cesifo working PAPERS

Meta-Analysis of Present-Bias Estimation Using Convex Time Budgets
 Taisuke Imai, Tom A. Rutter, Colin F. Camerer

Impressum:

CESifo Working Papers
ISSN 2364-1428 (electronic version)
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo GmbH
The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute
Poschingerstr. 5, 81679 Munich, Germany
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de
Editor: Clemens Fuest
www.cesifo-group.org/wp
An electronic version of the paper may be downloaded

- from the SSRN website: www.SSRN.com
- from the RePEc website: www.RePEc.org
- from the CESifo website: www.CESifo-group.org/wp

Meta-Analysis of Present-Bias Estimation Using Convex Time Budgets

Abstract

We examine 220 estimates of the present-bias parameter from 28 articles using the Convex Time Budget protocol. The literature shows that people are on average present biased, but the estimates exhibit substantial heterogeneity across studies. There is evidence of modest selective reporting in the direction of overreporting present-bias. The primary source of the heterogeneity is the type of reward, either monetary or non-monetary reward, but the effect is weakened after correcting for potential selective reporting. In the studies using the monetary reward, the delay until the issue of the reward associated with the "current" time period is shown to influence the estimates of present bias parameter.

JEL-Codes: D900, C910.
Keywords: present bias, structural behavioral economics, meta-analysis, selective reporting.

Taisuke Imai
Department of Economics
LMU Munich / Germany
taisuke.imai@econ.lmu.de

Tom A. Rutter
Department of Economics
LSE / United Kingdom
ruttert@lse.ac.uk

Colin F. Camerer
Division of the Humanities and Social Sciences
California Institute of Technology / Pasadena / CA / USA
camerer@hss.caltech.edu

July 10, 2019
This is a part of the project "A Large-Scale, Interdisciplinary Meta-Analysis on Behavioral Economics Parameters" supported by the Social Science Meta-Analysis and Research Transparency (SSMART) Grants from Berkeley Initiative for Transparency in the Social Sciences (BITSS).We thank Stefano DellaVigna, Tomáš Havránek, Peter Schwardmann, Charles Sprenger, and Tom Stanley for helpful comments. Imai acknowledges financial support by the Deutsche Forschungsgemeinschaft through CRC TRR 190. Rutter acknowledges the support of the 2016 SURF Fellowship from the California Institute of Technology.

1 Introduction

Most choices create benefits and costs that occur at different points in time. Domains of these intertemporal choices include health (e.g., eating and exercise), financial decision making (e.g., saving for retirement), pursuit of education, household decisions, and more. In many of these domains, introspection and experimental evidence suggest that people often exhibit present bias: people prefer a smaller immediate reward to a larger delayed reward in the present, but they reverse their preferences when these two alternatives are shifted to the future by the same amount of time. Understanding how and why people make such present-biased choices in many domains informs design of government policy, corporate practices, and clinical practices.

The quasi-hyperbolic discounted utility model (QHD; Laibson, 1997; Phelps and Pollak, 1968), also known as the present-biased preferences model, is an extension of the exponentially discounted utility model (EDU; Koopmans, 1960; Samuelson, 1937). It is designed to capture dynamically inconsistent choices while retaining some of the tractability of EDU. In QHD, an agent values a consumption stream $\left(x_{0}, \ldots, x_{T}\right)$ according to

$$
\begin{equation*}
U\left(x_{0}, \ldots, x_{T}\right)=u\left(x_{0}\right)+\beta \sum_{t=1}^{T} \delta^{t} u\left(x_{t}\right) \tag{1}
\end{equation*}
$$

where $\delta>0$ is a traditional discount factor and $\beta>0$ captures present-bias. Note that the utilities from "future" periods $(t \geq 1)$ are exponentially weighted as in the standard EDU, while this stream of future utilities is also discounted by β. Note that QHD includes EDU as a special case when $\beta=1$ (there is no present-bias). QHD is the most widely used representation of present-biased preferences, although other functional forms (particularly variants of hyperbolic discounting) will exhibit present-bias too. ${ }^{1}$

In this paper, we assemble all empirical estimates of present-biased preferences measured with the experimental method called the Convex Time Budget (CTB; Andreoni and Sprenger, 2012) and meta-analyze those data. The meta-analysis gives tentative answers to four questions. (i) What is an average value of β ? (ii) Is there selective reporting or publication bias? (iii) How does β vary reliably with types of rewards, subject population, estimation methods, etc.? (iv) How much will more data change these answers?

Our meta-analysis collects 220 estimates of the present-bias parameter in the QHD model (β in equation (1); hereafter $P B$) from 31 studies reported in 28 articles included in the dataset. To

[^0]

Figure 1: Funnel plot of estimates of present bias parameter (PB). The y-axis (precision; inverse standard error) is presented in the log-scale. The dotted curves indicate the boundaries for rejection of the null hypothesis of no present bias ($P B=1$; vertical grey line) for a two-sided test at the 5% significance level.
give a quick preview, the distribution of estimates and the relation with their associated standard errors is presented in the "funnel plot" in Figure 1. A significant proportion of estimated PB's are smaller than one, indicating present bias rather than future bias. The dotted curves indicate the boundaries for rejection of the null hypothesis of no present bias $(P B=1)$ for a two-sided test at the 5% significance level; estimates outside the boundaries are rejections). The figure shows that many studies did not find strong evidence to reject the null of $P B=1$, but those that do reject the null hypothesis show present bias rather than future bias.

While meta-analysis is indeed a method, the contribution of our paper is not primarily methodological. Our contribution is substantive because it presents the best available estimates of $P B$, and how much they vary. This evidence should be useful to many empirical economists for whom a $P B$ has been applied, including in household finance (e.g., Angeletos et al., 2001; Beshears et al., 2017; Meier and Sprenger, 2010), health decisions (Fang and Wang, 2015), labor contracts (Bisin and Hyndman, 2018; Kaur et al., 2010, 2015), demand for commitment devices (Ashraf et al., 2006; Beshears et al., 2015; John, forthcoming), and others.

Meta-analysis presumes that along with conventional "narrative" reviews, it is useful to compile studies using specific inclusion criteria, and compare numbers measured in different studies. It hardly bears mentioning that even in the presence of quantitative meta-analyses, narrative reviews will always be useful. They allow insightful commentary on which studies authors believe are particularly interesting, diagnostic, or deserving of replication and extension, in a way that
meta-analysis does not easily permit.
At the same time, narrative reviews do not typically specify inclusion criteria and usually do not compare study results on one or more quantitative metrics. As a result, until a metaanalysis such as ours, it is fair to say that even the most expert scholars are not fully aware of what all existing studies have to say about the numerical size and variation in PB. Metaanalysis goes further by compiling accessible cross-study data (which others can re-analyze), establishing central tendency of numerical estimations, exploring cross-study moderators which affect estimates, and testing for various kinds of publication bias.

Meta-analysis is designed to accumulate scientific knowledge, and also detect nonrandom reporting or publication of estimates that deviate from the average. Since it was first introduced by Glass (1976), meta-analysis has been playing an important role in evidence-based practices in medicine and policy (Gurevitch et al., 2018). However, meta-analysis has been less common in economics until recently (Stanley, 2001). ${ }^{2}$ The current study is the first systematic meta-analysis on the structural estimation of present bias in QHD, focusing specifically on empirical approaches based on the CTB protocol.Prominent reviews of evidence about intertemporal choices and $P B$ include the classic piece by Frederick et al. (2002) and more recent coverage by Cohen et al. (forthcoming) and Ericson and Laibson (2019). These articles are narrative and do not provide systematic collection and analysis of empirical observations (they rather describe subsets of important contributions and themes which emerge across studies). ${ }^{3}$

The next section explains how we construct the dataset. Section 3 describes observable characteristics of the studies and variation in experimental design. Section 4 presents the results.

2 Data and Method

2.1 The Convex Time Budget Protocol

There is a large body of evidence on estimation of time preferences, including present-biased preferences. Many experimental methods have been proposed in the literature, but here we focus on the method called the Convex Time Budget (CTB) introduced by Andreoni and Sprenger (2012). ${ }^{4}$

[^1]The main goal of this method is to elicit all the parameters of the QHD model-the discount factor δ, present bias β, and instantaneous utility function u-in a single experimental instrument. Subjects in a CTB experiment are asked to choose a "bundle" of rewards (x_{t}, x_{t+k}) delivered at two points in time $(t, t+k)$, under an intertemporal budget constraint with a k-period gross interest rate of $1+r$. By asking a series of allocation questions with varying $(t, t+k)$ and $1+r$, one can identify parameters of the QHD model. See more details in Online Appendix A.

The CTB protocol instantly became popular. The protocol has been applied not only in laboratory experiments but also in field experiments in developing countries. As we describe below, we have variation in several aspects of CTB design which we exploit in meta-regression analysis.

2.2 Identification and Selection of Relevant Studies

Every good meta-analysis starts by casting a wide net trying to identify all relevant studies. In order to deliver an unbiased meta-analysis, it is important to make sure that identification and selection of papers are guided by unambiguously defined inclusion criteria. In our case, the main criterion is to "include all articles that conducted experiments or surveys with the CTB protocol." We searched for both published and unpublished papers to have sufficient sample size and to be able to check indicators of publication bias and selective reporting.

We searched articles which employed the CTB protocol using Google Scholar, first by querying papers that cited Andreoni and Sprenger (2012), Andreoni et al. (2015), and Augenblick et al. (2015). We also searched for papers with the keyword 'convex time budget'. These two sets of searches, done on November 28 and December 15, 2017, returned a total of 738 results (including overlaps), which we further narrowed down by examining the titles and the abstracts.

As mentioned above, we searched for any articles, both published and unpublished, which conducted experiments or surveys involving the CTB protocol. Note that this broad inclusion criterion keeps studies even if QHD parameters are not estimated. These studies do not contribute to our main mata-analysis but still provide some additional information regarding how the CTB protocol has been used in the literature. For this reason, we kept track of these studies without estimates, too.

We performed the second-round search (using the same query) and updated the database in the Fall of 2018. The final dataset includes 67 articles. ${ }^{5}$ Figure 2 illustrates our selection procedure.

Note that in keeping with good meta-analysis practice, our inclusion criteria specifically

[^2]

Figure 2: Paper search and data construction.
exclude other studies which are informative about present bias. Narrative reviews are better equipped to weave discoveries from such papers into a coherent conclusion. For example, Augenblick (2018) varies time of delivery of initial payments, and find a decay effect in which a few hours of delay reduces present bias substantially. There are many, many other papers in economics, psychology, and cognitive neuroscience which are important but are not included because they did not use CTB. ${ }^{6}$

2.3 Data Construction

After identifying relevant articles, we assembled the dataset by coding estimation results and characteristics of the experimental design. We call a collection of estimates a "study" when they are from the same experimental design. These two units of observations, an article and a study, coincide in many cases, but it allows us to distinguish two conceptually different experiments reported in a single paper (e.g., monetary reward and effort-cost versions of CTB in Augenblick et al., 2015).

[^3]Our primary variable of interest is the estimate of present-biasedness, but we also coded other parameters in the QHD model (such as discount factor, utility curvature, and parameter for stochastic choice, if available) as well. Studies report either aggregate-level parameter estimates (i.e., pool choice data from all subjects and estimate a set of parameters for the "representative subject") or some summary statistics, such as the mean or median of individual-level estimates. We coded these two types of estimate separately. ${ }^{7}$ We also coded standard errors of parameter estimates from aggregate-level analysis in order to control simply for the quality of the study in the meta-analysis reported below.

We also coded variables describing characteristics of experimental design and econometric strategies. These variables include, among others: location of the experiments (e.g., laboratory, field, online); types of reward (e.g., real or hypothetical, money, effort); delivery method (e.g., cash, check, gift card); subject pool (e.g., children, college student, general population); and so on. Table B. 4 in Online Appendix lists variables coded in the study. Some studies implemented the CTB protocol with some treatment variations, such as hunger, cognitive resource depletion, financial education intervention, time pressure, and so on (Table B. 3 in Online Appendix). We coded a dummy variable for treatment. We call a study "neutral" if there is no treatment variation (there is a single data set of experimental condition).

3 Features of Studies and Experimental Designs

We identified 67 articles that conducted experiments or surveys that used the CTB protocol or a modification, where 36 of them are published (or "in press") including nine articles published in one of the "Top 5" journals (as of December 31, 2018). There are 41 articles that report structurally estimated QHD parameters either at the aggregate level or at the individual level. The median number of estimates reported in an article is three. Seven studies reported more than 10 estimates, and two of them reported more than 30 (Table B. 1 in Online Appendix).

Observable features of experimental design do not exhibit marked difference between studies with parameter estimates and those without (Tables 1 and 2; Figure C. 6 in Online Appendix).

Roughly half of the studies report laboratory experiments. Online experiments constitute

[^4]TABLE 1: Characteristics of CTB studies in the dataset.

	All CTB studies		Studies with estimates	
	Frequency	Proportion (\%)	Frequency	Proportion (\%)
Total number of studies	67	100.0	36	100.0
Content of study				
Report PB parameter estimates	36	53.7		
Publication Status (as of 12/31/2018)				
Published	36	53.7	17	47.2
Published in "Top 5" journal	9	13.4	3	8.3
Type of study				
Lab experiment	29	43.3	15	41.7
Field experiment	27	40.3	14	38.9
Online experiment	10	14.9	6	16.7
Classroom	1	1.5	1	2.8
Geographic location				
Continent: North America	22	32.8	13	36.1
Continent: Europe	13	19.4	8	22.2
Continent: Asia	17	25.4	9	25.0
Continent: Africa	11	16.4	5	13.9
Continent: Oceania	2	3.0	0	0.0
Continent: South America	2	3.0	1	2.8
Reporting of PB parameter estimates				
Aggregate-level estimates			31	86.1
with standard errors			28	77.8
Individual-level estimates			10	27.8

Note: "Top 5 fournal" indicates that the paper is published (or "in press") in one of the following journals: American Economic Review; Econometrica; Journal of Political Economy; Quarterly fournal of Economics; Review of Economic Studies. Reporting of parameter estimates: A paper is counted as reporting a particular type of estimate if it reports at least one specification reporting the given type of estimate. Five additional studies reported estimates of EDU parameters, not QHD (i.e., no PB parameter in the model).
fewer than 20% of the studies in the dataset. Only one experiment which studied choices made by children in a classroom. Studies were conducted in 29 different countries as shown in Figure C.5,

TABLE 2: Characteristics of CTB studies in the dataset.

