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The risk-adjusted carbon price 
 
 

Abstract 
 
We use perturbation methods to derive a rule for the optimal risk-adjusted social cost of carbon 
(SCC) that incorporates the effects of uncertainties associated with climate and the economy 
from a calibrated DSGE model. We allow for different aversions to risk and intertemporal 
fluctuations, convex damages, uncertainties in economic growth, atmospheric carbon, climate 
sensitivity and damages, their correlations, and distributions that are skewed in the longer run to 
capture long-run climate feedbacks. Our non-certainty-equivalent rule for the SCC incorporates 
precaution, risk insurance, and climate sensitivity and damage rate hedging effects to deal with 
future economic and climatic and damage risks. 

JEL-Codes: H210, Q510, Q540. 

Keywords: precaution, insurance, hedging, economic, climatic and damage uncertainties, 
skewness, mean reversion, correlated risks, risk aversion, intergenerational inequality aversion, 
convex damages. 
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The social cost of carbon (SCC) is the Pigouvian tax that internalizes the 

expected harm of emitting one ton of carbon to the economy, i.e. the expected 

present discounted value of all future marginal utility losses resulting from 

emitting one ton of carbon today, converted from utility into dollars today. The 

risk-adjusted SCC incorporates uncertainties1 associated with climate and the 

economy when calculating this tax. If global warming is the only market failure, 

it is optimal in a decentralized economy to set the price of carbon emissions 

(e.g. a specific carbon tax or the price in a competitive permit market) to the 

SCC. To evaluate the SCC, one must know how much of one ton of carbon 

emitted at time t is left in the atmosphere at each future time s  t, i.e. 

( ) / ( )S s F t   with S(s) the stock of atmospheric carbon at time s and F(t) the 

rate of carbon emissions at time t; the effect of the atmospheric carbon stock on 

temperature ( ) / ( );T s S s   the effect of temperature on damages to aggregate 

output ( ) / ( ) 0;s T s   and utility of consumption ( )( )U C s  at time s. For 

time-separable utility with exponential discounting, the SCC is thus defined by 

(1)     ( )
( )

( )( ) ( ) ( ) 1
( ) ' ( ) ,

( ) ( ) ( ) ' ( )

s t

t
t

s T s S s
P t U C s e ds

T s S s F t U C t




− −
    

    
    

  

where   0 is the rate of pure time preference. We begin by illustrating the 

simplest case, in which only consumption is uncertain. We assume that 

atmospheric carbon decays at rate , so ( )( ) / ( ) ,s tS s F t e − −  =  the marginal 

effect of atmospheric carbon on damages is proportional to aggregate 

consumption, ( )( )( ) ( ) ( ) ( ) ( )s T s T s S s C s    =  with   a constant2, 

consumption follows a geometric Brownian motion, dC gdt CdW= +  with g  

the drift,  the volatility and W a unit Wiener process, and utility is of the form 

1( ) / (1 )U C C  −= −  with 0   the coefficient of relative aversion to 

                                                           
1 We use the terms risk and uncertainty interchangeably. 
2 This assumes that the concavity of temperature as a function of the atmospheric carbon stock is exactly offset by the 
convexity of damages as function of temperature, so that damages are proportional to the carbon stock and marginal 

damages (with respect to the carbon stock) are constant (cf. Golosov et al., 2014). 
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intergenerational inequality aversion and risk. We then obtain from (1) that3 

(2)    * * 21
( ) ( ) / ( )   with   ( 1)( ).

2
P t C t r r g   =  + = + − −  

 

The discount rate r* in (2) is the safe interest rate ( ) 2

rf 1 / 2r g    = + − +  

(a Keynes-Ramsey rule with a prudent correction for growth volatility), plus the 

risk premium 2  for damages proportional to GDP, minus the growth rate g 

to correct for growing damages. The SCC is proportional to aggregate 

consumption, since marginal damages are too. Higher future affluence and less 

growth volatility push up the SCC if 1  .4  

The literature concerned with finding the optimal risk-adjusted SCC consists 

of two strands. Numerically, different authors have performed numerical 

calculations of the optimal SCC under multiple sources of uncertainty, first with 

Monte-Carlo simulations (e.g., Ackerman and Stanton, 2012; Dietz and Stern, 

2015) and more recently by tackling the dynamic programming problem with 

advanced numerical methods (e.g., Crost and Traeger, 2013; Traeger, 2014a; 

Jensen and Traeger, 2014; Hambel et al., 2017).5 Analytically, the literature on 

discounting under uncertainty and optimal carbon prices typically deals with 

one uncertainty at a time (e.g., Gollier, 2012; Traeger, 2014b). At the start of 

this analytical literature, Golosov et al. (2014) obtained a simple rule for the 

optimal SCC reacting to world GDP only, making bold assumptions including 

logarithmic utility6, which imply that growth uncertainty does not affect the 

                                                           
3 It is easy to allow for richer dynamics in the atmospheric carbon stock. E.g., Joos et al. (2013) use a N-box linear 

carbon cycle, ( )
1

0 1
1 ( ) / ( ) exp( ( ))

N

i ii
S s F t s tt  

−

=
  = + − −  with 

1

0
1

N

ii


−

=
= , where 

i  is the rate of decay of 

the i-th transient component of atmospheric carbon and 
00 1   the fraction of emissions that stays in the atmosphere 

forever. The SCC then becomes 
* *

0 1
[ / / ( )] .

N

i ii
P r r C 

=
= + +    

4 See also Gollier (2012) and Traeger (2014b) for the effect of growth volatility on the discount rate. 
5 Lemoine and Traeger (2014; 2016), Lontzek et al. (2015) and Cai et al. (2016) study numerically the optimal SCC in 

the face of climate tipping risks. Lemoine and Rudik (2017) review recursive numerical assessment and Monte Carlo 

evaluation of climate policy under uncertainty and discuss learning. 
6 They have a discrete-time (decadal) model, assume logarithmic utility, Cobb-Douglas production, 100% depreciation 

of capital each period, and total factor productivity as an exponential function of the atmospheric carbon stock. 
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SCC (cf. Traeger, 2017). Gerlagh and Liski (2016) also derive a simple rule7 

and examine this in the context of learning about uncertain impacts. Jensen and 

Traeger (2016) show how the effect of climate sensitivity on the risk premium 

in the SCC depends on prudence and convexity of marginal damages. Lemoine 

(2017) decomposed the SCC into different components due to uncertain 

warming, damages and economic growth. He showed that the sign of the effect 

of so-called climate betas, representing the normalized covariances of different 

climatic uncertainties with the rate of economic growth, on the SCC depends on 

whether relative risk aversion is greater than one or not.8 In both the 

decompositions by Jensen and Traeger (2016) and Lemoine (2017) 

consumption is set exogenously. Very recently, two first steps have been made 

towards a simple rule for the risk-adjusted SCC in a general equilibrium model. 

Traeger (2017) transforms an integrated assessment model with a range of 

climate uncertainties, in which consumption is determined endogenously but 

with full capital depreciation after one period following Golosov et al. (2014) 

and the restriction that the model that is linear in states with additively separable 

controls. Finally, Bretschger and Vinogradova (2018) extend the endogenous 

growth model of Pindyck and Wang (2013) to allow for Poisson shocks in the 

capital stock in their analysis of carbon pricing. 

Our aim here is to derive a general rule for the optimal SCC that maximizes 

expected welfare in a Dynamic Stochastic General Equilibrium (DSGE) model. 

We allow for uncertainty in projections of the carbon stock, of the impact of the 

atmospheric carbon stock on temperature, of temperature on damages and of the 

GDP growth rate, as well as their correlations, and analyse the precautionary, 

insurance and hedging determinants of the SCC. We allow skewness and 

uncertainty of the response in temperature resulting from doubling the 

atmospheric carbon stock, as captured by the climate sensitivity, to rise with 

                                                           
7 Van den Bijgaart et al. (2016) compare such a simple rule to numerical evaluations of the SCC from a standard 

integrated assessment model in a deterministic setting.  
8 Alternatively, it depends on whether the risk insurance effect (what we will call the climate hedging effect) dominates 

the exposure effect (what we will call the offsetting effect due to damages being proportional to GDP). 
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time, reflecting key differences in short-term (cf. transient climate response) and 

long-term (cf. equilibrium climate sensitivity) uncertainty predictions. We 

allow risk aversion to differ from intergenerational inequality aversion (Kreps 

and Porteus, 1978; Epstein and Zin, 1989; Duffie and Epstein, 1992). Finally, 

we allow for general concave or convex relationships between the carbon stock 

and temperature and between temperature and damages.9 In doing so, we 

generalize Golosov et al.’s (2014) rule for non-unitary coefficients of relative 

risk aversion and intergenerational inequality aversion, more convex damages, 

uncertainty in the carbon stock, climate sensitivity and damages, and skewness 

and mean reversion in the distributions governing these variables.   

Our DSGE model adapts the endogenous growth model with investment 

adjustment costs of Pindyck and Wang (2013) to allow for fossil fuel use, 

climate change and damages. To obtain a simple result akin to (2), we  solve our 

DSGE model using perturbation methods around a known analytical solution 

path, where the “small” perturbation parameter is the fraction of damages in 

GDP.10 By using a power-function transformation of a normal variate displaying 

a variance that grows in time,11 we capture the significant right-skew evident in 

the equilibrium (i.e. long run) climate sensitivity, but not in the transient climate 

response, whilst capturing the difference in time scales on which these apply, 

but avoiding the fat tails in Weitzman’s (2009) ‘dismal theorem’.  

We derive three results. Result 1 gives our general expression for the optimal 

risk-adjusted SCC and can be evaluated by numerical evaluation of a multi-

dimensional integral, avoiding the daunting task of numerically solving the 

underlying multi-state Hamilton-Jacobi-Bellman equations. For the case of 

damages proportional to the atmospheric carbon stock and focusing only on the 

leading-order effects of uncertainty, Result 2 evaluates this rule in closed form. 

Result 3 generalizes it for convex dependence of damages on the carbon stock, 

                                                           
9 Hence, the so-called flow damage coefficient  in ( ( ) / ( ))( ( ) / ( )) ( )D s T s T s S s C s    =  will no longer be constant 

but depend on the stochastic atmospheric carbon, temperature and damages. 
10 Using scaling, we identify the damages ratio as the only “small” non-dimensional quantity. Judd (1996, 1998), Judd 
and Guu (2001) and Binsbergen et al. (2012) use perturbation analysis (e.g. Bender and Orszag, 1999) in discrete time. 
11 Specifically, we use an Ornstein-Uhlenbeck process. 
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giving the SCC in the form of one-dimensional deterministic integrals.  

Generalizing (2) to recursive preferences, we find that precaution about 

uncertain growth outcomes implies a lower discount rate and a higher optimal 

SCC, whilst a risk-insurance term increases the discount rate and curbs the SCC. 

If intergenerational inequality aversion exceeds one, the discount rate is 

adjusted downwards and the SCC upwards with riskier growth prospects. The 

upward correction to the SCC to allow for temperature uncertainty depends on 

the combination of the skewness of its equilibrium probability distribution, the 

convexity of damages, the (non-climatic) risk-adjusted discount rate and, 

crucially, on the time scale on which the equilibrium distribution is reached. 

 In our analysis, the three different climatic uncertainties have their own betas, 

representing their normalized covariances with shocks to the rate of economic 

growth: the carbon stock beta, the temperature beta and the damage beta with 

the latter two the most important. If the economy is concentrated in economic 

sectors that benefit from high (low) temperature, the temperature beta is positive 

(negative), and we show that the optimal risk-adjusted SCC is lower (higher) 

provided risk aversion exceeds one, as found by Lemoine (2017). If the 

economy is concentrated in adaptation industries (e.g. flood defences), shocks 

to future damages are associated with higher assets returns so the damage beta 

is positive. We show that, if the coefficient of relative risk aversion exceeds one, 

the optimal SCC is then reduced,12 although we note that such capital allocation 

is rare, especially in the developing world. Finally, we calibrate our model and 

show how the optimal SCC is quantitatively by the different uncertainties.  

 Section I presents our model. Sections II derives Result 1. Section III 

derives Result 2 with Result 3 in Appendix A. After a discussion of our 

calibration in Section IV, Section V estimates the optimal SCC and the effects 

of the various uncertainties. Finally, Section VI concludes. 

                                                           
12 This differs from the built-in climate beta due to damages being proportional to GDP, which also implies that 
uncertainty depresses the SCC. The built-in climate beta also has a deterministic effect, namely that trend growth 

increases the SCC, as is clear from (2). 
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I. A DSGE Model of Global Warming and the Economy 

We start from the DSGE model with endogenous AK growth of Pindyck and 

Wang (2013) and add fossil fuel use as a production factor. Fossil fuel use gives 

rise to global warming and damages to output. The coefficient of relative risk 

aversion,  = CRRA   0, may differ from the coefficient of relative 

intergenerational inequality aversion, IIA = 1/EIS =    0, where EIS is the 

elasticity of intertemporal substitution. We use the continuous-time version of 

recursive preferences (Duffie and Epstein, 1992), where the recursive 

aggregator ( , )f C J  depends on consumption C and the value function 

(3)   ( )( ), ( )
t

tJ E f C s J s ds

 
=  

 
   with ( )

( )( )

( )( )

1
1 1

1
1

1

11
,

1
1

.f
C J

J

C J


 





 




−
− −

−
−

−

− −

−
−

=  

The dynamics of the aggregate capital stock follow from  

(4)     1

21
   with   ( , ) ,( ,

2
) K

I
dK dt KdW KI K I I K

K
 =  = − −+  

 

where K denotes the capital stock, I investment, 0   the depreciation rate of 

physical capital, and 0   the adjustment cost parameter. 13,14 Adjustment costs 

are quadratic and homogenous of degree one in capital and investment. Capital 

is subject to continuous geometric shocks with relative volatility ,K  and 
1W   

is a Wiener process, representing both economic growth and asset return 

uncertainty in the context of the AK-model considered. Investment is 

,I Y C bF= − −  where Y is aggregate production, F fossil fuel use, and b the 

production cost of fossil fuel. Fossil fuel is supplied inelastically at fixed cost. 

The final goods production function is 1  with 0 1Y AK F  −=    and 

                                                           
13 With AK growth, shocks to the capital stock and productivity are equivalent. To avoid an extra state, we introduce 

volatility directly in the capital dynamics (cf. Pindyck and Wang, 2013). 
14 For ease of presentation, we first introduce the separate evolution equations for the four stochastic variables before 

introducing the covariance matrix of these four state variables. 
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*(1 )A A D −  is total factor productivity. Damages as share of pre-damages 

aggregate output D  increase in global mean temperature relative to 

preindustrial temperature T. We use the power-function specification  

(5)            
11

( , )    with   1   and   1,T

TD T T 

   ++
=  −  −  

 

where the (positive) stochastic variable   captures the uncertain nature of 

damages for a given temperature. Convexity of damages with respect to 

temperature corresponds to / 0.TT TT TD D   15 To allow for potential 

skewness in the impact of damage shocks even if   has a symmetric 

distribution, we raise it to the power 1 + . 

The part of atmospheric carbon, S, associated with man-made emissions is 

PI ,E S S −  where PIS  is the preindustrial carbon stock. The rate of carbon 

emissions is exp( ),F gt−  where F is fossil fuel use and exp( )gt−  the emission 

intensity which declines at the endogenous economic growth rate g. A 

proportion 0 1   of fossil fuel emissions ends up in the atmosphere. 

Atmospheric carbon decays at the rate 0.   The carbon stock dynamics is 

 (6)        2(    and   max(0, ),) E

gtdE dWFe E dt E E  −= − + =  

 

where 
2W  denotes a second Wiener process, so the carbon stock is described by 

a (truncated) Arithmetic Brownian motion with absolute volatility 0.E  16 

This specification ensures that the expected value of the carbon stock returns to 

its preindustrial value when emissions cease. We have for temperature 

                                                           
15 Subscripts of functions denote partial derivatives. 
16 One can allow for a permanent and one (Golosov et al., 2014), two (Gerlagh and Liski, 2018) or three (Millar et al., 

2017) temporary basins of atmospheric carbon. Appendix F.3 shows that our 1-box model reproduces historical 

atmospheric carbon stocks well, and section IV illustrates how it captures all the key features of future projections. 

