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Abstract 
 
In this paper we are concerned with the role of factor strength and pricing errors in asset pricing 
models, and their implications for identification and estimation of risk premia. We establish an 
explicit relationship between the pricing errors and the presence of weak factors that are 
correlated with stochastic discount factor. We introduce a measure of factor strength, and 
distinguish between observed factors and unobserved factors. We show that unobserved factors 
matter for pricing if they are correlated with the discount factor, and relate the strength of the 
weak factors to the strength (pervasiveness) of non-zero pricing errors. We then show, that even 
when the factor loadings are known, the risk premia of a factor can be consistently estimated 
only if it is strong and if the pricing errors are weak. Similar results hold when factor loadings 
are estimated, irrespective of whether individual returns or portfolio returns are used. We derive 
distributional results for two pass estimators of risk premia, allowing for non-zero pricing errors. 
We show that for inference on risk premia the pricing errors must be sufficiently weak. We 
consider both when n (the number of securities) is large and T (the number of time periods) is 
short, and the case of large n and T. Large n is required for consistent estimation of risk premia, 
whereas the choice of short T is intended to reduce the possibility of time variations in the factor 
loadings. We provide monthly rolling estimates of the factor strengths for the three Fama-
French factors over the period 1989-2018. 

JEL-Codes: C380, G120. 
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1 Introduction

Asset pricing models tend to attribute differences in expected returns to differences in exposure
to systematic risk factors. For instance, the arbitrage pricing theory (APT) formalised by Ross
(1976), assumes that there are many assets, with returns determined by a small number of
factors, and that competitive markets do not permit arbitrage opportunities. Thus returns can
be split into two components: non-diversifiable systematic risk from exposure to the common
factors, and idiosyncratic risk, which can be eliminated in a well diversified portfolio. Assets
with similar risk factors are close substitutes so should have similar returns. In this linear
return generating process, expected excess returns are proportional to systematic risk, measured
by factor loadings and risk premia are the coeffi cients of such loadings. Chamberlain and
Rothschild (1983) extend the theory to an approximate factor structure and provide a rigorous
treatment of the case of infinitely many assets. Wei (1988) links the APT to the capital
asset pricing model, CAPM. Within the context of such models, the risk factors and their
loadings have to be identified and the risk premia associated with them estimated. The standard
procedure is to estimate factor loadings from a first-pass time series regression of excess returns
for each asset, and in a second-pass the Fama-MacBeth (1973) type cross section regression is
used to price the factors and obtain the risk premia.
In this paper we are concerned with the role of factor strength and pricing errors in asset

pricing models, and their implications for identification and estimation of risk premia. We
distinguish between strong and weak factors that underlie the APT by relating them to the
stochastic discount factor, mt, used to price securities within the inter-temporal asset pricing
models. We introduce a measure of factor strength denoted by δ, and distinguish between
observed factors, ft = (f1t, f2t, ..., fkt)

′, with strengths δf = (δf1 , δf2 , ..., δfk)
′, and unobserved

factors (included in the idiosyncratic errors) labelled gt = (g1t, g2t, ..., gkgt)
′ with strengths

δg =
(
δg1 , δg2 , ..., δgkg

)′
. Non-zero pricing errors arise when the errors in the factor model are

correlated with mt. By decomposing the errors into a part which is correlated with mt, and a
purely idiosyncratic part, εt, which is not, we show that the APT equilibrium condition only
bounds the cross correlation of the first part and does not impose any restrictions on the cross
correlation of the purely idiosyncratic part. Such cross correlations could arise at times of
financial crises possibly due to herding and other forms of correlated behavior that stem from
non-fundamental considerations.
We define the strength of a given factor, say ft, by the exponent δf in the following norm

condition
n∑
i=1

(
βi − β̄n

)2
= 	

(
nδf
)
, (1)

where βi is the loading of ft on the ith security, β̄n = n−1
∑n

i=1 βi, and 	
(
nδf
)
denotes the

expansion rate of the dispersion measure
∑n

i=1

(
βi − β̄n

)2
in terms of n. To motivate the use

of δ in the analysis of factor pricing we first generalise Ross’s APT equilibrium condition.
Ross required pricing errors, denoted by ηi for security i, to be bounded, in the sense that∑n

i=1 η
2
i <∞. We show that this condition can be relaxed to

n∑
i=1

η2
i = O (nα) , (2)

with the exponent α measuring the degree of pervasiveness of pricing errors (which as noted
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above relates to unobserved common factors that are correlated with the discount factor). The
exponent of the pricing errors, α, is to be contrasted with the exponent of factor strength δ.
For a factor to be strong it is necessary that its effect is pervasive on all securities. In terms of
(1), this requires δf = 1. Whilst, the pricing errors must not be pervasive, requiring that α < 1.
Note that the standard order condition, O (·), used in (2) allows zero pricing errors (ηi = 0 for
all i), and 	 (·) ensures that the effects of ft are suffi ciently pervasive when δf = 1.
Having linked the APT to the inter-temporal asset pricing condition, and given the distinc-

tion between ft and gt factors, we then consider the problem of identification of risk premia,
initially assuming known factor loadings, using an approximate linear factor model. We show
that for large n the risk premia can be

√
n consistently estimated if the factors all have maxi-

mum strength with δf = 1, and the pricing errors are weak such that α < 1. In the literature
the distinction between risk factors and pricing errors is not always as clear-cut. For instance
Stambaugh & Yuan (2017, p. 1273) say "there need not be a clear distinction between mispric-
ing and risk compensation as alternative motivations for factor models of expected returns."
They use the example of "noise-trader" sentiment, but if such sentiment is suffi ciently pervasive
it constitutes a factor that may be priced.
We further establish that these conditions for the identification of the risk premia are un-

affected if one uses portfolios as compared to individual securities, as is often done in the
empirical literature. There is a belief that the first stage estimation of the betas causes an
errors in variables problem in the second stage and that the construction of portfolios mitigates
this problem. We regard this as a generated regressor problem, which is rather different, and
like Ang et al. (2019) argue that forming portfolios wastes information. Nonetheless we analyse
both cases: using individual assets and using portfolios.
We then move to the more interesting case where the factor loadings are unknown, and

derive conditions under which the risk premia can be identified. Using the two pass estimator
of Fama-MacBeth, we show that risk premia are only identified if both n and T → ∞, such
that n/T → κ, with 0 < κ <∞, all factors have maximum strength, and the pricing errors are
suffi ciently weak. The large T results on estimation of risk premia obtained in the literature,
and reviewed for example by Jagannathan, Skoulakis &Wang (2010), only apply if it is assumed
that pricing errors are all zero (namely ηi = 0 for all i). In the presence of non-zero pricing
errors, we need n → ∞, and it is not suffi cient to consider large T asymptotics. When T is
fixed and n → ∞, we consider a bias-corrected version of the two pass estimator and show
that in this case risk premia are not identified and one can only consistently estimate what
Shanken (1992, p. 6) has termed "ex-post prices of risk". For this result, we still require all
factors to have maximum strength and the pricing errors to be suffi ciently weak. Finally, we
consider the limiting distributions of the bias corrected estimator, centred around the ex post
risk premia, for a fixed T and as n → ∞, as well as when n, T → ∞. Under the former
we show that the limiting distribution of bias-corrected two pass estimator exists, but need
not be Gaussian due to the error cross sectional dependence. In contrast, under joint n and
T asymptotics, the estimator is asymptotically normal, and does not depend on the errors of
individual securities, but is primarily driven by the time series properties of the factors. In both
cases, to ensure that the asymptotic distributions do not depend on the pricing errors, we must
have

∑n
i=1 |ηi| = O (nα∗), with α∗ < 1/2, which is much more restrictive than the condition

needed on α for consistent estimation of risk premia.
To measure factor strength we use an estimator of δ recently proposed by Bailey, Kapetanios

and Pesaran (2019b, BKP), which in turn builds on earlier papers by the same authors (BKP
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2016 and BKP 2019a) on measures of cross-sectional dependence in large panels. Whereas BKP
(2019b) are concerned with estimation and inference about the strength of a factor, as noted
above this paper is concerned with a different issue, the theoretical role of factor strength and
pricing errors in asset pricing models and estimation and inference about risk premia in such
models.
BKP (2019b) show that the strength of a factor can be estimated from the proportion

of statistically significant loadings across a large number of securities. Let n be the number
of securities and Dn the number of significant loadings, then πn = Dn/n is the proportion
of non-zero loadings and the measure of factor strength is the logarithmic transform: δf =
1 + ln(πn)/ln(n). The critical values of the tests are suitably adjusted to allow for multiple
testing and it is shown that this estimator is consistent. Using Monte Carlo experiments, BKP
also show that the estimates of the factor strengths are quite accurate when the factors are
suffi ciently strong, even for moderate sample sizes. It is important to note that for identification
of risk premia, the crucial measure is δf not πn. Since πn = nδ−1, then if δ does not equal one,
the proportion of the n securities that have non-zero loadings goes to zero with n, albeit rather
slowly at log rate. For the proportion of non-zero loadings to be constant as n rises, it is
required that δ = 1.
We conclude the paper with an empirical application, using the estimator of δ proposed by

BKP (2019b). For each monthly time point ending from September 1989 to May 2018, the
stocks in the S&P 500 at that month with a 10 year history are identified. Then a time series
regression is estimated regressing the excess return for each stock on a constant and the three
Fama & French (1993) factors. These are the market factor, the size factor, small minus big
(SMB), and the value factor, high book to market minus low (HML). The estimated strength of
the market factor is either one or very close to one. The market factor is always much stronger
than the other two factors, whose strength varies substantially over the period considered, and
tend to vary between 0.65 and 0.9. The confidence bounds around the estimates of the factor
strengths are tight and the outcomes are reasonably robust to the choice of estimation window.
Throughout this paper we assume that the potential factors are known. There is no shortage

of suggested factors, Harvey and Liu (2019) document a "factor zoo" of over 400 suggested
factors in early 2019. They may be observable macro factors like those suggested by Chen, Roll
& Ross (1986); obtained from factor analysis of the returns as discussed in Lehmann & Modest
(2005); based on asset pricing anomalies like the Fama-French factors; or obtained in some
other way. Fama & French (2018) discuss some issues in choosing factors. We are concerned
with establishing the theoretical role of factor strengths and providing estimates of them, not
with the issue of how to select factors.
Our analysis has important practical implications for estimating factor risk premia from

second-pass cross section regressions of average returns on factor loadings. The factors used in
the first-pass time series regressions to estimate the loadings must be suffi ciently strong. The
strength of the factor ought to be measured using rolling windows estimates of the parameter δ,
as illustrated in Section 5. Only factors with an average strength of δ ≥ 2/3, should be included
in the analysis. Estimates of the risk premia for factors with δ = 2/3 will be consistent at
the rate of n1/3, and thus will be diffi cult to price unless n is very large indeed. The situation
is clearly worse for δ < 2/3, when estimates of δ also become less reliable due to increased
sampling uncertainty. Furthermore, to identify the risk premia of weak factors the pricing
errors that arise from unobserved factors correlated with the stochastic discount factor, must be
suffi ciently weak. (See Remark 9, in Section 4.1).

3



The rest of the paper is organized as follows. Section 2 sets out the factor model and derives
the APT pricing errors by imposing the equilibrium conditions from standard pricing theory.
Section 3 discusses the identification of the risk premia for the factors from a cross section
when the factor loadings are known. It considers both the cases where the observations are
individual securities and where they are portfolios. Section 4 discusses the case where the factor
loadings are unknown and have to be estimated in the first-pass time series regressions. Again
it considers individual securities and portfolios. Section 5 presents the estimates of time-varying
factor strength. Section 6 has some concluding comments. Lemmas, proofs and related results
are provided in appendices.
Notation: Generic positive finite constants are denoted by C when large, and c when small.

They can take different values at different instances. →p denotes convergence in probability as
n, T → ∞. λmax (A) and λmin (A) denote the maximum and minimum eigenvalues of matrix
A. A > 0 denotes that A is a positive definite matrix. ‖A‖ = λ

1/2
max(A′A) and ‖A‖F =

[Tr(A′A)]1/2 denote the spectral and Frobenius norm of matrix A, respectively. If {fn}∞n=1

is any real sequence and {gn}∞n=1 is a sequences of positive real numbers, then fn = O(gn),
if there exists C such that |fn| /gn ≤ C for all n. fn = o(gn) if fn/gn → 0 as n → ∞.
Similarly, fn = Op(gn) if fn/gn is stochastically bounded, and fn = op(gn), if fn/gn →p 0, where
→pdenotes convergence in probability. If {fn}∞n=1 and {gn}

∞
n=1 are both positive sequences of

real numbers, then fn = 	 (gn) if there exists n0 ≥ 1 and positive finite constants C0 and C1,
such that infn≥n0 (fn/gn) ≥ C0, and supn≥n0 (fn/gn) ≤ C1.