	All CTB studies		Studies with estimates	
	Frequency	Proportion (\%)	Frequency	Proportion (\%)
Total number of studies	67		36	
Subject population				
Kids and teens	7	10.4	1	2.8
Univ. students	28	41.8	15	41.7
General pop.	32	47.8	20	55.6
Reward type				
Real incentive	65	97.0	34	94.4
Certain	63	94.0	36	100.0
Gains	59	88.1	29	80.6
Money	53	79.1	29	80.6
Effort	9	13.4	8	22.2
Reward delivery				
Bank transfer	19	28.4	11	30.6
Pickup	5	7.5	3	8.3
Check	10	14.9	6	16.7
Cash	8	11.9	7	19.4
Paypal	2	3.0	2	5.6
CTB implementation				
Corner allowed	58	86.6	30	83.3
Computer	28	41.8	19	52.8
Deal with confounding factors				
Uncertainty of future payment	46	68.7	23	63.9
Equalize transaction cost	52	77.6	28	77.8

Note: A paper is counted as offering a certain type of reward if it offers the reward to at least one of the samples the study analyzes.
although a third of studies analyzed data from the USA. ${ }^{8}$

[^5]Most of the studies recruited participants from the population of college/university students, or a general population including retirees. It is important to note that several studies in our sample estimated QHD parameters using non-monetary rewards (more precisely, using the cost of working on tedious real-effort tasks) following Augenblick et al. (2015) (and see Brown et al. (2009) for earlier results with liquid primary reinforcers, not using CTB). Studies which used monetary reward differed in how future payments were made: some used bank transfer or sent checks to the subjects, but in some other experiments subjects came back to the laboratory to pick up the payments.

These observable study characteristics exhibit some patterns of co-occurrence (Figures C.7C. 9 in Online Appendix). For example, laboratory experiments tended to have student subjects while field studies are more likely to recruit from the general population.

Experimental elicitation of time preferences requires researchers to design experiments so that the effects of potential confounding factors are minimized. As discussed in the literature, two notable examples of potential confounding factors are the uncertainty or distrust of future payment and the differences in transaction costs between receiving outcomes at earlier and later dates (e.g., Cohen et al., forthcoming; Ericson and Laibson, 2019). ${ }^{9}$ Andreoni and Sprenger (2012) dealt with these issues using the following strategies: (i) they gave the experimental participants the business cards of the researcher (and told them to reach out if they did not receive the payment) to increase trust; and (ii) they split the participation fee into two parts, one delivered together with the "sooner payment" and the other delivered with the "later payment," to reduce the difference in transaction costs of receiving rewards at two different points in time. Many of the later studies in our sample also followed these strategies.

Let us now turn to the detail of the CTB protocol. There are several variables which researchers can specify: number of budgets (i.e., questions); set of time frames (pairs (t, k) of "sooner" payment date t and delay length k); gross interest rates over k periods; and so on. Table 3 summarizes the ranges and central tendencies of these design variables.

On average, researchers asked 22 questions to recover QHD parameters. Subjects made allocation decisions on four different (t, k) pairs on average, implying that each time frame was associated on average with five levels of gross interest rates over k periods. The length of delay

Africa; Spain; Taiwan; Thailand; Turkey; Uganda; UK; USA; Vietnam.
${ }^{9}$ Our view is that both uncertainty about payment and transaction costs are minor factors which many previous experiments have controlled effectively, in the sense that they do not change estimates of $P B$ by numerical amounts which would give one pause in deciding whether PB should be investigated in applications. See Halevy (2014) for similar skepticism.

Table 3: Characteristics of budgets and time frames.

	All CTB studies (60)				Studies with estimates (38)			
	Mean	Median	Min	Max	Mean	Median	Min	Max
Number of budget sets	17.69	14.50	1.00	55	21.88	20.00	4.00	55
Number of time frames	3.18	2.00	1.00	10	3.78	3.00	1.00	10
Minimum delay length (days)	34.89	28.00	1.00	365	40.88	30.00	1.00	365
Maximum delay length (days)	166.40	32.50	1.00	7,300	236.85	56.00	1.00	7,300
Mean delay length (days)	90.72	30.00	1.00	3,285	123.95	42.00	1.00	3,285

between the "sooner" payment and the "later" payment varied substantially across studies. On average, the minimum waiting period is a little over one month and the maximum waiting period is six to eight months.

Finally, we look at the assumptions and econometric approaches employed to structurally estimate QHD parameters (Table 4). There are 227 estimates in the dataset, and a significant majority assume a constant relative risk aversion (CRRA) specification for the instantaneous utility function u in the model (1). The typical specification for studies using real-effort tasks is a convex effort cost function. There are five observations where the utility curvature was either fixed at some exogenous value or imputed from an additional elicitation task such as a multiple price list (Holt and Laury, 2002).

The popular econometric approach is (two-limit) Tobit regression, since researchers need to handle censoring due to corner choices. See Andreoni and Sprenger (2012) and Augenblick et al. (2015) for a detailed explanation of identification and estimation using nonlinear least squares (NLS) and Tobit approaches.

4 Results

Aggregate-level estimates of the present-bias parameter from each article in the dataset are shown in Figure 3A. About 77% of these estimates are below one, indicating present bias. It is clear from the figure that these estimates vary not only between studies but also within each study. We have 220 aggregate-level estimates with standard errors (Table 4). In this section, we first calculate the "average" present bias parameter using the standard meta-analytic technique. We next investigate the existence or absence of selective reporting. Finally, we investigate the heterogene-

Table 4: Characteristics of aggregate-level $P B$ estimates.

	Frequency	Proportion (\%)
Number of estimates	227	
SE reported	220	96.9
Instantaneous utility function u		
\quad Estimated	222	97.8
Imputed	2	0.9
Fixed	3	1.3
Specification of u		
Constant relative risk aversion (CRRA)	183	80.6
Constant absolute risk aversion (CARA)	15	6.6
Other	6	2.6
Convex effort cost	22	9.7
Estimation method		
OLS + NLS	62	27.3
Tobit	107	47.1
Multinomial logit + maximum likelihood	25	11.0
Background consumption		
Fixed at zero	134	59.0
Fixed at non-zero value	70	30.8
Estimated	23	10.1

ity of observed estimates using the moderator variables coded in our dataset.

4.1 Meta-Analytic Synthesis of Present Bias Estimates

We start by providing a meta-analytic estimation of the "average" PB in the dataset. The analysis below provides a tentative answer to the question: What is the average value of $P B$?

In a simple meta-analytic framework, the common-effect model is

$$
\begin{equation*}
P B_{j}=P B_{0}+\varepsilon_{j}, \tag{2}
\end{equation*}
$$

where $P B_{j}$ is the j th estimate of present-bias in the dataset $(j=1, \ldots, m), P B_{0}$ is the "true" presentbias parameter that is assumed to be common to all observations in the data, and ε_{j} is the sampling

Figure 3: Present bias parameter estimates. The vertical dotted line indicates no present/future bias.
error. It is assumed that $\varepsilon_{j} \sim \mathcal{N}\left(0, v_{j}^{2}\right)$ and the sampling variance v_{j}^{2} is known. We can obtain the common-effect estimate of $P B_{0}$ as the weighted average of individual estimates:

$$
\overline{P B}_{0}=\frac{\sum_{j=1}^{m} w_{j} P B_{j}}{\sum_{j=1}^{m} w_{j}}
$$

where the weights are given by the inverse variance, $w_{j}=1 / v_{j}^{2}$. In this average, estimates with higher precision (smaller standard errors) are given larger weights. If we assume that the sampling variance is known only up to some unknown multiplicative constant (i.e., $v_{j}^{2}=\phi \tilde{v}_{j}^{2}$ for some $\phi>0$), equation (2) becomes the unrestricted weighted least squares model (UWLS; Stanley and

Doucouliagos, 2015). ${ }^{10}$
In the random-effects meta-analysis (DerSimonian and Laird, 1986), we assume that

$$
\begin{equation*}
P B_{j}=\mu_{j}+\varepsilon_{j}=P B_{0}+\xi_{j}+\varepsilon_{j}, \tag{3}
\end{equation*}
$$

where ε_{j} is a sampling error of $P B_{j}$ as an estimate of μ_{j}, and the estimate-specific "true" effect μ_{j} is decomposed into $P B_{0}$ (grand mean) and the sampling error ξ_{j}. It is further assumed that $\xi_{j} \sim \mathcal{N}\left(0, \tau^{2}\right)$, where τ^{2} is the observation-specific heterogeneity that must be estimated. Note that the random-effects model (3) reduces to the common-effect model (2) when $\tau^{2}=0$. Stanley (2008) shows, using simulations, that the common-effect approach is less biased in the presence of selective reporting. The random-effects estimates are presented in Online Appendix C.4.

Note that our dataset includes statistically dependent estimates of $P B$ since many studies included in our meta-analysis report multiple estimates from the same experiment (e.g., using different econometric approaches or using different subsamples). In order to account for the dependency, we use cluster-robust variance estimation to account for correlation of estimates among each study (Hedges et al., 2010).

We also address the issue of "overly influential" observations (i.e., leverage points) by calculating DFBETAS (Belsley et al., 1980), which measures how much the regression coefficient changes if one observation is removed, standardized by the coefficient standard error from the regression without the target observation. Following Bollen and Jackman (1985), we identify any observations to be influential if \mid DFBETAS $\mid>1$ (i.e., the observation shifts the coefficient at least one standard error). ${ }^{11}$ This procedure identifies three influential observations in our data: one estimate from Barcellos and Carvalho (2014) and two estimates from Liu et al. (2014). We remove these three estimates from our simple meta-analysis presented in this subsection. ${ }^{12}$

We estimate the meta-analytic averages for four different subsets of the data: (i) all estimates, (ii) observations from studies using monetary reward, (iii) observations from "neutral" studies using monetary reward, and (iv) observations from studies using the real-effort version of the CTB.

[^6]TABLE 5: Meta-analytic average of present bias parameter.

	All studies		Monetary (all)		Monetary ("neutral")		Effort cost	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\overline{P B}_{0}$	$\begin{gathered} 0.9941 \\ (0.0020) \end{gathered}$	$\begin{gathered} 0.9518 \\ (0.0149) \end{gathered}$	$\begin{gathered} 0.9943 \\ (0.0020) \end{gathered}$	$\begin{gathered} 0.9758 \\ (0.0154) \end{gathered}$	$\begin{gathered} 0.9964 \\ (0.0036) \end{gathered}$	$\begin{gathered} 0.9766 \\ (0.0161) \end{gathered}$	$\begin{gathered} 0.9072 \\ (0.0242) \end{gathered}$	$\begin{gathered} 0.8802 \\ (0.0208) \end{gathered}$
p-value	0.0069	0.0031	0.0107	0.1334	0.3317	0.1640	0.0050	0.0004
Model	UWLS	Multi-level	UWLS	Multi-level	UWLS	Multi-level	UWLS	Multi-level
Observations	217	217	193	193	140	140	24	24
Studies	29	29	20	20	19	19	9	9

Note: p-values are from the two-sided test of the null hypothesis $H_{0}: P B=1$. Standard errors in parentheses are cluster-robust (Hedges et al., 2010). Three observations with large influence measure (|DFBETAS|>1) are excluded.

Table 5 reports the first set of results (odd-numbered columns; also presented in Figure 3B). All specifications show $\overline{P B}_{0}<1$, indicating present bias, and the null hypothesis of no present bias (i.e., $H_{0}: P B=1$) is rejected at the conventional level of $p=0.05$ in all but one subset of the data. The overall $\overline{P B}_{0}$ is 0.99 , which is significantly different from one at the 1% significance level. The only estimate which is not significantly different from one (at the 5% level) comes from the subset of observations from CTB studies using monetary reward without any treatment variations. We observe smaller average $\overline{P B}_{0}$ in the real-effort version of CTB studies compared to the CTB studies using monetary reward.

As an alternative approach to handle dependent $P B$ estimates, we also apply multi-level metaanalysis (Konstantopoulos, 2011; Van den Noortgate et al., 2013). ${ }^{13}$ Let $P B_{i j}$ denote the j th estimate of $P B$ parameter from study i. The first level is $P B_{i j}=\mu_{i j}+\varepsilon_{i j}$, where $\mu_{i j}$ is the "true" present-bias parameter and $\varepsilon_{i j} \sim \mathcal{N}\left(0, v_{i j}^{2}\right)$ for the j th estimate in study i. The second level is $\mu_{i j}=\lambda_{i}+\xi_{i j}^{(2)}$, where λ_{i} is the average present-biasedness in study i and $\xi_{i j}^{(2)} \sim \mathcal{N}\left(0, \tau_{(2)}^{2}\right)$. Finally, the third level is $\lambda_{i}=P B_{0}+\xi_{i}^{(3)}$, where $P B_{0}$ is the population average of $P B$ and $\xi_{i}^{(3)} \sim \mathcal{N}\left(0, \tau_{(3)}^{2}\right)$. These equations are combined into a single model:

$$
P B_{i j}=P B_{0}+\xi_{i j}^{(2)}+\xi_{i}^{(3)}+\varepsilon_{i j} .
$$

[^7]A small value of $\tau_{(2)}^{2}$ indicates that the estimates are similar at the study level (i.e., there is little within-study variation of different estimates). A large $\tau_{(3)}^{2}$ suggests that the "true" present-bias parameter varies a lot across studies. Under the typical assumption of $\operatorname{Cov}\left(\tau_{(2)}^{2}, \tau_{(3)}^{2}\right)=\operatorname{Cov}\left(\tau_{(2)}^{2}, \varepsilon_{i j}\right)=$ $\operatorname{Cov}\left(\tau_{(3)}^{2}, \varepsilon_{i j}\right)=0$, we have $\mathrm{E}\left[P B_{i j}\right]=P B_{0}$.