Millar et al. (2017) allow the speed at which oceans absorb atmospheric carbon (akin to our ) to fall with warming. 

We ignore such positive feedback effects and associated multiplicative uncertainty. 



8 
 

(7)      
1 1

PI( , ) ( / )    with   1   and   1,E

ET E E S 

   
+ +

=  −  −   

 

where the (positive) stochastic variable  captures the uncertain nature of 

temperature for a given carbon stock. A negative value of E  captures the 

concavity of Arrhenius’ law. The parameter   captures skewness in the impact 

of shocks even if  has a symmetric distribution. We allow for the effect of lags 

via  the time-varying dynamics of the stochastic process for the random variable 

.17 The climate sensitivity is the temperature increase from doubling the carbon 

stock from its preindustrial level, i.e. 
1

2 ( , ) ,PIT T E S  
+

= =  and depends 

on the stochastic climate sensitivity parameter . We will show that its leading-

order skewness is   43(1 )3

2s (ke /1w )3 ( )T 

       
+

= +  and increases in the 

skewness parameter   and the coefficient of variation /   (see Appendix 

F.5). Combining equations (5) and (7), damages become 

(8)     
1 1 1

( , , ) ( / )    with   .T ET

PI T T TD E E S 
  

          
+ + +

=  + +   

 

The parameter ET E T E T     + +  captures the combined effect of the 

concave relationship between temperature and the carbon stock ( 1 0E−   ) 

and the convex relationship between damages and temperature ( 0T  ). It is 

positive or negative depending on which effect dominates. We refer to 0ET =  

as proportional damages (cf. Golosov et al., 2014 and the introductory example) 

and 0ET   as convex damages, reflecting the dependence of damages on the 

carbon stock. The parameter 
T  captures the joint effect of skewness of the 

climate sensitivity ( 0  ) and convexity of the damage function with respect 

                                                           
17 We thus include potential effects of temperature lags from ocean heating, which affect estimates of the long-run 

climate sensitivity (e.g., Roe and Bauman, 2011). In reality, the response to small emissions is much faster and on a 
decadal scale (Ricke and Caldeira, 2014) than the response to larger emissions (Zickfeld and Herrington, 2015), 

reflecting nonlinearity in the system, which is not captured by our Ornstein-Uhlenbeck process (10a). 
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to temperature ( 0T  ). From (8), total factor productivity and aggregate output 

fall in the carbon stock and the shocks to climate sensitivity and damages: 

(9)   ( )1 111 *( , , )  with   ( , , ) 1 ( / ) .TET

PIY A E K F A E A E S  
       
+ ++−=  −   

 

Uncertainties in the climate sensitivity and the damage ratio are driven by 

truncated mean-reverting stochastic Ornstein-Uhlenbeck processes with means 

, ,  mean reversion coefficients , , and volatilities , ,  18 

(10a)             3( )d dt dW     = − +    and  max(0, ), =  

(10b)             4( )d dt dW     = − +     and   max(0, ), =  

 

where 
3W  and 4W  are two Wiener processes. 19  Together with 

1
T 

+
  in (7), 

the process (10a) captures two features of the climate sensitivity distribution. 

First, temperature uncertainty increases with time, reaching a steady state 

associated with the equilibrium climate sensitivity (ECS) and its variance and 

skewness. We calibrate the ECS to the steady-state variance of (10a), 

2 2 2    →  as 1t → , so that 1   is the e-folding time for reaching the 

steady state. 20 Second, we can use our model to fit the less wide and skew 

distribution of the transient climate response (TCR). 

                                                           
18 Equation (10a) has solution 

0( ) (1 )
t t

t e e  
  

− −
= + − +

( )

3
0

( ),
t t s
e dW s


− −

  and similarly for equation (10b). The 

random variables ( )t and ( )t  are normally distributed with time-varying moments: 2~ ( )( ) ,t      and 

2~ ( )( ) ,t     . Mean and variance of ( )t  are 
0 (1 )

t t
e e  

  
− −

= + −  and ( )2 2 1 exp( 2 ) 2t     = − −  with 

stationary limits  →  and  2 2 2 ,    →  respectively.  

19 Although ,E   and   can formally become negative with finite probabilities due to their Gaussian distributions, we 

will show in section V that these probabilities are negligibly small. To avoid a formally ill-defined problem, we use 

truncated distributions in (6), (10a) and (10b) and in doing so place (negligibly small) probability atoms at zero values 

of the states. We subsequently ignore these atoms in the derivation of the asymptotic solutions for the optimal SCC 
presented in Result 1, 2 and 3. 
20 How long it takes for an exponentially growing quantity to rise by a factor e = 2.72. 
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For all three uncertain climate processes E ,   and  , the uncertainties are 

exogenously given and cannot be learned in our model. Fundamentally, both 

statistical (or aleatoric) uncertainty and systemic (or epistemological) 

uncertainty play a role but cannot always be separated.21 For all three processes, 

we use in our calibration the most high-level or ‘consensus’ range of uncertainty 

estimates available, which also do not make this distinction (see section IV). For 

example, the ‘consensus’ uncertainty range for the climate sensitivity (e.g. IPCC, 

2014, AR5, Chapter 12, Box 12.2) captures both statistical uncertainty in 

individual climate models and epistemological uncertainty arising from different 

climate models. The climate sensitivity uncertainty we examine is this aggregate 

measure of uncertainty, and similarly for the carbon stock and damage ratio. 

Combining (4), (6) and (10), we have one truncated multi-variate Ornstein-

Uhlenbeck process: 

(11)         ( ) ,td td d= − − +α ν μ Wx Sx  

where the states are , ,( , )Tk E  x , max(0, )=x x  with ( )0logk K K  and  

denotes the elementwise product. The growth rates of this process are 

(12)                      21
, , 0, 0 .

2

1
T

t gt

K

E
Fe

dt K

dK
 −

 
  
 

−α  

 

The vector of mean reversion rates and the vector of means of this process are 

(13)                   , )(0 , , T

   ν    and   (0,0, , ) .T μ   

 

The covariance matrix 
T

SS  of the components of this multivariate process is 

                                                           
21 Statistical uncertainty describes genuinely stochastic and continuously fluctuating processes, whereas systemic 
uncertainty is unknown and potentially learnable. Climate sensitivity is not learnable in our model. There may be aspects 

of climate sensitivity that are difficult or impossible to learn (cf. Roe and Baker, 2007). 
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(14)   

2

2

2

2

,
1 K

K E

E E E E

KE K K K K K

E K E ET T

K K E

K K E

t

E

E

E
dt

d d

   

   

       

       

         

         

         

         

 
 
   = =   
 
 
 

x x SS  

 

where , , , , , ,ij i j i j K E    =  denote the partial correlation coefficients. 

II. Asymptotic Solutions for the Optimal Risk-Adjusted SCC 

The optimal solution must satisfy the Hamilton-Jacobi-Bellman equation 

(15)           ( ) ( )
,

1
max , , , 0,,,

C F
tf C J dJ t K EE

dt
 

 +  =   
  

 

where ( )  1 tdt E dJ  is Ito’s differential operator applied to .J  Using 

1( , , , , ) ( , , ),I C F K E A E K F C bF    −= − −  and Ito’s lemma gives22 

(16)  

( ) ( )

2 2 2 2

,

2

max , ( , , , , ), ( )

1 1 1 1
( )

2

,

( )
2 2 2

gt

K tE

KK K

F

EEE

C
f C I J Fe E

J J J K J J

J J C F K K J

J

E

      

  

         

−  + − + +

− − + + +



+ + +

  

0.

K E K K K EEKEKE K

EE

K K E

E

J K J K J K J

J J


     

    

       

  

 

 

 



+ + + +

+ + =
 

 

Differentiating (16) with respect to C  and F  gives the optimality conditions 

( )( ) 11 ( , )C K If JJC I K
 

 
−

− −= − =   and  (1 ) / ,gtY F b Pe −− = +  where the 

optimal SCC is defined by / ( , ) 0.K IE
P J J I K−    Our command optimum 

corresponds to the outcome in a decentralized market economy if emissions are 

priced at the SCC and no other externalities or market failures exist. Hence, we 

                                                           
22 Strictly, equation (15) is not continuously differentiable, but we already ignore the (negligibly small) probability 

atoms at zero values of the states here (see section IV). 
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use the terms ‘carbon price’ and SCC interchangeably and denote these by P.  

There is no closed-form analytical solution to the stochastic dynamic optimal 

control problem (15). Solving numerically by approximating the value function 

and its derivatives in 5-dimensional space (time and the four states) is 

challenging due to the curse of dimensionality and does not yield analytical 

insight into the stochastic drivers of the optimal SCC. Instead, we derive an 

approximate solution using perturbation methods. We first examine the system 

for small parameter(s) (see Appendix B), then perform asymptotic expansions 

to leading-order in the thus identified small parameter, namely the share of 

climate damages in total GDP, 

(17)                  ( )
11 1

0 0( , , / ,)
T ET

PID E E S
   

   
+ ++

 =  

 

where 00 PISE S −  (with climate damage and sensitivity parameters at their 

equilibrium values and the atmospheric carbon stock at its initial value). It is 

typically only a few percentage points and lower than 10% even at high 

temperatures (see section IV). Our perturbation solutions consider terms up to 

first order in . The resulting error scales with 2 0.01,  which is small even 

for the large value of 0.1 . We judge this to be sufficiently accurate for 

estimating the optimal SCC, since Nordhaus and Moffat (2017) suggests that 

available empirical estimates of the damage ratio are well below 10%. 

To solve our problem, we perform a perturbation expansion in the small 

parameter  around a base solution for which 0=   and the analytical solution 

is known. At each order n of the expansion, the problem is linear in the value 

function 
( ) ,nJ  but remains fully nonlinear in the states, thus retaining risk-

aversion and prudence properties without approximation. Mathematically, at 

each order n, the problem is of the form ( ) ,nnL J  =    where L is a linear 

differential operator in the states and the nonlinear forcing  is formed from 

products or derivatives of lower-order solutions (in n), so that the order of the 
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forcing thus obtained (from products or derivatives) is also ( ).nO  We use the 

following truncated series solution up to n = 1 and thus restrict our attention to 

zeroth- and first-order terms in  only, as denoted by the superscripts23 

(18) (0) (1) 2, , , , , ( , , ) ,) , , , , , ( , , )( ) ( ( ( ))J K E t J K D E J K E t D OE       = + +   

 

and similarly for F and C. The parameter  appears both as small parameter of 

the series solution and as the multiple-scales parameter in front of the 

dependence on damages. We let total factor productivity be a slowly-varying 

power-law function of the climate-related variables ,E   and :  higher 

derivatives required to model strong variation are thus ignored at leading order. 

The zeroth-order value function in (18) inherits the properties of the production 

function (9). Our consistent leading-order estimate of the optimal SCC from the 

zeroth and first-order value function is thus 

(19)                            ( )(0) (1) (0) (0) .( ) KE E
P J JiJ = − +   

 

In the limit as 0,→  climate has no effect, and the corresponding zeroth-

order solution of our model reduces to an AK model for which the closed-form 

solution is given by Pindyck and Wang (2013).24 The only difference with 

Pindyck and Wang (2013) is that our solution depends slowly on the climate 

variables, as determined by the implicit equation for optimal investment (C7) 

and the dependence of the marginal productivity of capital on climate damages 

therein. Our derivation of the first-order solution is given in Appendix D with 

the solution for (1)J  given by (D3.14).25 The first-order value function captures 

                                                           
23 We emphasize we do not perform a Taylor-series expansion in the state variables around their steady states, since this 
requires too many terms due to the large number of states and derivatives needed to capture risk aversion and prudence. 

At every order in n, the problem remains nonlinear in the states. To overcome this, we will choose products of power-

law functions as the functional form for the dependence of J on the states. 
24 The derivation is in Appendix C with (0)J given by (C4) (in terms of non-dimensional variables of Appendix B). 

25 We only show the solution for (1)

EJ  as this is what is needed to evaluate the SCC in (19). 
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changes to the economy resulting not from climate-induced changes to the 

marginal productivity of capital (as captured by (0)J ’s slow dependence the 

climate-related states), but from direct damages to the economy arising from the 

three climate-related states. Combining the zeroth- and first-order solutions, we 

obtain the following result (corresponding to (C3.19) in Appendix C). 

Result 1: The optimal risk-adjusted SCC is: 

(20)       20

11* 1

 ( , , )
1 ( ),

ET ET

P
E Y

P O
r E K  

  

 
=

++ −

  
= − + 

 
 

 

where / (1 )ED D −  and 
* (0) (0) ( 20)( 1)( / 2).Kr r g g   − − = + −  

Further, 
( )r s t

t

t

E se d


− − 

 =  
 
  where  ( )* (0) 2( ) / 2 ,( 1) Kr r i     − +− −  

2 2 ,K ii  − = −  /i I K=  and (A.1) in Appendix A gives 

( , , )E   =  .     

 

The term in (20) in front of the brackets is the present value of marginal 

damages when only economic growth/asset return uncertainty is considered 

(and carbon does not decay); the second term in brackets is the mark-up for 

carbon stock, climate sensitivity and damage ratio uncertainties (and carbon 

stock decay). The optimal SCC (20) is proportional to world GDP and depends 

directly on the stock of atmospheric carbon and the climate sensitivity and 

damage ratio parameters through the function ( , , )E   . It depends on 

preferences (,  and ), geophysical parameters (,  and  ), and the 

properties of the stochastic processes driving GDP, the carbon stock, climate 

sensitivity and damages. The optimal SCC depends on the growth-corrected 

return on capital *r , which is given to leading-order by its value when there is 

no climate policy ( 0P = ). The expected return on investment (0)r  is the risk-
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free rate,  ((0)

rf

0)r g = + 2(1 ) / 2,K − +  plus the risk premium 2 .K 26 

Result 1 indicates that the absolute error in our expression for the optimal 

SCC is 2( )O  and that the error as fraction of the SCC (which is ( )O ) is thus  

( ).O  Consistently, we ignore the slow dependence of the discount rate on the 

atmospheric carbon stock (via the marginal productivity of capital) when 

evaluating the discounting integral in Result 1. As 0,→  the SCC in Result 1 

becomes exact. Generally, a closed-form solution to the time integral and the 

expectations operator over the stochastic states in  is unavailable, so Result 1 

must be evaluated numerically.27 However, if we consider only the leading-

order effects of uncertainty, we can derive the closed-form expression in Result 

2 below (and Result 3 in Appendix A) with only minimal quantitative errors.28  

III. A Closed-Form Rule for The Optimal Risk-Adjusted SCC 

To obtain a closed-form solution for the optimal SCC in Result 1, we consider 

only leading-order terms in the climatic and damage uncertainties 2

E , 
2 ,

2

   

and their covariance terms (including with the capital stock). Appendix E then 

shows that the five-dimensional integral in Result 1 can be explicitly evaluated 

except for one time integral, and we obtain Result 3 given in Appendix A. For 

ease of exposition, we present in Result 2 below the special case of proportional 

damages ( 0ET = ) also examined by Golosov et al. (2014),  in which marginal 

damages do not depend on the carbon stock, and we further assume the 

temperature and damage ratio are at their steady-state values ( 0 0,   = = ). 

