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Abstract 
 
A growing literature has shown that behavioral biases influence consumer choices. Such so-
called internalities are ubiquitous in many settings, including energy efficiency investments and 
the consumption of sin goods, such as cigarettes and sugar. In this paper, we use a mechanism 
design approach to characterize the optimal non-linear tax (or subsidy) for correcting 
behaviorally biased consumers. We demonstrate that market choices are informative about 
consumers’ bias, which can be exploited for benevolent price discrimination via a non-linear tax 
schedule. We derive that such “internality revelation” depends on two sufficient statistics: the 
correlation between valuations and biases, as well as the signal-to-noise ratio of the bias. 
Furthermore, we find that there must be a minimum alignment of preferences among the 
designer and the consumer to ensure internality tax implementability. We contrast our results 
with the insights from standard non-linear income taxation and discuss that the optimal 
corrective tax schedule is typically convex. In addition, we apply our findings to the light bulb 
market and determine the optimal non-linear subsidy for energy efficiency. 
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1 Introduction

A growing literature has demonstrated that consumers make decisions that are not
in their best interest. For example, present biased consumers undervalue future cost
from consuming “sin goods”, such as cigarettes or sugar (Laibson, 1997; Loewenstein
and Prelec, 1992; O’Donoghue and Rabin, 1999, 2006). Consumers are inattentive
to opaque product attributes such as the energy efficiency of an appliance (Allcott
and Taubinsky, 2015) or the expected out-of-pocket costs of a health insurance plan
(Abaluck and Gruber, 2011). Furthermore, consumers hold biased beliefs in fields as
diverse as schooling returns, the caloric content of nutrition, and energy efficiency (At-
tari et al., 2010; Bollinger et al., 2011; Jensen, 2010). Misoptimizing consumers inflict
a so-called internality upon themselves, which provides a justification for corrective
taxation beyond the classical case of externalities. Internalities are inherently hetero-
geneous as consumers differ in the degree of their bias and not all consumers misop-
timize. As a consequence, targeting corrective taxes towards behaviorally biased con-
sumers is crucial for inducing behavioral change and improving social welfare.

In this paper, we explore the potential of non-linear commodity taxation to tar-
get behaviorally biased consumers and thereby add to the rapidly growing literature
in behavioral public economics (see, e.g., Bernheim and Taubinsky 2018). Following
Farhi and Gabaix (2017) and Mullainathan et al. (2012), we employ a general model of
biases that encompasses a broad class of behavioral failures driving a wedge between
“experienced” and “decision utility” (Kahneman et al., 1997), such as present bias,
limited attention and biased beliefs. Based on this generic specification of a behav-
ioral bias, we derive the optimal non-linear commodity tax employing a mechanism
design approach. Using data by Allcott and Taubinsky (2015), we apply our results
to the light bulb market and determine the optimal non-linear subsidy for energy effi-
ciency.

A novelty of our approach is that we analyze how a mechanism designer can
employ benevolent price discrimination, i.e., optimally differentiate taxes to correct
choices of behaviorally biased consumers. In particular, we investigate settings where
consumer decisions reflect potentially biased perceived valuations at the time of pur-
chase, such as the immediate gratification for a cigarette or a sugary product. We
examine the information structure that is implied by internalities and analytically
characterize the conditions under which market choices reveal consumers’ bias – a
phenomenon that we denote as “internality revelation”. We also investigate how in-
ternalities induce disagreement on valuations between consumers and the designer,
and we characterize the conditions that guarantee the implementability of the optimal
corrective tax. Furthermore, we describe the properties of optimal non-linear com-
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modity taxes and contrast them with findings on optimal non-linear income taxation,
commonly referred to as the “ABC formula” (Diamond, 1998).

Our paper combines several strands of the literature. From a methodological an-
gle, we built on Mirrlees’s (1971) pathbreaking work on optimal non-linear income
taxation and combine it with the presence of behavioral biases. In that regard, our pa-
per is close to recent work on behavioral income taxation by Lockwood and Taubinsky
(2016) and Gerritsen (2016), for example. By contrast, the focus of our paper is not the
trade-off between efficiency and equity, as inherent in optimal income taxation, but on
the potential of non-linear taxes to correct consumer choices.

Optimal corrective taxation of behaviorally biased consumers has recently been
studied by a growing literature (O’Donoghue and Rabin, 2006; Allcott et al., 2014,
2015; Farhi and Gabaix, 2017; Mullainathan et al., 2012). Our paper closely relates to
O’Donoghue and Rabin (2006) who show that linear corrective taxes on sin goods are
welfare-improving when some consumers are present biased, whiles others are unbi-
ased. More recently, Allcott and Taubinsky (2015) derive the optimal corrective tax for
a binary choice and show that it corresponds to the average bias of consumers that are
indifferent between both options. Farhi and Gabaix (2017) generalize that result and
derive the optimal linear corrective tax when choices are continuous. Furthermore,
Allcott et al. (2014) investigate the optimal combination of a linear tax and product
subsidies when internalities and externalities are present, while Allcott et al. (2018)
combine optimal linear taxation of sin goods with an optimal income taxation frame-
work that considers redistributive motives.

We complement this strand of the literature by investigating the potential to target
behaviorally biased consumers through non-linear taxation. While linear corrective
taxes impose distortions on fully rational consumers (see, e.g., O’Donoghue and Ra-
bin, 2006), non-linear taxes allow to minimize such distortions by targeting biased
consumers. Traditionally, public tax schemes have targeted consumers through “tag-
ging” (Akerlof, 1978), i.e., a conditioning of taxes on observable characteristics. While
appealing in theory, it is difficult to avoid strategic behavior and to find immutable
characteristics that are socially acceptable. More recently, Griffith et al. (2019) inves-
tigate optimal taxation in the alcohol market and find that a linear ethanol tax that
varies among alcohol products can successfully target heavy drinkers and thus reduce
the large externalities caused by them. While our paper is in principle also applicable
to externalities, we show that internalities generally imply a distinct correlation pat-
tern between consumers’ choices and biases that offers particularly large potential for
targeting.

Our paper is also related to a large literature in industrial organization that has
explored how firms can use price discrimination to maximize profits (see, e.g., Mussa
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and Rosen 1978, or Wilson 1997 for a summary). In industrial organization, the ratio-
nale of non-linear pricing is to separate consumers with different valuations, which
allows firms to extract consumer surplus. We built on the same basic intuition, but
explore the potential of benevolent price discrimination to correct choices of behav-
iorally biased consumers. Furthermore, our approach bears similarity with multi-
dimensional mechanism design problems (McAfee and McMillan, 1988; Laffont et al.,
1987) as consumers are characterized by perceived valuations and biases. An impor-
tant distinction of our setting is that only one dimension, namely perceived valuations,
influence consumers’ choice behavior. We contribute to that strand of the literature by
characterizing the conditions for the implementability of internality taxes.

We solve for the optimal non-linear tax by allowing for arbitrary consumer hetero-
geneity in preferences and biases.1 In addition, we follow the reduced-form approach
to behavioral public finance (Mullainathan et al., 2012), which allows us to determine
the optimal tax for a variety of underlying behavioral mechanisms. Our results show
that the optimal tax rate has two components. The first term corresponds to the av-
erage bias of consumers that make a particular consumption choice, while the second
term captures redistribution aspects that only become relevant with non-utilitarian so-
cial preferences. Investigating the information structure implied by internalities, we
show that consumers reveal their perceived type even when the aggregate information
available to a policy maker is uninformative, e.g., when the bias has zero mean and
is uncorrelated with valuations. We explore such internality revelation in more detail
and show that it crucially depends on two sufficient statistics: the correlation between
biases and valuations and the ratio of their standard deviations, which we denote as
the signal-to-noise ratio of the bias. We derive that the slope of the expected condi-
tional bias is a function of the informativeness of the choice setting, characterized by
the above mentioned two sufficient statistics, and the informativeness of a consumers’
report, given by the distance of her report to the average report. We also demonstrate
that – as a consequence of internality revelation – the optimal non-linear corrective tax
is typically convex and analytically characterize the exceptions when this finding does
not hold true.

Furthermore, we investigate the conditions that ensure implementability of inter-
nality taxes and find that they are restrictive in a double sense. First, we show that the
designer must rely on a one-dimensional mechanism based on perceived valuations
and infer biases indirectly. Second, we find that corrective taxes can be implemented
only as long as there is a minimum alignment between consumers’ perceived prefer-
ences and the normative stance of the mechanism designer. In particular, we find that

1Our approach to model internalities is more general than O’Donoghue and Rabin (2006), for example,
who focus on sin goods, where some consumers overvalue consumption, while others do not.
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there exists a trade-off between the magnitude of internality revelation and imple-
mentability of the mechanism and characterize this trade-off in terms of the sufficient
statistics mentioned above. When the designer learns that a consumer heavily over-
values consumption and imposes excessive corrective taxes, implementability of the
mechanism breaks down and the designer cannot fully use the information that is re-
vealed by consumers’ reports. For the light bulb market, we illustrate that the optimal
non-linear tax for energy efficiency increases welfare substantially beyond the optimal
linear tax and show that the optimal non-linear tax can be approximated based on the
few sufficient statistics that we have identified.

