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Abstract 
 
This paper presents an extensive theoretical and empirical analysis of the choice of schedule 
buffers by airlines. With airline delays a continuing problem around the world, such an under-
taking is valuable, and its lessons extend to other passenger transportation sectors. One useful 
lesson from the theoretical analysis of a two-flight model is that the mitigation of delay prop-
agation is done entirely by the ground buffer and the second flight’s buffer. The first flight’s 
buffer plays no role because the ground buffer is a perfect, while nondistorting, substitute. In 
addition, the apportionment of mitigation responsibility between the ground buffer and the flight 
buffer of flight 2 is shown to depend on the relationship between the costs of ground-and flight-
buffer time. The empirical results show the connection between buffer magnitudes and a host of 
explanatory variables, including the variability of flight times, which simulations of the model 
identify as an important determining factor. 
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Airline Mitigation of Propagated Delays: Theory and Empirics
on the Choice of Schedule Buffers

by

Jan K. Brueckner, Achim I. Czerny, Alberto A. Gaggero∗

1. Introduction

Flight delays are a worldwide problem, a consequence of the substantial growth in air

travel over recent decades. In the US alone, the cost of delays for passengers and airlines was

estimated at $32.9 billion in 2010 by Ball et al. (2010). In response to the problem, the US

Department of Transportation requires all major US airlines to provide monthly information

about delays, which generates widely viewed on-time rankings of the carriers. The European

Union has imposed rules for passenger compensation and assistance in the event of long flight

delays.

A major source of flight delays is airport congestion, which is the subject of a large literature

(see Zhang and Czerny (2012) for a survey). But whether congestion leads to flight delays is

largely under the control of the airlines, since they are free to set scheduled flight durations. In

other words, the congestion-related lengthening of flight times can be built into airline schedules

through a practice known as “schedule padding”, whose recent growth is documented by Forbes

Lederman and Yuan (2019) and others. While airport congestion may make flights longer, this

schedule adjustment prevents them from arriving late.

Despite this overall adjustment in response to broad trends, flight times are still influenced

by many random daily factors, including weather, mechanical issues, and unanticipated conges-

tion, which can vary by day and hour around some expected level. Airline scheduling decisions

take account of these random influences through the choice of “schedule buffers.” One type of

buffer is known in the airline industry as a “block-time buffer” (we call it a “flight buffer”),

and it equals the amount of time added to the expected (in probabilistic terms) flight time to

get the scheduled arrival time. While a longer flight buffer reduces the chance of late arrival,

∗We thank Tiziana D’Alfonso for helpful comments and Alex Luttman for comments and for providing us
with one of his data sets. Any shortcomings in the paper are our responsibility.
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it also makes an early arrival more likely, and while passengers dislike delays, they also do not

want flights to routinely arrive early, an outcome that leaves time gaps that must be filled.

Longer scheduled flight times also raise airline operating costs, such as the cost of crew time.

In setting its flight schedules, an airline will take all three factors (disutilities from lateness

and earliness as well as operating costs) into account. Flight buffers are typically positive,

reflecting a greater concern about late as opposed to early arrivals on the part of the carrier

(following passenger preferences). Note that these same three elements also affect scheduling

by other transportation providers, such as passenger railroads and intercity bus lines.

Delays depend on more than just the operating time of a particular flight. If the incoming

aircraft arrives late, then the outbound flight is likely to depart late, possibly leading to its late

arrival even if operating time is normal. Late-arriving aircraft are in fact the major source of

flight delays, as seen in Figure 1, accounting for more delays than mechanical and crew-related

delays (“air carrier delays”) or weather. This type of delay is known as “propagated delay”

since it propagates from one flight to another, and it is also present in the railroad and bus

contexts.

Propagated delay can be addressed through a long flight buffer, which reduces the chance

of a late-arriving aircraft, but another tool is the “ground buffer”. This buffer is the difference

between the scheduled ground time and the minimum feasible aircraft turnaround time. A

long ground buffer can absorb a late arrival of the inbound aircraft, allowing the next flight to

depart on time despite this disruption. The flight buffer for the outbound flight can also address

delay propagation, allowing the flight to arrive on time even if it departs late. Lengthening

this flight buffer is costly, however, and longer ground times are also costly since they require

more gate space.1

The purpose of the present paper is to analyze an airline’s choice of flight and ground

buffers, both theoretically and empirically. Our theoretical model, which is more comprehensive

than earlier simple models because of its treatment of propagated delay, contains just two

flights for tractability. Thus, the airline chooses two flight buffers and one ground buffer,

1 Our analysis ignores the possibility that ground times may depend on passenger scheduling preferences,
which are not present in the model. For instance, airlines may schedule a later departure and accept longer
aircraft ground time if the result is a departure closer to the passenger’s preferred departure time.
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taking passenger distuilities from lateness and earliness into account along with buffer costs.

The analysis yields a number of insights. A principal result is that the flight buffer for flight

1 plays no role in mitigating delay propagation, which is instead handled by the ground buffer

and flight 2’s buffer. The apportionment of the mitigation roles between these two buffers

depends on buffer costs, with the ground buffer sometimes (but not always) doing all the

work in addressing delay propagation. The numerical examples mainly focus on how buffer

magnitudes are affected by the variances of the random factors affecting the operating times

of the two flights. Given the parallel to other transportation sectors, the findings of the paper

extend beyond the airline industry.

The empirical work relies on US Department of Transportation data showing the daily

operations of thousands of commercial aircraft. These data allow computation of flight and

ground buffers over an aircraft’s operating day, which are then related to exogenous explanatory

factors suggested by the model. For example, one set of regressions relates the magnitude of

the flight buffer to the standard deviation of operating times for a particular flight (computed

across the months of the sample for that flight). The empirical work provides confirmation

of some of the hypotheses suggested by the model while providing general insight into the

determinants of flight and ground buffers.

The paper is related to several strands of previous work. Earlier papers in operations

research, including Deshpande and Arikan (2012) and Arikan, Deshpande and Sohoni (2013),

present simple models of the choice of flight buffers, noting the similarity to the classic newsven-

dor problem of Whitin (1955) (a flight’s early (late) arrival is analogous to a vendor ending up

with a surplus (shortage) of newspapers). Deshpande and Arikan (2012) consider US airlines

and use the newsvendor approach to estimate the airlines’ ratios of earliness to lateness costs.

They show that flight buffer choices depend on carrier types, route market shares, and route

characteristics. Arikan, Deshpande and Sohoni (2013) develop schedule robustness measures

for airline networks and use them to show how US carriers use flight and ground buffers to

absorb delay propagation. Zhang, Salant and Van Mieghem (2018) present an analysis related

to those of Deshpande and Arikan (2012) and Arikan, Deshpande and Sohoni (2013). They

show that the historical evolution of flight durations cannot explain increases in scheduled
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ground and flight times in the US and conclude that these increases instead have strategic

motivations.

In the economics literature, Wang (2015) offers a different theoretical approach to the choice

of ground buffers, relating this choice to the level of competition while providing empirical

evidence of this link. In other empirical work by economists, Forbes Lederman and Yuan

(2019) use a much larger dataset to confirm the earlier finding of Shumsky (1993) showing

that US carriers have added schedule padding (buffer time) over the years to improve their

on-time performance. Forbes, Lederman and Wither (2019) show that this effect is stronger

when airlines are large enough for required reporting of on-time performance, a criterion that

excludes many regional carriers.2 See also Hao and Hansen (2014), Kang and Hansen (2017),

and Sohoni, Lee and Klabjan (2011) for related studies. Other studies by economists, which

are not directly linked to our work, show the connection between market structure (mainly

competition) and on-time performance (see, for example, Mazzeo (2003) and Prince and Simon

(2015)).

The plan of the paper is as follows. Section 2 analyzes choice of the flight buffer in an

introductory model with just one flight, where delay propagation is not an issue, and section

3 analyzes the two-flight model. Section 4 presents numerical examples, while section 5 offers

a model extension that incorporates connecting passengers. Section 6 presents the empirical

work, and section 7 offers conclusions.

2. Buffer choice for a single flight

The analysis starts by considering the buffer choice for a situation where the airline operates

only a single flight, denoted flight 1. After this analysis is complete, the focus turns to the

case where two flights are operated. While delay propagation is not an issue in the single-flight

case, it is a crucial factor when two flights are operated.

Flight 1 departs at time 0 and has an uncertain duration. If no outside influences affect the

flight’s operation, its duration is given by m1. Outside influences such as weather, mechanical

issues, and unanticipated congestion can cause the flight duration to differ from m1, with the

2 For analysis of the incentives for integration of regional and mainline carriers and its impacts, see Forbes
and Lederman (2009, 2010).
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actual duration equal to m1+ε1, where ε1 is a continuous random variable with support [ε1, ε1].

Bad weather would lead to a positive value for ε1, while a strong tail wind would lead to a

negative value. Note that while the congestion effect is partly random, appearing in ε1, a

persistently high level of airport congestion would lead to a large value for m1, the expected

flight duration.

In scheduling the flight’s arrival time, the presence of this random term will lead the airline

include a flight buffer, denoted b1, which is added to m1. The scheduled arrival time of the

flight is thus ta1 = m1 + b1, whereas the actual arrival time, which captures the random effect,

is t̂a1 = m1 + ε1. The flight is late in arriving if t̂a1 > ta1, or if ε1 > b1, and it is early if

ε1 < b1. Passengers dislike being late or early, valuing a minute of late time by the amount x

and valuing a minute of early time by the amount y. Therefore, if the flight is late, it generates

disutility equal to x(ε1 − b1), whereas disutility is y(b1 − ε1) if the flight is early.

The probability that flight 1 is late is equal to the probability that ε1 exceeds b1, which is

given by

Pr(̂ta1 > ta1) =

∫ ε1

b1

f1(ε1)dε1 = 1 − F1(b1), (1)

where f1 is the density and F1 the cumulative distribution function of ε1. Conversely, the

probability of an early arrival is F1(b1). The passenger’s expected disutility from earliness or

lateness is equal to

Ω1 = x

∫ ε1

b1

(ε1 − b1)f1(ε1)dε1 + y

∫ b1

ε
1

(b1 − ε1)f1(ε1)dε1, (2)

where the first integral captures lateness and the second captures earliness. Passenger disutility

from late and early arrivals affects fare revenue, and assuming that the airline seeks to maximize

profit, it takes into account this disutility.3

3 Letting G denote the benefit from travel, the net benefit from a flight, denoted V , is equal to G minus the
distutility expression in (2). Letting C denote expenditure on a nontravel good, overall passenger utility equals
U = C + V = Y − P + V, where Y is income and P is the fare for travel. The airline sets the fare at a level
that makes the consumer indifferent between traveling and not traveling, which yields utility Y (in this case
V − P = 0). The fare for a flight is then equal to V , or G minus (2), and assuming that the passenger count
is normalized to 1, fare revenue equals this expression.
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But the airline also incurs operating costs from scheduled flight time and ground time.

Scheduled flight costs include expenditures on fuel and crew salaries, while ground costs consist

mainly of gate rental costs. To facilitate comparison with the two-flight model, suppose that

the airline has leased the aircraft for a fixed period T , with scheduled flight time equal to

m1 +b1 and ground time equal to T − (m1+b1). The leasing cost is fixed, but letting cf denote

the cost per minute of scheduled flight time and cg denote the cost of ground time, total

operating costs are cf (m1 + b1) + cg(T − (m1 + b1)). The goal of the profit-maximizing airline

is to minimize the sum of this expression and Ω1 by choice of b1, which (ignoring constant

terms) means minimizing Ω1 from (2) plus b1(cf − cg).

