
 

7894 
2019 

October 2019 

 

Rising to the Challenge: 
Bayesian Estimation and 
Forecasting Techniques for 
Macroeconomic Agent-Based 
Models 
Domenico Delli Gatti, Jakob Grazzini 



Impressum: 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
www.cesifo-group.org/wp 

An electronic version of the paper may be downloaded 
· from the SSRN website:  www.SSRN.com 
· from the RePEc website:  www.RePEc.org 
· from the CESifo website:         www.CESifo-group.org/wp

mailto:office@cesifo.de
http://www.cesifo-group.org/wp
http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.org/wp


CESifo Working Paper No. 7894 
Category 6: Fiscal Policy, Macroeconomics and Growth 

 
 
 

Rising to the Challenge: Bayesian Estimation and 
Forecasting Techniques for Macroeconomic 

Agent-Based Models 
 
 

Abstract 
 
We propose two novel methods to “bring ABMs to the data”. First, we put forward a new 
Bayesian procedure to estimate the numerical values of ABM parameters that takes into account 
the time structure of simulated and observed time series. Second, we propose a method to 
forecast aggregate time series using data obtained from the simulation of an ABM. We apply 
our methodological contributions to a medium-scale macro agent-based model. We show that 
the estimated model is capable of reproducing features of observed data and of forecasting one-
period ahead output-gap and investment with a remarkable degree of accuracy. 
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1 Introduction

Agent-based models (ABMs) have been around for decades. At present they are routinely

used in hard sciences and in a number of soft sciences. Applications to economics, on the

contrary, are relatively recent. In fact, most macroeconomic ABMs have seen the light after the

2007 financial crisis. During its short life, the agent-based economic literature has grown at a

dramatic pace, gaining the attention of both academics and policy makers. While the former

have raised a few objections (on which we will elaborate momentarily), the latter – burdened

with the daunting task of taming the beast of financial instability – have been eager to add

ABMs to their modeling toolbox (Haldane and Turrell, 2018).

The main advantage of the AB approach is “flexibility”, which allows macroeconomists to

easily investigate the consequences of “complexity” – due essentially to the interaction of agents

in a bounded rationality setting – on macroeconomic outcomes.

This same flexibility, however, is the main source of criticisms. According to the critics,

macro ABMs “lack discipline” both theoretically and empirically. Theoretically, AB microfoun-

dations are not (generally) derived from “first principles” so that any behavioral rule (heuristic)

seems to be admissible. In other words, the AB modeller runs the risk of getting lost in the

“wilderness of bounded rationality”.1

Empirically, it is admittedly very difficult to “bring these models to the data” due to their

built-in complexity. So far, the common strategy to validate an ABM empirically has consisted

in launching a large number of simulations based on calibrated parameter values to generate

a mass of artificial data. The ABM is empirically validated if the statistical properties of the

artificial data replicate the “stylized facts” extracted from the empirical data.2

There are essentially two lines of attack to this empirical strategy which motivate our con-

tributions in this paper. The critics argue, first of all, that ABMs are characterized by too

many parameters, which are set by means of dubious “calibration” techniques. We vividly re-

member an interesting discussion over dinner with friends (who happen to be also DSGE critics

1There are (quite obvious) counterobjections. A discussion of this issue, however, is beyond the scope
of the present paper.

2It has been verified ad abundantiam that ABMs can replicate not only the aggregate evidence (e.g.,
the dynamics of GDP) but also the cross-sectional evidence (e.g. the distribution of firm’s size). Standard
DSGE models relying on the representative agent hypothesis can replicate only aggregate stylized facts.
A new wave of Heterogeneous Agents New Keynesian (HANK) DSGE models is rapidly overcoming this
limit. A discussion of the pros and cons of this approach is beyond the scope of the present paper
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of ABMs) a few years ago. When we objected that also medium and big-sized DSGE models

have plenty of parameters, one of them shrugged and said: “No problem: we can estimate

them!”. Since that dinner, we have started a long (and not yet completed) journey to take up

this challenge. The estimation of the parameters of macro ABMs is indeed a daunting task but

it is well worth tackling.

Second, so far the empirical strategy to validate an ABM has not developed methods to

forecast future macroeconomic developments. Forecasting the future is key in understanding

the impact of policy measures. Moreover, by looking at the forecasting errors of different models,

it is possible to compare their performances.

In this paper, therefore, we make two contributions. First, we present and discuss at length a

new Bayesian method to estimate the parameters of a macro ABM. This new method is obtained

by augmenting the technique proposed in Grazzini et al. (2017) with an appropriate exploitation

of the time structure of observed and simulated time series in the estimation process. We have

applied this new method to a set of simple estimation problems and shown that it improves the

identification of estimated parameters with respect to the original technique.

We use this new method to estimate a medium-sized macroeconomic agent-based model.To

the best of our knowledge, this is the first time such an attempt is carried out. We compare the

properties of the output of simulations of the estimated model to those of the observed empirical

counterparts and show that they follow similar patterns. Moreover, we perform impulse-response

analysis to investigate the behavior of the model.

Second, we provide a simulation-based forecasting method for macroeconomic ABMs (which

exploits the Bayesian estimation techniques mentioned above). To the best of our knowledge,

this is the first attempt to use an agent-based model to forecast macroeconomic aggregate time

series. Essentially, we use the simulated time series of the estimated model to compute the

conditional probability distribution of a vector of aggregate future (and therefore unknown)

variables given the variables observed in the present period. This allows to use the model

to compute one-period ahead forecast. Moreover we show that the estimated model can be

used to provide a measure of macro risk, i.e., a quantitative assessment of the probability of a

recession. This last exercise opens to the possibility of using ABMs as early-warning signaling

tools. In fact, one of the strengths of ABMs is that they are often able to reproduce and explain

endogenous business-cycle fluctuations, and, possibly, the emergence of crises. Therefore, our
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methodology could potentially provide a way to measure the probability of a future crisis, or

more in general, of a future change of the business-cycle. We leave this area to future research.

The paper is organized as follows. In section 2 we put the contribution of this paper in

context presenting in a succinct way the related literature. In section 3 we overview the building

blocks and the main equations of the macroeconomic ABM to which we will apply our estimation

and forecasting techniques. Section 4 is devoted to a discussion of the estimation procedure. In

section 5 we present the evidence on moment matching by comparing the statistical properties

of the time series originated by the estimated model’s simulations to the properties of the

real world macroeconomic time series. In Section 6 we investigate the behavior of the model

using impulse response functions and in Section 7 we describe the forecasting method and

apply it to the agent-based model. Section 8 concludes. Finally, Appendix A and Appendix B

apply, respectively, the estimation and forecasting methods to simple models to evaluate their

performances in known environments.

2 Related literature

In the last decade or so, a few competing macro AB frameworks have emerged. They are

extensively analyzed in Dawid and DelliGatti (2018). Delli Gatti, Gallegati and co-authors in

Ancona and Milan have proposed one of these frameworks, based on the notion of Complex

Adaptive Trivial Systems (CATS). Complex aggregate behaviour stems from the interaction of

simple (almost Trivial) behavioural heuristics. The single most important CATS framework,

which is at the core of a wave of subsequent models, is described in chapter 3 of the book

“Macroeconomics from the Bottom Up” (DelliGatti et al., 2011). This model, identified by the

acronym MBU, features households, firms and banks. In MBU there is no capital: firms use

only labor to produce consumption goods. In order to apply our estimation and forecasting

techniques, we build a model belonging to the CATS class with capital goods, similar in spirit

to previous models described in Assenza et al. (2015) and Assenza et al. (2018). For this reason,

we will refer to this model with the acronym CC-MABM (Macroeconomic ABM with Capital

and Credit). The model is described in section 3.

The empirical strategy to validate an ABM, as we said in the introduction, has coincided

so far essentially with the replication of “stylized facts”, both at the macro level (e.g., irregular
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fluctuations of GDP), and at the cross-sectional level (e.g., power law distribution of firm’s size)

by means of artificial data generated by simulations based on calibrated parameters (see for

example Dawid et al., 2012; Dosi et al., 2013; Assenza et al., 2015).

To the best of our knowledge, the first attempt at proposing a technique to estimate the

parameters of an ABM is Gilli and Winker (2003). The issue has been underesearched for a

decade or so after this seminal paper. The rapidly growing AB literature has revived interest

in the issue so that in the last half-decade a fair number of new papers has been published that

proposed estimation techniques. In particular, Grazzini and Richiardi (2015), Grazzini et al.

(2017), Kukacka and Barunik (2017) and Lux (2018) apply a number of econometric procedures

to estimate simple agent-based models while Lamperti et al. (2018) and Barde and van der

Hoog (2017) develop calibration techniques for agent-based models. In a recent paper, Platt

(2019) compares and contrasts ABM estimation techniques to find that the Bayesian estimation

method generally out-performs alternative procedures. In this paper, we propose an improved

Bayesian estimation method.

Despite its importance, forecasting is extremely rare in agent-based modeling literature.

The only example we are aware of is Recchioni et al. (2015), who uses a calibrated financial

model a lá Brock and Hommes (1998) to forecast stock market prices. In this paper, we aim

at filling this gap by proposing a simulation-based forecasting technique for macroeconomic

agent-based models.

3 The Model

The estimation and forecasting methods we propose can be applied to any ABM. However, to

make the case in favour of these methods more specific, we apply them to an actual medium-scale

macro ABM. In this section we present the main features of the model.

The economy consists of four sectors: firms, households, the banking system and the public

sector. There are NF firms, of which Nk
F produce capital goods (K-firms) and N c

F produce

consumption goods (C-firms). K-firms use labor to produce and sell capital goods to C-firms.

C-firms employ labour and capital to produce and sell consumption goods to households.

There are NH households, of which NW are workers and NF are“capitalists”, i.e., firm
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owners.3 Workers supply labor to firms. If employed, each worker earns a wage; if unemployed,

she will receive an unemployment subsidy equal to a fraction (the replacement rate) of the wage

of the employed. The market for labour is characterized by search and matching : unemployed

workers search for a job at firms and stop searching when a match occurs. Firm owners earns

dividends proportional to the firm’s profit if the latter is positive.

For simplicity, only wages are taxed. Hence the disposable income of the employed worker

is a fraction of the wage. Unemployed workers and capitalists do not pay taxes so that their

disposable income coincides with the unemployment subsidies and dividends respectively.