 

                                                           
26 The investment and growth rates of GDP are given to leading-order by their values without climate policy (cf. (C7)). 

Implicitly, we get from the Euler and capital accumulation equations 
0

(0)

K P
Yi

=
= ( )( )(0) (0) 2( 1) ( ) / 2Kq i   − + − −  

with ( )
(1 )/1/

0
( , , ) (1 ) /K P

Y A E b
    
−

=
= −  and 

(0) (0)g i= −  
0) 2(( ) / 2i −  

(0)( ).i  Tobin’s q is ( ) 1/ '( ).q i i=  

27 This requires five-dimensional numerical integration over the probability space corresponding to the four states and 

with respect to time. If the processes are independent, the integrals over the probability space of states can be evaluated 
independently.   
28 In Appendix G we examine the accuracy of Results 2 and 3 by comparing with Result 1. 
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Result 2: If  0 0,   = =  and 0,ET =  the optimal SCC is 

(21)                        
K* CC

0
C( ,

 
1 )P

Y
P

r
 




== + + + +


  

+
 

 

where * ( 20)( 1)( ,
1

)
2

Kr g   = + − −  

2

*

( )1
1 ,( )

2 2
T T

r



  



 


 
 +

+ +
=    =  

2

*

( )1
1 ,(

2
)

2 r


 



 





+
+

+
 

CK * *
( 1) (1 ) K

TK

K

r r

   


 

     
 

  

 
 = − − + +  + + + + 

  

and CC *
( ) .1 T

r

  



 

   

 



 = +

+ + +
       

 

Without uncertainty, 
0

*/ ( ) 
P

P Y r 
=

= +  with * (0)( 1) .r g += −  This 

expression shows the geophysical ( and ), economic (Y and g), damage () 

and ethical ( and ) determinants of the optimal deterministic SCC. More 

patience (lower ) boosts the SCC. 29 Rising affluence (higher g(0)) pushes up 

the discount rate, if intergenerational inequality aversion exceeds one, and thus 

curbs the appetite of current generations for ambitious climate policy (the 
(0)g  

term in *r ). Higher economic growth also implies growing damages and a lower 

(growth-corrected) discount rate (the 
(0)g−  term in *r ), which increases the 

optimal SCC. Economic growth thus depresses the SCC if 1.   Higher 

economic activity (Y) and flow-damage coefficient () also push up the SCC. 

                                                           
29 In contrast to exogenous Ramsey growth models such as Golosov et al. (2014) and Nordhaus (2017), our rate of 

economic growth g(0) is endogenous (see footnote 26). Hence, there are indirect effects on the optimal SCC via the 

growth rate g(0). For example, the direct effect of a higher rate of pure time preference  is to lower the SCC and the 

indirect effect is to raise the SCC as economic growth is lowered (for 1  ). Together, the effect of a higher rate of 

pure time preference on the discount rate is always positive * 1 1 /) 1( gr      + = − =  with 1/g    = −  (and 

thus always negative on the SCC). Although the optimal SCC does not depend directly on the share of fossil fuel in 

value added, the cost of fossil fuel, adjustment costs or the depreciation rate of physical capital, it does depend on 
adjustment costs and the depreciation rate via their effect on the endogenous rate of economic growth, which we treat 

as fixed in the analysis below. Furthermore, Ramsey growth models with an exogenous long-run growth rate include a 

second time scale associated with economic convergence, which will typically be faster than the climatic time scales. 
We conjecture that our formula for the optimal SCC derived in an AK growth model will therefore be a good 

approximation to the optimal SCC for a Ramsey growth model. 
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A small fraction of emissions that stays forever in the atmosphere (  ) and fast 

decay of atmospheric carbon (higher  ) curb the SCC.  

A. Economic growth uncertainty and the climate beta 

Including economic, but not climatic uncertainty, Result 2 gives 

0

*/ ( ) 
P

P Y r 
=

= +  with * (0) 2( 1) 2)( .Kr g  + −= −  The estimate of 

future economic growth is thus cut to take account of its uncertain nature, 

especially if risk aversion    is high. When 1   and rising affluence dominates 

the effect of growing damages, growth uncertainty cuts the discount rate and 

pushes up the risk-adjusted SCC. We rewrite the risk-adjusted discount rate as 

(22)      * (0) (0) 2 2

impatience rising affluence growing d

d

amages ins
pru ence

urance

1
(1 ) ,

2
K Kr g g    = + − − + +  

 

where we recover the first three terms of the introductory example. The 

prudence term depresses the discount rate and pushes up the SCC (cf. Leland, 

1968; Kimball, 1990). This effect increases in the coefficient of relative 

prudence 1 ,+  risk aversion , and economic growth uncertainty. The insurance 

term stems from the perfect correlation between damages and GDP (damages 

are proportional to GDP). The insurance term acts to increase the optimal 

discount and reduce the optimal SCC, reflecting that positive shocks to damages 

are associated with positive shocks to GDP and are thus less harmful to welfare. 

This corresponds to a built-in climate beta of one.30 For 1   the prudence term 

dominates the insurance term, so growth uncertainty curbs the discount rate and 

boosts the optimal SCC, and vice versa for 1.   If utility is logarithmic, 

                                                           
30 Dietz et al. (2018) use Monte Carlo simulations of DICE (Nordhaus, 2008) and find that, with emissions-neutral 

technical change, future states with rapid technical progress imply more emissions, more warming and a greater benefit 

from curbing emissions. The positive correlation between consumption and the benefits of mitigation implies a positive 
climate beta. This beta is close to one if damages are proportional to GDP, but closer to zero if damages are additive. 

Section III.C analyses correlated risks and climate betas more generally. 
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1 = =  and * ,r =  so economic growth (or asset return) uncertainty does not 

affect the optimal SCC,  as in Golosov et al. (2014).31  

It is instructive to consider the risk-adjusted discount rate when damages are 

not proportional to GDP: 

 (22)     (0) (0) 2 2 2

self-insurance
prudencegrowing damages

* 1 1
( ) (

2
1 )1 ,

2
D D K K D Kg gr         +
 

= − +− − − +
 

 

 

where 0 1D   is the elasticity of damages with respect to GDP and we only 

consider the case . = 32 The growing damages term indicates that due to the 

direct effect of a lower 
D  and the further stochastic reduction to the expected 

growth rate of damages (compared with 1D = ), the discount rate is higher and 

the SCC smaller for a given (0) 0g  . The prudence term is unaffected. The self-

insurance effect now depends on the built-in beta of 0.D   Focussing on 

uncertain growth, a smaller elasticity of damages with respect to GDP (lower 

D ) pushes up the SCC, since there is now less self-insurance due to the reduced 

built-in climate beta of 
D .33  If damages are additive and do not depend on 

GDP, the risk-insurance term drops out. 

                                                           
31 With logarithmic preferences and proportional damages, 

CK
0 =  and (21) becomes 

0
( ) / ( .1 )

CCP
P Y

 
 

=
+= +   +  +  Economic growth uncertainty and the temperature and damage betas do 

not affect the optimal SCC, but climate sensitivity and damage rate uncertainty and its correlation do. The simple rule 

put forward by Golosov et al. (2014) does not consider these uncertainties and reduces to 
0

/ ( ). 
P

P Y 
=

= +  As Golosov 

et al. (2014) have a 2-box carbon cycle with a permanent as well as a temporary reservoir, we obtain more specifically 

 
0

(1 ) / / ( ) ,
P

P Y    
=

= − + + where  is the fraction of emissions that goes into the temporary reservoir. 

32 In our model, we only consider the case of proportional damages. We have derived (22) in a similar, ad-hoc, fashion 

to the introductory example by assuming ( )( )( ) ( ) ( ) ( ) Ds T s T s S s C     = . A similar expression is derived by 

Svenssen and Traeger (2014) and Dietz et al. (2018). Rewriting (22), the risk-adjusted discount rate becomes 
* (0) 2 2 2 2

rf / 2 / 2( )D K K D Kr gr     = − − − −  with ( )(0) (0) 2

rf 1 / 2Kr g    = + − +  the risk-free interest rate, 

corresponding to Proposition 1 in Dietz et al. (2018).   
33 This follows from 2 2* / 1/ 2 0DK Dr    +− =   for 1/ 2D  − , which is generally true.  
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B. Climate and damage uncertainties 

The term 2 * )(1/ 2) 1 / 2(/( )( )T T r       + ++  in (21) is the climate 

sensitivity risk correction and depends on T TT      + +  which combines 

positive skewness of the (equilibrium) climate sensitivity distribution ( 0  ) 

and convex dependence of damages on temperature ( 0T  ). The climate 

sensitivity uncertainty correction is positive and larger for a more convex 

damage function, a more skewed climate sensitivity distribution with high 

uncertainty (  ), smaller discount rate ( *r ), and faster carbon decay rate ( ). 

The damage rate risk correction 
2 * )(1/ 2) 1 ( )) ( 2( / r        ++ +  in (21) 

is zero if the distribution of the damage ratio is not skewed ( 0 = ). A right-

skewed distribution requires an upward-correction of the SCC, more so if 

damages are more uncertain. In both cases, when keeping the steady-state 

uncertainties / 2      and / 2      fixed, increasing the rates of 

mean reversion  
  and   increases the risk corrections, as the near future 

becomes more uncertain. 

C. Hedging: temperature beta and damage beta 

We rewrite the term in Result 2 that corrects for correlations between climate 

and damage risks, on the one hand, and economic risks, on the other hand, as  

(23)    ( ) ( )2

* *
,( 1) 1 1CK K T

K K

r r












 


 
  

 


+


+


+  



= − −
+ 

+
+ +

  

where /  and /K K K K K K                denote the temperature beta 

and damage beta, respectively. These betas measure the normalized covariance 

with shocks to the rate of economic growth analogously to the beta in asset 
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pricing theory (e.g. Lucas, 1978; Breeden, 1979).34 The sign of (23) depends on 

whether relative risk aversion  exceeds one or not, i.e. on whether the climate 

hedging effect dominates the offsetting effect due to growing damages.35 We 

will first discuss the hedging effects, corresponding to the terms 

( )2 * *1 /( ) () 1 ) / (( )K KK T r r         − + + + + + ++  in (23). 

A negative temperature beta 
K  implies that asset returns in industries 

producing, for example, agricultural products, heating systems or winter 

garments are low in future states of nature in which temperature is high. It is 

then optimal to hedge these investments more by raising the SCC. If the 

economy is dominated by industries whose returns benefit from higher 

temperature (e.g. air conditioning), the temperature beta is positive, and it 

becomes optimal to have a lower SCC. The adjustment is large if risk aversion 

is high, climate sensitivity is more uncertain and skew, damages are more 

convex, and the climate sensitivity beta is large (high , , , ,T      K ) and 

non-zero even for a symmetric climate sensitivity distribution and a linear 

dependence of the damage ratio on temperature  (i.e. 0T = ).  

A negative damage beta K  implies that asset returns in industries will be 

low in future states of nature in which damages are high, over and above the 

effect of the built-in climate beta. It is likely to be negative, especially in 

vulnerable areas (e.g. investments in flood prone regions), justifying a higher 

SCC. Economies dominated by industries that make money from climate 

damage (e.g. water engineering) have a positive damage beta ( 0K  )  and 

should price carbon less vigorously. The adjustment is large if risk aversion is 

high, the damage ratio has high uncertainty and skewness (high , ,    ) and 

is non-zero even for a symmetric damage ratio distribution (i.e. 0 = ).  

                                                           
34 Consistent with our perturbation scheme, the volatility of GDP is given to leading order by the volatility of the capital 
stock neglecting the effect of climate damages and thus the carbon stock, climate sensitivity and damage uncertainties.  
35 Lemoine (2017) calls these the risk insurance and risk exposure effects, respectively. 
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The offsetting effects in (23), (2 *)1( / ( )KK T r     + + +

)*1 / ( )( ) K r    + + ++  occur because future states of nature that are 

associated with high asset returns are associated with high growth in damages 

(as damages are proportional to GDP). E.g. if 0K  , future states of nature 

with negative GDP shocks are associated with lower damages, which requires a 

lower SCC. Hedging effects dominate offsetting effects if 1  .36 

D. Correlation between temperature and damage ratio risks 

The term 
*

CC )( ) )( / )(1 (/T r              = + + + +  in Result 2 

captures the effect of correlation between temperature and damage ratio 

uncertainty on the SCC. This is positive if high temperature is associated with 

disproportionally high damages (e.g. extreme events such as hurricanes and fires 

as far as they are not captured by the convex dependence of damages on 

temperature), in which case the optimal SCC is higher. Risk aversion  plays 

no role, since there is no possibility of hedging the returns on assets.  

E. Result 3 

To derive Result 2, we have made two important simplifying assumptions: 

damages are proportional to the carbon stock ( 0ET = ) and the mean of the 

climate sensitivity parameter (a proxy for temperature) is at its equilibrium 

                                                           
36 Two further climate-beta effects have been suggested in the literature. First, Sandsmark and Vennemo (2007) only 

have one stochastic parameter, i.e. the loss of GDP for a given temperature, and additive damages (not proportional to 

GDP, so 0D = ). In this setup high future damages are associated with low levels of future aggregate consumption, and a 

large benefit from mitigating future climate change. The corresponding beta is thus negative. It relies on the product of 

the change in marginal utility due to damages and marginal damages themselves, is thus 
2( )O  in our perturbation scheme 

and too small to be included. Second, Nordhaus (2011) argues on basis of simulations with the RICE-11 integrated 

assessment model that “those states in which the global temperature increase is particularly high are also ones in which 
we are on average richer in the future”, suggesting a positive beta. In the asymptotic approach framework of the paper,it 

does not feature in our correction factors, since it requires the integration of a Geometric Brownian Motion (for K), 

when solving the differential equation for the carbon stock, which cannot conveniently be done in closed form. 

Crucially, if 0ET = , this effect is zero as marginal damages are no longer proportional to the carbon stock E and 

enhanced uncertainty of this term due to uncertain new emissions does not contribute to the optimal SCC. For the case 

0ET  , we examine this effect by numerically solving the stochastic differential equations and the integral in Result 1 

and find it to be small (see Appendix G). 
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value from the outset (
0 = ), which are relaxed in Result 3 (see Appendix A). 

As a result of the first, the adjustment to the SCC for carbon stock uncertainty 

(A4) is zero in Result 2. Generally, this adjustment is negative as marginal 

damages ET

ED E


  typically remain concave even for convex damages 

1 ETD E
+

  (i.e.,   1ET  − , see section IV). Furthermore, when damages are 

convex ( 0ET  ), marginal damages will not be constant but increase with 

future emissions, resulting in a higher SCC, as captured by multiplicative 

correction factors in the form of single-variable deterministic integrals in Result 

3. As a result of the second assumption, the mean temperature response at initial 

times and thus the SCC is overestimated by Result 2, but, due to the 

multiplicative correction factors, this is not the case for Result 3.  

 IV. Calibration 

Table 1 summarizes our calibration starting from base year 2015 with further 

details in Appendix F. To calibrate the non-climatic part of our model to match 

historical asset returns, we follow Pindyck and Wang (2013) but abstract from 

catastrophic shocks to economic growth (see Appendices F.1 and F.2). This 

gives a coefficient of relative risk aversion of  = 4.3, intergenerational 

inequality aversion of  = 1.5, pure time preference of  = 5.8% per year, trend 

growth of 
(0)g = 2.0% per year, annual volatility of asset returns of K = 12% 

and a risk premium of 
2

K =6.4% per year. In line with the specification in 

equation (6), we assume the global ratio of CO2 emissions to GDP declines at a 

rate of 2.0% per year, which matches recent data.37 Following Nordhaus (2017), 

we use world GDP at PPP of 116 trillion US dollars in 2015. Table 1 gives details 

for investment, depreciation and the cost of fossil fuel.  

 
 

                                                           
37 The global ratio of CO2 emissions to GDP ratio declined at 2.1% per year during 2000-15 versus a decline of 0.8% 

per year in the decade before. Nordhaus (2017) uses a decline of 1.5% per year. 
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TABLE 1 – SUMMARY OF BASE CASE CALIBRATION 

Impatience and aversion to intergenerational inequality and risk  = 5.8%/year, IIA = 1/EIS =   = 1.5, RRA = η = 4.3 

World economy A* = 0.113 /year, GDP PPP= 116$T/year, g(0) = 2.0 %/year 

Investment, depreciation and adjustment cost i(0) = 2.8%/year,  = 0.33%/year,  = 12.5 year 

Asset volatility and returns 
K = 12%/year1/2, (0)r  = 7.2%/year,   

(0)

rfr  = 0.80%/year,  (0(0) )

rfr r−  = 2

K  = 6.4%/year   

Share of fossil fuel and production cost 1 −  = 4.3%, b = $5.4×102 /tC 

Preindustrial and 2015 (t = 0) carbon stocks 
Concavity of Arrhenius’law & stochastic carbon stock dynamics 

SPI = 596 GtC, S0 = 854 GtC, E0 = 258 GtC,  

0.36,E = −   = 0.65,   = 0.35%/year, 
E = 13 ppmv/year1/2 

Distribution of the climate sensitivity 
0 = 1.1109,  = 1.2619, 

 = 0.020%/year1/2  

 = 0.0086%/year,   = 3.0 

Distribution of the damage ratio 
T = 0.56 ( 0ET = ),  = 0.21,  = 2.3%/year1/2,  = 2.7,  

 = 0.20/year 

Flow impact of global warming damages 0 = 2.07% GDP/TtC 

Conversion factors 1 ppmv CO2 = 2.13 GtC, 1 tC = 3.664 tCO2 

A. Carbon stock uncertainty 

To calibrate our 1-box model for carbon stock dynamics (6), we use the 17 linear 

impulse response functions from the survey in Joos et al. (2013) and find  =

0.65 and  =0.35%/year.38 We use the 90% confidence range 794-1149 ppmv 

in 2100 predicted by simulations for the high temperature scenario RCP 8.5 

(Chapter 12.4.8.1, IPCC, 2014 AR5) to calibrate E = 13 ppmv/year1/2. Fig. 1a 

shows the impulse response function for our 1-box model and Fig. 1b shows the 

stock of atmospheric carbon, including 95%-confidence bounds.39 Fig. 1 shows 

that our simple 1-box model compares well with the 4-box model fitted to the 

same data by Aengenheyster et al. (2018) and the 2-box model of Golosov et al. 

