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Abstract 
 
We propose a novel approach for causal mediation analysis based on changes-in-changes 
assumptions restricting unobserved heterogeneity over time. This allows disentangling the 
causal effect of a binary treatment on a continuous outcome into an indirect effect operating 
through a binary intermediate variable (called mediator) and a direct effect running via other 
causal mechanisms. We identify average and quantile direct and indirect effects for various 
subgroups under the condition that the outcome is monotonic in the unobserved heterogeneity 
and that the distribution of the latter does not change over time conditional on the treatment and 
the mediator. We also provide a simulation study and two empirical applications regarding a 
training programme evaluation and maternity leave reform. 
JEL-Codes: C210. 
Keywords: direct effects, indirect effects, mediation analysis, changes-in-changes, causal 
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1 Introduction

Causal mediation analysis aims at disentangling a total treatment effect into an in-

direct effect operating through an intermediate variable – commonly referred to as

mediator – as well as the direct effect. The latter includes any causal mechanisms

not operating through the mediator of interest. Even when the treatment is ran-

domly assigned, the mediator is not randomly assigned since it is an intermediate

outcome variable. Controlling for the mediator without accounting for its poten-

tial endogeneity could introduce selection bias (see, e.g., Robins and Greenland,

1992). Accordingly, controlling for the mediator does generally not identify direct

and indirect effects.

This paper suggests a novel identification strategy for causal mediation analysis

based on changes-in-changes (CiC) as suggested by Athey and Imbens (2006) for

evaluating (total) average and quantile treatment effects. We adapt the approach

to the identification of the direct effect and the indirect effect running through a

binary mediator. The outcome variable must be continuous and is assumed to be

observed both prior to and after treatment and mediator assignment as it is the case

in repeated cross sections or panel data. The key identifying assumptions imply

that the continuous outcome is strictly monotonic in unobserved heterogeneity and

that the distribution of unobserved heterogeneity does not change over time condi-

tional on the treatment and the mediator (the latter assumption is also known as

stationarity). Given appropriate common support conditions, this permits identify-

ing direct effects on subpopulations conditional on the treatment and the mediator

states, even if both treatment and mediator assignment are endogenous.

Augmenting the assumptions by random treatment assignment and weak mono-

tonicity of the mediator in the treatment allows for causal mediation analysis in

subpopulations defined upon whether and how the mediator reacts to the treat-

ment. Specifically, we show the identification of direct effects among those whose

mediator is always one (not-affected at 1 in the denomination of Flores and Flores-

Lagunes, 2010) and never one (called not-affected at 0) irrespective of treatment
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assignment, respectively. Furthermore, we identify the total, direct, and indirect

treatment effects on those whose mediator value is affected positively by treatment

assignment (called affected positively). For any set of assumptions, we discuss the

identification of both average and quantile direct and indirect effects. We note that

if appropriately weighted, the respective average effects among not-affected at 0 and

1, and affected positively add up to the average direct and indirect effects in the

population.

Identification in the earlier mediation literature typically relied on linear models

for the mediator and outcome equations and often neglected endogeneity issues, see

for instance Cochran (1957), Judd and Kenny (1981), and Baron and Kenny (1986).

More recent contributions use more general identification approaches based on the

potential outcome framework and take endogeneity issues explicitly into considera-

tion. Examples include Robins and Greenland (1992), Pearl (2001), Robins (2003),

Petersen, Sinisi, and van der Laan (2006), VanderWeele (2009), Imai, Keele, and

Yamamoto (2010), Hong (2010), Albert and Nelson (2011), Imai and Yamamoto

(2013), Tchetgen Tchetgen and Shpitser (2012), Vansteelandt, Bekaert, and Lange

(2012), and Huber (2014). The vast majority of the literature assumes that the

covariates observed in the data are sufficiently rich to control for treatment and

mediator endogeneity.

Also in empirical economics, there has been an increase in the application of

such selection on observables approaches, see for instance Simonsen and Skipper

(2006), Flores and Flores-Lagunes (2009), Heckman, Pinto, and Savelyev (2013),

Huber (2015), Keele, Tingley, and Yamamoto (2015), Conti, Heckman, and Pinto

(2016), Huber, Lechner, and Mellace (2017), Bijwaard and Jones (2019), Bellani and

Bia (2018), Huber, Lechner, and Strittmatter (2018), and Doerr and Strittmatter

(2019). Comparably few studies in economics develop or apply instrumental variable

approaches for disentangling direct and indirect effects, see for instance Powdthavee,

Lekfuangfu, and Wooden (2013), Brunello, Fort, Schneeweis, and Winter-Ebmer

(2016), Chen, Chen, and Liu (2017), and Frölich and Huber (2017). Our paper
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provides another, CiC-based identification strategy that neither rests on selection

on observables assumptions nor on instrumental variables for the treatment or the

mediator.

While most studies aim at evaluating direct and indirect effects in the total pop-

ulation, a smaller strand of the literature uses the principal stratification framework

of Frangakis and Rubin (2002) to investigate effects in subpopulations (or principal

strata) defined upon whether and how the mediator reacts to the treatment, see

Rubin (2004). This approach has been criticized for typically focussing on direct

effects on populations whose mediator is constant (i.e. the not-affected at 0 and 1)

rather than decomposing direct and indirect effects for those who are affected and

for considering subpopulations rather than the total population, see VanderWeele

(2008) and VanderWeele (2012).

Deuchert, Huber, and Schelker (2019) suggest a difference-in-differences (DiD)

strategy that alleviates such criticisms. Identification relies on a randomized treat-

ment, monotonicity of the (binary) mediator in the treatment, and particular com-

mon trend assumptions on mean potential outcomes across principal strata. The

latter imply that mean potential outcomes under specific treatment and mediator

states change by the same amount over time across specific subpopulations. Depend-

ing on the strength of common trend and effect homogeneity assumptions across

principal strata, direct and indirect effects are identified for different subpopula-

tions and under the strongest set of assumptions even for the total population. The

approach is based on taking mean differences in observed pre- and post-treatment

outcomes within groups defined on treatment and mediator states and appropriately

differencing such before-after differences across groups. For instance, under specific

common trend assumptions, the direct effect on the not-affected at 0 (never-takers

in the denomination of Deuchert, Huber, and Schelker, 2019) is obtained by sub-

tracting the before-after difference in the non-treated and non-mediated group from

the before-after difference in the treated and non-mediated group.

Our paper contributes to this literature on principal strata effects, but relies on
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different identifying assumptions than Deuchert, Huber, and Schelker (2019). While

differential time trends across subpopulations are permitted, our approach restricts

the conditional distribution of unobserved heterogeneity over time. The two sets of

assumptions are not nested and their appropriateness is to be judged in the empirical

context at hand. However, both approaches could be used simultaneously for testing

the joint validity of the identifying assumptions of either method, in which case both

CiC and DiD converge to the same, true average direct and indirect effects. This may

be implemented by a Hausman (1978)-type specification test, e.g. by constructing a

t-statistic based on dividing the difference in effects by its standard error (possibly

obtained by bootstrapping the difference in effects). As a further distinction to

Deuchert, Huber, and Schelker (2019), our method also permits assessing quantile

treatment effects (QTEs) rather than average effects only.

In independent work, Sawada (2019) proposes a CiC strategy to tackle non-

compliance in randomized experiments when the exclusion restriction of random

assignment is violated. While there is an overlap in some identification results of

his study and ours (e.g. concerning the direct effect on not-affected at 0), there

are also important differences. First, Sawada (2019) predominantly focusses on

the average treatment effect on the treated under one-sided non-compliance (ruling

out not-affected at 1), which then corresponds to the total effect on those affected

positively (compliers in the denomination of Sawada, 2019). Our paper in addition

disentangles the total effect on those affected positively into direct and indirect

components. Second, under two-sided non-compliance (i.e. the existence of both

not-affected at 0 and 1), Sawada (2019) identifies the total effect on those affected

positively by assuming homogeneity of the direct effect, while we extend the CiC

assumptions to the not-affected at 1 for identifying (direct, indirect, and total) effects

on those affected positively as well as the direct effect among those not-affected at

1. Third and in contrast to Sawada (2019), we also provide identification results in

the absence of randomization and monotonicity of the mediator in the treatment.

On the other hand, Sawada (2019), in contrast to our study, demonstrates that the
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CiC strategy does not necessarily require pre-treatment outcomes, but may exploit

any pre-treatment variable that has similar rank orders (as a function of unobserved

heterogeneity) as the outcome of interest.

As our approach can be used for testing the presence of direct effects and thus, the

violation of exclusion restrictions, it is also related to a growing literature on testing

identifying assumptions in nonparametric instrumental variable models (when con-

sidering the treatment as instrument and the mediator as endogenous treatment).

For instance Kitagawa (2015), Huber and Mellace (2015), Mourifié and Wan (2017),

Farbmacher and Guber (2018), Sharma (2018), and Wang and Flores-Lagunes (2019)

provide tests for moment inequality constraints that are implied by valid instruments

and have been derived in Balke and Pearl (1997) and Heckman and Vytlacil (2005).

Our paper is also related to studies linking violations of the exclusion restriction to

causal mediation analysis, see for instance the partial identification approaches in

Flores and Flores-Lagunes (2013) and Chen, Flores, and Flores-Lagunes (2016).

We also provide two empirical applications. The first one reconsiders the Jobs II

programme previously analysed by Vinokur, Price, and Schul (1995), a randomized

job training intervention designed to analyse the impact of job training on labour

market and mental health outcomes. We investigate the direct effect of the random-

ized offer of treatment on a depression index, as well as its indirect effect through

actual participation in the programme as mediator. The reason for investigating

the direct effect is that treatment assignment could have a motivation or discour-

agement effect on those randomly offered or not offered the training. We, however,

find the direct effect estimates to be close to zero and statistically insignificant and

therefore no indication for the violation of the exclusion restriction when using treat-

ment assignment as instrumental variable for actual participation. In contrast, the

moderately negative total and indirect effects on those induced to participate by as-

signment are statistically significant at least at the 10% level in all but one case and

very much in line with the estimate obtained by instrumental variable regression.

In the second application, we investigate the income effect of paid maternity leave
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in Switzerland as introduced in 2005. This treatment affects the income of women

who become mothers and may thus have an indirect effect operating through the

mediator of childbearing. However, the mere availability of paid maternity leave

might also affect the outcome through other mechanisms which make up the direct

effect, as for instance through a change in statistical discrimination against women

(with or without children) by employers. The CiC approach permits evaluating

such direct effects among specific groups even under the likely endogeneity of the

treatment and the mediator. We find positive direct income effects of roughly 5

percent on treated not affected at 0 (i.e. women aged 20 to 39 without maternal

episode even when maternity leave is available) as well as on non-treated (i.e. women

aged 46 to 59) for whom paid maternity leave is arguably irrelevant as they are

beyond the childbearing age.

The remainder of this study is organized as follows. Section 2 introduces the

notation and defines the direct and indirect effects of interest. Section 3 presents

the assumptions underlying our CiC approach as well as the identification results.

Section 4 provides two applications regarding a training programme evaluation and

maternity leave reform. Section 5 concludes. Online Appendices A-D provide the

proofs of the identification results. Online Appendix E provides a simulation study

in which we compare the CiC to the DiD approach to illustrate our identification

results. Online Appendix F provides additional information about the two empirical

applications.

2 Notation and effects

2.1 Average effects

Let D denote a binary treatment (e.g., receiving the offer to participate in a training

programme) and M a binary intermediate variable or mediator that may be a func-

tion of D (e.g., the actual participation in a training programme). Furthermore, let

T indicate a particular time period: T = 0 denotes the baseline period prior to the
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realisation of D and M , T = 1 the follow up period after measuring D and M in

which the effect of the outcome is evaluated. Finally, let Yt denote the outcome of

interest (e.g., health measures) in period T = t. Indexing the outcome by the time

period t ∈ {0, 1} implies that it is measured both in the baseline period and after

the realisation of D and M . To define the parameters of interest, we make use of the

potential outcome notation, see for instance Rubin (1974), and denote by Yt(d,m)

the potential outcome for treatment state D = d and mediator state M = m in time

T = t, with d,m, t,∈ {0, 1}. Furthermore, let M(d) denote the potential mediator

as a function of the treatment state d ∈ {0, 1}. For notational ease, we will not use

any time index for D and M , because they are assumed to be measured at a single

point in time between T = 0 and T = 1, albeit not necessarily at the same point,

as D causally precedes M . Therefore, D and M correspond to the actual treatment

and mediator status in T = 1, while it is assumed that no treatment or mediation

takes place in T = 0.

Using this notation, the average treatment effect (ATE) in the ex-post period

is defined as ∆1 = E[Y1(1,M(1)) − Y1(0,M(0))]. That is, the ATE corresponds

to the effect of D on the outcome that either affects the latter directly (net of any

effect on the mediator) or indirectly through an effect on M . Indeed, the total

ATE can be disentangled into the direct and indirect effects, denoted by θ1(d) =

E[Y1(1,M(d))− Y1(0,M(d))] and δ1(d) = E[Y1(d,M(1))− Y1(d,M(0))], by adding

and subtracting Y1(1,M(0)) or Y1(0,M(1)), respectively:

∆1 = E[Y1(1,M(1))− Y1(0,M(0))],

= E[Y1(1,M(1))− Y1(1,M(0))]︸ ︷︷ ︸
=δ1(1)

+E[Y1(1,M(0))− Y1(0,M(0))]︸ ︷︷ ︸
=θ1(0)

,

= E[Y1(1,M(1))− Y1(0,M(1))]︸ ︷︷ ︸
=θ1(1)

+E[Y1(0,M(1))− Y1(0,M(0))]︸ ︷︷ ︸
=δ1(0)

.

Distinguishing between θ1(1) and θ1(0) or δ1(1) and δ1(0), respectively, implies the

possibility of interaction effects between D and M such that the direct and indirect
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effects could be heterogeneous across values d = 1 and d = 0.

In our approach, we consider the concepts of direct and indirect effects within

specific subpopulations. The latter are either defined conditional on the treatment

and mediator values or conditional on potential mediator values under either treat-

ment states, which matches the so-called principal stratum framework of Frangakis

and Rubin (2002). This framework is popular in the instrumental variable literature

to stratify the population into never-takers, always-takers, compliers, and defiers

based on the potential treatment status as a function of the instrument (e.g. An-

grist, Imbens, and Rubin, 1996). In contrast, the mediation literature stratifies the

population based on the potential mediator status as a function of the treatment.

The instrumental variable approach is nested in the mediation framework when we

consider the treatment as instrument and the mediator as treatment. To make the

difference to the instrumental variable literature explicit, we adapt in the following

the terminology of Flores and Flores-Lagunes (2010).