The first-order condition for this minimization problem is

∂Ω

∂b1

= −[1 − F1(b1)]x + F1(b1)y + cf − cg

= (x + y)

[
F1(b1) −

x

x + y

]
+ cf − cg = 0, (3)

and the second-order condition, which requires (x+y)f1(b1) > 0, is satisfied. Rearranging (3),

the optimal buffer, denoted b∗1, satisfies

F1(b
∗

1) =
x + cg − cf

x + y
, (4)

a formula similar to one derived by Deshpande and Arikan (2012). Differentiation of (4) yields

∂b∗1
∂x

> 0,
∂b∗1
∂y

< 0,
∂b∗1
∂cg

> 0,
∂b∗1
∂cf

< 0. (5)

with a greater disutility from lateness raising the buffer (thus reducing the chance of lateness)

and a greater disutility from earliness reducing it. Similarly, a higher cf (cg) reduces (increases)

b1.

If the distribution of ε1 is symmetric around zero, then F1(0) = 1/2. As a result, if

(x+cg −cf)/(x+y) = 1/2, then b∗1 = 0. Rearranging, b∗1 > (<) 0 will then hold as (x−y)/2 >

(<) cf −cg in this symmetric case. If x is much larger than y, as seems realistic, and cf is close

to cg, then b∗1 is positive. This conclusion makes sense given that a much greater disutility from

a late arrival will lead the airline to lessen the chance of this outcome via a positive buffer.
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3. The two-flight model

3.1. The setup

The airline is now assumed to operate two flights using the same aircraft, so that a delay

for flight 1 can cause lateness of flight 2. While the existence of two flights introduces the

possibility that some passengers connect from one flight to another, we assume initially that

connections are absent, showing later in the paper how they affect the analysis.

Following the single-flight assumptions, m2 denotes the undisrupted flight time for flight 2,

with the actual flight time given by m2 + ε2. The random term ε2 has density f2, cumulative

distribution function F2, and support [ε2, ε2]. The flight buffers are b1 and b2, so that the

scheduled arrival times of flights 1 and 2 are ta1 = m1 + b1 and ta2 = td2 +m2 + b2, where td2 is

flight 2’s scheduled departure time. The scheduled aircraft ground time is denoted tg, and the

ground buffer, given by bg = tg − tg, is the excess of ground time over the minimum feasible

aircraft turnaround time, denoted tg. The size of the ground buffer is thus set by choice of tg.

The scheduled departure time of flight 2 is then td2 = ta1 + tg = m1 + b1 + tg, and the flight’s

scheduled arrival time is

ta2 = td2 + m2 + b2 = ta1 + tg + m2 + b2 = m1 + b1 + tg + m2 + b2. (6)

As before, the actual arrival time of flight 1 is t̂a1 = m1 + ε1. The actual arrival time of

flight 2 equals t̂a2 = t̂d2 + m2 + ε2, where t̂d2 is the actual departure time of flight 2. To find

t̂d2, note that if flight 1 is late in arriving, then the ground time will be reduced below the

scheduled time tg in an attempt to prevent delay propagation via late departure (and possible

late arrival) of flight 2. However, ground time cannot be reduced below the minimum feasible

time, equal to tg. Therefore, the actual departure time of flight 2 is given by

t̂d2 = max{m1 + ε1 + tg, td2} = max{m1 + ε1 + tg, m1 + b1 + tg}. (7)

Flight 2 departs on time if ε1 + tg < b1 + tg or

ε1 < b1 + tg − tg = b1 + bg. (8)
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Note that satisfaction of (8) is ensured if flight 1 is early, or if ε1 < b1. But the inequality can

also be satisfied when flight 1 is late provided that it is not too late. Using (8), the probability

of an on-time departure for flight 2 is F1(b1 + bg), with late departure (which reverses the

inequality in (8)) having probability 1 − F1(b1 + bg).

The formula for t̂d2 allows derivation of conditions for late arrival of flight 2. Using (6),

flight 2 is late in arriving when

t̂a2 = t̂d2 + m2 + ε2 > ta2 = m1 + b1 + tg + m2 + b2. (9)

If flight 2 departs on time, so that t̂d2 = m1 + b1 + tg from (7), then (substituting in (9)), it

arrives late when

ε2 > b2, (10)

an outcome that has probability 1−F2(b2) (early arrival occurs when (10) is reversed and has

probability F2(b2)). If flight 2 departs late, so that t̂d2 = m1 + ε1 + tg, then (substituting in

(9)), it arrives late when

ε1 + ε2 > b1 + b2 + bg, or

ε2 > b1 + b2 + bg − ε1. (11)

With late departure, flight 2 arrives early when (11) is reversed.

Table 1 summarizes the preceding information, while showing flight 2’s arrival delay. A

key observation from the table is that when flight 2’s departure is delayed, its arrival delay

depends on the sum b1+b2+bg. Therefore, the ground buffer affects delay by altering this sum,

conditional on a late departure for flight 2. However, bg also affects whether a late departure

occurs via the direction of the inequality in the second column of the table. As will be seen, the

overall impact of bg on the airline’s objective function operates through both these channels.

Using (11) and the reverse of inequality (8), the probability of late departure and late
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arrival for flight 2 is given by

Pr(̂ta2 > ta2 ∩ t̂d2 > td2) =

∫ ε1

ε1=b1+bg

∫ ε2

ε2=b1+b2+bg−ε1

f1(ε1)f2(ε2)dε2dε1. (12)

Similarly, using the reverse of inequality (11) and the reverse of (8), the probability of late

departure and early arrival for flight 2 is

Pr(̂ta2 < ta2 ∩ t̂d2 > td2) =

∫ ε1

ε1=b1+bg

∫ b1+b2+bg−ε1

ε2=ε
2

f1(ε1)f2(ε2)dε2dε1. (13)

Combining all this information, the probability of a late arrival for flight 2 is given by

Pr(̂ta2 > ta2) =

Pr(̂ta2 > ta2 | t̂d2 = td2) Pr(̂td2 = td2) + Pr(̂ta2 > ta2 ∩ t̂d2 > td2) =

[1 − F2(b2)]F1(b1 + bg) +

∫ ε1

ε1=b1+bg

∫ ε2

ε2=b1+b2+bg−ε1

f1(ε1)f2(ε2)dε2dε1. (14)

Note that a conditional probability can be used in the first half of (14) because whether flight

2 is late conditional on an on-time departure (which depends only on ε2) is independent of

whether the departure is on-time (which depends only on ε1). The absence of this kind of

independence when flight 2 is late requires the different kind of expression in last half of (14).

Similarly, the probability of early arrival for flight 2 is given by

Pr(̂ta2 < ta2) =

Pr(̂ta2 < ta2 | t̂d2 = td2) Pr(̂td2 = td2) + Pr(̂ta2 < ta2 ∩ t̂d2 > td2) =

F2(b2)[1 − F1(b1 + bg)] +

∫ ε1

ε1=b1+bg

∫ b1+b2+bg−ε1

ε2=ε
2

f1(ε1)f2(ε2)dε2dε1. (15)
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3.2. The airline’s objective function

The disutility for passengers of flight 1 is again given by in Ω1 in (2). The disutility from

late arrival of flight 2 is given by

Ω2,late = xF1(b1 + bg)

∫ ε2

b2

(ε2 − b2)f2(ε2)dε2 +

x

∫ ε1

ε1=b1+bg

∫ ε2

ε2=b1+b2+bg−ε1

[ε1 + ε2 − (b1 + b2 + bg)]f1(ε1)f2(ε2)dε2dε1. (16)

The first half of (16) captures disutility from a late arrival when flight 2 departs on time (note

that 1 − F2 in (14) is replaced by the integral). The rest of (16) captures late disutility when

the departure is late (note that the bracketed term is added inside the integrand in (14)).

Similarly, the disutility from early arrival of flight 2 is

Ω2,early = yF1(b1 + bg)

∫ b2

ε
2

(b2 − ε2)f2(ε2)dε2

+ y

∫ ε1

ε1=b1+bg

∫ b1+b2+bg−ε1

ε2=ε
2

[b1 + b2 + bg − (ε1 + ε2)]f1(ε1)f2(ε2)dε2dε1. (17)

The passenger-disutility portion of the airline’s objective function, denoted by Ω, is given by

the sum of (2), (16), and (17):

Ω = Ω1 + Ω2,late + Ω2,early . (18)

The flight buffer costs must be added to Ω along with the cost of ground time, with the

airline seeking to minimize Ω plus cf b1 + cf b2 + cgbg. The derivatives of Ω with respect to bg,

b1 and b2 are computed in the appendix. Adding the relevant buffer cost to these derivatives

and setting the resulting expressions equal to zero yields the following first-order conditions:
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∂Ω

∂bg
+ cg =

(x + y)

∫ ε1

ε1=b1+bg

[
F2(b1 + b2 + bg − ε1)) −

x

x + y

]
f1(ε1)dε1 + cg = 0 (19)

∂Ω

∂b1

+ cf =
∂Ω

∂bg
+ (x + y)

[
F1(b1) −

x

x + y

]
+ cf = 0 (20)

∂Ω

∂b2

+ cf =
∂Ω

∂bg
+ (x + y)F1(b1 + bg)

[
F2(b2) −

x

x + y

]
+ cf = 0. (21)

Note in (20) and (21) that ∂Ω/∂b1 and ∂Ω/∂b2 are equal to ∂Ω/∂bg plus the remaining terms

in the relevant equation.

3.3. Characterizing the optimum

The immediate implication of the first-order conditions is that the flight buffer b1 has the

same value as in the single-flight model. This conclusion can seen by using (19) to substitute

−cg in place of ∂Ω/∂bg in (20), which yields a condition that matches (3) from the single-flight

model. With flight 1’s buffer set as if the flight were operating in isolation, the buffer therefore

plays no role in mitigating delay propagation. Thus,

Proposition 1. Responsibility for mitigation of delay propagation falls only on the
ground buffer and the flight buffer for flight 2.

