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Abstract 
 
Numerous theoretical studies have shown that information aggregation through voting is fragile. 
We consider a model of information aggregation with vote-contingent payoffs and generically 
characterize voting behavior in large committees. We use this characterization to identify the set 
of vote-contingent payoffs that lead to a unique outcome that robustly aggregates information. 
Generally, it is not sufficient to simply reward agents for matching their vote to the true state of 
the world. Instead, robust and unique information aggregation can be achieved with vote-
contingent payoffs whose size varies depending on which option the committee chooses, and 
whether the committee decision is correct. 
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1 Introduction

Many important social decisions are made collectively by a majority vote. Ideally, collective
decisions improve on individual decision-making by aggregating the private information of all
committee members. However, it is not clear that decision-making through voting provides the
proper incentives for individuals to vote in a manner that results in collective decisions that are
more informed than individual decisions. Accordingly, a classic question in political economy
considers whether a decision taken by majority rule selects the option that is optimal, given the
aggregate information contained in the private signals of the voting body. This question was first
addressed by Condorcet (1785), who showed that if all individuals hold private information that
is more likely to be “right” than “wrong”, and if all individuals vote according to their private
information, then a sufficiently large committee that votes via a majority rule will choose the
“right” option with arbitrary precision.

As subsequent research has shown, however, information aggregation through voting is
fragile in the classic Condorcet setting—since the probability that any agent’s vote influences
the committee’s decision becomes arbitrarily small in a large committee, voting behavior is
very sensitive to information and payoff structures.1 Therefore, even very small perturbations
of agents’ payoffs can distort information aggregation; for example, Dal Bo (2007) shows that
if agents receive arbitrarily small payoffs that condition on their individual vote, then any
committee decision can be supported as an equilibrium independent of the private information
of the committee members.

This implies that information aggregation can be distorted by vote-contingent payoffs, ex-
amples of which include vote buying (Dal Bo (2007)), expressive motives (Feddersen et al.
(2009), Morgan and Vardy (2012)), a desire to vote for the winner (Callander (2007, 2008)),
and reputation payoffs (Visser and Swank (2007), Levy (2007), and Midjord et al. (2017)).
Another salient example of vote-contingent payoffs occurs in committees composed of elected
representatives: Many pundits identified Hillary Clinton’s vote supporting military intervention
in Iraq, which was predicated on the incorrect assumption that Iraq possessed sizable stores
of weapons of mass destruction, as a key factor in her 2008 primary loss to Barak Obama,
who voted against the war. This anecdote illustrates that the ex-post correctness of a repre-
sentative’s vote can have an instrumental effect by impacting the probability of re-election, or
election to higher office.

Given the prevalence of vote-contingent payoffs in real-world settings and the sensitivity
of voting behavior to these payoffs, an important question is whether large committees can
aggregate information robustly. That is, whether information aggregation through voting can
survive small perturbations of the incentives of committee members. In this paper, we study

1Information aggregation in large committees has been shown to fail due to, among others, the decision
rule (Feddersen and Pesendorfer, 1997), vote-contingent payoffs (Dal Bo, 2007, and Morgan and Vardy, 2011),
uncertainty regarding the signal structure (Mandler, 2012), a failure of preference monotonicity (Bhattacharya,
2013), and uncertainty regarding the size of the population (Ekmekci and Lauermann, 2018).
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a general model of voting behavior with vote-contingent payoffs and characterize the incentive
structures that lead to a unique and robust equilibrium prediction that information will be
aggregated in large committees.

Generally, we find that the only payoff structures that admit equilibria that aggregate
information provide agents with (relative) rewards for matching their individual vote to the
state of the world. However, it is not generally sufficient to simply reward agents for matching
their vote to the true state of the world. As we will show in detail below, vote-contingent
payoffs must be balanced relative to agents’ prior regarding the state of the world. If one state
is more likely ex ante, then robust information aggregation can be achieved by rewarding voters
more for voting correctly in cases when the committee chooses the less likely option—that is,
vote-contingent payoffs that depend on both the correctness of the individual vote, and which
option is chosen by the committee.

For a simple example, assume agents get a payoff of 1 for matching their vote to the state,
which is either equal to α or β. Moreover, assume agents receive a private signal of a or b,
and that the probability that they receive a signal of a (b) given a state of α (β) is equal to
2/3. In this simple example, information will be aggregated if agents have an incentive to vote
their signal (sincere voting). Whether the vote-contingent payoff of 1 for matching their vote
to the state incentivizes sincere voting depends on the underlying prior, Pr(α): If the prior is
uninformative (Pr(α) = 1/2), then agents maximize their expected vote-contingent payoffs by
voting sincerely. If the prior is sufficiently biased towards α (say, Pr(α) = 3/4), then agents
maximize their expected vote-contingent payoffs by disregarding their individual signal and
voting according to the prior regardless of whether their signal is a or b. That is, since the
informativeness of the private signal is not sufficient to out-weight the prior (applying Bayes
rule shows that Pr(α|si = b) = 3/5), all agents maximize their expected vote-contingent payoffs
by voting according to the prior rather than according to their signal.

In the latter case with Pr(α) = 3/4, given a large enough committee it will be a unique
equilibrium for all agents to vote according to the prior, since as the size of the committee goes
to infinity, expected payoffs that accrue based on the probability of influencing the committee
decision approach zero, and voting behavior is driven by the vote-contingent payoffs. This im-
plies that despite receiving a reward for matching their vote to the state, these vote-contingent
payoffs are not sufficient to generally result in equilibria that aggregate information.

Instead, the existence of a sequence of equilibria that robustly aggregate information as
the size of the committee approaches infinity can be achieved when the relative size of vote-
contingent payoffs condition on which option is chosen by the committee: As we establish
formally below, information aggregation is achieved when the reward for individually voting
correctly when the committee selects the ex ante less likely option is large, but not too large,
relative to the reward for voting correctly when the committee selects the ex ante more likely
option.

While conditioning vote-contingent payoffs on which option the committee chooses is suffi-
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cient to ensure robust information aggregation, it is not sufficient to ensure that equilibria that
aggregate information are unique. Interestingly, the existence of an equilibrium that aggregates
information depends only on the relative payoffs agents receive for voting for the correct option,
given that the committee also selects the correct option. The intuition for this result stems
from the fact that if the committee decision aggregates information, then as the number of
committee members approaches infinity, the probability that the committee selects the incor-
rect option approaches zero. Therefore, the impact of vote-contingent payoffs that realize when
the committee selects the incorrect option fade out as the size of the committee approaches
infinity.

However, the uniqueness of equilibria that aggregates information depends on the vote-
contingent payoffs that realize when the committee decision does not match the state. If there
are no vote-contingent payoffs when the committee selects the incorrect option, then a non-
responsive equilibrium exists where agents all vote for the same option, no agent is pivotal, and
all agents have a strict incentive to vote for the committee decision since they receive (positive)
vote-contingent payoffs only when the committee decision is ex-post correct. Therefore, for
an equilibrium that aggregates information to be unique, agents must incur a relatively large
punishment for voting for the incorrect option in instances when the committee selects the
incorrect option. This shows the general existence of a unique limit outcome that robustly
aggregates information can be achieved if vote-contingent payoffs condition on which option
the committee chooses, which ensures robust information aggregation—i.e. the rewards for
voting correctly when the committee chooses correctly are balanced relative to the prior—and
whether the committee decision is correct—i.e. the punishment for voting incorrectly when the
committee decision is incorrect is large enough.

Our primary contribution is to the literature on information aggregation in committees. In
contrast to other papers, which have largely explored specific instances in which vote-contingent
payoffs cause information aggregation to fail in large committees, Dal Bo (2007), Feddersen et
al. (2009), Morgan and Vardy (2012), Callander (2007, 2008), we take a general approach and
provide a simple method for characterizing the set of all equilibria for large committees with
vote-contingent payoffs that applies generically.2 We then use this characterization result to
identify the set of vote-contingent payoffs that lead to unique equilibria with robust information
aggregation.3 Accordingly, our model nests the settings that have been explored by previous
papers, and fully specifies in which instances vote-contingent payoffs distort outcomes.

In order to carry out our characterization we define a limit outcome as a pair of conditional
(committee) decision probabilities—conditional on each of the two possible states of the world—

2Our characterization result is generic, rather than general, in the sense that there are certain border cases to
which it does not apply. However, we show that the set of vote-contingent payoffs to which the characterization
result does not apply has a measure of zero, and that these border cases do not impact our main results.

3In a related paper, Breitmoser and Valasek (2017) show that information aggregation is robust to vote-
contingent payoffs if committee members have access to cheap talk prior to voting and decisions are taken via a
unanimity rule. This paper takes a different approach, and characterizes the set of vote-contingent payoffs that
result in information aggregation in large committees, where pre-vote cheap talk may not be feasible.
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with the property that if agents in a hypothetical committee with infinitely many members
anticipate that these are in fact the conditional decision probabilities of the committee, then
they best respond (either in pure or mixed strategies) in a way that can in fact, in the aggregate,
give rise to these decision probabilities. Because in such a hypothetical committee individual
members have no incidence over the decision probabilities, and their vote can never be pivotal,
solving for all limit outcomes is a linear programming problem, analytically more tractable
than directly characterizing equilibria of games involving finite committees (finite games). To
argue that limit outcomes indeed map out the aggregate behavior of large enough committees,
we show that: (1) The decision probabilities associated to any sequence of equilibria of finite
games must converge to the set of limit outcomes, and (2) generically, given a limit outcome,
one can construct a sequence of equilibria of the finite games such that its associated sequence
of conditional decision probabilities converges to that limit outcome.

This approach is closely related to the method, used in other areas of game theory (see
Bodoh-Creed (2013), Bodoh-Creed et.al. (2016)), of defining and solving an often more tractable
game with infinitely many players in order to understand equilibrium behavior in games with
a large number of players, first carefully arguing that the equilibria of the artificial game are
arbitrarily good approximations of the equilibria of the finite games for a sufficiently large
number of players. As we are not interested in a game involving infinitely many players per
se, we don’t fully specify the game with infinitely many players, but rather, directly specify
what the limit outcomes (in terms of decision probabilities) would look like, and then show
that these indeed approximate arbitrarily well the outcomes of games with a sufficiently large
number of players. To the best of our knowledge our formal argument justifying this kind of
approximation to large, finite games, is a contribution to the literature on the Condorcet jury
theorem. It is worth noting that this justification can serve as the basis to characterize the
outcomes of voting in large committees, under (generically) any incentive structure entailing
vote-contingent payoffs.