From a theoretical perspective, our approach is applicable to non-linear commod-
ity taxation of quantities, as well as qualities, i.e., product attributes. In practice, non-
linear taxation can be readily applied to product attributes such as energy efficiency,
which is important as internalities often distort choices between product varieties.
When applied to quantities, a prerequisite for non-linear taxation is that total con-
sumption can be tracked, which may not be feasible for all everyday commodities. Yet,
a number or important applications lend themselves to non-linear taxation of quanti-
ties. In recent years, many states have legalized the sale of cannabinoids in officially
recognized pharmacies. In Uruguay, for example, sellers verify the identity of buyers
via fingerprints and track total quantities to enforce a maximum consumption limit
of 40g of cannabis per month. Similarly, many governments operate central registries
on the private ownership of cars, guns, and houses (see, e.g., Cremer and Gahvari
1998). As digitization progresses, tracking costs will decrease (Goldfarb and Tucker,
2019) and comparable settings that allow for non-linear corrective taxation are likely
to become increasingly prevalent.

As a policy alternative to corrective taxes, the recent literature has highlighted
non-price interventions, so-called “nudges” (Thaler and Sunstein, 2008), to influence
behaviorally biased consumers. Clearly, low-cost educational interventions that suc-
cessfully remove consumers’ bias would be first best from a welfare perspective. Yet,
in practice, such “pure nudges” (e.g., Allcott and Taubinsky 2015) are rare as they,
first, often face high or prohibitive cost. Second, they are only effective when biases
are triggered by “mental frictions”, i.e., high cost of acquiring and processing informa-
tion, rather than by “mental gaps”, i.e., psychological distortions such as self-control
problems (Handel and Schwartzstein, 2018). By contrast, optimal taxation is applica-
ble to all policies that aim at correcting allocations regardless of the specific behavioral
bias at work. In particular, an optimal taxation framework can also be employed to in-
vestigate nudges that induce feelings of guilt or self-esteem and thus work as a “moral
tax” or “moral subsidy”.
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The paper is structured as follows. In Section 2, we introduce our model. Section
3 contains the analytical characterization of the optimal tax scheme and the condi-
tions that ensure internality tax implementability, while Section 4 illustrates optimal
non-linear taxation based on a simple example. In Section 5, we explore internality
revelation and analyze the information structure implied by internalities. Section 6
determines the optimal non-linear subsidy for energy efficiency in the light bulb mar-
ket. Section 7 discusses our findings and concludes.

2 Model Setup

In this section, we present a model that allows us to analyze how the social planner
(she), i.e., the mechanism designer, implements a welfare maximizing tax scheme in an
economy with a behaviorally biased consumer (he). We model the interaction between
the mechanism designer and the consumer as a dynamic Bayesian game with two
stages. In period one, the designer commits to a (possibly non-linear) tax regime t :
X → R, where X ⊆ [0, ∞) is the consumer’s choice set. In period two, the consumer
chooses his consumption x ∈ X. The game is solved by backward induction. We begin
by presenting the characteristics of the consumer side, and then describe the problem
of the mechanism designer.

2.1 Consumer Side

For notational simplicity, we model one representative consumer, whose choice vari-
able is the consumption of a good x, denoted by x ∈ X ⊆ [0, ∞). The consumer’s
experienced per-unit valuation of the benefits of consuming good x is captured by the
random variable v, which is distributed according to the cumulative distribution func-
tion F with support supp(F) := [v, v] ⊆ (−∞, ∞), density function f , expected value
µv with −∞ < µv < ∞, and variance σv. The bias b, reflecting a misperception of the
true valuation of the consumption choice x, is distributed according to the cumulative
distribution function G with support supp(G) :=

[
b, b
]
⊆ (−∞, ∞), density function

g, expected value µb with −∞ < µb < ∞, and variance σb. We allow for arbitrary cor-
relation patterns between valuations and biases, given by the correlation coefficient
ρ.

The consumer’s perceived per-unit valuation of the benefits of consuming good
x is given by v̂ : [v, v] ×

[
b, b
]
→ R, (v, b) 7→ v̂(v, b), which depends on the true

valuation v and the bias b. We assume that the perceived valuation increases in the
true valuation and in the bias. Furthermore, we specify the bias such that v̂(v, 0) = v,
i.e., a consumer with bias b = 0 is unbiased, while b < 0 (b > 0) imply underesti-
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mation (overestimation) of the value of consumption. The perceived valuation v̂ is
distributed according to the cumulative distribution function P, which is induced by
the distributions of v and b. The density is given by p, which is determined by the
joint distribution h(v, b) of v and b according to p(v̂) =

∫ ∞
−∞ h(v, v̂− v)dv. The sup-

port supp(P) :=
[
v̂, v̂
]

is determined by the support of the distributions F and G.
Let z ∈ R denote the money (numeraire good) a consumer spends for the con-

sumption of other goods. The consumer’s objective function is given by his decision
utility ud : X × R ×

[
v̂, v̂
]
→ R with (x, z, v̂) 7→ ud(x, z, v̂). The consumer’s expe-

rienced utility is given by ue : X × R × [v, v] → R with (x, z, v) 7→ ue(x, z, v). Ex-
perienced utility increases in the true valuation and decision utility increases in the
perceived valuation. Experienced and decision utility increase in z and x.

To separate corrective from redistributive taxation motives, we assume quasilinear
utility that abstracts from income effects. Utility from consuming x is given by the
increasing and weakly concave function w : X → R. Thus, we can write decision
utility as ud(x, z, v̂) = z + v̂ · w(x) and experienced utility as ue(x, z, v) = z + v · w(x).
The increasing and weakly convex cost function of consuming x is given by c : X → R.
We assume that good x is produced on competitive markets so that the cost function
corresponds to the price of consuming x net of taxes. The exogenous, real-valued
scalar m > 0 denotes the initial endowment with the numeraire. Therefore, the budget
constraint is given by z ≤ m− c(x)− t(x).

We make the standard assumption that the utility function is quasiconcave in x,
which in our case implies quasiconcavity of w(x)− c(x). In the following, without loss
of generality, we assume that the utility function is linear and that the cost function is
strictly convex.2 This implies that the decision utility can be written as

ud(x, t, v̂) = m + v̂x− t(x)− c(x),

and the experienced utility as

ue(x, t, v) = m + vx− t(x)− c(x).

Following Farhi and Gabaix (2017) and Mullainathan et al. (2012), we assume an ad-
ditive bias v̂ := v + b, so that ue(x, t, v) = ud(x, t, v̂)− bx.

The behavior of a biased consumer is captured by

xd(v̂, t) := arg max
x

ud(x, t, v̂),

2This modeling choice is not restrictive as we can always redefine x in terms of an alternative quality
measure x̃ = w(x) to yield a linear utility function w̃(x̃) = w(w−1(x̃)) = x̃ and a strictly convex cost
function c̃(x̃) = c(w−1(x̃)).
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and that of an unbiased consumer by

xe(v, t) := arg max
x

ue(x, t, v).

To simplify notation, we write xd and xe as shorthand notations for xd(v̂, t) and xe(v, t),
respectively.

2.2 Mechanism Designer

The designer’s objective is to elaborate a tax scheme t : X → R, based on information
about the distributions P, F, and G. She observes the consumer’s choice x, but not
any realization of the random variables v, b, and v̂. The designer’s objective function
consists of the increasing and weakly concave social welfare function W : R → R

with ue 7→ W (ue). For simplicity, we assume that the welfare function depends on
non-negative welfare weights α(v̂), so that ue 7→ α(v̂)ue with α :

[
v̂, v̂
]
→ R+. To

isolate the corrective nature of taxation in our setting, we also assume that the designer
returns tax revenue to the consumer via lump-sum taxes.

Let T := { f | f : X → R} denote the function space containing all functions with
domain X and codomain R. The designer’s objective is then given by

max
t∈T

∫
v̂

α(v̂) · E
[
ue
(

xd, t, v
) ∣∣v̂] p(v̂)dv̂ +

∫
v̂

t(xd)p(v̂)dv̂.

In the above objective, we can rewrite E
[
ue (xd, t, v

)
|v̂
]
= ud (xd, t, v̂

)
− E [b|v̂] xd.

A crucial term in this expression is the conditional expectation E [b|v̂], which captures
the information a designer can learn about individual biases from observing a report
v̂. Such internality revelation plays an important role in the characterization of the
optimal non-linear tax scheme and we define it as follows.

Definition 1 (Internality Revelation). Internality revelation occurs when the designer can
extract information about the magnitude of a consumer’s internality after observing her per-
ceived valuation v̂. Formally, internality revelation occurs if and only if

∃v̂1, v̂2 ∈
[
v̂, v̂
]
, v̂1 6= v̂2 : E [b|v̂1] 6= E [b|v̂2] . (1)

Under internality revelation, the designer can apply Bayesian learning to extract
information about a consumer’s bias from observing her perceived valuation. Before
we solve for the optimal non-linear tax and discuss the implications of internality
revelation, we briefly discuss our model setup in the next subsection.
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2.3 Discussion of the Model

While we allow the bias to have any (finite) magnitude in expectation, empirical ap-
plications have typically found that consumers undervalue certain attributes, for in-
stance due to limited attention (Allcott et al., 2015). To fix ideas, assume that a con-
sumer chooses one of several varieties of a horizontally differentiated product, such as
an electricity-using durable of varying energy efficiency levels. In this example, x can
be interpreted as the energy efficiency of the durable, measured relative to the worst
variety on the market, and v corresponds to the actual reduction in operating cost
through better energy efficiency, given actual usage and prices. The random variable
b can be interpreted as a misperception of the value of energy efficiency at the time of
purchase, i.e., a wedge between perceived valuation v̂ and the experienced valuation
v of energy efficiency.