The lack of a delay-propagation role for flight 1’s buffer makes sense. Even though b1 and

the ground buffer are, in effect, perfect substitutes in addressing delay propagation, use of

the ground buffer instead of the flight buffer does not distort the balance between late and

early disutilities for flight 1, making it the preferred tool. However, suppose the ground buffer

were somehow constrained below its optimal value, due to a shortage of airport gate capacity,

for example, which could be caused by hoarding of gates by a dominant airline (see Ciliberto

and Williams (2010) for empirical evidence). In this case, b1 would help to address delay

propagation along with the other buffers. Such a constraint would make ∂Ω/∂bg in (20) less

than −cg, causing b1 to rise above its single-flight value, thus addressing delay propagation.
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To see how the delay-propagation responsibility is apportioned between flight 2’s buffer

and the ground buffer, it is useful to first consider the the unrealistic case where cg = 0, with

ground time being costless. When cg = 0, F1(b1 + bg) = 1 must hold at the optimum, so that

the probability of late departure for flight 2 (which requires ε1 > b1 + bg) equals zero. Suppose

to the contrary that F1(b1 + bg) < 1 is satisfied along with the first-order conditions. Then,

from (20), F2(b2) − x/(x + y) = 0 must hold. But since F2(b1 + b2 + bg − ε) ≤ F2(b2) holds

over the range of integration in (19), which is nonempty given the maintained assumption, it

follows that

∂Ω

∂bg
< (x + y)

[
F2(b2) −

x

x + y

]∫ ε1

ε1=b1+bg

f1(ε1)dε1

= (x + y)

[
F2(b2) −

x

x + y

]
[1 − F1(b1 + bg)] = 0. (22)

This inequality contradicts the assumption that (19) equals zero, ruling out the premise that

F1(b1 + bg) < 1. Therefore, the ground buffer bg is set at a value large enough to eliminate the

chance of late departure for flight 2, so that F1(b1 + bg) = 1.4

Then, setting F1(b1 + bg) in (21) equal to 1 and replacing ∂Ω/∂bg with −cg, (21) matches

the optimality condition (3) for the single-flight model, implying that the optimal b2 equals

the single-flight value. Thus, when cg = 0, the flight buffer for flight 2 is set as if the flight

were operating in isolation, with delay propagation not an issue. Since the same conclusion

has already been established for flight 1, we can state

Proposition 2. When ground time is costless, the ground buffer does all the work in
mitigating delay propagation, fully eliminating it, with no contribution from flight 2’s
buffer.

Now consider the realistic case where the cost of ground time is positive, with cg > 0.

Setting (19) equal to zero now implies that the integral must be negative, which means that

4 It should be noted that F1(b1 + bg) = 1 does not yield a unique solution for bg given that any bg value
satisfying b1 + bg ≥ ε1 makes the equality true. However, replacing b1 by b∗

1
, the airline might be assumed

to choose the smallest bg satisfying the equality, so that b∗
1

+ bg = ε1, yielding a unique solution given by

b∗g = ε1 − b∗
1
.
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the lower limit of integration cannot exceed the upper limit as before, leading to a zero value

for the integral. In other words, F (b1 + bg) must now be less than rather than equal to 1,

indicating that there is a chance of late departure for flight 2.

In this case, the mitigation of delay propagation is apportioned between the ground buffer

and flight 2’s buffer, with the exact apportionment depending on the relationship between cf

and cg. Suppose first that cf < cg, so that the cost of the flight buffer is less than that of the

ground buffer. Letting ** denote optimal values in the two flight model, it follows from (20)

that F2(b
∗∗

2 )−x/(x+y) > 0 must hold. Since F1(b
∗∗

1 +b∗∗g ) < 1, (21) and F2(b
∗∗

2 )−x/(x+y) > 0

imply

0 = (x + y)F1(b
∗∗

1 + b∗∗g )

[
F2(b

∗∗

2 ) −
x

x + y

]
+ cf − cg

< (x + y)

[
F2(b

∗∗

2 ) −
x

x + y

]
+ cf − cg (23)

(recall b∗∗1 = b∗1). With the last line of (23) thus positive, it follows that b∗∗2 is larger than b∗2,

the single-flight value of b2, which makes the second line equal to zero. Since flight 2’s buffer

is thus larger than the value it would assume if the flight were operating in isolation, it follows

that flight 2’s buffer assists the ground buffer in addressing delay propagation. This conclusion

is due to the relative cheapness of the flight buffer, which encourages its use in addressing

propagation.

In the reverse case where cf > cg, reversal of the above argument yields b∗∗2 < b∗2, so that

flight 2’s buffer is less than its single-flight value. Now, relative cheapness of the ground buffer

means that it takes extra responsibility in addressing delay propagation, causing flight 2’s

buffer to be reduced below its single-flight value. This adjustment means that the flight buffer

now actually contributes to delay propagation, but this effect is offset by the greater role of the

ground buffer. Finally, when cf = cg, flight 2’s buffer equals its single-flight value (b∗∗2 = b∗2),

so that it neither helps nor offsets the ground buffer in mitigating delay propagation. With

the buffers equally costly, the nondistorting ground buffer is thus set to do all the work in

addressing delay propagation, although the chance of propagation is not reduced to zero given

the costliness of the buffer. Summarizing yields
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Proposition 3. When cg > 0, mitigation of delay propagation is apportioned between
the ground buffer and flight 2’s buffer. When cf = cg, the ground buffer alone addresses
delay propagation (while not fully eliminating it), with flight 2’s buffer set at its single-
flight value. When cf < (>) cg flight 2’s buffer contributes to (partly offsets) the ground
buffer’s mitigation of delay propagation, taking a value above (below) its single-flight
value.

The results yield a further implication in the case where the distributions of the random

flight-duration terms are equal, allowing the 1 and 2 subscripts to be removed from the F

functions. With common F ’s, the single-flight values of b1 and b2 are the same. Then, the fact

that b2 is greater than (less than) the common single-flight value as cf < (>) cg means that

flight 2’s buffer is greater than (less than) flight 1’s buffer, which always equals the common

single-flight value, when cf < (>) cg. In other words, b∗∗2 > (<) b∗∗1 holds as cf < (>) cg. The

reason is that flight 1’s buffer plays no role in addressing delay propagation, while flight 2’s

buffer contributes to (borrows from) the ground buffer’s delay-mitigation effect as cf < (>) cg.

The second-order conditions for the optimization problem have not been mentioned so far.

In the appendix, it is shown that, that if cf ≥ cg, then Ω is strictly convex in b1 and b2 at the

optimum, so that conditional on bg, flight buffers satisfying the first-order conditions based on

(20) and (21) yield a local minimum of Ω. However, it is not possible to establish convexity of

Ω in all three buffers, a condition that must be assumed to hold.

With b1 equal to its single-flight value generally and b2 taking this value in the cg = 0

and cf = cg cases, comparative statics for the buffers are then given by (5). Otherwise,

comparative-static results are not available except in the case where cf = cg. Then, (20)

and (21) yield Fi(b
∗

i ) = x/(x + y), i = 1, 2, so that the flight buffers are increasing in x and

decreasing in y (a result that holds generally for b1). Counterintuitively, however, the b∗i values

are completely independent of the common level of the buffer costs when cf = cg. It can be

shown, though, that b∗g is decreasing in the common buffer cost, so that the ground buffer falls

when both buffer costs increase in parallel fashion. In addition, it can be shown that b∗g is

increasing in x and decreasing and y.5

5 The first conclusion follows because (19) is increasing in bg and ∂2Ω/∂b2

g is easily shown to be positive when

cf = cg. The second conclusion follows because (19) can be shown to be decreasing in x and increasing in y.
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4. Numerical examples

Figures 2–5 present numerical examples for the case of costly buffers. Since some of the

comparative-static effects of x and y and of cf and cg have been derived analytically, the

analysis focuses on the effects of greater variability in the random terms ε1 and ε2. To generate

the results, ε1 and ε2 are assumed to follow independent normal distributions with mean zero.

Their standard deviations start out equal, satisfying σ1 = σ2 = 0.0. Then, each of the σ’s

increases up to 1.5 holding the other σ fixed, allowing the effect of greater flight-time variability

for flights 1 and 2 to be appraised separately. Next, the σ’s are set at a common value and

increased simultaneously from 0.0 up to 1.5, allowing the effects of greater overall flight-time

variability to be appraised.

Among the other parameters, the minimum turnaround time tg is set at 0.5 hours, and

the lateness and earliness disutilities are set at x = 1.0 and y = 0.1, with y realistically much

smaller than x. The buffer costs are initially set at cf = 0.05 and cg = 0.01. For computational

reasons, the infinite upper and lower limits of the normal distributions are replaced by 10 and

−10 respectively. With σ’s taking the values mentioned above, the probability that ε1 or ε2

lies outside this range is virtually zero, making this restriction inconsequential. It should be

noted that, given the stylized nature of the model, realism in the choice of parameter values is

not possible, and the qualitative (rather than quantitative) effects of parameters changes are

of interest.

Figure 2 shows the effect of increasing σ1 from 0.0 to 1.5 with σ2 fixed at 0.5. As can be

seen, the flight buffer b1 rises as σ1 increases, a natural finding, while the ground buffer bg

also rises. The buffer b2 for flight 2 appears to be constant in the figure, but it increases very

slightly with σ1. The conclusion, therefore, is that b1 and bg alone do almost all the work in

absorbing the greater chance of an arrival delay and subsequent delay propagation that follows

from an increase in flight-time variability for flight 1.

Figure 3 shows the effect of increasing σ2 from 0.0 to 1.5 with σ1 fixed at 0.5. Now b2

rises, while b1 is constant (note that the b1 solution from (25) is independent of σ2). However,

the ground buffer bg is decreasing in σ2, apparently because greater flight-time variability for
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flight 2 makes the ground buffer less effective at preventing a late arrival.6

Figure 4 shows the effect of simultaneously increasing σ1 and σ2 from 0.0 to 1.5. Both

flight buffers naturally increase with the common σ value, and although the figure makes the

buffers look equal in size, b1 is slightly larger than b2, as predicted. In addition, bg is increasing

in the common σ value. However, Figure 5 shows that the behavior of the ground buffer is

reversed when cf = 0.08 and cg = 0.03, falling as the common σ value increases (matching

the outcome in Figure 2). Figure 5 shows an additional point that does not arise in the other

cases. In particular, bg becomes negative as σ increases, showing that the ground time is set

below the minimum feasible turnaround time tg. Nothing in the model prevents this outcome,

which need not lead to late departure for flight 2 if flight 1’s buffer is sufficiently large. In the

data discussed below, however, the outcome is exceedingly rare, accounting for only 0.2% of

the observations.

The implication is that the effect of flight-time variability on the ground buffer could be

positive or negative depending on the magnitudes of the other parameters. If the ground buffer

is sufficiently cheap compared to the flight buffers (cg = 0.01 vs. cf = 0.05), it is used along

with the flight buffers to address the greater threat of delay propagation resulting from higher

flight-time variability (Figure 4). But when the ground-buffer cost is larger as a proportion of

cf (cg = 0.03 vs. cf = 0.08), then the flight buffers partly supplant the ground buffer as the

threat of delay propagation rises, with bg falling (Figure 5).

5. Adding passenger connections

So far the analysis has suppressed the possibility that some passengers connect from flight 1

to flight 2. These passengers would travel from the origin city of flight 1 to flight 2’s destination

city, making a connecting trip in the absence of nonstop service between the two cities. This

type of connecting travel, however, has little effect on the model. Assuming that a share α

of passengers on both flights are traveling nonstop while 1 − α are connecting, the airline’s

objective function would be altered in a straightforward way. In (18), Ω would be multiplied

6 Alternatively, recall that, conditional on delay propagation, the second flight’s arrival delay depends on the
sum of buffer times b1 + b2 + bg (see Table 1). If the second flight’s buffer increases because of an increase in
σ1, the result is an increase in the sum of buffer times. The ground buffer is then reduced to moderate the
increase in this sum.
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by α and then added to the term (1 − α)(Ω2,late + Ω2,early), which represents the late and

early disutilities for connecting passengers, who care only about their arrival time at flight

2’s destination. Adding the two expressions, the disutility portion of the objective function

reduces to (18) with α multiplying Ω1.