The paper proceeds as follows. Section 2 introduces the model and discusses correspond-
ing real-world examples. In Section 3.1 we consider our benchmark and the case of a single
vote-contingent payoff. Section 3.2 presents our general method of characterizing equilibrium
outcomes. Section 3.3 presents our main results and in Section 3.4 we study partial information
aggregation.

2 Model

Our model is based on the standard model of information aggregation introduced by Austen-
Smith and Banks (1996). There are two states of the world ω ∈ {α, β} where Pr(α) ∈ (0, 1).
A committee of n > 2 agents indexed by i ∈ {1, ..., n} makes a decision between two choices,
x ∈ {a, b} by majority rule: If strictly more than half of the agents vote for a then x = a, and
otherwise x = b. Each agent receives a private signal, si ∈ {a, b}, and then votes for either a
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(vi = a) or b (vi = b). The signals are i.i.d. conditional on ω and Pr(a|α) = Pr(b|β) = 1− ε,
where ε ∈ (0, 12).

Agents receive both “common-value” and “vote-contingent” payoffs. Common-value payoffs
condition only on the committee decision and the state of the world: all agents receive a payoff
of one if the committee decision matches the state of the world, and a payoff of zero otherwise.
Additionally, we consider the case of payoffs that are linked to each agent’s individual vote; i.e.
vote-contingent payoffs. We allow these vote-contingent payoffs to condition not only on the
agent’s vote, but to also interact with the committee decision and the state of the world. That
is, vote-contingent payoffs are represented by a function k(vi, x, ω) : {a, b} × {a, b} × {α, β} →
R. As we detail below, this form of vote-contingent payoffs is general enough to capture all
our motivating examples, and to allow for payoffs that condition on both which option the
committee chooses, and whether the committee decision is correct.

Agents’ payoffs are represented in the following expression (abusing notation we denote
x = ω when (x, ω) = (a, α), or (x, ω) = (b, β)):

U(vi, x, ω) = 11(x = ω) + k(vi, x, ω),

where the first term represents common-value payoffs, and k(vi, x, ω) represents vote-contingent
payoffs.

Note that k(vi, x, ω) can be represented by a vector of eight different values (we use the
notation (k(vi, x, ω)) to refer to this vector). Moreover, given the structure of the model and as
we later show in detail, it turns out that asymptotically (as n→∞) we can normalize four of
these values to zero, and represent the vote-contingent payoffs as the relative payoff for voting
for, say, option a given a certain committee decision and state of the world. Therefore, in what
follows we simplify our notation for vote-contingent payoffs to kω,x, where:

kω,x ≡ k(vi = ω, x, ω)− k(vi 6= ω, x, ω). (1)

For convenience, we define kω,x as the relative vote-contingent payoff for voting “correctly”
(with the true state of the world); e.g. kα,b is the relative vote-contingent payoff of voting for
a given a majority decision for b, and a realized state of the world α.

A strategy for agent i is denoted by σi = (σi(a), σi(b)) such that σi(a) is the probability
that vi = a given si = a and σi(b) is the probability that vi = a given si = b. Given some n
and strategy profile σ we let Znα = Pr(x = a|σ, α) indicate the probability that the committee
chooses a when the state is α and Znβ = Pr(x = a|σ, β) be the probability that the committee
chooses a when the state is β. The pair (Znα , Z

n
β ) is denoted by Zn.

Throughout the analysis we rely on the concept of symmetric bayesian Nash equilibrium:

Definition 1 (Symmetric Equilibrium). A pair σ∗ is a symmetric equilibrium if, and only if,
for all i ∈ {1, 2, ..., n}, si ∈ {a, b}, and σi: Eσ[U(σ∗, x, ω)|si] ≥ Eσ[U(σ∗−i, σi, x, ω)|si].

Next, we define our concept of robust information aggregation. Intuitively we say that
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information aggregation is a robust prediction at a given incentive structure if arbitrarily accu-
rate decision-making can be achieved in equilibrium by a large enough committees under that
incentive structure, and at all small enough perturbations of that incentive structure. That is,
information aggregation is robust if a sequence of equilibria exists where the committee decision
approaches the state of the world as n→∞ for vote-contingent payoffs k(vi, x, ω) and for small
perturbations in k(vi, x, ω):

Definition 2 (Robust information aggregation). Information aggregation is robust for a given
vector of parameters (k(vi, x, ω)) if there exists a neighborhood of (k(vi, x, ω)) such that for all
vote-contingent payoffs within the neighborhood, there exists a sequence of equilibria such that
Zn → (1, 0) as n→∞.

In addition to robust information aggregation, we are also interested in uniqueness. Models
of information aggregation in committees often admit multiple equilibria, resulting in imprecise
theoretical predictions regarding committee behavior. Therefore, we are also interested in
characterizing the set of parameters for which the prediction of information aggregation is
unique:

Definition 3 (Unique information aggregation). Information aggregation is unique for a given
vector of parameters (k(vi, x, ω)) if for all sequences of equilibria with n→∞, Zn → (1, 0).

Next we introduce a main object of interest in our analysis, namely the relative expected
utility that agent i receives from voting for a given i’s signal and the strategy of all other agents.
Formally, we denote this value by Φn

si :

Φn
si(σ−i) ≡ Eσ−i [U(vi = a, x, ω)|si]− Eσ−i [U(vi = b, x, ω)|si].

In the following expression, we present a simplified equation for Φn
si—letting pivi indicate

the event that agent i is pivotal for the final decision we get:

Φn
si(σ−i) =Pr(α|si)

[
(1 + k(a, a, α)− k(a, b, α))Pr(pivi|α) + (kα,a − kα,b)Pr(a,¬pivi|α) + kα,b

]
−Pr(β|si)

[
(1 + k(a, b, β)− k(a, a, β))Pr(pivi|β) + (kβ,a − kβ,b)Pr(a,¬pivi|β) + kβ,b

]
The term Φn

si(σ−i) will feature heavily in our analysis below. However, before we begin
with the analysis, we discuss several real-world examples that are captured by the model we
introduce above.

2.1 Economic interpretation of vote-contingent payoffs

In the following, we highlight several examples of settings where voters may be subject to
vote-contingent payoffs, and illustrate how they are captured by our model.
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Getting the individual vote right: Agents may receive a positive relative vote-contingent
payoff for matching their vote to the true state of the world. This may be due to external
reputation concerns or reelection payoffs (see Levy (2007), Visser and Swank (2007)), an in-
trinsic utility from getting the vote right, or avoiding voting for the incorrect option. Increasing
utility from getting the individual vote right (or disutility from getting it wrong) corresponds
to increases in kω,x.

The payoff for a correct individual vote is not necessarily symmetric. The committee’s
decision may be more salient in one state of the world—for example, it has been suggested
that regret for voting to convict an innocent defendant is higher than voting to let a guilty
defendant free, Kaplan (1968), and in certain cases, the state of the world, say the quality of a
pharmaceutical drug, is unlikely to be revealed if the committee votes not to approve the drug,
Midjord et al. (2017).

Expressive voting/vote buying: In certain cases, agents may receive payoffs from voting
for a particular option, either due a direct monetary incentive (i.e. vote-buying; see Dal Bo,
2007), or due to expressive motives (see Feddersen et al. (2009), Morgan and Vardy (2012),
and Spenkuch et al. (2017)). Given our notation, an expressive motive linked to voting for a
increases kα,a and kα,b and lowers kβ,a and kβ,b.

Conformity/voting for the winner: Similar to an expressive payoff, in certain situations
agents may receive a payoff for voting along with the majority, either due to an incentive to
conform, or a desire to vote for the “winner” (see Callander (2007, 2008)). Incentives to conform
translates into increases in kα,a and kβ,b and decreases in kα,b and kβ,a.

Anti-conformity/blame-guilt aversion: Conversely, agents may receive a payoff for voting
against the majority. This may be due to anti-conformity motives (see references to social
psychology in Callander (2008)) or because agents seek to avoid personal responsibility for an
incorrect committee decision (Midjord et al. 2017). This corresponds to increases in kα,b and
kβ,a and decreases in kα,a and kβ,b.

3 Analysis

We begin this section with our benchmark and an example illustrating the non-robustness of
information aggregation in the setup of the standard Condorcet model. In Section 3.1 we present
a novel methodological development and formally establish a general method for characterizing
equilibria of games of information aggregation in large committees with vote-contingent payoffs.
In section 3.2, we present our main results on robust information aggregation and explain
the necessary and sufficient conditions for robust information aggregation and unique robust
information aggregation. Section 3.3 applies the method we develop in section 3.1 to generically
characterize information aggregation in the case when voters are rewarded for voting according
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to the true state of the world or, equivalently, punished for voting incorrectly (i.e. kω,x > 0 for
all (x, ω)). The objective of this section is to offer an idea of the kinds of outcomes that can
be obtained when perfect information aggregation fails.

Benchmark with no vote-contingent payoffs, k(vi, x, ω) = 0 for all (vi, x, ω): First, we
consider a benchmark of the classic Condorcet model with no vote-contingent payoffs. In this
case, agents only consider the impact of their vote on the committee decision, and hence base
their voting decision on the event that their vote is pivotal. Since k(vi, x, ω) = 0 the game is of
common interest with diverse information and optimal equilibria yield asymptotically perfect
decisions (McLennan, 1998). This leads us to the following result stemming from McLennan
(1998) and Theorem 3 in Feddersen and Pesendorfer (1997).4

Proposition 1 (No vote-contingent payoffs). Given k(vi, x, ω) = 0 for all (vi, x, ω) there exists
a sequence of equilibria (σn∗) such that Zn → (1, 0) as n→∞.