2 APT, equilibrium pricing theory and non-zero pricing
errors

Non-zero pricing errors have a central role in this paper. This section sets out the factor model
and derives the APT pricing errors in terms of the correlation of the discount factor with
the idiosyncratic component of excess returns. We achieve this by imposing the equilibrium
conditions from standard pricing theory on the linear multi-factor model used by Ross and
others in the literature. We show that non-zero pricing errors arise when there are factors in
the idiosyncratic (error) part of excess returns that are correlated with the stochastic discount
factor.
To establish our main result we follow the literature and assume that returns, ri,t+1, i =

1, 2, ...n, are generated according to the following linear multi-factor model1

ri,t+1 − rft = ait +

k∑
j=1

βit,jfj,t+1 + ui,t+1, for i = 1, 2, ..., n, (3)

where rft is the risk free rate; ait are the intercepts in the factor model; fj,t+1, j = 1, 2, ..., k
are the common factors with associated factor loadings, βit,j; and ui,t+1 is the idiosyncratic
component of asset return. The model can be written more compactly as

ri,t+1 − rft = ait + β
′

itft+1 + ui,t+1, (4)

1Because the number of assets may change through time, we could have a time varying nt. But to keep the
notations simple we assume nt = n.
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where βit = (βit,1, βit,2, ..., βit,k)
′, and ft+1 = (f1,t+1, f2,t+1, ..., fk,t+1)′. We assume the errors of

the factor model, ui,t+1, are martingale differences, Et (ui,t+1) = 0, and have finite conditional
variances, and are cross-sectionally weakly correlated. We explore the relationship between
ui,t+1 and the pricing errors in detail below. But at this stage we view ui,t+1 as errors in the
statistical factor model used to represent the time series variations of individual excess returns.
The cross-sectional dependence of the individual returns is captured by the common factors,

ft+1, and the degree of cross-sectional dependence of the errors, ui,t+1. Denoting the n × 1
vector of errors by un,t+1 = (u1,t+1, u2,t+1, ..., un,t+1)′, and its covariance matrix by Σu,nt =
Et
(
un,t+1u

′
n,t+1

)
, an overall measure of cross dependence of the errors is given by the rate at

which λmax (Σu,nt) rises with n. We denote this rate by δt,σ, and relate it to the pervasiveness
of the pricing errors under APT. Ross (1976) assumed ui,t+1 were cross sectionally independent,
Chamberlain & Rothschild (1983) weakened this to an approximate factor model that requires
λmax (Σu,nt) < C in n and t, which corresponds to setting δt,σ = 0 for all t.
In what follows we require that δt,σ < 1, and assume that the factors, ft+1, are strong in the

sense that δt,fj defined by
2

n∑
i=1

(
βit,j − β̄tj

)2
= 	

(
nδt,fj

)
, for j = 1, 2, ..., k, (5)

are equal to unity. The main result of the APT can now be written as the cross section return
regression

Et

(
ri,t+1 − rft

)
= β

′

itλt + ηit, (6)

where λt is the k× 1 vector of factor risk prices (or risk premia), and ηit is the pricing error of
the ith security, assumed to satisfy the APT condition (18) of Ross (1976), namely

supt

n∑
i=1

η2
it < C. (7)

To relate the pricing errors to the idiosyncratic component of returns we use standard results
from intertemporal asset pricing theory that require equilibrium prices, Pit, to be set as the
expected discounted value of the payoff, Pi,t+1 +Di,t+1. Denoting the holding period return by
ri,t+1 = (∆Pi,t+1 +Di,t+1) /Pit, the basic equilibrium pricing equation can be written as

Et

[
mt+1(ri,t+1 − rft )

]
= 0, (8)

where mt+1 is the stochastic discount factor used to price all assets in the market, and r
f
t is the

risk free rate.3 We also note that

Et(mt+1) = 1/(1 + rft ) > 0. (9)

To derive conditions under which the factor model (4) also satisfies the equilibrium condi-
tions, substituting for ri,t+1 − rft from (4) in (8), we have

aitEt(mt+1) + β
′

itEt (mt+1ft+1) + Et(mt+1ui,t+1) = 0.

2See also (1) and the related discussion in the Introduction.
3Under consumption based asset pricing mt+1 = ρu′(ct+1)/u

′(ct), where ρ is the subjective discount factor
and u′(ct) is marginal utility of consumption ct.
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Now noting that Et(mt+1) > 0, (see (9)), then ait can be solved as

ait = − 1

Et(mt+1)

[
β
′

itEt (mt+1ft+1) + Et(mt+1ui,t+1)
]
. (10)

Imposing this restriction by substituting the above expression for ait back in (3) yields

ri,t+1 − rft = β
′

it

(
ft+1 −

Et (mt+1ft+1)

Et(mt+1)

)
− Et(mt+1ui,t+1)

Et(mt+1)
+ ui,t+1. (11)

Taking conditional expectations of both sides of the above and noting that Et (ui,t+1) = 0, we
now have

Et

(
ri,t+1 − rft

)
= β

′

itEt

(
ft+1 −

Et (mt+1ft+1)

Et(mt+1)

)
− Et(mt+1ui,t+1)

Et(mt+1)
.

Matching this result with the APT equilibrium condition given by (6), we obtain the following
expressions for the risk premia and the pricing errors

λt = Et

(
ft+1 −

Et (mt+1ft+1)

Et(mt+1)

)
= −Covt(mt+1, ft+1)

Et(mt+1)
, (12)

and

ηit = −Et(mt+1ui,t+1)

Et(mt+1)
, for i = 1, 2, ..., n. (13)

The pricing errors are zero only if ui,t+1 and mt+1 are conditionally uncorrelated. Also their
identification requires knowledge of the stochastic discount factor as well as the factors. But
(13) does not place any restrictions on the relationships between the pricing errors and the factor
loadings, which as we shall see is an important consideration for estimation of risk premia.
For a better insight into the factors that could lead to non-zero pricing errors, it is useful to

decompose ui,t+1 into three mean zero components: (i) a set of kg unobserved factors denoted by
gt+1 = (g1,t+1, g2,t+1, ..., gkg,t+1)′ with Et (gt+1) = 0, that are correlated with the discount factor,
mt+1; (ii) a set of kh unobserved factors ht+1 = (h1,t+1, h2,t+1, ..., hkh,t+1)′ with Et (ht+1) = 0 that
are uncorrelated with mt+1 ; and (iii) idiosyncratic errors, εi,t+1, that are also uncorrelated with
mt+1, but could be cross-sectionally correlated without having a common factor representation.
Such dependencies could arise from local or network spillover effects that are unrelated to
mt+1. The error components that do not depend on mt+1, namely ht+1 and εi,t+1, can still
become highly correlated across securities at times of financial crises, for example, possibly due
to herding behavior or correlated beliefs that cause asset returns to move together in a way
that is unrelated to the economy’s fundamentals. The unobserved factors gt+1 and ht+1 are
distinguished from the observed risk factors, ft, in two respects. First, since gt+1 and ht+1 are
martingale difference processes thus having zero means, whilst risk factors, ft+1, need not have
zero means; and most importantly the two sets of factors could differ in their strengths. As
we shall see, the APT theory requires the unobserved factors that are correlated with mt+1

must be weak and the risk factors must be strong. It does not impose any restrictions on the
degree of cross-sectional dependence of the returns that are due to ht+1 and/or εi,t+1, the two
components of ui,t+1 that are unrelated to mt+1.
More specifically let

ui,t+1 =

kg∑
j=1

φit,jgj,t+1 +

kh∑
j=1

ψit,jhj,t+1 + εi,t+1 = φ′itgt+1 +ψ′itht+1 + εi,t+1, (14)
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where φit = (φit,1, φit,2, ..., φit,kg)
′ and ψit = (ψit,1, ψit,2, ..., ψit,kh)′ are kg × 1 and κh × 1 vectors

of loadings associated to gt+1 and ht+1, respectively. Now using (14) in (13) and noting that
ht+1 and εi,t+1 are uncorrelated with mt+1, we have

ηit = −
kg∑
j=1

θj,t+1φit,j = −θ′t+1φit, (15)

where θt+1 = Covt (gt+1,mt+1) /Et(mt+1) 6= 0. Therefore, the pricing errors arise solely due to
the non-zero correlation of gt+1 and mt+1.

4 Using (15) in (13) we have

n∑
i=1

η2
it = θ′t+1

(
n∑
i=1

φitφ
′
it

)
θt+1. (16)

It is clear that the leading terms of above expression are given by
∑n

i=1 φ
2
it,j = O(nδt,gj ), for

j = 1, 2, ..., kg, where δt,gj is the strength of factor gj,t+1. The strength of the pricing errors,
given by

∑n
i=1 η

2
it = O(nαt), is determined by the strongest of the weak factors, gj,t with

αt = supj(δt,gj). Below we will see that to identify the risk premia, the factors fjt must be
strong with δt,fj = 1, for all j = 1, 2, .., k, and for estimation and inference on the risk premia
the pricing errors must be suffi ciently weak, αt = supj(δt,gj) < 1/2.
The above derivations link the pervasiveness of the pricing errors to the presence of weak

factors in the idiosyncratic errors, ui,t+1, of the return equations. The equilibrium pricing
condition of Ross (1976), given by (7), is satisfied if the factors gt+1 that enter the idiosyncratic
component of the returns have zero strength, in the sense that δt,gj = 0, for all j. Our analysis
relaxes this condition by requiring that δt,gj < 1/2. Also the components of ui,t+1 in (14),
ht+1 and εi,t+1,which do not depend on mt+1, can be more strongly cross-correlated, because of
herding or correlated beliefs, than the first component, gt+1 which depends on the fundamentals,
and is governed by the APT condition, (7).

3 Identification of risk premia with known factor load-
ings

Identification of factor risk premia, λt, can be achieved either using individual securities or
portfolios of securities. We consider each of these approaches in turn. We make the following
assumptions about the idiosyncratic errors, factors and their loadings.

Assumption 1 (Weak cross sectional error dependence) The errors, ui,t+1, are martingale
differences with respect to the information set available at time t, Ft, have finite variances,

4Examples of factors that are martingale difference processes and at the same time are correlated with the
stochastic discount rate, include gj,t+1 = mj

t+1−Et(m
j
t+1). For j = 1 we have Covt (g1,t+1,mt+1) /Et(mt+1) =

V art(mt+1)/Et(mt+1) which is clearly non-zero. In the case of consumption-based asset pricing mt+1 =
βu′(ct+1)/u

′(ct), and g1,t+1 takes the following specific form

g1,t+1 =
β {u′(ct+1)− Et [u′(ct+1)]}

u′(ct)
,

where u′(ct) is the marginal utility of consumption, and β is the discount factor.
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Et(u
2
i,t+1) = σ2

it, where Et(.) = E(. | Ft)., and are cross-sectionally weakly correlated such that

sup
j

n∑
i=1

|Et (ui,t+1uj,t+1)| = O(nδt,σ), (17)

with δt,σ < 1.

Assumption 2 (Common factors) The k × 1 vector of factors, ft+1, has mean Et (ft+1) = µft
and a positive definite matrix Σft = Et

[
(ft+1 − µft) (ft+1 − µft)′

]
> 0.

Assumption 3 (Factor loadings) The n× k matrix of factor loadings, B′nt = (β1t,β2t, ...,βnt)
has full column rank and

lim
n→∞

(
n−1B′ntMnBnt

)
= Σt,ββ > 0, (18)

where Mn = In − n−1τ nτ
′
n, τ n = (1, 1, ..., 1)′, and Σt,ββ is a k × k symmetric positive definite

matrix.

Definition 1 (Factor strengths) The strength of factor fj,t is measured by its degree of perva-
siveness as defined by the exponent δt,fj in

n∑
i=1

(βit,j − βtj)2 = 	(nδt,fj ), for j = 1, 2, ..., k, (19)

where βtj = n−1
∑n

i=1 βit,j, and 0 ≤ δt,fj ≤ 1. We refer to
{
δt,fj , j = 1, 2, ..., k

}
as factor

strengths. Factor fj,t is said to have maximum strength at time t if δt,fj = 1.

Proposition 1 The asymptotic covariance matrix of factor loadings, Σt,ββ, defined by (18)
is positive definite only if all the factors have maximum strengths, namely if δt,fj = 1 for all
j = 1, 2, ..., k.

Remark 1 The above definition of factor strength allows for the possibility of non-zero pricing
errors (ηit 6= 0) in the theory consistent factor model (11), and in the related APT equilibrium
condition (6). In the absence of pricing errors (i.e. when ηit = 0), the condition (19) indeed
simplifies to

∑n
i=1 β

2
it,j = 	(nδt,fj ), for j = 1, 2, ..., k. In what follows we adopt the more

general definition given above and further elaborate on its relevance in relation to our empirical
application.

Remark 2 Under Assumption 1, ui,t+1 are serially uncorrelated with zero means.

Remark 3 Let Σu,nt = Et
(
un,t+1u

′
n,t+1

)
, then condition (17) also ensures that

λmax (Σu,nt) = O(nδt,σ).

This follows since

λmax (Σu,nt) = |λmax (Σu,nt)| ≤ ‖Σu,nt‖1 = sup
i

n∑
i=1

|Et (ui,t+1uj,t+1)| .

Therefore, condition (17) relaxes the standard assumption of the approximate factor models
used in the APT literature that requires λmax (Σu,nt) < C in n and t, which corresponds to
setting δt,σ = 0 for all t.

