposition 1.

The attribution bias is commonly understood in the following way: “We

are prone to alter our perception of causality [...]. We attribute success to

our own dispositions and failure to external forces.” (Hastorf et al., 1970,

p. 73) In typical experiments on the attribution bias, participants learn

about their performance at a task and are asked to formulate a causal

explanation of their outcome. For instance, in the study by Johnson et al.

(1964), participants teach arithmetic concepts to fourth-grade boys and
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learn about the performance of the pupils at a subsequent test. Johnson

et al. (1964) show that teachers tend to attribute positive performance to

their own teaching skills, whereas they place the responsibility for poor

performance on external factors, such as the pupil’s lack of motivation for

learning.

To formalize the notion of a causal explanation of success and failure,

consider the following hypothetical elicitation. Suppose that subjects 1 and

2 participate in the experiment by Johnson et al. (1964). Both subjects

fail at teaching arithmetic to a child, and learn that another subject 3

who was paired with the same pupil has also been unsuccessful at the

task. Subjects 1 and 2 are then asked to use this information in order to

form beliefs about the teaching ability of subject 3. Subject 2 has taken

responsibility for the child’s disappointing performance. He thus believes

in a causal link between poor teaching skills and the learning outcomes of

the pupil. Thus, he should update his beliefs about the ability of subject 3

downward by a large amount. In contrast, subject 1 believes that the poor

performance is mostly due to the child’s lack of motivation for learning:

he should thus not revise his beliefs about the skills of subject 3, as he

thinks that the child is responsible for the outcome. To sum up, due to

his overconfidence, subject 1 has a tendency to overestimate the ability of

the other participants who have been unsuccessful in the same conditions.

The same intuition applies in the case where subjects 1, 2 and 3 have

been successful: the overconfident subject 1 overestimates the importance

of teaching ability in the learning outcome, and thus he overestimates the

ability of other successful participants.

We now formally establish that this bias is predicted by Bayesian up-

dating applied to overconfident prior beliefs, and that this observation is

true irrespective of the shape of the function p. Corollary 1 below unifies

the seemingly disparate results exposed in Proposition 1. Formally, the two

agents 1 and 2 observe the common history (t, nt), and are asked to form

beliefs about the ability of an agent 3 who has performed the task in the

same conditions (that is, with the same λ) and obtained the same history

(t, nt). Initially, agents 1 and 2 share a common prior distribution over the

type θ̃ of agent 3, represented by the continuous pdf f̃0 defined on Θ. By
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Bayes’ rule, agent i (i = 1, 2) estimates

f̃t,nt,i(θ̃) =

f̃0(θ̃)

∫
Λ

p(λ, θ̃)nt(1− p(λ, θ̃))t−ntdGt,nt,i(λ)∫∫
Λ×Θ

f̃0(θ)p(λ, θ)
nt(1− p(λ, θ))t−ntdGt,nt,i(λ)dF̃0(θ)

.

The comparison of f̃t,nt,1 and f̃t,nt,2 informs us about the theories formed

by the two agents about the determinants of success and failure in their

environment. Definition 1 formalizes our definition of the self-serving at-

tribution bias: an agent is prone to this bias if he overestimates, in relative

terms, the ability of other individuals who have obtained the same out-

comes.

Definition 1. Agent 1 is prone to a self-serving attribution bias relative

to agent 2 after the history (nt, t) if f̃t,nt,1 ≽ f̃t,nt,2.

Corollary 1 shows that overconfident prior beliefs causally generate a

self-serving attribution bias. This result covers the three cases exposed in

Proposition 1.5

Corollary 1. Suppose that pλθp−pλpθ and pλθ(1−p)+pλpθ have constant

signs. Then there exists α2, β2 ∈ (0, 1) such that, for any (t, nt) such that

nt/t ≥ α2 or nt/t ≤ β2, agent 1 is prone to a self-serving attribution bias

relative to agent 2 after the history (nt, t).

3.3 Additional implications

In this section, we briefly mention two other implications of the dis-

tortion in inferences generated by overconfident prior beliefs and uncov-

ered by Proposition 1. First, while static models predict a positive rela-

tionship between overconfidence (overestimation of θ) and optimism about

future outcomes (overestimation of p(λ, θ)), this effect is not robust to

5If f0,1 is interpreted as the most accurate prior distribution, the model also predicts
an inverse attribution bias for an agent 2 who starts from an unrealistically low self-
confidence. This finding resonates with casual evidence on the imposter syndrome,
whereby high achievers understate their own merit and exaggerate the role of luck in
their accomplishments. Consistently with the model, this mindset if found more often
among women or minority groups whose self-confidence levels tend to be below the
population average (Clance and Imes, 1978; Sonnak and Towell, 2001).
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updating in a situation of two-dimensional uncertainty. Consider for in-

stance the manager–employee example of subsection 3.1 and suppose that

p(λ, θ) = p(λ, θ) = 1/3, p(λ, θ) = 2/3, p(λ, θ) = 1 − ϵ, where ϵ is close

to zero. After a failure, an overconfident manager estimates that his fu-

ture probability of success, if he keeps working with the same employee,

is close to 1/3, whereas a realistic manager predicts a future success rate

strictly greater than 1/3. The excessive inference drawn by the overconfi-

dent manager about the ability of the employee makes him more pessimistic

regarding the future productivity of the venture.

Second, the overconfident agent misperceives the productivity of human

capital in the environment. To formalize this result, suppose that based

on his own outcomes, the agent tries to estimate the difference in expected

productivity between an individual of known ability θL and an individual

of known ability θH > θL. Formally, the agent estimates

ϑt,nt,i =

∫
Λ

[p(λ, θH)− p(λ, θL)]dGt,nt,i(λ).

This subjective parameter potentially governs important decisions, such

as how much to invest in one’s own (or one’s children’s) human capital. We

restrict attention to the second and third cases in Proposition 1, in which

the role of λ has an unambiguous interpretation: if p is strictly log-spm,

λ measures the extent to which human capital is important in the agent’s

environment, whereas if 1 − p is strictly log-spm, λ is an inverse measure

of this variable.6

After a successful history, agent 1 forms the belief that talented indi-

viduals are appropriately rewarded relative to their low-skilled peers. As a

consequence, he sees large benefits from investment in human capital. Af-

ter failing, in contrast, agent 1 doubts that people obtain their just deserts,

6If p is strictly log-spm, the ratio p(λ, θ)/p(λ, θ) is increasing in λ, and thus successes
are more indicative of high skills if λ is large; the ratio (1 − p(λ, θ))/(1 − p(λ, θ)) is
decreasing in λ, and thus failures are more indicative of low skills if λ is large. The
higher is λ, the more important is intrinsic ability in the agent’s outcomes. If 1 − p is
strictly log-spm, the opposite statements are true: the higher is λ, the less θ is important.
If p and 1− p are log-sbm, after a failure, an observer infers more about θ in a large λ
environment than in a low λ environment, but the opposite holds after a success. Thus,
whether an increase in λ makes ability more or less important has no unambiguous
answer in that case.
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and therefore underestimates the benefits from investment in θ.

Corollary 2. Suppose that either p or 1−p is strictly log-spm. There exists

α3, β3 ∈ (0, 1) such that ϑt,nt,1 ≥ ϑt,nt,2 if nt/t ≥ α3, and ϑt,nt,1 ≤ ϑt,nt,2 if

nt/t ≤ β3.

4 Asymptotic learning

We now turn to analyzing the individuals’ beliefs after they receive in-

finite sequences of outcomes. Our objective is to analyze the conditions

under which the initial miscalibrations in self-confidence are eliminated

asymptotically by Bayesian learning. We first consider a passive learn-

ing situation in subsection 4.1 before making the agents’ experimentation

decisions endogenous in subsection 4.2.

4.1 Passive learning

We start by analyzing the agents’ asymptotic beliefs in situations where

they perform the task in every period in an environment which is exoge-

nously imposed on them. The following results are a useful preliminary to

studying the active experimentation decision in subsection 4.2. They are

also of independent interest for those applications where individuals do not

make active experimentation decisions. Our main result is that whether

Bayesian individuals eventually learn the truth about themselves crucially

depends on the stability of their external conditions.

We first analyze the case where the value of λ is drawn at the be-

ginning of the game and fixed thereafter, reflecting the assumption that

the external conditions are uncertain but stable. We write ft,i and gt,i for

the unconditional posterior beliefs at date t, and kt,i for the posterior pdf

formed over the probability p(λ, θ) of succeeding in this environment. We

use capital letters (F,G and K) for the cdfs. The true parameters of the

data-generating process are written λ0 and θ0. We assume that p(λ0, θ0)

belongs to the interior of [inf p, sup p].

Our full-support assumptions ensure that the learning process is cor-

rectly specified, in the sense that the agents’ prior beliefs regarding the
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probability of success attribute a positive probability to any open neigh-

borhood of the true value p(λ0, θ0).

The individuals receive an infinite sequence of informative signals. Stan-

dard statistical learning theorems prove that the sequence of posterior be-

liefs about p is consistent: almost surely, Kt,i converge weakly to the Dirac

measure δp(λ0,θ0) centered at p(λ0, θ0), which is approximated by the empir-

ical success rate.

Nevertheless, the information received is not sufficient to extract the

true values of λ and θ individually: since several pairs (λ, θ) predict the

same success rate, neither parameter is identifiable separately. Since the

agents initially, and at each point in time, have different beliefs about θ,

they form two different theories that both correctly explain their observa-

tions. In the limit, the two individuals agree on the future empirical success

rate, but the overconfident agent keeps overestimating θ and forms more

pessimistic beliefs about the quality of the environment.