In this multi-level specification, we find $\overline{P B}_{0}$'s that are smaller than the corresponding estimates from UWLS approach (Table 5). The overall $\overline{P B}_{0}$ in the literature is about 0.95 (see column (2) of Table 5). The value 0.95 is therefore the tentative best guess of the overall value of $P B_{0}$. However, previewing results below, it also appears that $\overline{P B}_{0}$ is close to one for choices over money, and is smaller, around $0.88-0.91, \overline{P B}_{0}$ for choices over effort (see columns (7) and (8) of Table 5).

4.2 Identifying and Correcting for Selective Reporting

This section provides a tentative answer to our second question: Is there selective reporting or publication bias?

Scientific cumulation of knowledge is thrown off track and slowed down by selective reporting or publication of results. The typical concern is when the sign or magnitude of a statistical relationship is strongly predicted by theory, or becomes conventionally believed after preliminary studies. Then new studies which derive an unpredicted or unconventional result may be underpublished. We will refer to this misproduction of results as "publication bias". There are several possible sources of publication bias. One is conscious fraud. Another is " p-hacking", in which multiple analyses are run to get the expected effect (without accounting for multiple comparisons during the specification search). A third sources is that scientists who discover a genuine contradictory effect (and do not p-hack their way out of it) may simply not report results in any form, such as a conference presentation or preprint; the contradictory effect ends up in a "file drawer". A fourth source is that even if scientists attempt to publish contradictory effects, journals may implicitly screen them out or encourage, in the review process, p-hacking.

For a single study it is very difficult to detect any of these kinds of publication bias (except clumsy frauds). However, in a group of related studies there are ways to detect possible collective publication bias.

The QHD model emerged to explain observed patterns of present-biased choices, including procrastination and challenges self-control. Publication bias would therefore seem most likely to exaggerate the number of studies estimating the present bias parameter to be significantly below one, since an estimate of the present bias parameter below one is consistent with preferences than could generate the observed pattern of present-biased choices that the QHD model is trying
to capture.
The funnel plot provides a useful first step for detecting selective reporting (and counterfactually correcting for it). Selective reporting will lead to "missing studies" which create an asymmetry in the funnel plot. Figure 1 presents suggestive evidence of selective reporting-there is a slight asymmetry even though the magnitude may not be huge (see also Online Appendix Figures C. 3 and C.4, which present funnel plots for monetary-CTB and effort-CTB separately).

A common procedure for detecting and correcting for publication selection bias is the FAT-PET-PEESE procedure (Stanley and Doucouliagos, 2012, 2014). ${ }^{14}$ In the absence of selective reporting, the reported estimates of the present-bias parameter should be uncorrelated with their standard errors. In the presence of selective reporting, on the other hand, the reported estimates are correlated with their standard errors (more imprecise estimates in the unconventional direction will go unreported). This motivates a simple regression model for detection of selective reporting:

$$
\begin{equation*}
P B_{i j}=\alpha_{0}+\alpha_{1} \cdot S E_{i j}+\varepsilon_{i j}, \tag{4}
\end{equation*}
$$

where $P B_{i j}$ and $S E_{i j}$ are again the j th estimates of the present-bias parameter and their associated standard errors reported in the i th study. In this model, $\alpha_{1} \neq 0$ captures the degree of selective reporting bias. The estimate of α_{0} naturally serves as an estimate of the selection-corrected effect size (since it corresponds to an extrapolated effect size with zero standard error and hence perfect precision). Note that the variance of $\varepsilon_{i j}$ in this regression will vary across estimates. Therefore, it is often suggested to use weighted least squares (WLS) with the inverse of the variance of the study's estimate ($1 / S E_{i j}^{2}$) as the weight (Stanley and Doucouliagos, 2012). This model allows us to test the asymmetry of the funnel plot (FAT; Egger et al., 1997; Stanley, 2005, 2008) as well as whether there is a genuine effect beyond publication selection (PET). See Stanley and Doucouliagos (2012) and Stanley (2017) for discussion (especially on the limitations of these approaches).

Table 6 reports results from estimation of model (4) using the unrestricted weighted least squares. We again exclude three overly influential observations identified above. The estimated values of α_{1} are negative, indicating that less precise (i.e., larger $S E$) studies do yield lower estimates of $P B$ (i.e., more present-biased). However, we do not reject the null hypothesis that the coefficient on $S E$ is zero. The intercept α_{0} represents an estimate of "true" underlying $P B$ that has been corrected for selective reporting. The results indicate that the bias-corrected estimate of $P B$ is statistically indistinguishable from 1 , due to strong relationship between reported $P B$ estimates

[^8]Table 6: Funnel plot asymmetry and precision effect testing.

		All studies		Monetary (all)		Monetary ("neutral")		Effort cost	
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$S E$ of PB estimate	α_{1}	$\begin{aligned} & -1.4498 \\ & (0.6187) \end{aligned}$	$\begin{gathered} -0.3679 \\ (0.3329) \end{gathered}$	$\begin{gathered} -1.3185 \\ (0.7260) \end{gathered}$	$\begin{gathered} -0.2480 \\ (0.3410) \end{gathered}$	$\begin{gathered} -1.6776 \\ (1.0459) \end{gathered}$	$\begin{gathered} -0.1872 \\ (0.3917) \end{gathered}$	$\begin{gathered} -2.0571 \\ (0.4412) \end{gathered}$	$\begin{gathered} -1.8720 \\ (0.1093) \end{gathered}$
Constant	α_{0}	$\begin{gathered} 1.0002 \\ (0.0032) \end{gathered}$		$\begin{gathered} 0.9998 \\ (0.0032) \end{gathered}$		$\begin{gathered} 1.0077 \\ (0.0056) \end{gathered}$		$\begin{gathered} 0.9931 \\ (0.0255) \end{gathered}$	
FAT ($H_{0}: \alpha_{1}=0$)	p-value	0.0265	0.2785	0.0852	0.4759	0.1261	0.6385	0.0016	0.0000
$\operatorname{PET}\left(H_{0}: \alpha_{0}=1\right)$	p-value	0.9475		0.9393		0.1831		0.7931	
Study fixed effect		No	Yes	No	Yes	No	Yes	No	Yes
Observations		217	217	193	193	140	140	24	24
Number of studies		29	29	20	20	19	19	9	9
R^{2}		0.1823	0.8429	0.1400	0.8377	0.1777	0.9055	0.5100	0.9503
Adjusted R^{2}		0.1785	0.8186	0.1355	0.8189	0.1717	0.8906	0.4877	0.9183
Other bias-correction methods									
Latent-studies method	$\overline{P B}_{0}$	$\begin{gathered} 0.974 \\ (0.040) \end{gathered}$		$\begin{gathered} 0.987 \\ (0.051) \end{gathered}$		$\begin{gathered} 0.939 \\ (0.064) \end{gathered}$		$\begin{gathered} 0.904 \\ (0.016) \end{gathered}$	
Stem-based method	$\overline{P B}_{0}$	$\begin{gathered} 0.9910 \\ (0.0029) \end{gathered}$		$\begin{gathered} 0.9910 \\ (0.0029) \end{gathered}$		$\begin{gathered} 0.9992 \\ (0.0036) \end{gathered}$		$\begin{gathered} 0.9266 \\ (0.0253) \end{gathered}$	

Note: Estimated by weighted least squares. Standard errors are clustered at the study level. Three observations with large influence measure $(|D F B E T A S|>1)$ are excluded. In the specification with study fixed effects, the constant term is dropped and all the dummy variables for the studies are included. Details of the latent-studies method and the stem-based method are presented in Online Appendices C. 7 and C.8, respectively.
and their standard errors. ${ }^{15}$
It has been argued that the performance of commonly used bias-correction methods such as the FAT-PET procedure depends on the nature of the data, and no single method dominates the other in all circumstances (Alinaghi and Reed, 2018; Carter et al., 2019; Hong and Reed, 2019). Therefore, we also report results from other bias-correction methods recently introduced in the literature.

We first apply the latent studies method for identification and correction for publication bias proposed by Andrews and Kasy (2019), discussed in detail in Online Appendix C.7. These results are shown in Tables 6 and C.8. None of the relative publication probabilities for estimates with

[^9]different z-values are significantly different from one. Since there does not appear to be substantial publication selection, the adjusted study estimates from the latent studies model are very similar to the original study estimates (shown in Figure C. 28 of the Online Appendix).

Finally, we apply the stem-based bias correction method developed by Furukawa (2019) (adapting Stanley et al., 2010), which is discussed in more detail in Online Appendix C.8. Intuitively, this method provides a weighted average of the estimates from an optimally chosen subset of the most precise studies. The results show insignificant aggregate evidence for present bias across the most precise studies. However, when only studies in which subjects make decisions over allocations of effort are included, we find significant levels of present bias, as shown in Figure C.29.

Taken together, we view our results as demonstrating that there is evidence of modest selective reporting in the direction of overreporting $P B<1$, which manifests in the asymmetry of funnel plots. This bias also appears stronger for studies using a real-effort task. Correcting for selective reporting gives values of $P B$ that are still close to one for money and lower, 0.90-0.93, for effort.

4.3 Explaining Heterogeneity

We have thus far assumed that the variability in reported estimates are mainly due to sampling errors, either at the observation level or study level, or both, and a modest amount of selective reporting. However, these estimates come from studies that use a variety of experimental designs, participants, and econometric approaches, which may result in systematic variation in reported estimates. Online Appendix Figures C.10-C. 20 visualize the effects of some representative study characteristics on reported estimates, looking at each characteristic in isolation.

In order to explain heterogeneity, we now add a set of moderator variables to model (4):

$$
\begin{equation*}
P B_{i j}=\alpha_{0}+\alpha_{1} \cdot S E_{i j}+\gamma \boldsymbol{X}_{i j}+\varepsilon_{i j}, \tag{5}
\end{equation*}
$$

where $\boldsymbol{X}_{i j}$ is a vector of observable characteristics of j th estimate from study i and γ is a coefficient vector.

Results from this meta-regression analysis report a tentative answer to the question: How does $P B$ vary reliably with methods, subject population, and other study characteristics?

In the first set of meta-regressions presented in Table 7, we restrict samples to those using monetary reward. We consider eight basic sets of moderators as $\boldsymbol{X}_{i j}$. These variables are categorized into: treatment dummy (omitted category is Neutral condition), location of the experiment (omitted category is Location: Lab), subject population (omitted category is Subject: Kids), timing of immediate reward payment (omitted category is by the end of the experiment), estimation
method (omitted category is Estimation: Least squares), treatment of background (b.g.) consumption (omitted category is Estimation: No b.g. consumption), and interface (omitted category is Computerized). ${ }^{16}$ We also include several additional variables which are specific to experiments involving monetary reward: method of reward delivery (omitted category is Delivery: Check) and treatment of confounding factors such as uncertainty regarding future reward and transaction costs (omitted category is Ignored in both variables). We estimate the model using the unrestricted weighted least squares (Stanley and Doucouliagos, 2017).

The effects of study characteristics on estimated $P B$ parameter exhibit interesting patterns. For example, regression coefficients reported in Table 7 suggest that: university students and the general population are less present-biased than children; field experiments tend to find less present-biased preferences compared to lab studies; dealing with uncertainty about future reward makes estimated $P B$ smaller; and dealing with transaction costs makes estimated $P B$ larger. However, these effects are sensitive to which other characteristics are simultaneously controlled for. We do not observe the effects of reward delivery method, and whether or not to jointly estimate background consumption has little impact on the estimates of $P B$.

Note that the timing of "immediate" payment appears to matter as discussed in the literature. Compared to studies which guaranteed to deliver the "immediate" rewards within the day of the experiment, estimated $P B$ is smaller (more present-biased) when these "immediate" rewards were delivered by the end of experiment.

Comparing monetary and non-monetary rewards. Models of intertemporal choices are fundamentally about utility flow at each time period and not about the receipt of monetary payments. A large share of existing empirical studies has measured time preferences using time-dated monetary payments, but additional assumptions (such as monetary payments are "consumed" at the time of receipt) are necessary to infer individuals' discount functions from observed choices in this approach. More recent studies try to directly control the timing of utility flow using, for example, real-effort tasks (e.g., Augenblick et al., 2015; Augenblick, 2018; Augenblick and Rabin, 2019; Carvalho et al., 2016), and report evidence that non-monetary rewards provide estimates of present bias parameter that are smaller than those from the standard monetary reward studies.

Building on this discussion, our next set of meta-regressions compares $P B$ estimates from

[^10]Table 7: Explaining the heterogeneity of reported estimates (monetary reward).