8



3.1 Identification using individual securities

Consider the APT equations (6), denote the expected returns on asset i by µit = Et(ri,t+1), and
stack the equations for i = 1, 2, ..., n, to obtain:

µnt − r
f
t τ n = Bntλt + ηnt, (20)

whereBnt is the n×k matrix of factor loadings, µnt = (µ1t, µ2t, ..., µnt)
′ and ηnt = (η1t, η2t, ..., ηnt)

′.
In practice rft is not known and is often treated as unknown time effect and (21) is written
more generally as

µnt = λ0t + Bntλt + ηnt, (21)

where λ0t is treated as an unknown time effect. Under this setting and assuming Bnt is known,
λt is identified if Assumption 3 holds, that is

lim
n→∞

(
B′ntMnBnt

n

)
= Σt,ββ > 0, (22)

and
n−1B′ntMnηnt →p 0, (23)

where Mn = In − n−1τ nτ
′
n. Both conditions are likely to be met when all the κ factors are

strong, namely the exponent of their factor loadings is unity. The second condition is met under
the APT condition of bounded pricing errors, namely if

∑n
i=1 η

2
it = O(nαt), with αt < 1. This

follows since

n−1 ‖B′ntMnηnt‖F ≤ n−1 ‖B′ntMn‖F ‖ηnt‖F

=
[
Tr
(
n−1B′ntMnBnt

)]1/2(
n−1

n∑
i=1

η2
it

)1/2

.

Since k is fixed then Tr (n−1B′ntMnBnt) = 	(1), and n−1
∑n

i=1 η
2
it = O(nαt−1). Hence,

n−1 ‖B′ntMnηnt‖F → 0 if αt < 1. Under these conditions λt can be estimated consistently
by

λt = (B′ntMnBnt)
−1

B′ntMnµnt.

In practice, the matrix of factor loadings must also be estimated which entails further restric-
tions on the stability of the factor loadings to be discussed below.

3.2 Identification using portfolios

Following Fama and MacBeth (1973), it is often argued in the literature that more robust
estimates of λt can be obtained by using portfolios constructed from the individual securities.
We consider two types of portfolio weights: (a) a small number of fully diversified portfolios,
and (b) a large number of portfolios formed from a small number of securities. In both cases
we denote the portfolio weights by the n × 1 vector wpt = (w1p,t, w2p,t, ..., wnp,t)

′, and consider
P return portfolios, rpt, defined by

rpt =

n∑
i=1

wip,trit = w′ptrnt, for p = 1, 2, ..., P. (24)

9



Collecting all the portfolio weights in the n×P portfolio weights matrixWPt = (w1t,w2t, ....,wPt),
we also have η̄Pt = W′

Ptηnt, and
rPt = W′

Ptrnt, (25)

where rPt = (r1t, r2t, ..., rPt)
′, is the P × 1 vector of portfolio returns.

In the case of fully diversified portfolios we assume that supit,p {n |wip,t|} < c < ∞ and
infit,p {n |wip,t|} > c > 0, which ensures wip,t = 	 (n−1) and ‖WPt‖ = 	

(
n−1/2

)
. In the case of

non-diversified portfolios, wip,t is non-zero only for a finite number of securities. The following
assumption covers both types of portfolios and is generally applicable.

Assumption 4 (Portfolio weights) The portfolio weights, wip, for i = 1, 2, .., n; p = 1, 2, ..., P
satisfy the following conditions

(a):
n∑
i=1

wip,t = 1, (b): sup
p,n

n∑
i=1

|wip,t| < C, and (c): sup
i,P

P∑
p=1

|wip,t| < C. (26)

Remark 4 The normalization restriction,
∑n

i=1 wi,pt = 1, is made for convenience and is not
necessary and other choices such as

∑n
i=1w

p
it = 0, can also be entertained. Short sales (wpit < 0)

are allowed, and it is easily verified that the above assumption applies to a wide variety of
portfolios, fully diversified or mutually exclusive portfolios with each security appearing in only
one portfolio. Condition (b) of the above assumption follows from the normalization condition
if wit ≥ 0. The important binding condition (c) restricts the frequency with which the same
security enters all the P portfolios. Conditions (a) and (b) can also be written as bounds on
rows and columns of WPt, namely ‖WPt‖1 < C and ‖WPt‖∞ < C.

Remark 5 For the purpose of the identification analysis that follows, the primary difference
between fully diversified and non-diversified portfolios is captured by the rate at which the spectral
norm of the portfolio weights matrix, ‖WPt‖, varies with the number of securities included in
each portfolio. In the case of fully diversified portfolios we require that ‖WPt‖ = 	

(
n−1/2

)
, and

for non-diversified portfolios we will assume that ‖WPt‖ = 	
(
m−1/2

)
where m is the maximum

number of securities included in a single portfolio. As an example of the latter note that for
mutually exclusive portfolios w′ptwp′,t = 0 for all p 6= p′, and w′ptwpt = 1/m, where m is the
integer part of n/P , and ‖WPt‖ = m−1/2. In this set up m is fixed and n and P → ∞, such
that n/P → m ≥ 1. When m = 1 portfolios coincide with individual securities.

Aggregating (3) we have the following expressions for portfolio excess returns (using
∑n

i=1w
p
it =

1)
rp,t+1 − rft = apt + β

′
ptft+1 + up,t+1, for p = 1, 2, ..., P, (27)

where

apt =

n∑
i=1

wip,tait, βpt =

n∑
i=1

wpi,tβit, and up,t+1 =

n∑
i=1

wip,tui,t+1. (28)

Then substitute (27) in (8) to give

Et

[
mt+1

(
apt + β

′
ptft+1 + up,t+1

)]
= 0,

aptE(mt+1) + β
′
ptEt (mt+1ft+1) + Et (mt+1up,t+1) = 0,
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solving for apt as was done there

apt = − 1

E(mt+1)

[
β
′
ptEt (mt+1ft+1) + Et (mt+1up,t+1)

]
,

and substituting in (27) gives

rp,t+1 − rft = − 1

E(mt+1)

[
β
′
ptEt (mt+1ft+1) + Et (mt+1up,t+1)

]
+ β

′
ptft+1 + up,t+1,

and yields the APT condition in portfolio returns corresponding to (11):

rp,t+1 − rft = β
′
pt

(
ft+1 −

Et (mt+1ft+1)

Et(mt+1)

)
+ η̄pt + up,t+1,

where the portfolio pricing errors are given by

η̄pt = −Et(mt+1up,t+1)

Et(mt+1)
=

n∑
i=1

wpitηit.

The APT equilibrium condition for portfolios , corresponding to (6), is given by

Et (rp,t+1) = µ̄pt = rft + β
′
ptλt + η̄pt,

where λt is defined as before by (12). For identification of λt (given the portfolio mean returns,
µ̄pt, and portfolio factor loadings, βpt, p = 1, 2, ..., P ), we stack the portfolio return equations
to obtain

µ̄Pt = rft τ P +BPtλt + η̄Pt,

where µ̄Pt = (µ̄1t, µ̄2t, ..., µ̄Pt)
′ , B

′
pt =

(
β1t,β2t, ...,βPt

)
, η̄Pt = (η̄1t, η̄2t, ..., η̄Pt)

′. To identify λt
using the portfolio return equations it is now required that

P−1
(
B
′
PtMPBPt

)
> 0, and P−1

(
B
′
PtMP η̄Pt

)
→p 0,

where MP = IP − P−1τ Pτ
′
P . To relate the above conditions to those we obtained when using

individual securities we first note that

βpt =
n∑
i=1

wip,tβit = B′ntwpt,

η̄pt =

n∑
i=1

wip,tηit = w′ptηnt,

and

B
′
Pt = B′nt (w1t,w2t, ....,wPt) = B′ntWPt, (29)

η̄Pt = W′
Ptηnt.

Now write the identification conditions when portfolio returns are used as

P−1
(
B
′
PtMPBPt

)
= P−1 (B′ntWPtMPW′

tPBnt) > 0, (30)
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and
P−1 (B′ntWPtMPW′

Ptηnt)→p 0. (31)

Comparing these conditions with the corresponding conditions (22) and (23) when using individ-
ual securities, it readily follows that using portfolios does not relax the identification condition
but requires that the portfolio weights are such that WPtMPW′

Pt is a full rank matrix. In
fact the factors must have maximum strength irrespective of whether individual securities or
portfolios are used for estimation of risk premia. To show that this condition is also neces-
sary when portfolios are used to estimate λt, suppose that n−1B′ntBnt → 0, as n → ∞, and
hence λt cannot be identified using individual securities, and consider the limiting properties
of P−1

(
B
′
PtMPBPt

)
given by (30). We have5

P−1
∥∥∥B′PtMPBPt

∥∥∥ = P−1 ‖B′ntWPtMPW′
tPBnt‖

≤ P−1 ‖Bnt‖2 ‖WPt‖2 .

Consider the case of non-diversified portfolios and recall that in this case ‖WPt‖2 = 	
(

1
m

)
,

and hence
P−1

∥∥∥B′PtMPBPt

∥∥∥ ≤ C n−1 ‖Bnt‖2 ,

and P−1
∥∥∥B′PtMPBPt

∥∥∥ → 0 if n−1B′ntBnt → 0. The same result follows in the case of fully

diversified portfolios where P is fixed and ‖WPt‖2 = 	
(

1
n

)
. Similarly, condition (31) holds

if the associated condition for individual securities given by (23) holds and vice versa. To see
this, using (31) note that

P−1 ‖B′ntWPtMPW′
Ptηnt‖ ≤ P−1 ‖Bnt‖ ‖WPt‖2 ‖ηnt‖ ,

and since ‖WPt‖2 = 	
(

1
m

)
, for the non-diversified portfolios, we have (recall that mP = n)

P−1 ‖B′ntWPtMPW′
Ptηnt‖ ≤ C

∥∥n−1/2Bnt

∥∥∥∥n−1/2ηnt
∥∥ ,

and the right hand side of the above tends to zero if
∥∥n−1/2ηnt

∥∥ → 0, since
∥∥n−1/2Bnt

∥∥ < C.
But ∥∥n−1/2ηnt

∥∥2
= n−1η′ntηnt = n−1

n∑
i=1

η2
it = O(nαt−1),

and hence P−1 ‖B′ntWPtMPW′
Ptηnt‖ → 0, if αt < 1, which is the APT equilibrium condition

at the level of individual securities.

4 Identification of risk premia with estimated factor load-
ings

The above analysis shows that even when the true factor loadings, βij,t, are known the factor
risk premia could only be identified if the factors have maximum strength, δj,t = 1 such that∑n

i=1(βij,t−βjt)2 = 	(n). In practice the factor loadings must be estimated and then additional

5Note that since MP is an idempotent matrix then ‖MP ‖ = 1.
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restrictions are required. For clarity and to avoid confusion, and as is standard in the literature,
it is assumed that βij,t is stable over a given sample period, say t = 1, 2, ..., T , and factor loadings
are estimated by running least squares regressions of individual security returns on an intercept
and the observed factors for a given sample period T . As already noted, in application of
this two-pass estimation procedure many researchers have followed Fama and MacBeth (1973)
and, rather than using mean returns on individual securities, have used mean returns on a
relatively small number of portfolios (P < n) formed from the underlying securities. It is
argued that the sampling errors in estimation of β′s of portfolios can be substantially smaller
than β′s estimated using individual securities. To compensate for loss of information from using
portfolios as compared to individual securities, it is often recognized that P must be relatively
large and the different portfolios not too closely correlated. Fama and MacBeth (1973, p. 615)
recommend forming P = 20 equal weighted portfolios from ranked values of β̂ij estimated over
a training sample of four years.
The Fama and MacBeth two-pass estimation procedure is extensively used in the empirical

finance literature and its asymptotic properties have been investigated by Shanken (1992),
Shanken and Zhou (2007), Kan, Robotti and Shanken (2013), and Bai and Zhou (2015). See
also the survey paper by Jagannathan, Skoulakis &Wang (2010) for further references. The two-
pass estimates of λ is subject to the generated regressor problem also encountered in estimation
of certain classes of rational expectations models, See Pagan (1984) and Pesaran (1987). In
addition, the second pass regression uses average returns, riT , that do not coincide with true
mean returns E(rit), when T is small. The use of portfolio returns and their associated β′s in
the second pass does not alleviate the small T bias and in some settings could even accentuate
it. As Ang, Liu and Schwarz (2019) show, creating portfolios to reduce estimation error in the
factor loadings does not necessarily lead to smaller estimation errors of the factor risk premia.
In what follows we derive finite T large n bias of two-pass estimators of risk premia, both

when individual and portfolio returns are used, and compare their relative performance. We
consider a restricted form of the factor model with time-invariant coeffi cients and make some
technical assumption on time series and cross-sectional dependence of the errors and loadings.
Specifically, we assume that ait =ai, and βij,t = βij for t = 1, 2, ..., T, and consider the multi-
factor linear model

rnt = an +Bnft + unt, for t = 1, 2, ..., T, (32)

where rnt = (r1t, r2t, ...., rnt)
′ is an n× 1 vector of excess returns on individual securities during

period t, an = (a1,a2, ...,an)′, Bn = (β1,β2, ...,βn)′, and unt = (u1t, u2t, ...., unt)
′. Writing the

return equations by individual securities we also have

ri◦ = aiτ T + Fβi + ui◦, (33)

where ri◦ = (ri1, ri2, ..., riT )′, F = (f1, f2, ..., fT )′, and ui◦ = (ui1, ui2, ..., uiT )′. True values of the
factor risk prices (or risk premia), λ, are defined by the cross section regressions (CSR)

E (rit) = λ0 + β′iλ+ ηi, for i = 1, 2, ..., n, (34)

where ηi is the pricing error.
We make the following assumptions about the errors and factor loadings:

Assumption 5 (Idiosyncratic errors) The errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} are serially
independent across t, with zero means, E(uit) = 0, and constant covariances, E(uitujt) = σij,
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such that 0 < c < σii < C <∞, (a) supj

n∑
i=1

|σij| < C, and

(b): n−2

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
→ 0, as n→∞.