The easiest way to explain the intuition behind Proposition 1 is when Pr(α) = 1
2 and n is

uneven. Suppose all agents vote sincerely and thus when agent i is pivotal there are exactly
n−1
2 signals for a and n−1

2 signals for b among all agents other than i. In this case, it is strictly
optimal for agent i to vote sincerely as si determines which option is supported by the most
signals. In all other cases (where i is not pivotal), the vote from agent i is inconsequential and
the sincere strategy is then optimal. Given the sincere strategy profile and the law of large
numbers the committee’s mistake probability converges to zero as n →∞.

Single vote-contingent payoff, kω,x = δ > 0: Next, we consider the robustness of Propo-
sition 1 by considering a “small” perturbation to the payoffs of the benchmark case. Take
kα,a = δ > 0, and all other vote-contingent payoffs equal to zero. This gives us the following
expression for Φn

si(σ−i):

Φn
si(σ−i) =(1 + δ)Pr(pivi|α)Pr(α|si)− Pr(pivi|β)Pr(β|si)

+ δPr(a,¬pivi|α)Pr(α|si)

Consider some sequence of equilibria σn∗ 6= (1, 1) whereby Pr(a,¬pivi|α) is bounded away
from zero for all n > n′. For n large enough this gives us a contradiction as the pivotal
probability converges uniformly to zero as n → ∞ and δPr(a,¬pivi|α)Pr(α|si) is bounded
away from zero and thus optimal behavior prescribes σn = (1, 1). It follows that under this
incentive structure, large committees either choose a in both states of the world with probability
close to 1 or choose b in both states of the world with probability close to 1.

The intuition is that for a large enough committee, with a shrinking pivotal probability, the
common value component is dominated by the vote-contingent payoff: Agents will do anything

4Proof can be requested from the authors as supplementary material to Midjord et al. (2017).
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to try and get for the extra payoff δ, by voting a, in the event that the committee decides for
a and the state is α. This gives the following result, which shows that information aggregation
in the Condorcet model is not robust to small vote-contingent payoffs.

Proposition 2 (Non-robustness Condorcet). For any kα,a = δ > 0 (and all other vote-
contingent payoffs being zero) any sequence of equilibria (σn∗) have Zn → (0, 0) or Zn → (1, 1)

as n→∞.

Our Proposition 2 builds on the same type of logic as the introductory examples in Morgan
and Vardy (2012) showing how large voting bodies perform no better than a coin flip in selecting
the correct outcome when adding (small) expressive payoffs. In Section 3.2 we show how
Condorcet’s positive result (i.e. the probability that increasingly large committees chooses
the better alternative approaches 1) can be reestablished as a robust and unique outcome by
considering a full-fledged analysis of vote-contingent payoffs.

3.1 Characterizing equilibria in large committees with vote-contingent pay-
offs

Before characterizing the set of vote-contingent payoffs that result in robust information aggre-
gation, we first present a novel approach that allows us to generically characterize equilibria of
large committees with vote-contingent payoffs. This approach allows us to characterize the set of
equilibrium outcomes in a straightforward manner by identifying the probabilities Pr(X = a|α)

and Pr(X = a|β) that satisfy a simple set of conditions on the expression Φsi(Z), which we
introduce next. Also, to illustrate the simplicity of applying our approach, we replicate the
limit results of Callander (2008) at the end of this section.

Loosely, Φsi(Z) can be thought of as the limiting expression of the relative payoff of voting
for option a as n→∞:

Φsi(Z) = Pr(α|si)
[
kα,aZα + kα,b(1− Zα)

]
− Pr(β|si)

[
kβ,aZβ + kβ,b(1− Zβ)

]
, (2)

where (Zα, Zβ) are used to distinguish the “limiting” values of Znα = Pr(X = a|α) and Znβ =

Pr(X = a|β). More precisely, all probability terms involving pivi converge uniformly to 0 as
n → ∞. Therefore, given a sequence of strategies (σn) such that (Znα , Z

n
β ) → (Zα, Zβ), the

relative willingness to vote for a is asymptotically equivalent to Expression 2.
This structure allows us to define a limit outcome as a pair of conditional decision proba-

bilities (Zα, Zβ) that are consistent with the limiting values of a sequence of strategies σn that
are best responses by the agents, given the expression for the limiting relative payoff of voting
for option a, Φsi(Z):

Definition 4 (Limit Outcome). Given vote-contingent payoffs kω,x, a pair (Zα, Zβ) ∈ [0, 1]2

is a limit outcome if, and only if, the following conditions are met:
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Zα = 1 if Φa(Zα, Zβ) > 0,

Zα ∈ [0, 1] if Φa(Zα, Zβ) = 0,

Zα = 0 if Φa(Zα, Zβ) < 0.

Zβ = 1 if Φb(Zα, Zβ) > 0,

Zβ ∈ [0, 1] if Φb(Zα, Zβ) = 0,

Zβ = 0 if Φb(Zα, Zβ) < 0.

To fully understand the idea behind this definition consider the example of a limit outcome
with Zα = 1 and Zβ ∈ [0, 1]. Presumably, for there to exist a sequence of equilibrium strategies
(σn∗) such that (Znα , Z

n
β )→ (Zα = 1, Zβ ∈ [0, 1]), it must be the case that, in the limit, agents

with a signal of a must have a best response of voting for a, so that Zα = 1, and agents with
a signal of b must be indifferent between voting for a and b, so that Zβ ∈ [0, 1]. That is,
intuitively, for Zα = 1 and Zβ ∈ [0, 1] to be the limiting outcome of a sequence of equilibrium
voting strategies, it must be the case that Φa(Zα, Zβ) > 0 and Φb(Zα, Zβ) = 0 for these values
of (Zα, Zβ).

This intuition suggests that the set of limiting values of (Znα , Z
n
β ) that result from limit

equilibria is equivalent to the set of limit outcomes. However, this result must be proved
formally, and is derived in the following result that establishes that (1) any limit outcome is
arbitrarily close to an equilibrium outcome of a large committee and that (2) any equilibrium
outcome of a large committee is arbitrarily close to a limit outcome—that is, (Zα, Zβ) is a limit
outcome if, and only if, it corresponds to the limit of (Znα , Z

n
β ) for a convergent sequence of

finite equilibria.

Theorem 1 (Approximation of outcomes of large committees). Generically, in the space of
all payoff vectors,5

(1) Given any limit outcome (Zα, Zβ), there exists a sequence of equilibria of the finite
games, (σn∗) such that the associated sequences of decision probabilities Znα and Znβ converge
to Zα and Zβ.

(2) The sequence of decision probabilities, (Znα , Z
n
β ), associated to any sequence of equilibria

of the finite games, (σn∗), must converge to the set of limit outcomes.6

The proof of Theorem 1, and the proofs of all following formal results can be found in the
Appendix. Intuitively, Theorem 1 results from the fact that, as n → ∞, the terms in agent
i’s best response function that condition on i being pivotal converge uniformly to 0 for any

5That is, any payoff vector (kω,x) to which the theorem does not apply is arbitrarily close to vectors to which
it does apply. In particular, given any ε > 0, the ε ball around (kω,x) contains payoff vectors to which the
theorem does apply.

6Convergence of a sequence to the set of limit outcomes means that for any ε, there exists large enough n∗,
so that for any given n > n∗ there is some limit outcome (Zα, Zβ) within ε of (Znα , Z

n
β ). Notice that this does

not imply convergence of the sequence to a given limit outcome, as crucially, the specific limit outcome to which
the nth term in the sequence is close to, might be different from the limit outcome to which the (n+ 1)th term
is close to. Indeed, one can construct sequences of equilibria with associated sequences of decision probabilities
that do not converge, for instance by having the even and odd terms in the sequence converge to different limit
outcomes.
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set of strategies, resulting in an equivalence of the limiting “fixed points” of the best response
functions represented by Φn

si and the fixed points of Φsi . However, showing a full equivalence
of the set of limit outcomes and the set of limiting outcomes of (Znα , Z

n
β ) corresponding to any

convergent sequence of equilibria must be shown mechanically on a case-by-case basis, and we
therefore constrain this exercise to the Appendix.

While Theorem 1 generically applies to the set of vote-contingent payoffs, there are certain
(non-generic) border cases to which it does not apply. Proposition 4 in the appendix fully
characterizes the set of these points and shows that it has measure zero.7 Importantly, how-
ever, Lemma 1 below implies that these non-generic cases do not impact our main result of
characterizing the set of vote-contingent payoffs that lead to robust information aggregation.
That is, the proof of this Lemma relies on the fact that all such non-generic points have the
property of being arbitrarily close to points at which Theorem 1 does apply, and which do not
support equilibria which aggregate information perfectly. It follows that no such point is a
candidate for supporting robust information aggregation.

Example: Voters who like to win (Callander (2008)): Theorem 1 provides a simple
method for characterizing all limit outcomes of games of information aggregation with vote-
contingent payoffs. We illustrate this method by characterizing limit outcomes when voters like
to win, replicating the limit results of Callander (2008) for an uninformative prior.

For this example, we assume that Pr(α) = 1/2 (a tight election in the terminology of
Callander (2008)). A payoff for voting for the winning candidate translates into the following
vote-contingent payoffs:

kα,a = kβ,b = k,

kα,b = kβ,a = −k.

Using Expression 2, it is easy to show that Z = (1, 1) and Z = (0, 0) are limit outcomes for any
k > 0 since Expression 2 is positive (negative) for Φsi(1, 1) (Φsi(0, 0)). Similarly, Z = (1, 0)

and Z = (0, 1) are limit outcomes as Expression 2 is positive (negative) for Φa(1, 0) (Φb(1, 0))
and Expression 2 is positive (negative) for Φb(0, 1) (Φa(0, 1)).