Proposition 2. Suppose that λ = λ0 remains fixed and that the true prob-

ability of success is p(λ0, θ0) ∈ (inf p, sup p). With probability one the pos-

terior beliefs Kt,i, Gt,i and Ft,i converge weakly to limit distributions K∞,i,

G∞,i and F∞,i such that

1. K∞,1 = K∞,2 = δp(λ0,θ0);

2. G∞,1 and G∞,2 admit densities g∞,1 and g∞,2 that satisfy g∞,1 ≼ g∞,2.

3. F∞,1 and F∞,2 admit densities f∞,1 and f∞,2 that satisfy f∞,1 ≽ f∞,2.

Note that, unlike Proposition 1, Proposition 2 is independent of the

nature of the interaction between λ and θ.

Proposition 2 has the following behavioral implications. Individuals

who perform a task in a stable environment form correct limiting beliefs

about their future outcomes in this environment. All the behavioral dis-

tortions associated with initial overconfidence (e.g., incorrect effort invest-

ment, excess entry) therefore vanish asymptotically: in the limit, the indi-

viduals make decisions based on accurate expectations of the consequences

and obtain the maximum possible payoffs. However, since overconfidence

is not eliminated by experimentation, an incorrect self-assessment affects
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decisions in any new environment, irrespective of the amount of experi-

mentation previously performed: agent 1 is more optimistic than agent 2

regarding the future outcomes if a new value of λ is drawn while θ is kept

constant.

Let us now contrast this result to the case where a new value for λ is

drawn everym periods according to the density g0 and independently of the

past history. This assumption represents situations where individuals are

regularly exposed to new external conditions for reasons that are outside

their control: automatic job rotation, turnover in a team, beginning of a

new academic year with different professors, evaluation of their performance

by different individuals, etc. In the long run, blaming external factors

for the disappointing empirical success rate is no longer credible since the

individual has been operating in many different environments, and he must

therefore admit that he was himself responsible for the outcomes all along.

Overconfidence is therefore entirely eliminated asymptotically.

Proposition 3. Suppose that a new value of λ is drawn independently ev-

ery m periods and that the true ability of the agent is θ0 ∈ (θ, θ̄). With

probability one the posterior beliefs Ft,i converge weakly to limit distribu-

tions F∞,i such that F∞,1 = F∞,2 = δθ0.

Together, Propositions 2 and 3 establish that the possibility of over-

confidence in the long run depends on the stability of the environment.

Unrealistic levels of self-confidence can persist even for Bayesian learners:

for instance, a worker who performs the same job for a long time can remain

overconfident by blaming his colleagues, or the firm more generally, for the

disappointing success rate. The model predicts that exogenous variation

in the external conditions fosters realism about one’s ability. In the next

subsection we study the joint evolution of beliefs and behavior in a situ-

ation where the stability of external conditions is an endogenous feature

resulting from the agents’ decisions.

4.2 Active learning

We now study the joint evolution of beliefs and experimentation deci-

sions. Our objective is to analyze the conditions under which individuals’
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decisions endogenously generate enough data to allow them to overcome

the identification challenge faced in stable environments and to learn their

true ability in the long run.

We incorporate the model into an infinite-horizon bandit problem (Berry

and Fristedt, 1985). On each date t, the agent performs the task, observes

the outcome, and decides whether to stay in the current conditions or to

opt out and start performing the activity in a randomly selected new envi-

ronment. For instance, a manager decides whether to replace the current

employees; a worker chooses whether to look for a new position in another

company; a married individual decides whether to divorce and marry a new

partner; a student chooses whether to persevere in their current field or re-

orient their educational choices, etc. This decision is conditioned by the

decision-maker’s beliefs about his ability and by his beliefs about the type

of his current environment, since both dimensions determine the payoff that

the agent expects from switching to a new environment.

We impose the simplest information structure that keeps the analysis of

the two-dimensional bandit tractable while maintaining the key properties

of the updating problem considered in the general model. Agents are either

high-skilled (θ = θ) or low-skilled (θ = θ), and environments are either

favorable (λ = λ) or unfavorable (λ = λ). We maintain the identification

issue at the core of the model by assuming that p(λ, θ) = p(λ, θ).7 To

simplify the notation we write pl = p(λ, θ), pm = p(λ, θ) = p(λ, θ) and

ph = p(λ, θ).

The agent initially attaches a weight q0 ∈ (0, 1) to the state θ. An

increase in q0 can thus be interpreted as an increase in the individual’s initial

self-confidence. The individual faces an infinite and countable number of

different environments. All conditions look similar ex ante: the qualities of

the environments are independent and identically distributed, so that any

given environment has a probability ν ∈ (0, 1) of being of quality λ. We

make no assumptions on p other than 0 < pl < pm < ph < 1.

On each date t, the agent chooses an environment and obtains the

outcome πt. We assume that quitting an environment is irreversible: if an

environment has been tried and discarded by the agent, it is no longer avail-

able. This assumption entails a loss of generality since individuals might

7Footnote 8 states how our results are modified if one relaxes this assumption.
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find it optimal to come back to a previously tried environment, but this

restriction is inessential for our main result and simplifies the exposition.

Since all untried environments look identical to the agent, we therefore for-

mulate the experimentation problem as a two-armed bandit: arm 1 consists

in staying in one’s current conditions, while arm 2 consists in switching to

a new environment. We say that the agent experiments if he decides to

pull arm 2.

The agent is a risk-neutral discounted expected-utility maximizer with a

discount factor δ < 1. A history is a finite sequence ht = [(σ0, π0), · · · , (σt, πt)],

where σt ∈ {1, 2} denotes the identity of the arm selected at date t and

πt ∈ {0, 1} denotes the Bernoulli outcome at date t. A strategy is an infi-

nite sequence σ = [σ0, σ1(π0 = 1), σ1(π0 = 0), · · · ] that specifies which arm

is selected by the agent initially and after any finite history.

The individual faces a trade-off between exploration and exploitation.

The choice of an arm at date t is governed by two concerns: first, maxi-

mizing the immediate probability of success; second, gaining information

about the quality of the current environment λ and about the agent’s own

ability θ.

In the Appendix we show with standard arguments that an optimal

strategy exists and that the value function V of the decision problem is

well-defined and characterized by a Bellman equation. However, solving

this decision problem with two-dimensional learning is not feasible with

the standard tools and results from the literature on bandit problems (e.g.,

Gittins indices), as the arms are correlated: the uncertain parameter θ

governs the rewards to both arms. We therefore characterize the optimal

behavior only in the case of a myopic agent (δ = 0) who does not value

experimentation, and we then proceed to show that our main result on

asymptotic beliefs and behavior extends to the general case of a patient

decision-maker (δ > 0).

4.2.1 Myopic behavior

In this section we assume that δ = 0, and thus the agent maximizes the

immediate expected reward. Let Bnt
t (p) = pnt(1− p)t−nt .
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Experimentation decisions Suppose that the agent selects arm 2 at

some date t0. The weight q that he attaches to θ at date t0 is a sufficient

statistic for the information acquired so far. Suppose that the agent then

stays t periods and receives nt successes in the new conditions.

Since the agent is myopic, it is optimal to select the arm which delivers

the greatest probability of success. After some algebra, arm 2 is optimal if

and only if

(1−q)(pm−pl)[B
nt
t (pm)−Bnt

t (pl)]+q(ph−pm)[B
nt
t (ph)−Bnt

t (pm)] ≤ 0. (1)

Condition 1 has two important properties. First, for fixed q, it is sat-

isfied if and only if nt is lower than some threshold. As the intuition

suggests, the decision-maker thus opts out when a disappointing sequence

of outcomes has led him to form pessimistic beliefs regarding the quality

of his current environment relative to the average external conditions. Sec-

ond, for fixed nt it is satisfied if and only if q is larger than some threshold.

A decision-maker who initially perceives a larger q than what is realistic

tends to see the grass as being greener on the other side of the fence: this

belief endogenously encourages opting out. In contrast, underconfident

decision-makers are too easily satisfied with their external conditions and

experiment too little relative to the payoff-maximizing behavior.

Overconfidence We now turn to analyzing the possible asymptotic sce-

narios resulting from these endogenous experimentation choices. Suppose

first that the agent’s true type is θ, and that he starts the game with a

confident prior belief q0 close to but different from one. Suppose that the

first environment tried is of type λ. If the agent stays long enough in this

environment, his success rate converges almost surely to pl. The agent then

learns his own ability and the type of environment perfectly. Knowing that

the current conditions are unfavorable, he therefore opts out in finite time.

Suppose now that the first environment is instead of type λ, in which case

the success rate converges almost surely to pm. Asymptotically, Condition

1 is then equivalent to

pm ≤ q0ph + (1− q0)pl. (2)
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Equation 2 is satisfied if and only if q0 is large enough. Intuitively, by

performing the task infinitely often in the current environment, the agent

progressively learns that the future success rate in that environment equals

pm; since q0 is close to one, the agent attributes his empirical success rate

to the fact that the current conditions are of type λ. Since the agent

expects a probability of success larger than pm in the average environment,

he therefore decides to switch from the current environment in finite time.

In both cases (λ = λ, λ = λ), he opts out in finite time after forming

pessimistic beliefs about the environment but also revising his level of self-

confidence downwards.