Any cross-sectional observation unit i (e.g., individual) in the population belongs

to one of four strata, henceforth denoted by τ , according to their potential mediator

status under either treatment state (see Table 1 for an overview): not-affected at 1

(n1: M(1) = M(0) = 1) whose mediator is always one (always-takers in the instru-

mental variable terminology), affected positively (ap: M(1) = 1, M(0) = 0) whose

mediator corresponds to the treatment value (compliers in the instrumental variable

terminology), affected negatively (an: M(1) = 0, M(0) = 1) whose mediator op-

poses the treatment value (defiers in the instrumental variable terminology), and not

affected at 0 (n0: M(1) = M(0) = 0) whose mediator is never one (never-takers in

the instrumental variable terminology). Note that τ cannot be pinned down for any

observation unit, because either M(1) or M(0) is observed, but never both. Unless

additional assumptions are imposed (such as one-sided non-compliance, e.g., Frölich

and Melly, 2013), all strata correspond to latent groups.

Let ∆τ
1 = E[Y1(1,M(1)) − Y1(0,M(0))|τ ] denote the ATE conditional on τ ∈

{n1, ap, an, n0}; θτ1(d) and δτ1 (d) denote the corresponding direct and indirect effects.
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Table 1: Principal strata

M(1) = 1, M(0) = 1
Not-affected at 1 D = 1 Treated not-affected at 1
(always-takers) D = 0 Untreated not-affected at 1

M(1) = 1, M(0) = 0
Affected positively D = 1 Treated affected positively
(compliers) D = 0 Untreated affected positively

M(1) = 0, M(0) = 1
Affected negatively D = 1 Treated affected negatively
(defiers) D = 0 Untreated affected negatively

M(1) = 0, M(0) = 0
Not-affected at 0 D = 1 Treated not-affected at 0
(never-takers) D = 0 Untreated not-affected at 0

Because M(1) = M(0) = 0 for any not-affected at 0, the indirect effect for this

group is by definition zero (δn01 (d) = E[Y1(d, 0) − Y1(d, 0)|τ = n0] = 0) and ∆n0
1 =

E[Y1(1, 0)−Y1(0, 0)|τ = n0] = θn01 (1) = θn01 (0) = θn01 equals the direct effect for not-

affected at 0 (see also the discussion in Section 2.2 of Flores and Flores-Lagunes,

2013). Correspondingly, because M(1) = M(0) = 1 for any not-affected at 1, the

indirect effect for this group is by definition zero (δn11 (d) = E[Y1(d, 1)− Y1(d, 1)|τ =

n1] = 0) and ∆n1
1 = E[Y1(1, 1)−Y1(0, 1)|τ = n1] = θn11 (1) = θn11 (0) = θn11 equals the

direct effect for not-affected at 1. For the affected positively, both direct and indirect

effects may exist. Note that M(d) = d due to the definition of affected positively.

Accordingly, θap1 (d) = E[Y1(1, d)−Y1(0, d)|τ = ap] equals the direct effect for affected

positively, δap1 (d) = E[Y1(d, 1)−Y1(d, 0)|τ = ap] equals the indirect effect for affected

positively, and ∆ap
1 = E[Y1(1, 1)−Y1(0, 0)|τ = ap] equals the total effect for affected

positively. In the absence of any direct effect, the indirect effects on the affected

positively are homogeneous, δap1 (1) = δap1 (0) = δap1 = ∆ap
1 , and would correspond to

the local average treatment effect in the terminology of the instrumental variable

approach (LATE, e.g., Angrist, Imbens, and Rubin, 1996). Analogous results hold

for the affected negatively.

As already mentioned, we will also consider direct effects conditional on specific

values D = d and mediator states M = M(d) = m, which are denoted by θd,m1 (d) =

E[Y1(1,m) − Y1(0,m)|D = d,M(d) = m]. These parameters are identified under

weaker assumptions than strata-specific effects, but are also less straightforward to

interpret, as they refer to mixtures of two strata. Instead of stratifying the sample

10



only by the potential mediator values, it is also possible to stratify the sample by

the potential mediator values and the observed treatment status (see last column

of Table 1). This leads to eight strata: treated and untreated not-affected at 1,

treated and untreated affected positively, treated and untreated affected negatively,

as well as treated and untreated not-affected at 0. For instance, we can interpret

θ1,01 (1) = E[Y1(1, 0) − Y1(0, 0)|D = 1,M(1) = 0] as a mixture of the direct effects

for treated not-affected at 0 and treated affected negatively. Likewise, θ0,01 (0) refers

to untreated not-affected at 0 and untreated affected positively, θ0,11 (0) to untreated

not-affected at 1 and untreated affected negatively, and θ1,11 (1) to treated not-affected

at 1 and treated affected positively. The interpretation of the parameters simplifies

when the existence of specific strata can be excluded. For example, when ’not-

affected at 1’ and ’affected negatively’ can be ruled-out (one-sided non-compliance),

then θ0,01 (0) corresponds to the direct effect for the population of all untreated, which

is an observable group.

2.2 Quantile effects

We denote by FYt(d,m)(y) = Pr(Yt(d,m) ≤ y) the cumulative distribution function

of Yt(d,m) at outcome level y. Its inverse, F−1Yt(d,m)(q) = inf{y : FYt(d,m)(y) ≥ q}, is

the quantile function of Yt(d,m) at rank q. The total QTE are denoted by ∆1(q) =

F−1Y1(1,M(1))(q)−F
−1
Y1(0,M(0))(q). The QTE can be disentangled into the direct quantile

effects, denoted by θ1(q, d) = F−1Y1(1,M(d))(q)−F
−1
Y1(0,M(d))(q), and the indirect quantile

effects, denoted by δ1(q, d) = F−1Y1(d,M(1))(q)− F
−1
Y1(d,M(0))(q).

The conditional distribution function in stratum τ is FYt(d,m)|τ (y) = Pr(Yt(d,m) ≤

y|τ) and the corresponding conditional quantile function is F−1Yt(d,m)|τ (q) = inf{y :

FYt(d,m)|τ (y) ≥ q} for τ ∈ {n1, ap, an, n0}. Using the previously described stratifi-

cation framework, we define the QTE conditional on τ ∈ {n1, ap, an, n0}: ∆τ
1(q) =

F−1Y1(1,M(1))|τ (q) − F−1Y1(0,M(0))|τ (q). The direct quantile treatment effect among not-

affected at 0 equals ∆n0
1 (q) = F−1Y1(1,0)|n0(q)−F

−1
Y1(0,0)|n0(q) = θn01 (q). The direct quan-

tile effect among not-affected at 1 equals ∆n1
1 (q) = F−1Y1(1,1)|n1(q) − F−1Y1(0,1)|n1(q) =
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θn11 (q). The total QTE among affected positively equals ∆ap
1 (q) = F−1Y1(1,1)|ap(q) −

F−1Y1(0,0)|ap(q), the direct quantile effect among affected positively equals θap1 (q, d) =

F−1Y1(1,d)|ap(q) − F−1Y1(0,d)|ap(q), and the indirect quantile effect among affected posi-

tively equals δap1 (q, d) = F−1Y1(d,1)|ap(q) − F−1Y1(d,0)|ap(q). Finally, we define the direct

quantile treatment effects conditional on specific values D = d and mediator states

M = M(d) = m,

θd,m1 (q, 1) = F−1Y1(1,m)|D=d,M(1)=m(q)− F−1Y1(0,m)|D=d,M(1)=m(q) and

θd,m1 (q, 0) = F−1Y1(1,m)|D=d,M(0)=m(q)− F−1Y1(0,m)|D=d,M(0)=m(q),

with the quantile function F−1Yt(d,m)|D=d,M(d)=m(q) = inf{y : FYt(d,m)|D=d,M(d)=m(y) ≥

q} and the distribution function FYt(d,m)|D=d,M(d)=m(y) = Pr(Yt(d,m) ≤ y|D =

d,M(d) = m).

2.3 Observed distribution and quantile transformations

We subsequently define various functions of the observed data required for the iden-

tification results. The conditional distribution function of the observed outcome Yt

conditional on treatment value d and mediator state m, is given by FYt|D=d,M=m(y) =

Pr(Yt ≤ y|D = d,M = m) for d,m ∈ {0, 1}. The corresponding conditional quantile

function is F−1Yt|D=d,M=m(q) = inf{y : FYt|D=d,M=m(y) ≥ q}. Furthermore,

Qdm(y) := F−1Y1|D=d,M=m ◦ FY0|D=d,M=m(y) = F−1Y1|D=d,M=m(FY0|D=d,M=m(y))

is the quantile-quantile transform of the conditional outcome from period 0 to 1

given treatment d and mediator status m. This transform maps y at rank q in

period 0 (q = FY0|D=d,M=m(y)) into the corresponding y′ at rank q in period 1

(y′ = F−1Y1|D=d,M=m(q)).
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3 Identification and Estimation

3.1 Identification

This section discusses the identifying assumptions along with the identification re-

sults for the various direct and indirect effects. The main identifying assumption

is that the unobserved heterogeneity does not change over time conditional on

treatment and mediator status. To improve the interpretability of the parame-

ters, we introduce additional independence assumptions about the treatment and

weak monotonicity assumptions about the mediator. We note that our assump-

tions could be adjusted to only hold conditional on a vector of observed covariates.

In this case, the identification results would hold within cells defined upon covari-

ate values. In our main discussion, however, covariates are not considered for the

sake of ease of notation. For notational convenience, we maintain throughout that

Pr(T = t,D = d,M = m) > 0 for t, d,m ∈ {1, 0}, implying that all possible

treatment-mediator combinations exist in the population in both time periods. Our

first assumption implies that potential outcomes are characterized by a continuous

nonparametric function, denoted by h, that is strictly monotonic in a scalar Ut that

reflects unobserved heterogeneity.

Assumption 1: Strict monotonicity of continuous potential outcomes in unob-

served heterogeneity.

The potential outcomes satisfy the following model: Yt(d,m) = h(d,m, t, Ut), with

the general function h being continuous and strictly increasing in the scalar unob-

servable Ut ∈ R for all d,m, t ∈ {0, 1}.

Assumption 1 requires the potential outcomes to be continuous implying that there

is a one-to-one correspondence between a potential outcome’s distribution and quan-

tile functions, which is a condition for point identification. For discrete potential

outcomes, only bounds on the effects could be identified, in analogy to the discus-

sion in Athey and Imbens (2006) for total (rather than direct and indirect) effects.

Assumption 1 also implies that cross-sectional observation units with identical un-
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observed characteristics Ut have the same potential outcomes Yt(d,m), while higher

values of Ut correspond to strictly higher potential outcomes Yt(d,m). Strict mono-

tonicity is satisfied in additively separable models (e.g., the partial linear model

Yt(d,m) = g(d,m, t) + Ut), but Assumption 1 also allows for more flexible non-

additive structures that arise in nonparametric models (e.g., the proportional hazard

model Yt(d,m) = f(d,m)λ(t)Ut).

The next assumption rules out anticipation effects of the treatment or the media-

tor on the outcome in the baseline period. This assumption is plausible if assignment

to the treatment or the mediator cannot be foreseen in the baseline period, such that

behavioral changes affecting the pre-treatment outcome are ruled out.

Assumption 2: No anticipation effect of M and D in the baseline period.

Y0(d,m)− Y0(d′,m′) = 0, for d, d′,m,m′ ∈ {1, 0}.

Similarly, Athey and Imbens (2006) and Chaisemartin and D’Haultfeuille (2018) as-

sume the assignment to the treatment group does not affect the potential outcomes

as long as the treatment is not yet realized.

Furthermore, we assume conditional independence between unobserved hetero-

geneity and time periods conditional on treatment and mediator status.

Assumption 3: Independence of Ut and T conditional on D and M .

(a) Ut ⊥⊥ T |D = 1,M = 0,

(b) Ut ⊥⊥ T |D = 0,M = 0,

(c) Ut ⊥⊥ T |D = 0,M = 1,

(d) Ut ⊥⊥ T |D = 1,M = 1.

For instance, under Assumption 3a, the distribution of Ut is allowed to vary across

groups defined upon treatment and mediator state, but not over time within the

group with D = 1,M = 0. Assumption 3 thus imposes stationarity of Ut within

groups defined on D and M . This assumption is weaker than (and thus implied

by) requiring that Ut is constant across T for each cross-sectional observation unit

i. For example, Assumption 3 is satisfied in the fixed effect model Ut = η+ vt, with
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η being a time-invariant cross-sectional observation unit specific unobservable (fixed

effect) and vt an idiosyncratic time-varying unobservable with the same distribution

in both time periods.

Athey and Imbens (2006) and Chaisemartin and D’Haultfeuille (2018) impose

time invariance conditional on the treatment status, Ut ⊥⊥ T |D = d, to identify the

average treatment effect on the treated, ∆D=1
1 = E[Y1(1,M(1))−Y1(0,M(0))|D = 1]

or (using the terminology of instrumental variables) the LATE, ∆pa
1 = E[Y1(1, 1)−

Y1(0, 0)|τ = pa], respectively. We additionally condition on the mediator status to

identify direct and indirect effects.

For our next assumption, we introduce some further notation. Let FUt|d,m(u)) =

Pr(Ut ≤ u|D = d,M = m) be the conditional distribution of Ut with support Udm.

Assumption 4: Common support.

(a) U10 ⊆ U00, (b) U00 ⊆ U10, (c) U01 ⊆ U11, (d) U11 ⊆ U01.

Assumption 4 is a common support assumption (see discussion in, e.g., Lechner and

Strittmatter, 2019). For instance, Assumption 4a implies that any possible value

of Ut in the population with D = 1,M = 0 is also contained in the population

with D = 0,M = 0 . Assumption 4b imposes that any value of Ut conditional on

D = 0,M = 0 also exists conditional on D = 1,M = 0. Both assumptions together

imply that the support of Ut is the same in both populations, albeit the distributions

may generally differ. Assumptions 4c and 4d correspond to Assumptions 4a and 4b

for M = 1 instead of M = 0.

Assumptions 1 to 4 permit identifying direct effects on mixed populations, as

formally stated in Theorem 1.

Theorem 1: Under Assumptions 1–2,

(a) and Assumptions 3a-3b and 4a, the average and quantile direct effects under

d = 1 conditional on D = 1 and M(1) = 0 are identified:

θ1,01 (1) = E[Y1 −Q00(Y0)|D = 1,M = 0],

θ1,01 (q, 1) = F−1Y1|D=1,M=0(q)− F
−1
Q00(Y0)|D=1,M=0(q).
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(b) and Assumptions 3a-3b and 4b, the average and quantile direct effects under

d = 0 conditional on D = 0 and M(0) = 0 are identified:

θ0,01 (0) = E[Q10(Y0)− Y1|D = 0,M = 0],

θ0,01 (q, 0) = F−1Q10(Y0)|D=0,M=0(q)− F
−1
Y1|D=0,M=0(q).