	(1)	(2)	(3)	(4)	(5)	(6)
$S E$ of PB estimate	-0.915	-1.141^{*}	-1.327*	$-1.248^{* *}$	-1.951**	-1.711*
	(0.471)	(0.526)	(0.525)	(0.454)	(0.636)	(0.668)
Non-neutral condition	-0.008	-0.008	-0.015	-0.006	-0.003	-0.006
	(0.006)	(0.006)	(0.009)	(0.005)	(0.005)	(0.007)
Subject: University students	-0.003	-0.006	0.023			
	(0.008)	(0.008)	(0.023)			
Subject: General population	-0.010	-0.019	0.015			
	(0.010)	(0.013)	(0.029)			
Location: Field				$0.066^{* *}$	$0.071^{* *}$	$0.090^{* * *}$
				(0.025)	(0.022)	(0.025)
Location: Class				0.011	0.022	0.029*
				(0.013)	(0.013)	(0.014)
Location: Online				-0.010	-0.031^{*}	-0.026
				(0.005)	(0.014)	(0.016)
"Immediate" pay: Within day	0.033	0.030*	0.030*	$0.048^{* *}$	0.050 ***	$0.051^{* * *}$
	(0.018)	(0.015)	(0.012)	(0.017)	(0.012)	(0.014)
"Immediate" pay: Not reported	-0.015	-0.011	0.014	-0.066	-0.060	0.046
	(0.056)	(0.053)	(0.067)	(0.056)	(0.051)	(0.065)
Delivery: Cash	0.018	0.011	0.012	0.029	0.017	0.024
	(0.018)	(0.016)	(0.017)	(0.021)	(0.018)	(0.018)
Delivery: Bank	-0.006	-0.007	-0.009	-0.004^{*}	-0.003	-0.006
	(0.004)	(0.006)	(0.008)	(0.002)	(0.004)	(0.005)
Delivery: Other	-0.008	-0.007	-0.010^{*}	-0.008	-0.008^{*}	$-0.011^{* *}$
	(0.006)	(0.007)	(0.005)	(0.004)	(0.004)	(0.003)
Estimation: Tobit		0.005	0.013*		0.018*	0.016
		(0.005)	(0.006)		(0.009)	(0.009)
Estimation: Other		0.004	0.006		-0.002	-0.001
		(0.007)	(0.006)		(0.006)	(0.006)
Estimation: B.g. consumption		-0.005	0.002		-0.001	-0.001
		(0.006)	(0.006)		(0.006)	(0.007)
Deal uncertainty			$-0.015^{* *}$			-0.005
			(0.006)			(0.004)
Deal transaction cost			0.053			0.111**
			(0.041)			(0.038)
Paper and pencil			0.021			-0.017
			(0.025)			(0.013)
Constant	$0.981^{* * *}$	$0.989^{* * *}$	$0.916^{* * *}$	$0.963^{* * *}$	$0.963^{* * *}$	$0.854^{* * *}$
	(0.020)	(0.019)	(0.075)	(0.017)	(0.014)	(0.052)
Observations	193	193	193	193	193	193
R^{2}	0.372	0.384	0.442	0.457	0.500	0.523
Adjusted R^{2}	0.341	0.343	0.394	0.427	0.464	0.480

Note: Observations with large influence measure (\mid DFBETAS $\mid>1$) are excluded. Study fixed effects are not included in the model. Standard errors are clustered at the study level. ${ }^{*} p<0.05 ;{ }^{* *} p<0.01 ;{ }^{* * *} p<0.001$.
studies with monetary and non-monetary rewards, correcting for selective reporting and several study characteristics, to see whether the apparnet difference in present bias is evident from CTB alone. We set up a general regression model

$$
\begin{equation*}
P B_{i j}=\alpha_{0}+\alpha_{1} \cdot S E_{i j}+\alpha_{2} \cdot S E_{i j}^{2}+\gamma \boldsymbol{X}_{i j}+\boldsymbol{\lambda}_{1}\left(S E_{i j} \cdot \boldsymbol{Z}_{i j}\right)+\boldsymbol{\lambda}_{2}\left(S E_{i j}^{2} \cdot \boldsymbol{Z}_{i j}\right)+\varepsilon_{i j}, \tag{6}
\end{equation*}
$$

which extends equation (5) to allow for any factors that can potentially influence selective reporting (captured by $S E_{i j} \cdot \boldsymbol{Z}_{i j}$ and $S E_{i j}^{2} \cdot \boldsymbol{Z}_{i j}$). We include a dummy for monetary studies and its interaction with several study characteristics, so that the constant term $\left(\alpha_{0}\right)$ captures the average $P B$ estimate from non-monetary studies.

Table 8 reports the results. The main variable of interest is the coefficient on the dummy $R e$ ward: Money, which captures the difference between the average $P B$ from non-monetary studies and that from the "baseline" monetary studies. The definition of "baseline" studies is: "monetary studies, neutral condition" in the odd columns; and "monetary studies, neutral condition, lab, immediate rewards delivered within the day, estimation with NLS" in the even columns.

As discussed in the literature, studies using non-monetary rewards estimate present-bias parameters that are generally smaller than those from the standard monetary reward studies, regardless of the definition of the baseline in monetary studies (columns (1)-(2)). The other specifications include either $S E$ or $S E^{2}$, as well as its interaction with Reward: Money. The estimated coefficients on Reward: Money are not statistically significant when $S E$ is included, but are significantly positive when $S E^{2}$ is used. These results suggest that the difference between average $P B$ from monetary and non-monetary studies shrinks when potential selective reporting is corrected for. However, the size of this difference $P B_{\text {money }}-P B_{\text {effort }}$ depends on the assumption imposed on the relationship between reported $P B$ and $S E$.

Discussion. The selection of variables and the order of inclusion in the first meta-regression analysis presented in Table 7 are based on prior discussion in the literature as well as co-occurence of study characteristics in the data (Figures C. 8 and C. 9 in Online Appendix), and thus made somewhat arbitrarily. Stanley and Doucouliagos (2012) recommend using a general-to-specific approach, also known as a backward stepwise model selection. It starts with including all explanatory variables, and the least statistically significant variable is removed from the model one at a time. This procedure continues until only statistically significant variables remain in the model.

We augment our meta-regression analysis with the application of Bayesian model averaging (BMA) to tackle the model uncertainty resulting from the large number of explanatory variables

TABLE 8: Explaining the heterogeneity of reported estimates (monetary vs. non-monetary rewards).

	(1)	(2)	(3)	(4)	(5)	(6)
Constant (PB from effort-CTB)	$\begin{aligned} & 0.907^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.907^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.993^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.993^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.932^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.932^{* * *} \\ & (0.024) \end{aligned}$
$S E$ of PB estimates			$\begin{gathered} -2.057^{* * *} \\ (0.414) \end{gathered}$	$\begin{aligned} & -2.057^{* * *} \\ & (0.414) \end{aligned}$		
$S E^{2}$ of PB estimates					$\begin{gathered} -10.918^{* * *} \\ (2.829) \end{gathered}$	$\begin{gathered} -10.918^{* * *} \\ (2.829) \end{gathered}$
Reward: Money	$\begin{aligned} & 0.089^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.093^{* * *} \\ & (0.023) \end{aligned}$	$\begin{gathered} 0.015 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.068^{* *} \\ (0.024) \end{gathered}$	$\begin{gathered} 0.069^{* *} \\ (0.024) \end{gathered}$
\times Non-neutral condition	$\begin{gathered} -0.003 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.012 \\ (0.007) \end{gathered}$	$\begin{gathered} -0.011^{* *} \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.007^{*} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.010 \\ (0.006) \end{gathered}$
\times Location: Field		$\begin{gathered} 0.057^{* *} \\ (0.021) \end{gathered}$		$\begin{aligned} & 0.071^{* * *} \\ & (0.018) \end{aligned}$		$\begin{gathered} 0.064^{* *} \\ (0.020) \end{gathered}$
\times Location: Class		$\begin{gathered} 0.026 \\ (0.017) \end{gathered}$		$\begin{aligned} & 0.037^{* * *} \\ & (0.011) \end{aligned}$		$\begin{gathered} 0.031^{*} \\ (0.015) \end{gathered}$
\times Location: Online		$\begin{gathered} 0.004 \\ (0.009) \end{gathered}$		$\begin{gathered} -0.026 \\ (0.014) \end{gathered}$		$\begin{gathered} -0.006 \\ (0.010) \end{gathered}$
\times "Immediate": By end of exp		$\begin{gathered} -0.039^{*} \\ (0.017) \end{gathered}$		$\begin{gathered} -0.042^{* * *} \\ (0.011) \end{gathered}$		$\begin{gathered} -0.041^{* *} \\ (0.015) \end{gathered}$
× "Immediate": Not reported		$\begin{gathered} -0.127^{*} \\ (0.060) \end{gathered}$		$\begin{gathered} -0.112^{*} \\ (0.051) \end{gathered}$		$\begin{gathered} -0.113^{*} \\ (0.052) \end{gathered}$
\times Estimation: Tobit		$\begin{gathered} 0.002 \\ (0.006) \end{gathered}$		$\begin{array}{r} 0.019^{*} \\ (0.009) \end{array}$		$\begin{gathered} 0.009 \\ (0.007) \end{gathered}$
\times Estimation: Other		$\begin{gathered} -0.005 \\ (0.005) \end{gathered}$		$\begin{gathered} -0.002 \\ (0.004) \end{gathered}$		$\begin{gathered} -0.004 \\ (0.004) \end{gathered}$
$\times S E$ of PB estimates			$\begin{gathered} 0.374 \\ (0.854) \end{gathered}$	$\begin{gathered} 0.065 \\ (0.708) \end{gathered}$		
$\times S E^{2}$ of PB estimates					$\begin{gathered} -36.379 \\ (22.497) \end{gathered}$	$\begin{gathered} -26.427^{*} \\ (13.157) \end{gathered}$
Observations	217	217	217	217	217	217
R^{2}	0.054	0.375	0.249	0.504	0.222	0.456
Adjusted R^{2}	0.045	0.348	0.235	0.478	0.207	0.427
$H_{0}: P B_{\text {effort }}=1$	$p=0.0004$		$p=0.7747$		$p=0.0078$	

Note: Observations with large influence measure $(|D F B E T A S|>1)$ are excluded. Study fixed effects are not included in the model. Standard errors are clustered at the study level. ${ }^{*} p<0.05 ;{ }^{* *} p<0.01$; ${ }^{* * *} p<0.001$.
we could have included in our meta-regression model (Hoeting et al., 1999; Moral-Benito, 2015; Steel, forthcoming). BMA runs multiple regressions with different subsets of the explanatory variables (models) and marginalizes over models to obtain the posterior density of the parameters. We provide a more detailed explanation in Online Appendix C.5. For applications of BMA in
meta-analysis in economics, see Havránek et al. $(2015,2017)$ and Iršová and Havránek (2013).
The results of our application of BMA are in line with those reported in Table 7. Figure 4 is representative of our results (the full set of results is provided in Section C. 5 of the Online Appendix). In this figure, columns denote individual models where variables are sorted by posterior model probability in a descending order. Blue cells (darker cells in grayscale) indicate that the variable is included in the model and has a positive coefficient, while red cells (lighter cells in grayscale) indicate that the variable has a negative coefficient. White cells indicate that the variable is not included in the model.

In meta-regression presented in Table 8, we do not include dummy variables for design characteristics in non-monetary studies. This is solely due to power issue- there are only 24 estimates from nine effort-CTB studies in our dataset. It is therefore important to revisit these meta-regression analyses after the literature accumulates more estimates from CTB studies using non-monetary rewards.

5 Conclusion

We present a quantitative meta-analysis of estimates of the present-bias parameter in the QHD model using choice data from CTB experiments. We collect 220 estimates from 28 articles and find that the meta-analytic average of the present-bias parameter is around 0.95 , which is significantly smaller than one, after taking the multi-level nature of the data into consideration. The values for monetary-reward studies are close to one, however, and effort-based studies have lower values, around 0.9-0.93.

We also find that estimates vary greatly across studies, primarily due to their different study characteristics. Our meta-regression analysis suggests that CTB experiments with non-monetary rewards indeed found estimates that are "more present biased" than those from CTB with typical monetary rewards, but the effect is weakened after correcting for potential selective reporting. Furthermore, we found evidence to confirm the suggestion by Ericson and Laibson (2019) regarding the importance of the delay until the issue of the reward associated with the "current" time period; across a range of specifications in both our meta-regression and Bayesian model averaging approach, studies that delivered rewards associated with the "current" period by the end of the experiment, as opposed to only by the end of the day, tended to yield lower estimates of the present bias parameter, indicating greater levels of present bias in the behavior of subjects.

In addition, we found suggestive evidence concerning the importance of a factor on estimates of present bias that has so far not been widely discussed, the location of the study-whether it

Figure 4: Model inclusion. Observations from monetary-CTB studies only. The top panel uses observations from both neutral and non-neutral conditions, while the bottom panel discards data from non-neutral conditions.
takes place in a laboratory or in the field. Both meta-regression and BMA suggest that subjects in laboratory experiments show larger present bias than subjects in field experiments.

Many studies follow Andreoni and Sprenger's (2012) original econometric strategy and report estimates using both NLS and Tobit (or estimates with and without background consumption). These methods ignited significant debate in the literature (see, for example, the discussion in Andreoni et al., 2015). However, our meta-analysis showed that the econometric strategy makes little difference.

Indeed, some design characteristics that have consumed a lot of professional attention do not appear to have effects on $P B$ that are robust across meta-regression specifications. These (tentative) non-effects suggest that it is not a good idea to constrain experimental practices to some kind of "ideal design"; instead, variations in design will enable updating of the meta-analytic database so we can learn more rapidly.

References

Abebe, G., S. Caria, and E. Ortiz-Ospina (2017): "The Selection of Talent: Experimental and Structural Evidence from Ethiopia," Unpublished manuscript.

Alinaghi, N. and W. R. Reed (2018): "Meta-Analysis and Publication Bias: How Well Does the FAT-PET-PEESE Procedure Work?" Research Synthesis Methods, 9, 285-311.

Andreoni, J., M. A. Kuhn, and C. Sprenger (2015): "Measuring Time Preferences: A Comparison of Experimental Methods," Journal of Economic Behavior \& Organization, 116, 451-464.

Andreoni, J. and C. Sprenger (2012): "Estimating Time Preferences from Convex Budgets," American Economic Review, 102, 3333-3356.

Andrews, I. and M. Kasy (2019): "Identification of and Correction for Publication Bias," American Economic Review, 109, 2766-2794.

Angeletos, G.-M., D. Laibson, A. Repetto, J. Tobacman, and S. Weinberg (2001): "The Hyperbolic Consumption Model: Calibration, Simulation, and Empirical Evaluation," Journal of Economic Perspectives, 15, 47-68.

Ashraf, N., D. Karlan, and W. Yin (2006): "Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines," Quarterly fournal of Economics, 121, 635-672.
Augenblick, N. (2018): "Short-Term Time Discounting of Unpleasant Tasks," Unpublished manuscript.

Augenblick, N., M. Niederle, and C. Sprenger (2015): "Working Over Time: Dynamic Inconsistency in Real Effort Tasks," Quarterly Journal of Economics, 130, 1067-1115.

Augenblick, N. and M. Rabin (2019): "An Experiment on Time Preference and Misprediction in Unpleasant Tasks," Review of Economic Studies, 86, 941-975.

Barcellos, S. H. and L. Carvalho (2014): "Information about Self-Control and Intertemporal Choices," Unpublished manuscript.

Belsley, D. A., E. Kuh, and R. E. Welsch (1980): Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Hoboken, NJ: Wiley.

Beshears, J., J. J. Choi, C. Clayton, C. Harris, D. Laibson, and B. C. Madrian (2017): "Optimal Illiquidity," Unpublished manuscript.