In many applications of interest, misoptimizing consumers also exacerbate prob-
lems from externalities. For example, consumers who buy energy-inefficient durables
can be worse off individually, but also contribute to climate change as their energy
consumption causes greenhouse gas emissions. For conceptual clarity, we focus on
internalities in the main text, but solve a model with internalities and externalities
in Appendix B. In particular, we find that the presence of global externalities merely
shifts the marginal tax rate by a constant term that corresponds to the global per-unit
damage of consumption.

Our model implicitly assumes that consumer biases exist even though aggregate
information on their presence is available. When aggregate information is available
to both the designer and the consumers, consumers might update beliefs about their
type in exactly the same way as the designer. When biases can purely be attributed
to lack of information, such updating might remove the bias. Yet, the literature on
behavioral economics has demonstrated that consumers often fail to correctly update
their beliefs. For example, the literature has found evidence of biased beliefs regarding
energy efficiency, the calory content of nutrition, car driving abilities, and schooling
returns (Attari et al., 2010; Bollinger et al., 2011; Kruger and Dunning, 1999; Jensen,
2010). In addition, when behavioral biases are due to “mental gaps” (Handel and
Schwartzstein 2018), such as self-control problems, Bayesian updating does not nec-
essarily help consumers to overcome their bias. For example, a wide literature has
documented that present biases induce consumers to undervalue products that pay
out only in the future, such as healthy foods and energy efficient durables (Laibson,
1997; Loewenstein and Prelec, 1992; O’Donoghue and Rabin, 1999, 2006).

For the ease of exposition and without loss of generality, we define welfare weights
α(·) as a function of v̂. As our setup is characterized by a quasi-linear and money-
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metric utility function, the welfare weights α(v̂) represent the increase in money-
metric experienced utility when increasing numeraire consumption by one unit for
a consumer with perceived valuation v̂. This specification of welfare weights allows
us to consider distributional implications of corrective taxation, as for example high-
lighted by Allcott et al. (2018). Our welfare weights can be generalized to consider a
wide range of societal preferences for redistribution that may also take into account
notions of fairness (Saez and Stantcheva, 2016).3

A central distinction to the standard mechanism design problems is that a designer
evaluates experienced utility at xd, the solution to the maximization problem involving
the (possibly biased) decision utility. In Section 3, we analyze how the designer can
possibly correct the internality to increase social welfare using non-linear taxation.

3 Optimal Tax Scheme

In this section, we apply the concept of a perfect Bayesian Nash equilbirium to derive
the optimal tax scheme. We proceed in two steps. First, we solve for the choice of
the behaviorally biased consumer that maximizes decision utility and determine the
conditions under which a truthful mechanism can be implemented. Second, we derive
the optimal tax schedule and discuss its properties.

3.1 Internality Tax Implementability

Employing the Revelation Principle for dominant-strategy implementation (Gibbard,
1971), we solve for a direct mechanism, where consumers truthfully reveal informa-
tion about their perceived valuations. We start by discussing the dimensionality of
mechanisms for internality taxation.

In our model, a consumer decides based on his perceived valuation v̂(v, b) rather
than v, which can occur when he is either naive or sophisticated. While naive con-
sumers are unaware of their bias, sophisticated consumers know the bias, but disre-
gard it when when making decisions, for example owing to self-control problems (e.g.,
O’Donoghue and Rabin 1999).4

Corollary 1. To determine optimal internality taxes, we can without loss of generality restrict
the analysis to one-dimensional mechanisms in perceived valuations v̂.

3Furthermore, as long as such generalizied welfare weights are non-negative, the resulting optimal tax
system is second-best Pareto efficient, so that no feasible tax reform can improve the welfare of everybody
(Saez and Stantcheva, 2016).

4More formally, a naive biased consumer i only holds information about his perceived valuation v̂i.
A sophisticated biased consumer i only holds information on his perceived valuation v̂i and his bias bi,
but acts according to his (biased) decision utility ud

i .
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Proof. See Appendix A.A

Even though a consumer can be characterized by his perceived valuation and his
bias, Corollary 1 states that we can restrict our analysis to one-dimensional mecha-
nisms, where reports correspond to the consumers’ perceived valuations v̂. The in-
tuition for Corollary 1 is as follows. Naive consumers cannot truthfully report their
bias, so that a mechanism designer can only employ a one-dimensional mechanism
in v̂ to correct them. By contrast, sophisticated consumers know their bias and can
in principle report it, as in multi-dimensional screening problems (e.g., Basov 2005).
Yet, as biases do not influence decision utility, truthtelling in a two-dimensional mech-
anism is not incentive-compatible. For example, a smoker who is about to purchase
cigarettes would always pretend to be unbiased to avoid paying corrective taxes. Ac-
cordingly, no matter whether consumers are naive or sophisticated, we can without
loss of generality focus on mechanisms that are one-dimensional in perceived valua-
tions.

Corollary 1 allows for a straightforward application of the Revelation Principle to
our setting, where the space of reports for a consumer is given by the space of his per-
ceived valuation v̂. For simplicity, we refer to v̂ as a consumer’s type in the following.
The designer confines herself to designing a direct mechanism (ξ, τ) :

[
v̂, v̂
]
→ X×R

under truthtelling to implement the welfare maximizing outcome. Based on the con-
sumer’s strategical report ṽ, the direct mechanism assigns the consumed quantity,
ξ(ṽ) ∈ X, and the amount of taxes to be paid, τ(ṽ) ∈ R. Without loss of general-
ity, we assume that participation contraints are fulfilled for any consumer.5

Under the direct mechanism, the decision utility for report ṽ given the perceived
valuation v̂ is

ud(ξ(ṽ), τ(ṽ)|v̂) = m + v̂ · ξ(ṽ)− τ(ṽ)− c(ξ(ṽ)).

Since the consumer may strategically misreport his perceived valuation, truthtelling
can be induced by the designer by implementing an incentive compatible mechanism.
This implies that the tax scheme must satisfy

ud(ξ(v̂), τ(v̂)|v̂) ≥ ud(ξ(ṽ), τ(ṽ)|v̂) ∀v̂, ṽ ∈
[
v̂, v̂
]

. (IC)

5If consumers with low perceived valuations preferred the outside option to participation, the de-
signer could uniformly increase the tax while preserving tax rates to ensure that participation constraints
are not binding. In particular, we can specify the model such that ûd (v̂) = u > m and ûd (v̂) ≥ u, where
m is the utility of the outside option, i.e., not consuming.
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Optimal strategic reporting of a consumer implies that the solution v∗ to the prob-
lem max

ṽ
ud(ξ(ṽ), τ(ṽ)|v̂) has to satisfy

v̂ξ ′(v∗)− τ′(v∗)− ξ ′(v∗)c′(ξ(v∗)) !
= 0. (2)

As incentive compatibility implies that v∗ = v̂, equilibrium decision utility in an
incentive-compatible direct mechanism is given by ûd(v̂) := ud(ξ(v̂), τ(v̂)|v̂), while
equilibrium experienced utility is given by ûe(v̂, b) := ue(ξ(v̂), τ(v̂)|v) = ûd(v̂) −
bξ(v̂). Put differently, incentive compatibility implies that for all v̂ ∈

[
v̂, v̂
]

it has to
hold that

∂ûd(v̂)
∂v̂ = ξ(v̂) + v̂ξ ′(v̂)− τ′(v̂)− ξ ′(v̂)c′(ξ(v̂))

(2)
= ξ(v̂). (3)

Next, we investigate the conditions that guarantee the implementability of in-
ternality taxes. In standard mechanism design theory, implementability of an in-
centive compatible mechanism hinges on two necessary conditions. First, the con-
sumer’s utility function must satisfy the single-crossing condition, which is met in
our case since ∂

(
∂ud/∂x
∂ud/∂t

)
/∂v̂ < 0. Second, ξ must be increasing in v̂. A standard suf-

ficient condition for this requirement is that P has an increasing hazard rate, that is,
∂[p(v̂)/(1− P(v̂))]/∂v̂ > 0. In Proposition 1, we show that an increasing hazard rate
is not sufficient any more in our setting.6

Proposition 1 (Internality Tax Implementability). The implementability of an incentive
compatible mechanism implies that ξ is increasing in v̂. A necessary and sufficient condition
for this requirement is satisfied if

1− α(v̂) ∂E[b|v̂]
∂v̂︸ ︷︷ ︸

>0 if “no excessive
bias correction”

+ {α(v̂)− 1} ∂[(1−P(v̂))/p(v̂)]
∂v̂ + ∂α(v̂)

∂v̂

(
1−P(v̂)

p(v̂) − E[b|v̂]
)

︸ ︷︷ ︸
function of the hazard rate

(=0 for normalized utilitarian welfare weights)

≥ 0. (4)

With an utilitarian welfare function and welfare weights normalized to one, the expression
simplifies to a “no excessive bias correction” condition, i.e., ∂E[b|v̂]/∂v̂ ≤ 1.