Both workers and capitalists are consumers, i.e., buyers on the market for consumption goods

(C- goods). The market for C-goods is characterized by search and matching: households search

for trading opportunities at C-firms and stop searching when a match occurs. Also the markets

for capital goods (K-goods) is characterized by search and matching: C-firms search for trading

opportunities at K-firms and stop searching when a match occurs.

For simplicity, the banking sector consists of only one bank. Households and firms hold

deposits at the bank, which, for simplicity, are not remunerated. The bank also extends loans

to firms which need to fill the financing gap (production costs net of internally generated funds).

Since there is only one bank, by construction there cannot be search and matching on the market

for credit. The bank sets the price (interest rate on loans) and the quantity of credit supplied

to firms. The price/quantity decision of the bank is based on the assessment of the borrowing

firm’ s financial fragility, which is a proxy of the credit risk run by the bank. In particular,

the interest rate on loans is set adding a mark up (external finance premium) to the risk free

interest rate (i.e., the interest rate on Government bonds). The external finance premium, in

turn, is increasing with the borrower’s leverage. In this setting, a firm may well face a limit on

the amount of credit it can get (credit rationing).

The public sector collects taxes on wage income and provides unemployment subsidies. In

case of a public sector deficit, bonds are issued and sold to the bank. The interest rate on

Government bonds is equal to the risk free interest rate. Figure 1 depicts agents’ interactions

on the five markets: deposits, credit, labor, K-goods and C-goods. The way in which markets

work will be described in the following.

3By assumption, there is one owner per firm.
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Figure 1: Agents and markets

3.1 Households

As we said, households can be either workers or firm owners.

Each worker supplies 1 unit of labour inelastically. If employed, she receives the nominal

wage wt and pays out a fraction tw (the tax rate) of this wage to the Government. The tax

rate is one of the parameters we will estimate (see table 2). If unemployed, the worker searches

for a job visiting a subset Ze of firms (chosen at random among the population of firms) and

applies to the first one who has posted vacancies. Since the wage is uniform across firms and

labour is homogeneous, once an unemployed worker finds a firm with an unfilled vacancy she

stops searching and the match occurs. Unemployed workers who have not succeeded in finding

a job (because firms in their subset did not post vacancies or because they have already filled

all the vacancies), receive an unemployment subsidy from the Government equal to a fraction

of the nominal wage.

The owner of the f -th firm receives a fraction τ (the pay-out ratio) of the current profit πft,

if the latter is positive. If a firm faces a loss, it will not distribute dividends and will reduce
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its net worth correspondingly. Whenever a firm goes bankrupt, another one will replace it. We

assume that the initial equity of the entrant firm is provided by the capitalist that owned the

bankrupt firm. The capitalist’s wealth, therefore, will be reduced correspondingly.

Households (workers and capitalists) are consumers/savers. Each consumer sets her con-

sumption budget equal to the sum of her permanent income and a fraction of her wealth.

Permanent income is a weighted average of current and past incomes (wages and unemploy-

ment subsidies in the case of workers, dividends in the case of firm owners). In computing the

weighted average of past incomes, the consumer uses a memory parameter Ξ. The sensitivity of

consumption to wealth is captured by the parameter χ. These two parameters will be estimated

(see table 2).

Once a consumer has defined her consumption budget, she visits a subset Zc of C-firms

chosen at random and ranks them in ascending order of price: the consumer starts purchasing

goods from the firm which posts the lowest price; if she still has resources to be spent on C-

goods, she will buy from the second one (the firm which posts the second lowest price) and so

on until the consumption budget is exhausted.

If the consumer’s demand has not been completely satisfied after Zc visits, she is forced to

save the unspent portion of the consumption budget. Hence, savings are equal to the difference

between actual disposable income and the budget allocated to consumption plus the involuntary

savings possibly deriving from unsatisfied demand.

Savings are deposited at the bank. By assumption households do not hold Government

bonds. Therefore households’ wealth takes the form only of deposits at the bank.

3.2 C-firms

Each C-firm has some market power on its own local market (i.e. there are as many local

C-markets as there are C-firms).

The firm has to set individual price and quantity under uncertainty. It knows from ex-

perience that if it charges higher prices it will get smaller demand but it does not know the

actual demand schedule (i.e., how much the consumers would buy at any given price). Hence

the firm is unable to maximize profits since the marginal revenue is unknown. The best the

firm can do in this setting consists in charging a price as close as possible to the average price

(approximately equal to the average price set by competitors) and producing a quantity as close
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as possible to (expected) demand. In this way the firm minimizes involuntary inventories (in

case of excess supply) or the queue of unsatisfied customers (in case of excess demand).

In t, the i-th C-firm, i = 1, 2..., N c
F , must choose the price and desired output for t + 1(

Pit+1, Y
∗
it+1

)
. Desired output is determined by expected demand Y ∗it+1 = Y e

it+1. The firm’s

information set in t consists of (i) the average price level Pt and (ii) excess demand

∆it := Y d
it − Yit (1)

where Y d
it is actual demand and Yit is actual output in t. ∆it shows up as a queue of unsatisfied

customers if positive; as an inventory of unsold goods if negative. By assumption C-goods are

not storable. Therefore involuntary inventories cannot be employed to satisfy future demand.

Notice that ∆it is a proxy of the forecasting error εit := Y d
it − Y e

it where Y e
it is expected demand

formed in t-1 for t.4

A firm can decide either to update the current price or to vary the quantity to be produced.

The decision process is based on two rules of thumb which govern price changes and quantity

changes respectively.

The price adjustment rule is:

Pit+1 =


Pit(1 + ηit) if ∆it > 0; Pit < Pt

Pit(1− ηit) if ∆it ≤ 0; Pit > Pt

(2)

where ηi is a random positive parameter drawn from a distribution with support (0, η̄).

The signs of ∆it and of the difference Pit − Pt dictate the direction of price adjustment but

the magnitude of the adjustment is stochastic and bounded by the length of the support of the

distribution. We also assume that the firm will never set a price lower than the average cost.

Since the quantity to be produced is equal to expected demand, the quantity adjustment

rule takes the form of an updating rule for expected demand:

Y ∗it+1 = Y e
it+1 =


Yit + ρ1[Pit>Pt]∆it if ∆it > 0

Yit + ρ1[Pit<Pt]∆it if ∆it ≤ 0

(3)

4In fact ∆it = εit + (Y e
it − Yit) where the expression in parentheses is a non-negative discrepancy

between expected demand and actual production.
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where ρ is a positive parameter, smaller than one.

1[Pit>Pt] is an indicator function equal to 1 if Pit > Pt, 0 otherwise. Analogously, 1[Pit<Pt] is an

indicator function equal to 1 if Pit < Pt, 0 otherwise.

The magnitude of the quantity adjustment is not stochastic (as in the case of price ad-

justment) but determined by excess demand. If we assume that excess demand is close to the

forecasting error, we can interpret Eq. (3) as a standard adaptive mechanism to update demand

expectations. By iteration, as it is well known, desired production in t + 1 will be determined

by the weighted average of past quantities with exponentially decaying weights. The price and

quantity adjustment parameters η̄ and ρ will be estimated (see table 2).

Technology is represented by a Leontief production function: Yit = min(αNit, κωitKit) where

α and κ represent labor and capital productivity respectively and ωit ∈ (0, 1] is the rate of

capacity utilization at firm i. When capital is employed at full capacity – i.e. when ωit = 1 –

output will be Ŷit = κKit. This is “full capacity” output. Given undepreciated capital, actual

capital in t + 1, Kit+1 is given – being determined by investment carried out in t, Iit (to be

discussed momentarily) – and cannot be modified in t+ 1. Hence in period t+ 1 the maximum

attainable output is Ŷit+1.

Once a decision has been taken on desired output in t + 1, the firm retrieves from the

production function how much capital it needs in t+1 to reach that level of activity (capital

requirement): K∗it+1 = Y ∗it+1/κ. If actual capital is greater than the capital requirement, the

desired rate of capacity utilization will be smaller than one. If actual capital is smaller than the

capital requirement, the former will be utilized at full capacity (the rate of capacity utilization

will be one) but desired output will not be reached.

Whatever the scenario, if actual employment in t Nit is smaller than labor required to reach

the feasible level of activity in t+1, the firm will post vacancies. If the opposite holds true the

firm will fire workers.

Firms set the nominal wage on the basis of labour market conditions captured by the distance

between the current unemployment rate ut and a threshold û. Whenever the unemployment

rate is above (below) the threshold firms will cut (increase) the wage. The wage updating
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mechanism therefore is:

wt+1 =


wt [1 + uup (û− ut)] ; û− ut > 0

wt [1 + udown (û− ut)] û− ut < 0

where uup and udown are positive parameters. We will assume that uup > udown to capture the

downward stickiness of nominal wages.

As mentioned above, the firm determines in t the capital stock which will be available for

use in production in t+ 1 by means of investment Iit. By assumption, in planning investment,

the firm sets a benchmark equal to the capital stock used in production “on average” since

the beginning of activity K̄it. This, in turn, is computed by means of an adaptive algorithm,

i.e., the weighted average of past utilized capital from the beginning of activity until t − 1

with exponentially decreasing weights. In computing this weighted average, the firm employs a

memory parameter υ ∈ (0, 1). Capital depreciates at the rate δ. Moreover we assume that C-

firms may invest in each period with a probability γ. Hence investment necessary “on average”

to replace worn out capital is δ
γ K̄it. The parameters υ and γ will be estimated (see Table 2).

We assume, moreover, that the firm plans to maintain, in the long run, a capital stock buffer.