                                                           
38 It is possible to estimate these values from historical data too (see Appendix F.3). 

39 From ( )E t = (1149-794)/3.29 = 108 ppmv, ( )exp(( ) 2 1 2 )E E tt   − == − 13 ppmv CO2 /year1/2 with t = 2100

− 2005 = 95 years and using  = 0.35%/year, which corresponds to a steady-state uncertainty of 2E E  = = 155 

ppmv CO2. The confidence band from IPCC (2014, AR5) is shown centred around the mean of our prediction and 

translated in time to 2110 to reflect different initial times. The probability of a value of 0E   is indeed negligibly 

small, as previously assumed, and we formally have a negligibly small atom at 0E = . 
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(2014).40,41,42 Our confidence bands are much wider than those obtained from 

Joos et al. (2013)43 and still much wider than the uncertainty range obtained 

from historical data,44 suggesting that model uncertainty far exceeds any 

inherent variability. Nevertheless, we will show in section V that even with our 

high value of E , the correction to the optimal SCC is small for 0ET  .45  

 

  
                        (a) Impulse response function                       (b) Stock of atmospheric carbon 

FIGURE 1. ATMOSPERHIC CARBON CYCLE AND UNCERTAINTY 

                                                           
40 For a linear N-box carbon cycle 

0

N

i i
S S

=
=  by 

ii

gt

i id eS t F Sd  −= − , Aengenheyster et al. (2018) obtain  =

{0.2173, 0.2240, 0.2824, 0.2763},  = {0, 0.25, 2.74, 23.23}%/year with ( 0)S t = = {328, 40, 27, 5}ppmv scaled so 

( 0)S t = = 401 ppm. We adapt Golosov et al. (2014) to continuous time and get  = {0.2, 0.3215},  = {0, 0.23}%/year 

and ( 0)S t = = {0.85, 0.15} 401 ppm, ignoring its third box for carbon that decays within the first decadal period.  

41 We set the initial atmospheric carbon concentration to 
0S = 401 ppm of CO2 (May 2015), corresponding to 0.854 

TtC or 3.13 TtCO2, and the preindustrial atmospheric carbon concentration to 280 ppm CO2, 0.596 TtC or 2.19 TtCO2, 

so that 
0E = 121 ppm CO2, 0.258 TtC or 0.94 TtCO2. Updated and historical values can be found online at 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.  
42 Although the impulse response function is less well captured by our 1-box model, this must be time integrated (after 

discounting) to evaluate the SCC. Agreement of the time path of the atmospheric stock (Figure 1b) is thus more 

important, especially if 0ET   and the dependence on the stock is nonlinear. 

43 Using the distribution at t = 95 years and  = 0.35%/year, we get 
E = 3.7 ppm/year1/2 , which is much higher than 

the value of 
E = 0.65 ppm/year1/2  obtained by Aengenheyster et al. (2018) based on Joos et al. (2013). 

44 Based on the historical Law Dome Ice Core 2000-year dataset for emissions and concentrations, we estimate 
E =

0.1-0.15 ppmv CO2/year1/2 (see Appendix F.3). Using the same dataset but fitting a Geometric Brownian Motion, 

Hambel et al. (2017) find a much larger volatility of 0.78 %/year1/2. Estimating this volatility, we find 1.4, 0.5 and 0.2 

%/year1/2 for the periods 1800-2004, 1900-2004 and 1959-2004. This large variation of volatility with time suggest that 
historical volatility in the atmospheric carbon concentrations is better described by an Arithmetic Brownian Motion, as 

in (6). 
45 The adjustment to the SCC is potentially larger than we calculate here, since there is a risk that as global warming 
continues (sudden) releases of greenhouse gases (e.g. from thawing permafrost) and reductions in the capacity of oceans 

to absorb CO2 cause additional global warming. The existing modelling of such positive feedbacks “do not yield 

coherent results beyond the fact that present-day permafrost might become a net emitter of carbon during the 21st 
century under plausible future warming scenarios (low confidence)” (IPCC, 2014, AR5, Chapter 12.4.8.1) and we thus 

exclude it here. 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
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B. Climate sensitivity uncertainty 

We calibrate our temperature model (7) and (10a) to capture the key features 

of both the transient climate response (TCR) and the equilibrium climate 

response (ECS).46 The ECS is the equilibrium or long-term change in annual 

mean global temperature following a gradual doubling of the atmospheric 

carbon stock relative to pre-industrial levels. The TCR is the change in 

temperature following an increase of 1% in the atmospheric stock of carbon 

each year at the time of doubling (i.e. 70 years). The distributions of the ECS 

and the TCR are in our view the best characterized measures of the uncertainty 

associated with predicted temperature increase in the climate science literature.  

Figure 2 shows the range of probability density functions proposed for the 

TCR and ECS in IPCC (2014, AR5).47 We take the mean of these distributions 

and fit our model to the first two moments of the TCR (mean and variance) and 

the first three moments of the ECS (mean, variance and skewness), as well as 

an initial temperature of 
0T = 0.89°C above preindustrial.48,49 Table 2 shows that 

we match these moments well, and Table 3 shows good agreement with the 

consensus likelihood ranges in IPCC (2014, AR5). For comparison Fig. 2b also 

shows the thin-tailed Gamma distribution fitted by Pindyck (2012). 

                                                           
46 From (7), 

1

2 ( , )PIT T E E  
+

 = =
1

2 ( , )PIT T E E  
+

 = =  with   normally distributed with time-varying mean 

0 exp( )t   = −  ( )exp( )1 t −+ −  and standard deviation ( )1 exp( 2 ) 2t     = − − , and its skewness is 

given to leading-order by  ( ) 3(1 )3 6
2 2

3 4
2skew 3 ( ) / ( ).1 ( )T E T E T O


     

   
+

+    − = +       

47 We take the 7 distributions for the TCR and the 13 distributions for the ECS from Figure 10.20 in Chapter 10.8 of 

IPCC (2014, AR5). The grey area in Figure 2 corresponds to one standard deviation either side of the mean of these 

different distributions (negative values not shown). 
48 To capture these and initial temperature, we match the TCR at 

PI 0ln(2 / ) / 0.02t S S= =  17 years from 2015 (instead 

of 70 years from preindustrial). We thus deviate slightly from the formal definition of TCR, but argue this is justified 

as the high-level uncertainties in TCR and ECS are by far the best characterized of all summary statistics. This gives 

0 = 1.11,  = 1.26, 
0

T = 0.89°C,  = 0.020%/year1/2,  = 3.0 and 


 =  0.0086% per year corresponding to an e-

folding scale of 1/ 2  = 58 years. Climate sensitivity (as a proxy for temperature) is initially below its long-run value 

(
0  ). 

49 The probability of 0   is indeed negligibly small, as previously assumed. Since max[ ,0]  cannot take negative 

values but   can, we formally have a negligibly small atom at 0 =  (and 
2 0T = ). 
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         (a) Transient climate response                                     (b) Equilibrium climate sensitivity 
FIGURE 2. CLIMATE SENSITIVITY (PROBABILITY DENSITY FUNCTION) 

 
TABLE 2. CLIMATE SENSITIVITY UNCERTAINTY 

 TCR ECS 

 IPCC (2014, AR5) Our calibration IPCC (2014, AR5) Our calibration 

E[T2] 1.7°C 1.7°C 2.8°C 2.8°C 

var[T2] 0.19°C2 0.20°C2 1.5°C2 1.7°C2 

skew[T2] 0.16°C3 0.054°C3 2.4°C3 2.5°C3 

 
TABLE 3. CLIMATE SENSITIVITY LIKELIHOOD 

  IPCC (2014, AR5) Our calibration 

TCR 1-2.5°C ‘very likely’ (90-100%) 91% 

 > 3°C ‘extremely unlikely’ (0-5%) 0.72% 

ECS 1.5-4.5°C ‘likely’ (66-100%) 75% 

 < 1°C ‘extremely unlikely’ (0-5%) 4.2% 

 > 6°C ‘very unlikely’ (0-10%) 2.3% 

C. Damage ratio uncertainty 

To calibrate the damage ratio and its uncertainty, we use the survey by 

Nordhaus and Moffat (2017) (henceforth NM17) including their subjective 

weights to reflect the reliability of different estimate shown in Fig. 3.50 From 

these data, we estimate a mean 0 = =0.21, standard deviation 

 = 0.036, 

damage convexity T  = 0.56 and skewness parameter  = 2.7 of the damage 

ratio,51 which we take to correspond to the steady-state, setting the mean-

                                                           
50 Since our formulation does not allow for negative damages, we omit these estimates, which were given low weights 

of 0.1 by NM17. Fig. 3a shows omitted estimates in open circles and included estimates in closed circles. Since 

max[ ,0]   cannot take negative values, but   can, there is a negligibly small atom at  (and 0D = ). 
51 Ackerman and Stanton (2012) and Weitzman (2012) used a damage function that becomes even more convex at high 
temperatures. NM17 examined the possibly of thresholds or large convexities in the damage function but found no 

evidence for this in existing studies. 
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reversion coefficient to a large value of 20%/year (so 2   = = 

2.3%/year1/2). The distribution has a positive standardized skewness 

 *skew | 3 /D T   =  = 0.29. 

The continuous lines in Fig. 3a denote expected damages with dashed lines 

denoting 5% and 95% confidence levels. Fig. 3a also shows the DICE2013R 

damage specification and NM17’s preferred regression ( 20.0018D T= ). These 

fall within the confidence bounds of our estimates. Finally, following Nordhaus 

and Sztorc (2013) and NM17, we adjust damages shown in Fig. 3a upwards by 

25% at all temperatures to reflect damages not included in current estimates. 

Combined with our calibrated value of 0.36E = −  (see Appendix F.4), we 

obtain proportional damages (i.e. 0ET = ). 

  
(a) Proportional damages ( 0.56, 0T ET = = )                     (b) Convex damages ( 1, 0.28T ET = = )  

FIGURE 3. DAMAGE RATIO UNCERTAINTY 

 

Fig. 3b illustrates an alternative calibration in which damages are constrained 

to be quadratic in temperature, which implies convex damages ( 1,T =  

0.28ET = ).52 Our estimates imply an initial flow damage coefficient 

0 0( , , )E   of 2.1% and 1.8% of GDP per trillion ton of carbon for 

proportional and convex damages, respectively. This coefficient and the optimal 

                                                           
52 Setting 1T = , we obtain 

06.3, 0.43, 0.039,    === =  1/22.5%/year , 0.20/year  = = and 0.28.ET =

This corresponds to a standardizes skewness  *skew | 0.27D T =  (similar to the unconstrained case). See Fig. 3b.  
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SCC rise as the atmospheric carbon stock rises with continued emissions (for 

0ET  ) and the climate sensitivity rises to equilibrium. For comparison, 

Golosov et al. (2014, p. 67-68) have a constant value of  = 2.4% GDP/TtC, 

which includes an upward adjustment for tipping risk. 

V. Estimates of the Optimal Risk-Adjusted SCC 

A. Market- versus. ethics-based calibration 

Using Result 3 and the calibration in Table 1, Table 4 reports estimates of the 

optimal SCC derived from the market-based calibration (base case, with 

proportional damages), where all mark-ups in this and the other tables below 

are a percentage of the deterministic SCC.53 The table shows the important role 

of the initial value of the climate sensitivity parameter 0 : if it is mistakenly set 

to its higher steady state value  , the optimal SCC roughly doubles. Similarly, 

if one does not allow for the lags in reaching the ECS (by setting  → ), the 

optimal risk-adjusted SCC is considerably increased (cf. column 3), as the large 

uncertainties associated with the ECS are then experienced instantly. The 

optimal SCC of $6.6/tCO2 is low, since it is based on market rates of return. 

 
TABLE 4. ESTIMATES OF THE SCC: MARKET- VS. ETHICS-BASED 

 
Market-based calibration Ethics-based calibration 

base case 0 =   =   base case 0 =   =   

Deterministic SCC ($/tCO2) 4.1 8.4 8.4 11.5 20.8  20.8 

due to economic uncertainty ($/tCO2) 1.3 2.4 2.4 18.7 26.2 26.2 

due to carbon stock uncertainty  0 0 0 0 0 0 

due to climate sensitivity uncertainty 0.4 0.6 2.6 4.7 6.4 11.2 

due to damage ratio uncertainty 0.8 1.4 1.7 4.9 7.5 8.1 

Risk-adjusted SCC ($/tCO2) 6.6 12.8 15.0 39.8 61.0 66.3 

Economic risk mark-up 

Climate sensitivity risk mark-up 
Damage ratio risk mark-up 

Total risk mark-up 

32% 

9% 
18% 

59% 

29% 

7% 
17% 

53% 

29% 

31% 
20% 

80% 

163% 

41% 
43% 

247% 

126% 

31% 
36% 

193% 

126% 

54% 
39% 

219% 

Discount rate r(0) (per year) 7.2% 7.2% 7.2% 2.9% 2.9% 2.9% 

Estimates in this table are for proportional damages ( 0
ET

 = ), asset return volatility (
K

 = 12%/year1/2), and  =

5.8%/year (market-based calibration) or  = 1.5%/year (ethics-based calibration). 

                                                           
53 To assess the accuracy of the approximations made in Result 2 and 3 used in Tables 4-8, we evaluate Result 1 

numerically and show that the error is small (see Appendix G for details).  
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In our ethics-based calibration, also shown in Table 4, we lower pure time 

preference from  = 5.8% to 1.5% per year, the risk-adjusted (not growth-

corrected) discount rate (0) * (0)r gr +=  falls from 7.2% to 2.9% per year.54 This 

pushes up the deterministic SCC to $11.5/tCO2 and the risk-adjusted SCC to 

$39.8/tCO2. Using a market-based volatility, the mark-up for asset price risk is 

163%, which exceeds those for climate sensitivity (41%) and damage ratio risk 

(43%). Ignoring deterministic temperature lags (
0 = ) boosts the 

deterministic SCC considerably as before but lowers all risk mark-ups. Ignoring 

stochastic temperature lags (setting  → ), the climate sensitivity risk mark-

up rises to an upper limit. In our calibration, the large uncertainty and skewness 

of the ECS (vs. TCR) only arises in the relatively long run (with an e-folding 

time of 58 years). From comparing the market- and ethics-based calibrations, 

we find that the ECS plays a more significant role for lower ethics-based 

discount rates, as is clear from the case of instantaneous ECS (  → ). With 

high discount rates the TCR may be a better guide to climate policy than the 

ECS, but this is not so if a low ethics-based discount rate is used.55 

B. Volatility from asset returns vs. GDP 

The most important drawback of our AK model is that asset returns (capital) 

and GDP growth have the same volatility (see also the discussion in Pindyck 

and Wang (2013)), while the former is empirically much greater.56 Table 5 

shows that the mark-up for economic risk drops dramatically if volatility of 

                                                           
54 E.g. Gollier (2018) relies on ethical arguments to use a zero or much lower discount rates than derived from asset 

market returns. To analyse this problem, the government should maximize expected welfare using low ethically-
motivated discount rates subject to the constraints of the decentralized market economy with a lower discount rate. The 

optimal carbon price will then typically fall short of the social cost of carbon (Belfiori, 2017; Barrage, 2018). 
55 Kelly and Tan (2015) find that the mass of tail uncertainty in the climate sensitivity is curbed quickly even though 
overall learning is slow, because observations near the mean are evidence against fall tails. Bayesian learning curbs 

emissions by 50% instead of 38% without. Once the mass of the tail diminishes, remaining uncertainty is largely 

irrelevant for optimal emissions policy. Our formula for the optimal SCC shows that, once learning has removed tail 
uncertainty and skewness, in the distribution of the climate sensitivity, the SCC is increased by less.  
56 Ramsey- or Solow-type models in which consumption is a concave function of capital display a smaller relative 

volatility of consumption than of capital. Furthermore, a Ramsey-type model would introduce a second timescale to the 
problem (of economic convergence), which is likely to be fast compared to climatic timescales and, for purposes of 

calculating the optimal SCC, can probably be ignored. 
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GDP growth rates instead of asset returns is used.57 Due to the higher risk-

adjusted discount rate (0)r , the mark-ups for climate sensitivity and damage 

ratio uncertainty and the risk-adjusted SCC are considerably reduced.   