Moreover, it is also easy to identify mixed limit outcomes, where either Zα or Zβ are
between zero and one. First, taking Zα = 1 and Zβ ∈ (0, 1), Theorem 1 shows that this is a
limit outcome if and only if Φa(Z) > 0 and Φb(Z) = 0. This allows us to identify whether a

7Specifically, Theorem 1 does not apply to payoff vectors (kω,x) such that (i) Φsi(Zα ∈ {0, 1}, Zβ ∈ {0, 1}) =
0, (ii) Φsi(Zα ∈ {0, 1}, Zβ ∈ (0, 1)) = 0 ∀si, and (iii) Φa(Zα ∈ (0, 1), Zβ ∈ {0, 1}) = 0 ∀si. Note that the set of
cases where Theorem 1 does not apply has measure zero.
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mixed limit outcome exists by solving for:

Φb(1, Z
′) = Pr(α|si = b)[k]− Pr(β|si = b)[−kZ ′ + k(1− Z ′)] = 0

→ Z ′ =
1− ε

1−ε
2

Which shows that a mixed limit outcome, Z = (1, Z ′) exists as Z ′ ∈ (0, 1) and Φa(1, Z
′) > 0.

Also, since the model is symmetric, a mixed limit outcome also exists with Zα = 1− Z ′.8

3.2 Robust and unique information aggregation

In the following section, we utilize the characterization result of Theorem 1 to lay out the
necessary and sufficient conditions for robust and unique information aggregation. To begin,
we present a result that allows us to restrict attention to sincere strategies when identifying
the conditions for robust information aggregation.

Lemma 1 (Sincere Voting). Information aggregation is robust for a given vector of parameters
(kω,x) if and only if Z = (1, 0) is a limit outcome under (kω,x) with Φa > 0 and Φb < 0.

Lemma 1 shows that the payoff vectors that result in robust information aggregation are
equivalent to the payoff vectors that give agents a strict incentive to vote sincerely, defined
as vi = si, as n → ∞ given Z = (1, 0). Note that voting sincerely will always aggregate
information in the limit, since the proportion of agents that receive signals equal to the true
state of the world, and hence vote for the true state of the world, approaches Pr(si = ω|ω) > 1/2

as n→∞.
Also note that, combined with the result of Theorem 1, Lemma 1 implies that if information

aggregation is robust for a given vector of parameters (kω,x), then there exists a sincere strategy
equilibrium for all large enough n. This highlights an important distinction between our model
and the pure common value setting: As showed by Feddersen and Pessendorfer (1997), in
the Condorcet model equilibria that aggregate information often entail a sequence of signal-
responsive mixed strategy profiles. In contrast, in our setting, sequences of equilibria that
robustly aggregate information achieve sincere voting in finite n.

Given Lemma 1, we are able to characterize the set of vote-contingent payoffs that result in
robust information aggregation by identifying the set of payoffs that satisfy Φa > 0 and Φb < 0:

Theorem 2 (Robust information aggregation). Information aggregation is robust if, and only
if, kα,a > 0, kβ,b > 0, and:

kα,a
kβ,b

∈
(
Pr(β|si = a)

Pr(α|si = a)
,
P r(β|si = b)

Pr(α|si = b)

)
.

8In this example there are also mixing outcomes with Z = (0, Z′) and Z = (1 − Z′, 1) resulting in negative
information aggregation. Moreover, we have a double mixing outcome with Z = ( 1

2
, 1
2
).
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Theorem 2 states the conditions on vote contingent payoffs that are necessary and sufficient
for robust information aggregation. We should emphasize that it is only the relative size of
the vote-contingent payoffs that matter—robust information aggregation can be achieved with
vote-contingent payoffs that are very small (or very large), as long as they are balanced relative
to the prior. In what follows we refer to any payoff vector which satisfies the conditions of
Theorem 2 as RIA (Robust Information Aggregation) payoffs.

Notice that none of the conditions in Theorem 2 depend on vote-contingent payoffs that
realize when the committee is wrong. Intuitively, given Zn → (1, 0), the probability of the
committee making an error and not matching the committee decision to the state becomes
vanishingly small as n → ∞. Therefore, no matter the sign or size of vote-contingent payoffs
that realize when the committee decision is incorrect, they do not impact voting behavior
for committees that are large enough, given Zn → (1, 0). Therefore, as long kα,a and kβ,b are
greater than zero and balanced, then an equilibrium with information aggregation that robustly
aggregates information exists for any kα,b and kβ,a.

In addition to being strictly positive, kα,a and kβ,b must be balanced relative to the prior
for an equilibrium with robust information aggregation to exist. This also implies that a simple
vote-contingent payoff that rewards agents for matching their vote to the state, kω,x = k for
all ω, x, is not sufficient to generally admit an equilibrium that aggregates information. We
illustrate this result in the following example.

Example: Suppose Pr(α) = 3/4, and ε = 1/3. First, assume that vote-contingent payoffs
only depend on voting in line with the state of the world; e.g. kω,x = k for all ω, x. To check
to see whether there is a limit outcome with robust information aggregation, we check whether
Z = (1, 0) satisfies the conditions of Definition 4. First, note that:

Φsi(1, 0) = Pr(α|si)[k]− Pr(β|si)[k].

This shows that Zα = 1 is an admissible limit outcome, since Pr(α|a) > Pr(β|a) and
Φa(1, 0) > 0. However, given Pr(α) = 3/4, and ε = 1/3, Pr(α|b) = 3/5 > 2/5 = Pr(β|b).
This implies that Φb(1, 0) > 0, which means that Zβ = 0 is not an admissible limit outcome.
That is, kω,x = k is not a sufficient condition to generally ensure a limit outcome that robustly
aggregates information.

Next, assume that vote-contingent payoffs also condition on which option the committee
chooses, and are higher when x = b; e.g. kα,a = kβ,a = k and kβ,b = kα,b = 2k. In this case,
given Z = (1, 0):

Φsi(1, 0) = Pr(α|si)[k]− Pr(β|si)[2k].

Therefore, Φa(1, 0) = 4/7∗k > 0 and Φb(1, 0) = −1/5∗k < 0, which implies that a limit outcome
that robustly aggregates information exists. This shows that in cases where the private signal
is not strong enough to overturn the prior for one of the two private signals, it is still possible
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for vote-contingent payoffs to result in RIA, as long as voters receive a higher reward for voting
correctly when the committee chooses option b.

This example illustrates that only vote-contingent payoffs that are balanced relative to the
prior robustly aggregate information. Therefore, vote-contingent payoffs that reward agents
for matching their vote to the state are not sufficient to generally achieve an equilibrium with
robust information aggregation. Instead, robust information aggregation can be achieved if
agents receive a higher reward for voting correctly when the committee chooses the option that
is ex ante less likely.

While the second set of payoffs introduced in the above example are sufficient for the
existence of a limit outcome that robustly aggregates information, they do not guarantee a
unique limit outcome. That is, given kα,a = kβ,a = k and kβ,b = kα,b = 2k, it is also an
equilibrium for agents to vote for a for any signal—if all agents vote a, then the committee never
selects x = b and kβ,b and kα,b never realize. Therefore, it is a best reply for each agent to vote
a and receive kα,a with a conditional probability greater than 1/2 for each signal. This example
highlights that RIA preferences are not sufficient to ensure that information is aggregated in
large committees. Our next result addresses uniqueness and details the conditions under which
there is a unique limit outcome with robust information aggregation. First, however, we make a
short remark regarding the robustness of Theorem 2 to heterogeneous vote-contingent payoffs.

Remark on heterogeneous vote-contingent payoffs: Theorem 2 shows that given homo-
geneous vote-contingent payoffs that satisfy RIA, there exists a limit outcome that aggregates
information and is robust to small deviations in the homogeneous payoffs. However, the result
is actually stronger—for any set of heterogeneous vote-contingent payoffs distributed within
a small neighborhood of a set of homogeneous vote-contingent payoffs that satisfy RIA, there
exists an equilibrium with sincere voting for a large enough committee. This implies that a
sequence of equilibria exist with (Znα , Z

n
β )→ (1, 0) as n→∞.

The intuition for this robustness to small, individual deviations in payoffs is straightforward:
given that agent i has individual vote-contingent payoffs close enough to RIA payoffs, i has a
strict incentive to vote sincerely for large enough n as long as (Znα , Z

n
β ) → (1, 0). Therefore,

Theorem 2 shows that RIA payoffs results in a limit outcome that aggregates information and is
robust to small payoff deviations, regardless of whether the payoff deviations are homogeneous
or heterogeneous.

The following result details the conditions under which there is a unique limit outcome with
robust information aggregation.

Theorem 3 (Uniqueness). Suppose the conditions in Theorem 2 are met. Any sequence of
equilibria (σn∗) have Zn → (1, 0) if, and only if:

kβ,a
kα,a

>
Pr(α|si = b)

Pr(β|si = b)
,

kα,b
kβ,b

>
Pr(β|si = a)

Pr(α|si = a)
.
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Theorem 3 shows that to achieve a unique limit outcome that robustly aggregates informa-
tion, agents must receive vote-contingent payoffs both when the committee decision matches
the state (for robust information aggregation) and when the committee does not match the
state (for uniqueness). Moreover, in contrast with Theorem 2, which shows that the vote-
contingent payoffs that realize when the committee is right must be balanced relative to the
prior, Theorem 3 shows that the vote-contingent payoffs that realize when the committee is
wrong do not need to be balanced for uniqueness—they only need to be relatively large.

The intuition behind uniqueness can be explained in terms of how the conditions in Theorem
3 destabilize so-called “non-responsive” equilibria, where all agents vote for either option a or
option b. For example, assume that payoffs satisfy the conditions of Theorems 2 and 3 and
that agents vote for a under both signals (non-responsive voting). In this case, consider the
choice of agent i with a signal of b. Since all agents vote for a, the committee decision is
equal to a with certainty. Therefore, if agent i votes a, then they receive kα,a with probability
Pr(α|si = b), and if agent i votes b, then they receive kβ,a with probability Pr(β|si = b). By
the first condition of Theorem 3, voting b given a signal of b yields a strictly higher expected
payoff, which implies that voting b is a best reply for agent i if all other agents vote for option
a.

This example shows that, given the conditions of Theorem 3, all agents voting for a cannot
constitute an equilibrium of the model for large committees. The same logic can be applied
to all agents voting for b given the second condition of Theorem 3. Moreover, it can easily be
shown that if payoffs satisfy the conditions of Theorems 2 and 3, then by Theorem 1, the only
admissible limit outcome of the game is that Z = (1, 0).