The same arguments apply to the analysis of the continuation history

that the agent receives after switching to a new environment. Environ-

ments of type λ are thus always left in finite time, whereas environments

of type λ are left in finite time if the agent’s self-confidence is large enough

for Condition 2 to be satisfied. Yet, over time, the individual’s endogenous

experimentation effort provides more information about the true value of

θ, in line with Proposition 3. By performing the task in variable external

conditions, the individual gradually realizes that his ability is lower than he

thought, until his level of self-confidence q becomes small enough to satisfy

pm > qph + (1− q)pl. At that point, if the individual stays long enough in

an environment of type λ, he expects a reward close to pm in the current

environment, and a reward lower than pm in an average environment, due

to his low self-confidence. He therefore prefers to stop experimenting in

the current conditions. As we argue in Proposition 4 below, this scenario

happens with probability one. In the long run, learning is incomplete since

the individual stops experimenting in finite time and therefore cannot dis-

entangle the states (λ, θ) and (λ, θ). However, learning is adequate in the

sense that the individual eventually settles into an environment of type λ

and receives the highest possible long-run payoff pm for an agent of ability

θ.

Underconfidence Suppose now that the individual has true ability θ

and initial self-confidence q0 ∈ (0, 1). If the first environment is of type

λ, Condition 1 can be violated at each period with positive probability.

Asymptotically, the individual learns that he is high-skilled and that the
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environment is favorable. Learning is thus complete in both dimensions.

However, if the first environment is of type λ and if q0 is small enough

to revert Equation 2, Condition 1 can also be violated at each period. The

individual then stops experimenting since he attributes his high success rate

pm to the quality of the external conditions rather than to his own merit.

This decision prevents him from receiving further information, and from

revising his beliefs about his ability upwards. Learning is then not only

incomplete but also inadequate: by experimenting more, this individual

would have achieved a long-run payoff equal to ph, but instead finds himself

trapped in an inferior environment, receiving a suboptimal long-run success

rate equal to pm. In contrast to the case of an overconfident agent, the initial

miscalibration in prior beliefs thus generates asymptotic inefficiencies and

incorrect decisions.

Note that this scenario happens with positive probability for the first

environment if q0 is small, but it also happens with positive probability

asymptotically for any value of q0 ∈ (0, 1): even an initially confident

individual might fall into the underconfidence trap if his first attempts are,

unluckily, unsuccessful, up to the point where his self-confidence q falls

below the threshold defined by Condition 2.

4.2.2 Limiting beliefs

We now generalize these asymptotic results by relaxing the assumption

δ = 0. We write qt for the posterior weight that the individual ascribes to

the state θ.

Proposition 4. The individual stops experimenting in finite time almost

surely. In addition, for any q0 ∈ (0, 1),

1. If the true ability of the agent is θ, then with probability one the last

environment is of type λ. Moreover, there exists a threshold q̄ ∈ (0, 1)

such that qt converges almost surely to a limit q∞ ∈ (0, q̄].

2. If the true ability of the agent is θ, there exists a threshold q ∈ (0, 1)

such that only the two following scenarios have a positive probability:

(a) The last environment is of type λ and qt converges to 1.
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(b) The last environment is of type λ and qt converges to some limit

q∞ ∈ (0, q].

Proposition 4 establishes two main results. First, for any value of θ,

with probability one the agent decides in finite time to stop experimenting,

a common finding from the literature on active experimentation (Aghion

et al., 1991; Easley and Kiefer, 1988; Brezzi and Lai, 2000). Intuitively,

infinite experimentation would lead the individual’s self-confidence qt to

converge to zero or one, depending on his true ability. In the limit where

qt ∼ 0 or qt ∼ 1, the individual’s problem consists of sampling the possible

external conditions until finding an environment of type λ in which to stay.

This happens in finite time almost surely. The assumption that the prior is

correctly specified is crucial for this result. Indeed, an individual with initial

self-confidence q0 = 1 but true ability θ would perpetually experiment with

probability one.

Second, if the agent starts with overconfident beliefs, his learning pro-

cess is incomplete but adequate, meaning that the agent eventually finds

good conditions and obtains the maximum possible asymptotic payoff. In

contrast, an agent who starts with underconfident prior beliefs faces a pos-

itive probability of making suboptimal choices forever, attributing his sur-

prisingly large success rate to extrinsic characteristics instead of taking

credit for it. The mistakes induced by miscalibrated prior beliefs are there-

fore not symmetric: overconfidence inflicts a transient cost to the agent by

inducing him to over-experiment, but this distortion disappears in the long

run. Underconfidence generates a persistent distortion that might survive

endogenous experimentation.8

8 If the agent does not face any identification issue, i.e., if p(λ, θ) ̸= p(λ, θ), then it
remains true that experimentation stops in finite time almost surely. However, asymp-
totic learning is then both adequate and complete since the long-run outcomes obtained
in any stable environment perfectly inform the decision-maker about his true ability.

24



5 Discussion and conclusion

5.1 Interpretation of the parameters

In this section we discuss the interpretation and the predictions of the

model in different contexts.

The nature of the activity The variable λ can be viewed as the nature

of the task, or its intrinsic difficulty. The form of p then reflects whether

easier activities are more or less informative than difficult activities about

the ability of the agent. The model predicts that overconfident individuals

misperceive the difficulty of the task, and that they are also more prone

to experimenting variable activities since they are easily disappointed with

the outcomes received at a given task.

Just world The variable λ can also be viewed as a measure of the ex-

tent to which people are responsible for their own outcomes, as opposed

to luck or other uncontrollable factors. If p is strictly log-spm, a low-λ

environment can for instance refer to a situation where some social groups

are discriminated against because of fixed individual traits (gender, eth-

nicity, socio-economic background), in which case their talent can do little

to compensate for the fundamental inequity. This contrasts with a high-

λ environment, which describes a society where people obtain their just

deserts. Individuals’ beliefs about λ can then be understood as their locus

of control.

The model predicts that successful individuals understate the impor-

tance of socio-economic rigidities: believing in a “just world” (Lerner, 1980;

Bénabou and Tirole, 2006), they attribute others’ misfortunes to their dis-

positions, such as their supposed lack of ability or willpower (Corollary

1). Conversely, they overestimate the merits of their high-achieving peers.

Less successful individuals underestimate the fairness of the social mobility

system and believe that the outcomes of others do not reflect their dispo-

sitions.

If citizens factor distributive-justice concerns into judgments about re-

distributive policies (Alesina and Angeletos, 2005), their view of the nature

of social competition determines their political preferences. Our model pre-
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dicts that, even supposing that they are only motivated by concerns for

social justice, the rich are too prone to advocate pro-market policies and

low levels of redistribution, whereas the reverse holds for the poor. The

experiment by Deffains et al. (2016) offers evidence consistent with this

theory. After performing a real effort task whose returns are uncertain,

subjects tend to choose lower redistribution levels for their peers if their

own performance lies in the top half of the distribution.

The model can also account for the effect of “role models”whose accom-

plishments in various domains (sport, science, business, etc.) are frequently

showcased by popular culture as a source of inspiration. The exposure to

success stories is thought of as a way to promote faith in the long-term re-

turns to effort, especially for groups who face unfavorable conditions (eth-

nic minorities, female scientists, etc.). Interestingly, this strategy some-

times backfires (Lockwood and Kunda, 1997). In our model, an individual

who observes a successful role model revises his beliefs about λ upwards,

which tends to fosters his belief that succeeding in his conditions is possible.

However, if the agent already has some experience at the task, receiving

information about λ also leads him to reexamine his own history and to

update his self-confidence. The direction of this effect depends on the suc-

cess ratio and specific history, as Proposition 1 suggests. As an example,

if 1− p is log-sbm, an individual who has received disappointing outcomes

so far realizes, upon observing a successful peer, that the environment is

more favorable than he thought, but that his own ability is lower than

he thought. The overall impact on the perceived probability of success

depends on which of these two effects dominates.

Production externalities In a team production context, λ can describe

the performance, intentions, or skills of the decision-maker’s co-workers.

The model predicts that attributions of merit and blame in teams depend

on the nature of the strategic relationship between the co-workers’ contribu-

tions, that exogenous variation in external conditions fosters learning about

one’s ability, and that overconfident workers are more prone to change jobs

or teams if they have the opportunity to do so.
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Information structure Suppose that the agent receives a sequence of

informative signals about his own ability, and that the correlation between

signals is uncertain ex ante. The model predicts that an overconfident in-

dividual overestimates the correlation when receiving a series of bad news,

and underestimates it when receiving a sequence of good news. For in-

stance, consider a student or worker who receives feedback on a project

from two advisers. The advisers might form their judgment independently,

or the second adviser might simply consult the first adviser’s opinion with-

out properly analyzing the project on his own. The informativeness of the

feedback is greater in the former case. The model predicts that the student

overestimates the independence of his advisers’ judgments if they both re-

port favorably on the project, and overestimates their correlation if they

both express adverse opinions.

Self-control In another interpretation of the model, θ represents the in-

dividual’s capacity to exert self-control and to stick to his contingent plans,

while λ measures the extent to which external conditions are intrinsically

tempting. The model predicts that naive agents who repeatedly succumb to

temptation blame persistent external conditions instead of acknowledging

their self-control issues. For instance, an individual who fails at quitting

smoking might explain his difficulties by the fact that he has recently gone

through a stressful period at work. Such an individual might therefore

maintain the optimistic belief that quitting smoking will be easy once he

faces more favorable conditions. Becoming sophisticated about one’s self-

control and making correct predictions about one’s behavior in new situ-

ations requires exposure to a variety of external conditions. Interestingly,

our model predicts that naiveté is self-correcting through endogenous ex-

perimentation while pessimism is self-confirming, which adds to the puzzle

of the persistence of naiveté in the field.9

9This observation parallels a result by Ali (2011) obtained with a different mecha-
nism. Ali (2011) shows that naiveté is self-correcting due to the insufficient take-up of
commitment devices, while underconfidence is self-confirming as it can lead the individ-
ual to overcommit and stop receiving information about his self-control.
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5.2 Conclusion

This paper shows that overconfidence generates distortions in the pro-

cess by which individuals learn about their environment. Overconfidence

causes a self-serving bias in the attribution of blame and merit (Proposition

1). This distortion leads individuals to make incorrect causal attributions

of others’ outcomes (Corollary 1) and to form incorrect beliefs about the

returns to human capital (Corollary 2). Trying out different environments

is a necessary and sufficient condition for overconfidence to vanish in the

long run (Propositions 2 and 3). Since overconfidence fosters experimenta-

tion in different environments, it is self-correcting in the long run whereas

underconfidence is self-confirming (Proposition 4).