A more interesting and complex connecting scenario arises if two additional flights, again

using a single aircraft, are added to the model. The turnaround city for these flights, which

are denoted 1B and 2B, is the same as for the original flights, now denoted 1A and 2A. This

common turnaround city can thus be viewed as a hub, which is a destination in its own right

but also supports passenger connections. Connecting passengers now include those traveling

from flight 1A’s origin (OA) to flight 2B’s destination (DB) as well as those traveling from OB

(flight 1B’s origin) to DA (flight 1A’s destination).7

If flight 1A arrives after the departure of flight 2B, passengers traveling from OA to DB miss

their connection, suffering disutility V , with same conclusion applying to passengers connecting

from flight 1B to flight 2A. Note that since connecting passengers using flights 1A and 2A (or

1B and 2B) do not change planes, a missed connection is not possible for them.

The portion of the airline’s objective function applying to nonstop trips and same-plane

connecting trips is given by adding the Ω’s for the A and B flights, with the previous α modifica-

tion incorporated.8 The part of the objective function that applies to the remaining connecting

passengers makes use of the probability of a missed connection. For 1A-2B connections, this

probability is PAB ≡ Pr(m1 + ε1A > t̂d2A), using (7) and adding an A subscript, while for

1B-2A connections, the probability is given by the analogous expression PBA. In the previous

expression, m1 + ε1A is the arrival time of flight 1, and a missed connection occurs when it is

greater than flight 2’s departure time.

Using PAB and PBA, the remaining (disutility) part of the objective function is given by

7 Symmetry holds, with corresponding flight distances equal and with flights 1A and 1B departing at a
common time.

8 The relevant expression is αΩ1A +Ω2A,late +Ω2A,early +αΩ1B +Ω2B,late +Ω2B,early . Note that the buffers
inside the Ω expressions also acquire A and B subscripts, although their equilibrium values will be the same
given symmetry.
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1 − α times

PABV + (1−PAB)(Ω2A,late + Ω2A,early) + PBAV + (1−PBA)(Ω2B,late + Ω2B,early). (24)

Note that for connecting passengers who make, rather miss, their connection, the early-late

disutility is the same as for nonstop passengers on either flight 2A or 2B.

The second and fourth (multiplicative) terms in (24) make the objective function consid-

erably more complex than for a model with only two flights. Given the challenging nature of

resulting analysis, persuing it is beyond the scope of the paper. Intuitively, however, avoid-

ance of missed flight connections provides an additional reason beyond mitigation of delay

propagation to increase the flight buffers for flights 1A and 1B as well as the corresponding

ground buffers. Despite the absence of concrete conclusions beyond this simple intuition, it

is interesting nevetheless to see the logic under which flight connections can be added to the

model.9

6. Empirical Analysis

This section aims to test the predictions of the theoretical model using US data that tracks

the flights of individual commercial aircraft. The data allow computation of the flight buffer

for a particular flight, which is set equal to scheduled flight time minus the average flight

time on the route. The data also facilitate computation of the ground buffer, which equals

scheduled ground time minus the minimum observed ground time at the airport (details on

both calculations are presented below).

One of the model’s predictions, which comes from the simulation analysis, is that greater

variability in flight time should lead to increases in both flight buffers, while the effect on the

ground buffer is ambiguous. We start by measuring this variability indirectly via several sets

of variables. The first set is a collection of month dummy variables, which control for weather

9 A different model exploring missed connections would proceed as follows, returning to the two-flight frame-
work but assuming the flights use different aircraft (so that delay propagation is absent). If flight 1 arrives
after the departure of flight 2, then connecting passengers miss their connection, again generating disutility V .
Now, there is no ground buffer per se, but the airline chooses flight 2’s scheduled departure with an eye toward
avoiding missed connections, assuming that a later departure imposes the same costs as a longer ground buffer.
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conditions. The expectation is that weather variability and thus the variability of flight times

are greatest in the winter months, when snowstorms often disrupt airport operations. In

addition, flights that operate between congested endpoints may experience greater flight-time

variability due to the randomness of congestion’s impact. Since the same variability may

arise in operations to or from hub airports, which are often congested, the regressions include

congestion and hub measures. The flight buffer regressions have separate congestion and hub

variables for the origin and destination, while the ground buffer regressions have single values

for the “turnaround” airport (they also include a dummy for slot-controlled airports, which

are prone to congestion). Under a second approach that is more explicity linked to the model,

flight time variability is measured by the standard deviation of flight times, with the month

dummies and other congestion proxies dropped from the regressions.

A second prediction is that the position of a flight in the day’s flight sequence affects the

flight buffer. When buffer costs are positive, flight 2 has a longer buffer than flight 1 when

cf < cg, with the relationship reversed when cf > cg. To test for such a sequencing effect

we include time-of-day departure variables (morning, evening, etc.) along with variables that

measure a flight’s exact position in the sequence of an aircraft’s daily flights.

A third prediction (which comes from the cg = 0 case) is that a constraint that keeps

the ground buffer below its optimal value will lead to longer flight buffers, thus generating a

negative correlation between the magnitudes of flight and ground buffers. This prediction is

tested via simple correlation analysis.

A fourth prediction (which comes from the cg = 0 and cf = cg cases) is that routes where

the lateness disutility x is large will tend to have long flight buffers.

6.1. Data collection and empirical variables

The sample is obtained from the U.S. Department of Transportation (DOT) and covers

the US domestic airline market for the year 2018. We mainly rely on the ‘Marketing Carrier

On-Time Performance’ dataset, which for each aircraft, uniquely identified by its tail number,

contains information on the carrier operating the flight, the origin and destination, the depar-

ture date, the scheduled departure and arrival times, the actual departure and arrival times,
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and the taxi-in and taxi-out times.10 We exclude flights that are canceled or diverted and

flights from/to US Commonwealth areas and Territories.

The aim of our empirical analysis is to investigate the determinants of the two choice

variables described in our theoretical model: the flight buffer and the ground buffer. The flight

buffer is obtained as follows. First, for any flight i, where i defines the sequence of daily flights

operated by a given aircraft during the day, we measure the actual flight time, which is the

sum of the taxi-out, airborne and taxi-in times (equivalent to the so-called ‘block-time’). Using

the model notation, this actual flight time is given by m̂i = t̂ai − t̂di, the difference between

actual arrival and departure times. We then average m̂i across all aircraft of flight i’s type

flying the same route to obtain m, the aircraft/route average flight time (the route subscript

is suppressed for simplicity). The flight buffer is given by the difference between flight i’s

scheduled flight time mi and the average actual flight time of the same aircraft type flying the

same route: bi = mi − m.

To calculate the ground buffer, we first compute the actual ground time that separates

flight k and flight k + 1 in the sequence of flights operated by the observed aircraft during

the day: t̂kg = t̂d,k+1 − t̂ak. Then we calculate the minimum turnaround time as the shortest

actual ground time observed across all aircraft of a given type using the turnaround airport.

The ground buffer for an aircraft turnaround is obtained by subtracting this minimum feasible

ground time from the scheduled ground time.

We initially restrict the analysis to those aircraft that only operate two flights a day, as in

the model. This restriction predominantly limits the focus to coast-to-coast flights or flights

to/from Alaska. However, we also present results when the sample is expanded to include

aircraft flying more than two flights in a day.

Negative values of the flight and ground buffers are technically possible. For the ground

buffer, negativity occurs in the rare cases when the shortest actual ground time is larger than

10 The novelty of this dataset relative to the ‘Reporting Carrier On-Time Performance’ dataset, previously used
in Forbes (2008) and other studies, is that it distinguishes whether the flight is operated by the reporting carrier
or by its regional codeshare partners. Both datasets are downloadable at www.transtats.bts.gov/Tables.asp
?DB ID=120&DB Name=Airline%20On-Time%%20Performance%20Data&DB Short Name=On-Time. However the
Marketing Carrier On-Time Performance dataset only starts with January 2018, while the Reporting Carrier
On-Time Performance dates back to 1987.

20



the scheduled ground time. Negative flight buffers are more frequent because they are obtained

by subtracting an average value. In order to limit this phenomenon, we require that the number

of observations used to obtain the flight and ground buffers must be at least equal to 30.

6.2. Empirical approach

Our empirical analysis is based on two sets of regressions: one for flight buffers and another

for ground buffers. The standard errors are clustered by route and month in order to allow the

residuals of different aircraft (possibly of different carriers) flying on the same route, during

the same month, to be correlated.

The general equation to be estimated is:

Bufferjcodt = Xjcodtβ + ηcod + ujcodt (25)

where Buffer is either the flight buffer or the ground buffer. The subscript j identifies the

aircraft tail number, c the carrier, o the origin airport, d the destination airport (or the

turnaround airport in the ground-buffer regression), and t the time. The term ηcod represents

an airline-airport fixed effect,11 and ujcodt is the regression error, assumed i.i.d. with zero

mean. The independent variables are denoted by X, and they control for different aspects of

the buffer decision.

These variables, which are described in Table 2, are mainly constructed from the ‘Marketing

Carrier On-Time Performance’ dataset and can be broadly classified as weather, airport, airline

and flight-specific variables. In addition to the month dummies, the congestion, hub, and slot-

control variables, and the time-of-day and flight sequencing variables discussed above, Table

2 includes a number of other covariates. We include airline dummies, with American Airlines

serving as the default carrier, as well as dummies for regional and low-cost carriers. Since we

11 The airport od fixed effects are not only relevant in the flight-buffer regression, but also in the ground-buffer
regression. Consider for example two flights that share the same turnaround airport and aircraft type, but
that originate from different airports. These flights have the same minimum actual ground time, but they may
have different load factors depending on the strength of demand and other forces. The potential difference in
the load factor may affect the turnaround time and hence the ground buffer set by the airline. The inclusion of
originating airport fixed effects (the origin airport of the previous flight) aims to control for this unobservable
characteristic.
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observe both the operating and marketing carrier (i.e., the ticketing carrier), we code flights

according to the ticketing carrier but set the dummy variable indicating a regional carrier equal

to 1 if the flight is operated by such a carrier under a major carrier’s code.

Low-cost carriers are well-known for their faster turnarounds, which should be reflected in

shorter ground buffers, and other carrier-specific differences may emerge in the estimation. The

flight-buffer regressions also include the distance of the flight and the number of competitors

on the route. Long buffers are expected for long-distance flights due possible amplification of

factors such as weather that lead to flight-time variability on long flights, while the effect of

competition is unclear a priori. Finally, both the flight- and ground-buffer regressions include

a weekend dummy.

6.3 Flight-buffer regressions

The results of the flight-buffer regression are presented in Table 3. In order to match the

setup of our theoretical model, the regressions in columns (1)–(4) are based on a sample of

aircraft that operate only two flights a day (mainly flying coast-to-coast or to Alaska). We refer

to this sample as ‘two-flight sub-sample’. More specifically, column (1) shows the regression

with the flight buffer of Flight 1 set as dependent variable, column (2) has Flight 2’s flight

buffer as dependent variable, and columns (3) and (4) pool the two flights, with (4) adding

the dummy variable Flight 2 to identify the second flight. The regressions in columns (5)–(7)

remove the restriction to aircraft operating just two flights per day. The corresponding sample,

which we refer to as the ‘unrestricted sample’, consists of aircraft that operate at most 8 flights

in a day.12 Other differences between the regression specifications are discussed below.