Proof. See Appendix A.B

To give an intuition for Proposition 1, we consider its first term (“no excessive
bias correction”), which can be rewritten as ∂E[v|v̂]/∂v̂ > 0, using that v̂ = v + b.
It requires that there exists a minimum alignment between the normative stance of a
designer and consumers perceived valuations. In particular, this condition is violated

6Note that if the implementability conditions stated in Proposition 1 are not satisfied, one can – as
in the standard mechanism design setting – resort to the so-called Myerson-ironing, as described in
Myerson (1981).
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if a designer associates higher perceived valuations with lower experienced valuations
(∂E[v|v̂]/∂v̂ < 0), and thus fundamentally disagrees with the preferences as perceived
by consumers. This condition is novel to our setting and directly follows from the
distinction between perceived and experienced valuations. In addition, with non-
utilitarian welfare weights α(v̂), internality tax implementability involves two further
terms that are a function of the hazard rate, the expected bias and the welfare weights.

3.2 Optimal Non-Linear Internality Tax

To determine the optimal tax schedule, the designer solves a dynamic optimization
problem which can be analyzed using an optimal control approach. Note that deter-
mining the equilibrium values of ξ(v̂) and ud(v̂) for all v̂ pins down the equilibrium
value of τ(v̂) for all v̂. Hence, the mechanism design problem of the designer is given
by

max
ξ∈X

∫
v̂

α(v̂) · E [ûe (v̂, b) |v̂] dP(v̂) +
∫

v̂
τ (v̂) dP(v̂), (5)

subject to the condition from Equation (3), where X := { f | f :
[
v̂, v̂
]
→ X} is the func-

tion space containing all functions with domain
[
v̂, v̂
]

and codomain X. The boundary
conditions of the problem are given by ûd (v̂) = u and ûd (v̂) ≥ u. The control variable
is ξ and the law of motion of the state variable ûd is determined by incentive compati-
bility and optimal strategic reporting, as defined in Equation (3). Using the definition
of decision utility to replace the tax and rewriting equilibrium experienced utility in
terms of equilibrium decision utility, the Hamiltonian for the above problem for all
v̂ ∈

[
v̂, v̂
]

is given by

H
(

v̂,ξ,ûd
)
=

α(v̂)·
(

ûd(v̂)−E[b|v̂]ξ(v̂)
)

︸ ︷︷ ︸
=E[ûe(v̂,b)|v̂]

+
(

m+v̂ξ(v̂)−ûd(v̂)−c(ξ(v̂))
)

︸ ︷︷ ︸
=τ(v̂)

p(v̂)+µ(v̂)ξ(v̂).

Following the standard solution procedure for such mechanism design problems,
we employ Pontryagin’s Maximum Principle, which yields the following necessary
conditions for the optimal tax.7

7In addition, sufficiency is given if the control region is convex and the Hamiltonian is concave in
(ξ, ûd) for every v̂. Both conditions are satisfied in our setup, as discussed in Appendix A.C.
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FOC on control: ∂H
∂ξ =

[
−E[b|v̂] · α(v̂) + v̂− c′(·)

]
p(v̂) + µ (v̂) !

= 0, (FOCx)

FOC on state: ∂H
∂ûd = [α(v̂)− 1] p(v̂) !

= −µ′ (v̂) , (FOCu)

transversality cond.: µ (v̂) · ûd (v̂) = µ
(
v̂
)
· ûd (v̂) = 0. (TVC)

We characterize the optimal non-linear tax scheme in Proposition 2.

Proposition 2 (Optimal Non-linear Commodity Tax). If internality tax implementability
is satisfied (see Proposition 1), the optimal non-linear commodity tax in our model is implicity
given by

t′(x) =

∫ v̂
v̂x
[1− α(m)] p(m)dm

p(v̂x)
+ E[b|v̂x] · α(v̂x) ∀x ∈ X, (6)

where v̂x is the report of a consumer that yields the allocation x under the optimal tax scheme.

Proof. See Appendix A.C

To convey the intuition of the optimal marginal tax, we first examine the second
summand of Equation (6). This term embodies the behavioral aspect of our model
and does not appear in the standard literature on non-linear taxation. It corresponds
to the expected bias of a consumer conditional on his reported perceived valuation,
which represents the information a designer can infer about internalities from observ-
ing consumer choices. The designer uses her potential to correct consumers’ choices
to the extent that she can infer their internality – “she corrects them, if she can”.

If the designer has a utilitarian social welfare function, the marginal tax rate from
Equation (6) simplifies to the expected bias conditional on the report, t′(x) = E[b|v̂x].
This result contrasts with the findings by Allcott and Taubinsky (2015) who show that
in a binary investment setting the optimal tax is equal to the average bias of the con-
sumers who are indifferent between both goods at market prices. Importantly, the
optimal non-linear tax differs from that result by its dependence on a report v̂ rather
than a fixed market price. This finding reflects that non-linear taxation improves upon
a constant per-unit tax by exploiting additional information conveyed by consumers’
reports that allows to target behaviorally biased consumers.8

Next, we contrast the optimal non-linear tax for behaviorally biased consumers
with the famous ABC formula from the theory of optimal non-linear income taxation,
derived by Diamond (1998). The ABC formula contains three factors: efficiency con-
siderations (A), redistribution issues (B), and the dependence of the incentive com-
patibility constraint on the density functions via the hazard rate (C). In our model,

8For comparison, assuming that c′′′(·) = 0, the optimal linear tax is given by t∗ = E[b], that is, the
unconditional expected bias (see Appendix A.D for a derivation).
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efficiency considerations show up in the optimal tax formula, albeit in a novel form.
Typically, the aim of optimal taxation is to reduce the distortive effects of taxation. In
our model, efficiency considerations (A) reflect the motive of a designer to correct for
internality biases, as captured by the second term of the optimal tax formula, which
does not appear in the standard ABC formula.

Redistribution issues (B) and the density of v̂ (C) are contained in the first sum-
mand of Equation (6), although in modified form. The intuition of this summand is
as follows. When the designer changes the marginal tax at, say, x, she extracts money
from all consumers with v̂ ≥ v̂x. The change of her objective is captured by the term∫ v̂x

v̂ [1− α(m)] p(m)dm, since the marginal value of an additional unit of tax money is
one and welfare decreases by α(v̂x) for a consumer with type v̂x. Intuitively, if the av-
erage welfare weights for these consumers exceed unity (and thus the marginal value
of the tax income to the designer), the designer’s objective function decreases and she
should reduce the tax. The term is weighted more strongly in the optimal tax formula
if the density of the type v̂x is low, i.e., if it is unlikely that the consumer is marginal to
the tax change at x and thus has an incentive to change his behavior.

4 Illustrating Example

We now use a simple example to illustrate the rationale of internality revelation and
the optimal non-linear internality tax. Let consumers have either low or high valua-
tions for x, vl = 1 and vh = 2, and either undervalue x or not, which we denote by
subscripts b and n, respectively, where bb = 1 and bn = 0. Furthermore, we assume
that biases and valuations are independently distributed and that all realizations of v
and b occur with equal probability.

In that setting, consumers have three distinct perceived valuations v̂ ∈ {v̂1 =

1, v̂2 = 2, v̂3 = 3}, which occur with probability P(v̂ = v̂1) = 0.25, P(v̂ = v̂2) = 0.5,
P(v̂ = v̂3) = 0.25, respectively. It is then straightforward to show that:

E(b|v̂) =


0 if v̂ = 1

0.5 if v̂ = 2

1 if v̂ = 3.

This example shows how a consumer’s perceived valuation partly reveals his inter-
nality. As higher perceived valuations translate into higher consumption levels of x,
they can be exploited for benevolent price discrimination. Importantly, internality rev-
elation occurs even in settings that are uninformative a priori, when valuations and
biases are independently distributed, for example. Our example also illustrates that
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extreme perceived valuations have higher informational value than less extreme ones.
While v̂1 and v̂3 allow to perfectly infer consumers’ bias, v̂2 does not.

How can internality revelation be exploited for optimal taxation? For simplicity,
assume that the cost function is given by c(x) = 0.5x2, so that consumers should op-
timally choose xe = v rather than xd = v̂, which corresponds to their choice based on
perceived valuations v̂. Now, consider the following mechanism that directly assigns
an allocation x to a consumer, based on his report ṽ:

ξ(ṽ) =


ṽ if ṽ = 1

ṽ− 0.5 if ṽ = 2

ṽ− 1 if ṽ = 3.

This direct mechanism determines allocations in a way that optimally corrects for the
average bias of a consumer type v̂, which a designer can infer through internality
revelation.

Can the mechanism designer set up a tax schedule that would induce consumers
to truthfully report their actual perceived valuations? Consider the following direct
mechanism that assigns taxes as follows:

τ(ṽ) =


0 if ṽ = 1

0.375 if ṽ = 2

1 if ṽ = 3.

In our discrete example, the tax schedule is a step function and represents an approxi-
mation to the optimal tax we have derived for the continuous case in Proposition 2. It
is straightforward to show that the tax scheme would induce consumers to truthfully
report their actual perceived valuations, i.e., that ud(ξ(v̂), τ(v̂)|v̂) ≥ ud(ξ(ṽ), τ(ṽ)|v̂) ∀v̂, ṽ.9

Note also that the tax schedule is convex: incremental tax increases are larger for con-
sumers who report high perceived valuations and thus target consumers with larger
biases.