Therefore the target capital stock is equal to KT
it+1 = 1

ω̄ K̄it where ω̄ ∈ (0, 1) is the desired

long run capacity utilization rate (this parmaeter also will be estimated). Net investment is

KT
it+1 −Kit−1. Therefore gross investment in t is:

Iit =

(
1

ω̄
+
δ

γ

)
K̄it −Kit−1

Once investment has been determined, the i-th C-firm visits a subset Zk of K-firms chosen at

random to purchase capital goods. Visited K-firms are ranked in ascending order of price and

the C-firm starts buying capital goods from the K-firm which has posted the lowest price. If

this purchase does not exhaust planned investment, the C-firm will purchase capital goods also

at the second firm in the ranking and so on. If the C-firm’s demand for K-goods has not been

completely satisfied after Zk visits, it is forced to “save” the unspent portion of the investment

budget. Therefore actual investment may turn out to be lower than planned investment.
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3.3 K-firms

In setting the price of capital goods, K-firms follow essentially the same heuristic adopted by

C-firms (see equation (2)). The quantity adjustment rule departs from the one adopted by C-

firms (see equation (3)) to take into account the fact that K-goods are durable and therefore

storable: inventories of capital goods can be carried on from one period to another and sold in

the future. The quantity adjustment rule of the j-th K-firm, j = 1, 2, ..., Nk
F therefore is:

Y ∗jt+1 = Y e
jt+1 − Y k

jt =


Yjt + ρ1[Pjt>Pk

t ]∆jt − Y k
jt if ∆jt > 0

Yjt + ρ1[Pjt<Pk
t ]∆jt − Y k

jt if ∆jt < 0

(4)

where Y ∗jt+1 is the desired scale of activity, Y e
jt+1 is expected demand, Y k

jt is the fraction of

the inventory of capital goods held by firm j at time t which can be used to face demand in

t + 1, ∆jt is excess demand, Pjt is the individual price and P kt is the average price of capital

goods. Y k
jt is computed applying a rate of depreciation δk to the stock of unsold machine tools

accumulated until t. This parameter will be estimated. Since K-firms are endowed with a linear

production function whose only input is labour, once the price-quantity configuration has been

set, a K-firm may post vacancies or fire workers in order to fulfill labor requirements.

3.4 Credit

Once the quantity to be produced has been set and the cost of inputs determined, the firm has

to deal with financing. Consider a generic firm, indexed by f = 1, 2..., NF . If the firm’s internal

liquidity (i.e., the current deposits held at the bank) Mft−1 is “abundant”, i.e., greater than

the costs to be incurred, the firm can self-finance production. If, on the other hand, liquidity is

not sufficient to carry out production up to the desired level, the firm applies for a loan to fill

its financing gap:

Fft = max(wNft + 1cP
k
t−1Ift −Mft−1, 0)

where 1c is an indicator function which assigns value 1 to C-firms and 0 to K-firms. In fact

only C-firms purchase capital goods. By definition, the financing gap is the demand for loans

of the f -th firm.

For simplicity we assume there is only one bank. The bank collects deposits from all the
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firms and households, supplies credit to firms and purchases Government bonds. The bank

decides (i) the interest rate to be charged to each borrower and (ii) the size of the loan that will

be actually extended (which may be different from the borrower’s financing gap). As we will

see momentarily, both decisions will be affected by the borrower’s leverage λft:

λft =
Lft

Eft + Lft

where Lft is the firm’s debt and Eft is equity or net worth.

The interest rate charged by the bank to each firm is determined as a mark up µ on the

risk free interest rate r. Adopting the expression pioneered by Bernanke and Gertler, the firm

is charged an external finance premium increasing with the probability of default which in turn

is (non-linearly) increasing with leverage. The probability of default for the i-th C-firm is:

p(λit) =
eb0c+b1cλit

1 + eb0c+b1cλit

Analogously, the probability of deafult for the j-th K-firm is:

p(λjt) =
eb0k+b1kλjt

1 + eb0k+b1kλjt

In the end, therefore the interest rate charged to the generic f -th firm is a function of the

risk-free interest rate and of the firm’s leverage:

rft = µf(r, λft) (5)

where the function f(.) is increasing with all the arguments.5

In order to determine the size of the loan, the bank sets first a tolerance level for the potential

loss Γb on credit extended (to any borrower) as a fraction φ of its net worth: Γb = φEbt. The

borrower’s total debt in t will be Φft +Lft−1 where Φft is the new credit line to be supplied in

t. We assume the bank sets the new credit line in order to equate the expected loss on loans

extended to the f -th firm to the tolerance level: (Φft+Lft−1)p(λft) = φEbt. Therefore the new

5For the specification of f(.) see Assenza et al. (2015).

13



credit line is:

Φft =
φ

p(λft)
Ebt − Lft−1

Given the current exposure of the bank to the firm, the new credit line is increasing with the

bank’s net worth and decreasing with the firm’s leverage. The size of the loan actually granted

to firm f at time t will be

L̂ft = min(Φft;Fft)

i.e., the minimum between new credit line and the financing gap. If the latter is greater than

the former the firm will face a borrowing constraint and therefore will be forced to scale down

production. Finally, firms in each period repay a fraction ϑ of the total debt to the bank.

The parameters φ, µ and ϑ will be estimated (see Table 2).

3.5 Net Worth Updating

In every period, the firm’s net worth Ef is updated by means of retained profits:

Eft+1 = Eft + (1− τ)πft

where τ is the dividend payout ratio and πft is the firm’s profit:

πft = Pft min(Yft, Y
d
ft)− (wNft + 1cωftδKft + rftLft)

Whenever the firm’s equity turns negative, the firm goes bankrupt and is replaced by a new

one. The owner of the bankrupt firm confers the initial net worth of the entrant firm (out of

her own private wealth). Hence, the population of firms is kept constant.

Also the bank’s net worth is updated by means of retained profits:

Ebt+1 = Ebt + (1− τ)πbt −BDt

where πbt is the bank’s profit and BDt is bad debt, i.e., the book value of non-performing loans.

We assume that the bank does not remunerate deposits while it earns interests on loans (if

borrowers are solvent) and the risk free interest rate on Government bonds. Hence, in every
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period the bank’s profit is

πbt =

Ns
F∑

s=1

rstLst + rBt−1

where N s
F is the number of solvent firms. Hence

BDt =

Nn
F∑

n=1

Lnt

where Nn
F is the number of insolvent firms.

3.6 The Public Sector

The public sector raises tax revenues on wage income TAt = twwtNt where Nt is total employ-

ment and extend unemployment subsidies to households and interest payments on outstanding

Government bonds to the bank. Total unemployment subsidies are USt = zwt(NW −Nt), where

z is the “replacement rate”. Interest payments are INTt = rBt−1 where r is the cost of public

debt, equal, by assumption, to the risk free interest rate.

A public sector deficit occurs when taxes turn out to be lower than transfers (i.e., the

sum of unemployment subsidies and interest payments). In this case, the Government will

issue new bonds. For simplicity, we assume that the Government sells its bonds only to the

bank. We assume moreover that regulation (a portfolio constraint) forces the bank to purchase

Government bonds.

4 Can we estimate the ABM? A Bayesian proposal

The estimation of a generic model aims at finding the set of numerical values of the parameters

such that the “output” of the model is “as close as possible” – according to some metric –

to the observed empirical data. Contrary to standard DSGE models, ABMs cannot be solved

analytically but must be simulated. The output of an ABM consists of the artificial time series

generated by a simulation with given numerical values of the parameters and given random

seeds. The properties of the output may be affected by the random seeds and the configuration

of parameters: small changes in parameter values might lead to big changes in model behavior.

This clearly poses huge challenges when the ABM has to be estimated.
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4.1 Bayesian estimation of ABM parameters

In this section we elaborate on the Bayesian techniques for ABM estimation proposed in Grazzini

et al. (2017). Bayesian estimation follows three steps: i) simulation of the ABM; ii) estimation

of the likelihood function and the posterior distribution and iii) sampling from the posterior

distribution of the parameters. We improve on the Bayesian method proposed in Grazzini et al.

(2017) by taking into account also the time structure of observed data. In appendix A, we show

how the improved Bayesian estimation method proposed in this paper provides a more precise

posterior distribution with respect to Grazzini et al. (2017) in a few simple estimation models.

Step 1: Simulating the model. The first step consists in simulating the ABM. We write

the period-t values of the macroeconomic variables generated by each simulation in compact

form as follows:

yt = F (x0,Ψt0:t; θ)

where yt is the M × 1 vector of period-t values6 of M aggregate variables, F (.) represents the

model, x0 denotes a set of initial conditions, Ψt0:t are all the random shocks from period t0 > 0

to the current period7 and θ is the k×1 vector of numerical values of the parameters used in the

simulation. Since the (relevant) time span of the simulation goes from period t0 to period T , the

output of the model is represented by the M × T matrix of simulated data Y = [yt0 , yt1 , ..., yT ].

In general the behavior of the model depends on the parameters in θ, on the random seed s

governing the set of random shocks Ψt0:t and on the initial conditions x0. With a slight abuse

of notation, therefore, we can characterize the matrix of simulated data as Y = Y (θ, s, x0).

If the time series ym = [ymt0 , y
m
t1 , ..., y

m
T ] represented by the m-th row of this matrix (m =

1, 2, ...M) were stationary and ergodic, changes in x0 and s would not affect the output of

the model. In fact if ym is stationary and ergodic, long run simulations with different initial

conditions and different random seeds will generate statistically equivalent time series. In this

case the M×T matrix Y of simulated data (with T very large) can be characterized as Y = Y (θ)

because the properties of the matrix depend only on the set of parameters θ.

Since time series can be easily made stationary, the assumption of stationarity is usually

not problematic. On the contrary, ergodicity is a strong assumption for ABMs: simulated time

6We interpret one period as a quarter.
7We consider the output of the model from t0 to get rid of the transient period (i.e., the interval

ranging from 0 to t0).
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series may well be non-ergodic. When ym is non-ergodic, its properties depend on the specific

draw from the distribution of shocks and on the particular initial conditions. For the sake of

simplicity and tractability, in the following we assume that artificial time series are characterized

by a “weak” form of non-ergodicity. More precisely, first of all we assume that the output of

the ABM is unaffected by changes in initial conditions so that Y depends only on the vector

of parameters θ and the random seed s: Y = Y (θ, s). Second, we simulate the model S times

for T periods with the same parameter values but different random seeds obtaining a matrix

Y (θ,S) = [Y (θ, s1), Y (θ, s2), ...., Y (θ, sS)] of M stacked time series each with a length of T × S

periods. We assume that the stacked artificial time series are approximately ergodic. We will

refer to Y (θ,S) as the ensemble distribution and we will use it to characterize the behavior of the

model as a function of θ in the estimation procedure. In principle non-ergodicity has important

implications for the interpretation of estimation results. For the specific ABM discussed in

this paper, however, we will show that the results of estimation are not biased by a potential

non-ergodicity issue.