We conclude by mentioning two directions in which the analysis can

be extended. First, in some situations, observing the outcomes received

by peers exposed to the same external conditions would provide additional

information to the individual about λ. In general, social learning might

therefore mitigate the identification challenge, but our comparative statics

results would survive, provided that the individual does not have access

to an infinite quantity of observations generated in his environment. More

importantly, the agent’s own inferences might prevent him from learning

efficiently from observing his peers. For instance, an overconfident indi-

vidual who has failed repeatedly would attribute others’ outcomes to luck

rather than to their own merit, a belief which would not easily be dismissed

by subsequent observations.

Second, the individual decision problem can be used as a foundation

to study the strategic interaction between an agent and a principal or an

audience. The agent might be motivated by the opportunity to signal his

ability to third parties, which would influence the type of environment or

tasks into which he strategically self-selects. Principals might strategically

release information about the difficulty of the task to maintain the agent’s

optimism and motivation, or sabotage the agents’ self-esteem to reduce

their willingness to opt out of the relation. More generally, the interac-

tion between a principal who can influence the nature of the task or the

environment and an agent prone to misperceptions raises interesting and

important questions, that we leave for future research.
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Appendix

We write Lt,n(λ, θ) = p(λ, θ)n(1− p(λ, θ))t−n for the (normalized) likelihood

function and we skip the variables (λ, θ) when it is not confusing. We will make

extensive use of the continuous version of Chebyshev’s sum inequality, restated

below (see Mitrinovic et al., 2013, , chapter 9).

Lemma A.1. Consider a compact interval X ⊂ R. If f, g : X → R are inte-

grable functions, both nondecreasing or both nonincreasing, and h : X → R+ is

integrable, then∫
X
f(x)g(x)h(x)dx

∫
X
h(x)dx ≥

∫
X
f(x)h(x)dx

∫
X
g(x)h(x)dx. (A.1)

If f is nonincreasing and g is nondecreasing, inequality A.1 is reversed.

A Proofs of Section 3

A.1 Proof of Claim 1

Supposed that the agent has tried out the activity in mt different environ-

ments up to date t, and let j = 1, · · · ,mt be an index for the identity of the

environments. Let nj be the number of successes in the environment indexed by

j and tj the total number of attempts in this environment. Given the history

ht = (t1, n1, · · · , tmt , nmt), Bayes’ rule yields

ft,ht,i(θ) =

f0,i(θ)

mt∏
j=1

∫
Λ
Ltj ,nj (λj , θ)dG0(λj)

∫
Θ
dF0,i(θ

′)

mt∏
j=1

∫
Λ
Ltj ,nj (λj , θ

′)dG0(λj)

,

and therefore

ft,ht,1(θ)

ft,ht,2(θ)
=
f0,1(θ)

f0,2(θ)

∫
Θ
dF0,2(θ

′)

mt∏
j=1

∫
Λ
Ltj ,nj (λj , θ

′)dG0(λj)

∫
Θ
dF0,1(θ

′)

mt∏
j=1

∫
Λ
Ltj ,nj (λj , θ

′)dG0(λj)

is nondecreasing in θ.
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A.2 Proof of Proposition 1

In the main text we prove Proposition 1.2. In the footnotes we explain how

to adapt the arguments to prove Propositions 1.1 and 1.3.

The proof proceeds in two steps. First, we show that the likelihood ratio

Lt,nt(λ1, θ)/Lt,nt(λ2, θ) is nondecreasing in θ for any λ1 > λ2 whenever the suc-

cess rate nt/t is large enough, and nonincreasing whenever the success rate is

small enough.10,11 This property is straightforward for fixed (λ1, λ2); the crux

of the proof is to obtain bounds that are uniform in (λ1, λ2). The second step

consists of an application of Lemma A.1.

Claim A.2. Suppose that p is strictly log-spm and consider the domain D =

{(λ1, λ2, θ) ∈ Λ2 ×Θ | λ1 > λ2} and the function ψ defined on D by

ψ(λ1, λ2, θ) =
Lt,nt(λ1, θ)

Lt,nt(λ2, θ)
.

There exist α0, β0 ∈ (0, 1) such that if nt/t ≥ α0 (respectively nt/t ≤ β0), ψ is

nondecreasing (respectively nonincreasing) in θ for any λ1 > λ2.

Proof. The function ψ is continuously differentiable and ψθ satisfies

ψθ(λ1, λ2, θ)

ψ(λ1, λ2, θ)
= nt

[pθ(λ1, θ)
p(λ1, θ)

− pθ(λ2, θ)

p(λ2, θ)

]
− (t− nt)

[ pθ(λ1, θ)

1− p(λ1, θ)
− pθ(λ2, θ)

1− p(λ2, θ)

]
.

(A.2)

Consider the functions ζ and ξ defined on D by

ζ(λ1, λ2, θ) =
pθ(λ1, θ)

p(λ1, θ)
− pθ(λ2, θ)

p(λ2, θ)

and

ξ(λ1, λ2, θ) =
pθ(λ1, θ)

1− p(λ1, θ)
− pθ(λ2, θ)

1− p(λ2, θ)
.

Since p is strictly log-spm the functions λ → pθ(λ, θ)/p(λ, θ) and λ →
pθ(λ, θ)/(1 − p(λ, θ)) are increasing in λ for any θ. Thus on the domain D the

functions ζ and ξ take only positive values. In addition (we drop the dependence

10If p and 1− p are log-sbm we show that the likelihood ratio is nonincreasing in θ for
any λ1 > λ2 and any sequence of outcomes.

11If 1 − p is strictly log-spm we show that the likelihood ratio is nonincreasing in θ
for any λ1 > λ2 whenever the success rate is large enough, and nondecreasing whenever
the success rate is small enough.

35



in (λ, θ) of all functions to lighten the notational burden),

lim
ϵ→0

ξ(λ+ ϵ, λ, θ)

ζ(λ+ ϵ, λ, θ)
=

pλθ(1− p) + pλpθ
(1− p)2

pλθp− pλpθ
p2

> 0.

Hence the function ξ/ζ can be extended by continuity to the compact domain

D̄ = {(λ1, λ2, θ) ∈ Λ2×Θ | λ1 ≥ λ2} and its extension takes positive values only.

This proves that ξ/ζ admits a positive lower bound inf ξ/ζ and a positive upper

bound sup ξ/ζ on D.

Let

α0 =

sup ξ
ζ

1 + sup ξ
ζ

and β0 =

inf ξ
ζ

1 + inf ξ
ζ

.

It is clear that α0 ∈ (0, 1) and β0 ∈ (0, 1). In addition, for any (nt, t) such

that nt/t ≥ α0 we have
nt

t− nt
≥ sup ξ

ζ
,

which implies by Equation A.2 that ψθ ≥ 0 on D, i.e. that ψ is nondecreasing

in θ. If nt/t ≤ β0 we have nt/(t− nt) ≤ inf ξ/ζ and therefore ψ is nonincreasing

in θ.12,13

To complete the proof, suppose first that nt/t ≥ α0 defined in Claim A.2.

Take any λ1 > λ2. The function f0,1/f0,2 is nondecreasing in θ, and, by Claim

A.2, the function ψ(λ1, λ2, θ) is also nondecreasing in θ. Lemma A.1 delivers

[ ∫
Θ

Lt,nt(λ1, θ)

Lt,nt(λ2, θ)

f0,1(θ)

f0,2(θ)
Lt,nt(λ2, θ)dF0,2(θ)

][ ∫
Θ
Lt,nt(λ2, θ)dF0,2(θ)

]
≥ (A.3)[ ∫

Θ

Lt,nt(λ1, θ)

Lt,nt(λ2, θ)
Lt,nt(λ2, θ)dF0,2(θ)

][ ∫
Θ

f0,1(θ)

f0,2(θ)
Lt,nt(λ2, θ)dF0,2(θ)

]
.