TABLE 5. ESTIMATES OF THE SCC: ASSET RETURN VS. GDP VOLATILITY 

 

Asset return volatility  

(
K

 = 12%/ year1/2) 

GDP growth volatility  

(
K

 = 1.5%/ year1/2) 

base case 6.0 =  2.0 =  base case 6.0 =  2.0 =   = 0.1%/year 

Deterministic SCC ($/tCO2) 11.5 11.5 8.1 11.5 11.5 8.1 25.5 

Risk-adjusted SCC ($/tCO2) 39.8 92.2 87.2 14.6 14.6 10.2 34.1 

Economic risk mark-up 
Climate sensitivity risk mark-up 

Damage ratio risk mark-up 

Total risk mark-up 

163% 
41% 

43% 

247% 

492% 
112% 

101% 

705% 

691% 
149% 

134% 

974% 

1% 
11% 

15% 

27% 

1% 
11% 

15% 

28% 

1% 
9% 

15% 

25% 

2% 
15% 

16% 

34% 

Discount rate r(0) (per year) 2.9% 2.3% 2.3% 4.5% 4.5% 5.5% 3.1% 

Estimates in this table are for proportional damages ( 0
ET

 = ) and  = 1.5%/year (ethics-based calibration), except for the 

last column, which considers a lower rate of impatience. 

 

With asset return volatility, an increase in RRA58 from 4.3 to 6.0 depresses 

the discount rate (0)r from 2.9% to 2.3% per year and pushes up the risk-adjusted 

SCC to $92.2/tCO2, corresponding to a total risk mark-up of 705%, whereas 

with GDP volatility this effect is negligibly small. With asset return volatility, 

an increase in IIA from 1.5 to 2.0 also pushes down the discount rate (0)r  to 

2.3% per year and the risk-adjusted SCC up to $87.2/tCO2. With GDP volatility, 

a similar increase in IIA instead increases the discount rate (0)r  (from 4.5% to 

5.5% per year), pushes down the deterministic SCC from $11.5 to $8.1/tCO2 

and the risk-adjusted SCC from $14.6 to $10.2/tCO2.  

Summarizing, the effect of RRA on the risk-adjusted SCC depends crucially 

on the magnitude of economic volatility and is very substantial for asset return 

volatility but negligibly small for GDP growth volatility. More IIA substantially 

boosts the risk-adjusted SCC for asset return volatility,59 but decreases for GDP 

growth volatility. This accords with Crost and Traeger (2013), Ackerman et al. 

                                                           
57 Historical data for the growth rate of world GDP for 1961-2015 imply 

K = 1.5 %/year1/2, which we use here. 
58 In this section, we will use the short-hands RRA and IIA to denote relative risk aversion ( RRA = ) and 

intergenerational inequality aversion( IIA = ), respectively.  

59 As 
2

0
K

g −  (cf. (22), when written as * (0) 2 / 2)( 1)(
K

r g  + −= − ). 
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(2013) and Hambel et al. (2017), who all use uncertainty based on GDP.60  

C. Convexity of the damage function 

Table 6 considers the effect of our convex damage function (
ET =0.28) on 

the SCC. Generally, the SCC is larger due to larger damages for higher 

temperatures (cf. Fig. 3b), which is felt more strongly for lower discount rates.61 

A small mark-up for carbon stock uncertainty is now required, which is negative 

due to the concavity of marginal damages for ET =0.28 (cf. (A4), Result 3). 

 
TABLE 6. ESTIMATES OF THE SCC: CONVEXITY OF THE DAMAGE FUNCTION 

 
Proportional damages 

 ( 0ET = )  

Convex damages  

( 0.28ET = ) 

Highly convex damages 

(AS12, 0.63ET = ) 

Deterministic SCC ($/tCO2) 25.5 26.8 77.2 

Risk-adjusted SCC ($/tCO2) 34.1 41.9 140.8 

Economic risk mark-up 

Carbon stock risk mark-up 
Climate sensitivity risk mark-up 

Damage ratio risk mark-up 

Total risk mark-up 

2% 

0% 
15% 

16% 

34% 

1% 

-1% 
30% 

26% 

56% 

-1% 

-1% 
61% 

15% 

82% 

Discount rate r(0) (per year) 3.1% 3.1% 3.1% 

Estimates in this table are for  = 0.1%/year (ethics-based calibration) and GDP growth volatility (
K

 = 1.5%/ year1/2).   

The climate sensitivity risk mark-up increases considerably due to the more 

convex damages-temperature relationship ( T =1.0 vs. 0.56). If we consider the 

highly convex damage function of Ackerman and Stanton (2012) (henceforth 

AS12), also shown in Fig. 3b with damages rapidly increasing above 1°C, we 

obtain an even larger deterministic SCC of $77.2/tCO2, a climate sensitivity risk 

mark-up of 61% and a total risk-adjusted SCC of $140.8/tCO2.
62,63  

                                                           
60 With GDP growth volatility, it is possible to use an even lower ethics-based value of impatience of  = 0.1%/year 

without negative discount rates and unbounded value of the SCC, which we will use below. 
61 This effect more than compensates the higher effective discount rate due to atmospheric decay of carbon in the case 

of convex damages (cf. * (1 )
ET

r r  + +  in (A2), Result 3). 

62 The damage function of AS12 is 
2 6 6.76 1

1 (1 0.00245 5.021 10 )D T T
− −

= − + +  . As our formulation has power-law 

damage functions, we fit 
,AS

AS

1 1
( )

T
D T C




+ +
=  to the AS12 damage function over the range 0-4.0°C to obtain 

,AST
 = 0.54 and 

AS
C = 0.90, as illustrated in Fig. 3b. We retain the distribution for  and the value of 


  for convex 

damages given in Table 1.  
63 As an alternative to our multiplicative uncertainty, Crost and Traeger (2014) have argued that the power-coefficient 

in the relationship between damages and temperature should be uncertain. To illustrate this, we calibrate 
0

D D T


=  
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D. Correlated risk and climate betas 

Table 7 examines the effect of the different climate betas. If the elasticity of 

damages with respect to world GDP (the built-in climate beta) is reduced from 

1 to D = 0.8, two effects take hold: damage shocks are no longer fully insured, 

depressing the risk-adjusted discount rate (self-insurance term in (22)) and 

pushing up the SCC, and damages now grow less rapidly than GDP, pushing up 

the discount rate (growing damages term in (22)) and depressing the SCC. 

Table 7 shows that the former effect dominates when economic volatility is 

based on asset returns, and the latter when it is based on GDP growth.  

 
TABLE 7. ESTIMATES OF THE SCC: CORRELATED RISK 

 
Asset return 

volatility  

GDP growth volatility  

(
K

 = 1.5%/ year1/2) 

 base 
D  

base 
D  

K  
K    

0.8 0.8 -1 1 -1 1 -1 1 

Deterministic SCC ($/tCO2) 11.5 9.9  25.5 19.0 25.5 25.5 25.5 25.5 25.5 25.5 

Risk-adjusted SCC ($/tCO2) 39.8 122.9  34.1 25.3 40.1 28.1 36.5 31.7 29.2 39.0 

Economic risk mark-up 

Climate sensitivity risk mark-up 

Damage ratio risk mark-up 
Total risk mark-up 

163% 

41% 

43% 
247% 

811% 

181% 

156% 
1147%  

2% 

15% 

16% 
34% 

3% 

14% 

16% 
33% 

2% 

15% 

40%
57% 

2% 

15% 

-7% 
10% 

2% 

15% 

26%
43% 

2% 

15% 

7% 
24% 

2% 

15% 

-3% 
15% 

2% 

15% 

36%
53% 

Discount rate r(0) (per year) 2.9% 2.2% 3.1% 3.5% 3.1% 3.1% 3.1% 3.1% 3.1% 3.1% 

Estimates in this table are for proportional damages ( 0
ET

 = ), for  = 1.5%/year in the case of asset return volatility (
K

 =

12%/ year1/2), and for  = 0.1%/year in the case of GDP growth volatility (
K

 = 1.5%/ year1/2). 

Taking economic volatility based on GDP growth, the SCC drops from $40.1 to 

$28.1/tCO2 as the temperature beta K , which measures correlation between 

temperature and GDP, is increased from its minimum to its maximum value (

K  from -1 to 1). Similarly, the SCC drops from $36.5 to $31.7/tCO2 as the 

damage beta K , which measures correlation between damages and GDP, is 

                                                           

with 
2

~ ( , )N
 

   , to obtain 
0

D = 0.20, 


 = 1.1 and 


 = 0.59, as shown in Fig. 3. Since damages cannot be 

stochastic at 1.0°C, we only use damage estimates for which temperature exceeds 1.1°C. From a leading-order 

expansion in , we obtain a standardized skewness which rises with temperature, i.e. skew*( | ) 3 log( )D T T


=  (e.g. 

2.45 at 4C), which is much higher than our (constant) value of 0.29, especially at higher temperatures. Figure 3a 

indicates that this alternative gives a damage ratio distribution that is also more uncertain (wider confidence bands) at 

temperatures higher than 3C or 4C compared to proportional damages. Both the higher skewness and higher 

uncertainty push up the optimal SCC for low discount rates, but this effect is like our case of convex damages (Fig. 3b).  
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increased from its minimum to its maximum value ( K  from -1 to 1). Finally, 

if we vary  from -1 to 1, the SCC increases from $29.2 to $39.0/tCO2, with 

the largest value corresponding to the case when future climate sensitivity 

shocks are perfectly (positively) correlated with future damage ratio shocks.64 

E. Comparison with other calibrations 

In Table 8, we evaluate the optimal risk-adjusted SCC for different 

calibrations in the literature. Golosov et al. (2014) uses proportional damages, 

logarithmic utility (IIA = RRA = 1), and  = 1.5% per year, which gives a risk-

adjusted discount rate (0)r of 3.5% per year. With logarithmic utility, neither 

the expected rate of growth nor uncertainty about the future rate of growth 

influences the optimal SCC. Gollier (2012) uses RRA = IIA = 2 and  = 0, 

giving a risk-adjusted discount rate (0)r  of 2.5% or 4.0% per year and a risk-

adjusted SCC is $62.6 or $18.5/tCO2 for economic volatility based on asset 

markets and GDP growth, respectively.65 The discount rate is only substantially 

lowered for asset return uncertainty; asset return uncertainty depresses the 

discount rates and pushes up the risk-adjusted SCC as IIA exceeds one. 

 
TABLE 8. ESTIMATES OF THE SCC: COMPARISON WITH OTHER CALIBRATIONS 

Model Base 
Golosov et 

al. (2014) 
Gollier (2012) 

Stern (2007) 

+AS12 

Volatility based on 
asset 

returns 
- 

asset 

returns 
GDP GDP 

Deterministic SCC ($/tCO2) 11.5 19.0 14.4 14.4 86.9 

Risk-adjusted SCC ($/tCO2) 39.8 24.6 62.6 18.5 165.2 

Economic risk mark-up 

Carbon stock risk mark-up 

Climate sensitivity risk mark-up 
Damage ratio mark-up 

Total risk mark-up 

163% 

0% 

41% 
43% 

247% 

0% 

0% 

13% 
16% 

29% 

225% 

0% 

57% 
54% 

336% 

1% 

0% 

12% 
16% 

29% 

0% 

-1% 

65% 
26% 

90% 

Discount rate r(0) (per year) 2.9% 3.5% 2.5% 4.0% 2.5% 

Estimates in this table are for proportional damages ( 0
ET

 = ), except for the final column, which assumes 

highly convex AS12 damages. The base case is for  = 1.5%/year (ethics-based calibration). 

                                                           
64 The effects of ,

EK E
   and 

E
  on the risk-adjusted SCC are very small, and we do not consider these here. 

65 The integrated assessment model of Nordhaus (2008) has IIA = RRA = 1.45 and  = 1.5%/year with a higher risk 

adjusted discount rate 
(0)

r  of 3.9% or 4.4%/year for economic volatility based on asset markets and GDP growth, 

respectively. Correspondingly, we obtain a lower deterministic SCC of $11.9/tCO2 and a lower risk-adjusted SCC of 
$19.1 or $15.1/tCO2 corresponding to lower total risk mark-ups of 60% or 27% for economic volatility based on asset 

markets and GDP growth, respectively. 
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Finally, the last column of Table 8 uses IIA = RRA = 1.45 and a very low rate 

of time preference of  = 0.1%/year corresponding to a discount rate (0)r  of 

2.5% per year (for GDP-based economic volatility) and uses AS12 damages, 

which reflects the choice of low discount rate and convexity of damages used 

by Stern (2007). This gives very high values for the deterministic SCC of $87 

and the risk-adjusted SCC of $165.2 per tCO2.  

VI. Concluding Remarks 

We have derived a tractable rule for the optimal risk-adjusted SCC under 

climatic and damage uncertainties allowing for skewed distributions and the 

time scales on which they arise, as well as for uncertainty about economic 

growth or asset returns. Our rule is accurate if damages are a small fraction of 

world GDP (say, less than 10%), which is so for all estimates of damages in the 

literature. Our rule offers new analytical insights and complements insights 

from numerical solutions of stochastic, dynamic, nonlinear systems. We have 

calibrated our uncertainties based on what we think are the best high-level 

surveys (IPCC (2014, AR5) for atmospheric carbon stock and climate sensitivity 

uncertainties and Nordhaus and Moffat (2017) for damage ratio uncertainty) 

The optimal SCC decreases in intergenerational inequality aversion if trend 

economic growth corrected for its uncertainty is positive but increases in risk 

aversion if economic growth (or asset returns) are volatile. If damages are 

proportional to GDP, there is a built-in climate beta of one. This self-insurance 

effect depresses the optimal SCC. If the elasticity of damages with respect to 

GDP is less than one, there is less potential for self-insurance, which pushes up 

the SCC, and damages grow less rapidly, which pushes down the SCC. The first 

effect dominates if economic volatility is derived from asset returns, but the 

second effect dominates if volatility is derived from GDP growth.  

Uncertainty in atmospheric carbon stock dynamics only requires adjustments 

to the SCC if damages are convex, but these effects are negligible if based on 
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historical uncertainty and negative and small if based on future projections. 

Uncertain climate sensitivity increases the SCC significantly, especially due to 

the skewness of the equilibrium climate sensitivity distribution, further 

enhanced by the convex dependence of damages on temperature. The magnitude 

of this mark-up depends crucially on the time scale on which it arises, and the 

much larger and more skew equilibrium climate sensitivity only plays a role for 

lower ethics-based discount rates.  There is some evidence that the distribution 

damage ratio is right-skewed with an increase in the optimal SCC as a result.  

Our rule for the optimal SCC also allows for correlated risks. If relative risk 

aversion exceeds one, what we call the hedging effects dominate the offsetting 

effects resulting from damages being proportional to GDP. It is then optimal to 

hedge and raise the SCC if the temperature beta is negative. This occurs when 

asset returns are high in future states of nature in which temperature is low (e.g. 

industries producing agricultural products, heating systems or winter garments). 

If risk aversion exceeds one, we also show that the optimal SCC is higher if the 

damage ratio beta is negative. This occurs when asset returns are high in future 

states of nature in which the damage ratio is lower than expected, which is 

typical, except for in adaptation industries (e.g. industries building flood 

defences). If risk aversion equals one, correlated risks do not affect the SCC, 

except for through the correlation between temperature and damage ratio risk. 