Assumption 6 (Pricing errors) The pricing errors, ηi, defined by (34) have zero means and
satisfy the approximate bound

n∑
i=1

η2
i = O (nα) . (35)

Assumption 7 (Common factors) The T × k matrix F = (f1, f2, ..., fT )′ is full column rank
and the k × k matrix T−1F′MTF is positive definite. k is a fixed number.

Assumption 8 (Factor loadings) (a) The factor loadings βi and the errors ujt are indepen-
dently distributed for all i, j and t. (b) supi ‖βi‖ < C, and (c) The n × k matrix of factor
loadings, Bn = (β1,β2, ...,βn)′, have full column rank and Σββ, defined by

lim
n→∞

(
n−1B′nMnBn

)
= Σββ, (36)

is positive definite.

Remark 6 Assumption 8 can be relaxed in two respects. When the risk free rate is fixed and
known, then λ0 in the CRS (34) is set to the risk free rate, and for

√
n consistent estimation

of the risk premia, λ, instead of (36) it is required that limn→∞ (n−1B′nBn) is positive definite.
If we were willing to settle for a slower rate of convergence, and the factor strengths, δj for
factors ftj, j = 1, 2, ..., k are known, then condition (36) can be further relaxed by requiring that
limn→∞ (DnB

′
nMnBnDn) is positive definite where Dn is a k×k diagonal matrix with elements

n−δj/2, for j = 1, 2, ..., k.

Part (a) of Assumption 5 is standard in the literature and allows for errors to be weakly
cross correlated. It rules out serial correlation, but can be relaxed to allow for a limited degree
of serial correlation when both n and T are large. But it is required if T is fixed and n large.
Assumption 6 is more general than is assumed in the literature which either ignores the

pricing errors, setting ηi = 0, or assumes a very limited degree of pricing errors by setting
α = 0. Note also that the above assumptions do allow for correlations between pricing errors
and the factor loadings.
Assumptions 7 and 8 are also standard in the literature.

4.1 Estimation of risk premia using individual returns

The two-pass estimator of risk premia, λ, based on individual returns is given by6

λ̂n =
(
B̂′nTMnB̂nT

)−1

B̂′nTMnr̄n, (37)

6The two-pass estimator depends on T as well as on n. We omit the subscript T for convenience, but keep
n to highlight the direct use of individual returns in the computation of the estimator.
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where Mn = In − n−1τ nτ
′
n as defined above, B̂nT = (β̂1,T , β̂2,T , ..., β̂n,T )′, r̄n = (r̄1, r̄2, ..., r̄n)′ ,

r̄i◦ = T−1
∑T

t=1 rit,
β̂i,T = (F′MTF)

−1
F′MT ri◦, (38)

F = (f1, f2, ..., fT )′, MT = IT − T−1τ Tτ
′
T , and ri◦ = (ri1, ri2, ..., riT )′. Under (33), β̂i,T =

βi + (F′MTF)−1 F′MTui◦, and hence

B̂nT = Bn + UnGT , (39)

where Un = (u1◦,u2◦, ...,un◦)
′, and GT = MTF (F′MTF)−1. Also, averaging the return equa-

tions (33) over t for each i, we have

r̄i◦ = ai + β′if̄T + ūi◦, and E (r̄i) = ai + β′iE
(
f̄T
)
, (40)

where f̄T = T−1
∑T

t=1 ft, and ūi◦ = T−1
∑T

t=1 uit. Hence, using the above results together with
the APT condition given by (34), we have

r̄n = λ0τ n +Bn (λ+dT ) + ū+η, (41)

where

dT = f̄T − E
(
f̄T
)

= T−1

T∑
t=1

[ft − E(ft)] , (42)

ū = (ū1◦, ū2◦, ..., ūn◦)
′ , and η is the n× 1 vector of pricing errors. Relations (39) and (41) can

now be used in (37) to derive the asymptotic properties of λ̂n. The following theorem gives the
small T bias of λ̂n as an estimator of λ, as n→∞.

Theorem 1 (Small T bias of the risk premia using individual returns) Consider the multi-
factor linear return model (32) and the associated risk premia, λ, defined by (34), and suppose
that Assumptions (5), (6), (7) and (8) hold, and the pricing errors are bounded such that α < 1.
Suppose further that λ is estimated by Fama-MacBeth two-pass estimator based on individual
excess returns, rit, and the factors, ft, for i = 1, 2, ..., n, and t = 1, 2, ..., T . Then for any fixed
T > k we have (as n→∞)

λ̂n−λ→p

[
Σββ +

σ2

T

(
F′MTF

T

)−1
]−1(

ΣββdT −
σ2

T

(
F′MTF

T

)−1

λ

)
. (43)

where λ̂n is defined by (37) and

dT = T−1

T∑
t=1

[ft − E(ft)] , Σββ = lim
n→∞

(
B′nMnBn

n

)
, and σ2 = lim

n→∞

1

n

n∑
i=1

σ2
i > 0. (44)

The proof is provided in sub-section A.3.1 of the Appendix.
It is interesting to note that the above theorem holds under fairly general conditions. It

allows for weak error cross-sectional dependence, does not impose any restrictions on the dis-
tribution of factors when T is finite, and accommodates a wide range of APT models with
moderately large pricing errors, ηi, which are allowed to have any degree of dependence with
the factor loadings. However, to obtain the standard

√
n convergence rate, the more restrictive
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condition of α < 1/2 on the degree of pervasiveness of the pricing errors is needed. Neverthe-
less, this condition is still weaker than α = 0, assumed by Ross (1976). It is also interesting
that the probability limit of λ̂n exists even if Σββ is singular, so long as T is finite. But for a
consistent estimation of risk factors, where n and T →∞, Σββ must be non-singular, which in
turn requires that all the k factors must be strong, as discussed earlier.

Example 1 As a simple example, consider a two-factor case with one strong and one weak
factor (δβ1 = 1 and δβ2 < 1). In this case

Σββ =

(
σ2
β1

0
0 0

)
,

where σ2
β1

= limn→∞ n
−1
∑n

i=1(βi1 − β̄1)2 > 0. Let AT = σ2

T

(
F′MTF

T

)−1

= (aij,T ), and bT =

1
T

∑T
t=1 [ft − E(ft)] = (bi,T ), then it is easily seen that

λ̂n−λ→p

 a22,T b1,T σ
2
β1
−λ1|AT |

|AT |+a22,T σ2β1
−a12,T b2,T σ2β1
|AT |+a22,T σ2β1

− λ2

 .

For a finite T the estimate of risk premia of the weak factor tends to
−a12,T b2,T σ2β1
|AT |+a22,T σ2β1

whose sign

depends on the sign of a12,T b2,T . In the special case where bT is relatively small and negligible
we have λ̂2 → 0, and

λ̂1 − λ1 →p
−λ1(

1 +
a22,T σ

2
β1

|AT |

) .
Since |AT | = O(T−2) whilst a22,T = O(T−1), then λ̂1 will still be unbiased for T large. This is
important since it means that erroneously adding weak factors to the cross section regression
does not affect the consistency of the risk premia of the strong factor so long as T is suffi ciently
large.

4.1.1 A bias-corrected two-pass estimator of risk premia

The small T bias of the two-pass estimator of λ has been a source of concern in the empirical
literature. As can be seen from (43) and (44) the bias of λ̂n is due to terms that involve dT
and σ2. Following Shanken (1992), σ2 can be consistently estimated (for a fixed T > k+ 1) by7

̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T − k − 1)
, (45)

where ûit = rit−âiT − β̂
′
i,T ft, and âiT and β̂i,T are the OLS estimators of ai and βi. Using this

result we now have the following bias-corrected version of the two-pass estimator:

λ̃n =

[
B̂′nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1
]−1(

B̂′nTMnr̄n
n

)
. (46)

7A simple proof of n consistency of of ̂̄σ2nT for σ2 is provided in sub-section A.3.2 of the Appendix.
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It is now easily seen that under the assumptions of Theorem 1, for a fixed T > k + 1 and as
n→∞, then

λ̃n →p λ
∗
T = λ+ dT , (47)

where dT is defined by (42). The bias of estimating λ is now reduced to dT , which could be
small for moderate values of T (say 60 months often used in the literature), if ft is stationary
and not too persistent. Shanken refers to λ∗T as "ex-post" risk premia to be distinguished from
λ, referred to as "ex ante" risk premia. See also section 3.7 of Jagannathan et al. (2010).

4.1.2 Asymptotic distribution of the bias corrected estimator

It is clear that the large n asymptotic distribution of the two-pass estimators, whether bias-
corrected or not, are not correctly centred when T is small. There is also the additional
diffi culty that due to the error cross-sectional dependence, the asymptotic distribution need
not be normally distributed and in general depends on the error covariances. To see this
consider the asymptotic distribution of the bias-corrected estimator around λ∗T , we first note

that since ̂̄σ2

nT →p σ
2, and n−1B̂′nTMnB̂nT →p Σββ + σ2

T

(
F′MTF

T

)−1

, then

B̂′nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1

→p Σββ, (48)

where Σββ defined by (44). Hence, using (39) and (41) in (46), and by Slutsky’s theorem we
have

√
n
(
λ̃n − λ∗T

)
a∼ Σ−1

ββ

[
G′TU′nMnBnλ

∗
T√

n
+

(B′n + G′TU′n) Mn (ū + η)√
n

]
. (49)

Consider first the dependence of the asymptotic distribution on the pricing errors, η, and note
that

n−1/2B′nMnη = n−1/2B′nη −
(
B′nτn
n

)(
τ ′nη√
n

)
= n−1/2

n∑
i=1

βiηi −
(∑n

i=1 βi
n

)(∑n
i=1 ηi√
n

)
,

and hence

n−1/2B′nMnη ≤ 2supi ‖βi‖
(
n−1/2

n∑
i=1

|ηi|
)
. (50)

But by Assumption 8, supi ‖βi‖ < C, and measuring the pervasiveness of the pricing errors by
the exponent α∗ defined by8

n∑
i=1

|ηi| = O (nα∗) , (51)

we have n−1/2B′nMnη = O
(
nα∗−1/2

)
, and n−1/2B′nMnη → 0, if α∗ < 1/2.

Similarly, n−1/2U′nMnη → 0 if α∗ < 1/2, namely the asymptotic distribution of λ̃n will
not depend on the pricing errors if such errors are suffi ciently bounded. This condition is,
for example, met if the pricing errors are absolute summable, assumed by Ross. It is also
interesting to note that this condition is much more stringent that the condition α < 1 needed
for the consistent estimation of λ∗T by λ̃n.

8The exponent α∗ defined here is to be distinguished from α defined by (35), although they coincide when
|ηi| take dichotomous zero and non-zero values. They differ, for example, if |ηi| = c/i, for i = 1, 2, ..., n.
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Consider now the remaining terms in (49) and note that

Σββ

√
n
(
λ̃n − λ∗T

)
a∼ anT + bnT + cnT +Op

(
nα∗−1/2

)
, (52)

where

anT = n−1/2U′nMnBnλ
∗
T = n−1/2

n∑
i=1

θiT (G′Tui◦) ,

bnT = n−1/2B′nMnū = n−1/2

n∑
i=1

ūi
(
βi − β̄n

)
,

cnT = n−1/2G′TU′nMnū = n−1/2

n∑
i=1

(ūi − ū) G′Tui◦,

where θiT =
(
βi − β̄n

)′
λ∗T , G′T = (F′MTF)−1 F′MT , ūi = T−1

∑T
t=1 uit, ū = n−1

∑n
i=1 ūi,

and ui◦ = (ui1, ui2, ..., uiT )′. Under Assumptions (5), (7) and (8) and for a fixed T , anT , bnT
and cnT have limiting distributions as n → ∞, but they need not be Gaussian when T is
fixed. The limiting distributions exist due to the assumption of weakly correlated errors that
ensure supj [n−1

∑n
i=1 |σij|] < C, and the boundedness of the factor loadings and existence of

(F′MTF)−1. To see this note that for given factor loadings

V ar (anT ) =
1

T

(
n−1

n∑
j=1

n∑
i=1

σijθiT θjT

)(
F′MTF

T

)−1

(53)

V ar (bnT ) =
1

T

[
n−1

n∑
j=1

n∑
i=1

σij
(
βi − β̄n

) (
βi − β̄n

)′]
. (54)

It is now easily seen that under our assumptions, V ar
(√

TanT

)
= O (1) and V ar

(√
TbnT

)
=

O (1). To derive the variance of cnT we first note that ūi = T−1u′i◦τT ,G
′
T τT = 0, and ū =

Op

(
n−1/2T−1/2

)
. Hence

cnT = n−1/2T−1

n∑
i=1

G′Tui◦u
′
i◦τT + +Op

(
n−1/2T−1/2

)
= T−1G′T

[
n−1/2

n∑
i=1

(
ui◦u

′
i◦ − σ2

i IT
)]
τT +Op

(
n−1/2T−1/2

)
. (55)

For a fixed T the limiting distribution of cnT is determined by the limiting distributions of
n−1/2