(c) and Assumptions 3c-3d and 4c, the average and quantile direct effects under

d = 0 conditional on D = 0 and M(0) = 1 are identified:

θ0,11 (0) = E[Q11(Y0)− Y1|D = 0,M = 1],

θ0,11 (q, 0) = F−1Q11(Y0)|D=0,M=1(q)− F
−1
Y1|D=0,M=1(q).

(d) and Assumptions 3c-3d and 4d, the average and quantile direct effects under

d = 1 is identified conditional on D = 1 and M(1) = 1 are identified:

θ1,11 (1) = E[Y1 −Q01(Y0)|D = 1,M = 1],

θ1,11 (q, 1) = F−1Y1|D=1,M=1(q)− F
−1
Q01(Y0)|D=1,M=1(q).

Proof. See Online Appendix A.

In the instrumental variable framework, any direct effects of the instrument are

typically ruled out by imposing the exclusion restriction, in order to identify the

causal effect of an endogenous regressor on the outcome, see for instance Imbens and

Angrist (1994). By considering D as instrument and M as endogenous treatment,

θ1,01 (1) = θ0,01 (0) = θ0,11 (0) = θ1,11 (1) = 0 yield testable implications of the exclusion

restriction under Assumptions 1-4.

So far, we did not impose exogeneity of the treatment or mediator. In the

following, we assume treatment exogeneity by invoking independence between the

treatment and the potential post-treatment variables.

Assumption 5: Independence of the treatment and potential mediators/outcomes.
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{Yt(d,m),M(d)} ⊥⊥ D, for all d,m, t,∈ {0, 1}.

Assumption 5 implies that there are no confounders jointly affecting the treatment

on the one hand and the mediator and/or outcome on the other hand. It is satisfied

under treatment randomization as in successfully conducted experiments. We could

relax Assumption 5, by assuming independence of D conditional on some exogeneous

covariates X. However, the implementation in this case would introduces non-

trivial practical challenges for the estimation, which we discuss in the next section.

Assumption 5 allows identifying the ATE: ∆1 = E[Y1|D = 1]− E[Y1|D = 0].

Furthermore, we assume the mediator to be weakly monotonic in the treatment.

Assumption 6: Weak monotonicity of the mediator in the treatment.

Pr(M(1) ≥M(0)) = 1.

Assumption 6 is standard in the instrumental variable literature on LATEs when

denoting by D the instrument and by M the endogenous treatment, see Imbens

and Angrist (1994) and Angrist, Imbens, and Rubin (1996), and rules out affected

negatively (called defiers in the instrumental variable literature). It is satisfied by

design in randomized experiments with one-sided non-compliance, i.e. if no subject

randomized out of the treatment (D = 0) appears in the subgroup receiving the

mediator (M = 1), such that affected negatively (defiers) as well not-affected at 1

(always-takers) do not exist. In some contexts, however, the assumption might be

disputable. See for instance Angrist and Evans (1998), who use the sex ratio of

the first two siblings in a family as instrument for having a third child to estimate

the effect of fertility on female labor supply. Monotonicity is motivated by parents’

arguable preference for mixed sex siblings in the U.S., inducing affected positively

(compliers) to have a third child if the first two are of the same sex. However,

monotonicity fails if a subgroup of parents has a preference for at least two children

of the same sex and chooses to have a third child if the first two are of mixed sex.

That the latter case may be empirically relevant is demonstrated in Lee (2008), who

finds that South Korean parents with one son and one daughter are more likely to

continue childbearing than parents with two sons.
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As discussed in the Online Appendix B, the total ATE ∆1 = E[Y1|D = 1] −

E[Y1|D = 0] and QTE ∆1(q) = F−1Y1|D=1(q) − F−1Y1|D=0(q) for the entire population

are identified under Assumption 5. Furthermore, Assumptions 5 and 6 yield the

strata proportions, denoted by pτ = Pr(τ), as functions of the conditional mediator

probabilities given the treatment, which we denote by p(m|d) = Pr(M = m|D = d)

for d,m ∈ {0, 1} (see Online Appendix B):

pn1 = p1|0, pap = p1|1 − p1|0 = p0|0 − p0|1, pn0 = p0|1. (1)

Furthermore, Assumptions 2, 5, and 6 imply that (see Online Appendix B)

∆ap
0 = E[Y0(1, 1)− Y0(0, 0)|ap] =

E[Y0|D = 1]− E[Y0|D = 0]

p1|1 − p1|0
= 0. (2)

Therefore, a rejection of the testable implication E[Y0|D = 1]−E[Y0|D = 0] = 0 in

the data would point to a violation of these assumptions.

Assumptions 5 and 6 permit identifying additional parameters, namely the total,

direct, and indirect effects on affected positively, and the direct effects on not-affected

at 0 and 1, as shown in Theorems 2 and 3. This follows from the fact that affected

negatively are ruled out and that the proportions and potential outcome distribu-

tions of the various principal strata are not selective w.r.t. the treatment (which is

not excluded in Theorem 1).

Theorem 2: Under Assumptions 1–2, 5-6,

a) and Assumptions 3a-3b and 4a, the average and quantile direct effects on

not-affected at 0 are identified:

θn01 = θ1,01 (1) and θn01 (q) = θ1,01 (q, 1).

b) and Assumptions 3a-3b and 4a-4b, the average direct effect under d = 0 on
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affected positively is identified:

θap1 (0) =
p0|0

p0|0 − p0|1
θ0,01 (0)−

p0|1
p0|0 − p0|1

θ1,01 (1).

Furthermore, the potential outcome distributions under d = 0 on affected

positively are identified:

FY1(1,0)|ap(y) =
p0|0

p0|0 − p0|1
FQ10(Y0)|D=0,M=0(y)

−
p0|1

p0|0 − p0|1
FY1|D=1,M=0(y),

(3)

FY1(0,0)|ap(y) =
p0|0

p0|0 − p0|1
FY1|D=0,M=0(y)

−
p0|1

p0|0 − p0|1
FQ00(Y0)|D=1,M=0(y).

(4)

Therefore, the direct quantile effect under d = 0 on affected positively, θap1 (q, 0) =

F−1Y1(1,0)|ap(q)− F
−1
Y1(0,0)|ap(q), is identified.

c) and Assumptions 3c-3d and 4c, the average and quantile direct effects on not-

affected at 1 are identified:

θn11 = θ0,11 (0) and θn11 (q) = θ0,11 (q, 0).

d) and Assumptions 3c-3d and 4c-4d, the average direct effect under d = 1 on

affected positively is identified:

θap1 (1) =
p1|1

p1|1 − p1|0
θ1,11 (1)−

p1|0
p1|1 − p1|0

θ0,11 (0).

Furthermore, the potential outcome distributions under d = 1 for affected

positively are identified:

FY1(1,1)|ap(y) =
p1|1

p1|1 − p1|0
FY1|D=1,M=1(y)

−
p1|0

p1|1 − p1|0
FQ11(Y0)|D=0,M=1(y),

(5)
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FY1(0,1)|ap(y) =
p1|1

p1|1 − p1|0
FQ01(Y0)|D=1,M=1(y)

−
p1|0

p1|1 − p1|0
FY1|D=0,M=1(y).

(6)

Therefore, the direct quantile effect under d = 1 on affected positively θap1 (q, 1) =

F−1Y1(1,1)|ap(q)− F
−1
Y1(0,1)|ap(q) is identified.

Proof. See Online Appendix C.

Theorem 3: Under Assumptions 1-3 and 5-6,

a) and Assumptions 4a and 4c, the total average treatment effect on affected

positively is identified:

∆ap
1 =

p1|1
p1|1 − p1|0

E[Y1|D = 1,M = 1]−
p1|0

p1|1 − p1|0
E[Q11(Y0)|D = 0,M = 1]

−
p0|0

p1|1 − p1|0
E[Y1|D = 0,M = 0] +

p0|1
p1|1 − p1|0

E[Q00(Y0)|D = 1,M = 0].

Furthermore, the total quantile treatment effect on affected positively ∆ap
1 (q) =

F−1Y1(1,1)|ap(q)− F
−1
Y1(0,0)|ap(q) is identified using the inverse of (5) and (4).

b) and Assumptions 4a and 4d, the average indirect effect under d = 0 on affected

positively is identified:

δap1 (0) =
p1|1

p1|1 − p1|0
E[Q01(Y0)|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Y1|D = 0,M = 1]

−
p0|0

p1|1 − p1|0
E[Y1|D = 0,M = 0] +

p0|1
p1|1 − p1|0

E[Q00(Y0)|D = 1,M = 0].

Furthermore, the quantile indirect effect under d = 0 on affected positively

δap1 (q, 0) = F−1Y1(0,1)|ap(q)−F
−1
Y1(0,0)|ap(q) is identified using the inverse of (6) and

(4).

c) and Assumptions 4b and 4c, the average indirect effect under d = 1 on affected
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positively is identified:

δap1 (1) =
p1|1

p1|1 − p1|0
E[Y1|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Q11(Y0)|D = 0,M = 1]

−
p0|0

p1|1 − p1|0
E[Q10(Y0)|D = 0,M = 0] +

p0|1
p1|1 − p1|0

E[Y1|D = 1,M = 0].

Furthermore, the quantile indirect effect under d = 1 on affected positively

δap1 (q, 1) = F−1Y1(1,1)|ap(q)−F
−1
Y1(1,0)|ap(q) is identified using the inverse of (5) and

(3).

Proof. See Online Appendix D.

3.2 Estimation

As in Assumption 5.1 of Athey and Imbens (2006), we assume standard regularity

conditions, namely that conditional on T = t, D = d, and M = m, Y is a random

draw from that subpopulation defined in terms of t, d,m ∈ {1, 0}. Furthermore,

the outcome in the subpopulations required for the identification results of interest

must have compact support and a density that is bounded from above and below as

well as continuously differentiable. Denote by N the total sample size across both

periods and all treatment-mediator combinations and by i ∈ {1, ..., N} an index for

the sampled subject, such that (Yi, Di,Mi, Ti) correspond to sample realizations of

the random variables (Y,D,M, T ).

The total, direct, and indirect effects may be estimated using the sample anal-

ogy principle, which replaces population moments with sample moments (e.g. Man-

ski, 1988). For instance, any conditional mediator probability given the treatment,

Pr(M = m|D = d), is to be replaced by an estimate thereof in the sample,∑N
i=1 I{Mi=m,Di=d}∑N

i=1 I{Di=d}
. A crucial step is the estimation of the quantile-quantile trans-

forms. The application of such quantile transformations dates at least back to

Juhn, Murphy, and Pierce (1991), see also Chaisemartin and D’Haultfeuille (2018),

Wüthrich (2020), and Strittmatter (2019) for recent applications. First, it requires

estimating the conditional outcome distribution, FYt|D=d,M=m(y), by the conditional
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empirical distribution

F̂Yt|D=d,M=m(y) =
1∑n

i=1 I{Di = d,Mi = m,Ti = t}
∑

i:Di=d,Mi=m,Ti=t

I{Yi ≤ y}.

Second, inverting the latter yields the empirical quantile function F̂−1Yt|D=d,M=m(q).

The empirical quantile-quantile transform is then obtained by

Q̂dm(y) = F̂−1Y1|D=d,M=m(F̂Y0|D=d,M=m(y)).

This permits estimating the average and quantile effects of interest. Average effects

are estimated by replacing any (conditional) expectations with the corresponding

sample averages in which the estimated quantile-quantile transforms enter as plug-

in estimates. Taking θ1,01 (see Theorem 1) as an example, an estimate thereof is

θ̂1,01 (1) =
1∑n

i=1 I{Di = 1,Mi = 0, Ti = 1}
∑

i:Di=1,Mi=0,Ti=1

Yi

− 1∑n
i=1 I{Di = 1,Mi = 0, Ti = 0}

∑
i:Di=1,Mi=0,Ti=0

Q̂00(Yi).

Likewise, quantile effects are estimated based on the empirical quantiles.

For the estimation of total ATE and QTE, Athey and Imbens (2006) show that

the resulting estimators are
√
N -consistent and asymptotically normal, see their

Theorems 5.1 and 5.3. These properties also apply to our context when splitting

the sample into subgroups based on the values of a binary treatment and mediator

(rather than the treatment only). For instance, the implications of Theorem 1 in

Athey and Imbens (2006) when considering subsamples with D = 1 and D = 0

carry over to considering subsamples with D = 1,M = 0 and D = 0,M = 0

for estimating the average direct effect on not-affected at 0. In contrast to Athey

and Imbens (2006), however, some of our identification results include the condi-

tional mediator probabilities Pr(M = m|D = d). As the latter are estimated with
√
N -consistency, too, it follows that the resulting effect estimators are again

√
N -
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consistent and asymptotically normal. We use a non-parametric bootstrap approach

to calculate the standard errors. Chaisemartin and D’Haultfeuille (2018) show the

validity of the bootstrap approach for such kind of estimators, which follows from

their asymptotic normality.

For the case that identifying assumptions to only hold conditional on observed

covariates, denoted by X, estimation must be adapted to allow for control variables.

Following a suggestion by Athey and Imbens (2006) in their Section 5.1, basing

estimation on outcome residuals in which the association of X and Y has been

purged by means of a regression is consistent under the additional assumption that

the effects of D and M are homogeneous across covariates. As an alternative, Melly

and Santangelo (2015) propose a flexible semiparametric estimator that does not

impose such a homogeneity-in-covariates assumption and show
√
N -consistency and

asymptotic normality.

In Online Appendix E, we show the finite sample performance of the CiC ap-

proach. Furthermore, we show the finite sample behavior of the CiC approach under

various violations of the identifying assumptions and compare it to the DiD approach

of Deuchert, Huber, and Schelker (2019).

4 Applications

4.1 JOBS II Evaluation

Our first empirical application is based on the JOBS II data by Vinokur and Price

(1999). JOBS II was a randomized job training intervention in the US, designed to

analyse the impact of job training on labour market and mental health outcomes,

see Vinokur, Price, and Schul (1995). The JOBS II intervention was conducted

in south-eastern Michigan, where 2,464 job seekers were eligible to participate in

a randomized field experiment, see Vinokur and Price (1999). We provide further

background information about JOBS II in Online Appendix F.1.

We analyse the impact of job training on mental health, namely symptoms of
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depression 6 months after training participation. The health outcome (Y ) is based

on a 11-items index of depression symptoms of the Hopkins Symptom Checklist.

For example, respondents were asked how much they were bothered by symptoms

such as crying easily, feeling lonely, feeling blue, feeling hopeless, having thoughts of

ending their lives, or experiencing a loss of sexual interest. The questions were coded

on a 5-point scale, going from ‘not at all’ (1) to ‘extremely’ (5), and summarized in

a depression variable that consists of the average across all questions.