 We have found that the role of climate sensitivity uncertainty relies 

crucially on the time scale on which the large uncertainty and skewness 

associated with the ECS arise, a time scale that is not well understood. 

Instead of the TCR and the ECS, the so-called transient climate response to 

cumulative emissions (TCRE, e.g. Matthews et al. (2009)) is gaining 

traction. Although its uncertainty has not yet been as thoroughly studied as 

the TCR and the ECS, the absence of inherent time scales makes the TCRE 

useful for calculating the SCC needed to keep temperature below a cap.  

Future research should be aimed at models that can have ethics-based 

discounting for policy makers but market-based discounting for the private 
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sector and that are general enough to distinguish volatility of equity returns and 

GDP growth. We have abstracted from long-run risk in economic growth 

(Bansal and Yaron, 2004) and a downward-sloping term structure resulting from 

mean reversion in economic growth (Gollier and Mahul, 2017).66 Models that 

include these three aspects should give more robust estimates of temperature 

and damage betas. Other challenges are to allow for compound Poisson shocks 

to temperature and damages (cf. Hambel et al., 2018; Bretschger and 

Vinogradova, 2018; Bansal et al., 2016), positive feedbacks such as the CO2 

absorption capacity of the oceans declining with temperature (Millar et al., 

2016), the timing of climatic uncertainty, the risk of tipping points (e.g., 

Lemoine and Traeger, 2014, 2016; Lontzek et al., 2016; Cai et al., 2016; van 

der Ploeg and de Zeeuw, 2018), which may further increase the optimal SCC.   
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Appendix A: More General Closed-form Solutions for the Optimal SCC  

Result 1: The term  in Result 1 is given by (D3.17). Dimensionally,  
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where  
1 ET +   and 

1
. +

    

 

We can generalize Result 2 to include convex reduced-form damages ( 0ET  ) and 

deterministic temperature lags (
0  ) (see Appendix E for the derivation). The resulting 

Result 3 includes additional correction factors, which can be evaluated as simple, one-

dimensional integrals. The only additional assumption is that the future atmospheric carbon 

stock does not inherit any of the uncertainty from new emissions through their dependence 

on the stochastic capital stock (cf. (E2.3)), which is associated with only a very small error, 

as discussed in Appendix G. 

Result 3: The leading-order optimal SCC is: 
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where 
* ,(1 )ETr r  + +  

2( 1) Kr r   + − −  and (0)F  is shorthand for optimal 

fossil fuel use without climate policy, ( )
1

(0)

1

(1 ) ,F b A K= −  to the zeroth order of 
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approximation. We refer to the  -terms in (A2) as uncertainty adjustments. We 

distinguish two types of correction factors, for 0ET   and for 0 ,   which can be 

linearly combined, for example: 
0, 0 ,ET       +  . We will discuss the uncertainty 

adjustments below. The correction factors are given in (E3.4)-(E3.5) in Appendix E. 

The adjustments for uncertainty in the carbon stock, climate sensitivity, the damage ratio 

and the interaction between the two, which are now multiplied by their respective 

correction factors, are given by 
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The adjustments for correlated climate and economic risk is 
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The correction for correlated climate sensitivity and damage ratio risk is 
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Convexity of reduced-form damages ( 0ET  ) causes Result 3 to be different from Result 

2 in five ways. First, it changes the flow damage coefficient ( )E . From (8), we obtain  

( ) 12
( ) (1 ) ( /1 / ) ET

ET ET PIE PIE E SS   − = +  to leading-order in our small parameter. With 

convex damages ( 0ET  ), the flow damage coefficient thus rises with the stock of 

atmospheric carbon. The time path for the carbon price is then steeper than that of world 

GDP. Its effect on the deterministic SCC is captured in (A2) through the correction factor 

0 0
ET   , reflecting the more harmful effect of future emissions (when the stock is 

higher). Second, it boosts the effective discount rate 
(0)( 1) 1( )ETr g   = ++ − + , as the 

marginal damage of a unit of CO2 decays more quickly than the unit itself. Combined, the 

net effect on the SCC is positive for small decay rates of atmospheric carbon. Third, a new 

adjustment (A4) needs to be made for carbon stock uncertainty. For reduced-form damages 

that are not too convex ( 0 1ET  ), this adjustment is negative, reflecting concave 

marginal damages. Fourth, the adjustments for the other two uncertainties in (A5) are now 

multiplied by correction factors that are greater than unity, reflecting rising marginal 

damages, as in the deterministic case. The same applies to the terms adjusting for 

correlations in (A7)-(A8), with new correlation terms with the carbon stock arising there. 

Finally, Result 3 allows for a higher-order term (A6), which is normally small but may be 

non-negligibly small if T  is large enough. 

 The effect of deterministic temperature lags ( 0  ) is captured as follows. The flow 

damage coefficient   is evaluated at the initial (low) temperature. The third term in the 

round brackets in (A2) is positive and captures this delayed deterministic temperature rise. 

Similarly, all the adjustments are corrected by their respective correction factors to take 

this delayed temperature increase into account.   
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Appendix B: Transformation to Non-Dimensional Form (For Online Publication) 

We define the non-dimensional variables 
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The resulting non-dimensional expressions are 
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with ( ) 1 1

0 0 0
ˆ ˆ ˆ, ( , ) .A E A E F g K   − −  Damages and total factor productivity become 
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The first-order conditions of (B2) with respect to Ĉ  and F̂  are, respectively, 
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where we have defined the optimal SCC in non-dimensional terms as 
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and use (B7) to write the production function as 
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Appendix C: Derivation of Zeroth-Order Solution (For Online Publication) 

In non-dimensional terms, the truncated series solutions for the value function and the 

forward-looking control variables (18) is 
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At (1)O  the Hamilton-Jacobi-Bellman equation (B2) can be written as 
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where we have substituted for the  forward-looking variables Ĉ  and F̂  at (1)O  from (B6) 

and (B7) and we have used 
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In (C2)-(C3), 
(0)î  is the (constant) optimally chosen investment rate. Equation (C2) has a 

power-law solution of the form 
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From the first-order condition (B6), we obtain 
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where ( ) ( )ˆ ˆ1q i i=   denotes Tobin’s ,q  the price of capital in consumption terms.1  

We can thus write the value function (C4) as 
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Substituting in for F̂  from (B7) and for Ŷ  from (B9), we obtain from ˆˆˆ ˆ ˆ :I Y C bF= − −   
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productivity of capital net of depreciation.2 Equation (C7) implicitly defines the optimally 

chosen investment rate 
(0)ˆ .i  From (C3), the leading-order endogenous growth rate of capital 

and hence of consumption is 
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ˆˆ ˆˆ ( )
1 1

ˆ t

O

g E dK i
dtK

  =
 

=    and   hence ( )(0) (0)ˆ ˆˆ 1.g i= =  

                                                           
1 The value of the capital stock is ˆˆ ,qK or dimensionally ,qK  where ˆ ˆˆ 1/ '( ) 1 ( )q i i = =   is already a fraction and is left 

unchanged by the scaling (cf. q̂ q=  or ˆˆi i = ).  

2 Dimensionally, we have 
(0) (0)

mpk mpk 0
ˆ .r r g=  
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In equilibrium, the marginal propensity to consume 
(0)(0)ˆ ˆc q  equals the expected return on 

investment (0)r̂  minus the growth rate of the economy
(0)ˆ .g  In turn, the expected return on 

investment equals the sum of the risk-free rate 
(0)

rfr̂  and the risk premium 
(0)ˆ .r  Hence, 

(0)(0) (0) (0) (0) (0) (0)

rf
ˆ ˆ ˆ ˆ ˆ ˆ ˆc q r g r r g= − = +  −  and with a risk premium of 

(0) 2ˆ ˆ
Kr  =  in the 

absence of any climate risk at zeroth-order, the risk-free rate is: 

(C9)                                    
(0) (0) 2

rf
ˆˆ ˆ ˆ(1 ) 2Kr g   = + − + .  

 

Although (0)

ˆ
ˆ

E
J  can be computed from (C6), a consistent leading-order estimate of the 

optimal SCC also requires (1)

ˆ
ˆ

E
J  and thus the next order in the perturbation expansion, i.e., 

( )
(0)

(0) (1) (0)

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ .( )

E E K
P J J Ji


+−=   

 

Appendix D: Derivation of First-Order Solution (For Online Publication) 

D.1. Solution to multi-variate Ornstein-Uhlenbeck process  

We define ( )0
ˆ log /k k K K  , so the vector of states   ˆ ˆˆ ˆ, , ,

T

dk dE d dd  =x  is described 

by a multi-variate Ornstein-Uhlenbeck process (11), which in non-dimensional terms is 

(D1.1)                                ( ) ˆ .tdd t d= − +−α ν μ Sx Wx  

 

The growth rate vector (12), relevant to the capital and atmospheric carbon stock processes 

only, is given in non-dimensional terms by 

(D1.2) 

1
1

2 ˆˆ2

ˆ
1 1ˆˆ ˆ, , 0, 0 , , 0, 0 ,ˆ ˆ
2

1 1 1ˆ ˆˆ( )
ˆ ˆˆ ˆ 2

TT

K

t gt

t K

dK
dE

E
E i A Ke

dt dtK b





   −

 
   

  
− 

−   =      
   

= −
 

α  
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the mean reversion rate vector by ( )ˆ0, , ,
T

   =ν , the vector of means by 

(0,0,1,1) ,
T

T=μ  and the covariance matrix 
T

SS  has the form 

(D1.3)     

2

2

2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1
.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

K E

E E E E

KE K K K K K

T T
KE K E E

K K E

K

t

E

EK E

E d d
dt

   

   

       

       

         

         

         

         

 
 
   = =
   
 
 
 

x x SS    

 

We begin by integrating the multi-variate Ornstein-Uhlenbeck process (D1.1), including 

only terms at zeroth order, so that the coefficients are constant, and a closed-form solution 

is available. Specifically, 

1/
(0)

(0) 2 1/

0

1ˆ ˆ ˆˆ ˆ ˆ ,( ) 2, ,0,0
ˆ

T

Ki A K
b




  

− 
−  



 
=  
 
 

α  where we 

have relied on the solution for K̂  from the zeroth-order problem (cf. (C8)). The slow 

dependence of productivity Â  on the states Ê , ̂   and ̂  can be neglected when 

integrating with respect to time, consistent with the multiple-scales nature of our 

perturbation expansion. For constant coefficients, (D1.1) can be integrated to give: 

(D1.4)                 ( ) ( ) ( )
ˆ

ˆˆˆ
0 ˆ

0

.

t
u tt

ut t e e d
−

= + + − + 
νν

x xμ α μ S W  

 

The quantity ( )tx  is normally distributed with covariance matrix ( )tΣ : 

(D1.5)                             
( )( ) ( )( )

ˆ
ˆ ˆˆ ˆ

0

ˆ( )

t T
u t u t

t e e du
− −

= =
ν ν

Σ S S  
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( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( )

ˆˆ ˆˆ ˆˆ

ˆˆ ˆ ˆˆ ˆˆ ˆˆ ˆ2

ˆ

2

2

ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆˆ ˆ
ˆˆ 1 1 1

ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ
1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ
1 1

ˆ

tK K tt K KKE K

t tEt t EKE K

tK K E

E

E
K

EE E

E

t e e e

e e e e

e e

 

 



    

 

       

 

    

 

       


 

        

     

     

  

− −−

− + − +− −

− +−

− − −

− − − −
+ +

− −
+

( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

ˆˆ ˆ ˆˆ2

ˆˆ ˆ ˆˆˆ ˆˆ
2

ˆ ˆ2

2ˆ ˆ ˆ
1 1

ˆ ˆ2

ˆ ˆˆ

.

ˆ ˆ ˆ ˆ
1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ2

t tt

tt t tK K E E

e e

e e e e

 

   

    

  

           

    

   

 

        

     

−−

−− −

+

+ + −

 
 
 


−


 
 
 
 
 +
 


− −

− − −


  + + 

 

D.2. Evolution equations for K̂  and Ê  

We consider the expected evolution equations of the states K̂  and Ê  at ( )O  and (1)O , 

respectively. At this order, we have for the expected evolution of ˆ :K  

(D2.1)   

( )

(1) (1)(0) (0)
ˆ(0) (1) (0) (1)

(0) (0)(0)
ˆ

(0)

1
,

ˆˆ ˆˆ ˆ( )ˆ ˆ ˆˆ ˆˆ ˆ(ˆ ) ( )
ˆ 1ˆ ˆˆ

ˆ ˆ( )

K

O
K

t

J Ji c
E i I i C K

J J
dK

dt c

i

  
 



 


−



  = = − =
  −

 
  + 

 


− 

 

 

where the first identity makes use of (1) (1) (0) (1) (0)ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ ( )I I I K I i  = = −  at ( ).O  We 

further note from ˆ ˆˆ ˆ ˆI Y bF C= − −  that 
(1) (1)ˆˆ ,I C= −  since production net of fossil fuel costs 

is unaffected by the SCC in our formulation: 

(D2.2)    

ˆ

1

0

1

0

1

1

ˆ

ˆˆ ˆ
ˆ

1ˆˆ ˆˆ
ˆ ˆ ˆˆ ˆˆ ˆˆ ˆexp( ) exp( )

1 ˆ 0.

P

P

Y bF
P

A K b A
P b P gt b P gt

K



 
 

 

=

−

=


 −
 

 
    − −        + − + −    

=

−
=


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The identity in (D2.2) relies on the Cobb-Douglas nature of the production function. The 

third identity in (D2.1) follows from a Taylor-series expansion of ˆ ,C  given by (B6), with 

respect to the small parameter  (about 0= ): 

(D2.3)             
( )

(1) (1)
ˆ(1) (0) (1)

(0) (0)(0)
ˆ

ˆ ˆ1 1ˆˆ .
1

1
ˆ

ˆ ˆˆ ˆ
K

K

J J
c c i

J Ji

 

   





 
 = − −

−
−

 


−




  

 

Noting that 
(1) (1) ,ˆ ˆi c= −  we can rearrange this linear equation to give 

(D2.4)                   

(1) (1)(0)
ˆ(1)

(0) (0)(0)
ˆ

(0)

ˆ ˆˆ 1
ˆ ,

ˆ ˆˆ1

ˆ ˆ( )

1

1
1

K

K

J Jc
c

J Jc

i

 

  

 

 
= − − 

   



−

−
−

 

 

which is used in the third identity in (D2.1). For ˆ ,E  we have at (1) :O  

(D2.5)                     

( )

(0) ˆˆ

1

1
1

1
.