∑n
i=1 (u2

it − σ2
i ) and n

−1/2
∑n

i=1 uituit′ , which exist under Assumption (5). However, the
limiting distributions of anT , bnT and cnT need not be Gaussian due to the fact that uit
and u2

it are cross sectionally dependent and for a fixed T the application of standard Central
Limit Theorems to these terms would not be valid. Even under Gaussian errors, the limiting
distribution of cnT need not be Gaussian when the errors are cross correlated. Limiting Gaussian
distribution follows if the errors are cross sectionally independent, which requires exact factor
pricing and could be restrictive in practice. In general where the errors are cross correlated the
limiting distribution of

√
n
(
λ̃n − λ∗T

)
is unknown and depends on σij as well as on Cov(u2

it, u
2
jt)

which are problematic to estimate when T is fixed.
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It is instructive to place the above large n asymptotic analysis in the context of the literature.
Originally the analysis of Fama-MacBeth, and its further developments by Shanken (1992) and
Shanken and Zhou (2007), focussed on the case of n fixed and T →∞, under the assumption of
zero pricing errors (i.e. ηi = 0, for all i). In this case the asymptotic normality of the two-pass
estimator is ensured due to the assumption of serial error independence and zero pricing errors,
and cross sectional error dependence does not present any diffi culties. In contrast when T is
fixed and n tends to infinity the reverse is true; namely it is error cross-sectional dependence
that pose diffi culties.
When both n and T are large, the outcome depends on the relative expansion rates of n

and T . The interesting case is when n and T rise at the same rate such that n/T → κ, with
0 < c < κ < C. The cases κ = 0 and κ =∞, can be viewed as the cases of n fixed with T →∞,
and T fixed with n → ∞, already considered. In the case that κ is a finite non-zero constant,
using (52) we have

√
n
(
λ̃n − λ

)
−
√
n (λ∗T − λ)

a∼ Σ−1
ββ (anT + bnT + cnT ) +Op

(
nα∗−1/2

)
,

and using (53), (54) and (55), and recalling that by assumptionΣββ is a positive definite matrix,
then

√
n
(
λ̃n − λ

)
=
√
n (λ∗T − λ) +Op

(
T−1/2

)
+Op

(
nα∗−1/2

)
+ +Op

(
n−1/2T−1/2

)
.

Also using (47), (λ∗T − λ) = dT = T−1
∑T

t=1 [ft − E(ft)], and we obtain

√
n
(
λ̃n − λ

)
=

√
n

T

{
T−1/2

T∑
t=1

[ft − E(ft)]

}
+Op

(
T−1/2

)
+Op

(
nα∗−1/2

)
+Op

(
n−1/2T−1/2

)
.

(56)
Therefore, under joint n and T asymptotics λ̃n is correctly centred and its asymptotic dis-
tribution is governed by that of the risk factors. This result is summarized in the following
theorem:

Theorem 2 Consider the multi-factor linear return model (32) and the associated risk premia,
λ, defined by (34), and suppose that Assumptions (5), (6), (7) and (8) hold, the factor loading
parameters are stable, the pricing errors satisfy the boundedness condition

n∑
i=1

|ηi| = O (nα∗) ,

the k × 1 vector of factors, ft, follows a stationary process with mean E(ft) = µf , and the
autocovariance matrices, Vs = E

[
(ft − µf ) (ft−s − µf )′

]
, such that the long run covariance

matrix defined by

V = V0 +
∞∑
s=1

(Vs + V′s) , (57)

is positive definite. Consider the bias-corrected two-pass estimator, λ̃n, given by (46), and
further suppose that n and T →∞ such that n/T → κ, with 0 < c < κ < C, α∗ < 1/2. Then

√
n
(
λ̃n − λ

)
→d N(0,κV). (58)
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The proof of this theorem follows directly from (56) and the application of standard re-
sults from stationary time series processes applied to T−1/2

∑T
t=1 [ft − E(ft)]. Also κV can be

consistently estimated by

ST = (n/T )

[
V̂0+

m∑
s=1

b(s,m)
(
V̂s + V̂′s

)]
,

where V̂s = T−1
∑T

t=s+1

(
ft − f̄T

) (
ft−s − f̄T

)′
, f̄T = T−1

∑T
t=1 ft, b(s,m) is the kernel or lag

window, and m is the bandwidth. This is a standard HAC estimator where the kernel and
bandwidth must be chosen carefully to ensure that m/T tends to zero at a suffi ciently fast
rate, and ST is invertible.

Remark 7 We have included Theorem 2 to highlight the importance of allowing for pricing
errors when deriving the asymptotic distribution of the two-pass estimator of λ, and to show
that the large T theory developed in the literature is applicable only if pricing errors are zero.
It is clear from (56) that even if α∗ = 0, namely the more restrictive APT condition derived by
Ross holds, we still need n→∞. On its own T large does not eliminate the pricing errors.

Remark 8 It is also interesting to note that the precision with which risk premia are obtained
depends on the cross section dimension, n, and for a given ratio of n/T does not improve further
when T is increased, which contrasts with the

√
nT convergence rate obtained in the literature

for slope parameters in some homogenous panel data models. Multiplying both sides of (56) by√
T yields

√
nT
(
λ̃n − λ

)
=
√
n

{
T−1/2

T∑
t=1

[ft − E(ft)]

}
+Op (1) +Op

(
T 1/2nαη−1/2

)
+Op

(
n−1/2

)
,

whose first term explodes with n, and
√
nT convergence is not a possibility. The large T as-

ymptotic for λ̃n (or λ̂n), derived in the literature assumes n is fixed and as noted assumes zero
pricing errors, with ηi = 0, for all i = 1, 2, ..., n.

Remark 9 As noted earlier our focus in this paper has been on
√
n consistency, but our analysis

can be readily extended to semi-strong factors with strengths above 1/2 but below unity. In
general, the risk premia associated to a factor with strength δj, is nδj/2 consistent so long as
δj > α. For inference we require the stronger condition δj > 2α. For example, if δj = 2/3,
we can only achieve n1/3 consistency, with α < 1/3 for inference. Tests on δj are further
complicated by the fact that we also need to allow for the sampling uncertainty of δj since in
practice δj is unknown and must be estimated.

4.2 Estimation of risk premia using portfolio returns

In line with the discussion of Section 3.2, we consider estimates of λ based on portfolio returns
defined by (25). See also the associated cross section model (27). The risk premia can be
estimated either forming portfolio betas, as in (28), or basing the two-pass regressions on
portfolio returns, r̄pt =

∑n
i=1 wiprit = w′prnt,, for t = 1, 2, ..., T and p = 1, 2, ..., P , where here

we are assuming the portfolio weights, wip, are fixed and do not depend on the factor loadings
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or the errors. The resultant estimates will be identical. Denoting the portfolio estimate of λ
by λ̂P we have

λ̂P =
(
B̂
′
PTMP B̂PT

)−1 (
B̂
′
PTMP r̄P

)
, (59)

where r̄P = ( r̄1, r̄2, ..., r̄P )′, r̄p = T−1
∑T

t=1 r̄pt, B̂PT = (β̂1,T , β̂2,T , ..., β̂P,T )′,

β̂p,T =

n∑
i=1

wipβ̂i,T = (F′MTF)
−1

F′MT

n∑
i=1

wipri,T = (F′MTF)
−1

F′MT r̄P .

To relate λ̂P to the estimator, λ̂n, based on the individual securities, we note that B̂PT =
W′

P B̂nT , and r̄P = W′
P r̄n, where WP = (w1,w2, ...,wP ), with B̂nT and r̄P defined as before,

(see (4.1). Using these results λP can now be written equivalently as

λ̂P =
(
B̂
′
nTWPMPW′

P B̂nT

)−1 (
B̂
′
nTWPMPW′

P r̄n

)
. (60)

It is clear that the limiting properties of λ̂P depend on the choice of WP , and reduces to λ̂n
only if P = n and WP = In. In what follows we shall consider the asymptotic properties of
λ̂P when Wp (or wip) satisfy the normalization and the summability conditions of Assumption
4. The asymptotic properties of λ̂P can now be derived using (39) and (41) in (60) under the
following identification assumption:

Assumption 9 (Portfolio factor loadings) (a) The k × 1 vector of portfolio loadings, β̄p =∑n
i=1wipβi and the portfolio errors, up′t =

∑n
i=1 wip′uit are independently distributed for all

p, p′ = 1, 2, ..., P and t = 1, 2, ..., T . (b) supp
∥∥β̄p∥∥ < C, and (c) The n × k matrix of factor

loadings, Bn = (β1,β2, ...,βn)′, have full column rank and Σββ,w defined by

lim
P→∞

(
P−1B′nWPMPW′

PBn

)
= Σββ,w > 0, (61)

is positive definite.

Remark 10 When portfolio weights, wip, satisfy the bounds in (26), then it is readily seen
that part (b) of the above assumption follows from part (b) of Assumption 8, and it is there-
fore somewhat weaker. Similarly, part (a) of the above assumption follows from part (a) of
Assumption 8. The weaker conditions in parts (a) and (b) of the above assumption is party
due to the implicit assumption that the portfolio weights, wip, are given and known. Part (c)
of the above assumption is more demanding as compared to part (c) of Assumption 8, and also
imposes further restrictions on the portfolio weights.

Remark 11 As an example, suppose k = 1, with Bn = (β1, β2, ..., βn)′, and note that B′nWP =(
β̄1, β̄2, ..., β̄P

)′
, where β̄p =

∑n
i=1 wipβi. Suppose further that

∑n
i=1w

2
ip = O (m−1), and βi

follows the random coeffi cient specification βi = β + ξi, where ξi have zero means and a finite
variance, σ2

ξ , and are cross sectionally independent as well as being distributed independently
of the weights wjp for all i and j. Under the normalization

∑n
i=1wip = 1, β̄p = β + ξ̄p, where

ξ̄p =
∑n

i=1wipξi, and B
′
nWP = βτ ′P + ξ̄

′
P with ξ̄P =

(
ξ̄1, ξ2, ..., ξ̄P

)′
, and we have

P−1B′nWPMPW′
PBn = P−1

P∑
p=1

ξ̄
′
pMP ξ̄p ≤ P−1

P∑
p=1

ξ̄
′
pξ̄p.
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Also since ξi ∼ IID(0, σ2
ξ ), and V ar

(
ξ̄p
)

= σ2
ξ

(
w′pwp

)
= O (m−1), then ξ̄P = Op

(
m−1/2

)
and

we have
P−1B′nWPMPW′

PBn = Op

(
m−1

)
.

Therefore, for identification m must be finite, which rules out using diversified portfolio weights
with wip = O (n−1). In this example, the use of portfolios in estimation of risk premia can be
justified only if m is fixed with P →∞.

The small T bias of λ̂P for a fixed m and P →∞, is given in the following theorem:

Theorem 3 (Small T bias of portfolio estimator of risk premia) Consider the multi-factor
linear return model (32) and the associated risk premia, λ, defined by (34), and suppose that
Assumptions (5), (6), (7), and (9) hold, and α < 1. Suppose further that λ is estimated
by Fama-MacBeth two-pass estimator based on portfolio excess returns, r̄pt = w′P rtn, for p =
1, 2, ..., P , and the factors, ft, for i = 1, 2, ..., n, and t = 1, 2, ..., T . Then under Assumption
4 and assuming that portfolio weights are suffi ciently bounded, namely ‖WP‖ = 	

(
m−1/2

)
where WP = (w1,w2, ...,wP ), and m is the maximum number of securities included in a single
portfolio, then for any fixed T > k we have (as P →∞)

λ̂P−λ→p

[
Σββ,w +

ω̄2

T

(
F′MTF

T

)−1
]−1 [

Σββ,wdT −
ω̄2

T

(
F′MTF

T

)−1

λ

]
. (62)

where λ̂n is defined by (37), dT = T−1
∑T

t=1 [ft − E(ft)] ,

Σββ,w = lim
P→∞

(
B′nWPMPW′

PBn

P

)
, and ω̄2 = lim

P→∞

1

P

P∑
p=1

(
w′pΣuwp

)
> 0, (63)

where Σu = (σij).

A proof is provided in sub-section A.3.3 of the Appendix.
It is clear that the small T bias continues to be present when using portfolio returns to

estimate λ. Whether the bias can be reduced using portfolio returns instead of individual
security returns is unclear and in a complicated way depends on the within portfolio correlations,
as characterised by w′pΣuwp, and the relative norms of Σββ and Σββ,w.