9For example, when a consumer with perceived valuation v̂3 pretends to be of type v̂2, he realizes
decision utility ud(ξ(v̂2), τ(v̂2)|v̂ = v̂3) = 3 · 1.5− 0.375− 0.5(1.5)2 = 3, while pretending to be of type
v̂1 yields ud(ξ(v̂1), τ(v̂1)|v̂ = v̂3) = 3 · 1− 0.5(1)2 = 2.5. Both values are not larger than decision utility
under truthtelling ud(ξ(v̂3), τ(v̂3)|v̂ = v̂3) = 3 · 2− 1− 0.5(2)2 = 3. It can easily be shown that the same
holds true for the other perceived valuation types.
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5 Implications of Internality Revelation

We now investigate internality revelation in detail and explore its consequences for in-
ternality tax implementabililty and the properties of the optimal non-linear tax sched-
ule. For the ease of exposition, we assume a utilitarian social welfare function with
equal weights normalized to one for each consumer. In that case, the optimal marginal
tax rate equals the expected bias conditional on the report, i.e., t′(x) = E[b|v̂x] (Propo-
sition 2).

Corollary 2 (Internality Revelation). The Minimum Mean Squared Error (MMSE) linear
approximation of the conditional expectation E [b|v̂] is given by:

Ê [b|v̂] = E[b|µv̂] +
(σb/σv) + ρ

(σb/σv) + (σv/σb) + 2ρ︸ ︷︷ ︸
=:A

· (v̂− µv̂) . (7)

Internality revelation occurs whenever A 6= 0 and breaks down only in non-generic situations
when ρ = −(σb/σv). If v and b are independent or follow a bivariate normal distribution, we
have E[b|µv̂] = µb.

Proof. See Appendix A.E and Appendix C.

Corollary 2 shows that internality revelation occurs whenever a designer can im-
prove upon E[b|µv̂] by using the information contained in a report v̂. It illustrates that
the magnitude of updating depends crucially on two factors. First, updating increases
in the (absolute value of the) term A, which can be interpreted as the information
value of a report v̂ in a particular choice setting. The term A only depends on two
sufficient statistics that can be readily estimated without individual-level data: the
correlation coefficient ρ and the signal-to-noise ratio for b, σb/σv.10 Second, the mag-
nitude of updating increases in the distance between a report v̂ and its expectation µv̂,
which reflects that extreme reports are particularly informative. One implication of
this finding is that biases are particularly large for consumers with extreme reports,
who will thus be targeted by non-linear corrective taxes. Another implication is that
the optimal non-linear tax scheme implies “no distortion at the top and at the bottom”
when the distribution functions F and G both have a bounded support.11

10The comparative statics are as follows. For ρ ≥ 0, the value of the information A increases in the
signal-to-noise ratio σb/σv. For ρ < 0, it decreases in σb/σv for low or high values of σb/σv, while it
increases in σb/σv for intermediate values of σb/σv. Furthermore, it increases in ρ if σb/σv < 1, and it
decreases in ρ if σb/σv ≥ 1.

11With bounded support, internality revelation resolves all uncertainty about the bias for the ‘extreme’
reports ṽ = v̂ and ṽ = v̂ from the boundaries of the support of P. As a result, consumers with the reports
ṽ = v̂ or ṽ = v̂ obtain their optimal allocation under the optimal non-linear tax scheme.
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Figure 1: Shape of the optimal internality tax as a function of the sufficient statistics ρ
and σb/σv.

We now link our findings on internality revelation to the optimal non-linear tax
from Equation (6) and analyze the implications of non-linear taxation on welfare.

Proposition 3. Optimal non-linear taxes (weakly) increase welfare beyond the optimal lin-
ear tax whenever internality revelation occurs, i.e., whenever E[b|v̂] is not constant in v̂, or,
equivalently, whenever term A in Equation (7) is not equal to zero.

Proposition 3 reflects that giving the designer the freedom to construct a non-linear
rather than a linear tax schedule cannot reduce welfare. Beyond that, it shows that
knowledge about the statistics ρ and σb/σv is sufficient to judge whether non-linear
taxation can improve upon linear taxation. The welfare gains of optimal non-linear
taxation over linear taxation increase in the information value A of a report, as we
demonstrate in Appendix A.F. This finding reflects that in settings with high informa-
tion value, consumption choices reveal much about a consumer’s bias, which can be
exploited by non-linear taxation.

Next, we explore the implications of internality revelation for the properties of op-
timal non-linear tax schemes. As shown in Corollary 2, internality revelation depends
crucially on the correlation between experienced valuations and biases, ρ, and the
signal-to-noise ratio σb/σv. In Proposition 4, we characterize the optimal tax schedule
in terms of these statistics and illustrate our findings in Figure 1.
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Proposition 4. The shape of the optimal tax schedule is determined by the correlation between
experienced valuations and biases, ρ, and the signal-to-noise ratio σb/σv. Using Corollary 2
we obtain the following:

1. The optimal tax scheme is convex if and only if A > 0⇔ ρ > −(σb/σv).
If A > 1⇔ ρ < −(σv/σb), internality tax implementability is restricted.

2. The optimal tax scheme is concave if and only if A < 0⇔ ρ < −(σb/σv).

3. The optimal tax scheme is linear if and only if A = 0, i.e., if either (σb/σv) = 0 or
ρ = −(σb/σv).

Proposition 4 has immediate practical relevance as knowledge on consumers’ be-
havioral bias allows to infer the sign of ρ, even in the absence of empirical elicitations
of that statistic. For example, exogenous inattention implies ρ = 0, while rational inat-
tention implies that consumers with larger valuations have smaller biases, i.e., ρ < 0.
In contrast, rational addiction models presume that consumers with larger valuations
for an addictive good consume it and finally develop addictions, which would be cap-
tured by ρ > 0 in our setting. Corollary 3 links leading behavioral biases to the shape
of the optimal non-linear tax schedule and shows that the optimal non-linear tax is
typically convex.

Corollary 3. For the following three leading behavioral biases, internality revelation induces
a convex optimal non-linear tax scheme:

1. ρ > 0 (e.g., rational addiction),

2. ρ = 0 (e.g., exogeneous inattention),

3. −(σb/σv) < ρ < 0 (e.g., rational inattention with a large signal-to-noise ratio).

With a convex tax schedule, the marginal tax rate increases in the consumption
level, which implies that taxes target high types v̂, while subsidies target low types.
Convexity reflects the core finding from internality revelation that individuals with
higher reports (who consume more of good x) have higher biases. We conclude this
section by investigating how internality tax implementability and internality revela-
tion interact.

Corollary 4 (Trade-off Between Internality Revelation and Implementability). The nec-
essary and sufficient condition ensuring internality tax implementability, ρ > −σv/σb, be-
comes more restrictive, as the signal to noise ratio σb/σv increases.
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Corollary 4, which is also visualized in Figure 1, states that implementability is
guaranteed only if internality revelation is not too pronounced. In particular, the
trade-off between implementability and internality revelation in our setting reflects
that consumers’ perceived preferences and the normative stance of the designer, given
by E[v|v̂], may not diverge excessively. For instance, at the point

(
2,− 1

2

)
in Figure 1,

an increase in σb/σv would increase the information value A. However, the designer
cannot exploit the additional information as implementability would fail if she did.

6 Optimal Non-Linear Taxation in the Light Bulb Market

We now apply our results to determine optimal subsidies for energy efficiency in the
light bulb market. We take the demand-side data from Allcott and Taubinsky (2015),
who investigate consumer choices between an incandescent and compact florescent
light (CFL) bulbs, and elicit comprehensive information on consumers’ energy effi-
ciency valuations and time preferences. For the supply side, we retrieve product data
and prices for a wide range of light bulbs that give us a comprehensive picture of
the light bulb varieties that were on the market at the time of the study by Allcott
and Taubinsky (2015). We start by discussing both data sources and detail how we
approximate the cost function for energy efficiency, consumers’ experienced valua-
tions v, perceived valuations v̂, and bias b. Based on our theoretical results, we then
determine the optimal non-linear tax on energy efficiency and investigate its welfare
implications in the light bulb market.

Our supply data stems from the price comparison website geizhals.de. This website
reports the cheapest price of a product for all months since it is offered on a website
in the internet. We focus on light bulbs that are typically purchased by households. In
particular, we consider bulbs with an energy intensity of 25 to 75 Watt-equivalents and
a warm light color of around 2700 Kelvin. To reduce the impact of branding effects,
we focus on bulbs produced by one of the large manufacturers Osram and Philips that
offer bulbs both in the EU and the US. As in Allcott and Taubinsky (2015), we express
all prices in 2012 US dollars (USD) and extract product prices during that year. Some
LED and CFL bulbs enter the market after 2012 – in these cases, we extrapolate their
2012 price based on aggregate annual price trends that imply a 20% and 10% price de-
crease per annum for LED and CFL bulbs, respectively. For every bulb, we determine
the operating and replacement cost to consume 8.000 hours of light over eight years,
which corresponds to three hours per day, assuming electricity prices of 0.1 USD per
kWh (Allcott and Taubinsky, 2015).

For every bulb, we determine the purchase price premium and the operating and
replacement cost (ORC) saving relative to the most electricity intensive bulb. In the fol-
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Figure 2: Energy Efficiency Cost Function in the Light Bulb Market. Note: Price premi-
ums, as well as operating and replacement cost savings are determined relative to the
most electricity intensive bulb. Operating and replacement cost assume eight years of
total usage (8.000 hours) and an electricity price of 0.1 USD per kWh, as in Allcott and
Taubinsky (2015).

lowing, we use ORC savings as the measure of quality x, i.e., energy efficiency. Figure
2 draws price premiums against ORC savings, which corresponds to the cost function
c(x) in our model. The least energy inefficient, yet cheapest, bulbs are incandescents,
followed by halogen, CFL and LED bulbs. The cost curve is convex, which illustrates
that a one unit reduction in ORC savings becomes increasingly more expensive as the
level of energy efficiency increases. In 2012, the most energy efficient LED bulbs sold
at a price premium of around 30 USD and yielded cost savings of some 60 USD over
the course of 8 years, compared to the most energy intensive incandescent bulb.