We will now describe the steps of the estimation procedure.

Step 2: Estimating the likelihood and posterior distribution The second step

consists in determining the likelihood of θ. The empirical evidence (observed macroeconomic

time series) can be organized in a M ×n matrix Ȳ = [ȳ1, ȳ2, ..., ȳn] where ȳt is the M × 1 vector

of period-t observed values of M aggregate variables, n is the length of the time span over which

data have been collected. We want to compute the likelihood function:

L(θ, Ȳ ) =
n∏
t=2

P (ȳt, ȳt−1; θ)

where P (ȳt, ȳt−1; θ) is the joint distribution of ȳt and ȳt−1. By using this distribution, we take

into account the time structure of the simulated and observed time series in the estimation

procedure.8

The most difficult task in estimating an agent-based model – whose data generating process

is unknown to the modeller – is to determine the density of the observed time series for each

possible value of θ, i.e., to determine P (.; θ). Our strategy to overcome this difficulty consists

in using the simulated data to estimate a non-parametric pdf by means of a kernel density

8The number of lags in the joint distribution is arbitrary. In this application we use only one lag.
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estimator with a Gaussian kernel. Of course, the distribution of simulated data depends on the

vector of parameters θ. We compute the density of each observed data point {ȳt, ȳt−1} under

the kernel density estimated distribution. The likelihood L(θ, Ȳ ) is the product of the density

of each observed data point. Using the prior p(θ), we can compute the posterior using Bayes’

theorem:

p(θ|Ȳ ) ∝ p(θ)L(θ, Ȳ ) (6)

Eq.(6) gives the posterior probability of a parameter vector θ, given the prior p(θ) and the matrix

of observed data Ȳ . Of course, it is possible to take the log and compute the log-posterior.

Step 3: Sampling from the posterior distribution. The third task we have to carry

out consists in investigating the k-th dimensional posterior p(θ|Ȳ ). To compute the posterior,

for each value of θ we need to simulate the model and estimate the likelihood. Exploring the

k dimensional space, therefore, can be computationally very heavy. Grazzini et al. (2017) use

the MCMC method with Metropolis-Hastings algorithm, Lux (2018) uses the particle filters

estimation method.

A search algorithm is generally efficient in exploring highly dimensional spaces to find the

areas of high posterior when the the latter is not too irregular. In ABMs, due to the complexity

of interactions and the pervasiveness on non-linearities, small changes in the values of the

parameters may imply huge changes of model behavior – i.e., of the properties of simulated

time series. The posterior, therefore, is highly irregular and possibly non-continuous. Search

algorithms such as MCMC can be very inefficient in this case. They may end up sampling

the posterior from flat areas of local maximum. Moreover, even with relatively simple models,

search algorithms usually need a great number of simulations to eventually converge toward the

correct posterior. To avoid these problems in this paper we have adopted a different strategy.

We draw N samples using latin hypercube sampling (a similar strategy is adopted in Barde

and van der Hoog, 2017) and compute the posterior for each sample θ. If N is big enough, this

simple sampling procedure gives an exhaustive overview of the parameters space. More efficient

sampling procedures could be applied. For example, Salle and Yıldızoğlu (2014) propose to use

kriging and Lamperti et al. (2018) use Machine Learning Surrogates. In this paper, to keep the

estimation procedure intuitive we use the simple sampling method described above. However,

extending the estimation algorithm to improve the sampling of the parameter space should be
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straight forward.

4.2 Application of the Bayesian estimation method to our ABM

We apply now the proposed technique to the actual estimation of our MABM. Our economy is

populated by 1120 households (1000 workers and 120 capitalists) and 120 firms, of which 1/6

in the K-sector. Overall there are 28 parameters. To reduce the computational burden we set

the numerical values of 17 parameters (see Table 1) and estimate the remaining 11 parameters

(listed in Table 2).

We sample N = 5000 combinations of the above mentioned 11 parameters using latin

hypercube sampling. For each parameter combination we simulate the model S = 30 times.

Therefore we run 150 000 simulations. It is important to stress that we select a set of S random

seeds and use the same random seeds for each parameter combination. Each simulation runs for

T = 1500 periods so that the total number of simulated periods is 225 000 000. Notice however

that we discard a transient of t0 = 500 periods per simulation.

We estimate only a subset of parameters to alleviate the computational strain of exploring

a high dimensional posterior space. To estimate more parameters we should increase N ade-

quately which would affect computing time significantly also in Step 2. In fact, more parameter

combinations imply more densities to estimate and more posteriors to compute.9 We record the

artificial time series of output, gross investment (including changes in inventories), consumption

(all measured at constant prices), the aggregate price level and the unemployment rate.

We estimate the model using US data. We have downloaded (from FRED) GDP, personal

consumption, gross private investment (all in real terms), the implicit price deflator and the

civilian unemployment rate from Q1-1948 to Q1-2018.10

The model is simulated in levels. To make simulated and observed data comparable, we

consider the cycle component estimated by an HP-filter of both simulated and observed real

9To get an idea of the computational time involved, consider that 1 simulation on our computer takes
on average 69 seconds. The total computational time spent in the simulation and parameter sampling
phase was 10,350,000 seconds, i.e., 2875 hours or 119 days. Using a computer with 24 cores, we were able
to parallelize simulations and reduce total simulation time to approximately 5 days. As mentioned above,
some recent contributions – e.g. Lamperti et al. (2018) – put forward proposals to improve sampling
efficiency by means of machine learning and surrogate models. These methods can improve efficiency in
exploring the parameter space to a large extent. We plan to use these methods in future developments
of our estimation project.

10FRED codes: GDPC1, PCECC96, GPDIC1, GDPDEF, UNRATE. We transformed monthly data
for the unemployment rate into quarterly data by taking the average of monthly data over a quarter.
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Table 1: Calibrated parameters.

Parameter Description Value

Zc C-firms visited by each consumer 2
Zk K-firms visited by each C-firm 2
Ze Firms visited by each unemployed worker 5
α Productivity of labor 0.5
k Productivity of capital 1/3
τ Dividend payout ratio 0.2
δ Capital depreciation rate 0.03
ω̄ Long run capacity utilization rate 0.85
b0c Parameters for bank’s risk evaluation -15
b1c ” 13
b0k ” -5
b1k ” 5
r Risk free interest rate 0.01
z Replacement rate (unemployment subsidy) 0.5
uup Upward wage adjustment 0.1
udown Downward wage adjustment 0.01
û Unemployment threshold 0.1

Table 2: Priors and posteriors’ mode of estimated parameters.

Parameter Description Prior Post. mode

Ξ Memory parameter in cons. U(0.5, 1) 0.7382
χ Wealth parameter in cons. U(0, 0.1) 0.0172
ρ Quantity adjustment U(0.5, 1) 0.7301
η̄ Price adjustment U(0, 0.5) 0.1649
µ Bank’s gross mark-up U(1, 1.5) 1.007
φ Bank’s leverage U(0, 0.1) 0.0024
δk Inventories depreciation rate U(0, 1) 0.0781
γ Fraction of investing C-firms U(0, 0.5) 0.3260
ϑ Rate of debt reimbursement U(0, 0.15) 0.0328
υ Memory parameter in inv. U(0, 1) 0.1591
tw Tax rate U(0, 0.4) 0.0594

GDP, consumption and investment. Moreover, we use the simulated and observed price deflator

to compute de-meaned inflation rates. Finally, we consider the unemployment rate in levels.

Table 1 lists the numerical values of 17 parameters, calibrated on the basis of empirical

evidence and/or to generate a “plausible” output of the model. Table 2 lists 11 estimated

parameters, the prior and the mode of marginal posteriors.

In this estimation exercise, we have chosen uniform priors to impose a “reasonable” restric-

tion on the values of estimates, thereby defining a closed parameter space. If available, different

priors could be easily implemented and possibly improve estimation results. In the last column

of Table 2 we show the combination of parameters with maximum posterior. Figure 2 shows

the marginal posterior distributions of the estimated parameters. Posteriors are very narrow.
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Figure 2: Marginal distributions of the posterior

Intuitively, this means that, among the N parameter combinations, the estimation procedure

finds that one parameter combination has a much higher posterior density than all the others.

This parameter combination coincides with the mode of the posterior distributions reported in

Table 2. However, in order to correctly interpret the posterior marginal distributions, it is im-

portant to recall that by using the latin hypercube sampling, we have discretized the parameter

space.

To evaluate the reliability of the procedure we have implemented a pseudo-estimation exer-

cise. We choose the modes of the posteriors as the point estimates of the parameters, and use

these point estimates to simulate the model 400 times with different random seeds for 800 time

periods. Discarding the first 500 periods as transient, we are left with 400 pseudo-observed time

series, i.e. artificial time series, of a length comparable to that of observed time series. We then

use these pseudo-observed time series to estimate the model following the procedure outlined

above. We find that 72.5% of the estimates deliver the correct vector of parameters. This result

suggests that, assuming the model is well-specified and the selection of the parameter space

is accurate, the probability that the estimation procedure yields the correct estimates of the
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Y C I π u
Simulated
standard deviation 0.0163 0.0133 0.0709 0.0067 0.0329
first lag autocorrelation 0.5722 0.3408 0.4191 0.3254 0.7958

Empirical
standard deviation 0.0161 0.0125 0.0665 0.0062 0.0163
first lag autocorrelation 0.8469 0.8162 0.8249 0.7795 0.9665

Table 3: Artificial and empirical moments. Moments are computed on the cyclical component using
HP-filter of real output (Y ), real consumption (C), real gross investments (I), on demeaned inflation (π)
and on unemployment (U).

parameters is high. This result suggests also that non-ergodicity does not impair the efficacy of

the procedure to estimate the model. In fact, if the model were strongly non-ergodic, simula-

tions based on the same parameter set but different seeds would deliver very different parameter

estimates. We cannot rule out non-ergodicity but we can safely claim that non-ergodicity, if

present, is not strong enough to influence the ability of the estimation procedure to find the

correct parameter vector.