Example 2 Suppose that T is suffi ciently large such that dT is negligible, and k = 1, so that
the risk premia, λ, is a scalar. Also assume that λ > 0, then the bias of the estimator of λ,
whether based on individual securities or portfolios is negative and the magnitude of the bias of
the estimator based on portfolios relative to the estimator based on individual securities is given
by the ratio(using (43) and (62))

ω̄2

[
σ2
ββ + σ̄2

T

(
f ′MT f
T

)−1
]

σ̄2
[
σ2
ββ,w + ω̄2

T

(
f ′MT f
T

)−1
] ,

and for λ̂P to be less biased as compared to the estimator based on individual securities, λ̂n, we
must have

σ2
ββ,w >

(
ω̄2

σ̄2

)
σ2
ββ,
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which can be written equivalently as the limit (n, P →∞) of the following inequality

β′nWPMPW′
Pβn

P
>

(
1
P

∑P
p=1

(
w′pΣuwp

)
1
n

∑n
i=1 σ

2
i

)
β′nMnβn

n
. (64)

It is clear that the answer will depend on the choice of the portfolio weights. Consider P equally
weighted, mutually exclusive portfolios, each with m securities, such that n = mP . In this
case wp = m−1(0′m,0

′
m, ...,0

′
m, τ

′
m,0

′
m, ...,0

′
m)′, where τm is an m × 1 vector of ones. Suppose

that the allocation of securities to portfolios are done randomly, and without loss of generality
assume that the first m securities form the first portfolio, p = 1, the second m securities the
second portfolio, p = 2, and so on. Then

r̄1t = m−1

m∑
i=1

rit, r̄2t = m−1

2m∑
i=m+1

rit, ...., r̄Pt = m−1

n∑
i=(P−1)m+1

rit,

Also to simplify the exposition suppose that k = 1 (single factor) and note similarly that

β̄1 = w′1β=m−1

m∑
i=1

βi, β̄2 = w′2β=m−1

2m∑
i=m+1

βi, ...., β̄P = w′Pβ = m−1

n∑
i=(P−1)m+1

βi, (65)

and the sample average of β̄p across p gives

β̈P = P−1

P∑
p=1

β̄p = P−1

P∑
p=1

w′pβ=n−1

n∑
i=1

βi = β̄,

and hence

P−1B′nWPMPW′
PBn = P−1

P∑
p=1

(β̄p − β̄)2.

Similarly we have (noting that n = mP )

n−1β′nMnβn = n−1

n∑
i=1

(βi − β̄)2 = n−1

P∑
p=1

mp∑
i=(p−1)m+1

(βi − β̄)2

= n−1

P∑
p=1

mp∑
i=(p−1)m+1

(βi − β̄p + β̄p − β̄)2

= n−1

P∑
p=1

mp∑
i=(p−1)m+1

[
(βi − β̄p)2 + (β̄p − β̄)2 + 2(βi − β̄p)(β̄p − β̄)

]

=
1

P

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

+
1

P

P∑
p=1

(β̄p − β̄)2,

which decomposes the total cross variations of individual β’s into within and between portfolio
variations. To rank order the bias of the two estimators we also need to consider within and
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between error covariances. We note that w′pΣuwp = m−2τ ′mΣp,uτm, where Σp,u is the m ×m
covariance of the errors of the returns included in the pth portfolio, and

ω̄2
n =

1

Pm2

P∑
p=1

τ ′mΣp,uτm.

It is now easily seen that ω̄2
n = m−1σ̄2

n, when Σp,u is diagonal, namely when within portfolio
errors are uncorrelated, although between portfolio errors are still allowed to be correlated. Under
this additional restriction and using the above results in (64), then for λ̂P to be less biased than
λ̂n, we require

P−1

P∑
p=1

(β̄p − β̄)2 >
1

m

P−1

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

+
1

P

P∑
p=1

(β̄p − β̄)2

 ,

or equivalently if

ψP (β) = (m− 1)

[
P−1

P∑
p=1

(β̄p − β̄)2

]
− P−1

P∑
p=1

m−1

mp∑
i=(p−1)m+1

(βi − β̄p)2

 > 0.

This condition is met if dispersion of βi within a given portfolio is small relative to the dispersion
of β̄p across the portfolios. Introducing non-zero within portfolio error covariances leads to
further reduction in relative bias of λ̂P when on average these covariances are negative and vice
versa, when they are positive. Therefore, to achieve bias reduction the portfolio approach should
be capable of identifying securities with similar β’s whose errors are negatively correlated. It is
also important that these differences do not vanish as n→∞. For instance, when βi follow the
random coeffi cient model, βi = β + ξi, with ξi ∼ IID(0, σ2

ξ ), then (also see Remark 11)

ψP (β) = P−1

P∑
p=1

(m− 1) (ξ̄p − ξ̄)2 −m−1

mp∑
i=(p−1)m+1

(ξi − ξ̄p)2

 ,
and

E [ψP (β)]

σ2
ξ

= (m− 1)P−1

P∑
p=1

(
1

p
+

1

n
− 2

pn

)
− P−1

P∑
p=1

(
1− 1

p

)

= −1 +m

(
P−1

P∑
p=1

p−1

)
− 2 (m− 1)

mP

(
P−1

P∑
p=1

p−1

)
+

(m− 1)

mP
.

Since
∑P

p=1 p
−1 ≈ ln(P ), then ln(P )/P → 0, as P → ∞, and therefore E [ψn (β)] → −σ2

ξ .

Hence, in this random setting λ̂n, which uses individual securities is likely to be less biased as
compared to λ̂P , for n suffi ciently large. This example highlights that using portfolio returns to
estimate the risk premia can be justified if there are a priori known stock characteristics that
could be used to sort the returns into groups with systematically different β̄p across p.
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Remark 12 In the literature, following Fama-MacBeth, it is standard to rank securities by
estimated β̂i and then form portfolios based on similar estimated betas. The focus here is on
the bias since issues of effi ciency are likely to be of second order of importance. Whereas a bias
correction can be constructed for individual securities one does not seem available for portfolios
because ω̄2 = limP→∞

1
P

∑P
p=1

(
w′pΣuwp

)
, defined by (63) depends on the covariances of the

different securities included in the portfolio.

5 Estimates of factor strength

The earlier sections demonstrated the theoretical importance of factor strength. This section
uses the estimator introduced in Bailey, Kapetanios and Pesaran, BKP, (2019b) to provide
10-year rolling estimates of δ for the three Fama-French (1993), FF, factors used extensively
in the finance literature. For each month from September 1989 to May 2018, all stocks in the
S&P 500 portfolio that have at least 10 years of return history are selected. The list is updated
monthly and always includes at least 400 stocks, with an average of 440 stocks. This procedure
avoids the possible survivorship bias caused by the changing composition of the index. Time-
series regressions of the excess return for each stock are then run on a constant and the three
FF factors. The data for the FF factors are taken from Kenneth French’s web pages.9 The
FF market factor, the excess market return, differs from the average of the roughly 400 stocks
we consider. In particular it is value weighted and much wider. It includes all CRSP firms
incorporated in the US and listed on the NYSE, AMEX, or NASDAQ that have data for that
month. The risk free rate is the one-month Treasury bill rate. The size factor is small minus
big, SMB fSMB,t. The value factor is high minus low book to market, HML, fHML,t.
It is important that the market factor is always included in the return regressions. To see

why this should be so, consider the regressions:

rit − rft = ai +
k∑
j=1

βijfjt + uit, (66)

for i = 1, 2, ..., n; over t = 1, 2, ..., T. Section 3, showed that consistent estimation of risk premia,
λj, associated with factor fjt, required that its strength, δj, must be unity. The strength of factor
j is defined by

∑n
i=1

(
βij − β̄j

)2
= 	

(
nδj
)
. See also the discussion that surrounds equation (1)

in the introduction. Therefore, one must measure the loadings relative to their means. To
achieve this, average both sides of (66) over i, and subtract the result from (66) to obtain:10

rit − rt = ãi +

k∑
j=1

(βij − βj)fjt + ũit, (67)

where rt = n−1
∑n

i=1 rit, ãi =ai − n−1
∑n

i=1ai, and ũit = uit − n−1
∑n

i=1 uit. Suppose that one
of the factors, say f1t, is the market factor measured by rmt , which approximates rt, when n is

9The FF factors are obtained from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
Excess returns on individual securities were originally compiled by Takashi Yamagata and extended to May
2018 by Natalia Bailey. For further details see Appendix C of Pesaran and Yamagata (2018).
10We could also consider using weighted averages, but when n is large simple and weighted averages tend to

yield similar results assuming the weights used are of order 1/n .
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suffi ciently large. Then (67) can be equivalently written as:

rit = ãi + β̃i1r
m
t +

k∑
j=2

β̃ijfjt + ũit. (68)

where β̃i1 = βi1 − β1 + 1 and β̃ij = (βij − βj). Thus, once the market factor is included the
coeffi cients give us the deviations of the factor loadings from their means as required. Note also
that since uit are weakly cross-correlated then ũit = uit + Op(n

−1/2). The estimation of factor
strengths can now be based on the return regression (68). It is also worth noting that OLS
estimates of β̃i1 add up over i to one.
To estimate the strength of the FF factors (relative to the market) we run the following

excess return regressions

rit − rft = ai + βMi r
M
t + β̃SMB

i fSMB,t + β̃HML
i fHML,t + uit. (69)

Denote by tij the t-statistic corresponding to the estimated loading of factor j for security i
and consider the proportion of regressions where the coeffi cients for factor j, β̃ij, is statistically
significant:

π̂j =

∑n
i=1 1 [|tij| > cp(n)]

n
,

where 1 (A) = 1 if A > 0, and zero otherwise. There is clearly a multiple testing problem
and to control for this, the critical value function, cp(n), defined by cp(n) = Φ−1

(
1− p

2nc

)
, is

used, where Φ−1(·) denotes the inverse cumulative distribution function of the standard normal
distribution, p is the nominal size of the multiple tests, and c is a small positive constant that
controls the overall size of the multiple tests and ensures the consistency of the estimator of
δj. No allowance is made for the multiple testing problem if we set c = 0. In the application
below, we set c = 0.25 and p = 0.1. Using a larger value of c or a smaller value of p would tend
to increase the critical values and reduce the estimate of πj and hence δj. However, the results
do not seem to be that sensitive to these values and estimates using c = 0.5 and p = 0.05, for
example, are qualitatively similar to those based on c = 0.25 and p = 0.1.
The estimator of the strength of factor j, is defined by δ̂j = 1 + ln(π̂j)/ln(n). The proper-

ties of this estimator are examined in detail in BKP (2019b), who also derive its asymptotic
distribution and give analytical expressions for its asymptotic standard errors for values of δj in
the range 1/2 < δj < 1. The confidence intervals tend to become quite narrow as δj gets closer
to unity, and the asymptotic distribution of δ̂j (as as n, T → ∞) in fact becomes degenerate
when δj = 1, a kind of ultra-consistency result. This property is illustrated in the very narrow
confidence bands that we obtain for the estimates of the strength of FF factors reported below.
Figure 1, plots the 10 yearly rolling estimates, δjτ for the three FF factors (j = MKT, SMB,HML),

where τ denotes the last month of the estimation sample, from May 1989 to May 2018. The
strength of the market factor is always one or very close to one for all rolling windows. It only
falls below 0.99 for the ten year samples ending between January 2001 and February 2002 and
then again for the samples ending between May 2007 and May 2010, both periods of market
turmoil. The lowest estimate of the strength of the market factor is 0.9848, for the sample
ending on August 2008, with a 90% confidence interval from 0.9842 to 0.9854. The other two
factors have similar strengths for the period 1989 to 1999, in the range about 0.7 to 0.8, with
the strength of the size factor, SMB, being greater than the strength of the value factor, HML,
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except for a short period at the beginning. Then in January 1999 HML overtakes SMB, increas-
ing sharply and exceeding 0.9 in September 2001. It then stays high until September 2009 when
it falls below 0.9. At the end of the period the strength of the SMB factor was 0.7 and the HML
0.77. The 90% confidence intervals are not large even for the lower estimates of δ observed.
The lowest estimate for SMB is 0.652 in February 2015, with a 90% confidence interval from
0.638 to 0.667. For HML, the minimum is 0.685 in January 1991 with a 90% confidence interval
from 0.673 to 0.697.
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0.9
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1989M9 1996M12 2004M3 2011M6 2018M6

MKT SMB HML

Figure 1: Ten year rolling estimates of factor strength for market factor (top), and HML and
SMB factors

Figure 2 plots the estimate of δ and the 90% confidence interval for the strength of SMB
and Figure 3 for HML, again using 10 year rolling windows, c = 0.25 and p = 0.1.
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Figure 2: Ten year rolling estimates of factor strength for the SMB factor with its 90%
confidence band

The results from the 5 year rolling window are qualitatively similar but show more fluc-
tuations and lower minima, because fewer of the time series coeffi cients are significant. For
the market the lowest estimate is 0.935 in May 2008 with a confidence interval from 0.934 to
0.937. For SMB the lowest estimate is 0.566 in May 2005 with a confidence interval of 0.541
to 0.591. For HML the lowest estimate is 0.594 in December 2007 with a confidence interval
of 0.573 to 0.615. Whereas on the 10 year rolling samples HML stays quite strong, above 0.8,
from samples ending in November 1999 to December 2011, on the 5 year measure it weakens
between February 2006 and September 2008 dropping to values below 0.7 before recovering.
It is instructive to note that with 400 securities condition α < 1/2 implies that at most 20
securities out of the 400 could have non-zero pricing errors, as compared to 220 for α = 0.90.
The APT theory requires the risk factors, ft, to be strong and the factors that drive the

pricing errors, denoted by gt in the theoretical section, to be weak. The strength of gt factors
could be quite high, so long as they lie below unity. SMB and HML are examples of such
factors, whose strengths are estimated to lie between 0.65 and 0.90, but never reach the strength
required to consider them as risk factors. Nevertheless, their inclusion along with the market
factor could be justified to control for semi-strong factors and help ensure that the remaining
errors are suffi ciently weak so that the condition α < 1/2 is met. See also Example 1 where
it is shown that the consistency of the two pass estimator of the risk premia associated to the
strong factor is not affected by erroneous inclusion of additional factors that are weak.
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Figure 3: Ten year rolling estimates of factor strength for the HML factor with its 90%
confidence band

We have only considered three factors for illustration. Currently there are a large number
of suggested factors. Harvey and Liu (2019) document a "factor zoo" of over 400 suggested
factors in early 2019. BKP (2019b) provide rolling estimates of factor strength for over 145
factors recently considered by Feng et al. (2019), but find that none of these factors come close
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to being strong. Our theoretical analysis suggests that before a potential factor is allowed into
the zoo, its strength should be estimated in the way we propose. This can be done one factor
at a time with the market factor always included in the time series regression.11

6 Concluding remarks

Factor strength and pricing errors play central roles in the empirical analysis of APT. If a factor
is not strong its influence can be eliminated with a suitably diversified portfolio and it will not
command a risk premium. This paper highlights the importance of estimating factor strengths,
and proposes the use of an estimator of factor strength, δ, constructed from the proportion of
significant factor loadings in the times series regressions of excess returns on the factor. We
consider the properties of the two pass estimators of the risk premia obtained from the cross
section regression of average returns, for individual securities as well as for portfolios. We
show that conditions for identification of the risk premia are unaffected if one uses portfolios or
individual securities. For consistency of risk premia it is required that factors are strong with
δ = 1 and pricing errors are weak. We also derive asymptotic distribution of the estimated risk
premia allowing for non-zero pricing errors. We consider both the most relevant case of large
n and fixed T, and the case of large n and T which is required for

√
n consistent estimation of

risk premia when factor loadings are unknown.
In an empirical application, we present rolling estimates of the factor strength parameter δj

using S&P 500 monthly returns over September 1989 to May 2018. We estimate δj from time
series regressions for the market factor and the two Fama-French size and value factors (SMB
and HML). The market factor is always strong with its δ estimated to be close to unity, whilst
the strength of SMB and HML factors vary substantially over time between, lie between 0.65
and 0.90, and at no time come close to being unity. A related empirical analysis carried out
by Bailey, Kapetanios and Pesaran (2019b) consider a large number of other factors proposed
in the literature and arrive at a similar conclusion that only market factor can be viewed as
strong.