Lastly, note that Theorem 3 implies that vote-contingent payoffs that only condition which
option the committee chooses are not generally sufficient for there to exist a unique limit
outcome that robustly aggregates information. That is, it is not always the case that there
exists a set of vote-contingent payoffs such that kα,a = kβ,a and kβ,b = kα,b and the conditions
of Theorems 2 and 3 are satisfied. Instead, robust and unique information aggregation can be
achieved with vote-contingent payoffs that condition on which option the committee chooses
and whether that decision is correct. We illustrate this result in the following example:

Example: Continuing with the same example as above, suppose Pr(α) = 3/4, and ε = 1/3.
Moreover, assume kα,a = kβ,a = k and kβ,b = kβ,a = 2k; as we showed above, kα,a and
kβ,b satisfy the conditions of Theorem 2, and a limit outcome exists that robustly aggregates
information. However, as we mentioned above, Z = (1, 1) is also a limit outcome given these
vote-contingent payoffs since:

Φsi(1, 1) = Pr(α|si)[k]− Pr(β|si)[k],

which is positive for si = a, b. Instead, uniqueness can be assured if vote-contingent payoffs
condition on which option the committee chooses and whether the committee decision is correct.
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For example, take kα,a = k, kβ,a = 2k and kβ,b = k, kα,b = 2k. In this case, neither Z = (1, 1)

or Z = (0, 0) are limit outcomes since:

Φsi(1, 1) = Φsi(0, 0) = Pr(α|si)[k]− Pr(β|si)[2k],

which as we showed in the first example, is positive for si = a and negative for si = b.

The above example illustrates that the domain of vote-contingent payoffs that admit equi-
libria that aggregate information consists of the set of payoffs that reward agents for matching
their individual vote to the state of the world when the committee also selects the correct
option—however, for vote-contingent payoffs to result in a unique equilibrium that robustly
aggregates information, these payoffs need to be appropriately calibrated to the underlying
information structure, which can be achieved with vote-contingent payoffs that, in addition to
the individual vote, also condition on the committee outcome.

3.3 Rewards for Being Right: Characterization of the case kω,x > 0

Above, we show that to uniquely and robustly aggregate information, vote-contingent payoffs
must be in the domain where agents are rewarded for matching their vote to the state of the
world, but that these rewards must be balanced relative to the prior, which can be achieved
with vote-contingent payoffs that depend on the committee outcome. Here, we characterize
responsive limit equilibria that may occur when the conditions for Theorem 2 do not hold. We
show that in certain cases, equilibria exist that partially aggregate information in the sense
that, e.g., the probability that the committee selects a when the state is α approaches a value
strictly between zero and one. In other cases only non-responsive equilibria exist. Lastly, we
highlight that perturbations of RIA payoffs in some directions lead to smooth departures from
perfect information outcomes (Zα, Zβ) = (1, 0), whereas perturbations in some other directions
lead to abrupt breakdowns of information aggregation altogether.9

To simplify the exposition, we focus on the case of Pr(α) = 1/2 and assume that kα,a ≥ kβ,b.
These assumptions are not completely without loss of generality; however, we provide and
prove the analogous general results in the Appendix. First, note that given Pr(α) = 1/2 and
kα,a ≥ kβ,b, all limit outcomes that partially aggregate information will have Zα = 1 (there is
no limit outcome with partial information aggregation and Zα ∈ (0, 1)).

Next, define Pα/β as follows:

Pα/β =
Pr(α|si = b)

Pr(β|si = b)
.

By applying Definition 4 and the result of Theorem 1, we can characterize the set of vote-
9It is important to note that by definition of robust information aggregation, payoffs obtained by sufficiently

small perturbations of RIA payoffs always support perfect information aggregation. So in this subsection we
are discussing small but not arbitrarily small perturbations.
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Figure 1: Zβ as a function of kα,a for different levels of kβ,a, given Pr(α) = 1/2, ε = 2/5,
kβ,b = 1. Since Zα = 1 for the domain covered in all figures, information is aggregated if
Zβ = 0, and all limit outcome are non-responsive when Zβ = 1.

contingent payoffs that admit a limit outcome that partially aggregates information:

Proposition 3. Partial information aggregation with Zβ ∈ (0, 1): There exists a sequence of
equilibria (σn∗) such that Zn(σn∗)→ (1, Zβ ∈ (0, 1)) as n→∞ if, and only if, kβ,a 6= kβ,b and:

Pα/βkα,a − kβ,b
kβ,a − kβ,b

= Zβ ∈ (0, 1) (3)

Since Pr(α) = 1/2 and kα,a ≥ kβ,b, a limit outcome with RIA exists whenever the numerator
of Expression 3 is negative. Since we are interested in characterizing the set of parameters for
which there is no limit outcome with robust information aggregation, the relevant range of
parameters satisfy Pα/βkα,a > kβ,b

Proposition 3 shows that a necessary condition for a limit outcome with partial information
aggregation (outside of the range of RIA preferences) is that the denominator of Expression
3 is positive; i.e. kβ,a > kβ,b. Proposition 3 also shows that conditional on kβ,a > kβ,b, limit
outcomes with partial information aggregation exist for a range of vote-contingent payoffs with
Pα/βkα,a greater than, but close to, kβ,b.

We illustrate these results in Figure 1, which shows Zβ as a function of kα,a, fixing all
other vote-contingent payoffs. Note that the size of the range of payoffs for which we get a
limit outcome with partial information aggregation depends on kβ,a − kβ,b: If kβ,a − kβ,b is
negative, then there is no range of payoffs with partial information aggregation and there exists
a discontinuity in Zβ at Pα/βkα,a = kβ,b. If kβ,a− kβ,b is positive, however, then Zβ transitions
continuously from 0 to 1 as kα,a increases.

Moreover, we see that the range of kα,a that support partial information aggregation is
increasing in kβ,a−kβ,b; for larger values of kβ,a−kβ,b, the distortion of information aggregation
is weakly smaller for a given value of Pα/βkα,a > kβ,b. This shows that vote-contingent payoffs
that realize when the committee makes the incorrect decision (e.g. kβ,a) are not only important
for determining the uniqueness of limit outcomes that robustly aggregate information, they also
decrease the distortion of information aggregation for the range of parameters outside of the
range that support RIA.
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4 Conclusion

In this paper, we highlight the fragility of information aggregation by voting in large populations
under vote-contingent payoffs. In a general setting, we develop a method for characterizing all
limit outcomes and use this method to identify the set of vote-contingent payoffs that lead
to robust information aggregation (RIA payoffs, above). The existence of robust information
aggregation is established by balanced rewards for individually voting for the correct option
when the committee selects the correct option. The balance in vote-contingent rewards is
required to offset a favorite-bias whereby voters would opt for the ex ante favorite regardless of
their private information. The uniqueness of robust information aggregation is guaranteed by
sufficiently large penalties for voting incorrectly when the committee is wrong. Such penalties
work effectively to destabilize non-responsive equilibria with no information aggregation.

Our method relies on defining what would be the equilibrium outcomes of a hypotheti-
cal committee with infinitely many players, and showing that these outcomes are arbitrarily
good approximations of the equilibrium outcomes of sufficiently large finite committees. We
also apply our method in order to illustrate the kinds of outcomes that can arise when robust
information aggregation is not supported (when payoffs are not RIA), by characterizing the
equilibrium outcomes of large committees when the net payoffs to agents from voting for the
correct alternative are strictly positive.

A Appendix: Proofs of Formal Results

Before presenting the proof for Theorem 1, we introduce some notation that will be helpful for
the proof: we let µω,n = σn(a)(1− ε) +σn(b)ε be the probability that a randomly chosen agent
votes for a given σn and ω. In the limit as n → ∞ we have µα = σ(a)(1 − ε) + σ(b)ε and
µβ = σ(a)ε+ σ(b)(1− ε).

Proof of Theorem 1: We prove part (1) of Theorem 1 by addressing three different
kinds of limit outcomes separately. Lemma 2 addresses limit outcomes (Zα, Zβ) at which
both inequalities hold strictly, Φa ≶ 0 and Φb ≶ 0. Lemma 3 addresses limit outcomes at
which exactly one of the inequalities holds with equality, at least one of Zα and Zβ is interior
(belongs to (0, 1)) and its slope in the inequality that holds with equality is non-zero. Lemma
4 addresses the case in which both inequalities hold with equality and both Zα and Zβ are
interior. Proposition 4, presented immediately after this proof, shows that the set of points
to which none of Lemmas 2, 3 and 4 apply has measure 0, thus establishing that the theorem
holds generically, as pointed out by its statement.

Part (2) of Theorem (1) is proved in Lemma 5.

Lemma 2 If (Zα, Zβ) is a limit outcome at which the two inequalities (associated to Φa
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and Φb) hold strictly, then there exists a sequence of equilibria of the finite games (σn∗) such
that the associated sequences of decision probabilities (Znα) and (Znβ ) converge to Zα and Zβ .

Proof of Lemma 2: If both inequalities hold strictly, then let σn∗(a) = 1 if Φa(1, 0) > 0,
σn∗(a) = 0 if Φa(1, 0) < 0, σn∗(b) = 1 if Φb(1, 0) > 0, σn∗(b) = 0 if Φb(1, 0) < 0.

Due to convergence of Φn
si to Φsi for all sufficiently large n, the inequalities associated to

each of Φn
a and Φn

b will hold strictly when evaluated at (σn∗(a), σn∗(b)). This is the case, be-
cause given that ε < 1/2, (Znα) and (Znβ ) will converge to Zα and Zβ as given in Definition 4
(of limit outcomes). Thus, for all sufficiently large n, σn∗ will be an equilibrium and (Znα) and
(Znβ ) will converge to Zα and Zβ as required.�

Lemma 3. If (Zα, Zβ) is a limit outcome at which only one of two inequalities holds with
equality (call it Φs), at least one of Zα ∈ (0, 1) or Zβ ∈ (0, 1) holds (call it Zω), and the slope
of Zω in Φs is non-zero, then there exists a sequence of equilibria of the finite games (σn) such
that the associated sequences of decision probabilities (Znα) and (Znβ ) converge to Zα and Zβ .