The study design rules out not-affected at 1 (always-takers) and affected nega-

tively (defiers), because members of the control group did not have access to the job

training programme (one-sided non-compliance). 45% of those assigned to training

in our data did not participate and are therefore not-affected at 0 (never-takers),

the remaining 55% are affected positively (compliers). In order to avoid selection

bias w.r.t actual participation, the original JOBS II study by Vinokur, Price, and

Schul (1995) analysed the total effect of the policy (i.e. the intention-to-treat effect),

including those who, despite receiving an offer to participate, did not take part in

the job training. In contrast, we use our methodology to separate the direct effect of

mere training assignment, which is our treatment D, from the indirect effect operat-

ing through actual training participation, which is our mediator M , among affected

positively. We also consider the direct effect on not-affected at 0, which likely differs

from that on the affected positively. While being offered (or not offered) the job

training might have an effect on the mental health of affected positively by inducing

motivation/enthusiasm (or discouragement), it may not have the same effect among

not-affected at 0, who do not attend such seminars whatsoever.

More concisely, we base identification on Theorem 2a for the direct effect on not-

affected at 0, θn01 , on Theorem 2b for the direct effect on affected positively under

d = 0, θap1 (0), and Theorem 3c for the indirect effect on affected positively under

d = 1, δap1 (1). None of these approaches requires the presence of not-affected at

1 in the sample. We also note that if random assignment operated through other

mechanisms than actual participation in any of the subpopulations as it may appear
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Table 2: Descriptive statistics on depression outcomes in pre- and post-mediator
periods

pre-treatment (T = 0) post-mediator (T = 1)
sample size mean sample size mean

overall 1,796 1.86 1,564 1.73
(0.58) (0.67)

D = 0 551 1.87 486 1.78
(0.59) (0.70)

D = 1 1,245 1.86 1,078 1.70
(0.57) (0.66)

mean diff 0.01 0.08
pval 0.74 0.03
SD 1.63 11.79

Note: Standard deviations are in parentheses. ‘mean diff’, ‘pval’, and ‘SD’ are the mean difference,

its p-value, and the standardized difference, respectively.

reasonable in the context of mental health outcomes, this would violate the exclusion

restriction when using assignment as instrumental variable for actual participation

in a two stage least squares regression. Given that our identifying assumptions hold,

our approach can therefore be used to evaluate the exclusion restriction.

Our evaluation sample consists of a total of 3,360 observations in the pre-treatment

and post-mediator periods with non-missing information for D, M , and Y . It is an

unbalanced panel due to attrition of roughly 13% of the initial respondents between

the two periods. Table 2 provides summary statistics for the outcome in the total

sample as well as by treatment group over time. We verify whether randomiza-

tion was successful by comparing the outcome means of the treatment and control

groups in the pre-treatment period (T = 0) just prior to the randomization of D.

The small difference of 0.01 is not statistically significant according to a two sam-

ple t-test. Furthermore, the standardized difference test suggested by Rosenbaum

and Rubin (1985) yields a value of just 1.68 and is thus far below 20, a threshold

frequently chosen for indicating problematic imbalances across treatment groups.

To investigate potential attrition bias we also consider these statistics in the pre-

treatment period exclusively among the panel cases that remain in the sample in the

post-mediator period (not reported in Table 2). The p-value of the t-test amounts
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to 0.52 and the standardized difference of 3.5 is low such that attrition bias does not

appear to be a concern. We therefore do not find statistical evidence for a violation

of the random assignment of D in our sample. Table 2 also reports the mean differ-

ence in outcomes in the post-mediator period (T = 1) 6 months after participation,

which is an estimate for the total (or intention-to-treat) effect of D. The difference

of 0.08 is statistically significant at the 5% level.

Assumption 1 requires our depression measure to be continuous and in a mono-

tonic relationship with unobservables Ut. Essentially, monotonicity with Ut is not

testable, however, we see no obvious mechanisms challenging this assumption. To

satisfy Assumption 2 (no anticipation), our pre-treatment period is based on data

from the screening questionnaire, which makes it impossible to anticipate the out-

come of the subsequent randomization of the treatment. As attrition is unlikely

to play an essential role, we should be able to rule out one major mechanisms that

might challenge Assumptions 3 (independence of Ut and T conditional on D and M)

and 4 (common support). Again, we see no obvious further challenges. Assumption

5 (independence of the treatment and potential mediators/outcomes) holds due to

the arguably successful randomization. Assumption 6 (no affected negatively) is met

at least under d = 0, as participation is not possible without eligibility. Moreover,

it appears difficult to argue that an individual would avoid the job training just

because it has been randomly chosen to being eligible.

Table 3: Empirical results for Jobs II

Changes-in-Changes Difference-in-Differences Type shares

θ̂n01 ∆̂ap
1 θ̂ap1 (0) δ̂ap1 (1) θ̂n01 ∆̂ap

1 θ̂ap1 (0) δ̂ap1 (1) p̂n0 p̂pa
est -0.04 -0.11 0.06 -0.17 -0.03 -0.12 -0.06 -0.06 0.45 0.55
se 0.05 0.06 0.05 0.08 0.05 0.06 0.05 0.07 0.01 0.01

pval 0.40 0.06 0.26 0.04 0.52 0.03 0.21 0.43 0.00 0.00

Note: ‘est’, ‘se’, and ‘pval’ provide the effect estimate, standard error, and p-value of the respective

estimator. p̂(n) and p̂(c) are the estimated never-taker and complier shares. Standard errors are

based on cluster bootstrapping the effects 1999 times where clustering is on the respondent level.

Table 3 presents the estimation results based on our CiC approach and the DiD

strategy of Deuchert, Huber, and Schelker (2019) when (linearly) controlling for the
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gender of respondents in either case. Standard errors rely on cluster bootstrapping

the direct and indirect effects 1999 times, where clustering is on the respondent level.

The CiC and DiD estimates of the direct effects on not-affected at 0, θ̂n01 (0), as well

as on affetced positively, θ̂ap1 (0), are not statistically significant at conventional levels.

Hence, we do not find statistical evidence for a direct effect of the mere assignment

into the training programme on the depression outcome. In an instrumental variable

setup, such a relationship would point to a violation of the exclusion restriction when

using assignment as instrument for participation. In contrast, we find for both CiC

and DiD negative total effects among affected positively ∆̂ap
1 that are statistically

significant at least at the 10% level. In the case of CiC, also the negative indirect

effect among affected positively, δ̂ap1 (1), is significant at the 5% level, while this is not

the case for DiD. By and large, our results point to a moderately negative treatment

effect on depressive symptoms through actual programme participation, rather than

through other (i.e. direct) mechanisms. In comparison to an IV approach, we note

that the CiC estimates δ̂ap1 (1) and ∆̂ap
1 as well as the DiD estimate ∆̂ap

1 are in fact

rather similar to the result of a two stage least squares regression relying on the

exclusion restriction by using D as instrument for M . The latter approach yields a

LATE in the post-mediator period of -0.14 with a heteroskedasticity-robust standard

error of 0.07 (significant at the 5% level).

4.2 Paid Maternity Leave Reform

In many empirical problems, treatment randomization is violated. Theorem 1 pro-

vides conditions under which direct effects for specific subpopulations are identified

even in the absence of this assumption. To illustrate this approach, we analyse

the effect of paid maternity leave on labour income as introduced in July 2005 in

Switzerland (Online Appendix F.2 provides background information about the re-

form), using data from the Swiss Labour Force Survey of the Federal Statistical

Office (FSO). The FSO interviews roughly 50,000 households in a rotating 5-year

panel and we consider information from the waves of 2004, 2006 and 2007.
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Our pre-treatment period consists of observations from the first six month of

2004, well before the federal referendum on paid maternity leave in late September

2004, in order to avoid anticipation effects (Assumption 2). Political campaigning

and discussions about a referendum typically start two to three months earlier.

Given that all previous attempts to introduce paid maternity leave were rejected in

popular ballots, the latest in 1999, and that the subsequent acceptance with 55.4%

was far from overwhelming, important anticipation effects appear unlikely.

The treatment is defined as the option to take paid maternity leave in case of

giving birth, which is only relevant for fertile women. For this reason, we define the

age group between 20 and 39 years as treatment group. Females in the age group

between 46 and 59 years are considered as control group as they are arguably beyond

the childbearing age. The mediator is defined as maternal episode in the waves of

2006 and 2007. We do not use data around the introduction of paid maternity

leave legislation in 2005. Excluding mothers with a maternal episode already in the

pre-treatment period (2004) from our sample, we obtain a sample of 4627 females.

The outcome measures are gross and net income in 2007. Conditional inde-

pendence between time and unobserved heterogeneity (Assumption 3) and common

support (Assumption 4) assumptions appear plausible as there were no further inter-

ventions or specific turmoil in Swiss labour markets during this period. The groups

’not-affected at 1’ and ’affected negatively’ do not exist in our sample, because we

observe no maternal episodes in the control group. Therefore, weak monotonicity

(Assumption 6) holds in our sample, even though it could be violated in principle if

females past 45 years were to give birth.

We cannot plausibly estimate direct and indirect effects based on Theorems

2 and 3, as Assumptions 5 (independence of the treatment and potential media-

tors/outcomes) is unlikely to hold. The option to take paid maternity leave is not

randomly assigned, but depends on age and is most likely associated with income.

However, Theorem 1 permits estimating the direct effects of paid leave, which might

operate through general equilibrium effects, on ’treated not-affected at 0’ (θ1,01 (1)
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based on Theorem 1a) as well as on ’non-treated not-affected at 0 and non-treated

affected positively’ (θ0,01 (0) based on Theorem 1b). Both groups bear a clear inter-

pretation.

The group ’treated not-affected at 0’ are women aged between 20 to 39 years

who do not give birth, despite having the option to receive paid maternity leave.

Older women could also be not-affected at 0, but they are not treated, because they

are arguably beyond the childbearing age. We explicitly allow for the possibility

that younger women are affected positively, but we cannot identify the effects for

this group.

The group of ’non-treated not-affected at 0 and non-treated affected positively’

contains all women aged between 46 to 59 years. We argued above that all women

aged between 46 to 59 years are non-treated, because the reform does not give them

the option to take paid maternity leave (with high probability). Furthermore, we

argued above that the groups ’affected negatively’ and ’not-affected at 1’ do not

exist. Accordingly, the groups of ’non-treated not-affected at 0’ and ’non-treated

affected positively’ correspond to the observable group of all non-treated.

Table 4: Empirical results for introduction of maternity leave in Switzerland

Gross income Net income

θ1,01 (1) θ0,01 (0) θ1,01 (1) θ0,01 (0)
est 2436.66 2665.33 2122.68 2259.58
se 1417.73 1561.58 1252.53 1348.18

pval 0.09 0.09 0.09 0.09

Note: ‘est’, ‘se’, and ‘pval’ provide the effect estimate, standard error, and p-value of the respective

estimator. θ1,01 (1) is the direct effect on treated never-takers and θ0,01 (0) is the direct effect on non-

treated compliers and never takers. Standard errors are based on cluster bootstrapping the effects

1999 times where clustering is on the individual level.

The results in Table 4 suggest positive direct effects on treated not-affected at 0

(younger females without maternal episode) and on the non-treated (older females).

The estimates for treated not-affected at 0 amount to CHF 2437 in gross income or

CHF 2123 in net income, which corresponds to an increase of about 4.8% relative to

the respective average. The effects on the non-treated are slightly larger and amount
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to a CHF 2665 increase in gross income (5.2%) and CHF 2259 in net income (5.0%).

All point estimates are marginally significant at the 10% level when clustering on

the individual level. The introduction of paid maternity leave arguably reduced the

financial burden of maternity on firms and affected households, thus, making female

workers relatively less expensive in expectation. From an economic perspective, this

likely triggered adjustments in the labour markets and, through general equilibrium

effects, also affected groups that did not take paid leave. The direct effect on younger

females without a maternal episode, for instance, could point towards a reduction

in statistical discrimination by employers.

5 Conclusion

We proposed a novel identification strategy for causal mediation analysis with re-

peated cross sections or panel data based on changes-in-changes (CiC) assumptions

that are related but yet different to Athey and Imbens (2006) considering total

treatment effects. Strict monotonicity of outcomes in unobserved heterogeneity and

distributional time invariance of the latter within groups defined on treatment and

mediator states are key assumptions for identifying direct effects within these groups.

Additionally assuming random treatment assignment and weak monotonicity of the

mediator in the treatment permits identifying direct effects on not-affected at 0 and

1 (never- and always-takers in the instrumental variable terminology) as well as to-

tal, direct, and indirect effects on affected positively (compliers in the instrumental

variable terminology). We also provided two empirical applications to the Jobs II

programme and the introduction of paid maternity leave in Switzerland.

’Not-affected at 0 and 1’ as well as ’affected positively’ are latent groups. With-

out random treatment assignment, we can only identify effects for mixtures between

two latent groups conditional on the treatment status. This complicates the inter-

pretation of the results, unless some latent groups can be excluded because of the

empirical design (see, e.g., the discussion about one-sided non-compliance in Frölich

and Melly, 2013).
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A Proof of Theorem 1

A.1 Average direct effect under d = 1 conditional on D = 1

and M(1) = 0

In the following, we prove that θ1,01 (1) = E[Y1(1, 0) − Y1(0, 0)|D = 1,Mi(1) =

0] = E[Y1 − Q00(Y0)|D = 1,M = 0]. Using the observational rule, we obtain

E[Y1(1, 0)|D = 1,M(1) = 0] = E[Y1|D = 1,M = 0]. Accordingly, we have to show

that E[Y1(0, 0)|D = 1,M(1) = 0] = E[Q00(Y0)|D = 1,M = 0] to finish the proof.

Denote the inverse of h(d,m, t, u) by h−1(d,m, t; y), which exists because of the

strict monotonicity required in Assumption 1. Under Assumptions 1 and 3a, the

conditional potential outcome distribution function equals

FYt(d,0)|D=1,M=0(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 1,M = 0, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 0, T = t),

A3a
= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 0),

A3a
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 1,M = 0),

= FUt′ |10(h
−1(d,m, t; y)),

(A.1)

for d, t, t′ ∈ {0, 1}. We use these quantities in the following.
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First, evaluating FY1(0,0)|D=1,M=0(y) at h(0, 0, 1, u) gives

FY1(0,0)|D=1,M=0(h(0, 0, 1, u)) = FUt|10(h
−1(0, 0, 1;h(0, 0, 1, u))) = FUt|10(u),

for any t ∈ {0, 1}. Applying F−1Y1(0,0)|D=1,M=0(q) to both sides, we have

h(0, 0, 1, u) = F−1Y1(0,0)|D=1,M=0(FUt|10(u)). (A.2)

Second, for FY0(0,0)|D=1,M=0(y) we have

F−1Ut|10(FY0(0,0)|D=1,M=0(y)) = h−1(0, 0, 0; y). (A.3)

Combining (A.2) and (A.3) yields,

h(0, 0, 1, h−1(0, 0, 0; y)) = F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(y). (A.4)

Note that h(0, 0, 1, h−1(0, 0, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under non-treatment with-

out the mediator. Accordingly, E[F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(Y0)|D = 1,M =

0] = E[Y1(0, 0)|D = 1,M = 0]. We can identify FY0(0,0)|D=1,M=0(y) under Assump-

tion 2, but we cannot identify FY1(0,0)|D=1,M=0(y). However, we show in the follow-

ing that we can identify the overall quantile-quantile transform F−1Y1(0,0)|D=1,M=0 ◦

FY0(0,0)|D=1,M=0(y) under the additional Assumption 3b.