11When a large number of potential factors are included in the time series regressions, multiple testing is a
major problem. It is only relatively recently that model selection procedures that adjust for this have been
used; for instance Feng et al. (2019). The OCMT procedure suggested by Chudik, Kapetanios and Pesaran
(2018) could also be used.
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A Mathematical Appendix

A.1 Introduction

We first state and establish a number of lemmas that we shall then use to prove Theorems 1
and 3 in the paper.

A.2 Statement of lemmas and their proofs

Lemma A.1 Consider the errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} in the factor model defined
by (32), and suppose that Assumption 5 holds. Then for any t and t′ (as n→∞)

an,tt′ =
1

n

n∑
i=1

uituit′ →p 0, if t 6= t′, (A.1)

bn,t =
1

n

n∑
i=1

(
u2
it − σ2

i

)
→p 0, if t = t′ (A.2)

and

cn,t =
1

n

n∑
i=1

(uitui◦ −
1

T
σ2
i )→p 0, (A.3)

where

σ2
i = E(u2

it), ui◦ =
1

T

T∑
t=1

uit.

Proof. Since {uit} is serially uncorrelated then E(uituit′) = 0 for t 6= t′ and

V ar(an,tt′) =
1

n2

n∑
j=1

n∑
i=1

E (uituit′ujtujt′)

=
1

n2

n∑
j=1

n∑
i=1

E (uitujt)E (uit′ujt′)

=
1

n2

n∑
j=1

n∑
i=1

σ2
ij ≤

1

n2

n∑
j=1

(
n∑
i=1

|σij|
)2

.

Since by Assumption 5, supj
∑n

i=1 |σij| < C, then

V ar(an,tt′) ≤
1

n
sup
j

n∑
i=1

|σij| = O(
1

n
).

Hence an,tt′ (for t 6= t′) converges in mean square error to to its mean which is zero, and (A.1)
is established. Similarly, since E (u2

it − σ2
i ) = 0, then E(bn,t) = 0 and

V ar (bn,t) =
1

n2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt),
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which tends to zero by part (b) of Assumption 5, and result (A.2) is established. To prove
(A.3), set zit = uitui. − 1

T
σ2
i , and note that uitui◦ = 1

T

∑T
s=1 uituis, and given that {uit} is

serially uncorrelated thenE(zit) = 0. Also

V ar(cn,t) =
1

n2

n∑
i=1

n∑
j=1

Cov(zit, zjt) (A.4)

and
Cov(zit, zjt) = E(uitujtui◦uj◦)−

1

T 2
σ2
i σ

2
j .

Further

E (uitujtui◦uj◦) =
1

T 2
E

(
uitujt

T∑
s=1

T∑
s′=1

uisujs′

)
,

and since {uit} is serially uncorrelated, then E (uitujtui◦uj◦) = 1
T 2
E(u2

itu
2
jt), which yields

Cov(zit, zjt) =
1

T 2

[
E(u2

itu
2
jt)−

1

T 2
σ2
i σ

2
j

]
=

1

T 2
Cov(u2

itu
2
jt).

Using this result in (A.4) we have

V ar(cn,t) =
1

T 2

[
1

n2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt)

]
.

Therefore, by assumption (5), for any fixed T, V ar(cn,t)→ 0, as n→∞, and (A.3) is established
since E(cn,t) = 0.

Lemma A.2 Consider the n×T error matrixU = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,

the n × k matrix of factor loadings, B = (β1,β2, ...,βn) , the n × 1 vector of pricing errors
η = (η1, η2, ..., ηn)′, and suppose that assumptions 5, 6 and part (b) of 8 hold, and α < 1.12

Then
B′MnU

n
→p 0, (A.5)

B′Mnu

n
→p 0, (A.6)

B′Mnη

n
→p 0, (A.7)

U′MnU

n
→p σ

2IT , (A.8)

U′Mnu

n
→p

σ2

T
τ T , (A.9)

U′Mnη

n
→p 0 (A.10)

where Mn = In − 1
n
τ nτ

′
n, u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, and σ
2 = lim 1

n

∑n
i=1 σ

2
i .

Note that τ n and τ T are, respectively, n× 1 and T × 1 vectors of ones.

12As compared to the notation in the body of the paper, we have dropped the subscript n from Bn as defined
by (32).
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Proof. Consider (A.5) and note that

n−1B′MnU =
1

n
B′U− 1

n2
B′τ nτ

′
nU, (A.11)

where n−1B′ U = n−1
∑n

i=1 βiu
′
i◦, and ui◦ = (ui1, ui2, ..., uiT )′ . Since T is finite, it is suffi cient

to consider the tth column of n−1B′U, which is n−1
∑n

i=1 uitβi. Since by assumption βi and uit
are distributed independently and E (βiuit) = 0, for all i and t. Then conditional on βi

V ar

(
n−1

n∑
i=1

βiuit

)
=

1

n2

n∑
i=1

n∑
j=1

βiβ
′
jσij,

and since by assumption sup ‖βi‖ < C, then under Assumptions 5 and 8

V ar

(
n−1

n∑
i=1

βiuit

)
≤
(

sup
i
‖βi‖

)2
(

1

n2

n∑
i=1

n∑
j=1

|σij|
)

<
(sup |βi|)2 supj

∑n
i=1 |σij|

n
= O(

1

n
),

and n−1B′U→p 0. Now consider the second term of (A.11) and note that

1

n2
‖B′τ nτ ′nU‖ ≤

∥∥n−1B′τ n
∥∥∥∥n−1τ ′nU

∥∥ .
But n−1B′τ n = βn = n−1

∑n
i=1 βi, and since supij |βij| < C, then ‖n−1B′τ n‖ < C. Also the tth

element of n−1U′τ n is given by u◦t = n−1
∑n

i=1 uit and under Assumption (5), u◦t →p 0, and
we have

n−1U′τ n →p 0. (A.12)

Hence both components of (A.11) converge to zero in probability so (A.5) is established. Result
(A.6) follows similarly. To establish (A.7), note that∥∥∥∥B′Mnη

n

∥∥∥∥ ≤ λ1/2
max

(
B′MnB

n

)(
η′η

n

) 1
2

,

and by part (c) of Assumption (8), λ1/2
max

(
B′MnB

n

)
→p λ

1/2
max (Σββ) < C, and by Assumption 6(

η′η
n

) 1
2

= O
(
n
α−1
2

)
. Hence

∥∥∥B′Mnη
n

∥∥∥ →p 0, since α < 1, and (A.7) follows. Consider now

(A.8) and note that

n−1U′MnU = n−1 U′U−
(

U′τ n
n

)(
τ ′nU

n

)
and n−1U′U = n−1

∑n
i=1 ui◦u

′
i◦, where ui◦u

′
i◦ = (uituit′), for t, t′ = 1, 2, ...T . Hence, by results

(A.1) and (A.2) of lemma A.1, it follows that n−1U′U→p σ
2IT , and in conjunction with (A.12)

yields (A.8) as required. To establish (A.9) note that

n−1U′Mnū = n−1U′ū−
(

U′τ n
n

)(
τ ′nU

n

)
, (A.13)
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where n−1U′ū = (φ1,n, φ2,n, ..., φT,n)′, with φt,n = 1
n

∑n
i=1 uitūi◦, which can be written equiva-

lently as

φt,n =
1

n

n∑
i=1

(uitūi◦ −
1

T
σ2
i ) +

1

T
σ̄2
n,

where σ̄2
n = 1

n

∑n
i=1 σ

2
i . Hence, by result (A.3) of Lemma A.1, φt,n →p

1
T
σ̄2, which in turn

establishes that n−1U′ū→p
1
T
σ̄2τ T . Also by (A.12) the second term of (A.13) tends to zero in

probability and (A.9) follows. Finally to establish (A.10), note that∥∥∥∥U′Mnη

n

∥∥∥∥ ≤ ∥∥∥∥U′Mn√
n

∥∥∥∥∥∥∥∥ η√n
∥∥∥∥ = λ1/2

max

(
U′MnU

n

)(
η′η

n

) 1
2

.

Also using (A.8) it follows that λ1/2
max

(
U′MnU

n

)
→p σ

2 < C, and by Assumption 6 n−1η′ η =

O (nα−1), and as required
∥∥∥U′Mnη

n

∥∥∥→p 0, since α < 1.

Lemma A.3 Consider the n×T error matrixU = (u1◦,u2◦, ...,un◦)
′ , where ui◦ = (ui1, ui2, ..., uiT )′ ,

the n × k matrix of factor loadings, B = (β1,β2, ...,βn) , the n × 1 vector of pricing er-
rors η = (η1, η2, ..., ηn)′, and the n × P matrix of portfolio weights, WP = (w1,w2, ...,wP )′,
wp = (w1p, w2p, ...., wnp)

′. Suppose that Assumptions 4, 5, 6 and 8 hold, α < 1, and ‖WP‖ =
	
(
m−1/2

)
. Then for a fixed m, k and T , and as P → ∞, such that P/n → π, (0 < π < 1),

then we have
U′WP τP

P
→p 0, (A.14)

B′WPMPW′
PU

P
→p 0, (A.15)

B′WPMPW′
Pu

P
→p 0, (A.16)

B′WPMPW′
Pη

P
→p 0, (A.17)

U′WPMPW′
Pη

P
→p 0, (A.18)

U′WPMPW′
PU

P
→p ω̄

2IT , (A.19)

U′WPMPW′
Pu

P
→p

ω̄2

T
τ T , (A.20)

whereMP = IP− 1
P
τ Pτ

′
P , u = (u1◦, u2◦, ..., un◦)

′, ui◦ = T−1
∑T

t=1 uit, ω̄
2 = limP→∞

1
P

∑P
p=1

(
w′pΣuwp

)
,

and Σu = (σij). Note that τ P and τ T are, respectively, P × 1 and T × 1 vectors of ones.
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Proof. To establish result (A.14) first note that the tth element of P−1U′WP τP is given by
P−1

∑n
i=1 w̄iPuit, where w̄iP =

∑P
p=1wip. Also E (P−1

∑n
i=1 w̄iPuit) = 0, and

V ar

(
P−1

n∑
i=1

w̄iPuit

)
= P−2

n∑
i=1

n∑
j=1

w̄iP w̄jPσij

≤
(

sup
i,P
|w̄iP |

)2

P−2

n∑
i=1

n∑
j=1

|σij|

≤
(

1

P/n

)(
1

P

)(
sup
i,P
|w̄iP |

)2

sup
i

n∑
j=1

|σij| ,

which tends to zero as P → ∞, since under Assumptions 4 and 5, supi,P |w̄iP | < C, and
supi

∑n
j=1 |σij| < C, and 1 > P/n > 0. Hence, the elements of P−1U′WP τP all tend to zero in

mean square and hence in probability. Consider now A.15 and note that

P−1B′WPMPW′
PU = P−1B′WPW′

P U−
(
P−1B′WP τP

) (
P−1τ ′PWPU

)
, (A.21)

Also B′WP =
(
β̄1, β̄2, ..., β̄P

)
, B′WP τP =

∑P
i=1 β̄p, where β̄p =

∑n
i=1 w̄ipβi, and by Assump-

tion 9 supp
∥∥β̄p∥∥ < C. Hence,∥∥(P−1B′WP τP

) (
P−1τ ′PWPU

)∥∥ ≤ ∥∥P−1B′WP τP
∥∥∥∥P−1τ ′PWPU

∥∥
≤
(
P−1

P∑
i=1

∥∥β̄p∥∥
)∥∥P−1τ ′PWPU

∥∥ ≤ C
∥∥P−1τ ′PWPU

∥∥ ,
and in view of (A.14), it follows that

P−2B′WP τP τ
′
PWP U →p 0. (A.22)

The first term of (A.21) can be written as

P−1B′WPW′
PU = P−1

(
P∑
p=1

B′wpw
′
pU

)
= P−1

(
P∑
p=1

n∑
i=1

wipβ̄pu
′
i◦

)

= P−1

(
n∑
i=1

φiPu′i◦

)
,

where φiP=
∑P

p=1wipβ̄p = (φi1,P , φi2,P , ...φik,P )′ , and φis,P =
∑P

p=1wipβ̄sp. Since T and k are
fixed, then it is suffi cient to consider the limiting property of a typical element of P−1 (

∑n
i=1 φiPu′i◦),

namely cst,P = P−1 (
∑n

i=1 φis,Puit). We note that E(csP ) = 0, and

V ar (cst,P ) = P−2

n∑
i=1

n∑
j=1

φisPφjs,Pσij ≤
(

sup
i,s,P
|φisP |

)2 ( n
P 2

)
sup
i

n∑
j=1

|σij| .