Beshears, J., J. J. Choi, C. Harris, D. Laibson, B. C. Madrian, and J. Sakong (2015): "Self Control and Commitment: Can Decreasing the Liquidity of a Savings Account Increase Deposits?" NBER Working Paper No. 21474.

Bisin, A. and K. Hyndman (2018): "Present-Bias, Procrastination and Deadlines in a Field Experiment," NBER Working Paper No. 19874.

Bollen, K. A. and R. W. Jackman (1985): "Regression Diagnostics: An Expository Treatment of Outliers and Influential Cases," Sociological Methods \& Research, 13, 510-542.

Brown, A. L., Z. E. Chua, and C. F. Camerer (2009): "Learning and Visceral Temptation in Dynamic Saving Experiments," Quarterly fournal of Economics, 124, 197-231.

Carter, E. C., F. D. Schönbrodt, W. M. Gervais, and J. Hilgard (2019): "Correcting for Bias in Psychology: A Comparison of Meta-Analytic Methods," Advances in Methods and Practices in Psychological Science, 2, 115-144.

Carvalho, L. S., S. Meier, and S. W. Wang (2016): "Poverty and Economic Decision-Making: Evidence from Changes in Financial Resources at Payday," American economic review, 106, 260284.

Cohen, J., K. Ericson, D. Laibson, and J. White (forthcoming): "Measuring Time Preferences," Journal of Economic Literature.

Cubitt, R. P. and D. Read (2007): "Can Intertemporal Choice Experiments Elicit Time Preferences for Consumption?" Experimental Economics, 10, 369-389.

DellaVigna, S. and U. Malmendier (2006): "Paying Not to Go to the Gym," American Economic Review, 96, 694-719.

DerSimonian, R. and N. Laird (1986): "Meta-Analysis in Clinical Trials," Controlled Clinical

Trials, 7, 177-188.
Egger, M., G. D. Smith, M. Schneider, and C. Minder (1997): "Bias in Meta-Analysis Detected by a Simple, Graphical Test," BMF, 315, 629-634.

Ericson, K. M. and D. Laibson (2019): "Intertemporal Choice," in Handbook of Behavioral Economics - Foundations and Applications, ed. by B. D. Bernheim, S. DellaVigna, and D. Laibson, Amsterdam: Elsevier/North-Holland, vol. 2, 1-67.

Fang, H. and Y. Wang (2015): "Estimating Dynamic Discrete Choice Models with Hyperbolic Discounting, with an Application to Mammography Decisions," International Economic Review, 56, 565-596.

Frederick, S., G. Loewenstein, and T. O’donoghue (2002): "Time Discounting and Time Preference: A Critical Review," Journal of Economic Literature, 40, 351-401.

Furukawa, C. (2019): "Publication Bias under Aggregation Frictions: Theory, Evidence, and a New Correction Method," Unpublished manuscript.

Glass, G. V. (1976): "Primary, Secondary, and Meta-Analysis of Research," Educational Researcher, 5, 3-8.

Gruber, J. and B. Kőszegi (2001): "Is addiction "rational"? Theory and evidence," Quarterly fournal of Economics, 116, 1261-1303.
Gurevitch, J., J. Koricheva, S. Nakagawa, and G. Stewart (2018): "Meta-Analysis and the Science of Research Synthesis," Nature, 555, 175-182.

Halevy, Y. (2014): "Some Comments on the Use of Monetary Rewards in the Measurement of Time Preferences," Unpublished manuscript.

Havránek, T., R. Horváth, Z. Iršová, and M. Rusnak (2015): "Cross-Country Heterogeneity in Intertemporal Substitution," Journal of International Economics, 96, 100-118.

Havránek, T., M. Rusnak, and A. Sokolova (2017): "Habit Formation in Consumption: A MetaAnalysis," European Economic Review, 95, 142-167.

Hedges, L. V., E. Tipton, and M. C. Johnson (2010): "Robust Variance Estimation in MetaRegression with Dependent Effect Size Estimates," Research Synthesis Methods, 1, 39-65.

Heidhues, P. and B. Kőszegi (2010): "Exploiting Naïvete about Self-Control in the Credit Market," American Economic Review, 100, 2279-2303.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky (1999): "Bayesian Model Averaging: A Tutorial," Statistical Science, 14, 382-401.

Holt, C. A. and S. K. Laury (2002): "Risk Aversion and Incentive Effects," American Economic

Review, 92, 1644-1655.
Hong, S. And W. R. Reed (2019): "A Performance Analysis of Some New Meta-Analysis Estimators Designed to Correct Publication Bias," Unpublished manuscript.
Iršová, Z. and T. Havránek (2013): "Determinants of Horizontal Spillovers from FDI: Evidence from a Large Meta-Analysis," World Development, 42, 1-15.

John, A. (forthcoming): "When Commitment Fails - Evidence from a Field Experiment,"Management Science.

Kaur, S., M. Kremer, and S. Mullainathan (2010): "Self-Control and the Development of Work Arrangements," American Economic Review: Papers \& Proceedings, 100, 624-28.
——— (2015): "Self-Control at Work," Journal of Political Economy, 123, 1227-1277.
Konstantopoulos, S. (2011): "Fixed Effects and Variance Components Estimation in Three-level Meta-Analysis," Research Synthesis Methods, 2, 61-76.

Koopmans, T. C. (1960): "Stationary Ordinal Utility and Impatience", Econometrica, 28, 287-309.
Laibson, D. (1997): "Golden Eggs and Hyperbolic Discounting," Quarterly fournal of Economics, 112, 443-478.

Liu, E. M., J. Meng, And J. T.-y. Wang (2014): "Confucianism and Preferences: Evidence from Lab Experiments in Taiwan and China," Journal of Economic Behavior \& Organization, 104, 106-122.

Meier, S. and C. Sprenger (2010): "Present-Biased Preferences and Credit Card Borrowing," American Economic fournal: Applied Economics, 2, 193-210.

Moral-Benito, E. (2015): "Model Averaging in Economics: An Overview," fournal of Economic Surveys, 29, 46-75.

O’Donoghue, T. and M. Rabin (1999): "Doing It Now or Later,"American Economic Review, 89, 103-124.
——— (2001): "Choice and Procrastination," Quarterly fournal of Economics, 116, 121-160.
——— (2015): "Present Bias: Lessons Learned and to be Learned" American Economic Review, 105, 273-279.

Phelps, E. S. and R. A. Pollak (1968): "On Second-Best National Saving and Game-Equilibrium Growth," Review of Economic Studies, 35, 185-199.

SAmuelson, P. A. (1937): "A Note on Measurement of Utility,"Review of Economic Studies, 4, 155-161.

Stanley, T. D. (2001): "Wheat from Chaff: Meta-analysis as Quantitative Literature Review,"

Fournal of Economic Perspectives, 15, 131-150.
--- (2005): "Beyond Publication Bias," Fournal of Economic Surveys, 19, 309-345.
--- (2008): "Meta-Regression Methods for Detecting and Estimating Empirical Effects in the Presence of Publication Selection," Oxford Bulletin of Economics and Statistics, 70, 103-127.
——— (2017): "Limitations of PET-PEESE and Other Meta-Analysis Methods," Social Psychological and Personality Science, 8, 581-591.

Stanley, T. D. and H. Doucouliagos (2012): Meta-Regression Analysis in Economics and Business, London: Routledge.
--- (2014): "Meta-Regression Approximations to Reduce Publication Selection Bias," Research Synthesis Methods, 5, 60-78.
--- (2015): "Neither Fixed nor Random: Weighted Least Squares Meta-Analysis," Statistics in Medicine, 34, 2116-2127.
--- (2017): "Neither Fixed nor Random: Weighted Least Squares Meta-Regression," Research Synthesis Methods, 8, 19-42.

Stanley, T. D., S. B. Jarrell, and H. Doucouliagos (2010): "Could It Be Better to Discard 90\% of the Data? A Statistical Paradox," The American Statistician, 64, 70-77.

Steel, M. F. J. (forthcoming): "Model Averaging and its Use in Economics," Journal of Economic Literature.

Van den Noortgate, W., J. A. López-López, F. Marín-Martínez, and J. Sánchez-Meca (2013): "Three-Level Meta-Analysis of Dependent Effect Sizes," Behavior Research Methods, 45, 576594.

Supplementary Online Material Meta-Analysis of Present-Bias Estimation using Convex Time Budgets

Taisuke Imai Tom A. Rutter Colin F. Camerer

Contents

A The Convex Time Budget Protocol 1
B Data 3
B. 1 Identification and Selection Procedure 3
B. 2 Summary of Included Papers 4
B. 3 Coded Variables 7
C Additional Results 13
C. 1 Funnel Plot 13
C. 2 Study and Design Characteristics 15
C. 3 Present Bias and Design Characteristics 20
C. 4 Meta-Regression Analysis 24
C. 5 Bayesian Model Averaging 30
C. 6 Cumulative Meta Analysis 35
C. 7 Latent Studies Model 38
C. 8 Stem-Based Bias Correction 42
C. $9 \quad P$-Values of $P B$ Estimates 45
D List of Articles Included in the Master Data 48

A The Convex Time Budget Protocol

Idea. Consider two time points t ("sooner") and $t+k$ ("later"). A linear budget set of allocations of monetary rewards to be received at those two times is a line connecting two points ($\bar{x}_{t}, 0$) and $\left(0, \bar{x}_{t+k}\right)$ on a two-dimensional plane. The first point corresponds to an agent receiving a certain amount \bar{x}_{t} of reward at time t and nothing at $t+k$. The second point corresponds to receiving a certain amount \bar{x}_{t+k} at time $t+k$ and nothing at t. Any points on the interior of a budget set represent allocations in which she receives positive rewards on both dates.

Figure A. 1 illustrates two such budgets and choices from those budgets, marked as B^{i} and x^{i}, $i=a, b$. The slopes of budget lines represent intertemporal tradeoffs between rewards at two time points (reflecting an implicit interest rate). This kind of budget-line figure appears in every microeconomics textbook, typically showing a budget line in two-good space and a family of continuous iso-utility indifference curves for bundles of goods in that space.

Figure A.1: An illustration of linear budget sets which ask allocations of monetary rewards to be received at dates t and $t+k$. A hypothetical subject chose allocation x^{a} from budget B^{a}, from which the subject receives positive amount on both dates t and $t+k$. On the other hand, the subject receives positive amount only on date $t+k$ (and nothing on date t) from allocation x^{b}.

In order to identify and estimate parameters of different kinds of time preferences, an experimenter needs to vary the time points $(t, t+k)$, the slopes of the budget lines, and the level of the budget lines. Each budget line can be expressed as a set of these numbers.

Implementation. There are two main approaches to implement the CTB protocol. In the first approach, subjects make allocation decisions. For example, in the original Andreoni and Sprenger (2012) experiment, subjects are endowed with 100 tokens which they allocate to "sooner" and
"later" tokens. Each account is associated with an exchange rate, which converts tokens into monetary amounts. When the exchange rates are $\left(e_{t}, e_{t+k}\right)$, allocating (a_{t}, a_{t+k}) tokens to two accounts implies monetary rewards of ($a_{t} \times e_{t}, a_{t+k} \times e_{t+k}$). The ratio of exchange rates e_{t+k} / e_{t} is the k-period gross interest rate. Many computerized experiments in the laboratory follow this approach. In the second approach, used first in Andreoni et al. (2015), subjects select a reward schedule $\left(x_{t}, x_{t+k}\right)$ from a set of options (typically less than 10) that are evenly spaced on the budget line.

Econometric Strategy. Consider quasi-hyperbolic discounting with a constant relative risk aversion (CRRA) utility function of the form:

$$
\begin{equation*}
U\left(x_{t}, x_{t+k}\right)=\frac{1}{\alpha}\left(x_{t}+\omega_{t}\right)^{\alpha}+\beta^{1\{t=0\}} \delta^{k} \frac{1}{\alpha}\left(x_{t+k}+\omega_{t+k}\right)^{\alpha}, \tag{A.1}
\end{equation*}
$$

where δ is the per-period discount factor, β is the present bias, α is the curvature parameter, and ω_{t} and ω_{t+k} are background consumption parameters. Maximizing (A.1) subject to an intertemporal budget constraint

$$
(1+r) x_{t}+x_{t+k}=I,
$$

where $1+r$ is the gross interest rate (over k days) and I is the budget, yields an intertemporal Euler equation

$$
\frac{x_{t}+\omega_{t}}{x_{t+k}+\omega_{t+k}}=\left(\beta^{1\{t=0\}} \delta^{k}(1+r)\right)^{\frac{1}{\alpha-1}}
$$

Andreoni and Sprenger (2012) propose two methods for estimating parameters (α, β, δ). The first one estimates the parameters in the log-linearized version of the Euler equation

$$
\begin{equation*}
\log \left(\frac{x_{t}+\omega_{t}}{x_{t+k}+\omega_{t+k}}\right)=\frac{\log \beta}{\alpha-1} \cdot \mathbf{1}\{t=0\}+\frac{\log \delta}{\alpha-1} \cdot k+\frac{1}{\alpha-1} \cdot \log (1+r) \tag{A.2}
\end{equation*}
$$

using two-limit Tobit regression in order to handle corner solutions under an additive error structure. The second one estimates the parameters in the optimal demand for sooner consumption

$$
\begin{align*}
& x_{t}=\left(\frac{1}{1+(1+r)\left(\beta^{1\{t=0\}} \delta^{k}(1+r)\right)^{1 /(\alpha-1)}}\right) \omega_{t} \tag{A.3}\\
& \quad+\left(\frac{\left(\beta^{1\{t=0\}} \delta^{k}(1+r)\right)^{1 /(\alpha-1)}}{1+(1+r)\left(\beta^{1\{t=0\}} \delta^{k}(1+r)\right)^{1 /(\alpha-1)}}\right)\left(I+\omega_{t+k}\right),
\end{align*}
$$

using Nonlinear Least Squares (NLS). In either case, parameters (α, β, δ) are recovered via a nonlinear combination of the estimated coefficients.

Econometric strategies used in effort CTB experiments follow a similar idea and are discussed in detail in Augenblick et al. (2015).

B Data

B. 1 Identification and Selection Procedure

Figure B.1: Types of $P B$ estimates in the dataset.