12If p and 1 − p are log-sbm, ζ is nonpositive whereas ξ is nonnegative, and thus ψθ

is nonpositive for any (nt, t), which proves that ψ is nonincreasing in θ.
13If 1− p is strictly log-spm, the functions ζ and ξ take negative values only and ξ/ζ

can be extended by continuity to D̄, where it takes positive values only. Define (α1, β1)
similarly as (α0, β0) above. For any nt/t ≥ α1 the function ψθ is nonpositive, i.e. ψ is
nonincreasing in θ. For any nt/t ≤ β1 the function ψ is nondecreasing in θ.
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Rearranging A.3 yields∫
Θ
Lt,nt(λ1, θ)dF0,1(θ)∫

Θ
Lt,nt(λ1, θ)dF0,2(θ)

≥

∫
Θ
Lt,nt(λ2, θ)dF0,1(θ)∫

Θ
Lt,nt(λ2, θ)dF0,2(θ)

,

which is simply
gt,nt,1(λ1)

gt,nt,2(λ1)
≥ gt,nt,1(λ2)

gt,nt,2(λ2)
. (A.4)

Since Equation A.4 is true for any λ1 > λ2, gt,nt,1 ≽ gt,nt,2. If nt/t ≤ β0 then

by Claim A.2 ψ is nonincreasing in θ, which implies that inequalities A.3 and

A.4 are reversed, i.e. that gt,nt,1 ≼ gt,nt,2.
14,15

A.3 Proof of Corollary 1

We first observe that, whenever pλp − pλpθ and pλ(1 − p) + pλpθ have con-

stant signs, then there exists α2, β2 such that nt/t ≥ α2 or nt/t ≤ β2 im-

plies that, for any θ̃1 > θ̃2, the functions λ → gt,nt,1(λ)/gt,nt,2(λ) and λ →
Lt,nt(λ, θ̃1)/Lt,nt(λ, θ̃2) are both nonincreasing or both nondecreasing.

Case 1: p and 1−p are log-sbm Then Proposition 1 and a claim analogous

to Claim A.2 (inverting the roles of λ and θ) show that, for any (nt, t), λ →
gt,nt,1(λ)/gt,nt,2(λ) and λ→ Lt,nt(λ, θ̃1)/Lt,nt(λ, θ̃2) are both nonincreasing.

Case 2: p is strictly log-spm Then by a reasoning analogous to Claim

A.2 it is possible to find α2, β2 such that

nt
t

≥ α2 ⇒
Lt,nt(λ, θ̃1)

Lt,nt(λ, θ̃2)
and

gt,nt,1(λ)

gt,nt,2(λ)
are nondecreasing

and
nt
t

≤ β2 ⇒
Lt,nt(λ, θ̃1)

Lt,nt(λ, θ̃2)
and

gt,nt,1(λ)

gt,nt,2(λ)
are nonincreasing.

14If p and 1 − p are log-sbm the function ψ is nonincreasing in θ for any (nt, t), and
thus Equation A.4 is reversed for any (nt, t).

15If 1− p is strictly log-spm, for any nt/t ≥ α1 the function ψ is nondecreasing in θ.
Therefore by Lemma A.1 inequality A.3 is reversed, and hence condition A.4 is reversed
as well, which proves that gt,nt,1 ≼ gt,nt,2. The case nt/t ≤ β1 is symmetric.
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Case 3: 1−p is strictly log-spm Then by a reasoning analogous to Claim

A.2 it is possible to find α2, β2 such that

nt
t

≥ α2 ⇒
Lt,nt(λ, θ̃1)

Lt,nt(λ, θ̃2)
and

gt,nt,1(λ)

gt,nt,2(λ)
are nonincreasing

and
nt
t

≤ β2 ⇒
Lt,nt(λ, θ̃1)

Lt,nt(λ, θ̃2)
and

gt,nt,1(λ)

gt,nt,2(λ)
are nondecreasing.

Suppose that nt/t ≥ α2 or nt/t ≤ β2, where α2 and β2 are constructed above.

Then by Lemma A.1, for any θ̃1 > θ̃2 we have∫
Λ
Lt,nt(λ, θ̃1)dGt,nt,1(λ)

∫
Λ
Lt,nt(λ, θ̃2)dGt,nt,2(λ) ≥∫

Λ
Lt,nt(λ, θ̃2)dGt,nt,1(λ)

∫
Λ
Lt,nt(λ, θ̃1)dGt,nt,2(λ)

which simplifies to
f̃t,nt,1(θ̃1)

f̃t,nt,2(θ̃1)
≥ f̃t,nt,1(θ̃2)

f̃t,nt,2(θ̃2)

This proves that f̃t,nt,1 ≽ f̃t,nt,2.

A.4 Proof of Corollary 2

Suppose first that p is strictly log-spm, which implies that the difference

p(λ, θH)− p(λ, θL) is nondecreasing in λ. Consider α0, β0 defined in Proposition

1. Suppose first that nt/t ≥ α0. By Proposition 1, gt,nt,1 ≽ gt,nt,2, which implies

that gt,nt,1 first-order stochastically dominates gt,nt,2. Thus,∫
Λ
[p(λ, θH)− p(λ, θL)]dGt,nt,1(λ) ≥

∫
Λ
[p(λ, θH)− p(λ, θL)]dGt,nt,2(λ), (A.5)

which is simply ϑt,nt,1 ≥ ϑt,nt,2. If nt/t ≤ β0, gt,nt,1 is first-order stochastically

dominated by gt,nt,2 and therefore the inequality is reversed. Defining (α3, β3) =

(α0, β0) completes the proof.

If 1− p is strictly log-spm the difference p(λ, θH)− p(λ, θL) is nonincreasing

in λ. For any nt/t ≥ α1 we have gt,nt,1 ≼ gt,nt,2, and thus inequality A.5 remains

true. For any nt/t ≤ β1, gt,nt,1 ≽ gt,nt,2 and the inequality is reversed. The

result follows from defining (α3, β3) = (α1, β1).
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B Proofs of Section 4

B.1 Proof of Proposition 2

In the following we write p0 = p(λ0, θ0) for the true success rate.

B.1.1 Proof of Proposition 2.1

Both agents are learning the value of a one-dimensional parameter p0 from

a sequence of i.i.d. Bernoulli trials. In addition, the full-support assumptions

guarantee that both agents’ prior beliefs put positive mass on a neighborhood of

p0. Standard statistical learning theorems (see for instance Gelman et al., 2013)

prove that with probability one Kt,i(p) → 0 for any p < p0 and Kt,i(p) → 1 for

any p > p0. Thus, with probability one Kt,i converges pointwise to the cdf of δp0

at any p ̸= p0, i.e. at any point where the limit cdf is continuous. This proves

that with probability one the distribution Kt,i converges in distribution to δp0 .

B.1.2 Proof of Proposition 2.2

Let

Ω(p) = {λ ∈ Λ | p(λ, θ) ≤ p ≤ p(λ, θ̄)}.

Let us define the function θ : {(p, λ) ∈ (0, 1)× Λ | λ ∈ Ω(p)} → Θ by

p(λ, θ(p, λ)) = p.

By the implicit function theorem θ(., λ) is continuously differentiable and its

partial derivative θp is positive.

Let hi : (0, 1)× Λ → R be defined by

hi(p, λ) =

{
f0,i(θ(p, λ))θp(p, λ) if λ ∈ Ω(p)

0 otherwise.

The proof relies on the following lemma.

Lemma A.2. With probability one the sequence Gt,i converges weakly to a limit

distribution G∞,i characterized by the density

g∞,i(λ) =
g0(λ)hi(p0, λ)∫

Λ g0(λ
′)hi(p0, λ′)dλ′

.

Proof lemma A.2. We show that with probability one gt,i(λ) → g∞,i(λ) for all
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λ ∈ Λ that does not belong to the boundary of Ω(p0). Since the boundary of

Ω(p0) has measure zero, Scheffe’s lemma then implies that with probability one

Gt,i converges weakly to G∞,i.

For all λ ∈ Λ, a change of variables delivers∫
Θ
f0,i(θ)p(λ, θ)

nt(1− p(λ, θ))t−ntdθ =

∫ 1

0
hi(p, λ)p

nt(1− p)t−ntdp.

Fix λ and a history (t, nt). By Bayes’ rule,

gt,nt,i(λ) =

g0(λ)

∫
Θ
f0,i(θ)p(λ, θ)

nt(1− p(λ, θ))t−ntdθ∫
Λ
g0(λ

′)[

∫
Θ
f0,i(θ)p(λ

′, θ)nt(1− p(λ′, θ))t−ntdθ]dλ′

=

g0(λ)

∫ 1

0
hi(p, λ)p

nt(1− p)t−ntdp∫ 1

0
[

∫
Λ
g0(λ

′)hi(p, λ
′)dλ′]pnt(1− p)t−ntdp

. (A.6)

Lemma A.3. Let u : [0, 1] → [0,∞) and v : [0, 1] → [0,∞) be integrable and

bounded functions. Suppose that u and v are continuous on a neighborhood of p0

and that v(p0) > 0. Then for any sequence nt such that nt/t→ p0,

lim
t→+∞

∫ 1

0
u(p)pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

=
u(p0)

v(p0)
.

Proof. Suppose first that u(p0) = 0. Let

It =

∫ 1

0
u(p)pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

.

Fix ϵ > 0. By continuity of u and v on a neighborhood of p0 there exists

δ > 0 and a constant m > 0 such that v(p) > m and u(p) < mϵ/2 for any

p ∈ (p0 − δ, p0 + δ). Let us decompose the integral in three regions [0, p0 −
δ], [p0 − δ, p0 + δ], [p0 + δ, 1].
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First, note that for any t ∈ N∫ p0+δ

p0−δ
u(p)pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

≤

∫ p0+δ

p0−δ
u(p)pnt(1− p)t−ntdp∫ p0+δ

p0−δ
v(p)pnt(1− p)t−ntdp

≤
2δm

ϵ

2
2δm

=
ϵ

2
. (A.7)

Since nt/t→ p0 there exists t0 ∈ N such that p0 − δ/4 < nt/t for any t ≥ t0.

If t ≥ t0 the function x→ xnt(1− x)t−nt is increasing on (0, p0 − δ/4). Thus,∫ p0−δ

0
u(p)pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

≤

∫ p0−δ

0
u(p)pnt(1− p)t−ntdp∫ p0−δ/4

p0−δ/2
v(p)pnt(1− p)t−ntdp

≤ (p0 − δ) supu
δm

4

(p0 − δ)nt(1− p0 + δ)t−nt

(p0 −
δ

2
)nt(1− p0 +

δ

2
)t−nt

.