Proof of Lemma 3: Assume that the inequality associated to Φs holds with equality
and the one associated to Φs′ holds strictly and let Zω ∈ (0, 1). We denote the state of the
world different from ω by ω′. Then for all sufficiently small δ the inequality associated to
Φs′ evaluated at (Zω + δ, Zω′), continues to hold strictly (and has the same direction as when
evaluated at (Zω, Zω′)), and Φs > 0; and evaluated at (Zω − δ, Zω′), the inequality associated
to Φs′ continues to hold strictly (and has the same direction as when evaluated at (Zω, Zω′)),
and Φs < 0. This is because of the fact that Φa and Φb are linear functions of Zα and Zβ and
the slope of Zω in Φs is non-zero.10

Now, for all sufficiently large n it must be the case if we fix Zn = (Zω − δ, Zω′), or Zn =

(Zω + δ, Zω′) then the inequalities above hold for Φn
a and Φn

b independently of the strategy σn
that we use to evaluate the additional terms in Φn

a and Φn
b associated to the probabilities of

the event pivi. This is the case because of the uniform convergence to 0 of these probabilities.
We split the rest of the proof into cases: (case I) Φa > 0, Φb = 0, (case II) Φa = 0, Φb < 0,
(case III) Φa < 0, Φb = 0 and (case IV) Φa = 0, Φb > 0.

(case I) (Φa > 0, Φb = 0)
Then σ(a) = 1 and Zα = 1 and therefore Zβ ∈ (0, 1). Notice that regardless of what σn(b) is,
we can have Znα approximate 1 as well as we want by choosing n sufficiently large. Furthermore
the quality of the approximation is increasing in σn(b).11 Evaluated at (σn(a), σn(b)) = (1, 0),
µβ < 1/2 and at (σn(a), σn(b)) = (1, 1), µβ > 1/2 so for all sufficiently large n, Znβ is smaller
than Zβ + δ when evaluated at (1, 0) and larger than Zβ + δ when evaluated at (1, 1). By
continuity we can find σ̄n(b) such that Znβ = Zβ + δ. It follows that for all large enough n,

10Note that the δ may need to be negative; when we say “for all small enough δ” we mean in absolute value.
11So we can establish the required threshold for n by considering σn(b) = 0.
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Φn
a > 0 and Φn

b > 0 when evaluated at (1, σ̄n(b)). The key is that for any ε we can find an N
such that for all n > N we get Znα > 1− ε and Znβ = Zβ + δ when evaluated at (1, σ̄n(b)).

Similarly, we can find σn(b) such that Znβ = Zω − δ so that for all large enough n, Φn
a > 0

and Φn
b < 0 when evaluated in (1, σn(b)). It follows that there exists σn(b) ∈ (σn(b), σ̄n(b)) such

that Φn
a > 0 and Φn

b = 0 when evaluated at (1, σn(b)). Pick n1 large enough such that this is
the case and notice that (1, σn(b)) is an equilibrium of the game with n1 players. Furthermore,
note that Zαn1

> 1 − ε and Zβn1 ∈ (Zβ − δ, Zβ + δ).12 We now repeat all the process above
but starting with δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(b)).
In step k we repeat the process above but starting with δ/k instead of δ and ε/k instead of ε,
and construct nk > nk−1 and σnk(b)). We thus obtain a subsequence of committee sizes and
equilibria (1, σnk(b)). We complete the sequence by using the method that we used for n1 for
all games with committee sizes between n1 and n2, the method for nk−1 for all games with
committees of sizes between nk−1 and nk. By construction Zn → Z.

(case II) (Φb < 0, Φa = 0)
Then σ(b) = 0 and Zβ = 0 and therefore Zα ∈ (0, 1). Notice that regardless of what σn(a) is,
we can have Znβ approximate 0 as well as we want by choosing n sufficiently large. Furthermore
the quality of the approximation is decreasing in σn(a).13 Evaluated at (σn(a), σn(b)) = (0, 0),
µα < 1/2 and at (σn(a), σn(b)) = (1, 0), µα > 1/2 so for all sufficiently large n, Znα is smaller
than Zα + δ when evaluated at (0, 0) and larger than Zα + δ when evaluated at (1, 0). By
continuity we can find σ̄n(a) such that Znα = Zα + δ. It follows that for all large enough n,
Φn
a > 0 and Φn

b < 0 when evaluated at (σ̄n(a), 0). The key is that for any ε we can find an N
such that for all n > N we get Znβ < ε and Znα = Zα + δ when evaluated in (σ̄n(a), 0).

Similarly, we can find σn(a) such that Znα = Zα − δ so that for all large enough n, Φn
a < 0

and Φn
b < 0 when evaluated in (σn(a), 0). It follows that there exists σn(a) ∈ (σn(a), σ̄n(a))

such that Φn
a = 0 and Φn

b < 0 when evaluated at (σn(a), 0). Pick n1 large enough such that this
is the case and notice (σn(a), 0) is an equilibrium of the game with n1 players. Furthermore,
note that Zβn1 < ε and Zαn1

∈ (Zα − δ, Zα + δ)14 We now repeat all the process above but
starting with δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(a)). In
step k we repeat the process above but starting with δ/k instead of δ and ε/k instead of ε,
and construct nk > nk−1 and σnk(a)). We thus obtain a subsequence of committee sizes and
equilibria (σnk(a), 0). We complete the sequence by using the method that we used for n1 for
all games with committee sizes between n1 and n2, the method for nk−1 for all games with
committees of sizes between nk−1 and nk. By construction Zn → Z.

(case III) (Φa < 0, Φb = 0)
Then σ(a) = 0 and Zα = 0 and therefore Zβ ∈ (0, 1). Notice that regardless of what σn(b) is,
we can have Znα approximate 0 as well as we want by choosing n sufficiently large. Furthermore

12Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
13So we can establish the required threshold for n by considering σn(a) = 1.
14Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
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the quality of the approximation is decreasing in σn(b).15 Evaluated at (σn(a), σn(b)) = (0, 0),
µβ < 1/2 and at (σn(a), σn(b)) = (0, 1), µβ > 1/2 so for all sufficiently large n, Znβ is smaller
than Zβ + δ when evaluated at (0, 0) and larger than Zβ + δ when evaluated at (0, 1). By
continuity we can find σ̄n(b) such that Znβ = Zβ + δ. It follows that for all large enough n,
Φn
a < 0 and Φn

b > 0 when evaluated at (0, σ̄n(b)). The key is that for any ε we can find an N
such that for all n > N we get Znα < ε and Znβ = Zβ + δ when evaluated in (0, σ̄n(b)).

Similarly, we can find σn(b) such that Znβ = Zω − δ so that for all large enough n, Φn
a < 0

and Φn
b < 0 when evaluated in (0, σn(b)). It follows that there exists σn(b) ∈ (σn(b), σ̄n(b)) such

that Φn
a < 0 and Φn

b = 0 when evaluated at (0, σn(b)). Pick n1 large enough such that this is
the case and notice that (0, σn(b)) is an equilibrium of the game with n1 players. Furthermore,
note that Zαn1

< and Zβn1 ∈ (Zβ − δ, Zβ + δ).16 We now repeat all the process above but
starting with δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(b)). In
step k we repeat the process above but starting with δ/k instead of δ and ε/k instead of ε,
and construct nk > nk−1 and σnk(b)). We thus obtain a subsequence of committee sizes and
equilibria (0, σnk(b)). We complete the sequence by using the method that we used for n1 for
all games with committee sizes between n1 and n2, the method for nk−1 for all games with
committees of sizes between nk−1 and nk. By construction Zn → Z.

(case IV) (Φb > 0, Φa = 0)
Then σ(b) = 1 and Zβ = 1 and therefore Zα ∈ (0, 1). Notice that regardless of what σn(a) is,
we can have Znβ approximate 1 as well as we want by choosing n sufficiently large. Furthermore
the quality of the approximation is increasing in σn(a).17 Evaluated at (σn(a), σn(b)) = (0, 1),
µα < 1/2 and at (σn(a), σn(b)) = (1, 1), µα > 1/2 so for all sufficiently large n, Znα is smaller
than Zα + δ when evaluated at (0, 1) and larger than Zα + δ when evaluated at (1, 1). By
continuity we can find σ̄n(a) such that Znα = Zα + δ. It follows that for all large enough n,
Φn
a > 0 and Φn

b > 0 when evaluated at (σ̄n(a), 1). The key is that for any ε we can find an N
such that for all n > N we get Znβ > 1− ε and Znα = Zα + δ when evaluated in (σ̄n(a), 1).

Similarly, we can find σn(a) such that Znα = Zα − δ so that for all large enough n, Φn
a < 0

and Φn
b > 0 when evaluated in (σn(a), 1). It follows that there exists σn(a) ∈ (σn(a), σ̄n(a))

such that Φn
a = 0 and Φn

b > 0 when evaluated at (σn(a), 1). Pick n1 large enough such that this
is the case and notice (σn(a), 1) is an equilibrium of the game with n1 players. Furthermore,
note that Zβn1 < ε and Zαn1

∈ (Zα − δ, Zα + δ).18 We now repeat all the process above but
starting with δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(a)). In
step k we repeat the process above but starting with δ/k instead of δ and ε/k instead of ε,
and construct nk > nk−1 and σnk(a)). We thus obtain a subsequence of committee sizes and
equilibria (σnk(a), 1). We complete the sequence by using the method that we used for n1 for
all games with committee sizes between n1 and n2, the method for nk−1 for all games with

15So we can establish the required threshold for n by considering σn(b) = 1.
16Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
17So we can establish the required threshold for n by considering σn(a) = 0.
18Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
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committees of sizes between nk−1 and nk. By construction Zn → Z.�

Lemma 4. Given any limit outcome (Z∗α, Z
∗
β), such that

(1) The two inequalities (associated to Φa and Φb) hold with equality.

(2) Zα ∈ (0, 1) and Zβ ∈ (0, 1),

then there exists a sequence of equilibria of the finite games (σn∗) such that the associated
sequences of decision probabilities (Znα) and (Znβ ) converge to Z∗α and Z∗β .