Where statistically significant, the monthly dummy coefficients have negative signs, indi-

cating that compared to January, the reference month, flight buffers tend to be shorter in other

months. These results point to a role for weather uncertainty in influencing the flight-buffer

decision. The estimated coefficients suggest that the size of the effect varies with expectations

of bad whether: the flight buffer falls monotonically from March/April until September, which

12 The maximum number of flights operated by a single aircraft observed in the ‘Marketing Carrier On-Time
Performance’ database is 16. However, since operation of 9 or more flights is seldom observed, representing less
than 0.40% of the initial database, these cases are not likely to meet our criterion of at least 30 observations
in the calculation of mi and are therefore excluded from the unrestricted sample.
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is a period of the year generally characterized by good weather conditions and therefore by

less flight-time uncertainty. The flight buffer then starts increasing monotonically, while still

remaining below the January value, until the end of the year. The statistically insignificant

coefficients on February dummy and sometimes the March dummy mean that there is no dif-

ference in flight-buffer choices across the months of January, February and (partially) March.

This result makes sense because January, February and March are winter months that bear

the same bad weather expectations and therefore the same flight-time uncertainty.

In the two-flight sub-sample, the effect of weather uncertainty on the flight buffer decision

quantifies to about 4 to 7 minutes of reduced flight-buffer length during Spring/Summer; see

columns (3) and (4). In the unrestricted sample, this effect is still present, but with a slightly

smaller impact, at about 5 minutes maximum.

The flight-buffer choice is generally different depending on whether the carrier flies from

or to its hub, although the estimated coefficients are not always statistically significant. The

positive effect of Hub destination may be due to the risk that the aircraft is forced to fly

a holding pattern, not being permitted to land because of congestion at the hub. In other

words, because of the greater chance of a holding pattern compared to a flight that is not hub-

bound, extra minutes are added to the flight buffer of a hub-bound flight. Conversely, flights

departing from a hub have shorter buffers because they are likely bound to an uncongested

nonhub destination, as indicated by the negative sign on Hub origin.

When the flight is scheduled to depart or land during a busy time of day, identified by

the number of aircraft departing and landing during the hour of the flight’s takeoff or landing

(variables Congestion origin and Congestion destination, respectively), airlines add extra min-

utes to the flight buffer, irrespective of the hub or non-hub status of the airport. In addition

to the possibility of flying a holding pattern, a flight arriving during a congested period may

need to wait for a gate once it has landed.13

The coefficients of the carrier dummies are quite similar across carriers and regressions.

The only notable difference is the shorter flight buffers of Hawaiian Airlines relative to the other

13 Recall that our measure of flight time is block time, which includes the taxi time along with the airborne
time.
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carriers. This flight-buffer similarity is expected because flying a route with the same aircraft

in practice takes the same time irrespective of the carrier operating the aircraft. Different

results will be observed, however, in the ground-buffer regression, where some carriers have

notably quick scheduled turnarounds.

Regional airlines in the dataset schedule lower flight buffers relative to other carriers,

indicating that these airlines may be keen to maximize aircraft utilization. In addition, while

the negative coefficient for Competitors suggests an airline may want to increase the number

of flights, thus seeking shorter flight buffers, when facing competitors, the estimated coefficient

is insignificant in all but one column of the table.

Disruptions to flight time may be proportional to distance, and the regressions thus show

longer buffers for longer flights. This effect, however, is quantitatively small, on average about

12 seconds per hundred miles flown. As for weekend flights, the buffers for such flights in the

two-flight sub-sample are not statistically different from those of non-weekend flights, although

we observe a positive weekend effect in the restricted sample. Because weekends account for

more than one quarter of total flights, the higher weekend flight buffers might be a reaction

to possible disruptions from higher traffic. However, the magnitude of the weekend effect is

very small: the estimated coefficient shows that the buffer difference between weekend and

non-weekend flights is only a few seconds.

As suggested by the model, extra minutes of flight buffer may be added to later flights in

the day to mitigate delay propagation. We investigate the effects of a flight’s position in the

day’s flight sequence using two alternate approaches. The first approach uses the time-of-day

departure dummies, with early morning being the default period. The second method uses

either the flight-sequence dummies or the Aircraft rotation variable.14

Turning to time-of-day and flight-sequencing effects, the regressions from two-flight sub-

sample show that a flight operating later in the day (afternoon, late afternoon, evening) has a

14 The time-of-day dummies are not used in conjunction with either of the other two variables because they are
almost functionally related. For example, while inclusion of both the time-of-day dummies and flight-sequence
dummies would imply that independent variation is possible for these covariates, the fact that, say, the eighth
flight of the day could never be a morning flight means that such independence is not present. For the same
reason, we do not include the time-of-day dummies in the regressions in columns (1) and (2), given that flights
1 and 2 are necessarily in the first and latter parts of the day, respectively.

24



longer flight buffer than earlier flights, with the difference as large as one minute. While these

results are shown in column (3), column (4) replaces the time-of-day dummies with a Flight

2 dummy. The positive and significant coefficient Flight 2 recapitulates the results of column

(3) by showing that the later of the two flights has a longer buffer. These results conform to

some of the predictions of the model.

Shifting to the unrestricted sample, column (5) contains the time-of-day dummies, and

the results partly match the later-flight premiums seen in column (3). Flights departing in

the late afternoon have longer buffers than flights earlier in the day, although the buffer for

evening flights is no different from the buffer for early-morning departures (the default period).

Therefore, with more flights per day captured in the data, the time-of-day buffer pattern is

somewhat more complex than in the two-flight sub-sample.

Column (6) shows results using flight-sequence dummies in place of the time-of-day dum-

mies, and different implications emerge. With the exception of the negative Flight 3 coefficient,

the pattern is for flights 2 through 5 to have longer buffers than flight 1 (the default), while

flights 7 and 8 have shorter buffers than flight 1. Because of its focus on just two flights, the

model does not generate predictions for the cases covered by the unrestricted sample. But

the empirical pattern appears to show a somewhat different logic than in the two-flight sit-

uation. In particular, delay propagation is apparently addressed through longer buffers for

earlier, rather than later flights. The shortest buffers are for last few flights of the day, given

that the aircraft will soon terminate its daily operations, removing any concern about delay

propagation. Although this pattern is the reverse of the one seen in the two-flight case, it could

well be optimal in a more complex model with a longer flight sequence.

The regression in column (7) shows that this buffer pattern also emerges when the flight

dummy variables are replaced by the continous Aircraft rotation variable, which appears in

quadratic form. The positive sign of the Aircraft rotation coefficient together with the negative

coefficient on the quadratic term point towards an inverse U-shape relationship between the

flight buffer and the rotation variable. In fact, the pattern of the parabola based on the

estimated coefficients in column (7) is perfectly in line with the results of column (6), in which

the set of flight dummies changes sign at Flight 6, as seen in Figure 6. The non-linear effect of
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aircraft rotations on the flight buffer appears to reconcile two opposite forces: the first force

pushes towards longer flight buffers to lessen the risk of delay propagation; the second force

pushes towards shorter flight buffers to maximize aircraft utilization.

6.4. Flight buffer regressions with flight-time variability

As explained above, an alternative approach to investigating the effects of flight-time vari-

ability is to replace the various proxy variables representing variability (the month dummies,

for example) with actual variability measures. The measure we use is the standard deviation

of the actual flight times, computed by route, month and flight number. To match the setup

of the simulation, we only rely on the two-flight sub-sample.

In addition to the month dummies, we exclude the weekend dummy, distance, the airport

congestion variables, and origin and destination airport fixed effects. Recalling that our flight-

time measure is calculated as the sum of the airborne time and taxi time, it follows that airport

congestion will be a determinant of flight-time variability and thus a candidate for exclusion.15

Table 4 reports the results under the new specification, using the same setup as the first

part of Table 3. Note that, because the two-flight sample is used, we include two covariates to

capture flight-time variability: one for the first flight and one for the second flight. These two

variables have a very similar distribution, with mean values of 14.31 and 14.54 and standard

deviations of 6.53 and 7.01, respectively for flight 1 and flight 2. Except for the insignificant

coefficient in column (1), the variability coefficients are positive and significant in all four

regressions. Thus, an increase in flight-time variability typically leads an airline to expand its

flight buffers.

The estimates column (1) exactly match the simulation results in Figure 1, with flight

1’s buffer increasing in its own variability but insensitive to flight 2’s variability. This perfect

match is absent in column (2), however, since increases in both variability measures raise

flight 2’s buffer, even though Figure 2 suggests that the buffer should not respond to flight

1’s variability. Columns (3) and (4) show that, when the flights are pooled, their buffers

15 If the month dummies are included in the flight buffer regression, their coefficients are statistically significant
with a sign pattern similar to that in Table 3 and with the flight-time variability coefficients unaltered. This
finding indicates that the month dummies have their own separate influence beyond the influence that operates
through flight-time variability.
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are increasing in each flight’s variability, an outcome that could be viewed as matching the

pattern in Figure 4, where variability is constrained to be equal across flights. Regardless of

these nuances, the regressions results are broadly consistent with the hypothesis that greater

flight-time variability leads to longer flight buffers. Note finally that the estimate coefficients

of the remaining covariates do not show great differences relative to Table 3.

Table 5 shows how flight-time variability is related to the proxy variables that appeared in

Table 3 but were deleted in Table 4. With t statistics five to ten times those of other covari-

ates, distance has by far the greatest explanatory power, with longer flights naturally having

greater time variability. The congestion coefficients are also mostly positive and significant,

as expected, while weekend flights show low time variability. The month dummies somewhat

surprisingly indicate that July and August have higher flight-time variability than the Winter

months, an outcome that may be due to high summer travel volumes, which can lead to delay

from various sources.16 This conclusion is hard to reconcile with the weather-based interpre-

tation of the month-dummy coefficients in Table 3, but it is possible that weather effects are

not adequately captured by our variability measure.

6.5. Ground-buffer regressions

The ground buffer is calculated at a flight’s departing airport. In the two-flight sub-sample,

the observed airport corresponds to the departing airport of Flight 2; in the unrestricted

sample, the observed airport is the departing airport of Flight i, with i = 2, ..., 8. Thus, the

flight specific variables in the regression, such as departure time, refer to the following flight.

In this way, the first flight of the day is not included.

The results for the ground-buffer regressions are presented in Table 6. As before, the table

reports the estimates for the two-flight sub-sample, columns (1) to (3), and for the unrestricted

sample, columns (4) to (6). A notable finding in Table 6 is that the choice of ground buffer

is highly carrier-specific. Looking at column (1), the top-5 airlines with the shortest ground

buffers are Allegiant Air, Spirit Airlines, Southwest Airlines, Hawaiian Airlines and Frontier

16 It is worth pointing out that if flight-time variability is computed only by route and flight number, then
the month dummies become statistically insignificant. This result is mainly technical: because the dependent
variable is then invariant throughout the year, the month dummies do not explain much more than the constant
of the regression would explain, making their coefficients insignificant.
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Airlines. Four of them are low-cost carriers and Hawaiian Airlines, the sole legacy carrier on

this list, has a partnership with Jet Blue, which is in 6th place on the ranking.

The finding that low-cost carriers set shorter ground buffers than legacy carriers is also

confirmed when we remove the airline fixed effects and include a dummy variable for low-cost

carriers. The estimated coefficient of the Low-cost carrier variable in columns (2) and (5)

shows that low-cost carriers have ground buffers 5 to 7 minutes shorter than those of legacy

carriers on average.