5 Does the ABM fit the data? Matching moments

Does the estimated model “behave” approximately as the observed economic system? To answer

this question, in this section we investigate the statistical properties of a number of simulated

aggregate time series and compare them with their empirical counterparts. We simulate the

model 96 times using the combination of parameters listed in Table 1 and Table 2 as point

estimates. The model is able to approximately reproduce the behavior of output, the price index,

consumption, investment and the unemployment rate observed in the US economy. Figure 3

shows the densities of the empirical and simulated time series.11 In general the statistical

properties of observed time series are matched by those of the artificial time series generated

by simulations. Some estimated densities, however, are slightly shifted to the left and all

the estimated time series are more volatile than the observed counterparts. To quantify the

distance between simulated and observed time series, we compute the standard deviation and

the first lag autocorrelation for output, consumption, investment, (demeaned) inflation rate

11In interpreting the comparison it is important to note that the estimation procedure employs the
joint density of period t and period t−1 variables to compute posteriors, not the unconditional densities
plotted in the figure.
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Figure 3: Estimated densities of empirical (dashed red line) and simulated (blue line) cyclical component
of output, consumption, investment and price index and of the unemployment rate.

and unemployment rate (see Table 3). The standard deviation of simulated time series is

very close to that of the empirical counterparts but the observed persistence is only partially

matched by the model: the autocorrelation of simulated time series is non-negligible but is

always significantly lower than that of observed time series. It is worth noting, however, that

the persistence of simulated series is entirely built-in (due to assumptions on agents’ behaviour

and their interactions). In fact, the ABM under scrutiny does not feature any exogenous auto-

regressive aggregate shocks.

6 How does the model behave after a shock? Im-

pulse Response functions

How does the behaviour of the model respond to aggregate shocks? For DSGE models, the

obvious answer to this question is provided by Impulse-Response analysis. Following this well-

established methodology the DSGE modeller can explore in a neat and generally unambiguous

way the deterministic trajectory of a macroeconomic variable after a shock to an aggregate

variable.

23



Of course, one can investigate the effects of an aggregate shock also in a macro ABM. In this

case, however, it is impossible to completely shut off after-shock randomness. Moreover, it is

impossible to isolate the effects of the shock: the model as a whole will be affected in highly un-

predictable ways. To get the flavour of the argument, consider the search and matching process

in the goods market. As we have shown above, there is an unavoidable random ingredient of this

process, which drives the adaptation of prices and quantities to changing market circumstances.

The same aggregate shock may trigger different dynamic paths of prices and quantities in the

presence of different random seeds. Of course the modeller can at least fix the random seed so

that the simulated search and matching sequence does not change after the shock. This does

not solve the problem, however, as shown by the following mental experiment.

Suppose we simulate the model for T periods with a given set of parameter values, exogenous

variables and random seed. This is the benchmark simulation. Then we simulate again the

model over the same horizon (T periods) with the same random seed, but in period T/2 we

generate an exogenous uniform increase of permanent income. This is an aggregate shock as its

impact (first round effect) is the same for all the household.12 This is the shocked simulation.

How does the shock affect the search and matching mechanism?

Let’s assume that in the benchmark simulation the first (randomly selected) consumer visits

Zc (randomly selected) firms and spends the entire consumption budget at firm A, that sets

the lowest price. The consumer therefore does not buy at the firm setting the second lowest

price, which we denote with B. Let’s assume, moreover, that firm B goes bankrupt due to lack

of demand.

Since we have fixed the random seed, in the shocked simulation the first randomly selected

consumer will be matched with exactly the same Zc firms as in the benchmark simulation.

However, since the consumer’s after shock permanent income is now higher, the goods available

at firm A are not sufficient to exhaust her consumption budget: she will turn to firm B to

buy goods. Other things being equal, firm B will increase production and/or price in the next

period. Most likely its profits will increase. It may even avoid bankruptcy, changing the course

of events in the model.

The presence of non-linearities and discontinuities (such as bankruptcies) in the ABM implies

that a small change in an exogenous variable (or parameter) can have a huge impact on aggregate

12We will analyze the effect of such a shock below.
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behavior. In our mental experiment, a small change in demand can make the difference between

life (survival) and death (bankruptcy) for firms. Therefore, after the shock the overall behavior

of the model changes and the differences between the benchmark simulation and the shocked

simulation will not disappear.

6.1 Seed-specific Impulse-Response (SIR) functions

To illustrate this behavior, we analyze the response of GDP to an aggregate shock in our ABM.

Let yt represent period-t GDP (at constant prices) generated by the benchmark simulation

(t = 1, 2, ..., 1000) and ỹt period-t GDP generated by the shocked simulation, characterized

by the same random seed but an exogenous increase of permanent income in period 500. To

analyze the macroeconomic effect of the shock we compute the percent deviation of the shocked

GDP from the benchmark GDP:

ŷt = log ỹt − log yt

The time series of ŷt is shown in figure 4. Of course, the benchmark and shocked simulations

generate the same GDP in the first half of the simulation horizon so that ŷt is exactly equal

to zero for any t ≤ 500. After the shock ŷt is generally different from zero. We can conceive

of ŷt over the second half of the simulation horizon as the equivalent of an Impulse-Response

(IR) function for our ABM. Notice that ŷt oscillates irregularly around zero, i.e., on average the

shocked GDP is equal to the benchmark GDP over the interval 500 < t < 1000. Since this IR is

associated with a specific random seed, we will refer to ŷt as a Seed-specific IR (SIR) function.

The dynamics of ŷt however is difficult to interpret. It does not behave nicely as in DSGE

models, with a smooth monotonic departure from and return to the steady state. This is due

at least in part to the specific random seed. Different random seeds generate different SIRs.

6.2 Robust Impulse-Response (RIR) functions

To form a “robust opinion” of the response of a macroeconomic variable to an aggregate shock in

an ABM, we must carry out a number of simulations with different random seeds and compute

the average response of the variable in question to the aggregate shock.13

13Gobbi and Grazzini (2019) and Guerini et al. (2018) propose similar methods to produce impulse
response functions in agent-based models.
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Figure 4: Log difference of real GDP between the benchmark simulation and a simulation with a shock
to permanent consumption in period 500.

To build Robust Impulse-Response (RIR) functions we propose the following method. Con-

sider an ABM which can generate the artificial time series of M macroeconomic variables (e.g.

GDP, consumption etc.) by means of a simulation over T periods for a given set of parameter

values and exogenous variables and a given random seed. We want to quantify and interpret

the response of each macroeconomic variable to an impulse generated by an aggregate shock.

1. We simulate the ABM (over T periods) with a given set of parameters and exogenous

variables with S different random seeds. These are the S benchmark simulations. We get

S benchmark time series for each variable of interest. We denote the benchmark time

series of variable ym (where m = 1, 2, ...,M) in simulation s (s = 1, 2, ..., S) with yms,t

where t = 1, 2, ..., T .

2. Then, we simulate the ABM with the same seeds as above but with an aggregate shock

in period τ < T . These are the S shocked simulations. We get S shocked time series for

each variable of interest. We denote the shocked time series of variable ym in simulation

s with ỹms,t.

3. We compute S Single-seed Impulse-Response functions, i.e., log differences of the shocked

and benchmark time series, for each variable. We denote the SIR of variable ym in

simulation s with SIRms,t = log ỹms,t − log yms,t.

4. Finally, we compute the Robust Impulse-Response function for each variable as the mean
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of the single seed impulse response functions across seeds:

RIRmt =

∑S
s=1 SIR

m
s,t

S
t = 1, 2, ..., T

6.3 Interpreting the transmission of shocks by means of RIRs

In this section we apply the methodology proposed above to our ABM in order to build RIRs

for M = 9 variables: GDP, inflation, gross capital formation, consumption, the unemployment

rate, total debt of the corporate sector, the bankruptcy rate (fraction of firms that go bankrupt),

total capital stock and bank net worth. We will consider Σ = 9 aggregate shocks: 3 real shocks

(exogenous change of consumption, investment and capital stock), 2 nominal shocks (exogenous

change of the prices of capital goods and of consumption goods) and 4 distributional shocks.

To build RIRs we simulate the ABM over T = 1000 periods S=192 times with different

seeds. We generate S=192 benchmark time series for each of the 9 variables.14

Then, we simulate the ABM S=192 times with the same seeds but hitting the economy

with an aggregate shock in period τ = 500. We repeat the procedure for each of the Σ shocks.

We get S = 192 shocked time series for each variable and each shock. Therefore we compute

S = 192 Seed specific IR functions (SIRs) for each variable and each shock.

Finally, we compute the Robust IR functions (RIRs). We take the average of SIRs across

random seeds for each variable and each shock. Overall therefore we have M × Σ = 81 RIRs.

They are shown in figures 5, 6 and 7, together with the 20th and 80th percentiles to account

for the variability of the response to the shock.

The dynamic pattern of RIRs is generally similar to those of IRs in DSGE models. The

shock generates a departure of the variable from the benchmark statistical equilibrium and a

return to it with the passing of time. In some cases the return to equilibrium may occur by

means of long dampening swings.

6.3.1 Real shocks

The first set of RIRs in the upper-left panel (block of diagrams) in Figure 5 captures the re-

sponse of the 9 variables of interest to a (positive) consumption shock generated by a uniform

14The number of simulations S = 192 has been chosen to use efficiently parallel computing over our
24 cores computer. In fact, 192 is a multiple of 24.
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exogenous increase of permanent income in period 500.15 Consumption increases on impact,

since households feel richer and allocate a bigger budget to consumption, and then goes back

to the benchmark statistical equilibrium.16 The increase in consumption has three effects on

firms. First higher demand for consumption goods implies that firms charging higher prices will

sell more. This leads to an increase of inflation on impact. Second, higher demand translates

into higher revenues, leading to higher profits and a slight decrease of the bankruptcy rate.

Third, firms react to higher consumption by increasing production and employment, so that

the unemployment rate decreases (slightly). The effects of the consumption shock on invest-

ment and the capital stock are negligibile. The upper-right panel of Figure 5 shows the RIRs
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Figure 5: Upper-left: RIRs to a positive persistent shock to permanent income. Upper-right: RIRs
to a negative persistent shock to the probability to invest (γ). Bottom: RIRs to a shock to the capital
stock. Blue lines are average impulses, orange dashed lines are the 20th and 80th percentiles. Period 0
corresponds to the period in which the shock hits the economy.

following a (negative) investment shock, i.e., a reduction of the probability to invest γ in period

15We assume that the permanent income of all workers goes up by 20% in period 500. This could be
interpreted as an increase of expected future income.