Note that the expression on the right-hand side converges to zero. Therefore

there exists t1 ≥ t0 such that for all t ≥ t1,∫ p0−δ

0
u(p)pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

≤ ϵ

4
. (A.8)

Similarly, there exists t2 in N such that for any t ≥ t2,∫ 1

p0+δ
u(p)pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

≤ ϵ

4
. (A.9)

Combining inequalities A.7, A.8 and A.9 shows that for any t ≥ max(t1, t2),

It ≤
ϵ

2
+
ϵ

4
+
ϵ

4
= ϵ.

This proves that limt→+∞ It = 0.

Suppose now that u(p0) > 0. Since |u(p)v(p0)− v(p)u(p0)| = 0 for p = p0 we
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have

lim
t→+∞

∫ 1

0
|u(p)v(p0)− v(p)u(p0)|pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

= 0,

which implies

lim
t→+∞

∫ 1

0
u(p)pnt(1− p)t−ntdp∫ 1

0
v(p)pnt(1− p)t−ntdp

=
u(p0)

v(p0)
.

To complete the proof of Lemma A.2, note by the law of large numbers that

the sequence nt/t converges almost surely to p0. Consider any such sequence and

any λ ∈ Λ that does not belong to the boundary of Ω(p0). Let u(p) = hi(p, λ)

and

v(p) =

∫
Λ
g0(λ

′)hi(p, λ
′)dλ′

The functions u and v are integrable and bounded. If λ belongs to the interior

of Ω(p0) then u(p) = f0,i(θ(p,λ))θp(p,λ) on a neighborhood of p0 and thus u

is continuous on this neighborhood. If λ does not belong to the interior of

Ω(p0) then u(p) = 0 on a neighborhood of p0, and thus u is continuous on this

neighborhood. Furthermore, since inf p < p0 < sup p the function hi(p0, λ
′) is

positive on a subset of Λ of positive measure. Thus, v(p0) > 0 and v is continuous

on a neighborhood of p0. Therefore u and v satisfy all the assumptions of Lemma

A.3, which by A.6 implies

lim
t→+∞

gt,nt,i(λ) = g∞,i(λ).

This completes the proof of Lemma A.2.

To conclude the proof of Proposition 2.2, note that g∞,1 and g∞,2 have the

same support Ω(p0). Take λ1, λ2 ∈ Ω(p0) such that λ1 > λ2. We have

θ(λ1, p0) < θ(λ2, p0) since p is increasing

⇒f0,1(θ(λ1, p0))

f0,2(θ(λ1, p0))
≤ f0,1(θ(λ2, p0))

f0,2(θ(λ2, p0))
since f0,1 ≽ f0,2

⇒h1(p0, λ1)

h2(p0, λ1)
≤ h1(p0, λ2)

h2(p0, λ2)

⇒g∞,1(λ1)

g∞,2(λ1)
≤ g∞,1(λ2)

g∞,2(λ2)
.
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This proves that g∞,1 ≼ g∞,2.

Proof of Proposition 2.3 We omit the details for the sake of brevity. With

arguments similar to the proof of Proposition 2.2 it is possible to prove that f∞,1

and f∞,2 have the same (non-empty) support and that f∞,1/f∞,2 is proportional

to f0,1/f0,2 on that support.

B.2 Proof of Proposition 3

We prove the result for the subsequence that consists only of dates that are

multiples of m, as extending the result to intermediate dates is straightforward.

To simplify the notation we therefore write Ft,ht,i for the beliefs held after trying

t environments, i.e. mt periods in total.

For any θ and any k ∈ {0, · · · ,m}, let

qk(θ) =

(
m

k

)∫
Λ
Lm,k(λ, θ)dG0(λ)

be the probability of succeeding k times out ofm trials in a stable an environment

randomly drawn according to g0 and conditional on ability being equal to θ.

For any date t and any k ∈ {0, · · · ,m}, let nt,k ∈ {0, · · · , t} be the number

of environments up to date t at which the individual has succeeded k times and

failed m− k times, and ht = (nt,0, · · · , nt,m).

Fix ϵ and take any θ̃ < θ0 and any δ such that θ̃ < θ0 − δ < θ0. Bayes’ rule

delivers

Ft,ht,i(θ̃)

1− Ft,ht,i(θ̃)
=

∫ θ̃

θ

m∏
k=0

qk(θ)
nt,kdF0,i(θ)∫ θ̄

θ̃

m∏
k=0

qk(θ)
nt,kdF0,i(θ)

. (A.10)

Take θ1 ≤ θ̃.

1

t
ln

[ m∏
k=0

qk(θ1)
nt,k

m∏
k=0

qk(θ̃)
nt,k

]
=

m∑
k=0

nt,k
t

ln
[qk(θ1)
qk(θ̃)

]
. (A.11)

By the law of large numbers, nt,k/t → qk(θ0) almost surely for any k. For
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any such sequence, the right-hand side of A.11 converges to

DKL(Qθ0 ||Qθ̃)−DKL(Qθ0 ||Qθ1)

where for any θ, DKL(Qθ0 ||Qθ) is the Kullback-Leibler divergence from Qθ to

the true distribution Qθ0 defined by

DKL(Qθ0 ||Qθ) =
m∑
k=0

qk(θ0) ln qk(θ0)
qk(θ)

.

Since θ1 ≤ θ̃ < θ0 it is easy to see that

DKL(Qθ0 ||Qθ̃) ≤ DKL(Qθ0 ||Qθ1)

and thus by Equation A.11,

m∏
k=0

qk(θ1)
nt,k ≤

m∏
k=0

qk(θ̃)
nt,k

when t is large enough.

Similar arguments prove that for any θ2 ∈ [θ0 − δ, θ0],

m∏
k=0

qk(θ2)
nt,k ≥

m∏
k=0

qk(θ0 − δ)nt,k

when t is large enough.

Hence by Equation A.10, there exists t0 such that for any t ≥ t0,

Ft,ht,i(θ̃)

1− Ft,ht,i(θ̃)
≤ θ̃ − θ

δ

m∏
k=0

qk(θ̃)
nt,k

m∏
k=0

qk(θ0 − δ)nt,k

. (A.12)

Note that

1

t
ln

[ m∏
k=0

qk(θ̃)
nt,k

m∏
k=0

qk(θ0 − δ)nt,k

]
=

m∑
k=0

nt,k
t

ln
[ qk(θ̃)

qk(θ0 − δ)

]
. (A.13)

The right-hand side of A.13 converges to DKL(Qθ0 ||Qθ0−δ)−DKL(Qθ0 ||Qθ̃)
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which is negative since θ̃ < θ0−δ < θ0. Thus, the left-hand side of A.13 converges

to a negative limit, which implies that the argument of the logarithm tends to

zero. As a consequence there exists t1 such that t ≥ t1 implies

m∏
k=0

qk(θ̃)
nt,k

m∏
k=0

qk(θ0 − δ)nt,k

<
ϵδ

θ̃ − θ
.

Equation A.12 implies that for any t ≥ max (t0, t1),

Ft,ht,i(θ̃)

1− Ft,ht,i(θ̃)
< ϵ.

This proves that Ft,ht,i(θ̃) → 0 almost surely for any θ̃ < θ0. Similar ar-

guments show that Ft,ht,i(θ̃) → 1 almost surely for any θ̃ > θ0. Thus with

probability one Ft,ht,i converges in distribution to F∞,i defined by F∞,i = δθ0 .

B.3 Proof of Section 4.2.1

We first explain Equation 1. By Bayes’ rule, the agent’s subjective probabil-

ity of success from selecting arm 1 at the next trial equals

(1− q)(1− ν)plB
nt
t (pl) + [(1− q)ν + q(1− ν)]pmB

nt
t (pm) + qνphB

nt
t (ph)

(1− q)(1− ν)Bnt
t (pl) + [(1− q)ν + q(1− ν)]Bnt

t (pm) + qνBnt
t (ph)

.

(A.14)

His subjective probability of success from selecting arm 2 equals

(1− q)[(1− ν)Bnt
t (pl) + νBnt

t (pm)][(1− ν)pl + νpm]

(1− q)(1− ν)Bnt
t (pl) + [(1− q)ν + q(1− ν)]Bnt

t (pm) + qνBnt
t (ph)

(A.15)

+
q[(1− ν)Bnt

t (pm) + νBnt
t (ph)][(1− ν)pm + νph]

(1− q)(1− ν)Bnt
t (pl) + [(1− q)ν + q(1− ν)]Bnt

t (pm) + qνBnt
t (ph)

.

The agent strictly prefers selecting arm 2 if and only if expression A.14 is

smaller than expression A.15. After some algebra, this condition simplifies to

condition 1.

We now prove that if condition 1 is satisfied for some parameter values

(q, nt, t), it is also satisfied in (q′, nt, t) for any q′ > q and in (q, n′, t) for any

n′ < nt.