Also |φis,P | ≤ sups,p
∣∣β̄sp∣∣∑P

p=1 |wip| < C and supi
∑n

j=1 |σij| < C, by Assumptions 4, 5,and
9. Hence, it follows that V ar (cst,P ) → 0, for all s = 1, 2, .., k and t = 1, 2, ..., T , and hence
P−1B′WPW′

P U →p 0. Using this result together with (A.22) in (A.21) now establishes
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(A.15). To prove (A.16) we first note that since u = (u1◦, u2◦, ..., un◦)
′ = T−1UτT , where

ui◦ = T−1
∑T

t=1 uit, and hence B′WPMPW′
Pu = T−1B′WPMPW′

PUτT , and∥∥P−1B′WPMPW′
Pu
∥∥ ≤ ∥∥P−1B′WPMPW′

PU
∥∥∥∥T−1τT

∥∥
= T−1/2

∥∥P−1B′WPMPW′
PU
∥∥ ,

and tends to zero in probability by virtue of result (A.15). To prove (A.17) we note that

P−1 ‖B′WPMPW′
Pη‖ ≤

∥∥P−1/2B′WPMP

∥∥∥∥P−1/2W′
Pη
∥∥ .

But limP→∞
∥∥P−1/2B′WPMP

∥∥2
= limP→∞ λmax (P−1B′WPMPW′

PB) < C, by Assumption 9,
and

P−1 ‖W′
Pη‖

2 ≤ P−1 ‖WP‖2 ‖η‖2 = P−1 ‖WP‖2

(
n∑
i=1

η2
i

)
.

Also, since by Assumption ‖WP‖2 = 	 (m−1), P/n → π, then P−1 ‖B′WPMPW′
Pη‖ =

	 (n−1
∑n

i=1 η
2
i ) = 	 (nα−1), which tends to zero since α < 1. Result (A.18) follows simi-

larly. To establish (A.19), in view of (A.14) it is suffi cient to establish the probability limit of
P−1U′WPW′

PU . To this end we note that

P−1U′WPW′
PU = P−1

P∑
p=1

U′wpw
′
p U = P−1

P∑
p=1

(
n∑
i=1

wipui◦

)(
n∑
i=1

wjpu
′
j◦

)

= P−1

P∑
p=1

n∑
i=1

n∑
j=1

wipwjpui◦u
′
j◦.

Therefore, a typical (t, t′) element of the T × T matrix BP = P−1U′WPW′
PU is given by

btt′,P = P−1
∑P

p=1

∑n
i=1

∑n
j=1wipwjpuitujt′ and we have

E (btt′,P ) = P−1

P∑
p=1

n∑
i=1

n∑
j=1

wipwjpσij = P−1

P∑
p=1

w′pΣuwp, if t = t′,

E (btt′,P ) = 0, if t 6= t′,

and hence E (BP ) = ω̄2
P IT , where ω̄2

P = P−1
∑P

p=1 w′pΣuwp. The convergence in probability

follows by considering E
(
b2
tt′,P

)
when t 6= t′ and E (btt′,P − ω̄2

P )
2 when t = t′, and following

the approach used to establish results (A.1) and (A.2) in Lemma A.1. The details are tedious
and will be omitted to save space. Finally, result (A.20) follows from (A.19), noting that
U′WPMPW′

Pu = T−1U′WPW′
PUτT .

A.3 Proof of theorems and related results

A.3.1 Proof of Theorem 1

Consider the two-pass estimator of λ defined by (37), and to simplify notations, write it as

λ̂n =

(
B̂′MnB̂

n

)−1(
B̂′Mnr̄

n

)
, (A.23)
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where B̂ = (β̂1, β̂2, ..., β̂n)′, r̄ = (r̄1, r̄2, ..., r̄n)′, r̄i = T−1
∑T

t=1 rit,

β̂i = (F′MTF)−1F′MT ri◦, (A.24)

and ri◦ = (ri1, ri2, ..., riT )′. Under the factor model (32)

ri◦ = αiτ T + Fβi + ui◦, (A.25)

where ui◦ = (ui1, ui2, ..., uiT )′, and hence

β̂i = βi + (F′MTF)−1F′MTui◦. (A.26)

Stacking these results over i yields:

B̂ = B + UGT (A.27)

where U = (u1◦,u2◦, ...,un◦)
′, and

GT = MTF(F′MTF)−1 (A.28)

Also using result (41) in the paper we have (in terms of the simplified notations used here)

r̄ =λ0τ n + Bλ∗T + ū+η (A.29)

where
λ∗T = λ+ dT , and dT = f̄T − E

(
f̄T
)
. (A.30)

and ū = (ū1◦, ū2◦, ..., ūn◦)
′. To derive the asymptotic limit of λ̂n as n → ∞, when T is fixed,

we first consider the probability limits of n−1
(
B̂′MnB̂

)
and n−1

(
B̂′Mnr̄

)
. Using (39) and

(A.29) we have

n−1
(
B̂′MnB̂

)
= n−1 (B′MnB) + n−1 (G′TU′ 6MnB)

+ n−1 (B′MnUGT ) + n−1 (G′TU′ 6MnUGT ) ,

n−1
(
B̂′Mnr̄

)
= n−1 (B′MnB)λ∗T + n−1 (G′TU′ 6MnB)λ∗T

+ n−1 (B′Mnū) + n−1 (B′Mnη)

+ n−1 (G′TU′Mnū) + n−1 (G′TU′Mnη) .

Now using the results in Lemma A.2, under Assumptions 5, 6 and 8 we have

n−1
(
B̂′MnB̂

)
→p Σββ + σ̄2G′TGT ,

n−1
(
B̂′Mnr̄

)
→p Σββλ

∗
T +

σ̄2

T
G′Tτ T .

But using (A.28) we also have

G′TGT =
1

T

(
F′MTF

T

)−1

, (A.31)
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and G′Tτ T = 0. Hence

n−1
(
B̂′MnB̂

)
→p Σββ +

σ̄2

T

(
FMTF

T

)−1

,

n−1
(
B̂′Mnr̄

)
→p Σββλ

∗
T .

Since by assumption 8, Σββ is a positive definite matrix, then for any T (including T → ∞)
the probability limit of n−1B̂′MnB̂ is non-singular and using (A.23) by the Slutsky Theorem
we have

λ̂n →p

[
Σββ +

σ̄2

T

(
FMTF

T

)−1
]−1

Σββλ
∗
T ,

which in view of (A.30) can be written equivalently in the form stated in Theorem 1.

A.3.2 Proof of n consistency of ̂̄σ2

nT for σ̄
2

Consider the expression for ̂̄σ2

nT given by (45) and note that under (33) we have

ûit = αi − α̂iT −
(
β̂i,T − βi

)′
ft + uit,

and since ûit are OLS residuals then for each i, we also have T−1
∑T

t=1 ûit = 0. Using this result

ûit = uit − ūi −
(
β̂i,T − βi

)′ (
ft − f̄T

)
, for i = 1, 2, ..., n,

and stacking over i now yields ût = ut − ū−
(
B̂−B

) (
ft − f̄T

)
. Hence

T−1n−1

T∑
t=1

n∑
i=1

û2
it = T−1

T∑
t=1

n−1û′tût

= T−1

T∑
t=1

n−1 (ut − ū)′ (ut − ū)

+ T−1

T∑
t=1

(
ft − f̄T

)′
n−1

(
B̂−B

)′ (
B̂−B

) (
ft − f̄T

)
− 2T−1

T∑
t=1

n−1 (ut − ū)′
(
B̂−B

) (
ft − f̄T

)
= anT + bnT + cnT (A.32)

Consider each of the three terms in the above expression in turn. For the first term we have

anT =

∑T
t=1

∑n
i=1 u

2
it

nT
−
∑n

i=1 ū
2
i

n
.

Under Assumption 5 uit and ūi are weakly cross correlated and for each t, n−1
∑n

i=1 u
2
it →p

limn→∞n
−1
∑n

i=1 E (u2
it) = limn→∞n

−1
∑n

i=1 σ
2
i = σ̄2. Similarly, n−1

∑n
i=1 ū

2
i →p T

−1σ̄2, and
(for a fixed T and as n→∞)

anT →p

(
1− 1

T

)
σ̄2. (A.33)
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Now using (A.27)

bnT = T−1

T∑
t=1

(
ft − f̄T

)′
G′T

(
U′U

n

)
GT

(
ft − f̄T

)
,

and in view of (A.8) we have (as n→∞)

bnT →p σ̄
2T−1

T∑
t=1

(
ft − f̄T

)′
G′TGT

(
ft − f̄T

)
= σ̄2Tr

[
G′TGTT

−1

T∑
t=1

(
ft − f̄T

) (
ft − f̄T

)′]

= σ̄2Tr

[
G′TGT

(
F′MTF

T

)]
.

But by (A.31) G′TGT = 1
T

(
F′MTF

T

)−1

, and it follows that

bnT →p
k

T
σ̄2. (A.34)

. Finally, again using (A.27)

cnT = −2T−1

T∑
t=1

n−1 (ut − ū)′UGT

(
ft − f̄T

)
= −2Tr

[
n−1UGTT

−1

T∑
t=1

(
ft − f̄T

)
u′t

]
,

and noting that

T−1

T∑
t=1

(
ft − f̄T

)
u′t = T−1

T∑
t=1

ftu
′
t − f̄T ū′,

T−1

T∑
t=1

ftu
′
t = T−1F′U′

we haveσ
2

T
τ T

cnT = −2T−1Tr
[
GTF′

(
n−1U′U

)]
+ 2Tr

[
GT f̄T

(
n−1ū′U

)]
.

Now using (A.8) and ( A.9) it follows that

cnT →p −2σ̄2T−1Tr (GTF′) + 2Tr

[
GT f̄T

σ2

T
τ ′T

]
= −2σ̄2T−1Tr (F′GT ) + 2σ̄2T−1Tr

[
f̄Tτ

′
TGT

]
.

But using (A.28) it is readily seen that F′GT = Ik and τ ′TGT = 0, and therefore

cnT →p −
2k

T
σ̄2. (A.35)

Now using (A.33), (A.34) and (A.35) in (A.32)

T−1n−1

T∑
t=1

n∑
i=1

û2
it →p

(
1− 1

T

)
σ̄2 +

k

T
σ̄2 − 2k

T
σ̄2 =

(
T − k − 1

T

)
σ̄2,

which establishes

̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T − k − 1)
=
n−1T−1

∑T
t=1

∑n
i=1 û

2
it

T−1(T − k − 1)
→p σ̄

2,

as required.
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A.3.3 Proof of Theorem 3

The proof is similar to that of Theorem 1. Consider the portfolio estimator λ given by (60)
and write it simply as

λ̂P =
(
P−1B̂

′
WPMPW′

P B̂
)−1 (

P−1B̂
′
WPMPW′

P r̄
)
, (A.36)

Substituting B̂ and r̄ using (A.27) and (A.29) respectively, we have

P−1B̂
′
WPMPW′

P B̂ = P−1B′WPMPW′
PB+P−1B′WPMPW′

PUGT

+ P−1G′TU′WPMPW′
PB+P−1G′TU′WPMPW′

PUGT ,

and
B̂
′
WPMPW′

P r̄ = (B + UGT )′WPMPW′
P (αiτ n + Bλ∗T + ū+η) ,

and recall that λ∗T is defined by (A.30). Also, note that since Σn
i=1wip = 1, for all p, then

W′
Pτ n = τ P and MPW′

Pτ n = MPτ P = 0. Hence,

P−1B̂
′
WPMPW′

P r̄=P−1 (B′WPMPW′
PB)λ∗T + P−1B′WPMPW′

P (ū+η)

+ P−1 (G′TU′WPMPW′
PB)λ∗T + P−1G′TU′WPMPW′

P (ū+η) .

Under Assumptions 5, 6 and 9, and using the results of Lemma A.3, we have (as P → ∞, for
a fixed m, T and k):

P−1B̂
′
WPMPW′

P B̂→p Σββ,ω +
ω̄2

T

(
FMTF

T

)−1

,

P−1B̂
′
WPMPW′

P r̄→p Σββ,ωλ
∗
T ,

where ω̄2 and Σββ,ω are defined by (63). Result (62) then follows by using the above in (A.36),
and writing the outcome in terms of λ̂P−λ.
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