1 ˆˆˆ ˆˆ
ˆˆ

ˆg t

t

O

E E A e E
t b

d K
d


 


 −− 

=    −
  

  

D.3. The Hamilton-Jacobi-Bellman equation 

Substituting for the forward-looking variables Ĉ  from (B6) and F̂  from (B7), the 

Hamilton-Jacobi-Bellman equation (B2) becomes at ( ) :O  

(D3.1)   

( )

( )
( )

(0) (0)

* (1) (1) (0) (1) (1)

ˆ ˆ ˆ(0) (0)

ˆ ˆ ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( )

ˆ ˆˆ / (
)

)
(

t K K

O

i c
f J J J K i KJ J

c i


  

  


+ + + +


−

−  
 

             ( ) ( )
(0)

1/

ˆˆ(0) (1) 1/ (0) (1)

ˆ ˆ ˆ ˆ
ˆ(1 )

1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ
ˆ

g t

E E
J J A Ke E J J

b





  


   −
 − 

+ + + +    

− −


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( ) ( )

( ) ( ) ( )

( )

(0) (1) (1) 2 2 (0) (1) 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

(

0

0) (1) 2 (0) (1) 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

(

ˆ

(0) (

ˆ

1)

( ) 1)

ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ

1 1
(1 )

2 2

1 1

ˆ ˆ

2

ˆ ˆ

2

ˆ

K EKK EE EE

KE K EKE KE

K KK K K

J J J K J J E

J J J J J J K

J J K J

 

    

  

   

    

  

+ +

+ +

+

+ − + +

+ + + +

+ + ( )

( ) ( ) ( )

(0) (1)

(0) (1) (0) (1

ˆ

)

ˆˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ

(

ˆ

0) (

ˆˆ

1)

ˆ
0,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

K KK

E EE EE EE E

J K

J J J J J J

  

           

  

        

+

+ + + + + + =

 

 

where we have used the identity ˆ ˆ ˆk K K=     (chain rule), substituted the evolution 

equations for K̂  at subsequent orders  ((C3) and (D2.1)) and Ê  at zeroth-order (D2.5), and 

defined ( ) ( )* *ˆ ˆ ˆ ˆ,f f C JJ   with Ĉ  optimally chosen. From (3) and (B6), ( )*f̂ J  is 

(D3.2)                ( ) ( )ˆ

1 1

1* 1 1
(1 .)ˆ ˆ ˆ ˆ ˆˆ ˆ(

1
)

1K
f i J J J

  

  


  
 

−
−

−−

= 
−

−
− −

−  

 

A Taylor-series expansion for ( )*f̂ J  in  (about 0= ) gives 

(D3.3)  

( ) ( )

( )

(0) (0) (0) (1) (1)
ˆ ˆ* (1) (1)

(0) (0)(0)
ˆ

(0) (0) (0)
(1)

ˆ(0) (0)

(

1 1

1

( )

0)

ˆ ˆ ˆˆ ˆ( ) ˆ ˆ
ˆ ˆˆ ˆ

ˆ ˆ ˆˆ ( )( )( )

ˆ ˆˆ ˆ ˆ( ) ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ( )

(1 ) 1

1 1 1

K

KO

K

K

i J J J J
f i J

J Ji

i c c
KJ

i c

i

  

       


   

 


 




−−

−
−

  −
− − + −



 
− +

 

−   −
=  







− − − 

−

( )( )
( )

(1) (1) (1) (1)

ˆ

1
,

1
ˆ ˆ ˆ ˆ ˆ

1
ˆ

K
J KJ J J

  
 

 

 
 

− −



−
−

 − −
 



+ −




 

 

where we have substituted for 
(1) (1)ˆ ˆi c= −  from (D2.4) and used the identity: 

(D3.4)                  
( ) ( )(0) (0) (0)

ˆ
(0) (0)

(0)

ˆ

1 1

1ˆ

.

ˆ ˆˆ( )
ˆ ˆ ˆ(

ˆ

(1 )
)

ˆ

K

K

i J J
i c

KJ

  

   


−

−

−
−

−
=   
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Substituting from (D3.2), two of the terms in (D3.1) simplify to 

(D3.5)         

( )

* (0) (0) (0)

ˆ

(

1)

)

(1ˆ ˆˆ ˆˆ ˆˆ( ) ( ) .
1 ˆ ( ) 1
ˆ 1

tK

O

O

E dK
d

J
t

f J i c    


 + =


 − 


− −


+
−

 

 

Using (D3.5), (D3.1) can be rewritten as a forced equation: 

(D3.6)      

( ) ( )

( ) ( )
(0)

(0) (0) (1) (1) (1) (0)

ˆ ˆ

ˆˆ(1) (1) (1)

ˆ ˆ ˆ

(1) 2 2 (1) 2 2 (

ˆ ˆ

1

ˆ ˆ ˆ ˆ

1

1

1

1

1 ˆ ˆˆ ˆ ˆ ˆˆ ˆˆˆ( ) ( )
1

1 ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ 1

1 1

2 2 2

ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ

t K

g t

E

K EKK EE

i c J J J K i

J A Ke E J J
b

J K J E J




  



     



    

 

−

 −  + + +
 −

 
−   + − + −   

 

+ + +

− −

−

( )

(1) (1) (1)

(1) (

1) 2 (1) 2

ˆ ˆ

ˆ ˆ ˆ ˆˆˆ

ˆ ˆ ˆˆ

1) (1)

ˆ ˆ

ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ , , , , ,

1

2

KE K E K K K KKE K K

E EE E EE

J

J K J K J K

J J J G t K E

 

    

        

 

        

          

+ +

+ +

+

= −+

 

 

where the forcing is defined as 

(D3.7) 

(0) ˆˆ(0) (0)

ˆ ˆ

(0) (0) 2 (0) 2 (0) 2

ˆ ˆ ˆ ˆ

1
1

(0) (0)

(0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ

( )

1 1 1ˆ(1 )

1ˆ ˆ ˆˆ

2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( , , , , ) 1
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
2

ˆ ˆ ˆ

ˆ

2
ˆ ˆ

g t

E

E KE K E K KEE KE K

K

G t K E J A e E J
b

J J J J J K J

J

K

K




 

      




    

         





−

 
−   + −   



−



+

+ + +

+

+

−

+

ˆ

) (

ˆ ˆ

0

ˆˆ ˆ

(0) 0) ( ) .ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
K K E EE EE EK J J J          

           + + +

 

 

To obtain derivatives of the zeroth-order value function with respect to Ê , ̂  and ˆ,  we 

first differentiate with respect to the marginal productivity of capital (0)

mpk
ˆ ,r  which depends 

on these three variables (via the chain rule of differentiation). From (C6), we obtain: 
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(D3.8)                   ( )
(0) (0)

(0) (0) (0)(

)

0)
m k

(0
(0)

p mpk

ˆˆ ˆ ˆ( ) 1ˆ 1 .
ˆ ˆˆ ˆ ˆ( )

J i i
J

r c ri

 
 



  − 
= − − +

 


  
 


 

 

Since the investment rate is implicitly defined, we get from (C7) by implicit differentiation:  

(D3.9)                             

(0)

(0) (0) (0) (0)
mpk

ˆ 1
.

ˆ ˆˆ ˆˆ ˆ ( ) / ( )

i

r c i i  


=

 −  
 

 

Combining (D3.8) and (D3.9), we obtain  

(D3.10)              ( ) ( )(

1(0)
(

)

0) 1

1
1

0) (0) 1

(0) (0

m

1

pk

ˆ 1 ˆˆ ˆˆ ˆ(
ˆ ˆ

)
J

J i c K
r c

 


 



−

− −

−
− − −

− −
= = 


.  

 

Using the chain rule of differentiation, we find the individual terms that contribute to the 

forcing (D3.7): 

(D3.11)               
( )

( ) ( )

( )

( ) ( )

(0)1
1 mpk(0) (0) (0) 1

ˆ

2 (0)1

ˆ

1

1 1

1 mpk(0) (0) (0)

1

1 1 1

ˆ 2

ˆ
ˆˆ ˆˆ ˆ(  and

ˆ

ˆ
ˆˆ ) ˆˆ ˆ( ,

)

ˆ

E

O

EE

O

r
J i c K

E

r
J i c K

E

 


 

 


 





−
−

− −

−

− −

−− −
−

−− − −
−


= 




= 



 

 

and similarly for derivatives with respect to ̂  and ˆ,  as well as cross-derivatives. From 

the zeroth-order solution ( ) ( )
( )11

(0)

mpk
ˆˆ ˆ ˆˆ ˆˆ 1, , ( )r A E b

 

    
−

= − −  and the non-

dimensional total factor productivity (B4), we obtain 

(D3.12a)   

( )

( )

1
(0) 1

1mpk

1
2 (0) 1

1mpk

*

1*

2

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆ ˆ

ˆ
ˆ

1 ˆ1

1 ˆ1 ,ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( )
ˆ ˆ

ET

ET

ET

ET ET

r
A E A E

E b

r
A E A E

E b












    


     

−

−

−

−
−

 −
+ 

−

 
= −  

  

  
= −   +




 
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(D3.12b)          

1
(0) 1

1mpk 1*

ˆ

1
2 (0) 1

1mpk 1*

ˆ ˆ2

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆˆ

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

1

ˆ
ˆˆ

ˆ

1

ET

ET

r
A A E E

b

r
A A E E

b
















   




   



−

−
+

−

−
+

  
= −  

  

  
= −  

−

 

−






 

(D3.12c)            

1
(0) 1

1mpk 1*

ˆ

1
2 (0) 1

1mpk 1*

ˆ ˆ2

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆ ˆ

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆ

ˆ
ˆ ˆ

1

1

ET

ET

r
A A E E

b

r
A A E E

b
















   




   



−

−
+

−

−
+

−


−


  
= −  

  

  
= −  

  

 

 

(D3.12d)        

( )

( ) ( )

1
2 (0) 1

1mpk

ˆ

1
2 (0) 1

1mpk

ˆ

2 (0) 1
1m k

*

p *

*

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ( ),

ˆ ˆˆ

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , ) ( ) ,

ˆ ˆˆ

ˆ
ˆ ˆ ˆˆ ˆ( , , )

ˆ

1 ˆ1

1 ˆ1

1

ˆˆ

ET

ET

ET

ET

r
A E A E

E b

r
A E A E

E b

r
A A E

b


















    




    




 

 

−

−

−

−

−

  
= −  

   

  
= −  

   




−
+ 

−
+ 

−
= −

  
( )

1

1

ˆ ˆ ,ˆ ˆˆ ˆˆ( )ETE






 
 

−

+
 



  

 

where have used the following short-hands ( )
1

ˆˆ ˆ( ) T 
+

  and ( )
1

ˆ ˆˆ ( ) ,


 
+

   so 

1 ˆˆ ˆ ˆˆ( ) ( ).ˆETD E
  +

=  Equations (D3.11) and (D3.12) can be substituted into (D3.7): 

(D3.13)  

( ) ( )

(

1
1

1
(0) (0)

2 2

ˆ ˆ ˆ ˆ ˆ ˆ

11
1

* 1

ˆ ˆ

1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ( , , , , ) ( , ) ( )
ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

1

1 1ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 )
2 2

ˆ ˆˆ ˆ(1 ) (1 )

ET

K K K

G K E t A E A c i
b




 


      



   

  


   

    

      

−
−− −− −
−−

−  
= −  

 

+

−

 − +  −   + −    


−   + 

+

− 

+

+ )

( )

(

(0)

1

ˆ ˆ

ˆˆ2 2 1

1

1
1

1

1

1

ˆ

ˆ

ˆˆ

1ˆ ˆ ˆˆ ˆ(1 ) 1
2

ˆ ˆˆ ˆ(1 )(1 ) (1 )

ˆˆ

ˆ ˆˆ ˆ ˆ

1 ˆ ˆ ˆ ˆˆ ˆ
ˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ ˆ(1 )

ET

ET ET

ET

K

g t

ET ET ET E

ET KE K E ET E

T E

E

E E

K E

A E e K E
b

K

K

K

E



    


  



  

 

   


    

        

   

+

− −

−

−−

−

+  

+ +  + + 

+ − +  + +  

− 
 
 

+ +  ) 1ˆ ˆ .ˆET ETE K E  − − 

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Because we are ultimately interested in (1)

ˆ
ˆ

E
J  for the computation of the social cost of 

carbon, we first differentiate (D3.6) with respect to Ê  and seek a solution for (1)

ˆ
ˆ

E
J  of the 

form ( )(1)

ˆ 1
ˆˆ ˆ ˆ ˆ ˆˆ( , , , , )1 ETE

J K E t   = +  , which gives (from (D3.6)):3 

(D3.14)    ( )(1)

ˆ 1

1ˆ ˆˆ ,ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ1 ˆˆ ˆˆ( , , , , ) ( , , , , )
ˆET tE

J K E t r E K E t
d

d
t

     
 = + = −


  +  


−   

 

where we have introduced the effective discount rate 

(D3.15)               (0) (0) (0) 2ˆ ˆ ˆˆ ˆ ˆ ˆ(
1

(1 )
2

) Kr r g i    −
 

 − − +
 

+  , 

 

and the coefficient 

(D3.16)           ( ) ( )
1

1
1

(0) (0

11
1

* 1)

1
1ˆ ˆ ˆˆ ˆˆ ˆ( ., , ) ( )

ˆ

1
A A E c i

b






 




   
−−

− −
−

−
−

−

− 
 






−
 

 

The scaled forcing is defined by4 

(D3.17)  ( 2

ˆ ˆ ˆ ˆ

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ(1 ) (1ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ( , , , , )
2

1) ( )ETK E t     
       +  −    −    − − −      

)

( )(

(0)

1

1
1

1 2

2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ2 2 1

ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

1 ˆ ˆ ˆ ˆ ˆˆ ( )
ˆ

ˆ ˆ ˆ ˆ

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ1 1
2

1ˆ ˆˆ ˆˆ1
2

ˆ ˆˆ ˆ1

ET

ET ET

E

K K K K

g t

ET ET ET E

ET KE K E E

K E

A K E e K E
b



           


  

 

           


   

      



−

− −− − −

−  −   − −  − 





−  − − 

− − 

−

− 
 


 +   ) 11

ˆ .ˆ ˆˆ ˆˆˆ ET

E E K E


  
    −−+

 

 

                                                           
3 Dimensionally, we have 

11 1

0 0
ˆTETE K


  
++ − =  . 

4 Dimensionally, we have 
111 1

0 0 0
ˆ .TET gE K


  
+++ − =    
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Equation (D3.14) has the closed-form solution: 

(D3.18)                          
( )ˆˆ ˆ

ˆ

ˆˆ ˆ ˆˆ ˆ ˆ ˆ( , , , , ) .
r s t

t

t

e dE K E s s  


− − 

 =  
 
  

 

We can now compute the SCC according to ( )
(0)

(0) (1) (0)

ˆ ˆ ˆ( )ˆ ˆ ˆ ˆˆ
E E K

iP J J J 


= +− : 

(D3.19)   
( ) ( )

( )
ˆˆ 0

* 1

ˆˆ ˆ ˆ ˆˆ ˆˆˆ ˆ , , , ,ˆˆ ˆ ˆ
,

ˆˆ( , , , , )ˆ ˆ1  with 
ˆˆ ˆ ˆˆ ˆˆ ˆˆ ˆ( ) ( ) ˆ,1 ,ET

EP
E Y D EK E t

P
r E K D E

 

     

   

=

−

  
= −      −

 

 

where we introduced 
* (0) (0)ˆ ˆ ˆr r g− . Dimensionally, (D3.19) corresponds to Result 1. 

 

Appendix E: Leading-Order Effects of Uncertainty (For Online Publication) 

Assuming that the future atmospheric carbon stock does not inherit any of the 

uncertainty from new emissions through their dependence on the stochastic capital stock 

(assumption I), examining only the leading-order effects of uncertainty (assumption II), 

setting the initial value of the damage ratio but not of the climate sensitivity parameter at 

its steady-state ( ˆ 1)(ˆ t = , 
0

ˆ)(ˆˆ t = ) (assumption III), this appendix derives closed-form 

solutions for the optimal risk-adjusted SCC based on Result 1. In doing so, we derive Result 

3 (and its special case Result 2 for 0ET = ). 

E.1. Carbon stock dynamics 

The expected value of the carbon stock is governed by the differential equation (D2.5) 

with solution 

(E1.1)  *ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )exp( ) ( ) 1 exp( ) / ( )exp( ) ( ),tE E s E t s K t s E t s e s      = −  + − −  = −  
   
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with ( )
1 1

* ˆ ˆˆ ˆ (1 ) b A   −  , ˆˆ ˆs s t  −  and * ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) 1 ( ( ) ( ))(exp( ) 1) .e s K t E t s   = +  −

Dimensionally, we define 
*  so that 

(0) *KF = , where   does not have units and 
*  

has units TtC$-1year-1. We can then obtain ( )( )
1* 1A b


  −=  or ( )* *

0 0 0 .ˆ K Eg =    

E.2. Leading-order forcing  

To identify leading-order terms only, we expand in ,ˆ ˆ ˆ
    −  ˆ ˆ ˆ

    −  and

 tE E E E  −  with the corresponding covariance matrix given by (D1.5) (assumption 

II). We begin by considering terms that only involve capital stock uncertainty, which can 

be evaluated without further approximation. The probability density function for time ˆ,s  

but with the expectation operator evaluated at time ˆ,t  is 

(E2.1)                  
2 2

2( )1 1
exp ,

ˆˆ ˆ

ˆˆ ˆ(ˆ 22 )ˆˆ ( )

k

K
k

K

k s
f

s ts t





  
= −    

  

−

−−
 

 

where (0) 2ˆ ˆˆ ˆ( ) 2.k Ki  = −  Combining with the discount factor in (D3.18) and an 

additional factor accounting for the decay of the atmospheric carbon stock, we have without 

further approximation 

(E2.2) 

( ) ( )( ) ( )

( ) ( ) ( )

1 1

2 2
(0)

ˆ ˆˆ ˆˆˆ ˆ ˆ ˆ ˆ( ) exp ( ) exp( )   and

ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ( ) exp ( ) ( ) exp( ),

( )

( 1)

t ET

t ET

E K s r s t K t r s

E K s r g s K t r s

 

 

 

 

− −



− −
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where 
* (0) (0)ˆ ˆˆ ˆ ( ˆ1 ) (1ˆ )ET ETr r r g   += −+ + +  and 

(0) (0) 2 ˆˆ ˆ ˆ (1 ) ˆ
K ETr r g    − +− −  

2( ) ˆˆ ˆ1 Kr   −− −+ . We use alternative star symbols 
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to denote rates corrected for atmospheric carbon stock decay. To leading order, we have 

for the terms involving the carbon stock: 
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where we let the subscript on 
2

 denote the relevant elements of the covariance matrix Σ  

(D1.5) and we have ignored any contributions to uncertainty from new emissions through 

their dependence on uncertain future GDP (assumption I). The following terms also make 

a contribution to the forcing (D3.17): 
ˆ

ˆ ˆˆ ˆ, ,   ˆ ,ˆ ˆˆ ˆˆ ˆ( ) ,  
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(E2.4b)            
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Using (E2.2)-(E2.5), we now consider the terms in the forcing (D3.17) consecutively 

and let the subscript indices correspond to the sequence of terms in (D3.17) (left to right). 