Indeed, given that pl < pm < ph it is easy to check that, for any (nt, t),

Bnt
t (ph) > Bnt

t (pm) implies that Bnt
t (pm) ≥ Bnt

t (pl). Hence, if condition 1 is
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satisfied for some q < 1 we must have Bnt
t (ph) ≤ Bnt

t (pm), which implies that

the condition is satisfied in q′ = 1; since Equation 1 is affine in q, it is therefore

satisfied for any q′ > q. In addition, if condition 1 is satisfied after nt ≥ 1

successes then

(1− q)(pm − pl)[B
nt−1
t (pm)−Bnt−1

t (pl)] + q(ph − pm)[Bnt−1
t (ph)−Bnt−1

t (pm)]

= (1− q)(pm − pl)[
1− pm
pm

Bnt
t (pm)− 1− pl

pl
Bnt

t (pl)]

+ q(ph − pm)[
1− ph
ph

Bnt
t (ph)−

1− pm
pm

Bnt
t (pm)]

≤1− pm
pm

[
(1− q)(pm − pl)[B

nt
t (pm)−Bnt

t (pl)] + q(ph − pm)[Bnt
t (ph)−Bnt

t (pm)]
]

since − 1− pl
pl

≤ −1− pm
pm

and
1− ph
ph

≤ 1− pm
pm

≤0

and thus the condition is satisfied after nt − 1 successes. By induction it is

satisfied for any n′ < nt.

B.4 Proof of Proposition 4

We start by establishing some general properties of the decision problem and

of the value function. We then prove Propositions 4.1 and 4.2 in turn. The proof

that the agent stops experimenting in finite time almost surely is included in

both parts.

B.4.1 Preliminaries

In all this subsection we assume that the agent’s true ability is θ.

The agent’s beliefs about his own ability and the current environment are

summarized by the probability distributionA = (α, β, γ, ω) over the two-dimensional

variable (λ, θ): (α, β, γ, ω) are the weights assigned to the states (λ, θ), (λ, θ), (λ, θ),

and (λ, θ). If the agent tries a new environment while his current beliefs assign

a weight q to θ, then A = [(1− ν)(1− q), ν(1− q), (1− ν)q, νq].

Let

p(A) = αpl + (β + γ)pm + ωph

be the immediate expected reward from the current environment under beliefs

A.
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Let

W (A, σ) = EA

+∞∑
t=0

δtπt(σt)

be the value of a strategy σ given initial beliefs A. The value function of the

problem is

V (A) = sup
σ
W (A, σ).

For any A = (α, β, γ, ω), let

ψA =
1

αpl + (β + γ)pm + ωph
[αpl, βpm, γpm, ωph]

be the updated distribution after a success in the current environment. Let ϕA

be defined similarly, as the updated distribution after a failure in the current

environment. Lastly, let

hA =
[
(α+ β)(1− ν), (α+ β)ν, (γ + δ)(1− ν), (γ + δ)ν

]
be the distribution of states corresponding to arm 2.

The space of possible distributions A is endowed with the Euclidean topology

on the three-dimensional simplex.

Lemma A.4. There exists an optimal strategy. The value function V is contin-

uous in A and satisfies

V (A) = max
[
p(A) + δp(A)V (ψA) + δ(1− p(A))V (ϕA), V (hA)

]
.

Proof. The existence of an optimal policy and the Bellman equation follow from

standard arguments since the value of any strategy is bounded between 0 and

1/(1− δ).

To prove the continuity of V , fix a distribution A, an optimal strategy σ

under A and ϵ > 0. Fix T such that δT+1/(1− δ) ≤ ϵ/4.

Since the rewards are Bernoulli, there exists a constant a > 0 such that, for

any distribution B such that ∥A − B∥ < a, the probabilities of any history up

to date T under A and under B differ by at most ϵ/T (T +1). This implies that

|Eσ,A

T∑
t=0

δtπt − Eσ,B

T∑
t=0

δtπt| ≤
T∑

n=0

n
ϵ

T (T + 1)
=
ϵ

2
.
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Hence

|W (A, σ)−W (B, σ)|

≤|W (A, σ)− Eσ,A

T∑
t=0

δtπt|+ |Eσ,A

T∑
t=0

δtπt − Eσ,B

T∑
t=0

δtπt|+ |Eσ,B

T∑
t=0

δtπt −W (B, σ)|

≤ ϵ
4
+
ϵ

2
+
ϵ

4
= ϵ.

Hence, in the B-bandit the strategy σ delivers a value at least equal to

V (A)− ϵ, which implies V (B) ≥ V (A)− ϵ. The symmetric reasoning shows that

V (A) ≥ V (B)−ϵ, and thus |V (B)−V (A)| ≤ ϵ for any B such that ∥A−B∥ < a.

This proves the continuity of V .

Let us write V1(A) = p(A) + δp(A)V (ψA) + δ(1− p(A))V (ϕA) and V2(A) =

V (hA) for the expected payoffs obtained after pulling arm 1 or arm 2 respectively,

and playing optimally thereafter.

For any q ∈ [0, 1], let A0,q = [(1 − q)(1 − ν), (1 − q)ν, q(1 − ν), qν] be the

agent’s beliefs if he tries a new environment with a self-confidence q.

Lemma A.5. V (A0,q) is strictly increasing in q.

Proof. Consider q < q′ and let A0,q and A0,q′ be the corresponding initial distri-

butions. Consider any date t and a history ht of outcomes up to date t, possibly

in different environments. Let fλ,θ(ht) be the (ex ante) probability of observing

the history ht conditional on the true type being θ and the current environment

at date t being of type λ; let fλ,θ(ht), fλ,θ(ht), and fλ,θ(ht) be defined similarly.

Starting from the distribution A0,q the agent’s posterior beliefs At,q at date

t are proportional to

[
(1− q)(1− ν)fλ,θ(ht), (1− q)νfλ,θ(ht), q(1− ν)fλ,θ(ht), qνfλ,θ(ht)

]
.

Thus, the agent’s subjective distribution over the immediate success probability

of arm 1 is strictly increasing in q in the monotone likelihood ratio ordering.

Hence, p(At,q′) > p(At,q) for any q
′ > q.

The agent’s posterior beliefs hAt,q over arm 2 are proportional to

[
(1− q)(1− ν)[(1− ν)fλ,θ(ht) + νfλ,θ(ht)], (1− q)ν[(1− ν)fλ,θ(ht) + νfλ,θ(ht)],

q(1− ν)[(1− ν)fλ,θ(ht) + νfλ,θ(ht)], qν[(1− ν)fλ,θ(ht) + νfλ,θ(ht)]
]
.
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Similarly, the agent’s subjective distribution over the immediate success proba-

bility of arm 2 is strictly increasing in q in the monotone likelihood ratio ordering.

Hence, p(hAt,q′) > p(hAt,q) for any q
′ > q.

Hence at any date t and for any history ht, the reward from each arm is

strictly greater under distribution At,q′ than under distribution At,q. If σ is an

optimal strategy for the q-bandit the value of σ in the q′-bandit is therefore

strictly greater than V (A0,q). This implies V (A0,q′) > V (A0,q).

Lemma A.6 relies on arguments similar to the proof of Proposition 3 and is

provided without proof.

Lemma A.6. On any path on which the agent experiments an infinite number

of environments, qt → 0 almost surely.

Lemma A.7. There exists π > 0 and q∗ > 0 such that for any q ≤ q∗, if

the agent tries a new environment with initial self-confidence q then the agent’s

probability of staying in this environment forever is greater than π.

Proof. For any q ∈ [0, 1], let At,nt,q be the agent’s posterior distribution up-

dated from the prior A0,q following nt successes and t − nt failures in the same

environment.

Claim A.3. There exists κ1 > 0, ϵ > 0 such that

nt
t

≥ pm − κ1 ⇒ V1(At,nt,0)− V2(At,nt,0) > ϵ.

Proof. Take κ1, ι > 0 such that

(pm − κ1) ln pm
pl

+ (1− pm + κ1) ln 1− pm
1− pl

> ι. (A.16)

Such a pair (κ1, ι) exists by continuity since the left-hand side of A.16 is positive

for κ1 = 0.

Consider any (nt, t) such that nt/t ≥ pm − κ1. Then

nt
t

ln pm
pl

+ (1− nt
t
) ln 1− pm

1− pl
> ι

which implies

pnt
m (1− pm)t−nt > etιpnt

l (1− pl)
t−nt ≥ pnt

l (1− pl)
t−nt .
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Note that

p(At,nt,0) =
(1− ν)pnt+1

l (1− pl)
t−nt + νpnt+1

m (1− pm)t−nt

(1− ν)pnt
l (1− pl)

t−nt + νpnt
m (1− pm)t−nt

and

p(hAt,nt,0) = (1− ν)pl + νpm

which implies that

p(At,nt,0)− p(hAt,nt,0) =
ν(1− ν)(pm − pl)[p

nt
m (1− pm)t−nt − pnt

l (1− pl)
t−nt ]

(1− ν)pnt
l (1− pl)

t−nt + νpnt
m (1− pm)t−nt

.

Hence, for any (nt, t) such that nt/t ≥ pm − κ1, we have

p(At,nt,0)− p(hAt,nt,0) >
ν(1− ν)(pm − pl)(1− e−tι)pnt

m (1− pm)t−nt

pnt
m (1− pm)t−nt

≥ ϵ

where ϵ = ν(1− ν)(pm − pl)(1− e−ι) is positive since ι > 0.

In addition, arguments similar to those used in the proof of lemma A.5 show

that if p(At,nt,0) ≥ p(hAt,nt,0) then the continuation value after pulling arm 1 is

greater than the continuation value after pulling arm 2. Hence, for any (nt, t)

such that nt/t ≥ pm − κ1 we get

V1(At,nt,0)− V2(At,nt,0) ≥ p(At,nt,0)− p(hAt,nt,0) > ϵ.

This completes the proof of claim A.3.

Claim A.4. There exists κ2 > 0 and M > 0 such that

∀q ∈ [0, 1],
nt
t

≤ pm + κ2 ⇒ ∥hAt,nt,q − hAt,nt,0∥ < Mq.