16In the comments that follow we will focus on the short run effects of the shock. To avoid repetitions
we will not reiterate that RIRs go back to zero over the long run.
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500.17 Thanks to the law of large numbers, γ can be conceived as the fraction of firms able to

adjust their capital stock in each period. It is worth noting that, given the investment decision

described in Eq. (3.2), when γ goes down firms that can adjust their capital stock will invest

more, anticipating that it will be less likely for them to be able to invest in the future. There-

fore, a reduction of γ makes the number of investing firms shrink, but boosts the investment

of those firms that are able to invest. The first effect prevails so that the shock will lead to a

reduction of gross fixed capital formation and of the capital stock. Production goes down and

the unemployment rate increases. Moreover, the reduction of investment leads to a decrease of

corporate debt.

The bottom panel of Figure 5 shows the RIRs in case of a shock to the capital stock, namely

an exogenous “disruption” that destroys 20% of the capital stock in period 500. Other things

being equal, after the shock capacity utilization goes up and becomes higher than desired. C-

firms therefore have an incentive to increase investment to restore their capital stock. Higher

demand for capital goods leads K-firms to increase their prices causing an increase in infla-

tion. Due to perfect complementarity in production, a lower capital stock implies also lower

employment and therefore the unemployment rate increases. Labour income goes down and so

does consumption. Following a capital disruption, therefore, investment and consumption move

in opposite direction. The latter effect prevails so that aggregate demand and GDP decrease.

Following the shock, moreover, corporate debt and the bankruptcy rate go down and bank’s

net goes up.

6.3.2 Nominal shocks

The left panel of Figure 6 shows the effect of a shock to the prices of K-goods, namely a 10%

increase of the price set by each and every K-firm.18 Since K-goods become more expensive, C-

firms transfer the sudden increase of their costs to their prices. This implies a rise in the prices

of C-goods. Inflation goes up due to the joint effect of the increase in the prices of C-goods and

K-goods. Higher prices of K-goods, moreover, depress investment, employment, production and

consumption. Since C-firms need more funds to buy K-goods, their debt increases.

17We assume that the probability to invest goes down by 80% in period 500. To make the effect of the
shock more interesting, we assume that after the shock γ converges back gradually to its benchmark value.
In other words, we assuem that there is a persistent, rather than temporary, shock to the probability to
invest.

18To magnify the effects of the shock, we assume that the shock is persistent, i.e., it vanishes gradually.

29



0 50 100
-0.2

0

0.2
Production

0 50 100
-0.05

0

0.05
Inflation

0 50 100
-0.5

0

0.5
Gross Fixed Capital Formation

0 50 100
-0.2

0

0.2
Consumption

0 50 100
-0.1

0

0.1
Unemployment

0 50 100
-0.5

0

0.5
Total Debt

0 50 100
-0.01

0

0.01
Bankruptcies

0 50 100
-0.1

0

0.1
Capital Stock

Capital price shock

0 50 100
-1

0

1
Bank Equity

0 50 100
-0.2

0

0.2
Production

0 50 100
-0.1

0

0.1
Inflation

0 50 100
-1

0

1
Gross Fixed Capital Formation

0 50 100
-0.5

0

0.5
Consumption

0 50 100
-0.2

0

0.2
Unemployment

0 50 100
-1

0

1
Total Debt

0 50 100
-0.02

0

0.02
Bankruptcies

0 50 100
-0.2

0

0.2
Capital Stock

Price shock

0 50 100
-1

0

1
Bank Equity

Figure 6: Price shocks. Left (right) panel: RIRs to a persistent shock to the price of capital goods
(consumption goods). Period 0 corresponds to the period in which the shock hits the economy.

The right panel of Figure 6 shows the consequences of a shock to the prices of C-goods,

namely a 10% increase of the price charged by each and every C-firm. The magnitude of the

shock on C-prices is the same as that on K-prices but the difference in terms of macroeconomic

outcomes is spectacular. The obvious reason is the relative size of the two industries, the

C-sector being much bigger than the K-sector. The increase in C-prices has a sizable direct

effect on inflation, whch shoots up. Higher C-prices imply a smaller demand for C-goods and

a contraction of production and employment. The capital requirement goes down and so does

investment. Moreover higher inflation implies lower real wages and lower consumption. Lower

demand for consumption goods leads firms to reduce their production, reducing employment,

investment and the capital stock. This will further reduce consumption. The recession induced

by the shock leads to a reduction of firms’ exposure to banks and of the bankruptcy rate.

6.3.3 Distributional shocks

The distribution of wealth across sectors affects aggregate economic performance.19 If the

wealth of the corporate sector (firms’ equity) increases, firms become more financially robust,

their financing gap goes down and the bankruptcy rate becomes smaller. If the bank’s equity

increases, the supply of loans will increases and firms will be able to produce more.

In this section we explore the macroeconomic consequences of distributional shocks, i.e.,

exogenous changes of the allocation of wealth to sectors. Each of these shocks can be interpreted

as a policy shock, i.e., a lump-sum tax on one sector whose revenue finances a lump-sum subsidy

19Of course, the distribution of wealth can change also within each sector, e.g. between rich and poor
households. We will not deal with inequality in this paper.
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Figure 7: Upper left:RIRs of redistribution from firms to households. Upper right:RIRs of redistribu-
tion from households to firms. Lower left: RIRs of redistribution from household to the bank. Lower
right: RIRs of redistribution from the bank to households. Period 0 corresponds to the period in which
the shock hits the economy.

to another sector. The distributional shock, therefore, modifies the amount of resources (wealth)

available to each sector.

The upper-left panel of Figure 7 shows the RIRs in case of a redistribution of wealth from

firms to households. The distributional shock takes place in period 500 and consists in a 50%

reduction of the equity of all C-firms (by means of a levy on deposits) and uniform redistribution

of this wealth to all workers in the economy. In other words, the shock consists in transferring

liquidity from firms’ deposits to households’ deposits. The shock affects households’ liquidity

but does not change their permanent income. Therefore, consumption does not increase visibly

on impact. On the other hand, the shock leaves firms in need of liquid resources. Firms need

additional loans to finance production and investment. Corporate debt, therefore, shoots up

by almost 50% on impact. Basically, firms substitute the internally generated liquidity with

borrowed liquidity. Leverage increases and the borrowing constraint becomes tighter. Since

the liquidity lost due to the shock cannot be substituted completely with bank loans, firms do
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not have the financial resources to keep desired employment. Hence unemployent increases,

production, income and consumption decrease.

The upper-right panel of Figure 7 shows the the RIRs in case of a redistribution of wealth

from households to firms. The distributional shock takes place in period 500 and consists in

a 50% reduction of the wealth of each and every worker (by means of a levy on deposits)

and uniform redistribution of this wealth to C-firms. Since this distributional shock mirrors

the previous one, the response of the economy is symmetric. After the shock, firms have

liquid resources and therefore borrow less from the bank. Corporate debt and the bankruptcy

rate go down. Despite fewer loans, the bank’s equity increases due to the lower bankruptcy

rate. Financially robust firms are able to hire more, reducing unemployment, and increasing

production and income. The latter effect reverberates on consumption.

The lower-left panel shows the RIRs in case of a redistribution of 50% wealth from house-

holds to the bank. When the bank’s equity goes up, the supply of loans increases relaxing

the borrowing constraint on risky firms. These firms, which were already burdened with rela-

tively high debt, will borrow more. Some of them will become overindebted and go bankrupt:

the bankruptcy rate goes up. After the shock total corporate debt shrinks.20The effects are

symmetric in case of a redistribution of wealth from the bank to households, as shown in the

lower-right panel. A smaller loan supply will hinder the ability of more fragile firms to access

credit leading to a smaller bankruptcy rate. The effect of the redistribution of wealth between

households and the bank on the other variables are not sizable.

7 Can we use the ABM to forecast?

We propose a new method to generate macroeconomic forecasts using simulation models. We

apply this method to our estimated ABM and evaluate its ability to forecast a set of aggregate

variables. To the best of our knowledge, this is the first attempt to use an ABM to forecast

macroeconomic times series.21 To evaluate the performance of the ABM to forecast US data,

we estimate a simple VAR model and use it as a benchmark. It is well known that it is very

difficult for any standard macroeconomic model to outperform VARs in terms of forecasting

20Once a firm goes bankrupt, its debt represents a loss for the bank and is written off
21As we anticipated in the introduction, Recchioni et al. (2015) use a heterogeneous agents model a

lá Brock and Hommes (1998) to forecast financial time series.
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capability. This is true also of CC-MABM: forecasts produced by the VAR model are more

accurate than the forecasts generated by CC-MABM.22 The issue, therefore, is to assess by how

much CC-MABM underperforms with respect to the VAR benchmark.

7.1 Forecasting method

In period t− 1, the value ymt that variable m will take on in period t is uncertain. To capture

this uncertainty we assume that ymt is a discrete random variable which takes on a finite number

of values yi,mt where i = 1, 2, ..., I. The index i denotes a certain “state” of the economy. We

arrange the levels of the M variables in period t and in state i in the vector yit. Hence yi,mt

is the m − th element of this vector, m = 1, 2, ...M . The probability of each state P (yit|ȳt−1)

is conditional on the vector ȳt−1 of real data in t − 1. We define the forecast for period t of

variable m as follows:

E[ymt |ȳt−1] =
I∑
i=1

P (yit|ȳt−1)yi,mt , m = 1, ...,M (7)

In words, the forecast of variable m for period t is the expectation of the random variable ymt ,

conditional on real data in period t− 1. This conditional expectation, in turn, is the weighted

average of the period t values that the variable m can assume in I states where the weights

are the probabilities P (yit|ȳt−1) of each state conditional on the vector of real data in period

t− 1. In order to compute this forecast therefore, we need to define the conditional probability

P (yit|ȳt−1) for a generic vector yit and then choose (i.e. quantify) the vectors which characterize

the states. In this subsection we describe the two-step procedure to produce forecasts.

Step 1: Estimation of the conditional probability. The first step consists in esti-

mating the conditional probability P (yit|ȳt−1). In order to do so, we simulate the ABM for

T periods with S different random seeds using the parameter values in Table 1 and the point

estimates in Table 2. We discard the first t0 periods to get rid of the transient phase. For each

variable of interest we get S time series of length T − t0. We use these M×S× (T − t0) artificial

data to estimate (by means of a non-parametric kernel density estimator) the joint probability

density P (yt, yt−1) where yt represents a generic M -dimensional vector of period t values of the

22Our ABM (as NK-DSGE models), however, have the advantage – at least in the eyes of the macroe-
conomist – of being a “structural models”, while VARs are atheoretical (purely statistical) frameworks.
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variables of interest.