To consider the covariance terms in the forcing (D3.17), we also expand in 

( )(0) 2ˆ ˆ ˆ ˆ ˆˆ( ) 2Kk k i t   − −  and only consider deviations from the zeroth-order mean 

consistent with our search for leading-order terms only. The following terms arise:  
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where elements of the covariance matrix have been substituted from (D1.5). 

E.3. Leading-order solution 

Combining all the leading-order terms in the forcing equation (E2.6)-(E2.18) and 

substituting into (D3.19), further assuming that ˆˆ )( 1t =  but not ˆˆ )( 1t =  (assumption 

III), we obtain after considerable manipulation including integrating by parts: 
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where the adjustments for uncertainty are 
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 We distinguish two types of correction factors, for 0ET   and for 0  , which can 

be linearly combined, for example: 
0, 0 ,1

ET        +  + . The combined correction 

factors are equal to unity when 0ET   and 0   (e.g. 1  ). We give the correction 

factors in terms of dimensional quantities below (using the definitions summarized in (B1) 

and (B3) and 
(0* )

0 0
ˆ / ( )ˆ K F g E = ), so that they can be used directly in Result 3 given 

dimensionally in Appendix A. The correction factors for 0ET   are given by 
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where ( ) 1i =  for i =  and ( ) 0i =  for i   (cf. indicator function), the function 

that takes into account future changes to the mean carbon stock 

*( ) 1 ( ( ) ( ))(exp( ) 1)e s K t E t s   = +  − , and the time-varying mean climate 

sensitivity ( ) ( )exp( ) exp( )(1 )s t s s         = −  − −+ . The correction factors for 

0   are: 
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Equation (E3.1) together with (E3.2)-(E3.5) gives the optimal SCC. We do not explicitly 

give the correction factors for the correlation terms involving carbon stock uncertainty.  
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Appendix F: Calibration (For Online Publication) 

F.1. Asset returns, risk aversion and intertemporal substitution 

We follow the calibration of Pindyck and Wang (2013), but ignore the effect of 

catastrophic shocks.5,6 Using monthly asset data from the S&P 500 for the period 1947-

2008, we obtain an annual return on assets (capital gains plus dividends) of 
(0)r =

7.2%/year with annual volatility of K = 12%. For a return on safe assets of 0.80%/year 

based on the annualized monthly return on 3-months T-bills, we obtain a risk premium of 

0(0) (0) ( )

rfrr r− =  6.4%/year and calibrate the coefficient of relative risk aversion as  =  

4.3 (cf. (0) 2

Kr = ). Taking the growth rate to be equal to the historical growth rate of 

(0)g =  2.0%/year, the equation ((0) 2

rf

0) (1 ) 2Kr g   = + − +  (cf. (B9)) defines the 

combinations of  and   that are consistent with historical asset returns. Setting the 

coefficient of elasticity of intertemporal substitution EIS 2 / 3= , we obtain 
1EIS −= = 1.5 

and thus a rate of time preference is  = 5.8%/year.  

F.2. Productivity, fossil fuel, adjustment costs and the depreciation rate 

To calibrate total factor productivity, we consider the production function in the absence 

of climate damage that can be obtained by setting 0P =  (i.e. at zeroth order), namely 

*(0)Y A K=  with ( )
(1 )/* 1/ (1 ) /A A b

  
−

= −  (cf. (B9)). Pindyck and Wang (2013) use 

empirical estimates of the physical, human and intangible capital stocks and find 

                                                           
5 Pindyck and Wang (2013) use Poisson shocks to capture small risks of large disasters (cf. Barro, 2016) and thus match 

skewness and kurtosis of asset returns. These shocks are responsible for approximately 1%-point of the risk premium. 
6 The alternative is to calibrate our AK model to the observed volatility of consumption or output (cf. Gollier, 2012), which 

are generally much less volatile than capital (asset returns). Because the volatilities of capital, consumption and output are 

equal to the volatility of capital in an AK model, this alternative calibration gives a much lower volatility and, consequently, 
a higher coefficient of relative risk aversion to match the equity premium (see also the discussion in Pindyck and Wang, 
2013). Historical data for the growth rate of world GDP for 1961-2015 imply a volatility of 

K = 1.5%/year1/2 and thus a 

much higher value of risk aversion of  = 2.8 210  for an equity premium of 6.4%/year. Kocherlota (1996) obtains 
K =  

3.6%/year1/2 from US annual consumption growth during 1889-1978, which gives  = 49. We use 
K = 1.5%/year1/2, but not 

the corresponding high values of risk aversion.  
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* 0.113A = /year, which we adopt. Based on emissions of (0)
0F = 9.1 GtC/year in 2015, 

energy costs making up a share 1 − = 4.3% of world GDP at PPP in 2015 of $116 

trillion/year, we estimate the fossil fuel cost to be 
2(0)(0)

0 0
(1 $ 4) 0. 15b FY = − = /tC.7 

The gross marginal productivity of capital is thus *(0)

0K t
AY 

=
= = 0.11/year.8 Using 

Pindyck and Wang’s (2013) consumption-investment ratio (0) (0)c i = 2.84 and the identity 

) )* (0 (0 ,A c i = + we obtain initial values of 
(0)c =  8.0%/year and 

(0)i = 2.8%/year. Using 

(0) (0) (0) (0)( )q rc g= − =  1.5 and (0) (0) 1(1 )q i −= − , we get the adjustment-cost parameter 

 = 12.5 year. Finally, we find the depreciation rate that is consistent with the assumed rate 

of economic growth: (0) ( 20) (0)( ) 2i i g = − − = 0.33%/year. 

F.3. Atmospheric carbon stock and uncertainty 

Here we calibrate our carbon stock model (6) to the Law Dome Ice Core 2000-year data 

set and historical emissions. The first column of Figure F1 shows maximum-likelihood 

estimates, from which it is evident that estimates displaying a certain linear relationship 

between    and  are of comparable likelihood.9  

                                                           
7 We estimate the share of energy costs from data for energy use and energy costs from BP Statistical Review of World 
Energy 2017. Data for emissions are obtained from the same source available online at 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Our estimate of energy 
costs as a percentage of GDP is in good agreement with data from the U.S. Energy Information Administration available 

online at https://www.eia.gov/totalenergy/data/annual/showtext.php?t=ptb0105.  
8 This is in line with Caselli and Feyrer (2007), who estimate annual marginal products of capital of 8.5% for rich countries 
and 6.9% for poor countries, and an observed annual risk premium of 5-7%. They use a depreciation rate of 6.0% to calculate 

the capital stock from investment, include the share of reproducible capital rather than the share of total capital, account for 

differences in prices between capital and consumption goods and correct for inflation. 
9Annual data from the Law Dome firn and ice core records and the Cape Grim record are available online at 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.txt.This data is based on spline fits to different dataset 

with different spline windows across time reflecting changes in the temporal resolution of the data. The discrete nature of the 
fitted data is evident for the early years. Annual carbon emissions from fossil fuel consumption and cement production are 

available online at http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html. 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.eia.gov/totalenergy/data/annual/showtext.php?t=ptb0105
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.txt
http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html
http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html
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FIGURE F1. HISTORICAL ATMOSPHERIC CARBON STOCK CALIBRATION 

 

These loci of maximum likelihood are shown separately in Figure F2, with the overall 

maximum denoted by a red circle and corresponding values given in Table F1. The 

remaining columns in Figure F1 show the predicted and observed rate of change of the 



A31 

 

atmospheric carbon stock (second column), the predicted and observed atmospheric carbon 

stock (third column) and the remaining variability (fourth column).10
 

 

FIGURE F.2. LOCI OF BEST FIT OF TMOSPHERIC STOCK CALIBRATION 

 

Figure F1 indicates that our model (6) captures the observed historical variations in the 

atmospheric carbon stock reasonably well, including for very long time periods. The final 

column in Table F1 shows volatility as percentage of the initial carbon stock, from which 

we note that the stochastic carbon stock correction to the optimal SCC will be tiny if 

estimated from historical emissions. 

TABLE F.1 – ATMOSPHERIC CARBON STOCK CALIBRATION 

Time    [%/year]  1/2 [GtC year ]E  1/2
0  [% year ]E S  1/2

0  [% year ]E E  

1750-2004 1.0 0.66 0.31 0.036 0.12 

1800-2004 0.75 0.00 0.26 0.029 0.10 

1900-2004 0.59 0.00 0.21 0.025 0.081 

1959-2004 0.79 0.91 0.23 0.027 0.089 

 

                                                           
10 By setting φ = 0, we can estimate the fraction   of emissions that stays in the atmosphere forever, whilst the remainder 

is instantaneously absorbed by the oceans and other carbon sinks. Calibrating to this data, we find μ = 0.68, 0.64, 0.56 and 

0.43 for the periods 1750-2004, 1800-2004, 1900-2004 and 1959-2004, respectively. Performing a similar analysis, Le 
Quéré et al. (2009) find that, between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on 

average. 
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F.4. Calibration of the curvature of the temperature-carbon stock relationship 

The curvature of our temperature relationship (7), 
1 1

PI( , ) ( / ) ET E E S  
+ +

= , is 

constant: ( , ) ( , )EE EE ET E T E   . The radiative law for global mean temperature, 

( )PI PI PIln( / ) / ln(2) ln ( ) / / ln(2)T S S E S S+   (Arrhenius, 1854)11 gives 

/ ( ).E PIE E S = − +  If we evaluate the temperature relationship at double (quadruple) the 

pre-industrial stock  
PIE S=  (

PI3E S= ), we obtain 0.50E = −  (or 0.75E = − ).12 For 
0S =

0.854 TtC or 
0E = 0.258 TtC (given 

PIS =0.596 TtC), we obtain 0.30.E = −  We set 

0.36E = −  for our base case calibration. 

F.5. Climate sensitivity and uncertainty 

If climate sensitivity parameter   is normally distributed with mean    and standard 

deviation  , the climate sensitivity 
1

2T 
+

=  is described by the probability density 

function 

 (F1) ( )
( )2

2
1

2

2 2

1

2

1
exp .

1
; ,

2
, / 2

1
T Tf T T
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 

    

 

  
 

+ +
−   

   − − 
  


+  

=



 

 

Unlike for fat-tailed distributions, which typically have algebraically-decaying tails, all 

moments of (F1) are defined due to its exponential tail (for 1  − ), so that Weitzman’s 

(2009) ‘dismal theorem’ does not apply. Positive values of   result in a positively-skewed 

                                                           
11 In their table 6.2, IPCC (2001) propose a logarithmic relationship for radiative forcing as a function CO2, also given in 

IPCC (1990, chapter 2, where original sources are cited), among two other non-logarithmic, but generally concave 

parametrizations. IPCC (1990, chapter 2, page 51) note that for “low/moderate/high concentrations, the form   is well 
approximated by a linear/square-root/logarithmic dependence”, where the limit of validity of the logarithmic calibration is 

said to be 1000 ppm. For other greenhouse gases alternative parametrizations are proposed: a square-root dependence for 

methane and a linear dependence for halocarbons. 
12 Whereas the normalized curvature of Arrhenius’s (1854) logarithmic radiative law with respect to the atmospheric carbon 
stock S, namely ( ) ( )SS SST S T S   is constant and equal to -1, this limit is only reached for large carbon stock in our case, in 

which ( , ) ( , ).EE EE ET E T E     
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(non-Gaussian) distribution with more probability mass at high temperatures. Leading-

order central moments of climate sensitivity can be obtained from performing Taylor-series 

expansions of 
1

2T 
+

=  about its mean  : 

(F2a)  
1 2 4

2 (1 )( / ) ( ),
1

1
2

E T O

        
+  

+   


= + +


 

(F2b)    ( ) 2(1 )2

2

2 4

2 2

2

v 1ar ( / ) ( ),( )T E T E T O

      
+  +   − = +

 
 

(F2c)    ( ) 3(1 )3 3 6

2

4

2 2skew 3 ( ) / ( ),1 ( )T E T E T O

        
+ = +   − +

 
 

(F2d)      ( )
3/2* 3

2 2 2skew skew / var 3 / ( ).( )T T T O     +=   

Our calibration of the distribution of the climate sensitivity are based on a wide range of 

distributions reported and used by the IPCC (2014, AR5) (see Figure 2 in section IV.B of 

the paper). We would like to add that the 5-95% confidence ranges of 0.7-2.0oC/TtC 

reported by Gillett et al. (2013), 1.0-2.1oC/TtC reported by Matthews et al. (2009) and 1.4-

2.5oC/TtC reported by Allen et al. (2009) are in line with these distributions of the TCR 

and our calibration.  
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Appendix G: Accuracy of Results 3 (For Online Publication) 

Result 1 is evaluated numerically by discretization in time before evaluating the 

expectation operator numerically exactly and summing up the discounted contributions of 

every time step. Whereas the stochastic processes for   and   are autonomous, the 

stochastic process for K  remains autonomous in Result 1, and all three have (independent) 

probability distributions available in closed form, the probability distribution of E  at any 

time period in the future must combine all uncertain emissions (proportional to K ) before 

that time. As the time integral of a Geometric Brownian motion does not have a closed-

form solution, we update the probability distribution function of E  every time step with 

the stochastic emissions and the decay in that period according to the differential equation 

for E  and project on a fixed grid for E  to enable transfer of the probability density 

function between time periods. Of course, the validity of Result 1 itself still relies on the 

parameter  being small. Consistent with our perturbation scheme, all our optimal risk-

adjusted carbon prices in Results 1 and 3 are evaluated along the business-as-usual path for 

which 0P = . We assess the accuracy of Result 3 for a number of the calibrations examined 

in section V. By choosing the grid size to be sufficiently small and the grid to be sufficiently 

large in each case, we ensure that discretization errors associated with Result 1 are 

negligible. Two factors determine the accuracy of using Result 3 instead of Result 1. 

 TABLE G1 – ACCURACY OF RESULT 3 COMPARED TO RESULT 1 

Impatience ρ [/year] 5.8% 1.5% 0.1% 0.1% 0.1% 

Economic volatility 
K  [/year1/2] 12% 12% 1.5% 1.5% 1.5% 

Damages 

Proportional Proportional Proportional Convex 

 

Highly 

convex 

(AS12) 

Total error in risk-adjusted SCC -0.02% -2.0% 0.73% 1.9% -1.3% 

 

First, in Result 3 we ignore any uncertainty in the atmospheric carbon stock that arises 

because of the uncertain nature of future economic growth and thus of future emissions. 

For our base case calibration with proportional damages ( 0ET = ), the stochastic nature 

of E does not lead to a change in the SCC. Second, in Result 3 we only consider leading-

order terms in the climate sensitivity uncertainty.  
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We can confirm from Table G1 that the combined effect of these two errors is 

sufficiently small to be ignored for all practical purposes. As expected, it is larger for low 

discount rates, higher economic volatility and convex damages.  
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