Proof of Lemma 4: Note that Φa and Φb are both linearly increasing, or decreasing,
in Zα and Zβ where the slope (which is non-zero as kα,a − kα,b = 0 or kβ,b − kβ,a = 0 rules
out (Z∗, σ∗)) of Φa (Φb) is steeper with respect to Zα (Zβ). By this, there exists a constant
δ such that (Z∗α + δ), (Z∗α − δ) ∈ (0, 1) and Z ′β, Z

′′
β ∈ (0, 1) such that Φa = (Z∗α + δ)(kα,a −

kα,b)Pr(α|si = a) + Z ′β(kβ,b − kβ,a)Pr(β|si = a) + kα,bPr(α|si = a) − kβ,bPr(β|si = a) = 0

and Φa = (Z∗α − δ)(kα,a − kα,b)Pr(α|si = a) + Z ′′β(kβ,b − kβ,a)Pr(β|si = a) + kα,bPr(α|si =

a) − kβ,bPr(β|si = a) = 0 whereby Φb(Z
∗
α + δ, Z ′β) > x and Φb(Z

∗
α − δ, Z ′′β) < −x, where

x is some positive constant. By the same token, there exists δm = δ
m , where m = 1, 2, ...,

such that (Z∗α + δm), (Z∗α − δm) ∈ (0, 1) and Z ′βm, Z
′′
βm ∈ (0, 1) such that, for any m, we have

Φa = (Z∗α + δm)(kα,a − kα,b)Pr(α|si = a) + Z ′βm(kβ,b − kβ,a)Pr(β|si = a) + kα,bPr(α|si =

a) − kβ,bPr(β|si = a) = 0 and Φa = (Z∗α − δm)(kα,a − kα,b)Pr(α|si = a) + Z ′′βm(kβ,b −
kβ,a)Pr(β|si = a) + kα,bPr(α|si = a)− kβ,bPr(β|si = a) = 0 whereby Φb(Z

∗
α + δm, Z

′
βm) > xm

and Φb(Z
∗
α − δm, Z ′′βm) < −xm, where xm is some positive constant. Moreover, (Z∗α + δm),

(Z∗α − δm) converge to Z∗α and Z ′βm, Z
′′
βm converge to Zβ∗ as m→∞.

Recall that

Φn
si(σ) =(k(a, a, α)− k(a, b, α))Pr(pivi|α)Pr(α|si)− (k(a, b, β)− k(a, a, β))Pr(pivi|β)Pr(β|si)

+ (kα,a − kα,b)Pr(a,¬pivi|α)Pr(α|si) + (kβ,b − kβ,a)Pr(a,¬pivi|β)Pr(β|si)

+ kα,bPr(α|si)− kβ,bPr(β|si)

where Φn
a and Φn

b are continuous in σ(a) and σ(b) and Pr(a,¬pivi|α) is a continuous, and
strictly increasing, function of µα = σ(a)(1−ε)+σ(b)ε and Pr(a,¬pivi|β) is a continuous, and
strictly increasing, function of µβ = σ(a)ε+σ(b)(1−ε). For σ = (1, 1) we have Pr(a,¬pivi|α) =

1 and Pr(a,¬pivi|β) = 1 and for σ = (0, 0) we have Pr(a,¬pivi|α) = 0 and Pr(a,¬pivi|β) = 0.
Consider some n and let µ∗α,n indicate the unique µα,n such that Pr(a,¬pivi|α) = (Z∗α + δ).

Given µ∗α,n, the highest possible σn(a) is attained with σn = (1,
µ∗α,n−(1−ε)

ε ) if µ∗α,n ≥ (1−ε) and
σn = (

µ∗α,n
(1−ε) , 0) if µ∗α,n < (1 − ε) and the lowest possible σn(a) is attained with σn = (0,

µ∗α,n
ε )

if µ∗α,n ≤ ε and σn = (
µ∗α,n−ε
(1−ε) , 1) if µ∗α,n > ε. Choosing the highest possible σn(a) gives the

lowest feasible Pr(a,¬pivi|β) and choosing the lowest possible σn(a) gives the highest feasible
Pr(a,¬pivi|β). As (Z∗α + δ) ∈ (0, 1) we must have that µ∗α,n converges to 1

2 as n → ∞
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and thereby, for all sufficiently large n, the two relevant extremes are σn = (
µ∗α,n
(1−ε) , 0) and

σn = (
µ∗α,n−ε
(1−ε) , 1). For these two extremes Pr(a,¬pivi|β) converge to 0 and 1, respectively,

as n → ∞, and since Z ′β ∈ (0, 1) (because by assumption kβ,b − kβ,a 6= 0) then, for all
sufficiently large n, Φn

a > 0 for one of the extremes and Φn
a < 0 for the other (note that

Φn
a(

µ∗α,n
(1−ε) , 0) → Φa(Z

∗
α + δ, 0) and Φn

a(
µ∗α,n−ε
(1−ε) , 1) → Φa(Z

∗
α + δ, 1). By continuity of Φn

a in the
σ-plane then, for all sufficiently large n, there exists an intermediate σn such that Φn

a(σ) = 0.
Moreover, given such σn whereby Φn

a(σ) = 0 we have that

Φn
a(σ) =(k(a, a, α)− k(a, b, α))Pr(pivi|α)Pr(α|si)− (k(a, b, β)− k(a, a, β))Pr(pivi|β)Pr(β|si)

+ (kα,a − kα,b)(Z∗α + δ)Pr(α|si) + (kβ,b − kβ,a)Pr(a,¬pivi|β)Pr(β|si)

+ kα,bPr(α|si)− kβ,bPr(β|si) = 0,

and as n → ∞ the pivotal terms uniformly converge to zero and we can conclude that,
given our σn such that Φn

a(σ) = 0, the term Pr(a,¬pivi|β) must converge to Z ′β (where Z ′β is
as defined above ensuring that Φa = 0 given Zα = (Z∗α + δ)).

By the parallel arguments we can fix Pr(a,¬pivi|α) = (Z∗α − δ) and, for all sufficiently
large n, there exists a σn such that Φn

a(σ) = 0 and Pr(a,¬pivi|β) converges to Z ′′β for n→∞.
Similarly if we consider Pr(a,¬pivi|α) = (Z∗α+δ′) and Pr(a,¬pivi|α) = (Z∗α−δ′) for δ′ ∈ [0, δ].
For sufficiently large n this constitutes a span of strategies.

Now fix Pr(a,¬pivi|α) = (Z∗α+ δ) and Pr(a,¬pivi|α) = (Z∗α− δ) then, for sufficiently large
n, call it n1, there exists σn1 such that Φn1

a (σ) = 0 and Φn1
b (σ) < 0 and another σn1 such

that Φn1
a (σ) = 0 and Φn1

b (σ) > 0 and by continuity there exists σn1 such that Φn1
a (σ) = 0 and

Φn1
b (σ) = 0. We now repeat the process starting with δ2 and −δ2 and we have n2 > n1 and

σn2 such that Φn2
a (σ) = 0 and Φn2

b (σ) = 0. We do this for any δm and −δm and construct
nm > nm−1 and we have a subsequence of committee sizes and equilibria with associated Zn∗α
and Zn∗β converging to Z∗α and Z∗β . We complete the sequence by using the method that we
used for n1 for all games with committee sizes between n1 and n2, the method for nm−1 for all
games with committees of sizes between nm−1 and nm. �

Lemma 5 The sequence of decision probabilities, (Znα , Z
n
β )), associated to any sequence of

equilibria of the finite games, (σn), must converge to the set of limit outcomes.

Proof of Lemma 5: Let (σn) be a sequence of equilibria of the finite games and suppose
(Znα , Z

n
β ) = (Prn(a|α), (Prn(a|β)) is the associated sequence of decision probabilities. Suppose

that there exists ε > 0 such that there is an infinite subsequence of terms (Prn(a|α), (Prn(a|β))

which are at least ε away from any pair (Zα, Zβ) that is a limit outcome. Because all the
terms in this subsequence are bounded above and below (by (0, 0) and (1, 1)), it must have a
convergent subsequence. Call it’s limit point (Yα, Yβ). by construction we thus have that for
any limit outcome (Zα, Zβ), ||(Zα, Zβ)− (Yα, Yβ)|| ≥ ε. So (Yα, Yβ) must violate at least one of
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the four conditions that define a limit outcome. Suppose that it violates (1a). That is, suppose
that Φa(Yα, Yβ) > 0 yet Yα < 1. Let h = 1− Yα This means that for all sufficiently large n we
must have Φa(Z

n
α , Z

n
β ) > 0 and Znα < 1−h/2, but this is a contradiction, since Φa(Z

n
α , Z

n
β ) > 0

implies that σn(a) = 1 and thus Znα → 1. The other 3 cases are anlogous. �.

Proposition 4 (Theorem 1 applies generically). The set of parameter vectors with the property
that there exists some limit outcome (Zα, Zβ) at which Theorem 1 does not apply has measure
0. That is, Theorem 1 holds generically in R8.

Proof of Proposition 4: The only cases to which the argument presented in Lemmas 2,3
and 4 do not apply involve one of the following two conditions:

1. A vector of parameters (k(vi, x, ω)) and a limit outcome such that only one of Φsi(Zα, Zβ)

(si = a or si = b) is 0, Zα 6∈ (0, 1) and Zβ 6∈ (0, 1).

2. A vector of parameters (k(vi, x, ω)) and a limit outcome such that only one of Φsi(Zα, Zβ)

(si = a or si = b) is 0, (call it Φs), only one of Zα or Zβ is interior (call it Zω) and the
multiplier of Zω in Φs is 0.

3. Both Φsi(Zα, Zβ) = 0 (for si = a and si = b) and either (or both) Zα 6∈ (0, 1) or
Zβ 6∈ (0, 1).

We proceed by showing that the set of vectors (k(vi, x, ω)) for which each of the three
conditions above can hold is a subspace of R8 of dimension strictly less than 8, and therefore
of measure 0 in R8. In fact, we will show the stronger property that the sets of vectors (kω,x)

for which each of the conditions above can hold is a subspace of R4 of dimension strictly less
than 4, and therefore of measure 0 in R4. Since the union of finitely many sets of measure 0 is
of measure 0 the result follows.