Given the vector of observed (real) period t − 1 data, which we denote with ȳt−1, we use

the estimated distribution P (., .) to compute the joint density P (yt, ȳt−1), i.e. the density of

any arbitrary M dimensional vector yt and vector of true data ȳt−1. We use the estimated

distribution also to evaluate the probability of the observed data P (ȳt−1). By definition, the

probability of yt conditional on ȳt−1 is

P (yt|ȳt−1) =
P (yt, ȳt−1)

P (ȳt−1)
(8)

To wrap up, by simulating the model we generate artificial data which we use to estimate the

joint density P (yt, yt−1). Using real data ȳt−1 and the definition of conditional probability, we

compute the probability of observing an arbitrary vector yt given that we have observed ȳt−1.

Notice that Eq. (8) defines the generic conditional probability, since the vector yt has not been

specified.

Step 2: Specification of the states. The next step consists in specifying quantitatively

the states that characterize the economy in period t. As we said above, state i is represented by

the i-th vector yit. Each element of this vector yi,mt is the value that variable m can take on in

period t and state i. To specify state i, we have to quantify yi,mt , i = 1, 2, ..., I, m = 1, 2, ...,M .

To do so, we exploit the fact that most macroeconomic variables are very persistent, i.e. they

change “very little” from one quarter to the next. Therefore we specify yi,mt adding a set of I

possible variations {∆yi,m} of our choice to the value observed for variable m in period t-1 ȳmt−1:

yi,mt = ȳmt−1 + ∆yi,m

The possible states that variable m can take on in period t are therefore characterized by the

values ∆yi,m that we must calibrate in order to explore, as much as possible, the space of

possible changes between t − 1 and t in the proximity of (i.e., at a reasonably small distance

from) ȳmt−1.

State i in period t therefore can be written in vectorial form as

yit = ȳt−1 + ∆yi (9)
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where ȳt−1 =
[
ȳ1
t−1 ... ȳ

M
t−1

]′
; ∆yi =

[
∆yi,1 ... ∆yi,M

]′
.

7.2 Application of the forecasting method to our ABM

This forecasting method is computationally very intensive. To reduce the computational burden

we limit the number of variables to M = 2, namely output and investment. We simulate the

model S = 96 times for T = 3000 periods and discard the first t0 = 1000 periods. For each

variable of interest we get 96 time series that last 2000 periods. We apply the HP filter to these

artificial data to obtain 2 × 96 × 2000 = 384000 artificial cyclical components of output and

investment. We use these artificial data to estimate the joint probability density P (yt, yt−1).

The generic yt vector consists of two elements. The first element y1
t is the cyclical component

of output, i.e. the output gap. Analogously, the second element y2
t is the cyclical component of

investment.

Observed (real) data are the cyclical components of US real GDP (ȳ1
t−1) and gross investment

(ȳ2
t−1) retrieved from the FRED database over the period Q1-1948 to Q1-2018.

We now characterize the possible states of the economy. We choose 100 possible values of

output variation in the range −0.07 < ∆yi,1 < 0.07 and 100 values of investment variation in

the range −0.3 < ∆yi,2 < 0.3. This calibration is grounded in the well know business cycle fact

according to which investment is much more volatile than output. We then take all possible

combinations of these changes ending up with I = 10000 2-dimensional ∆yi vectors. We use

these vectors and the observed lagged vector ȳt−1 to generate I = 10000 2-dimensional yt

vectors following the procedure described by Eq. (9). Overall therefore there are 10000 states

the economy can take on in each period t given the observed data in period t− 1. Each of these

states is captured by a vector yit, i = 1, 2, ..., 10000. The probability of each state is given by

P (yt, ȳt−1) defined by Eq. (8). Our one period ahead forecasts for output and investment in

each period are the elements of the vector E[yt|ȳt−1], namely23

y1,abm
t

y2,abm
t

 =

∑10000
i=1 P (yit|ȳt−1)yi,1t∑10000
i=1 P (yit|ȳt−1)yi,2t


To provide a benchmark in evaluating the forecasting performance of the ABM, we estimate

23See equation (7).
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Figure 8: Observed data and one period ahead forecasts for output (upper panel) and investment (lower
panel) obtained from the ABM (solid line) and from the VAR model. Shaded areas are recession bands
as determined by the National Bureau of Economic Research.

the following simple VAR(1) model on US data:

ȳ1
t

ȳ2
t

 = A

ȳ1
t−1

ȳ2
t−1

+

ε1
t

ε2
t


where ȳ1

t is the observed (cyclical component of) output and ȳ2
t is observed investment. The

one period ahead forecasts produced by the VAR model therefore are:

y1,var
t

y2,var
t

 = A

ȳ1
t−1

ȳ2
t−1


In the upper (lower) panel of figure 8, for each quarter of the time window 1948-2018 we show:

a) the actual (observed) output ȳ1
t (investment ȳ2

t ); b) the one period ahead forecast for output

y1,abm
t (investment y2,abm

t ) generated by our ABM and c) the one period ahead forecast for

output y1,var
t (investment y2,var

t ) generated by the VAR model.

We evaluate the forecasts of the VAR and of the ABM model (separately for output and

investment) by means of the Diebold-Mariano test which compares the forecast errors. The test

rejects the null-hypothesis for both set of forecasts with test statistics of −4.18 and −4.28 for
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output and investment respectively. Moreover, the strong negative value of the test favors the

VAR model. One possible explanation is that the artificial time series generated by the ABM

display less persistence than the observed times series and the time series generated by the

VAR model. Of course, the persistence generated by the model is the result of the mechanisms

embedded in the model. Therefore, we view this results as promising and as a starting point

for future research.24

Out-of-sample forecasts and T-periods ahead forecasts. In figure 8 we have shown

one-period ahead forecasts over the horizon Q1-1948 to Q1-2018 using the CC-MABM and VAR

models estimated on same time window. In this section we evaluate the forecasting performance

of the ABM out-of-sample and T-periods ahead.

In the upper (lower) left panel of figure 9 we show one-period ahead forecasts of output gap

(investment) out-of-sample, i.e. from Q2-2018 to Q2-2019.25 The forecasts generated by the

ABM (estimated on 1948-2018 data) are close to the actual data in the case of investment: they

capture the increase in investment from Q2-2018 to Q3-2018 and the substantial stability of

investment in Q4-2018 and in Q1-2019. On the contrary, the forecasts systematically underesti-

mate the output gap. To interpret these results it is useful to recall that in the third quarter of

2017 the US Congress passed the Tax Cuts and Jobs Act of 2017, that has introduced the “most

drastic changes to US tax code in 30 years”26, worth over a trillion dollars. The tax shock may

have affected the US economy from Q1 2018 onward. The underestimation of the output gap

therefore may be due to the effect of the tax shock on the real economy which is only gradually

incorporated in the one-period ahead forecasts. The right panel of figure 9 shows the 4-period

ahead forecasts of output from Q2-2018 to Q2-2019, conditional on the observed output gap in

Q1-2018. The computing burden necessary to generate these forecasts is very heavy. Therefore,

we save on computing time resorting to a short cut: we compute the forecast in t + k as the

expected value conditional on the forecast in t+k−1. In other words, we use the expected value

in t+ k− 1 as a proxy for the observed value in the same period. This shortcut underestimates

the uncertainty around the forecasts (which we don’t show). The sequence of forecasts captures

24The algorithm used to compute the forecasts (and the computation of the probability of specific
events presented in the next section) is explained in appendix B and applied to two simple models.

25At the time of writing, the output gap for Q2-2019 is not available yet, therefore we show only the
forecast.

26The Guardian, 19 December 2017, https://www.theguardian.com/us-news/2017/dec/19/donald-
trump-tax-bill-plan-house-approves-senate (retrieved on 14 June 2019)
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Figure 9: Left panel: one-period ahead out-of-sample expectations for output gap and investmant gap
from Q2-2018 to Q2-2019. Right panel: four-periods ahead out-of-sample expectation for output gap.

the tendency of output to increase over the horizon Q1-2018 to Q1-2019 but in each quarter the

forecast systematically underestimates actual output. This may be due, as explained above, to

the reform of the tax code introduced in 2017. Moreover, the 4-period ahead forecast seems to

converge back towards a statistical equilibrium. This is due to the fact that, as shown by the

impulse response functions in section 6, the model is characterized by the tendency of converging

back to its statistical equilibrium. In order to forecast richer dynamics, it is necessary increase

the number of time series considered. The explanatory power of ABMs usually lies in the rich

interactions between the financial and real sectors of the economy. Taking simultaneously into

account the level of economic activity and financial variables such as banks’ or firms’ leverage

would likely improve the explanatory power of the model. We are missing these characteristics

of our ABM in this simple exercise. However, a part from concerns regarding computational

time, the forecasting method presented in this section is perfectly capable of handling higher

dimensional forecasts.

Is the recession coming? An ABM-based early warning indicator. Another

interesting exercise consists in measuring the conditional probability of a specific event. For

example, we can compute the conditional probability of a simultaneous decrease of output and

investment in t conditional on the observed data in t − 1. Given the density P (yt|ȳt−1) we

can compute the cumulated density of negative variations of output and investment, i.e., the

probability of an output plus investment contraction in t given the state of the economy in t−1.

This is shown in Figure 10. Results show that the probability of a joint contraction of output
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Figure 10: Probability of a joint negative change of output and investment in t conditional on observed
output and investment in t− 1. The shaded areas are recession bands identified by the National Bureau
of Economic Research.

and investment estimated by means of the ABM peaks often before or at the beginning of a

recession in the US economy. This measure therefore could be used as an early-warning signal

of a recession. The pattern is particularly evident before the last two recessions. In both cases,

the probability of a joint decrease of output and investment displays a long and steep increase,

followed by a sharp reduction once the recession actually takes place. As argued above, to have

better forecasts, and better measures of the likelihood of future events, we would probably need

to take into account also the behavior of financial variables (and possibly a more sophisticated

ABM).