Under Assumptions 1 and 3b, the conditional potential outcome distribution

function equals

FYt(d,0)|D=0,M=0(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 0,M = 0, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 0, T = t),

A3b
= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 0),

A3b
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 0,M = 0),

= FUt′ |00(h
−1(d,m, t; y)),

(A.5)
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for d, t, t′ ∈ {0, 1}. We repeat similar steps as above. First, evaluating FY1(0,0)|D=0,M=0(y)

at h(0, 0, 1, u) gives

FY1(0,0)D=0,M=0(h(0, 0, 1, u)) = FUt|00(h
−1(0, 0, 1;h(0, 0, 1, u))) = FUt|00(u),

for any t ∈ {0, 1}. Applying F−1Y1(0,0)|D=0,M=0(q) to both sides, we have

h(0, 0, 1, u) = F−1Y1(0,0)|D=0,M=0(FUt|00(u)). (A.6)

Second, for FY0(0,0)|D=0,M=0(y) we have

F−1Ut|00(FY0(0,0)|D=0,M=0(y)) = h−1(0, 0, 0; y). (A.7)

Combining (A.6) and (A.7) yields,

h(0, 0, 1, h−1(0, 0, 0; y)) = F−1Y1(0,0)|D=0,M=0 ◦ FY0(0,0)|D=0,M=0(y). (A.8)

The left sides of (A.4) and (A.8) are equal. In contrast to (A.4), (A.8) con-

tains only distributions that can be identified from observable data. In partic-

ular, FYt(0,0)|D=0,M=0(y) = Pr(Yt(0, 0) ≤ y|D = 0,M = 0) = Pr(Yt ≤ y|D =

0,M = 0). Accordingly, we can identify F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(y) by

Q00(y) ≡ F−1Y1|D=0,M=0 ◦ FY0|D=0,M=0(y).

Parsing Y0 through Q00(·) in the treated group without mediator gives

E[Q00(Y0)|D = 1,M = 0]

= E[F−1Y1|D=0,M=0 ◦ FY0|D=0,M=0(Y0)|D = 1,M = 0],

= E[F−1Y1(0,0)|D=0,M=0 ◦ FY0(0,0)|D=0,M=0(Y0(1, 0))|D = 1,M = 0],

A1,A3b
= E[h(0, 0, 1, h−1(0, 0, 0;Y0(1, 0)))|D = 1,M = 0],

A2
= E[h(0, 0, 1, h−1(0, 0, 0;Y0(0, 0)))|D = 1,M = 0],

A1,A3a
= E[F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(Y0(0, 0))|D = 1,M = 0],

= E[Y1(0, 0)|D = 1,M = 0] = E[Y1(0, 0)|D = 1,M(1) = 0],

(A.9)
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which has data support because of Assumption 4a.

A.2 Quantile direct effect under d = 1 conditional on D = 1

and M(1) = 0

In the following, we prove that

θ1,01 (q, 1) = F−1Y1(1,0)|D=1,M(1)=0(q)− F
−1
Y1(0,0)|D=1,M(1)=0(q),

= F−1Y1|D=1,M=0(q)− F
−1
Q00(Y0)|D=1,M=0(q).

For this purpose, we have to show that

FY1(1,0)|D=1,M(1)=0(y) = FY1|D=1,M=0(y) and (A.10)

FY1(0,0)|D=1,M(1)=0(y) = FQ00(Y0)|D=1,M=0(y), (A.11)

which is sufficient to show that the quantiles are also identified. We can show (A.10)

using the observational rule FY1(1,0)|D=1,M(1)=0(y) = FY1|D=1,M=0(y) = E[1{Y1 ≤

y}|D = 1,M = 0], with 1{·} being the indicator function.

In analogy to (A.9), we obtain

FQ00(Y0)|D=1,M=0(y)

= E[1{Q00(Y0) ≤ y}|D = 1,M = 0],

= E[1{F−1Y1|D=0,M=0 ◦ FY0|D=0,M=0(Y0) ≤ y}|D = 1,M = 0],

= E[1{Y1(0, 0) ≤ y}|D = 1,M = 0],

= FY1(0,0)|D=1,M(1)=0(y),

(A.12)

which proves (A.11).
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A.3 Average direct effect under d = 0 conditional on D = 0

and M(0) = 0

In the following, we show that θ0,01 (0) = E[Y1(1, 0) − Y1(0, 0)|D = 0,M(0) =

0] = E[Q10(Y0) − Y1|D = 0,M = 0]. Using the observational rule, we obtain

E[Y1(0, 0)|D = 0,M(0) = 0] = E[Y1|D = 0,M = 0]. Accordingly, we have to show

that E[Y1(1, 0)|D = 0,M(0) = 0] = E[Q10(Y0)|D = 0,M = 0] to finish the proof.

First, we use (A.5) to evaluate FY1(1,0)|D=0,M=0(y) at h(1, 0, 1, u)

FY1(1,0)|D=0,M=0(h(1, 0, 1, u)) = FUt|10(h
−1(1, 0, 1;h(1, 0, 1, u))) = FUt|10(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,0)|D=0,M=0(q) to both sides, we have

h(1, 0, 1, u) = F−1Y1(1,0)|D=0,M=0(FUt|10(u)). (A.13)

Second, for FY0(1,0)|D=0,M=0(y) we have

F−1Ut|10(FY0(1,0)|D=0,M=0(y)) = h−1(1, 0, 0; y), (A.14)

using (A.5). Combining (A.13) and (A.14) yields,

h(1, 0, 1, h−1(1, 0, 0; y)) = F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(y). (A.15)

Note that h(1, 0, 1, h−1(1, 0, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under treatment without

the mediator. Accordingly, E[F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(Y0)|D = 0,M =

0] = E[Y1(1, 0)|D = 1,M = 0]. We can identify FY0(1,0)|D=0,M=0(y) under Assump-

tion 2, but we cannot identify FY1(1,0)|D=0,M=0(y). However, we show in the follow-

ing that we can identify the overall quantile-quantile transform F−1Y1(1,0)|D=0,M=0 ◦

FY0(1,0)|D=0,M=0(y) under the additional Assumption 3a.
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First, we use (A.1) to evaluate FY1(1,0)|D=1,M=0(y) at h(1, 0, 1, u)

FY1(1,0)|D=10,M=0(h(1, 0, 1, u)) = FUt|10(h
−1(1, 0, 1;h(1, 0, 1, u))) = FUt|10(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,0)|D=1,M=0(q) to both sides, we have

h(1, 0, 1, u) = F−1Y1(1,0)|D=1,M=0(FUt|10(u)). (A.16)

Second, for FY0(1,0)|D=0,M=0(y) we have

F−1Ut|10(FY0(1,0)|D=1,M=0(y)) = h−1(1, 0, 0; y), (A.17)

using (A.1). Combining (A.16) and (A.17) yields,

h(1, 0, 1, h−1(1, 0, 0; y)) = F−1Y1(1,0)|D=1,M=0 ◦ FY0(1,0)|D=1,M=0(y). (A.18)

The left sides of (A.15) and (A.18) are equal. In contrast to (A.15), (A.18) con-

tains only distributions that can be identified from observable data. In partic-

ular, FYt(1,0)|D=1,M=0(y) = Pr(Yt(1, 0) ≤ y|D = 1,M = 0) = Pr(Yt ≤ y|D =

1,M = 0). Accordingly, we can identify F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(y) by

Q10(y) ≡ F−1Y1|D=1,M=0 ◦ FY0|D=1,M=0(y).

Parsing Y0 through Q10(·) in the non-treated group without mediator gives

E[Q10(Y0)|D = 0,M = 0]

= E[F−1Y1|D=1,M=0 ◦ FY0|D=1,M=0(Y0)|D = 0,M = 0],

= E[F−1Y1(1,0)|D=1,M=0 ◦ FY0(1,0)|D=1,M=0(Y0(0, 0))|D = 0,M = 0],

A1,A3a
= E[h(1, 0, 1, h−1(1, 0, 0;Y0(0, 0)))|D = 0,M = 0],

A2
= E[h(1, 0, 1, h−1(1, 0, 0;Y0(1, 0)))|D = 1,M = 0],

A1,A3b
= E[F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(Y0(1, 0))|D = 0,M = 0],

= E[Y1(1, 0)|D = 0,M = 0] = E[Y1(1, 0)|D = 0,M(0) = 0],

(A.19)
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which has data support because of Assumption 4b.

A.4 Quantile direct effect under d = 0 conditional on D = 0

and M(0) = 0

In the following, we prove that

θ0,01 (q, 0) = F−1Y1(1,0)|D=0,M(0)=0(q)− F
−1
Y1(0,0)|D=0,M(0)=0(q),

= F−1Q10(Y0)|D=0,M=0(q)− F
−1
Y1|D=0,M=0(q).

For this purpose, we have to show that

FY1(1,0)|D=0,M(0)=0(y) = FQ10(Y0)|D=0,M=0(y) and (A.20)

FY1(0,0)|D=0,M(0)=0(y) = FY1|D=0,M=0(y), (A.21)

which is sufficient to show that the quantiles are also identified. We can show (A.21)

using the observational rule FY1(0,0)|D=0,M(0)=0(y) = FY1|D=0,M=0(y) = E[1{Y1 ≤

y}|D = 0,M = 0].

Furthermore, in analogy to (A.19), we obtain

FQ10(Y0)|D=0,M=0(y)

= E[1{Q10(Y0) ≤ y}|D = 0,M = 0],

= E[1{F−1Y1|D=1,M=0 ◦ FY0|D=1,M=0(Y0) ≤ y}|D = 0,M = 0],

= E[1{Y1(1, 0) ≤ y}|D = 0,M = 0],

= FY1(1,0)|D=0,M(0)=0(y),

which proves (A.20).
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A.5 Average direct effect under d = 0 conditional on D = 0

and M(0) = 1

In the following, we show that θ0,11 (0) = E[Y1(1, 1) − Y1(0, 1)|D = 0,M(0) =

1] = E[Q11(Y0) − Y1|D = 0,M = 1]. Using the observational rule, we obtain

E[Y1(0, 1)|D = 0,M(0) = 1] = E[Y1|D = 0,M = 1]. Accordingly, we have to show

that E[Y1(1, 1)|D = 0,M(0) = 1] = E[Q11(Y0)|D = 0,M = 1] to finish the proof.

Under Assumptions 1 and 3c, the conditional potential outcome distribution

function equals

FYt(d,0)|D=1,M=0(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 0,M = 1, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 1, T = t),

A3c
= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 1),

A3c
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 0,M = 1),

= FUt′ |01(h
−1(d,m, t; y)),

(A.22)

for d, t, t′ ∈ {0, 1}. We use these quantities in the following.

First, evaluating FY1(1,1)|D=0,M=1(y) at h(1, 1, 1, u) gives

FY1(1,1)|D=0,M=1(h(1, 1, 1, u)) = FUt|01(h
−1(1, 1, 1;h(1, 1, 1, u))) = FUt|01(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,1)|D=0,M=1(q) to both sides, we have

h(1, 1, 1, u) = F−1Y1(1,1)|D=0,M=1(FUt|01(u)). (A.23)

Second, for FY0(1,1)|D=0,M=1(y) we have

F−1Ut|01(FY0(1,1)|D=0,M=1(y)) = h−1(1, 1, 0; y). (A.24)

Combining (A.23) and (A.24) yields,

h(1, 1, 1, h−1(1, 1, 0; y)) = F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(y). (A.25)
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Note that h(1, 1, 1, h−1(1, 1, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under treatment with the

mediator. Accordingly, E[F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(Y0)|D = 0,M = 1] =

E[Y1(1, 1)|D = 0,M = 1]. We can identify FY0(1,1)|D=0,M=1(y) = FY0|D=0,M=1(y)

under Assumption 2, but we cannot identify FY1(1,1)|D=0,M=1(y). We show in the fol-

lowing that we can identify the overall quantile-quantile transform F−1Y1(1,1)|D=0,M=1 ◦

FY0(1,1)|D=0,M=1(y) under the additional Assumption 3d.

Under Assumptions 1 and 3d, the conditional potential outcome distribution

function equals

FYt(d,1)|D=1,M=1(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 1,M = 1, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 1, T = t),

A3d
= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 1),

A3d
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 1,M = 1),

= FUt′ |11(h
−1(d,m, t; y)),

(A.26)

for d, t, t′ ∈ {0, 1}. We repeat similar steps as above. First, evaluating FY1(1,1)|D=1,M=1(y)

at h(1, 1, 1, u) gives

FY1(1,1)|D=1,M=1(h(1, 1, 1, u)) = FUt|11(h
−1(1, 1, 1;h(1, 1, 1, u))) = FUt|11(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,1)|D=1,M=1(q) to both sides, we have

h(1, 1, 1, u) = F−1Y1(1,1)|D=1,M=1(FUt|11(u)). (A.27)

Second, for FY0(1,1)|D=1,M=1(y) we have

F−1Ut|11(FY0(1,1)|D=1,M=1(y)) = h−1(1, 1, 1; y). (A.28)
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Combining (A.27) and (A.28) yields,

h(1, 1, 1, h−1(1, 1, 0; y)) = F−1Y1(1,1)|D=1,M=1 ◦ FY0(1,1)|D=1,M=1(y). (A.29)

The left sides of (A.25) and (A.29) are equal. In contrast to (A.25), (A.29)

contains only distributions that can be identified from observable data. In particular,

FYt(1,1)|D=1,M=1(y) = Pr(Yt(1, 1) ≤ y|D = 1,M = 1) = Pr(Yt ≤ y|D = 1,M =

1). Accordingly, we can identify F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(y) by Q11(y) ≡

F−1Y1|D=1,M=1 ◦ FY0|D=1,M=1(y).

Parsing Y0 through Q11(·) in the non-treated group with mediator gives

E[Q11(Y0)|D = 0,M = 1]

= E[F−1Y1|D=1,M=1 ◦ FY0|D=1,M=1(Y0)|D = 0,M = 1],

= E[F−1Y1(1,1)|D=1,M=1 ◦ FY0(1,1)|D=1,M=1(Y0(0, 1))|D = 0,M = 1],

A1,A3d
= E[h(1, 1, 1, h−1(1, 1, 0;Y0(0, 1)))|D = 0,M = 1],

A2
= E[h(1, 1, 1, h−1(1, 1, 0;Y0(0, 0)))|D = 0,M = 1],

A1,A3c
= E[F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(Y0(0, 0))|D = 0,M = 1],

= E[Y1(1, 1)|D = 0,M = 1] = E[Y1(1, 1)|D = 0,M(0) = 1],

(A.30)

which has data support because of Assumption 4c.