For the demand side, we determine consumers’ valuation and bias for energy ef-
ficiency based on the experimental data from Allcott and Taubinsky (2015). To iden-
tify the distribution of the bias, we rely on the identification strategy by Allcott and
Taubinsky (2015). In their experiment, consumers choose between two bulbs, an in-
candescent and a CFL bulb, which are highlighted in Figure 2 by large dots. After a
baseline elicitation of relative WTP for the more energy efficient CFL bulb, Allcott and
Taubinsky (2015) present lifetime cost information to consumers and then measure
relative WTP again. Under the assumption that providing lifetime cost information
eliminates all bias without distorting choices otherwise, the difference in relative WTP
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identifies the distribution of the bias in the experimental population. We divide this
bias measure by the operating and replacement cost difference between both bulbs,
which yields a per unit bias (in terms of x), whose distribution is presented in Figure
3a.

Data on individual valuations v are unavailable, but we exploit that differences in
time preferences naturally induce heterogeneity in consumers’ experienced valuation
of ORC savings. In particular, the net present value (NPV) of a 1 USD increase in total
ORC savings is 1 USD only if consumers’ discount rate were exactly equal to zero. In
contrast, if consumers discount future savings by a discount rate δ, the NPV of 1 USD
amounts to a discount factor D(δ). For illustration, assume a consumer with a high
discount rate δ = 20% and annual operating cost of 1/8 USD for 8 years, which results
in a total cost of 1 USD, the unit that we use for x. Her NPV of this 1 USD cost increase
is then D(δ) = (1 + 1/(1 + δ) + · · ·+ 1/(1 + δ)7) · (1/8) = 0.58 USD.

We use the elicitation of time preferences by Allcott and Taubinsky (2015) to de-
termine individual-specific discount factors. We assume that all other factors that in-
fluence experienced valuations do not vary by participant and thus constitute merely
a scaling factor. This assumption allows us to calibrate valuations to match actual
consumer choices in Allcott and Taubinsky (2015). In particular, we set valuations
to v = s · D(δ), where s is a scaling factor that ensures that the same percentage of
consumers would choose the more energy efficient CFL light bulb when confronted
with the two bulbs from the endline elicitation in Allcott and Taubinsky (2015). While
this approach is clearly imperfect, it serves as a useful approximation that allows us
to illustrate how our results can be implemented.12

Based on the joint distribution of v and b, we can determine the distribution of
v̂ and the conditional expectation of the bias E[b|v̂], which is crucial for determining
the optimal non-linear tax. Figure 3c shows that the E[b|v̂] is increasing in v̂. It also
illustrates that our analytical solution for the minimum mean square error (MMSE)
approximation closely fits the actual conditional expectation E[b|v̂] in our setting.
Accordingly, we can approximate the shape of the optimal non-linear tax based on
the sufficient statistics ρ and σv/σb. In our data, the correlation between v and b is
ρ = −0.21, and the standard deviation of b and v are σb = 0.0396 and σv = 0.0469,
respectively. These statistics imply that the conditional expectation E[b|v̂] increases in
v̂, as ρ > −σb/σv (Corollary 2).

12We need to impose some consistency restrictions on the data that go beyond Allcott and Taubinsky
(2015). For example, we disregard observations that have missing values for discount rates and biases.
In addition, to avoid negative perceived valuations, we omit extreme values for v and b and disregard
the top and bottom 2% of observations. We also drop observations if – after rescaling v – perceived
valuations would become negative, which leaves us with 668 observations. Our sample restrictions tend
drop observations with larger negative biases, so that we underestimate the welfare gains of non-linear
taxation.
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via kernel density estimation (Epanechikov kernel, band-
width: 0.03).

(c) Conditional expectation of the bias E[b|v̂], estimated via local linear
regression (Epanechnikov kernel, rule-of-thumb bandwidth).

(d) Choices of x in the absence of a tax (“no tax”), the
optimal linear tax, and the optimal non-linear tax. Blue
dots are optimal outcomes for every individual, given v.

(e) Expected welfare per bulb and perceived valuation v̂.

Figure 3: Optimal Non-Linear Taxation in the Light Bulb Market
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Figure 4: Optimal tax rates as a function of x

In the following, we assume a quadratic cost function and estimate it based on the
data from Figure 2. We derive consumers’ choices in four scenarios: the absence of a
corrective tax, the presence of the optimal linear tax, the optimal non-linear tax, and
the MMSE approximation of the optimal non-linear tax based on sufficient statistics
(Corollary 2), which we depict in Figure 3c.

Figure 3d shows how consumers of type v̂ choose quantities in these scenarios and
contrasts these choices with the first-best outcome that materialized if consumers de-
cided based on experienced valuations v rather than perceived valuations v̂, depicted
as blue dots. The optimal linear tax induces a parallel shift in demand, which im-
proves choices for consumers with low perceived valuations v̂, but distorts choices for
consumers with large perceived valuations. In contrast, the optimal non-linear tax cor-
rects consumers’ choices in a flexible manner. In addition, the difference to the MMSE
approximation of the non-linear tax is very small. Accordingly, knowing a few suffi-
cient statistics is enough to implement a good approximation to the optimal non-linear
tax. In Figure 3e, we plot the expected welfare by type and show that the non-linear
tax induces a welfare improvement for all consumer types. In contrast, the optimal
linear tax increases welfare only for consumers with low perceived valuations, but at
the cost of reducing welfare for consumers with high perceived valuations.

Figure 4 visualizes the optimal tax rate as a function of x, which corresponds to
the indirect mechanism in our model.13 We find that the optimal tax rate increases

13We can also determine marginal tax rates in the direct mechanism, i.e., as a function of v̂, which we
show in Figure 5 in Appendix D
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in v̂ (and x), which implies that the optimal non-linear tax for energy efficiency in the
light bulb market is convex. Intuitively, this result reflects that individuals with a large
positive bias b tend to choose better qualities x, while the opposite holds true for indi-
viduals with large negative biases. The convex tax schedule exploits this information
and imposes marginal taxes on consumers with large perceived valuations that intend
to buy an energy efficient product in the first place, while giving marginal subsidies
to consumers that intend to buy energy inefficient products.

7 Discussion and Conclusion

In this paper, we have derived the optimal non-linear tax to correct behaviorally bi-
ased consumers. Using a mechanism design approach, we show that consumers’ con-
sumption choices contain information that can be employed to improve upon a linear
tax. We investigate the information structure implied by internalities and show that
consumers reveal their type even when the aggregate information available to a policy
maker is uninformative, e.g., when the bias has zero mean and is uncorrelated with
valuations.

We explore such internality revelation in more detail and show that it crucially de-
pends on two sufficient statistics: the correlation between biases and valuations and
the ratio of their standard deviations, which corresponds to the “signal-to-noise” ratio
of the bias. We derive that the slope of the expected conditional bias is a function of
the informativeness of the choice setting, characterized by the two above mentioned
sufficient statistics, and the informativeness of a consumer’s report, as given by the
distance of his report to the average report. We also demonstrate that – as a con-
sequence of internality revelation – the optimal non-linear corrective tax is typically
convex, and analytically characterize the exceptions when this finding does not hold
true.

More broadly, we contribute to the literature on behavioral mechansim design
by finding a novel trade-off between internality revelation and internality tax im-
plementability, which we characterize in terms of the sufficient statistics mentioned
above. Even when standard conditions such as an increasing hazard rate are satisfied,
implementability of the behavioral mechanisms is not guaranteed, as internalities can
induce disagreement among the designer and consumers on what is best for the latter.
Applying our results to the light bulb market, we demonstrate that optimal non-linear
taxation can increase welfare beyond the optimal linear tax. Furthermore, we illustrate
that the informational requirements for implementing an approximation of the opti-
mal non-linear tax are low and require only knowledge about few sufficient statistics.
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Our finding that the expected conditional bias is revealed by consumers’ choices
is supported by empirical evidence. For example, Allcott et al. (2015) show for en-
ergy efficiency investments and hybrid car purchases that perceived valuations are
positively correlated with the bias. As we have shown, in such cases, the optimal non-
linear tax scheme is convex, giving the largest marginal subsidies to participants with
low perceived valuations. The insight that internality taxes are typically convex also
informs the design of policies more generally. Many subsidy schemes employed in
practice are effectively antipodal to the optimal non-linear tax derived in this paper.
For example, the German government grants subsidies for energy efficiency in hous-
ing only if a newly built (or retrofitted) house meets predefined minimum efficiencies,
so-called “KfW-Effizienzhaus” standards. In other words, marginal subsidies are es-
sentially zero for consumers with low perceived valuations. As a consequence, the
most heavily biased consumers receive no subsidies and have thus no incentive for
behavioral change, which can substantially hamper the effectiveness of a policy. By
specifically targeting those consumers, implementing a non-linear subsidy promises
substantial welfare improvements.
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A Proofs

A.A Proof of Corollary 1: Dimensionality of Internality Tax

We want to show that two-dimensional mechanisms, where sophisticated consumers
report both their perceived valuation and their bias, induce a violation of truthtelling
and thus cannot be implemented. Without loss of generality, we assume that there
exists at least one realization of perceived valuations v̂1 ∈

[
v̂, v̂
]

for which biases differ,
so that some consumers are characterized by (v̂1, b1) and others by (v̂1, b0), where
b1 6= b0.