Recall that we did not observe such a clear difference in the flight buffer regressions. The

divergence, however, makes perfect sense: the flying time of the same aircraft on the same

route does not depend on the carrier but instead depends on route characteristics. While

there should thus be little difference in the flight buffers of low-cost and legacy carriers, the

business model of low-cost carriers, which deemphasizes hub-and-spoke operations and seeks

high aircraft utilization, yields faster turnarounds and thus shorter ground buffers. The results

show that regional carriers also set short ground buffers, a finding that seems at variance with

their role in providing flight connections to major carriers.

The effect of weather uncertainty on ground buffers is not as clear as in the flight-buffer

regressions, a finding that is consistent with the simulation results. The results show that in

both samples, ground buffers are longest (relative to January) in the Fall months of September,

October and November, a pattern that does not have a clear weather-based interpretation.

However, in the unrestricted sample, the buffers over the March-August period are significantly

shorter than in January, which is partly consistent with short buffers being scheduled in months

with better weather.

When the flight departs from the carrier’s hub, 10 to 14 minutes are added to the ground

buffer. This effect is quantitatively large (the average ground buffer is around 39 minutes) and

highly statistically significant across all the columns of the table. The desire to accommodate

flight connections at hub airports is clearly the source of these longer buffers.

A congested turnaround airport has longer taxi times, which may prompt the airline to cut

ground time. While this expectation is confirmed by the negative coefficients on Congestion

turnaround, the effect is very small in magnitude: if an extra flight lands/departs when the
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observed flight lands, the airline reduces the ground buffer by about 5 seconds.17

However, when a dummy indicating a slot controlled airport is added to the regression,

the congestion coefficient becomes insignicant in the two-flight sub-sample and significantly

positive in the unrestricted sample. While this latter coefficient is still very small, the slot-

control effect in the two-flight subsample is large: ground buffers are 4 minutes shorter on

average at such airports, which tend to be congested.18

Time of the day plays a significant role in the choice of ground buffers. As seen from the

estimated coefficients on the time-of-day departure dummies, airlines keep adding to ground

buffers during the day. This effect is strictly monotonic in each regression, rising from 2-7

minutes extra buffer in the morning (relative to early morning) to 4-19 minutes extra buffer

in the evening. With the model portraying operation of only two flights, it cannot predict this

pattern. But the pattern suggests that, when an aircraft operates many flights per day, ground

buffers may play a more prominent role than flight buffers in mitigating delay propagation late

in the day.

Airlines may operate with spare capacity during weekends, since most business travel is

mid-week, thus explaining why they set slightly longer ground buffers during weekends, about

two minutes longer on average. Our data show that fights scheduled during weekends are more

punctual than non-weekend fights, and these longer ground buffers may be part of the reason.19

6.6. Ground buffer regressions with flight-time variability

When substituting the variability measures, we match the approach for the flight-buffer

regressions by excluding those covariates that can directly influence flight-time variability:

month dummies, weekend dummy, congestion variables, airport fixed effects. The results are

presented in Table 7.

Since the results are somewhat sensitive to how variability is computed, we use two ap-

proaches. In columns (1) and (2), variability is the standard deviation of flight times computed

17 Results are obtained taking the max and the min estimated coefficients of Congestion turnaround and then
multiplying by 60, re-scaling the marginal effect of one minute into seconds.
18 In order to obtain these estimates, we remove the turnaround-airport fixed effects, which are perfectly

collinear with the Slot-controlled airport variable.
19 While the average arrival delay of a weekend flight is 6 minutes in the unrestricted sample and 0 minutes

in the two-flight sub-sample, the delays increase to 10 and 3 minutes, respectively, for non-weekend flights.
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by computed by route, month and flight number, as before, whereas variability is computed

by route and flight number in columns (3) and (4).

Both flight-time variability variables have significantly negative effects in columns (1) and

(2), results that match to some extent the pattern in Figure 5 from the simulation, where

common flight-time variability is assumed. But in columns (3) and (4), the sign pattern

exactly matches Figures 2 and 3, with the ground buffer rising with an increase in flight 1’s

variability and falling with an increase in flight 2’s variability. The results are thus somewhat

mixed, but they are at least partly able to replicate the simulations. In addition, the other

covariates behave as in Table 7.

6.7. Additional results

The empirical analysis above has analyzed the flight and ground buffers separately. That

is, we have run separate reduced-form regressions for both types of buffers to indirectly test

predictions of our theoretical model, with some success. However, the analysis so far has not

investigated the model’s prediction of a possible negative correlation between the flight and

ground buffers. This prediction arose in the zero buffer-cost analysis via possible constraints

on the ground buffer, which would reduce it below the optimal value and lead to increases in

both flight buffers, creating an inverse association.

This prediction is difficult to test in a regression framework that puts one buffer (flight or

ground) on the left-hand side and the other on the right-hand side, looking for a negative coef-

ficient. The reason is that, since the choices of the flight and ground buffers are simultaneous,

the right-hand-side buffer must be treated as endogenous. While this endogeneity rules out

use of an ordinary least squares regression, an instrumental variable approach using two-stage

least squares (2SLS) could be considered. But given that the buffers are generated within the

same airline choice problem, thus being dependent on the same set of exogenous factors, such

an instrumental variable (which affects one buffer but not the other) may not even exist.

The impossibility of 2SLS, however, does not preclude a correlation analysis, which is not

intended to capture causal effects. Accordingly, Table 8 reports the correlation coefficients

between the ground buffer and the flight buffer for the following flight. The correlations are

almost universally negative, confirming the model’s prediction. While the overall correlations
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are not large in the two-flight sub-sample, restricting attention to ground buffers smaller than

either 60 or 30 minutes increases the correlations substantially in absolute value.20 The same

pattern is not present in the unrestricted sample, where the overall correlations are similar in

magnitude to the ones under these restrictions.

An additional hypothesis, mentioned above, is that routes with high values of the delay

disutility x should have long flight buffers. Viewing routes with high shares of business pas-

sengers as satisfying this criterion, we included the managerial share of the origin city’s work-

force as an explanatory variable in the flight-buffer regressions, following Luttmann (2019).

However, this variable did not perform successfully, leaving us without confirmation of the

delay-disutility hypothesis.

Another possibility that our empirical analysis has not considered so far is that past on-

time performance may affect buffer decisions, since it is very natural that carriers would change

their buffers to remedy past late arrivals. To capture this possibility, we included in the flight-

buffer regressions a variable measuring the past on-time performance of the airline on the route.

The variable is constructed as follows: for year 2017 we downloaded from DOT the ‘Reporting

Carrier On-Time Performance (1987-present)’ dataset, and then, by carrier-route-month, we

calculated the proportion of delayed flights.21 The coefficient on this Past-year delay variable

is positive and statistically significant, confirming the presumption that carriers lengthen flight

buffers if delays on the route in the past year were more frequent. The results are reported

in the appendix Table A1. Finally and importantly, the inclusion of Past-year delay does not

alter qualitatively or quantitatively the estimated coefficients of the other covariates.

7. Conclusion

This paper has presented an extensive theoretical and empirical analysis of the choice of

schedule buffers by airlines. With airline delays a continuing problem around the world, such

20 Concentrating on shorter ground times is useful because the trade-off between flight and ground times is
more likely to be evident when the latter are short.
21 The ‘Reporting Carrier On-Time Performance (1987-present)’ dataset is essentially the same as the ‘Mar-

keting Carrier On-Time Performance (Beginning January 2018)’, which we use in our empirical analysis, but it
does not report the actual operating carrier. Thus, it does not distinguish between major airlines and affiliated
regional carriers. For this reason and also because an airline could stop serving the route from one year to the
next, some 2018 observations are not matched with the 2017 data.
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an undertaking is valuable, and its lessons extend to other transport sectors such as rail and

intercity bus service. One useful lesson from the theoretical analysis of a two-flight model is

that the mitigation of delay propagation is done entirely by the ground buffer and the second

flight’s buffer. The first flight’s buffer plays no role because the ground buffer is a perfect, while

nondistorting, substitute. In addition, the apportionment of mitigation responsibility between

the ground buffer and the flight buffer of flight 2 is shown to depend on the relationship between

the costs of ground- and flight-buffer time.

The empirical results show the connection between buffer magnitudes and a host of vari-

ables, including the month of operation and distance of a flight, whether the flight operates

early or late in the day, and congestion measures at the endpoints. In addition, one version

of the empirical model relates buffer magnitudes to the variability of flight times, which sim-

ulations of the model identify as an important determining factor (the results show that high

variability lengthens flight buffers).

Fruitful extensions to this work would most likely lie in the theoretical area. The model

could be extended to include additional sequential flights, and the sketch of connecting traffic

provided in the paper could be expanded into a full analysis. In addition, passenger schedul-

ing preferences could be introduced, with a buffer-related extension of scheduled flight times

possibly becoming less desirable if it leads to a divergence between a passenger’s preferred and

actual arrival times. The resulting models would be complex, but additional insights could be

generated, with relevance extending beyond the airline industry.

Another avenue of exploration could be in the area of market structure. For example, if a

profit-maximizing airport sets the gate rental cost at an excessive level, the resulting decrease

in ground buffers will impair airline mitigation of delay propagation, with negative effects on

passengers. Alternatively, the entry barrier of gate shortages resulting from airport dominance

by a large carrier (analyzed by Ciliberto and Williams (2010)) would also affect the ability of

smaller carriers to address delay propagation via adequate ground time. Exploration of these

issues could be illuminating.
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Appendix

A1. The derivatives of Ω

This appendix section computes the derivatives of the objective function for the continuous

case with respect to bg, b1, and b2. Since (2) does not involve bg, the objective function’s

derivative with respect to bg is found by differentiating the sum of (16) and (17). The derivative

of the first line of (16) with respect to bg equals

xf1(b1 + bg)

∫ ε2

b2

(ε2 − b2)f2(ε2)dε2. (a1)

The second line of (16) can be written as

x

∫ ε1

ε1=b1+bg

[∫ ε2

ε2=b1+b2+bg−ε1

[ε1 + ε2 − (b1 + b2 + bg)]f2(ε2)dε2

]
f1(ε1)dε1

= x

∫ ε1

ε1=b1+bg

Q(ε1, bg)f1(ε1)dε1, (a2)

where Q(ε1, bg) denotes the term in brackets in the first line of (a2). The bg-derivative of (a2)

is

x

∫ ε1

ε1=b1+bg

∂Q(ε1, bg)

∂bg
f1(ε1)dε1 − xQ(b1 + bg, bg)f1(b1 + bg). (a3)

Substituting ε1 = b1 + bg in the bracketed term in (a2) to evaluate Q(b1 + bg, bg) in (a3), the

second term in (a3) equals the negative of (a1), so that these terms cancel. The bg-derivative

of (16) is then equal to the first term in (a3).

∂Q/∂bg consists of two components, the first of which comes from differentiating the brack-

eted expression in (a2) with respect to the limit of integration, a derivative that equals zero

upon substituting the limit into the integrand. The second component comes from differenti-

ating with respect to bg under the integral, which yields the bracketed expression in (a2) with
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the integrand replaced by −f2(ε2). Therefore, the first-term in (a3) reduces to

−x

∫ ε1

ε1=b1+bg

[∫ ε2

ε2=b1+b2+bg−ε1

f2(ε2)dε2

]
f1(ε1)dε1. (a4)

Applying the same steps to (17), the bg-derivative of that expression equals

y

∫ ε1

ε1=b1+bg

[∫ b1+b2+bg−ε1

ε2=ε
2

f2(ε2)dε2

]
f1(ε1)dε1. (a5)

Replacing the bracketed terms in (a4) and (a5) with 1−F2(b1 + b2 + bg − ε1) and F2(b1 + b2 +

bg − ε1), respectively, the sum of (a4) and (a5) can be written as

=

∫ ε1

ε1=b1+bg

[−x(1 − F2(b1 + b2 + bg − ε1)) + yF2(b1 + b2 + bg − ε1)]f1(ε1)dε1

= (x + y)

∫ ε1

ε1=b1+bg

[
F2(b1 + b2 + bg − ε1)) −

x

x + y

]
f1(ε1)dε1 =

∂Ω

∂bg
. (a6)

The derivative of the objective function with respect to b1 builds on the previous results.