A.6 Quantile direct effect under d = 0 conditional on D = 0

and M(0) = 1

In the following, we show that

θ0,11 (q, 0) = F−1Y1(1,1)|D=0,M(0)=1(q)− F
−1
Y1(0,1)|D=0,M(0)=1(q),

= F−1Q11(Y0)|D=0,M=1(q)− F
−1
Y1|D=0,M=1(q).
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For this purpose, we have to prove that

FY1(1,1)|D=0,M(0)=1(y) = FQ11(Y0)|D=0,M=1(y) and (A.31)

FY1(0,1)|D=0,M(0)=1(y) = FY1|D=0,M=1(y), (A.32)

which is sufficient to show that the quantiles are also identified. We can show (A.32)

using the observational rule FY1(0,1)|D=0,M(0)=1(y) = FY1|D=0,M=1(y) = E[1{Y1 ≤

y}|D = 0,M = 1].

In analogy to (A.30), we obtain

FQ11(Y0)|D=0,M=1(y)

= E[1{Q11(Y0) ≤ y}|D = 0,M = 1],

= E[1{F−1Y1|D=1,M=1 ◦ FY0|D=1,M=1(Y0) ≤ y}|D = 0,M = 1],

= E[1{Y1(1, 1) ≤ y}|D = 0,M = 0],

= FY1(1,1)|D=0,M(0)=1(y),

(A.33)

which proves (A.31).

A.7 Average direct effect under d = 1 conditional on D = 1

and M(1) = 1

In the following, we show that θ1,11 (1) = E[Y1(1, 1) − Y1(0, 1)|D = 1,M(1) =

1] = E[Y1 − Q01(Y0)|D = 1,M = 1]. Using the observational rule, we obtain

E[Y1(1, 1)|D = 1,M(1) = 1] = E[Y1|D = 1,M = 1]. Accordingly, we have to show

that E[Y1(0, 1)|D = 1,M(1) = 1] = E[Q01(Y0)|D = 1,M = 1] to finish the proof.

First, using (A.26) to evaluate FY1(0,1)|D=1,M=1(y) at h(0, 1, 1, u) gives

FY1(0,1)|D=1,M=1(h(0, 1, 1, u)) = FUt|11(h
−1(0, 1, 1;h(0, 1, 1, u))) = FUt|11(u),
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for any t ∈ {0, 1}. Applying F−1Y1(0,1)|D=1,M=1(q) to both sides, we have

h(0, 1, 1, u) = F−1Y1(0,1)|D=1,M=1(FUt|11(u)). (A.34)

Second, for FY0(0,1)|D=0,M=1(y) we obtain

F−1Ut|11(FY0(0,1)|D=1,M=1(y)) = h−1(0, 1, 0; y), (A.35)

using (A.26). Combining (A.34) and (A.35) yields,

h(0, 1, 1, h−1(0, 1, 0; y)) = F−1Y1(0,1)|D=1,M=1 ◦ FY0(0,1)|D=1,M=1(y). (A.36)

Note that h(0, 1, 1, h−1(0, 1, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under non-treatment with

the mediator. Accordingly, E[F−1Y1(1,1)|D=0,M=1◦FY0(1,1)|D=0,M=1(Y0)|D = 0,M = 1] =

E[Y1(1, 1)|D = 0,M = 1]. We can identify FY0(1,1)|D=0,M=1(y) = FY0|D=0,M=1(y)

under Assumption 2, but we cannot identify FY1(1,1)|D=0,M=1(y). We show in the fol-

lowing that we can identify the overall quantile-quantile transform F−1Y1(1,1)|D=0,M=1 ◦

FY0(1,1)|D=0,M=1(y) under the additional Assumption 3c.

First, using (A.22) to evaluate FY1(0,1)|D=0,M=1(y) at h(0, 1, 1, u) gives

FY1(0,1)|D=0,M=1(h(0, 1, 1, u)) = FUt|01(h
−1(0, 1, 1;h(0, 1, 1, u))) = FUt|01(u),

for any t ∈ {0, 1}. Applying F−1Y1(0,1)|D=0,M=1(q) to both sides, we have

h(0, 1, 1, u) = F−1Y1(0,1)|D=0,M=1(FUt|01(u)). (A.37)

Second, for FY0(0,1)|D=0,M=1(y) we obtain

F−1Ut|01(FY0(0,1)|D=0,M=1(y)) = h−1(0, 1, 1; y), (A.38)
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using (A.22). Combining (A.37) and (A.38) yields,

h(0, 1, 1, h−1(0, 1, 0; y)) = F−1Y1(0,1)|D=0,M=1 ◦ FY0(0,1)|D=0,M=1(y). (A.39)

The left sides of (A.36) and (A.39) are equal. In contrast to (A.36), (A.39)

contains only distributions that can be identified from observable data. In particular,

FYt(0,1)|D=0,M=1(y) = Pr(Yt(0, 1) ≤ y|D = 0,M = 1) = Pr(Yt ≤ y|D = 0,M =

1). Accordingly, we can identify F−1Y1(0,1)|D=1,M=1 ◦ FY0(0,1)|D=1,M=1(y) by Q01(y) ≡

F−1Y1|D=0,M=1 ◦ FY0|D=0,M=1(y).

Parsing Y0 through Q01(·) in the treated group with mediator gives

E[Q01(Y0)|D = 1,M = 1]

= E[F−1Y1|D=0,M=1 ◦ FY0|D=0,M=1(Y0)|D = 1,M = 1],

= E[F−1Y1(0,1)|D=0,M=1 ◦ FY0(0,1)|D=0,M=1(Y0(1, 1))|D = 1,M = 1],

A1,A3c
= E[h(0, 1, 1, h−1(0, 1, 0;Y0(1, 1)))|D = 1,M = 1],

A2
= E[h(0, 1, 1, h−1(0, 1, 0;Y0(0, 1)))|D = 1,M = 1],

A1,A3d
= E[F−1Y1(0,1)|D=1,M=1 ◦ FY0(0,1)|D=1,M=1(Y0(0, 1))|D = 1,M = 1],

= E[Y1(0, 1)|D = 1,M = 1] = E[Y1(0, 1)|D = 1,M(1) = 1],

(A.40)

which has data support under Assumption 4d.

A.8 Quantile direct effect under d = 1 conditional on D = 1

and M(1) = 1

In the following, we show that

θ1,11 (q, 1) = F−1Y1(1,1)|D=1,M(1)=1(q)− F
−1
Y1(0,1)|D=1,M(1)=1(q),

= F−1Y1|D=1,M=1(q)− F
−1
Q01(Y0)|D=1,M=1(q).
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For this purpose, we have to prove that

FY1(1,1)|D=1,M(1)=1(y) = FY1|D=1,M=1(y) and (A.41)

FY1(0,1)|D=1,M(1)=1(y) = FQ01(Y0)|D=1,M=1(y), (A.42)

which is sufficient to show that the quantiles are also identified. We can show (A.41)

using the observational rule FY1(1,1)|D=1,M(1)=1(y) = FY1|D=1,M=1(y) = E[1{Y1 ≤

y}|D = 1,M = 1].

In analogy to (A.40), we obtain

FQ01(Y0)|D=1,M=1(y)

= E[1{Q01(Y0) ≤ y}|D = 1,M = 1],

= E[1{F−1Y1|D=0,M=1 ◦ FY0|D=0,M=1(Y0) ≤ y}|D = 1,M = 1],

= E[1{Y1(0, 1) ≤ y}|D = 1,M = 0],

= FY1(0,1)|D=1,M(1)=1(y),

which proves (A.42).

B Proof of Equations (1) and (2)

The average total effect for the entire population is identified by,

∆1 = E[Y1(1,M(1))]− E[Y1(0,M(0))],

A5
= E[Y1(1,M(1))|D = 1]− E[Y1(0,M(0))|D = 0],

= E[Y1|D = 1]− E[Y1|D = 0],

where the first equality is the definition of ∆1, the second equality hold by Assump-

tion 5, and the last equality holds by the observational rule.

We define the conditional distribution FY1|D=d(y) = Pr(Y1 ≤ y|D = d) and

F−1Y1|D=d(q) = inf{y : FY1|D=d(y) ≥ q}. We can show the identification of the total

QTE for the entire population ∆1(q) = F−1Y1|D=1(q)− F
−1
Y1|D=0(q) when we show that
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FY1(1,M(1))(y) = FY1|D=1(y) and FY1(0,M(0))(y) = FY1|D=0(y). Using Assumption 5 and

the observational rule gives,

FY1(1,M(1))(y) = Pr(Y1(1,M(1)) ≤ y),

A5
= Pr(Y1(1,M(1)) ≤ y|D = 1),

= Pr(Y1 ≤ y|D = 1) = FY1|D=1(y),

and

FY1(0,M(0))(y) = Pr(Y1(0,M(0)) ≤ y),

A5
= Pr(Y1(0,M(0)) ≤ y|D = 0),

= Pr(Y1 ≤ y|D = 0) = FY1|D=0(y),

which finishes the proof.

By Assumption 5, the share of a type τ conditional on D corresponds to pτ (in

the population), as D is randomly assigned. This implies that p1|1 = pn1 + pap,

p1|0 = pn1 +pan, p0|1 = pn0 +pan, and p0|0 = pn0 +pap. Under Assumption 6, pan = 0,

which finishes the proof of equation (1).

Furthermore, E[Yt(d,m)|τ,D = 1] = E[Yt(d,m)|τ,D = 0] = E[Yt(d,m)|τ ] due

to the independence ofD and the potential outcomes as well as the types τ (which are

a deterministic function of M(d)) under Assumption 5. It follows that conditioning

on D is not required on the right hand side of the following equation, which expresses

the mean outcome conditional D = 0 and M = 0 as weighted average of the mean

potential outcomes of affected positively and not-affected at 0:

E[Yt|D = 0,M = 0]

=
pn0

pn0 + pap
E[Yt(0, 0)|τ = n0] +

pap
pn0 + pap

E[Yt(0, 0)|τ = ap].
(B.1)

Only affected positively and not-affected at 0 satisfy M(0) = 0 and thus make up
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the group with D = 0 and M = 0. After some rearrangements we obtain

E[Yt(0, 0)|τ = n0]− E[Yt(0, 0)|τ = ap]

=
pn0 + pap
pap

{E[Yt(0, 0)|τ = n0]− E[Yt|D = 0,M = 0]} .
(B.2)

Next, we consider observations with D = 1 and M = 0, which might consist of both

not-affected at 0 and affected negatively, as M(1) = 0 for both types. However, by

Assumption 6, affected negatively are ruled out, such that the mean outcome given

D1 = 1 and M1 = 0 is determined by not-affected at 0 only:

E[Yt|D = 1,M = 0]
A5,A6

= E[Yt(1, 0)|τ = n0]. (B.3)

Furthermore, by Assumption 2,

E[Y0(0, 0)|τ = n0]
A2
= E[Y0(1, 0)|τ = n0]

A5,A6
= E[Y0|D = 1,M = 0].

Similarly to (B.1) for the not-affected at 0 and affected positively, consider the

mean outcome given D = 1 and M = 1, which is made up by not-affected at 1 and

affected positively (the types with M(1) = 1)

E[Yt|D = 1,M = 1]

=
pn1

pn1 + pap
E[Yt(1, 1)|τ = n1] +

pap
pn1 + pap

E[Yt(1, 1)|τ = ap].
(B.4)

After some rearrangements we obtain

E[Yt(1, 1)|τ = n1]− E[Yt(1, 1)|τ = ap]

=
pn1 + pap
pap

{E[Yt(1, 1)|τ = n1]− E[Yt|D = 1,M = 1]} .
(B.5)

By Assumptions 5 and 6,

E[Yt|D = 0,M = 1] = E[Yt(0, 1)|τ = n1]. (B.6)
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Now consider (B.5) for period T = 0, and note that by Assumption 2, E[Y0(1, 1)|τ =

n1] = E[Y0(0, 0)|τ = n1] = E[Y0(0, 1)|τ = n1] andE[Y0(1, 1)|τ = ap] = E[Y0(0, 0)|τ =

ap].

Combining (B.4), (B.6), and the law of iterative expectations (LIE) gives

E[Y0|D = 1]

LIE
= E[Y0|D = 1,M = 1] · p1|1 + E[Y0|D = 1,M = 0] · p0|1,

= E[Y0(1, 1)|τ = ap] · pap + E[Y0(1, 1)|τ = n1] · pn1 + E[Y0(1, 0)|τ = n0] · pn0,
A2
= E[Y0(1, 1)|τ = ap] · pap + E[Y0(1, 1)|τ = n1] · pn1 + E[Y0(0, 0)|τ = n0] · pn0.

Likewise, combining (B.1) and (B.3) gives

E[Y0|D = 0]

LIE
= E[Y0|D = 0,M = 1] · p1|0 + E[Y0|D0 = 1,M = 0] · p0|0,

= E[Y0(0, 1)|τ = n1] · pn1 + E[Y0(0, 0)|τ = ap] · pap + E[Y0(0, 0)|τ = n0] · pn0,
A2
= E[Y0(1, 1)|τ = n1] · pn1 + E[Y0(0, 0)|τ = ap] · pap + E[Y0(0, 0)|τ = n0] · pn0.

Accordingly,

E[Y0|D = 1]− E[Y0|D = 0]

p1|1 − p1|0
= E[Y0(1, 1)|τ = ap]− E[Y0(0, 0)|τ = ap]

A2
= 0,

which proves equation (2). Accordingly, E[Y0|D = 1]−E[Y0|D = 0] = 0 is a testable

implication of Assumption 2, 5, and 6.

C Proof of Theorem 2

C.1 Average direct effect on the not-affected at 0

In the following, we show that θn01 = E[Y1(1, 0) − Y1(0, 0)|τ = n0] = E[Y1 −

Q00(Y0)|D = 1,M = 0]. From (B.3), we obtain the first ingredient E[Y1(1, 0)|τ =
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n0] = E[Y1|D = 1,M = 0]. Furthermore, from (A.9) we have E[Q00(Y0)|D =

1,M = 0] = E[Y1(0, 0)|D = 1,M(1) = 0]. Under Assumption 5 and 6,

E[Y1(0, 0)|D = 1,M(1) = 0] = E[Y1(0, 0)|D = 1, τ = n0] = E[Y1(0, 0)|τ = n0].

(C.1)

C.2 Quantile direct effect on the not-affected at 0

We prove that

θn01 (q) = F−1Y1(1,0)|n0(q)− F
−1
Y1(0,0)|n0(q),

= F−1Y1|D=1,M=0(q)− F
−1
Q00(Y0)|D=1,M=0(q).