The mechanism designer wants to implement a direct two-dimensional mecha-
nism where the allocation ξ

(
ṽ, b̃
)

and the tax τ
(
ṽ, b̃
)

depend on reported valuations
ṽ and biases b̃. Consumers choose their reports to maximize decision utility:

(ṽ∗(v̂), b̃∗(v̂)) = arg max
ṽ,b̃

ud (ξ (ṽ, b̃
)

, τ
(
ṽ, b̃
)
|v̂
)

.

Importantly, this maximization problem depends only on reported biases b̃ and not
on actual biases b. As a consequence, every sophisticated consumer with perceived
valuation v̂ will report the same bias b̃∗(v̂). As biases differ for v̂1, truthtelling is
violated.

A.B Proof of Proposition 1: Internality Tax Implementability

We first establish some helpful lemmata.

Lemma 1 (Monotonic Allocation Rule). ξ is non-decreasing in v̂.

Proof. Let v̂1 > v̂2. Incentive compatibility implies

v̂1ξ(v̂1)− c[ξ(v̂1)]− τ(v̂1) ≥ v̂1ξ(v̂2)− c[ξ(v̂2)]− τ(v̂2), and

v̂2ξ(v̂1)− c[ξ(v̂1)]− τ(v̂1) ≤ v̂2ξ(v̂2)− c[ξ(v̂2)]− τ(v̂2).

Subtracting the second line from the first yields (v̂1 − v̂2)ξ(v̂1) ≥ (v̂1 − v̂2)ξ(v̂2) ⇔
ξ(v̂1) ≥ ξ(v̂2). Since this holds for all v̂1, v̂2 with v̂1 > v̂2, we know ξ ′(v̂) ≥ 0.

Lemma 2 (Properties of Equilibrium Decision Utility). ûd increases and is convex in v̂
with ∂ûd/∂v̂ = ξ(v̂).

Proof. Equation (3) shows that ∂ûd/∂v̂ = ξ(v̂). By Lemma 1, we then know that ûd

is convex in v̂. Note that the previous step assumes differentiability; it can also be
shown without this assumption by using, for instance, Theorem 18 on page 132 in
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Royden and Fitzpatrick (2010). Define ũd(v̂) := v̂ξ(ṽ)− c[ξ(ṽ)]− τ(ṽ). By definition,
ûd(v̂) = max

v̂
ũd(v̂). Obviously, ũd(v̂) increases in v̂. Since ûd(v̂) is the maximum of

increasing functions, it is increasing in v̂.

Lemma 3 (Consumer Utility Pinned Down by ûd(v̂) and ξ). ûd(v̂) = ûd(v̂)+
∫ v̂

v̂ ξ(θ)dθ.

Proof. By Lemma 2, ûd(v̂) is convex, so it is also absolutely continuous, see, for in-
stance, Corollary 17 on page 132 in Royden and Fitzpatrick (2010). This in turn implies
ûd(v̂) = ûd(v̂) +

∫ v̂
v̂

∂ûd(θ)
∂θ dθ

L1
= ûd(v̂) +

∫ v̂
v̂ ξ(θ)dθ, see, for instance, Theorem 10 on

page 124 and Proof of Theorem 11 on page 125 in Royden and Fitzpatrick (2010).

Lemma 4 (Characterization of τ in terms of ξ and Designer’s Revenue). τ(v̂) = −ûd(v̂)+

v̂ξ(v̂)−
{

c[ξ(v̂)] +
∫ v̂

v̂
ξ(θ)dθ

}
︸ ︷︷ ︸

information rent

.

Proof. Plugging in the definition of ûd(v̂) in the formula of Lemma 3 and rearranging
gives the result.

Lemma 5.
∫

v̂

∫ θ
v̂ ξ(t)dtp(θ)dθ =

∫
v̂ ξ(t)[1− P(t)]dt.

Proof. We can rewrite

∫
v̂

∫ θ

v̂
ξ(t)dtp(θ)dθ =

∫
v̂

∫ v̂

v̂
ξ(t)p(θ)dtdθ

(∗)
=
∫

v̂

∫ v̂

t
ξ(t)p(θ)dθdt =

∫
v̂

ξ(t)
∫ v̂

t
p(θ)dθdt

=
∫

v̂
ξ(t)[1− P(t)]dt,

using Fubini’s Theorem in (∗).

Plugging the result from Lemma 4 into the designer’s objective yields the follow-
ing function which only depends on the variable ξ
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∫
v̂
α(θ)

{
m+θξ(θ)−c[ξ(θ)]−

τ(θ)︷ ︸︸ ︷[
−ûd(v̂)+θξ(θ)−c[ξ(θ)]−

∫ θ

v̂
ξ(t)dt

]
︸ ︷︷ ︸

ud(v̂)

−E[b|θ]ξ(θ)
}

p(θ)dθ

+
∫

v̂

[
−ûd(v̂)+θξ(θ)−c[ξ(θ)]−

∫ θ

v̂
ξ(t)dt

]
︸ ︷︷ ︸

τ(θ)

p(θ)dθ

=
∫

v̂
α(θ){m−E[b|θ]ξ(θ)}p(θ)dθ+

∫
v̂
{1−α(θ)}

{
−ûd(v̂)−

∫ v̂

v̂
ξ(t)dt

}
p(θ)dθ

+
∫

v̂
{θξ(θ)−c[ξ(θ)]}p(θ)dθ

L5
=
∫

v̂
α(θ){m−E[b|θ]ξ(θ)}p(θ)dθ+

∫
v̂
{1−α(θ)}

{
−ûd(v̂)−ξ(θ) 1−P(θ)

p(θ)

}
p(θ)dθ

+
∫

v̂
{θξ(θ)−c[ξ(θ)]}p(θ)dθ

Now take the first-order condition with respect to ξ for one specific v̂ (we can reintro-
duce the “dynamic nature” of the optimization problem by finding a condition later
on which guarantees that incentive compatibility across the types is satisfied). Re-
arrange the first-order condition to obtain an implicit characterization of the optimal
allocation rule

c′[ξ(v̂)] !
= v̂− α(v̂) · E[b|v̂]− (1− α(v̂)) 1−P(v̂)

p(v̂) . (8)

The left-hand side increases in v̂ if and only if ξ increases in v̂, since c is convex. Re-
member, that we need to guarantee that ξ increases in v̂ to obtain an incentive compat-
ible mechanism. Thus, the right-hand side needs to be increasing in v̂, which implies

1− ∂α(v̂)
∂v̂ E[b|v̂]− ∂E[b|v̂]

∂v̂ α(v̂) + ∂α(v̂)
∂v̂ ·

1−P(v̂)
p(v̂) − {1− α(v̂)} ∂[1−P(v̂)/p(v̂)]

∂v̂ ≥ 0.

A.C Proof of Proposition 2: Optimal Non-Linear Tax

The consumer’s first-order condition characterizing optimal consumption xd is given
by

∂ud(x, t, v̂)
∂x

∣∣∣∣
x=xd

= v̂− c′(xd)− t′(xd)
!
= 0⇔ c′(xd) = v̂− t′(xd). (9)

The second order condition is satisfied if −c′′(x) − t′′(x) ≤ 0 for all x ∈ X. Since
the costs are convex in x by assumption, this condition is satisfied, if the optimal tax
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schedule is convex in x as well.14 Generally, an interior solution exists, if “c is convex
enough compared to t”, i.e., c′′(x) ≥ −t′′(x) for all x ∈ X.

As discussed in the text we can always guarantee that û (v̂) = u > 0 and û
(
v̂
)
≥ u,

so that the transversality condition immediately implies µ (v̂) = 0 and µ
(
v̂
)
= 0. We

now use Equation (FOCu). By integrating and using µ
(
v̂
)
= 0 we obtain

∫ v̂

v̂
−µ′(n)dn = −µ

(
v̂
)
− [−µ (v̂)] = µ (v̂) !

=
∫ v̂

v̂
[α(m)− 1] p(m)dm. (10)

Using the above equations we rearrange Equation (FOCx), to obtain the result:

(
v̂− c′(·)

) !
= −µ (v̂)

p(v̂)
+ E[b|v̂] · α(v̂)

(9)⇔ t′(x) = −µ (v̂x)

p(v̂x)
+ E[b|v̂x] · α(v̂x)

(10)⇔ t′(x) =

∫ v̂
v̂x
[1− α(m)] p(m)dm

p(v̂x)
+ E[b|v̂x] · α(v̂x).

A.D Derivation of the Optimal Linear Tax

In this proof we additionally assume that c′′′(x) = 0, which simplifies the calculation
of the optimal linear tax, but does not change our results on the optimal non-linear tax
scheme. Anticipating the behavior on the consumer side, the problem of the designer
can be written as max

t∈R

∫
v

∫
b ue(xd, t, v)dG(b|v)dF(v) +

∫
v

∫
b t · xddG(b|v)dF(v) =: V(t).

We evaluate the derivative with respect to the linear tax t:

∂V(t)
∂t

=
∫

v

∫
b

[
−xd+

(
v−t−c′(·)

)∂xd

∂t

]
dG(b|v)dF(v)+

∫
v

∫
b

[
xd+t·∂xd

∂t

]
dG(b|v)dF(v)

=
∫

v

∫
b

[(
v−c′(·)

)∂xd

∂t

]
dG(b|v)dF(v).