B. 2 Summary of Included Papers

TABLe B.1: List of articles using the CTB protocol (with QHD parameter estimates).

| \# | Article | Country | Location | Subject | Reward | Delivery | Interface | \# budgets | \# options |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | \# frame

Note: Sun and Potters (2016) varied the number of tokens (i.e., number of options; 101, 201, 301, 401, 801) to manipulate the magnitude.

TABLE B.2: List of articles using the CTB protocol (without QHD parameter estimates).

| \# | Article | Country | Location | Subject | Reward | Delivery | Interface | \# budgets | \# options |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | \# frame

TABLE B.3: List of articles with some treatment variations.

Study	Treatment dimension
Abebe et al. (2017)	Incentive size
Alan and Ertac (2017)	Degree of optimism
Alan and Ertac (2018)	Educational intervention
Andreoni et al. (2018)	Salience of arbitrage
Ashton (2015)	Fatigue and hunger
Atalay et al. (2014)	Availability of a prize-linked savings account
Aycinena and Rentschler (2018)	Payoff display
Balakrishnan et al. (2017)	"Immediate" reward delivery timing
Bartoš et al. (2018)	Poverty priming
Bulte et al. (2016)	Male partner invited to join the training or not
Carvalho et al. (2016a)	Payday timing
Carvalho et al. (2016b)	Bank account assignment
Chen et al. (forthcoming)	Hunger
Cheung (2015)	Probability of reward
Hoel et al. (2016)	Self-control fatigue
Hvide and Lee (2016)	Windfall or hard-earned money
Imai and Camerer (2018)	Budget set construction, fixed, random, or adaptive
Kuhn et al. (2017)	Cognitive resource depletion
Lindner and Rose (2017)	Time pressure
Liu et al. (2014)	Confucius priming
Lührmann et al. (2018)	Financial education
Penczynski and Santana (2016)	Future payment by microfinance or local money lender
Potters et al. (2016)	Stakes, time horizon, and frame
Yang and Carlsson (2016)	Separate or joint decision by couples

B. 3 Coded Variables

Table B.4: List of coded variables.

Variable	Description
Atricle meta data	
main.lastnames	Last names of the authors
main.firstnames	First names of the authors
main.title	Title of the paper
main.published	1 if published or "in press"; 0 if unpublished; 9 if "do not circulate"
main. yearpub	Year of publication
main.monthpub	Month of publication
main.journal	Journal
main.unpub.year	Year this version was written (for unpublished papers)
main.unpub.month	Month this version was written (for unpublished papers)
main.unpub.day	Day this version was written (for unpublished papers)
main.length	Number of pages (main content; excluding appendices)
main.length.appendix	Number of pages (online appendices)
main.affliations	Affiliations of the authors
main.fund	Funding sources
main.data.available	1 if data is publicly available
main.instructions	1 if instructions available
Additional info about published article	
pub.topfive	1 if published in Top 5 (AER, ECMA, $7 P E, Q 7 E$, REStud)
pub.firstyear	Year of the first draft (or the oldest version identified)
Treatment and sample	
treatment.neutral	1 if control / neutral treatment
treatment.nonneutral	1 if some treatment variation
treatment.dimension	Description of treatment
sample.all	1 if estimation is based on all sample
sample.sub	1 if estimation is based on subsample
sample.dimension	Description of subsample

Variable	Description
Location of the experiment	
location.lab	1 if laboratory experiment
location.field	1 if field experiment
location.amt	1 if Amazon Mechanical Turk
location.class	1 if classroom experiment
location.survey	1 if online survey
location.continent	Continent
location.country	Country
location.city	City
location.state	State
Method	
method.numbudget	Number of budget lines
method.numoption	Number of available options on each budget
method.corner	1 if corners of the budget are available
method.calendar	1 if calendar is presented
method.computer	1 if computer interface was used; 0 if paper and pencil
method.input	1 if subjects entered desired allocation
method.checkbox	1 if subjects marked/clicked an option
method.slider	1 if subjects made an allocation decision by a slider
method.physical	1 if subjects allocated physical objects (e.g. marbles)
method.timelimit	Time limit (in second) in each decision
Time frame and budgets	
ctb.time.unit	Time unit for (t, k)
ctb.sooner	Potential sooner payment dates
ctb.delay	Potential delay length
ctb.grossint	Gross interest rate over k periods
ctb.num.sooner	Number of potential sooner payment dates (t)
ctb.num.delay	Number of potential delay length (k)
ctb.num.frame	Number of time frames (i.e. (t, k) pairs)
ctb.num.slope	Number of budget slopes (gross interest rates over k periods)

Variable	Description
Reward	
reward.real	1 if real reward
reward.certain	1 if all payments are certain
reward.risky	1 if payment risk is introduced (not about "random incentive system")
reward.correlated.risk	1 if payment risk is realized in a single lottery
reward.money	1 if monetary reward
reward.food	1 if food reward
reward.effort	1 if effort cost
reward.other	1 if other type of reward
Delivery of future reward	
delivery.pickup	1 if subjects came back to the lab to pickup reward
delivery.cash	1 if payments were made by cash
delivery.check	1 if payments were made by checks
delivery.paypal	1 if payments were made by PayPal
delivery.giftcard	1 if paymentts were made by gift card (e.g. Amazon)
delivery.bank	1 if payments were made by bank transfer
delivery.other	1 if other reward delivery method
delivery.notreported	1 if delivery method is not explained (or cannot be guessed)
Unit of time period presented	
time.minute	1 if time unit presented is "minute"
time. hour	1 if time unit presented is "hour"
time.day	1 if time unit presented is "day"
time.week	1 if time unit presented is "week"
time.month	1 if time unit presented is "month"
time.year	1 if time unit presented is "year"
time.mix	1 if time unit presented is mixture of the above
time.notreported	1 if time unit is not explained (or cannot be guessed)
Definition of "now"	
now.fedelay	1 if front-end-delay is introduced
now.mixed	1 if some choices involve "now" and some other don't
now. choice	1 if "now" payment is delivered right after choice
now.end	1 if "now" payment is delivered at the end of the experiment
now.day	1 if "now" payment is delivered within the same day of the experiment
now. notreported	1 if "now" payment timing is not explained

Variable	Description
Implementation	
imp.deal.uncertainty	1 if deal with uncertainty about future payment; 0 if not mentioned
imp.deal.transactioncost	1 if trying to equalize transaction costs; 0 if not mentioned
Subject pool	
subject.child	1 if subjects are children
subject.teen	1 if subjects are teenagers
subject.university	1 if subjects are university students
subject.elderly	1 if elderly population
subject.gen	1 if general population
subject.farm	1 if subjects are farmers
subject.age.min	Minimum age
subject.age.max	Maximum age
subject.age.mean	Mean age
subject.age.median	Median age
subject.age.sd	Standard deviation of age
subject.male	Fraction of male participants
Utilityspecifications	
spec.u.est	1 if utility curvature is simultaneously estimated
spec.u.imputed	1 if utility curvature is imputed by some other measure
spec.u.crra	1 if CRRA
spec.u.cara	1 if CARA
spec.u.convex.effort	1 if convex cost of effort utility
spec.u.other	1 if other functional form of u is assumed

Variable	Description
Estimation methods	
est.ols	1 if ordinary least squares
est.nls	1 if nonlinear least squares
est.max.likelihood	1 if Max Likelihood estimation
est.tobit	1 if Tobit regression
est.mlogit	1 if multinomial logit regression
est.temperature	1 if noise (temperature) parameter is estimated in logit specification
est.invtemperature	1 if noise (inverse temperature) parameter is estimated in logit specification
est.fechner	1 if noise (Fechner) parameter is estimated
est.trembling	1 if noise (trembling hand) parameter is estimated
est.bgcons.fixed	1 if background consumption is not fixed at zero
est.bgcons.param	1 if background consumption is estimated jointly with other parameters
est.bgcons.sooner	Level of background consumption for sooner period
est.bgcons.later	Level of background consumption for later period
est.bgcons.sooner.se	Standard error of estimated b.g. consumption for sooner period
est.bgcons.later.se	Standard error of estimated b.g. consumption for later period
est.bgcons.same	1 if sooner b.g. cons = later b.g. cons assumed
est.bgcons.same.se	Standard error of estimated b.g. consumption (sooner = later)
est.bgcons.ind.report	1 if background consumption is based on subject's report

Variable	Description
Aggregate results	
ares.present	1 if aggregate estimates is reported
ares.units.discount	Time unit for QHD model
ares.drate	Estimated discount rate
ares.drate.error	Standard error of estimated discount rate
ares.dfactor	Estimated discount factor
ares.dfactor.error	Standard error of estimated discount factor
ares.pbias	Estimated present bias
ares.pbias.error	Standard error of estimated present bias
ares.ucurv	Estimated utility curvature
ares.ucurv.error	Standard error of estimated utility curvature
ares.convex.effort	Estimated convex effort cost function
ares.convex.effort.se	Standard error of estimated convex effort cost function
ares.temperature	Estimated temperature parameter
ares.temperature.error	Standard error of estimated temperature parameter
ares.invtemperature	Estimated inverse temperature parameter
ares.invtemperature.error	Standard error of estimated inverse temperature parameter
ares.fechner	Estimated Fechner noise parameter
ares.fechner.error	Standard error of estimated Fechner noise parameter
ares.trembling	Estimated trembling hand parameter
ares.trembling.error	Standard error of estimated trembling hand parameter
ares.rsquared	(Adjusted) R-squared from regression
ares.loglikelinood	Log likelihood

C Additional Results

C. 1 Funnel Plot

Figure C.1: Funnel plot of present bias parameter estimates $P B$. The y-axis is presented in the log-scale in the right panel.

Figure C.2: Funnel plot of present bias parameter estimates $P B$. The y-axis is presented in the log-scale in the right panel.

Figure C.3: Funnel plot of present bias parameter estimates $P B$ from monetary-CTB. The y-axis is presented in the log-scale in the right panel.

Figure C.4: Funnel plot of present bias parameter estimates $P B$ from effort-CTB.

C. 2 Study and Design Characteristics

Figure C.5: Number of studies by country.

All obs. \square With estimates

Figure C.6: CTB design characteristics.

Figure C.7: Co-occurences of CTB design characteristics. Study-level data, with and without parameter estimates.

Figure C.8: Co-occurences of CTB design characteristics. Estimate-level data.

Figure C.9: Co-occurences of CTB design characteristics. Estimate-level data, monetary reward only.

C. 3 Present Bias and Design Characteristics

Figure C.10: Treatment type.

Figure C.11: Continent.

Figure C.12: Location of the experiment.

Figure C.13: Subject population.

Figure C.14: Reward type.

Figure C.15: Monetary reward delivery method.

Figure C.16: Experimental interface.

Figure C.17: Econometric approach.

Figure C.18: Timing of immediate reward.

Figure C.19: Deal with uncertainty of future payment.

Figure C.20: Equalize transaction costs between two periods.

C. 4 Meta-Regression Analysis

Simple meta-analytic averages. We present meta-analytic averages $\overline{P B}_{0}$ calculated from: (i) all data including influential (|DFBETAS| > 1) observations (Table C.1), (ii) observations using monetary reward (Table C.2), (iii) observations using monetary reward excluding influential estimates (Table C.3), and (iv) observations using monetary reward (Table C.4). These tables present the random-effects estimates in addition to the unrestricted weighted least squares (UWLS) and multi-level estimates.

Table C.1: Meta-analytic average of present bias parameter (cf. Table 5).

	All studies			"Neutral" studies		
	(1)	(2)	(3)	(4)	(5)	(6)
$\overline{P B_{0}}$	0.9875	0.9662	0.9532	0.9890	0.9647	0.9565
	(0.0084)	(0.0144)	(0.0139)	(0.0098)	(0.0195)	(0.0142)
p-value	0.1444	0.0261	0.0021	0.2701	0.0813	0.0048
Model	UWLS	Random-effects	Multi-level	UWLS	Random-effects	Multi-level
Observations (m)	220	220	220	162	162	162
Number of studies	31	31	31	29	29	29

Note: p-values are from the two-sided test of the null hypothesis $H_{0}: P B=1$. Standard errors in parentheses are cluster-robust (Hedges et al., 2010). Three observations with large influence measure (|DFBETAS|>1) are included.

Table C.2: Meta-analytic average of present bias parameter (monetary reward only).

	All studies					"Neutral" studies			
	(1)	(2)	(3)		(4)	(5)	(6)		
$\overline{P B}_{0}$	0.9876	0.9720	0.9750		0.9892	0.9715	0.9754		
	(0.0084)	(0.0147)	(0.0141)		(0.0099)	(0.0204)	(0.0148)		
p-value	0.1562	0.0708	0.0912		0.2873	0.1786	0.1112		
Model	UWLS	Random-effects	Multi-level		UWLS	Random-effects	Multi-level		
Observations (m)	196	196	196		142	142	142		
Number of studies	22	22	22		21	21	21		

Note: p-values are from the two-sided test of the null hypothesis $H_{0}: P B=1$. Standard errors in parentheses are cluster-robust (Hedges et al., 2010). Three observations with large influence measure (|DFBETAS| > 1) are included.

Table C.3: Meta-analytic average of present bias parameter (monetary reward only).

| | All studies | | | | "Neutral" studies | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (1) | (2) | (3) | | (4) | (5) | (6) |
| $\overline{P B}_{0}$ | 0.9943 | 0.9723 | 0.9758 | | 0.9964 | 0.9716 | 0.9766 |
| | (0.0020) | (0.0150) | (0.0154) | | (0.0036) | (0.0209) | (0.0161) |
| p-value | 0.0107 | 0.0805 | 0.1334 | | 0.3317 | 0.1898 | 0.1640 |
| Model | UWLS | Random-effects | Multi-level | UWLS | Random-effects | Multi-level | |
| Observations (m) | 193 | 193 | 193 | | 140 | 140 | 140 |
| Number of studies | 20 | 20 | 20 | | 19 | 19 | 19 |

Note: p-values are from the two-sided test of the null hypothesis $H_{0}: P B=1$. Standard errors in parentheses are cluster-robust (Hedges et al., 2010). Three observations with large influence measure (\mid DFBETAS $\mid>1$) are excluded.