The b1-derivatives of (16) and (17) are identical to the bg derivatives, given by (a4) and (a5),

with their sum equal to (a6). Since (2) also depends on b1, the b1-derivative of the objective

function is then the expression in (3) (slightly rearranged) plus (a6):

∂Ω

∂b1

= (x + y)

[
F1(b1) −

x

x + y

]
+

∂Ω

∂bg
. (a7)

Using similar steps,

∂Ω

∂b2

= (x + y)F1(b1 + bg)

[
F2(b2) −

x

x + y

]
+

∂Ω

∂bg
. (a8)
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A2. Convexity of Ω

This appendix section first shows that the objective function Ω is strictly convex in b1 and

b2, with bg fixed at the optimal value, doing so for both cases of zero and positive buffer costs.

The first step is to compute the second derivatives of Ω with respect to b1 and b2, assuming

zero buffer costs. Using the shorthand Ωij for ∂2Ω/∂bi∂bj, differentiation of (20) and (21)

yields (after suppressing the multiplicative factor x + y))

Ω11 = f1(b1) − f1(b1 + bg)

[
F2(b2) −

x

x + y

]

+

∫ ε1

ε1=b1+bg

f1(ε1)f2(b1 + b2 + bg − ε1)dε1 (a9)

Ω22 = F1(b1 + bg)f2(b2) +

∫ ε1

ε1=b1+bg

f1(ε1)f2(b1 + b2 + bg − ε1)dε1 (a10)

Ω12 =

∫ ε1

ε1=b1+bg

f1(ε1)f2(b1 + b2 + bg − ε1)dε1 < Ω11, Ω22. (a11)

Observe that the same expressions apply when buffer costs are positive since they vanish in

computing the second derivatives.

Ω22 and Ω12 are positive, while the sign of Ω11 in (a9) is unclear. However, at the optimum

in the zero-cost buffer case, the bracketed term in (a9) is zero, making Ω11 positive and also

ensuring satisfaction of the inequality in (11). The same conclusion holds in the positive-cost

buffer case if cf > cg, in which case the bracketed term in (a9) is negative at the optimum.

With Ω11, Ω22 > 0 and H ≡ Ω11Ω22 − Ω2
12 > 0 (a consequence of the inequalities in (a11)),

Ω is thus strictly convex in b1 and b2 at the optimum. As a result, b1 and b2 values satisfying

the first-order conditions yield a local minimum for Ω, holding bg fixed at its optimal value.

Convexity of Ω in all three buffers cannot be established analytically and must be assumed.
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Figure 1: Incidence of Delay Propagation 

Source: US Department of Transportation
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Table 2: Description and main statistics of the empirical variables

b bg Variables Description Two-flight Unrestricted
sub-sample sample

X Flight buffer (b) Difference between the scheduled flight time and
the average actual flight time, computed by route
and aircraft type

6.14
(8.81)

5.01
(6.86)

X     Ground buffer (bg) Difference between the scheduled ground time
and minimum feasible ground time, computed by
turnaround airport and aircraft type

40.30
(30.46)

37.88
(25.96)

X X February-December Set of monthly dummy variables, January is the
omitted month

X Hub origin Dummy variable = 1 if airport of origin is the hub
of the airline

0.51
(0.50)

0.36
(0.48)

X Hub destination Dummy variable = 1 if airport of destination is the
hub of the airline

0.51
(0.50)

0.36
(0.48)

X Hub turnaround Dummy variable = 1 if airport of turnaround is
the hub of the airline

0.45
(0.49)

0.38
(0.49)

X Congestion origin Number of landing and departing flights at the air-
port of origin on the same hour when the flight is
scheduled to depart

53.08
(33.89)

48.73
(40.14)

X Congestion destination Number of landing/departing flights at the airport
of destination on the same hour when the flight is
scheduled to land

49.72
(33.13)

47.71
(40.32)

X Congestion turnaround Number of landing and departing flights at the air-
port of turnaround on the same hour when incom-
ing flight is scheduled to land

52.80
(41.31)

52.70
(41.31)

X Slot controlled airport Dummy variable = 1 if airport of turnaround is
slot controlled (DCA, JFC and LGA)

0.07
(0.23)

0.05
(0.22)

X X Alaska-Southwest Set of airline dummy variables, American Airlines
is the omitted airline

X X Regional carrier Dummy variable = 1 if the flight is operated by a
regional carrier

0.07
(0.26)

0 .31
(0.47)

X Low-cost carrier Dummy variable = 1 if the flight is operated by
a low-cost carrier (i.e. Jet Blue, Frontier Airlines,
Allegiant Air, Spirit Airlines and Southwest Air-
lines)

0.16
(0.46)

0.29
(0.45)

X Competitors Number of competitors on the route 1.58
(1.21)

1.06
(1.11)

X Distance Route distance, in 100-mile units 16.94
(8.66)

8.21
(5.92)

X X Morning-Evening Set of departure time variables, Morning (9.00-
11.59), Afternoon (12.00-15.59), Late afternoon
(16.00-17.59) and Evening (18.00-23.59); the omit-
ted category is Early morning (0.00-8.59)

X X Weekend Dummy variable = 1 if the flight departs in the
weekend

0.31
(0.46)

0.27
(0.44)

X Flight i Dummy = 1 for the ith flight operated in a day
by a given aircraft, uniquely identified by its tail
number

X Aircraft rotation Sequence of flights operated in a day by a given
aircraft

2.99
(1.69)

(a) The symbol Xdenotes whether the variable is included in the flight buffer regressions (column b) or in the ground buffer 
regressions (column bg ).
(b) The second-last and last columns respectively report the mean value of the variable for the two-flight sub-sample and 
unrestricted sample with the standard errors in parentheses. Empty cells on some variables are due to space reason, since their 
inclusion would require reporting a set multiple dummies whose mean values would not be very informative.



Table 3: Flight-buffer regressions

(1) (2) (3) (4) (5) (6) (7)
Dependent variable b1 b2 b1, b2 b1, b2 b1, ..., b8 b1, ..., b8 b1, ..., b8

Two-flight sub-sample Unrestricted sample

February 0.407 -0.162 0.119 0.121 -0.067 -0.065 -0.065
March -0.786 -0.891** -0.859* -0.835* -1.653*** -1.639*** -1.639***
April -3.775*** -1.380*** -2.591*** -2.580*** -2.764*** -2.750*** -2.750***
May -6.369*** -0.901* -3.677*** -3.671*** -3.468*** -3.454*** -3.455***
June -7.807*** -1.110** -4.527*** -4.503*** -3.995*** -3.973*** -3.974***
July -8.287*** -1.418*** -4.882*** -4.869*** -4.241*** -4.221*** -4.222***
August -8.564*** -2.068*** -5.336*** -5.330*** -4.298*** -4.281*** -4.281***
September -9.568*** -4.085*** -6.776*** -6.801*** -4.716*** -4.708*** -4.708***
October -8.845*** -4.616*** -6.700*** -6.717*** -4.521*** -4.509*** -4.510***
November -5.548*** -4.092*** -4.757*** -4.784*** -2.607*** -2.599*** -2.600***
December -2.828*** -3.066*** -2.913*** -2.919*** -1.132*** -1.128*** -1.128***
Hub origin 0.733** -0.732** -0.282 -0.259 -0.256*** -0.283*** -0.263***
Hub destination 0.454 0.441 0.461* 0.484* 0.400*** 0.407*** 0.395***
Congestion origin 0.028*** 0.029*** 0.028*** 0.028*** 0.035*** 0.033*** 0.033***
Congestion destination 0.017*** 0.030*** 0.029*** 0.026*** 0.025*** 0.025*** 0.024***
Alaska Airlines -1.434*** -0.737* -0.956*** -0.889*** -0.725*** -0.717*** -0.718***
Allegiant Air -0.756 -0.407 -0.779 -0.763 -2.805*** -2.900*** -2.889***
Delta Airlines 1.067** 2.280*** 1.611*** 1.609*** 1.812*** 1.809*** 1.811***
Frontier Airlines -0.667 1.177 0.071 0.426 1.248*** 1.239*** 1.254***
Hawaiian Airlines -6.425*** -6.075*** -6.527*** -6.608*** -6.029*** -6.115*** -6.097***
Jet Blue -1.555*** -2.509*** -2.531*** -2.241*** -2.049*** -2.038*** -2.027***
Southwest Airlines -0.411 0.411 -0.025 0.105 1.579*** 1.591*** 1.600***
Spirit Airlines -1.541** -0.309 -1.274*** -0.971** -0.595*** -0.600*** -0.585***
United Airlines -2.795*** -1.986*** -2.420*** -2.377*** -0.602*** -0.599*** -0.603***
Virgin America -5.294*** -1.517 -3.565*** -3.491*** -3.674*** -3.670*** -3.665***
Regional carrier -1.372*** -1.476*** -1.225*** -1.269*** -0.930*** -0.944*** -0.932***
Competitors -0.263* 0.115 -0.072 -0.079 -0.064 -0.068 -0.071
Distance 0.157*** 0.246*** 0.198*** 0.195*** 0.226*** 0.225*** 0.225***
Morning 0.011 -0.105***
Afternoon 0.266* -0.453***
Late Afternoon 0.894*** 0.338***
Evening 1.092*** 0.001
Weekend 0.018 -0.029 0.032 0.015 0.094*** 0.074*** 0.074***
Flight 2 0.658*** 0.243***
Flight 3 -0.075**
Flight 4 0.098***
Flight 5 0.248***
Flight 6 -0.006
Flight 7 -0.485***
Flight 8 -1.082***
Aircraft rotation 0.188***
Aircraft rotation2 -0.031***
Constant 9.448*** 6.090 7.058*** 7.548*** 4.977*** 4.981*** 4.819***
R2 0.261 0.241 0.212 0.211 0.190 0.190 0.189
Observations 114,011 113,195 227,206 227,206 5,643,325 5,643,325 5,643,325

(a) The estimated coefficients marked with ***, ** and * are statistical significance at, respectively the 1%, 5% and 10% level.
(b) The standard errors, not reported to save space, are clustered by route-month.
(c) All estimates include airport of origin and airport of destination fixed effects.