(Condition 1) Let s be such that Φs(Zα, Zβ) = 0. Assume that Zα = 0 and Zβ = 0. Then
it follows that Pr(α|s)kα,b − Pr(β|s)kβ,b = 0 which given that Pr(α|s) > 0 and Pr(β|s) > 0

defines a subspace of dimension 3 in R4. Similarly in case Zα = 1 and Zβ = 0 then the
analogous condition is Pr(α|s)kα,a − Pr(β|s)kβ,b = 0. In case Zα = 0 and Zβ = 1 then it is
Pr(α|s)kα,b−Pr(β|s)kβ,a = 0. In case Zα = 1 and Zβ = 1 then it is Pr(α|s)kα,a−Pr(β|s)kβ,a =

0.

(Condition 2) Let s be such that Φs(Zα, Zβ) = 0. Assume that Zα is interior and the
multiplier of Zα in Φs is 0. Then kα,a − kα,b = 0 which defines a subspace of dimension 3 in
R4. Similarly, if Zβ is interior and the multiplier of Zβ in Φs is 0 then kβ,a − kβ,b = 0.

(Condition 3) Suppose that Φa(Zα, Zβ) = 0 and Φb(Zα, Zβ) = 0 If kα,a − kα,b = 0 or
kβ,a − kβ,b = 0 then as above we have subspaces of dimension 3 in R4. Otherwise, suppose
Zα 6∈ (0, 1) = 0. It follows by solving for Zβ in each of the equations Φa(Zα, Zβ) = 0 and
Φb(Zα, Zβ) = 0, that,
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Zβ =
Zα(kα,a − kα,b)Pr(α|a)− kβ,bPr(β|a) + kα,bPr(α|a)

(kβ,a − kβ,b)

=
Zα(kα,a − kα,b)Pr(α|b)− kβ,bPr(β|b) + kα,bPr(α|b)

(kβ,a − kβ,b)

If Zα = 0, then kα,b(Pr(α|a)−Pr(α|b))+kβ,b(Pr(β|b)−Pr(β|a)) = 0. Given that Pr(α|a) >

Pr(α|b) and Pr(β|b) > Pr(β|a), this equation defines a 3 dimensional subspace in R4. Similarly,
if Zα = 1, then kα,a(Pr(α|a)− Pr(α|b)) + kβ,b(Pr(β|b)− Pr(β|a)) = 0.

If on the other hand Zβ 6∈ (0, 1) = 0 we solve for Zα in each of the equations Φa(Zα, Zβ) = 0

and Φb(Zα, Zβ) = 0, and proceed just as above.

The following Proposition, which relies on Proposition 4, is the basis for Lemma 1 in the
main text.

Proposition 5. Given any vector of parameters (k(vi, x, ω)) at which Theorem 1 does not
apply for limit outcome (Zα, Zβ) = (1, 0), and for any ε, there exists a vector of parameters
(k′(vi, x, ω)) at which Theorem 1 does apply for (Zα, Zβ) = (1, 0) and such that (1) Φa(Z =

(1, 0)) < 0 or Φb(Z = (1, 0)) > 0 and (2) ||(k(vi, x, ω))− (k′(vi, x, ω))|| < ε .

Proof of Proposition 5: Note that,

Φsi(Zα = 1, Zβ = 0) = kα,aPr(α|si)− kβ,bPr(β|si)]

Suppose that Φa(Zα = 1, Zβ = 0) 6= 0 and Φb(Zα = 1, Zβ = 0) = 0. Then by perturbing
the parameters just slightly so that k′β,b = kβ,b − δ (with δ > 0) we can guarantee that at the
new parameters, Φa(Zα = 1, Zβ = 0) 6= 0 and Φb(Zα = 1, Zβ = 0) > 0. It follows that since
both inequalities hold strictly at these new parameters, Theorem 1 holds for (Zα, Zβ) = (1, 0)

and Φb(Zα = 1, Zβ = 0) > 0.

Analogously, suppose that Φa(Zα = 1, Zβ = 0) = 0 and Φb(Zα1, Zβ = 0) 6= 0.Then by
perturbing the parameters just slightly so that k′α,a = kα,a − δ (with δ > 0) we can guarantee
that at the new parameters, Φa(Zα = 1, Zβ = 0) < 0 and Φb(Zα = 1, Zβ = 0) 6= 0. It
follows that since both inequalities hold strictly at these new parameters, Theorem 1 holds for
(Zα, Zβ) = (1, 0) and Φa(Zα = 1, Zβ = 0) < 0.

Suppose that Φa(Zα = 1, Zβ = 0) = 0 and Φb(Zα1, Zβ = 0) = 0. Then by perturbing the
parameters just slightly so that k′β,b = kβ,b − δ (with δ > 0) we can guarantee that at the new
parameters, Φa(Zα = 1, Zβ = 0) > 0 and Φb(Zα = 1, Zβ = 0) > 0. It follows that since both
inequalities hold strictly at these new parameters, Theorem 1 holds for (Zα, Zβ) = (1, 0) and
Φb(Zα = 1, Zβ = 0) < 0

By Proposition 4, with the above we have covered all possible parameter vectors at which
Theorem 1 does not apply for limit outcome (Zα, Zβ) = (1, 0).

26



Remark: As stated in Lemma 1 of the main text it follows from Proposition 5 that
information aggregation cannot be robust at payoff vectors for which Theorem 1 does not
apply.

Proof of Lemma 1. It is clear that if Theorem 1 applies to a given payoff vector at which
(Zα, Zβ) = (1, 0) as a limit outcome at which Φa(Z = (1, 0)) > 0 and Φb(Z = (1, 0)) < 0, then
this vector supports robust information aggregation.

By Theorem 1 any vector of parameters (kω,x) to which it applies and which does not have
(Zα, Zβ) = (1, 0) as a limit outcome does not support information aggregation to begin with,
and therefore can’t support robust information aggregation either. Furthermore for robust
information aggregation to be supported by payoff vectors which do have (Zα, Zβ) = (1, 0)

as a limit outcome it must be the case that Φa(Z = (1, 0)) > 0 and Φb(Z = (1, 0)) < 0. If
this is not the case then in any open ball around (kω,x) there will be a payoff vector (k′ω,x)

under which either Φa(Z = (1, 0)) < 0 or Φb(Z = (1, 0)) > 0 and to which Theorem 1 applies
(because it applies generically in the payoffs’ space as shown by Proposition 4 above). It follows
that (Zα, Zβ) = (1, 0) is not a limit outcome for (k′ω,x). By the argument above (k′ω,x) does
not support information aggregation, and therefore (kω,x) does not support robust information
aggregation.

The only possible concern is thus with payoff vectors (kω,x) at which Theorem 1 does not
apply. As shown by Proposition 5 above, in any open ball around (kω,x) there must exist payoff
vectors to which Theorem 1 does apply and at which at least one of Φa(Z = (1, 0)) < 0 or
Φb(Z = (1, 0)) > 0 holds. It follows that robust information aggregation is not supported by
(kω,x).�

Proof of Corollary 1. by Lemma 1, if information aggregation is robust for a given vector
of parameters (kω,x) then (1, 0) must be a limit outcome at this vector, with Φa(1, 0) > 0 and
Φb(1, 0) < 0. Furthermore, it follows that under any sequence of strategy profiles such that
Zn → (1, 0) it must be the case that Φn

a → Φa(1, 0) and Φn
b → Φb(1, 0). It follows that for suffi-

ciently large n it must be the case that Φn
b < 0 and Φn

a > 0 and thus σn(a) = 1 and σn(b) = 0.�

Proof of Theorem 2. by Lemma 1, we just need to solve for the payoff vectors (kω,x)

such that (Zα, Zβ) = (1, 0) is a limit outcome with Φa > 0 and Φb < 0. That is, solve for all
the payoff vectors such that Φa(1, 0) > 0 and Φb(1, 0) < 0. A payoff vector solves this problem
if and only if the three conditions in the statement of the theorem are met.�

Proof of Theorem 3. When the conditions in Theorem 3 are met (in addition to the
conditions in Theorem 2), then there are no limit outcomes other than (Zα, Zβ) = (1, 0). Fur-
thermore, Theorem 1 applies to all payoff vectors within the set described by Theorem 2. It
follows that in the light of part (2) of Theorem 1, the sequence of decision probabilities associ-
ated to any sequence of equilibria of the finite games must converge to (1, 0).�
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Before proceeding with the proof of Proposition 3, we state the general version of the
proposition (the proof of Proposition 3 follows as a Corollary of the proposition listed below):

Proposition 6. (i) Partial information aggregation with Zβ ∈ (0, 1): There exists a sequence
of equilibria σn∗ such that Zn(σn∗) → (1, Zβ ∈ (0, 1)) as n → ∞ if, and only if, kβ,a 6= kβ,b

and:

Zβ =

Pr(α|si=b)
Pr(β|si=b)kα,a − kβ,b

kβ,a − kβ,b
∈ (0, 1)

(ii) Partial information aggregation with Zα ∈ (0, 1): There exists a sequence of equilibria
σn∗ such that Zn(σn∗)→ (Zα ∈ (0, 1), 0) as n→∞ if, and only if, kα,a 6= kα,b and:

Zα =

Pr(β|si=a)
Pr(α|si=a)kβ,b − kα,b

kα,a − kα,b
∈ (0, 1).

Proof of Proposition 6: By relying on Theorem 1, we solve for the payoff vectors (kω,x)

such that (1, Zβ) is a limit outcome where Zβ ∈ (0, 1). Note that the definition of limit out-
come implies that Zβ ∈ (0, 1) requires Φb(Zα, Zβ) = 0. We thus obtain the expression for Zβ
by solving Φb(1, Zβ) = 0. Analogously for partial information aggregation with Zα ∈ (0, 1). �

Proof of Proposition 5. by relying on Theorem 1, we solve for the payoff vectors (kω,x)

such that (Zα, Zβ) = (1, 1) and (Zα.Zβ) = (0, 0). Are limit outcomes. �.
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