TABLE C.4: Meta-analytic average of present bias parameter (effort cost only).

| | All studies | | | | "Neutral" studies | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (1) | (2) | (3) | | (4) | (5) | (6) |
| $\overline{P B}_{0}$ | 0.9072 | 0.8815 | 0.8802 | | 0.9146 | 0.8886 | 0.8880 |
| | (0.0242) | (0.0171) | (0.0208) | | (0.0230) | (0.0156) | (0.0164) |
| p-value | 0.0050 | 0.0001 | 0.0004 | | 0.0076 | 0.0002 | 0.0003 |
| Model | UWLS | Random-effects | Multi-level | | UWLS | Random-effects | Multi-level |
| Observations (m) | 24 | 24 | 24 | | 20 | 20 | 20 |
| Number of studies | 9 | 9 | 9 | | 8 | 8 | 8 |

Note: p-values are from the two-sided test of the null hypothesis $H_{0}: P B=1$. Standard errors in parentheses are cluster-robust (Hedges et al., 2010). Three observations with large influence measure (\mid DFBETAS $\mid>1$) are not in this subset of data.

FAT-PET. Table C. 5 presents the analysis including three "overly influential" observations (cf.
Table 6).
Table C.5: Funnel plot asymmetry and precision effect testing.

		All studies		Monetary (all)		Monetary ("neutral")		Effort cost	
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$S E$ of PB estimate	α_{1}	$\begin{gathered} -0.9623 \\ (0.8164) \end{gathered}$	$\begin{gathered} -0.3649 \\ (0.3342) \end{gathered}$	$\begin{gathered} -0.7849 \\ (0.9410) \end{gathered}$	$\begin{gathered} -0.2447 \\ (0.3422) \end{gathered}$	$\begin{gathered} -0.6752 \\ (1.2438) \end{gathered}$	$\begin{gathered} -0.1872 \\ (0.3934) \end{gathered}$	$\begin{gathered} -2.0571 \\ (0.4412) \end{gathered}$	$\begin{gathered} -1.8720 \\ (0.1093) \end{gathered}$
Constant	α_{0}	$\begin{gathered} 0.9907 \\ (0.0100) \end{gathered}$		$\begin{gathered} 0.9902 \\ (0.0103) \end{gathered}$		$\begin{gathered} 0.9920 \\ (0.0132) \end{gathered}$		$\begin{gathered} 0.9931 \\ (0.0255) \end{gathered}$	
FAT ($\left.H_{0}: \alpha_{1}=0\right)$	p-value	0.24781	0.2836	0.4136	0.4825	0.5932	0.6394	0.0016	0.0000
$\operatorname{PET}\left(H_{0}: \alpha_{0}=1\right)$	p-value	0.3566		0.3491		0.5527		0.7931	
Study fixed effect		No	Yes	No	Yes	No	Yes	No	Yes
Observations		220	220	196	196	142	142	24	24
Number of studies		31	31	22	22	21	21	9	9
R^{2}		0.0326	0.9372	0.0193	0.9384	0.0146	0.9644	0.5100	0.9503
Adjusted R^{2}		0.0282	0.9269	0.0142	0.9305	0.0076	0.9582	0.4877	0.9183

Note: Estimated by weighted least squares. Standard errors are clustered at the study level. Three observations with large influence measure $(\mid$ dfbetas $\mid>1)$ are included. In the specification with study fixed effects, the constant term is dropped and all the dummy variables for the studies are included.

Heterogeneity. Tables C. 6 and C. 7 report the results from meta-regressions estimating the same models as in Tables 7 and 8, but with overly influential estimates.

Table C.6: Explaining the heterogeneity of reported estimates (monetary reward; including overly influential estimates; cf. Table 7).

	(1)	(2)	(3)	(4)	(5)	(6)
$S E$ of PB estimate	$\begin{gathered} 0.978 \\ (1.032) \end{gathered}$	$\begin{gathered} 0.726 \\ (0.840) \end{gathered}$	$\begin{array}{r} -0.218 \\ (0.661) \end{array}$	$\begin{gathered} 0.852 \\ (1.082) \end{gathered}$	$\begin{gathered} 0.926 \\ (0.885) \end{gathered}$	$\begin{gathered} -1.011 \\ (0.626) \end{gathered}$
Non-neutral condition	$\begin{gathered} -0.009^{* *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.007^{*} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.008^{*} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.009^{* *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.008^{* *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.005 \\ (0.003) \end{gathered}$
Subject: University students	$\begin{gathered} 0.013 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.017) \end{gathered}$	$\begin{gathered} -0.011 \\ (0.023) \end{gathered}$			
Subject: General population	$\begin{gathered} 0.012 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.038 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.017 \\ (0.032) \end{gathered}$			
Location: Field				$\begin{gathered} 0.042 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.039 \\ (0.040) \end{gathered}$	$\begin{aligned} & 0.130^{* * *} \\ & (0.033) \end{aligned}$
Location: Class				$\begin{gathered} -0.008 \\ (0.017) \end{gathered}$	$\begin{gathered} -0.023 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.069^{* *} \\ (0.022) \end{gathered}$
Location: Online				$\begin{gathered} -0.0002 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.027^{*} \\ (0.013) \end{gathered}$	$\begin{gathered} -0.019^{*} \\ (0.010) \end{gathered}$
"Immediate" pay: Within day	$\begin{gathered} 0.030^{*} \\ (0.013) \end{gathered}$	$\begin{gathered} 0.050^{*} \\ (0.023) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.017) \end{gathered}$	$\begin{aligned} & 0.037^{* *} \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.043 \\ (0.022) \end{gathered}$	$\begin{aligned} & 0.053^{* * *} \\ & (0.015) \end{aligned}$
"Immediate" pay: Not reported	$\begin{aligned} & -0.050 \\ & (0.063) \end{aligned}$	$\begin{array}{r} -0.048 \\ (0.061) \end{array}$	$\begin{gathered} 0.028 \\ (0.073) \end{gathered}$	$\begin{gathered} -0.083 \\ (0.064) \end{gathered}$	$\begin{aligned} & -0.078 \\ & (0.067) \end{aligned}$	$\begin{gathered} 0.059 \\ (0.068) \end{gathered}$
Delivery: Cash	$\begin{gathered} 0.011 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.045 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.047 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.020) \end{gathered}$
Delivery: Bank	$\begin{gathered} -0.041^{*} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.039^{* * *} \\ (0.011) \end{gathered}$	$\begin{gathered} -0.030^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} -0.039^{*} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.028^{*} \\ (0.013) \end{gathered}$	$\begin{gathered} -0.014 \\ (0.008) \end{gathered}$
Delivery: Other	$\begin{gathered} -0.012^{*} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.014^{*} \\ (0.006) \end{gathered}$	$\begin{gathered} -0.019^{* *} \\ (0.006) \end{gathered}$	$\begin{gathered} -0.011^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.010^{*} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.014^{* *} \\ (0.005) \end{gathered}$
Estimation: Tobit		$\begin{gathered} -0.033^{*} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.006) \end{gathered}$		$\begin{gathered} -0.036^{* *} \\ (0.014) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.008) \end{gathered}$
Estimation: Other		$\begin{gathered} 0.020 \\ (0.010) \end{gathered}$	$\begin{aligned} & 0.021^{* *} \\ & (0.008) \end{aligned}$		$\begin{gathered} 0.011 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.008) \end{gathered}$
Estimation: B.g. consumption		$\begin{aligned} & -0.011 \\ & (0.011) \end{aligned}$	$\begin{gathered} -0.004 \\ (0.006) \end{gathered}$		$\begin{gathered} -0.004 \\ (0.010) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.007) \end{aligned}$
Deal uncertainty			$\begin{gathered} -0.019^{*} \\ (0.008) \end{gathered}$			$\begin{gathered} -0.005 \\ (0.004) \end{gathered}$
Deal transaction cost			$\begin{gathered} 0.030 \\ (0.048) \end{gathered}$			$\begin{gathered} 0.123^{* *} \\ (0.043) \end{gathered}$
Paper and pencil			$\begin{gathered} -0.041^{* *} \\ (0.012) \end{gathered}$			$\begin{gathered} -0.070^{* * *} \\ (0.012) \end{gathered}$
Constant	$\begin{aligned} & 0.960^{* * *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.946^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.984^{* * *} \\ & (0.083) \end{aligned}$	$\begin{aligned} & 0.966^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.967^{* * *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & 0.845^{* * *} \\ & (0.059) \end{aligned}$
Observations	196	196	196	196	196	196
R^{2}	0.424	0.588	0.731	0.436	0.607	0.798
Adjusted R^{2}	0.396	0.561	0.708	0.405	0.579	0.780

Note: Observations with large influence measure $(|D F B E T A S|>1)$ are included. Study fixed effects are not included in the model. Standard errors are clustered at the study level. ${ }^{*} p<0.05 ;{ }^{* *} p<0.01 ;{ }^{* * *} p<0.001$.

Table C.7: Explaining the heterogeneity of reported estimates (monetary vs. non-monetary rewards; cf. Table 8).

	(1)	(2)	(3)	(4)	(5)	(6)
Constant ($P B$ from effort-CTB)	$\begin{aligned} & 0.907^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.907^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.907^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.993^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.993^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.993^{* * *} \\ & (0.024) \end{aligned}$
$S E$ of PB estimates				$\begin{gathered} -2.057^{* * *} \\ (0.414) \end{gathered}$	$\begin{gathered} -2.057^{* * *} \\ (0.414) \end{gathered}$	$\begin{gathered} -2.057^{* * *} \\ (0.414) \end{gathered}$
Reward: Money	$\begin{gathered} 0.082^{* *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.075^{* *} \\ (0.027) \end{gathered}$	$\begin{aligned} & 0.092^{* * *} \\ & (0.023) \end{aligned}$	$\begin{gathered} -0.0002 \\ (0.027) \end{gathered}$	$\begin{gathered} -0.015 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.024) \end{gathered}$
\times Non-neutral condition	$\begin{array}{r} -0.003 \\ (0.009) \end{array}$	$\begin{gathered} -0.013^{* *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.011^{* *} \\ (0.003) \end{gathered}$	$\begin{array}{r} -0.005 \\ (0.008) \end{array}$	$\begin{gathered} -0.013^{* *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.011^{* *} \\ (0.003) \end{gathered}$
\times Location: Field		$\begin{gathered} 0.063^{*} \\ (0.027) \end{gathered}$	$\begin{gathered} 0.061 \\ (0.040) \end{gathered}$		$\begin{gathered} 0.057^{*} \\ (0.026) \end{gathered}$	$\begin{gathered} 0.054 \\ (0.040) \end{gathered}$
\times Location: Class		$\begin{gathered} 0.027 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.030 \\ (0.030) \end{gathered}$		$\begin{gathered} 0.022 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.033) \end{gathered}$
\times Location: Online		$\begin{gathered} 0.024 \\ (0.015) \end{gathered}$	$\begin{aligned} & 0.048^{* *} \\ & (0.015) \end{aligned}$		$\begin{gathered} 0.027 \\ (0.019) \end{gathered}$	$\begin{aligned} & 0.052^{* * *} \\ & (0.015) \end{aligned}$
× "Immediate": By end of exp		$\begin{gathered} -0.021 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.016 \\ (0.030) \end{gathered}$		$\begin{gathered} -0.024 \\ (0.021) \end{gathered}$	$\begin{array}{r} -0.019 \\ (0.031) \end{array}$
\times "Immediate": Not reported		$\begin{gathered} -0.115 \\ (0.063) \end{gathered}$	$\begin{array}{r} -0.122 \\ (0.067) \end{array}$		$\begin{gathered} -0.121 \\ (0.064) \end{gathered}$	$\begin{array}{r} -0.129 \\ (0.068) \end{array}$
\times Estimation: Tobit			$\begin{gathered} -0.042^{* *} \\ (0.015) \end{gathered}$			$\begin{gathered} -0.043^{* * *} \\ (0.013) \end{gathered}$
\times Estimation: Other			$\begin{array}{r} -0.007 \\ (0.007) \end{array}$			$\begin{array}{r} -0.007 \\ (0.008) \end{array}$
$\times S E$ of PB estimates				$\begin{gathered} 1.175 \\ (1.058) \end{gathered}$	$\begin{gathered} 2.881 \\ (1.482) \end{gathered}$	$\begin{gathered} 2.988^{* *} \\ (0.986) \end{gathered}$
Observations	220	220	220	220	220	220
R^{2}	0.019	0.262	0.519	0.047	0.280	0.540
Adjusted R^{2}	0.010	0.237	0.498	0.030	0.249	0.516
$H_{0}: P B_{\text {effort }}=1$		$p=0.0004$			$p=0.7743$	

Note: Observations with large influence measure $(|D F B E T A S|>1)$ are included. Study fixed effects are not included in the model. Standard errors are clustered at the study level. ${ }^{*} p<0.05 ;{ }^{* *} p<0.01 ;{ }^{* * *} p<0.001$.

C. 5 Bayesian Model Averaging

In Section 4.3, we estimate a meta-regression model of the form:

$$
y_{i}=\gamma_{0}+\gamma \boldsymbol{X}_{i}+\varepsilon_{i} .
$$

A problem arises when the set of potential explanatory variables \mathfrak{X} is large and a researcher is not sure which variables should be included in the model.

Bayesian model averaging (BMA) approaches such model uncertainty by estimating models for all possible combination of potential explanatory variables in \mathfrak{X} and constructing a weighted average (Moral-Benito, 2015; Steel, forthcoming). Suppose the size of \mathfrak{X} is q. Then, there are 2^{q} candidate models M_{m}, indexed by m, to be estimated.