42



Table 4: Flight-buffer regressions with flight-time variability

(1) (2) (3) (4)
Dependent variable b1 b2 b1, b2 b1, b2

Flight 1’s variability 0.107*** 0.052*** 0.079*** 0.080***
Flight 2’s variability -0.013 0.094*** 0.041*** 0.042***
Hub origin 0.510* -0.148 0.016 -0.009
Hub destination -0.434 0.477* 0.091 0.125
Alaska Airlines -0.499 -0.211 -0.408 -0.351
Allegiant Air -1.755* 0.485 -0.808 -0.731
Delta Airlines 2.797*** 3.789*** 3.255*** 3.282***
Frontier Airlines -0.366 0.828 -0.086 0.174
Hawaiian Airlines -2.138*** -5.534*** -4.128*** -4.244***
Jet Blue -0.715 -0.899** -1.094*** -0.928**
Southwest Airlines 0.381 1.249*** 0.585 0.746**
Spirit Airlines -3.571*** -1.400*** -2.832*** -2.612***
United Airlines -1.177*** -1.393*** -1.283*** -1.267***
Virgin America 1.130 2.343** 1.502 1.613*
Regional carrier -2.514*** -2.201*** -2.295*** -2.329***
Competitors 0.309** 0.414*** 0.370*** 0.362***
Morning 0.209
Afternoon -0.459**
Late Afternoon 0.586***
Evening 0.355*
Flight 2 -0.144
Constant 4.451*** 3.173*** 3.908*** 3.981***
R2 0.046 0.100 0.065 0.064
Observations 114,011 113,195 227,206 227,206

(a) The estimated coefficients marked with ***, ** and * are statistical significance at, respectively the 1%, 5% and 10% level.
(b) The standard errors, not reported to save space, are clustered by route-month.

43



Table 5: The determinants of flight-time variability

(1) (2)
Dependent variable Flight 1’s Flight 2’s

variability variability

February -0.558** -0.870***
March -1.079*** -1.198***
April 0.603** -0.497*
May -0.300 0.188
June -0.386 0.135
July 1.130*** 0.926***
August 1.097*** 1.638***
September -0.687** -0.119
October -0.974*** -0.916***
November -0.423 0.177
December 0.106 0.023
Congestion origin 0.007** 0.003
Congestion destination 0.009*** 0.016***
Distance 0.135*** 0.155***
Weekend -0.104** -0.123***
Constant 6.051* -8.365*
R2 0.283 0.281
Observations 114,011 113,195

(a) The estimated coefficients marked with ***, ** and * are statistical significance at, respectively the 1%, 5% and 10% level.
(b) The standard errors, not reported to save space, are clustered by route-month.
(c) All estimates include airport of origin and airport of destination fixed effects.
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Table 6: Ground-buffer regressions

(1) (3) (4) (5) (6)
Dependent variable bg bg bg bg

(2)
bg

Two-flight sub-sample
bg 

Unrestricted sample

February 0.231 0.259 0.051 -0.186 -0.178 -0.305
March -0.819 -0.854 -1.198 -1.105*** -1.118*** -1.459***
April -0.626 -0.918 -1.395 -0.874*** -0.885*** -1.236***
May 0.940 0.646 0.492 -0.163 -0.174 -0.523**
June -0.786 -1.127 -1.276 -1.221*** -1.233*** -1.815***
July 0.336 -0.041 -0.107 -0.912*** -0.917*** -1.522***
August 1.176 0.786 0.696 -0.575*** -0.594*** -1.221***
September 3.108*** 2.786*** 2.690*** 1.281*** 1.320*** 0.785***
October 2.663*** 2.331*** 1.970** 0.847*** 0.847*** 0.302
November 1.712** 1.523** 1.101 0.863*** 0.893*** 0.409**
December 0.159 -0.074 -0.121 0.350* 0.361* 0.022
Hub turnaround 14.441*** 13.130*** 10.351*** 14.160*** 13.423*** 13.505***
Congestion turnaround -0.088*** -0.083*** 0.007 -0.085*** -0.085*** 0.041***
Slot controlled airport -4.155*** 0.033
Alaska Airlines 0.280 3.198*** 5.849*** 9.041***
Allegiant Air -14.563*** -24.813*** -8.478*** -10.362***
Delta Airlines -3.318*** 0.001 -3.210*** -1.098***
Frontier Airlines -6.511*** -4.135* -2.996*** -0.666**
Hawaiian Airlines -6.901*** 6.239*** -6.184*** 8.705***
Jet Blue -5.271*** -8.257*** -0.506 -0.151
Southwest Airlines -7.235*** -8.412*** -7.576*** -5.231***
Spirit Airlines -8.641*** -9.227*** 0.356 2.795***
United Airlines 4.905*** 8.001*** 5.088*** 8.958***
Virgin America 5.673*** 4.385** 8.246*** 11.150***
Regional carrier -1.062* -6.993*** -1.599*** -4.129***
Low-cost carrier -7.055*** -5.379***
Morning 7.035*** 6.772*** 5.917*** 4.366*** 4.326*** 1.989***
Afternoon 14.057*** 13.797*** 14.142*** 4.618*** 4.487*** 2.811***
Late Afternoon 19.124*** 19.148*** 16.731*** 5.992*** 5.985*** 3.949***
Evening 19.893*** 19.883*** 19.064*** 9.618*** 9.711*** 8.060***
Weekend 1.931*** 1.962*** 2.616*** 1.868*** 1.930*** 2.393***
Constant 32.479*** 29.684*** 43.968*** 26.227*** 23.921*** 32.446***
R2 0.204 0.199 0.154 0.235 0.226 0.203
Observations 133,178 133,178 133,178 4,318,421 4,318,421 4318,421

(a) The estimated coefficients marked with ***, ** and * are statistical significance at, respectively the 1%, 5% and 10% level.
(b) The standard errors, not reported to save space, are clustered by route-month.
(c) All estimates but columns (16) and (19) include airport of turnaround and airport of origin fixed effects; columns (16) and
(19) include only airport of origin fixed effects.
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Table 7: Ground-buffer regressions with flight-time variability

(1) (2) (3) (4)
Dependent variable bg bg bg bg
Flight 1’s variability -0.082*** -0.073*** 0.157*** 0.142***
Flight 2’s variability -0.158*** -0.168*** -0.310*** -0.364***
Morning 3.652*** 3.344*** 3.246*** 2.795***
Afternoon 11.225*** 11.628*** 10.611*** 10.798***
Late Afternoon 12.740*** 13.107*** 12.324*** 12.530***
Evening 15.032*** 15.573*** 14.466*** 14.817***
Hub turnaround 12.883*** 12.463*** 12.910*** 12.503***
Alaska Airlines 3.818*** 3.405***
Allegiant Air -19.832*** -19.315***
Delta Airlines 1.375** 0.982
Frontier Airlines -0.892 -1.094
Hawaiian Airlines 5.549*** 4.795***
Jet Blue -7.982*** -8.827***
Southwest Airlines -4.374*** -4.019***
Spirit Airlines -7.500*** -8.015***
United Airlines 9.456*** 9.149***
Virgin America 4.769** 4.837**
Regional carrier -0.801 0.004
Low-cost carrier -11.455*** -11.792***
Constant 25.203*** 28.850*** 25.140*** 29.927***
R2 0.115 0.099 0.115 0.099
Observations 133,178 133,178 133,178 133,178

(a) The estimated coefficients marked with ***, ** and * are statistical significance at, respectively the 1%, 5% and 10% level.
(b) The standard errors, not reported to save space, are clustered by route-month.
(c) Actual flight-time variability calculated by route, month and flight i in columns (20) and (21), by route and flight i in
columns (22) and (23),
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Table 8: Correlation of the excess ground buffer 
with the flight buffers

Two-flight sub-sample

∀ bg bg ≤ 60 bg ≤ 30

b1 -0.0043 -0.0375 -0.0232
b2 -0.0096 -0.0315 -0.0403

Unrestricted sample

∀ bg bg ≤ 60     bg ≤ 30

b1 -0.0444 -0.0379 -0.0232
b2 -0.0259 -0.0164 -0.0061
b3 0.0029 0.0143 0.0097
b4 -0.0480 -0.0510 -0.0380
b5 -0.0509 -0.0528 -0.0489
b6 -0.0469 -0.0372 -0.0469
b7 -0.0640 -0.0320 -0.0391
b8 -0.0642 -0.0548 -0.0479
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Table A.1: Flight-buffer regressions with past year on-time performance

(A1) (A2) (A3) (A4) (A5)
Dependent variable b1 b2 b1, b2 b1, ..., b8 b1, ..., b8

Two-flight sub-sample Unrestricted sample

February 0.719 0.135 0.456 0.167 0.167
March -0.597 -0.758* -0.683 -1.555*** -1.556***
April -3.944*** -1.203*** -2.581*** -2.838*** -2.839***
May -6.448*** -0.763 -3.699*** -3.667*** -3.669***
June -8.210*** -1.052** -4.707*** -4.168*** -4.170***
July -8.484*** -1.282** -4.917*** -4.395*** -4.397***
August -8.697*** -1.789*** -5.245*** -4.418*** -4.420***
September -8.745*** -3.413*** -5.992*** -4.647*** -4.648***
October -8.179*** -4.088*** -6.066*** -4.534*** -4.535***
November -4.674*** -3.560*** -4.013*** -2.465*** -2.466***
December -2.462*** -2.977*** -2.702*** -1.277*** -1.278***
Hub origin 0.010 -1.113*** -0.659** -0.544*** -0.530***
Hub destination 0.565 0.627* 0.597** 0.195* 0.189*
Congestion origin 0.027*** 0.026*** 0.029*** 0.033*** 0.033***
Congestion destination 0.021*** 0.031*** 0.031*** 0.028*** 0.028***
Alaska Airlines -0.241 -0.266 0.010 -0.691*** -0.684***
Allegiant Air
Delta Airlines 1.346*** 2.546*** 1.873*** 1.995*** 1.995***
Frontier Airlines -2.363** 1.360* -0.038 1.561*** 1.566***
Hawaiian Airlines -6.627*** -5.773*** -6.685*** -6.219*** -6.225***
Jet Blue -3.791*** -3.373*** -3.592*** -2.773*** -2.766***
Southwest Airlines -1.113** 0.097 -0.034 1.069*** 1.073***
Spirit Airlines -3.545*** -0.872 -1.767*** -1.142*** -1.137***
United Airlines -2.979*** -2.064*** -2.500*** -1.220*** -1.221***
Virgin America -6.629*** -2.590*** -4.765*** -5.213*** -5.205***
Regional carrier -1.365*** -1.227*** -1.047*** -0.844*** -0.840***
Competitors -0.238 0.028 -0.121 -0.112** -0.113**
Distance 0.182*** 0.252*** 0.196*** 0.231*** 0.231***
Past-year delay 9.538*** 6.228*** 8.687*** 3.643*** 3.650***
Morning -0.834*** 0.174 -0.121 -0.240*** -0.154***
Afternoon 0.310 -0.675** 0.089 -0.408*** -0.399***
Late Afternoon 2.052*** -0.720** 0.736*** 0.564*** 0.568***
Evening 2.726*** -0.707** 0.696*** 0.271*** 0.273***
Weekend 0.013 -0.017 0.052 0.059*** 0.060***
Flight 2 0.367*** 0.402***
Flight 3 0.218***
Flight 4 0.126***
Flight 5 0.017
Flight 6 -0.313***
Flight 7 -0.914***
Flight 8 -1.344***
Aircraft rotation 0.361***
Aircraft rotation2 -0.064***
Constant 12.672*** 0.974 3.678* 2.158 1.889
R2 0.280 0.251 0.219 0.198 0.198
Observations 101,920 100,916 202,836 4,126,794 4,126,794

(a) The estimated coefficients marked with ***, ** and * are statistical significance at, respectively the 1%, 5% and 10% level.
(b) The standard errors, not reported to save space, are clustered by route-month.
(c) All estimates include airport of origin and airport of destination fixed effects.
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