The individually optimal consumption is again characterized by Equation (9), i.e.,
c′(·) = v̂ − t′(x) = (v + b) − t, where the last equality holds since t is linear. Thus,
∂V
∂t =

∫
v

∫
b

[
(t− b) ∂xd

∂t

]
dG(b|v)dF(v). Using that t is constant, we can rewrite the

equation as follows: ∂V
∂t = t ∂x̄d

∂t −
∫

v

∫
b

[
b ∂xd

∂t

]
dG(b|v)dF(v), where the change in total

demand x̄d in response to a tax increase is given by ∂x̄d

∂t =
∫

v

∫
b

[
∂xd

∂t

]
dG(b|v)dF(v).

The optimal tax t∗ is given by ∂V
∂t |t=t∗

!
= 0 ⇔ t∗ =

∫
v

∫
b b
[

∂xd

∂t / ∂x̄d

∂t

]
dG(b|v)dF(v),

where ∂xd

∂t / ∂x̄d

∂t denotes the relative responsiveness of a consumer type (v, b), i.e., the

14Corollary 3 illustrates that this is the case in many leading examples.
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change in demand for that consumer type in repsonse to a tax increase, relative to
change in total demand.

Assuming that c′′′(·) = 0 and that c is convex, we can further evaluate ∂xd

∂t . Differ-
entiating Equation (9) with respect to t yields ∂xd

∂t = − 1
c′′(xd)

= a, for some real-valued
constant a < 0. Accordingly, the optimal tax t∗ is given by t∗ = E[b].

A.E Proof of Corollary 2: Minimum Mean Squared Error Approximation

As a consequence of the Regression Conditional Expectation Function Theorem (An-
grist and Pischke, 2009), the Minimum Mean Squared Error (MMSE) linear approxi-
mation of the conditional expectation E [b|v̂] is given by:

Ê [b|v̂] = E(b|v̂ = µv̂) +
cov(b, v̂)

σ2
v̂

· [v̂− µv̂] . (11)

Using that cov(b, v̂) = cov(b, v) + σ2
b , σ2

v̂ = σ2
v + σ2

b + 2 cov(b, v), and cov(b, v) = ρσvσb,
we obtain after rearranging:

Ê [b|v̂] = E [b|µv̂] +
ρ + (σb/σv)

(σb/σv) + (σv/σb) + 2ρ
· [v̂− µv̂] . (12)

More broadly, the existence of the conditional expectation as a function of the v̂ is
guaranteed by the Factorization Lemma and the Radon-Nikodym theorem.

A.F Details on the Welfare Effects of an Increase in A

In the following we want to show that, for every v̂, the relative welfare increase
through non-linear taxation, i.e., the difference in experienced utility between imple-
menting the optimal non-linear and the optimal linear tax, increases in A. We assume
that the support of P is unchanged due to the increase in A, i.e., there are no types v̂
due to the increase in A that do not exist without the increase.

Because of quasi-linear utility and welfare weights being normalized to one, we
can evaluate welfare implications of an increase in A ignoring the impacts of this
change on the collected tax money. Let E[v|v̂](A) = v̂− E[b|v̂](A) denote the expected
valuation, which is a function of A. To evaluate welfare implications of a change in
A we need to evaluate the derivative with respect to A of the expected equilibrium
experienced utility (net of taxes) for consumers with v̂, which we denote as ue(A) (see
also the Hamiltonian of the designer’s problem):

ûe(A) = E[v|v̂](A)xalloc(A)− c
(

xalloc(A)
)

. (13)
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We need to compare that derivative for two allocation rules: the allocation rule allo-
cation rule implied by non-linear taxation, xalloc = ξ(A), and that implied by linear
taxation, where xalloc = xL is independent of A. Using the implicit characterization
of the optimal allocation rule in Equation (8) with α(v̂) = 1, we know by Equation
(7) that the RHS of Equation Equation (8) is decreasing in A whenever v̂ > µv̂, which
implies that in this case ξ ′(A) < 0, since purchase cost c is increasing in ξ.

Let us proceed without loss of generality with the assumption that v̂ > µv̂ (the
reasoning is analogous for the reverse inequality). If the designer were to use the
information contained in the consumer’s report, i.e., xalloc = ξ(A), then

∂ûe(A)

∂A
=

∂E[v|v̂]
∂A

ξ︸ ︷︷ ︸
<0

+
∂ξ

∂A
E[v|v̂]︸ ︷︷ ︸
<0

− c′(ξ)
∂ξ

∂A︸ ︷︷ ︸
<0

.

The first summand captures the fact that for a change in A, the designer learns that
the consumer’s misoptimization is more severe. The second and the third summand
capture the fact that for a change in A the optimal allocation rule will prescribe a
different consumption level to the consumer, which in the case of v̂ > µv̂ is a decrease
in consumption. The second summand stands for the negative impact this has on the
expected experienced consumption utility. The third summand stands for the negative
impact this has on the consumer’s expended purchase costs.

If the designer were not to use the information contained in the consumer’s report,
xalloc = xL, then

∂ûe(A)

∂A
=

∂E[v|v̂]
∂A

xL < 0.

The change in welfare gains is described by the difference of the two above expres-
sions,

<0︷ ︸︸ ︷
∂E[v|v̂]

∂A

<0︷ ︸︸ ︷[
ξ − xL

]
︸ ︷︷ ︸

≥0

+

<0︷︸︸︷
∂ξ

∂A
[
E[v|v̂]− c′(ξ)

]
︸ ︷︷ ︸

=0

,

where fact that the second summand is zero follows from optimal consumer behavior
as described in Equation (9) and optimal non-linear taxtion, i.e., t′(xd) = E[b|vxd ].
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B A Model with Internalities and Externalities

Let us assume the following model that takes into account both internalities and ex-
ternalities. There are n different consumers, indexed i, and i’s decision utility can be
written as

ud
i (xi, t, vi, bi) = m + (vi + bi)xi − t(xi)− c(xi),

where, as in the main part of the paper, the random variable bi reflects the bias of
consumer i caused by an internality. Consumption of x also causes an externality
βi. Accordingly, the “normative” utility, an analogue to the experienced utility in the
main part of the paper, which internalizes the costs consumer i inflicts on the other
consumers, can be written as

un
i (xi, t, vi, βi) = m + vixi − t(xi)− c(xi)− βixi.

To allow for individual heterogeneity in consumption externalities, we index β by i.
For local externalities such as air pollution, βi would reflect the damage on i’s neigh-
bors, while βi would be constant in the case of global externalities such as greenhouse
gas emissions. The consumer maximizes his decision utility and thus ignores both
externalities and internalities. Note, that βi does not have an impact on the optimal
decision xd

i (vi, bi, t) as perceived by the consumer. We can rewrite

un
i (xi, t, vi, bi) = ud

i (xi, t, vi, bi)− bixi, with bi := bi + βi,

which clarifies that solving this model is analogous to solving the model in the main
part of the paper by substituting bi = bi + βi for bi. Specifically, the optimal tax de-
scribed in Proposition 2 with utilitaristic social preferences becomes

t′(x) = E[bi|vi + bi] + E[βi|vi + bi],

where the first and second summand capture internalities and externalities, respec-
tively.

Importantly, a report v̂i = vi + bi contains no specific information about βi, which
strongly reduces the information content that can be exploited to correct consumers.
While the term E[bi|vi + bi] induces internality revelation and a distinct pattern be-
tween reports and biases that we investigate in Corollary 3, for example, the term
E[βi|vi + bi] shows no such regularities and varies arbitrarily by context. In particular,
in the case of global externalities, the second term reduces to a constant βi = β that is
added to the optimal marginal tax rate t′(x). As the purpose of our paper is to inves-
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tigate how non-linear taxation allows to target consumers, this case is only of limited
interest to us.

C Internality Revelation: Bivariate Normal Case

C.A Density p(v̂) of the Perceived Valuation

Let (v,b) be jointly normal distributed with:

(v, b) ∼ N

([
µv

µb

]
,

[
σ2

v ρσvσb

ρσvσb σ2
b

])
. (14)

The distribution of the sum of v and b is given by

v̂ ∼ N
(
µv + µb, σ2

v + σ2
b + 2ρσvσb

)
=:
(
µv̂, σ2

v̂
)

. (15)

C.B Conditional Expectation E[b|v̂] of the Bias

It can be shown that

E [b|v̂] = cov(b, v̂)
σ2

v̂
· v̂ +

[
µb −

cov(b, v̂)
σ2

v̂
· µv̂

]
= µb +

cov(b, v̂)
σ2

v̂
· [v̂− µv̂] . (16)

with cov(b, v̂) = cov(b, v) + σ2
b . Rearranging gives that

E [b|v̂] = µb +
ρ + (σb/σv)

(σb/σv) + (σv/σb) + 2ρ
· [v̂− µv̂] . (17)

This implies that

∂E [b|v̂]
∂v̂

> 0⇔ cov(b, v̂) > 0⇔ cov(b, v) > −σ2
b ⇔ ρ > −σb

σv
. (18)

Analogously, it can be shown that

∂E [v|v̂]
∂v̂

> 0⇔ ρ > −σv

σb
. (19)
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D Optimal tax in direct mechanism

Figure 5: Optimal tax rates as a function of v̂.
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