8 Conclusions

In this paper we have proposed two novel methods to bring ABMs to the data.

First, we have put forward a new Bayesian estimation procedure that builds upon a former

method proposed in Grazzini et al. (2017) and augment it by taking into account the time

structure of simulated and observed time series. This improvement has the clear advantage of

increasing the amount of information used to estimate the parameters of the model.

Second, we have proposed a fully simulation-based methodology to forecast time series. This

method allows to forecast aggregate time series using data obtained from the simulation of an

ABM.

39



We strongly believe that finding a convincing estimation method and a reliable forecasting

procedure to the ABM toolbox is key in making these models usable as empirically corroborated

frameworks for policy analysis. Moreover, comparing the forecasting performances of different

models is a possible way to compare models.

We apply our methodological contributions to CC-MABM, a medium-scale macro agent-

based model. The focus of the paper is not the model itself. However, to make the case in favor

of the proposed estimation and the forecasting methods, it is important to show that they work

when applied to a fully-fledged macro agent-based model. We show that the estimated model is

able to reproduce some features of observed data and to forecast one-period ahead output-gap

and investment.

These results should be interpreted in two ways. First, the methods we propose can be ap-

plied to macroeconomic agent-based models. Second, future research should focus on building

“more useful” models. In this context, this means to design models that can better reproduce

observed time series and possibly out-perform VAR (and other models) in the forecasting ex-

ercise. In other words, the estimation and the forecasting methods may offer a measure of

performance/validity of models and possibly guide the design of new models.

A Comparison of Bayesian estimation techniques

Grazzini et al. (2017) proposed a Bayesian technique to estimate (fairly simple) heterogeneous

agents models. The procedure proposed in section 4 of the present paper improves on the former

one as it exploits the time structure of data (and of the model). In this appendix we compare

the posterior obtained by means of the Grazzini et al. (2017) technique to the one generated

by the improved technique proposed in this paper. We show that the procedure proposed here

increases the precision of the estimate to a significant extent.

Let’s start from the simplest univariate AR(1) model:

yt = a11yt−1 + εt (10)

where εt ∼ N(0, 1). The model is characterized by the parameter a11.

Let’s assume that the real economy is completely characterized by (11) with ā11 = 0.4. We

run the model with this parameter value for 1000 periods. The resulting simulated time series
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– which we label the pseudo-observed time series – will play the role of the real benchmark. We

can represent the pseudo-observed time series as follows:

ȳt = 0.4ȳt−1 + εt (11)

In the following we will refer to the pseudo-observed data with Ȳ . Then, we select 50,000

parameter values for a11 using the latin-hyper-cube function in Matlab. We restrict the admis-

sible parameter values27 to the interval a11 ∈ [0, 1]. We simulate the model for 5000 periods for

each of the selected 50,000 parameter values. We use these data to estimate the joint density

P (yt, yt−1).

For each value of the parameter we compute the likelihood

L(a11|Ȳ ) =

n∏
t=2

P (ȳt, ȳt−1; a11) (12)

where P (ȳt, ȳt−1; a11) is the probability of observing the pair (ȳt, ȳt−1) under the estimated joint

density and the specific parameter value a11. We get 50,000 likelihood functions.28 We assume

uniform prior, so that the prior probability p(a11) is given and uniform across the set of feasible

values of a11.

Finally, we compute the posterior probability as:

p(a11|Ȳ ) ∝ p(a11)L(a11, Ȳ ) (13)

The solid line in figure 11 shows the posterior distribution computed using the likelihood

function (12). For the sake of comparison, we show also the posterior distribution generated

by the estimation method proposed in Grazzini et al. (2017) (dashed line). We remind that

Grazzini et al. (2017) do not take into account the time structure in computing the likelihood

function. The accuracy of the improved Bayesian method is much higher. The posterior peaks

very close to the true value of the parameter while the posterior generated by the former

method peaks around 0.35 and is characterized by a much higher dispersion. In models with

strong time dependency as the AR(1) the time structure is clearly an important information

27In a real estimation setting any parameter restriction should be justified by economic arguments or
prior information.

28It is important to notice that the number of lags in the joint distribution is arbitrary.
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Figure 11: Posterior distribution of a11 using the Bayesian estimation including one lag in the likelihood
(continuous blue line) and using the Bayesian estimation without lags. The vertical dashed line represents
the true value of the parameter.

for the estimation process.

We perform the same exercise in a slightly more challenging environment. Consider the

following bivariate VAR model:

y1t

y2t

 =

a11 a12

a21 a22

 ·
y1t−1

y2t−1

+

ε1t

ε2t

 (14)

In this second exercise we assume to know a12 and a21, and we estimate a11 and a22 using

the improved Bayesian method and the method put forward by Grazzini et al. (2017). Figure

12 displays the marginal posteriors of a11 and a22. Both methods perform well: the posterior

distributions peak more or less at the same value of the paramater and fairly close to the true

value. However, taking into account the time structure makes the variance of the posterior

distribution shrink.

Let’s now assume that all the 4 parameters are unknown and must be estimated. Figure

13 shows the 4 marginal posteriors obtained by means of the two methods. Comparing the

solid line and the dashed yellow line, it is clear that the method proposed in the present paper

outperforms Grazzini et al. (2017). Finally, we increase the length of the pseudo-observed time

series to 5000 and perform again the posterior using the Bayesian method described in Grazzini

et al. (2017). The resulting marginal posteriors are represented by the green dotted line in
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Figure 12: Posterior distribution of a11 and a22 using the Bayesian estimation including one lag in the
likelihood (continuous blue line) and using the Bayesian estimation without lags. The vertical dashed
lines represent the true value of the parameters.
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Figure 13: Posterior distribution of a11, a12,a21 and a22 using the Bayesian estimation including one lag
in the likelihood (continuous blue line), using the Bayesian estimation without lags (yellow dashed line)
and using the Bayesian estimation without lags and 5 times more observations (green dotted line).

43



Figure 13. Essentially, this exercise shows that the improved version of the Bayesian method,

by taking into account the time structure, is more efficient when the data generating process

has a strong auto-correlation structure.

B Forecasting procedure

In this appendix we apply the forecasting procedure described in section 7 to two VAR models

to assess in the simplest and clearest setting the performance of the method.

Consider first the following univariate AR(1) model: yt = a11yt−1 + εt with εt ∼ N(0, σ)

and σ = 0.01. Suppose the dynamics of the macroeconomic variable of interest (e.g. GDP) is

correctly represented by the law of motion above with a11 = 0.4. The true law of motion of

GDP therefore is

yt = 0.4yt−1 + εt (15)

We simulate the model (15) for 200 periods to generate the pseudo-observed time series.

Suppose that we have correctly estimated the model and retrieved an estimated parameter

identical to the true value. We simulate the model with the “estimated” parameter (identical to

the true value) for T = 10, 000 periods and use the resulting artificial time series to determine

the probability distribution of the variable.

Then, we generate a set of I = 100 “variations” – denoted with ∆yi, i = 1, ..., 100 – evenly

spaced in the interval −0.05 < ∆yi < 0.05. Therefore, in period t GDP can take on the following

values: yit = yt−1 + ∆yi where yt−1 is the pseudo observed value in period t-1. These values

characterize the possible “states” of the economy in t.

Finally, we estimate the density P (yit|yt−1) using the kernel density estimator mentioned

above. By means of an appropriate normalization, we can interpret the density as a probability.

Thanks to this procedure we can associate a probability to each state. To generate a forecast

for GDP in t we simply take the expected value of yit, conditional on yt−1:

E(yit) =
I=100∑
i=1

yitP (yit|yt−1) (16)

By assumption, the economy is correctly represented by equation (15). Therefore, the
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Figure 14: Upper left: pseudo-observed time series and one period ahead forecast. Upper right: one-
period ahead forecast and theoretical conditional expectation. Bottom: probability of negative change
in t given the value of the variable in t estimated and theoretical.
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Figure 15: Upper left: pseudo-observed time series and one period ahead forecast. Upper right: one-
period ahead forecast and theoretical conditional expectation. Bottom: probability of negative change
in t given the value of the variable in t estimated and theoretical.
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natural candidate to play the role of forecast in this setting is the expectation

E(yt) = 0.4yt−1 (17)

which is, by construction, proportional to yt−1.

In the upper-right panel of figure 14 we show the one period ahead forecast E(yit) and the

pseudo-observed GDP yt over the life time of our economy (200 periods). The forecast is highly

synchronized with actual GDP but is less volatile. In other words, a change in GDP from t-1

to t is associated with a change of the forecast in the same direction in the same interval but

the amplitude of each fluctuation of actual GDP is larger than the corresponding change of the

forecast.

In the upper-left panel we show the one period ahead forecast E(yit) and the expectation

E(yt). The two time series essentially overlap which means that our forecasting method is

capable of delivering the correct conditional expectation of the variable in t.

Finally, we can use the estimated conditional distribution to compute the probability of a

specific event. In particular, we are interested in assessing the probability of a recession. We

denote with Ψ = {i|∆yi < 0} the set of recessions, i.e., states such that ∆yi < 0. Following the

procedure described above, the probability of a recession can be computed as follows

P (yit < yt−1|yt−1) =
∑
i∈Ψ

P (yit|yt−1) (18)

Notice that from the model (15), we can retrieve the correct probability of a recession:

P (yt < yt−1|yt−1) = P
(
εt < (1− 0.4)yt−1

)
(19)

The estimated probability P (yit < yt−1|yt−1) and the correct probability P (yt < yt−1|yt−1) are

shown in the bottom panel of figure 14. The two measures essentially overlap indicating that

the procedure we propose to compute the probability of a recession is essentially correct.

We perform exactly the same exercise using a VAR model of the following form:

y1t

y2t

 =

a11 a12

a21 a22

 ·
y1t−1

y2t−1

+

ε1t

ε2t

 (20)
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where we set a11 = 0.4, a12 = 0.1, a21 = 0.2, a22 = 0.7. In this case the forecast for each of

the two time series is computed by using the marginal distributions. The upper-left panel of

figure 15 shows the two pseudo-observed time series and the one-period ahead forecasts. The

upper-right panel shows the one-period ahead forecast and the correct conditional expectation

for each of the two series. The bottom panel shows the probability of joint decrease of both

variables as estimated using our procedure and as computed using the correct model. The

forecasts and the probability measures have very good performances.
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