This requires showing that

FY1(1,0)|n0(y) = FY1|D=1,M=0(y) and (C.2)

FY1(0,0)|n0(y) = FQ00(Y0)|D=1,M=0(y). (C.3)

Under Assumptions 5 and 6,

FYt|D=1,M=0(y) = E[1{Yt ≤ y}|D = 1,M = 0]

A5,A6
= E[1{Yt(1, 0) ≤ y}|τ = n0]

= FYt(1,0)|n0(y),

(C.4)

which proves (C.2). From (A.12), we have

FQ00(Y0)|D=1,M=0(y) = FY1(0,0)|D=1,M(1)=0(y) = E[1{Y1(0, 0) ≤ y}|D = 1,M(1) = 0].

Under Assumption 5 and 6,

E[1{Y1(0, 0) ≤ y}|D = 1,M(1) = 0]
A5,A6

= E[1{Y1(0, 0) ≤ y}|τ = n0]

= FY1(0,0)|n0(y),
(C.5)
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which proves (C.3).

C.3 Average direct effect under d = 0 on affected positively

In the following, we show that

θap1 (0) =E[Y1(1, 0)− Y1(0, 0)|τ = ap],

=
p0|0

p0|0 − p0|1
E[Q10(Y0)− Y1|D = 0,M = 0]

−
p0|1

p0|0 − p0|1
E[Y1 −Q00(Y0)|D = 1,M = 0].

Plugging (C.1) in (B.1) under T = 1, we obtain

E[Y1|D = 0,M = 0] =
pn0

pn0 + pap
E[Q00(Y0)|D = 1,M = 0]

+
pap

pn0 + pap
E[Y1(0, 0)|τ = ap].

This allows identifying

E[Y1(0, 0)|τ = ap] =
p0|0

p0|0 − p0|1
E[Y1|D = 0,M = 0]

−
p0|1

p0|0 − p0|1
E[Q00(Y0)|D = 1,M = 0].

(C.6)

Accordingly, we have to show the identification of E[Y1(1, 0)|ap] to finish the

proof. From (A.19) we have E[Y1(1, 0)|D = 0,M = 0] = E[Q10(Y0)|D = 0,M = 0].

Applying the law of iterative expectations, gives

E[Y1(1, 0)|D = 0,M = 0] =
pn0

pn0 + pap
E[Y1(1, 0)|D = 0,M = 0, τ = n0]

+
pap

pn0 + pap
E[Y1(1, 0)|D = 0,M = 0, τ = ap],

A5
=

pn0
pn0 + pap

E[Y1(1, 0)|τ = n0] +
pap

pn0 + pap
E[Y1(1, 0)|τ = ap].
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After some rearrangements and using (B.3), we obtain

E[Y1(1, 0)|τ = ap] =
pn0 + pap
pap

E[Q10(Y0)|D = 0,M = 0]− pn0
pap

E[Y1|D = 1,M = 0].

This gives

E[Y1(1, 0)|τ = ap] =
p0|0

p0|0 − p0|1
E[Q10(Y0)|D = 0,M = 0]

−
p0|1

p0|0 − p0|1
E[Y1|D = 1,M = 0],

(C.7)

using pn0 = p0|1, and pap + pn0 = p0|0.

C.4 Quantile direct effect under d = 0 on affected positively

We show that

FY1(1,0)|ap(y) =
p0|0

p0|0 − p0|1
FQ10(Y0)|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FY1|D=1,M=0(y) and

FY1(0,0)|ap(y) =
p0|0

p0|0 − p0|1
FY1|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FQ00(Y0)|D=1,M=0(y),

which proves that θap1 (q, 0) = F−1Y1(1,0)|ap(q)− F
−1
Y1(0,0)|ap(q) is identified.

From (A.20), we have FY1(1,0)|D=0,M(0)=0(y) = FQ10(Y0)|D=0,M=0(y). Applying the

law of iterative expectations gives

FY1(1,0)|D=0,M(0)=0(y) =
pn0

pn0 + pap
FY1(1,0)|D=0,M(0)=0,τ=n0(y)

+
pap

pn0 + pap
FY1(1,0)|D=0,M(0)=0,τ=ap(y),

A5
=

pn0
pn0 + pap

FY1(1,0)|n0(y) +
pap

pn0 + pap
FY1(1,0)|ap(y).

Using (C.2) and rearranging the equation gives,

FY1(1,0)|ap(y) =
p0|0

p0|0 − p0|1
FQ10(Y0)|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FY1|D=1,M=0(y). (C.8)
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In analogy to (B.1), the outcome distribution under D = 0 and M = 0 equals

FY1|D=0,M=0(y) =
pn0

pn0 + pap
FY1(0,0)|n0(y) +

pap
pn0 + pap

FY1(0,0)|ap(y).

Using (C.3) and rearranging the equation gives

FY1(0,0)|ap(y) =
p0|0

p0|0 − p0|1
FY1|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FQ00(Y0)|D=1,M=0(y). (C.9)

C.5 Average direct effect on the not-affected at 1

In the following, we show that θn11 = E[Y1(1, 1) − Y1(0, 1)|τ = n1] = E[Q11(Y0) −

Y1|D = 0,M = 1]. From (B.6), we obtain the first ingredient E[Y1(0, 1)|n1] =

E[Y1|D = 0,M = 1]. Furthermore, from (A.30) we have E[Q11(Y0)|D = 0,M =

1] = E[Y1(1, 1)|D = 0,M(0) = 1]. Under Assumption 5 and 6,

E[Y1(1, 1)|D = 0,M(0) = 1] = E[Y1(1, 1)|D = 0, τ = n1] = E[Y1(1, 1)|τ = n1].

(C.10)

C.6 Quantile direct effect on the not-affected at 1

We prove that

θn11 (q) = F−1Y1(1,1)|n1(q)− F
−1
Y1(0,1)|n1(q),

= F−1Q11(Y0)|D=0,M=1(q)− F
−1
Y1|D=0,M=1(q).

This requires showing that

FY1(1,1)|n1(y) = FQ11(Y0)|D=0,M=1(y) and (C.11)

FY1(0,1)|n1(y) = FY1|D=0,M=1(y). (C.12)
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Under Assumptions 5 and 6,

FYt|D=0,M=1(y) = E[1{Yt ≤ y}|D = 0,M = 1]

A5,A6
= E[1{Yt(0, 1) ≤ y}|τ = n1]

= FYt(0,1)|n1, (y).

(C.13)

which proves (C.12). From (A.33), we have

FQ11(Y0)|D=0,M=1(y) = FY1(1,1)|D=0,M(0)=1(y) = E[1{Y1(1, 1) ≤ y}|D = 0,M(0) = 1].

Under Assumption 5 and 6,

E[1{Y1(1, 1) ≤ y}|D = 0,M(0) = 1]
A5,A6

= E[1{Y1(1, 1) ≤ y}|τ = n1]

= FY1(1,1)|n1(y),
(C.14)

which proves (C.11).

C.7 Average direct effect under d = 1 on affected positively

In the following, we show that

θap1 (1) =E[Y1(1, 1)− Y1(0, 1)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Y1 −Q01(Y0)|D = 1,M = 1]

−
p1|0

p1|1 − p1|0
E[Q11(Y0)− Y1|D = 0,M = 1].

Plugging (C.10) in (B.4), we obtain

E[Y1|D = 1,M = 1] =
pn1

pn1 + pap
E[Q11(Y0)|D = 0,M = 1]

+
pap

pn1 + pap
E[Y1(1, 1)|τ = ap].
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This allows identifying

E[Y1(1, 1)|τ = ap] =
p1|1

p1|1 − p1|0
E[Y1|D = 1,M = 1]

−
p1|0

p1|1 − p1|0
E[Q11(Y0)|D = 0,M = 1].

(C.15)

From (A.40) we have E[Y1(0, 1)|D = 1,M = 1] = E[Q01(Y0)|D = 1,M = 1].

Applying the law of iterative expectations, gives

E[Y1(0, 1)|D = 1,M = 1] =
pn1

pn1 + pap
E[Y1(0, 1)|D = 1,M = 1, τ = n1]

+
pap

pn1 + pap
E[Y1(0, 1)|D = 1,M = 1, τ = ap],

A5
=

pn1
pn1 + pap

E[Y1(0, 1)|τ = n1] +
pap

pn1 + pap
E[Y1(0, 1)|τ = ap].

After some rearrangements and using (B.6), we obtain

E[Y1(0, 1)|τ = ap] =
pn1 + pap
pap

E[Q01(Y0)|D = 1,M = 1]− pn1
pap

E[Y1|D = 0,M = 1].

This gives

E[Y1(0, 1)|τ = ap] =
p1|1

p1|1 − p1|0
E[Q01(Y0)|D = 1,M = 1]

−
p1|0

p1|1 − p1|0
E[Y1|D = 0,M = 1],

(C.16)

with pn1 = p1|0, and pap + pn1 = p1|1.

C.8 Quantile direct effect under d = 1 on affected positively

We show that

FY1(1,1)|ap(y) =
p1|1

p1|1 − p1|0
FY1|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FQ11(Y0)|D=0,M=1(y) and

FY1(0,1)|ap(y) =
p1|1

p1|1 − p1|0
FQ01(Y0)|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FY1|D=0,M=1(y),

which proves that θap1 (q, 1) = F−1Y1(1,1)|ap(q)− F
−1
Y1(0,1)|ap(q) is identified.
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In analogy to (B.4), the outcome distribution under D = 0 and M = 0 equals:

FY1|D=1,M=1(y) =
pn1

pn1 + pap
FY1(1,1)|n1(y) +

pap
pn1 + pap

FY1(1,1)|ap(y).

Using (C.11) and rearranging the equation gives

FY1(1,1)|ap(y) =
p1|1

p1|1 − p1|0
FY1|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FQ11(Y0)|D=0,M=1(y). (C.17)

From (A.42), we have FY1(0,1)|D=1,M(1)=1(y) = FQ01(Y0)|D=1,M=1(y). Applying the

law of iterative expectations gives

FY1(0,1)|D=1,M(1)=1(y) =
pn1

pn1 + pap
FY1(0,1)|D=1,M(1)=1,τ=n1(y)

+
pap

pn1 + pap
FY1(0,1)|D=1,M(1)=1,τ=ap(y),

A5
=

pn1
pn1 + pap

FY1(0,1)|n1(y) +
pap

pn1 + pap
FY1(0,1)|ap(y).

Using (C.12) and rearranging the equation gives,

FY1(0,1)|ap(y) =
p1|1

p1|1 − p1|0
FQ01(Y0)|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FY1|D=0,M=1(y). (C.18)

D Proof of Theorem 3

D.1 Average treatment effect on the affected positively

In (C.15) and (C.6), we show that

θap1 =E[Y1(1, 1)− Y1(0, 0)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Y1|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Q11(Y0)|D = 0,M = 1]

−
p0|0

p0|0 − p0|1
E[Y1|D = 0,M = 0] +

p0|1
p0|0 − p0|1

E[Q00(Y0)|D = 1,M = 0].
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D.2 Quantile treatment effect on the affected positively

In (C.17) and (C.9), we show that FY1(1,1)|ap(y) and FY1(0,0)|ap(y) are identified. Ac-

cordingly, ∆ap
1 (q) = F−1Y1(1,1)|ap(q)− F

−1
Y1(0,0)|ap(q) is identified.

D.3 Average indirect effect under d = 0 on affected posi-

tively

In (C.16) and (C.6), we show that

δap1 (0) =E[Y1(0, 1)− Y1(0, 0)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Q01(Y0)|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Y1|D = 0,M = 1]

−
p0|0

p0|0 − p0|1
E[Y1|D = 0,M = 0] +

p0|1
p0|0 − p0|1

E[Q00(Y0)|D = 1,M = 0].

D.4 Quantile indirect effect under d = 0 on affected posi-

tively

In (C.18) and (C.9), we show that FY1(0,1)|ap(y) and FY1(0,0)|ap(y) are identified. Ac-

cordingly, δap1 (q, 0) = F−1Y1(0,1)|ap(q)− F
−1
Y1(0,0)|ap(q) is identified.

D.5 Average indirect effect under d = 1 on affected posi-

tively

In (C.15) and (C.7), we show that

δap1 (1) =E[Y1(1, 1)− Y1(1, 0)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Y1|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Q11(Y0)|D = 0,M = 1]

−
p0|0

p0|0 − p0|1
E[Q10(Y0)|D = 0,M = 0] +

p0|1
p0|0 − p0|1

E[Y1|D = 1,M = 0].
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D.6 Quantile indirect effect under d = 1 on affected posi-

tively

In (C.17) and (C.8), we show that FY1(1,1)|ap(y) and FY1(1,0)|ap(y) are identified. Ac-

cordingly, δap1 (q, 1) = F−1Y1(1,1)|ap(q)− F
−1
Y1(1,0)|ap(q) is identified.

E Simulation study

To shape the intuition for our identification results, this appendix presents a brief

simulation based on the following data generating process (DGP):

T ∼ Binom(0.5), D ∼ Binom(0.5), U ∼ Unif(−1, 1), V ∼ N(0, 1)

independent of each other, and

M = I{D + U + V > 0}, YT = Λ((1 +D +M +D ·M) · T + U).

Treatment D as well as the observed time period T are randomized and binomi-

ally distributed with a 50% chance of being 1 or 0, while the mediator-outcome

association is confounded due to the unobserved time constant heterogeneity U (im-

plying U0 = U1). The potential outcome in period 1 is given by Y1(d,M(d′)) =

Λ((1 + d + M(d′) + d ·M(d′)) + U), where Λ denotes a link function. If the latter

corresponds to the identity function, our model is linear and implies a homogeneous

time trend T equal to 1. If Λ is nonlinear, the time trend is heterogeneous, which

invalidates the common trend assumption of DiD models. M is not only a func-

tion of D and U , but also of the unobserved random term V , which guarantees

common support w.r.t. U , see Assumption 4. Affected positively, not-affected at 1,

and not-affected at 0 satisfy, respectively: ap = I{U + V ≤ 0, 1 + U + V > 0},

n1 = I{U + V > 0}, and n0 = I{1 + U + V ≤ 0}.

In the simulations with 1,000 replications, we consider two sample sizes (N =

1, 000, 4, 000) and investigate the behaviour of our CiC approach as well as the
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DiD approach of Deuchert, Huber, and Schelker (2019) in both a linear (Λ equal

to identity function) and nonlinear outcome model where Λ equals the exponential

function. The latter implies that a specific ceteris paribus change in a right hand

variable entails a specific percentage change in the outcome (rather than a specific

level change as in the linear model). To implement the CiC estimators in the simu-

lations as well as the application in Section 4, we make use of the ‘cic’ command in

the qte R-package by Callaway (2016) with its default values.