Proof. The posterior distribution hAt,nt,q is given by

hAt,nt,q = [(1− ν)(1− qt,nt), ν(1− qt,nt), (1− ν)qt,nt , νqt,nt ]

where qt,nt is characterized by

qt,nt

1− qt,nt

=
q

1− q

νpnt
h (1− ph)

t−nt + (1− ν)pnt
m (1− pm)t−nt

νpnt
m (1− pm)t−nt + (1− ν)pnt

l (1− pl)t−nt
. (A.17)
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Take κ2 > 0 such that

(pm + κ2) ln ph
pm

+ (1− pm − κ2) ln 1− ph
1− pm

< 0. (A.18)

Such a number κ2 exists by continuity since the left-hand side of A.18 is negative

for κ2 = 0.

Consider any (nt, t) such that nt/t ≤ pm + κ2. Then

pnt
h (1− ph)

t−nt ≤ pnt
m (1− pm)t−nt

which together with A.17 implies

qt,nt

1− qt,nt

≤ q

1− q

pnt
m (1− pm)t−nt

νpnt
m (1− pm)t−nt + (1− ν)pnt

l (1− pl)t−nt

≤ q

1− q

1

ν

which implies qt,nt ≤ q/ν.

Then for any (nt, t) such that nt/t ≤ pm − κ2,

∥hAt,nt,q − hAt,nt,0∥ = qt,nt

√
2
√
ν2 + (1− ν)2

≤ q

ν

√
2
√
ν2 + (1− ν)2.

The proof follows from defining M =
1

ν

√
2
√
ν2 + (1− ν)2.

Claim A.5. There exists t0 ∈ N such that, conditional on staying in an envi-

ronment of type λ forever, the condition

[∀t, nt
t

≥ pm − κ1] and
[
∀t ≥ t0,

nt
t

≤ pm + κ2

]
is satisfied with positive probability.

Proof. We write A for the complement of an event A. Let Ω be the event

{∀t, nt/t ≥ pm − κ1}. Suppose that the environment is of type λ and consider

the martingale Yt =
∑t

s=1 (nt − pm) and the stopping time ι ∈ N∪{+∞} defined

by ι = inf{t ∈ N | Yt < 0}. Suppose that ι is finite with probability one. The

optional stopping theorem implies that E[Yι] = E[Y1] = 0. But since ι is finite

with probability one we also have E[Yι] < 0, which is a contradiction. Hence,

51



with some positive probability ι is infinite, i.e.

t∑
s=1

nt ≥ pmt ≥ (pm − κ1)t for all t

This implies that the event Ω has positive probability. Let υ = P(Ω) > 0.

Let Et be the event {nt > (pm + κ2)t}. By Hoeffding’s inequality,

P(Et) ≤ exp (−2κ22t)

and thus
∑

t P(Et) < +∞. The Borel-Cantelli lemma implies that

P
(+∞∩

t=1

∪
s≥t

Es

)
= 0

and thus

lim
t→+∞

P
(∪

s≥t

Es

)
= 0.

Take t0 such that

P
( ∪

s≥t0

Es

)
< υ.

We have

P
(
Ω ∩

∩
s≥t0

Es

)
= P(Ω)︸ ︷︷ ︸

=υ

+P
( ∩

s≥t0

Es

)
︸ ︷︷ ︸

>1−υ

−P
(
Ω ∪

∩
s≥t0

Es

)
︸ ︷︷ ︸

≤1

> 0.

This completes the proof.

Claim A.6. There exists q∗ > 0 such that, for all q ≤ q∗,

∀t < t0,∀nt, V2(At,nt,q) < V2(At,nt,0) + ϵ (A.19)

and

∀t ≥ t0,
nt
t

≤ pm + κ2 ⇒ V2(At,nt,q) < V2(At,nt,0) + ϵ. (A.20)

Proof. By claim A.4, the distance between hAt,nt,q and hAt,nt,0 is uniformly

bounded by an expression of the form Mq when t ≥ t0 and nt/t ≤ pm + κ2.

Since t0 is fixed, it is easy to see that the distance between hAt,nt,q and hAt,nt,0

can also be uniformly bounded by an expression of the form M ′q for all (nt, t)

such that t < t0. Since V is continuous, it is thus possible to select q∗ small
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enough to make sure that q ≤ q∗ implies that V (hAt,nt,0) − V (hAt,nt,q) < ϵ for

all (nt, t) that satisfy one of the two above conditions. Conditions A.19 and A.20

follow from V2 = V ◦ h.

To complete the proof of lemma A.7, take ϵ, κ1, κ2, t0 as defined in claims

A.3—A.6, and let π′ > 0 be the probability with which the condition of claim

A.5 is satisfied in an environment of type λ. By claims A.3 and A.6, for all

t we have V1(At,nt,0) > V2(At,nt,0) + ϵ and V2(At,nt,q) < V2(At,nt,0) + ϵ. In

addition, arguments similar to those used in the proof of lemma A.5 show that

V1(At,nt,q) ≥ V1(At,nt,0) for all q ≥ 0. Hence, for any t we have

V1(At,nt,q)− V2(At,nt,q) ≥ V1(At,nt,0)− V2(At,nt,q)

≥ V1(At,nt,0)− V2(At,nt,0)︸ ︷︷ ︸
>ϵ

− [V2(At,nt,q)− V2(At,nt,0)]︸ ︷︷ ︸
<ϵ

> 0.

Hence, at any date t the agent finds it optimal to stay in the current environment.

Thus if the environment is of type λ the probability with which the agent stays in

this environment forever is at least π′. Note that π′ is independent of q. Defining

π = νπ′ completes the proof.

B.4.2 Proof of Proposition 4.1

First step We first prove that the agent stops experimenting in finite time

almost surely. Let us proceed by contradiction and assume that the agent ex-

periments forever. Suppose first that qt converges to 0. There exists t0 such

that qt ≤ q∗ for any t ≥ t0. Thus, by lemma A.7 for any new environment

tried at a date t ≥ t0 the probability of staying in this environment forever is

at least π > 0. This implies that the agent stops experimenting in finite time

with probability one. The other case in which qt does not converge to zero also

happens with probability zero due to lemma A.6. This shows that the agent

stops experimenting in finite time almost surely.

In addition, suppose that the last environment is of type λ. If At converges

to (1, 0, 0, 0), by continuity of the value function the value of arm 1 converges

to V [(1, 0, 0, 0)] whereas the value of arm 2 converges to V [(1− ν), ν, 0, 0] which

is strictly greater. Thus for t sufficiently large it must be optimal to leave the

environment, which is a contradiction. Hence, if the last environment is of type

λ the sequence At does not converge to (1, 0, 0, 0), which is a zero-probability
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event. This proves that with probability one the agent stops experimenting in

finite time in an environment of type λ.

Second step Now, let us prove that q is bounded above. Let q be the agent’s

initial self-confidence when he tried his last environment for the first time. With

probability one qt converges to

q∞ =
q(1− ν)

q(1− ν) + (1− q)ν
.

To prove that q∞ is bounded above, note that V (A0,q) is a strictly increasing

and continuous function of q that satisfies V (A0,0) < pm/(1 − δ) < V (A0,1).

Thus there exists q̄ ∈ (0, 1) such that

V (A0,q̄) =
pm
1− δ

.

Suppose that q∞ > q̄. At converges to (0, 1 − q∞, q∞, 0) almost surely, in

which case the value of arm 1 converges to pm/(1− δ) whereas the value of arm

2 converges to V (A0,q∞) > pm/(1 − δ); thus, the agent must find it optimal to

leave in finite time, which is a contradiction. Hence q∞ ≤ q̄ almost surely.

B.4.3 Proof of Proposition 4.2

Lemma A.7 implies that there exists q∗ > 0 such that for any q ≤ q∗, if the

agent tries an environment of type λ with initial self-confidence q then the agent

stays forever in this environment with positive probability.16

First step That the agent stops experimenting in finite time almost surely

and that qt converges relies on arguments similar to the proof of Proposition 4.1.

Second step We first show that with probability one either of cases 4.2a or

4.2b is realized. If the last environment is of type λ, then with probability one

the asymptotic success rate converges to ph and thus qt converges to 1. If the

last environment is of type λ, a reasoning similar to the proof of Proposition 1

shows that with probability one q∞ must be bounded above by some constant

q, otherwise the agent would leave the environment in finite time.

16Indeed, lemma A.7 only requires that with positive probability the agent selects an
environment in which the expected success rate is pm. This is the case here if θ = θ for
an environment of type λ.
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Our final step is to show that both cases 4.2a and 4.2b happen with positive

probability. First, we argue that for any initial self-confidence q there exists

an integer t0 ≥ 1 such that, if the first t0 attempts made by the agent in a

new environment are unsuccessful, the agent’s optimal action is to switch to a

new environment. Thus, there exists an integer t such that, if the agent has

failed at every period up to date t (and switched optimally on that path), then

qt ≤ q∗. Such a number t exists since qt → 0 when t→ ∞ if the agent fails at each

period. In addition, t can be chosen to make sure that the agent switches to a new

environment at date t. Failing t consecutive times is a positive-probability event,

and the agent stays forever in an environment of type λ with positive probability

thereafter. This proves that case 4.2a happens with positive probability.

Arguments similar to those used in the proof of lemma A.7 show that we

can construct a path on which the agent succeeds at every period until q exceeds

some threshold q̃, after which the agent has a positive probability of staying in

his current environment if this environment is of type λ. Case 4.2b thus also

happens with positive probability.
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