Table E.1: Linear model with random treatment

θ̂n01 θ̂n11 ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.00 -0.00 -0.01 -0.01 -0.01 -0.00 -0.01
sd 0.11 0.08 0.23 0.10 0.13 0.27 0.27
rmse 0.11 0.08 0.23 0.10 0.13 0.27 0.27
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.11 0.04 0.08 0.05 0.13 0.14 0.27

N=4,000
bias -0.00 -0.00 0.00 -0.00 -0.01 0.01 0.01
sd 0.06 0.04 0.12 0.05 0.07 0.14 0.14
rmse 0.06 0.04 0.12 0.05 0.07 0.14 0.14
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.06 0.02 0.04 0.02 0.07 0.07 0.14

B. Difference-in-Differences
N=1,000

bias 0.01 -0.00 -0.01 -0.01 0.00 -0.02 0.00
sd 0.11 0.09 0.14 0.14 0.12 0.19 0.10
rmse 0.11 0.09 0.14 0.14 0.12 0.19 0.10
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.11 0.04 0.05 0.07 0.12 0.10 0.10

N=4,000
bias -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00
sd 0.06 0.04 0.07 0.07 0.06 0.10 0.05
rmse 0.06 0.04 0.07 0.07 0.06 0.10 0.05
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.06 0.02 0.02 0.04 0.06 0.05 0.05

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of
the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean
squared error relative to the true effect.

Table E.1 reports the bias, standard deviation (‘sd’), root mean squared error
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(‘rmse’), true effect (‘true’), and the relative root mean squared error in percent of

the true effect (‘relr’) of the respective estimators of θn01 , θn11 , ∆ap
1 , θap1 (1), θap1 (0),

δap1 (1), and δap1 (0) for the linear model. In this case, the identifying assumptions

underlying both the CiC (Panel A.) and DiD (Panel B.) estimators are satisfied.

Specifically, the homogeneous time trend on the cross-sectional observation unit

satisfies any of the common trend assumptions in Deuchert, Huber, and Schelker

(2019), while the monotonicity of Y in U and the independence of T and U satisfies

the key assumptions of this paper. For this reason any of the estimates in Table

E.1 are close to being unbiased and appear to converge to the true effect at the

parametric rate when comparing the results for the two different sample sizes.1

Table E.2 provides the results for the exponential outcome model, in which the

time trend is heterogeneous and interacts with U through the nonlinear link function.

While the CiC assumptions hold (Panel A.), average time trends are heterogeneous

across complier types such that the DiD approach (Panel B.) of Deuchert, Huber,

and Schelker (2019) is inconsistent. Accordingly, the biases of the CiC estimates

generally approach zero as the sample size increases, while this is not the case for

the DiD estimates. CiC yields a lower root mean squared error than the respective

DiD estimator in all but one case (namely δ̂ap1 (0) with N = 1, 000) and its relative

attractiveness increases in the sample size due to its lower bias.2

In our next simulation design, we maintain the exponential outcome model but

assume D to be selective w.r.t. U rather than random. To this end, the treatment

model in (E) is replaced by D = I{U + Q > 0}, with the independent variable

Q ∼ N(0, 1) being an unobserved term. The average of U among the treated and

no-treated amounts to 0.24 and -0.24, respectively. This treatment selectivity entails

1In contrast, two stage least squares regression using D as instrument for M is inconsistent due
to the direct effects violating the IV exclusion restriction. The IV estimate neither recovers ∆ap

1 ,
nor δap1 (1), nor δap1 (0), with the bias amounting to approximately 4, 5, and 6, respectively, for the
three parameters with the sample sizes considered. This motivates the application of our method
to verify the IV exclusion restriction in Section 4.

2However, we can easily modify the DGP underlying Table E.2 to match a scenario in which also CiC
is inconsistent, e.g. by a violation of Assumption 3. For instance, when changing the distribution
of U to U |T = 0 ∼ Unif(−1, 1) and U |T = 1 ∼ Unif(0, 1) such that it depends on T , we obtain
non-negligible biases in the CiC estimates that do not vanish as the sample size increases.
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Table E.2: Nonlinear model with random treatment

θ̂n01 θ̂n11 ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.01 -0.14 -0.48 -0.35 -0.11 -0.37 -0.13
sd 0.48 5.08 8.47 6.20 1.16 8.64 4.23
rmse 0.48 5.08 8.48 6.21 1.17 8.65 4.23
true 3.49 68.09 52.42 47.70 4.72 47.70 4.72
relr 0.14 0.07 0.16 0.13 0.25 0.18 0.90

N=4,000
bias -0.01 0.01 -0.00 -0.11 -0.07 0.07 0.11
sd 0.25 2.63 4.37 3.20 0.66 4.44 2.04
rmse 0.25 2.63 4.37 3.20 0.66 4.44 2.04
true 3.49 68.09 52.45 47.73 4.72 47.73 4.72
relr 0.07 0.04 0.08 0.07 0.14 0.09 0.43

B. Difference-in-Differences
N=1,000

bias -0.27 -8.91 14.42 11.46 -1.49 15.91 2.96
sd 0.46 2.62 2.58 2.62 0.47 2.61 0.47
rmse 0.53 9.29 14.65 11.76 1.56 16.12 2.99
true 3.49 68.09 52.42 47.70 4.72 47.70 4.72
relr 0.15 0.14 0.28 0.25 0.33 0.34 0.63

N=4,000
bias -0.28 -8.79 14.51 11.57 -1.51 16.02 2.94
sd 0.24 1.28 1.26 1.28 0.25 1.27 0.23
rmse 0.37 8.88 14.57 11.64 1.53 16.07 2.95
true 3.49 68.09 52.45 47.73 4.72 47.73 4.72
relr 0.11 0.13 0.28 0.24 0.32 0.34 0.62

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of

the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean

squared error relative to the true effect.

non-negligible differences in mean potential outcomes across treatment groups, e.g.

E[Y1(1, 1)|D = 1] − E[Y1(1, 1)|D = 0] = 29.1. Under this violation of Assumption

5, the shares and effects of affected positively are no longer identified, which is con-

firmed by the simulation results presented in Table E.3. The bias in the CiC based

total, direct, and indirect effects on affected positively do not vanish as the sample

size increases. Furthermore, under non-random assignment of D (while maintaining

monotonicity of M in D), the not-affected at 0 and 1 respective distributions of

U differ across treatment. Therefore, average direct effects among the total of not-
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Table E.3: Nonlinear model with non-random treatment

θ̂0,11 (1) θ̂1,01 (0) ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.02 0.13 47.21 40.19 -1.44 48.64 7.02
sd 0.71 4.56 5.45 4.11 0.75 5.53 2.92
rmse 0.71 4.56 47.52 40.40 1.62 48.96 7.60
true 4.41 54.19 52.42 47.70 4.72 47.70 4.72
relr 0.16 0.08 0.91 0.85 0.34 1.03 1.61

N=4,000
bias -0.00 0.06 47.38 40.13 -1.53 48.91 7.25
sd 0.38 2.35 2.84 2.04 0.38 2.86 1.51
rmse 0.38 2.35 47.47 40.18 1.57 48.99 7.40
true 4.40 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.09 0.04 0.90 0.84 0.33 1.03 1.57

B. Difference-in-Differences
N=1,000

bias 0.35 19.98 29.00 27.65 0.04 28.96 1.35
sd 0.67 2.48 2.46 2.48 0.67 2.51 0.45
rmse 0.75 20.14 29.11 27.76 0.67 29.07 1.43
true 4.41 54.19 52.42 47.70 4.72 47.70 4.72
relr 0.17 0.37 0.56 0.58 0.14 0.61 0.30

N=4,000
bias 0.34 20.02 28.98 27.65 0.02 28.96 1.33
sd 0.35 1.22 1.19 1.22 0.35 1.24 0.23
rmse 0.49 20.06 29.01 27.68 0.35 28.99 1.35
true 4.40 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.11 0.37 0.55 0.58 0.07 0.61 0.29

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of

the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean

squared error relative to the true effect.

affected at 0 or 1, respectively, are not identified. Yet, θ1,01 (1), which is still identified

by the same estimator as before, yields the direct effect among treated not-affected

at 0 (as affected negatively do not exist). Likewise, θ0,11 (0) corresponds to the direct

effect on non-treated not-affected at 1. Indeed, the results in Table E.3 suggest that

both parameters are consistently estimated by the CiC approach (Panel A.).

Finally, we also consider a violation of Assumption 6 by relaxing monotonicity of

M in D. We do so by modifying the mediator equation to M = I{(2κ−1) ·D+U +

V > 0}, with κ ∼ Binom(0.2) being a randomly and binomially distributed variable,
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implying that the coefficient on D is either 1 or −1 with a probability of 80% or 20%,

respectively. This entails a defier share of roughly 9% in the population, while we

otherwise maintain the specification underlying the results in Table E.3. We note

that θ1,01 (1) now corresponds to the direct effect on treated not-affected at 0 and

affected negatively, θ0,11 (0) on non-treated not-affected at 1 and affected negatively.

Table E.4 provides the results. Again, CiC performs decently for estimating θ1,01 (1)

and θ0,11 (0) as suggested by Theorem 1, while non-negligible relative root mean

squared error arise for the remaining parameters.

Table E.4: Nonlinear model with non-random treatment and non-monotonicity

θ̂0,11 (1) θ̂1,01 (0) ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.06 0.24 65.65 55.29 -3.76 69.41 10.35
stdev 0.62 4.90 10.98 7.74 0.86 11.25 6.47
rmse 0.62 4.91 66.56 55.83 3.86 70.31 12.21
true 5.62 54.19 52.45 47.73 4.72 47.73 4.72
relr 0.11 0.09 1.27 1.17 0.82 1.47 2.59

N=4,000
bias 0.02 0.10 65.91 55.01 -3.84 69.75 10.90
stdev 0.31 2.49 5.80 4.03 0.46 5.99 3.23
rmse 0.32 2.49 66.17 55.16 3.86 70.00 11.36
true 5.63 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.06 0.05 1.26 1.16 0.82 1.47 2.41

B. Difference-in-Differences
N=1,000

bias 0.79 21.78 31.59 30.24 1.70 29.90 1.36
stdev 0.54 2.82 2.79 2.81 0.56 2.82 0.46
rmse 0.96 21.97 31.72 30.37 1.79 30.03 1.43
true 5.62 54.19 52.45 47.73 4.72 47.73 4.72
relr 0.17 0.41 0.60 0.64 0.38 0.63 0.30

N=4,000
bias 0.80 21.76 31.54 30.21 1.70 29.84 1.33
stdev 0.27 1.36 1.33 1.36 0.28 1.35 0.24
rmse 0.84 21.80 31.57 30.24 1.72 29.87 1.35
true 5.63 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.15 0.40 0.60 0.63 0.37 0.63 0.29

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of

the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean

squared error relative to the true effect.
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F Background Information for Applications

F.1 JOBS II Evaluation

The JOBS II was a modified version of the earlier JOBS programme, which had

been found to improve labour market outcomes such as job satisfaction, motivation,

earnings, and job stability, see Caplan, Vinokur, Price, and van Ryn (1989) and Vi-

nokur, van Ryn, Gramlich, and Price (1991), as well as mental health, see Vinokur,

Price, and Caplan (1991). According to the results of Vinokur, Price, and Schul

(1995), the JOBS II programme increased re-employment rates and improved men-

tal health outcomes, especially for participants having an elevated risk of depression.

The JOBS interventions had an important impact in the academic literature (see

e.g. Wanberg, 2012, Liu, Huang, and Wang, 2014) and the methodology was imple-

mented in field experiments in Finland (Vuori, Silvonen, Vinokur, and Price, 2002,

Vuori and Silvonen, 2005) and the Netherlands (Brenninkmeijer and Blonk, 2011),

suggesting positive effects on labour market integration in either case. Imai, Keele,

and Tingley (2010) analyse Jobs II in a mediation context as well, but consider

a different mediator, namely job search self-efficacy, and a different identification

strategy based on selection on observables.

In the JOBS II intervention, individuals responded to a screening questionnaire

that collected pre-treatment information on mental health in the baseline period.

Based on the latter, individuals were classified as having either a high or low de-

pression risk and those with a high risk were oversampled before the training was

randomly assigned. Randomization was followed by yet another questionnaire sent

out two weeks before the actual job training, see Vinokur, Price, and Schul (1995),

which also provided information on whether an individual had been assigned the

training. Consequently, the data collected in that questionnaire must be considered

post-treatment as they could be affected by learning the assignment. Therefore,

we rely on the earlier screening data as the relevant pre-treatment period prior to

random programme assignment.
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The job training consisted of five 4-hours seminars conducted in morning sessions

during one week between March 1 and August 7, 1991. Members of the treatment

group who participated in at least four of the five sessions received USD 20. Each

of the standardized training sessions consisted, among other aspects, of the learning

and practicing of job search and problem-solving skills. The control group received

a booklet with information on job search methods (Vinokur, Price, and Schul, 1995,

p. 44-49).

F.2 Paid Maternal Leave Reform

There is a large literature on the impact of maternal or parental leave on female

labour supply, earnings, or fertility, see for instance Lalive and Zweimüller (2009),

Lalive, Schlosser, Steinhauer, and Zweimüller (2014), Fitzenberger, Steffes, and

Strittmatter (2016), Byker (2016), Dahl, Løken, Mogstad, and Salvanes (2016),

Olivetti and Petrongolo (2017), and Zimmert and Zimmert (2020). The design of

maternal or paternal leave programs varies substantially across countries and estima-

tion results depend heavily on the design of such programs with respect to the leave

duration, the income replacement rate, job protection regulation, the availability of

paid leave to either parent, etc. (Olivetti and Petrongolo, 2017).

In Switzerland, paid maternal leave was only introduced in 2005. Before, the

Law on Manufacturing of 1877 just prohibited maternal labour supply for 8 weeks,

with at least 6 weeks taken right after childbirth. In 1945 the constitutional bases

for a paid maternal leave were established. However, numerous attempts to actually

introduce paid maternal leave were all rejected in nation-wide popular ballots, the

last unsuccessful attempt only dating back to 1999. Finally, on September 24, 2004,

a majority of 55.4% of Swiss citizens voted in favour of the introduction of 14 weeks

of paid maternal leave, with a replacement rate of 80% and a cap at CHF 172 per

day in 2005. Paid maternal leave is covered through the Swiss fund for loss of

earnings and maternal pay. The reform took effect on July 1, 2005. Job protection

regulation remained unaffected and protection against dismissal lasts during the
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entire pregnancy and 16 weeks after childbirth.

The political campaigning and discussions on the various topics on the agenda

(there were four federal propositions in September) typically start two to three

months before. Given that all previous attempts to introduce paid maternal leave

were rejected in popular ballots, the latest in 1999, and that the subsequent ac-

ceptance with 55.4% was far from overwhelming, important anticipation effects are

fairly unlikely. The post-treatment period contains information from the 2007 ques-

tionnaire. We do not use data from 2005 and 2006 because interviews of the Swiss

Labour Force Survey are only conducted up to the end of June each year. This makes

2005 a pre-treatment period and childbirth in early 2006 is the result of fertility de-

cisions before or just around the introduction of paid maternal leave legislation in

July 2005.
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