Let $P\left(M_{m}\right)$ be a prior model probability. It is typically assumed to be uniform $\left(P\left(M_{m}\right) \propto 1\right)$ to represent the lack of knowledge. We can calculate the posterior model probability using Bayes' rule as:

$$
P\left(M_{m} \mid \boldsymbol{y}\right)=\frac{f\left(\boldsymbol{y} \mid M_{m}\right) P\left(M_{m}\right)}{f(\boldsymbol{y})}
$$

where f denotes a (conditional) likelihood of observation \boldsymbol{y}. Since each model M_{m} depends on parameters γ^{m}, we can calculate the posterior for the parameters associated with M_{m} as:

$$
g\left(\gamma^{m} \mid \boldsymbol{y}, M_{m}\right)=\frac{f\left(\boldsymbol{y} \mid \gamma^{m}, M_{m}\right) g\left(\gamma^{m} \mid M_{m}\right)}{f\left(\boldsymbol{y} \mid M_{m}\right)} .
$$

Combining these observations, we now obtain the posterior of the parameters for all the models under consideration:

$$
g(\gamma \mid \boldsymbol{y})=\sum_{m=1}^{2^{q}} g\left(\gamma^{m} \mid \boldsymbol{y}, M_{m}\right) P\left(M_{m} \mid \boldsymbol{y}\right)
$$

Following figures represent results from BMA. In each plot, columns denote individual models where variables are sorted by posterior model probability in a descending order. Blue cells (darker cells in grayscale) indicate that the variable is included in the model and has a positive coefficient, while red cells (lighter cells in grayscale) indicate that the variable has a negative coefficient. White cells indicate that the variable is not included in the model.

Figure C. 21 and Figure C. 22 use observations both from monetary-CTB and effort-CTB, while Figures C. 23 and C. 24 (reported as Figure 4 in the main paper) focus only on monetary CTB. The top panel in each plot uses observations both from neutral and non-neutral conditions and the bottom panel discards data from non-neutral conditions. Observations with large influence measure (|DFBETAS| > 1) are excluded.

Figure C.21: Model inclusion. Observations from both monetary-CTB and effort-CTB studies. The top panel of the figure uses observations from both neutral and non-neutral conditions, while the bottom panel discards data from non-neutral conditions.

Model Inclusion Based on Best 755 Models

Figure C.22: Model inclusion. Observations from both monetary-CTB and effort-CTB studies. The top panel uses observations from both neutral and non-neutral conditions, while the bottom panel discards data from non-neutral conditions.

Model Inclusion Based on Best 646 Models

Figure C.23: Model inclusion. Observations from monetary-CTB studies only. The top panel uses observations from both neutral and non-neutral conditions, while the bottom panel discards data from non-neutral conditions.

Figure C.24: Model inclusion. Observations from monetary-CTB studies only. The top panel uses observations from both neutral and non-neutral conditions, while the bottom panel discards data from non-neutral conditions.

C. 6 Cumulative Meta Analysis

A cumulative meta-analysis (CMA) is a series of meta-analyses in which studies are added to the analysis based on a pre-specified order (Borenstein et al., 2009). When the series of studies are sorted by some factor (such as year of publication, sample size, and so on), CMA shows how the effect size estimates shift as a function of this particular factor. For example, CMA with chronologically sorted sequence of studies shows how the effect size under consideration shifts over time (temporal trend). It can also be used as a tool to detect possible publication bias. CMA is commonly used in the medical literature studying the effects of treatments (e.g., Lau et al., 1992, 1995). Note, however, that CMA is "a mechanism for display, rather than analysis" (Borenstein et al., 2009, p. 375), meaning that MRA is the appropriate method when we are interested in the relationship between a factor and effect size.

Here, we apply CMA to our dataset, after excluding overly influential observations from Barcellos and Carvalho (2014) and Liu et al. (2014), ordered chronologically by the earliest year a version of the paper could be accessed (usually unpublished working papers posted online). ${ }^{1}$ Within years, studies are ordered alphabetically by the name of the first author.

Figure C. 25 shows the results of our CMA for studies using monetary rewards that equate transaction costs across periods. Figure C. 26 shows the results of our CMA for studies where subjects make decisions over allocations of effort. In these figures, we use the multi-level model outlined by Van den Noortgate et al. (2013), beginning by just using the results of the first study in our chronological ordering, and then successively re-estimating on the sample that incorporates the subsequent study in the ordering as well, until we reach the sample containing all relevant studies. ${ }^{2}$

Although there is evidence of present-bias in the context of effort studies, the evidence for present-bias over monetary rewards once transaction costs have been equated between periods is much weaker. ${ }^{3}$

[^11]

Figure C.25: CMA results only including studies using monetary rewards and equating transaction costs across both periods. Years in parentheses indicate the publication year or the latest version of the working paper. Years at the end indicate the earliest accessible working paper version.

Figure C.26: CMA results only including studies where subjects make decisions regarding allocations of effort. Years in parentheses indicate the publication year or the latest version of the working paper. Years at the end indicate the earliest accessible working paper version.

C. 7 Latent Studies Model

Andrews and Kasy (2019), hereafter AK, propose using the collected data from a meta-analysis to model the conditional probability of publication as a function of a study's results. The conditional publication probabilities can then be used to generate publication-bias-corrected estimates for the reported results from each study, along with associated confidence intervals.

The setup for their nonparametric estimator is to assume that there exists a population of latent studies indexed by i. The true parameter that study i attempts to estimate is denoted Θ_{i}^{*}, and is drawn from distribution μ_{Θ}, such that it may vary across studies.

The result for latent study i, denoted X_{i}^{*}, is drawn from the normal distribution $N\left(\Theta_{i}^{*}, \Sigma_{i}^{* 2}\right)$, where Σ_{i}^{*} is the (fixed) standard deviation of the estimate X_{i}^{*} in latent study i. AK then assume that we only observe "published" studies, with latent studies published with probability $p\left(Z_{i}^{*}\right)$, where $Z_{i}^{*}=X_{i}^{*} / \Sigma_{i}^{*}$.

We use the degree of present bias $X_{i}^{*}=1-P B_{i}$, the deviation of estimated present-bias parameter from one, as the variable of interest. ${ }^{4}$ Figure C.27A shows the density plot of the z-statistics. The plot does exhibit jumps in the density around the cutoffs -1.96 and 1.96 , unlike many applications discussed in Andrews and Kasy (2019). Figure C.27B is the funnel plot and carries the same information as Figure 1.

Figure C.27: (A) Binned density plot for the z-statistics $Z^{*}=X^{*} / \Sigma^{*}$. (B) Joint distribution of the estimated degree of present bias and the standard error. The grey lines mark $\left|X^{*}\right| / \Sigma^{*}=1.96$. Overly influential (|DFBETAS| >1) observations are excluded. The figure is generated with the package provided by AK.

AK show that we can identify $p(\cdot)$ up to scale using the data collected in a meta-analysis, and then use the estimated $p(\cdot)$ to derive median unbiased estimators and valid confidence intervals

[^12]for $\Omega_{i}=\Theta_{i} / \Sigma_{i}$ for "published" studies (random variables relating only to "published" studies are denoted by the lack of an asterisk). The intuition behind this identification result is that, in the presence of publication bias, we can glean information on the probability of a given result being published by comparing the observed distribution of results from studies with different standard deviations to see if there are areas of the distribution of estimates with fewer results than would be expected given the results from other studies and the standard deviation of estimates in this area of the distribution.

We use the following specification for the likelihood of publication, also considered by AK:

$$
\Theta^{*} \sim \mathcal{N}\left(\bar{\theta}, \tilde{\tau}^{2}\right), \quad p(Z) \propto\left\{\begin{array}{ll}
\beta_{p, 1} & Z<-1.96 \\
\beta_{p, 2} & -1.96 \leq Z<0 \\
\beta_{p, 3} & 0 \leq Z<1.96 \\
1 & Z \geq 1.96
\end{array} .\right.
$$

The results from this specification are provided in Table C.8. They indicate the intuitive result that studies showing statistically significant future bias are less likely to be reported than studies showing either statistically significant present bias (reflected in $\beta_{p, 1}<1$) or studies showing no significant present or future bias (reflected in $\beta_{p, 1}<\beta_{p, 2}$ and $\beta_{p, 1}<\beta_{p, 3}$). ${ }^{5}$ The estimate $\bar{\theta}$ for the mean present-biasedness in the the population of latent estimates is small and statistically indistinguishable from zero at the 5% level. When we estimate the model with a small subset of data using the real-effort version of the CTB, the mean latent effect becomes large ($\bar{\theta}=0.096$) and is significantly different from zero.

[^13]Table C.8: Selection estimates.

		All	"Neutral"	Monetary		Effort
				All	"Neutral"	
Mean latent effect	$\bar{\theta}$	$\begin{gathered} 0.026 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.063 \\ (0.050) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.061 \\ (0.064) \end{gathered}$	$\begin{gathered} 0.096 \\ (0.016) \end{gathered}$
$\frac{\operatorname{Pr}[\text { Report } \mid Z<-1.96]}{\operatorname{Pr}[\text { Report } \mid Z>1.96]}$	$\beta_{p, 1}$	$\begin{gathered} 0.259 \\ (0.369) \end{gathered}$	$\begin{gathered} 0.741 \\ (1.154) \end{gathered}$	$\begin{gathered} 0.229 \\ (0.376) \end{gathered}$	$\begin{gathered} 0.896 \\ (1.577) \end{gathered}$	$\begin{gathered} 0.000 \\ (5.291) \end{gathered}$
$\frac{\operatorname{Pr}[\text { Report } \mid-1.96<Z<0]}{\operatorname{Pr}[\text { Report } \mid Z>1.96]}$	$\beta_{p, 2}$	$\begin{gathered} 1.809 \\ (1.432) \end{gathered}$	$\begin{gathered} 4.136 \\ (3.450) \end{gathered}$	$\begin{gathered} 2.112 \\ (1.847) \end{gathered}$	$\begin{gathered} 6.116 \\ (5.483) \end{gathered}$	$\begin{gathered} 0.191 \\ (0.201) \end{gathered}$
$\frac{\operatorname{Pr}[\operatorname{Report} \mid 0<Z<1.96]}{\operatorname{Pr}[\operatorname{Report} \mid Z>1.96]}$	$\beta_{p, 3}$	$\begin{gathered} 3.869 \\ (2.243) \end{gathered}$	$\begin{gathered} 7.446 \\ (4.926) \end{gathered}$	$\begin{gathered} 4.539 \\ (2.797) \end{gathered}$	$\begin{aligned} & 10.769 \\ & (7.071) \end{aligned}$	$\begin{gathered} 0.534 \\ (0.460) \end{gathered}$
Mean PB	$1-\bar{\theta}$	0.974	0.937	0.987	0.939	0.904
Test of selective reporting	$H_{0}: \beta_{p, 1}=\beta_{p, 2}=\beta_{p, 3}=1$	0.019	0.448	0.005	0.392	0.000
Test of a true effect	$H_{0}: \theta=0$	0.511	0.206	0.804	0.342	0.000
Observations		217	160	193	140	24
Number of studies		29	27	20	19	9

Note: Three observations with large influence measure (\mid DFBETAS $\mid>1$) are excluded. Z-values are defined such that estimates of the present bias parameter below one yield positive Z-values. Publication likelihood β_{p} 's are measured relative to omitted category of positively significant (at 5% level) estimates. Standard errors in parentheses are clustered at study level.

Figure C.28: The original z-statistics and bias-corrected z-statistics.

C. 8 Stem-Based Bias Correction

Furukawa (2019) shows that a range of underlying processes-not just the biased preferences of researchers and journal editors-could lead to publication bias, and proposes a "stem-based" bias correction method for meta-analyses based on weaker assumptions regarding the selection process for reported results.

This estimator uses the studies with the highest precision to estimate a bias-corrected average effect for the hypothetical population of latent studies, since the studies with high precision are generally the least affected by publication bias (since there is simply less variation in study results for selection to occur on). The number of studies to include in the estimate is determined by minimizing the estimated mean squared error of the resulting estimator. In this way, this estimator is a generalization of the method suggested by Stanley et al. (2010) whereby the most precise 10% of all studies are averaged.

Table C.9: Stem-based correction.

			Monetary		
	All	"Neutral"	All	"Neutral"	Effort
	(A)	(B)	(C)	(D)	(E)
$P B$	0.9910	0.9992	0.9910	0.9992	0.9266
	(0.0029)	(0.0038)	(0.0029)	(0.0036)	(0.0253)
Observations	217	160	193	140	24
Number of stems	56	55	56	55	7
$\%$ information used	0.4312	0.5118	0.4497	0.5405	0.4664

Note: Three observations with large influence measure (|DFBETAS| > 1) are excluded. Column identifiers A-E indicate the panels in Figure C.29.

The results show that, averaging over the most precise studies, the estimated present-bias parameter is statistically different from one, indicating aggregate evidence of present bias ($P B=$ 0.991 ; Table C. 9 column 1, Figure C.29A). When restricting the sample to estimates without any treatment variations, the estimated present bias parameter is indistinguishable from one ($P B=$ 0.999 ; Figure C.29B). These results are consistent with the simple meta-analytic average presented in Table 5, columns (1) and (4).

Similar to the other meta-analytic methods we employ, Figure C.29E show that when only
studies where subjects make decisions over allocations of effort are included, there is significant aggregate evidence of present bias $(P B=0.927)$, which is in stark contrast with monetary-reward CTB ($P B=0.999$).

Figure C.29: Stem-based estimates. Overly influential (|DFBETAS| > 1) observations are excluded. (A) All observations. (B) Neutral condition only. (C) Monetary-CTB, all observations. (D) Monetary-CTB, neutral condition only. (E) Effort-CTB.

C. $9 \quad P$-Values of $P B$ Estimates

We calculated p-values from the reported estimates and their associated standard errors since not all articles reported the p-value from the test against the null hypothesis of "no present bias" $\left(H_{0}: P B=1\right)$. The distribution of p-values are shown as a boxplot for each study and in empirical CDFs split by the condition of the experiment (neutral or some treatment variation) in Figure C.30.

Just under 40% ($84 / 220=0.38$; 73 of them in the direction of present bias) of all the $P B$ estimates are significantly different from one (Table C. 10 in Online Appendix). The proportion of estimates with $p<0.05$ is higher in experiments with some treatment variation than in neutral experiments, but the difference in proportions is not large (50% in treatment and 34% in neutral; two-sample z-test for proportion, $p=0.031$). Note, however, that our classifications of "treatment" and "neutral" are made somewhat arbitrarily in some cases. ${ }^{6}$ There are 16 studies that reported at most three PB estimates (eight of them reported only one estimate) and 75% (12/16) of them reported only significant estimate(s). Eight studies (out of 31) reported only insignificant result(s).

Figure C.30: P-values of present bias parameter estimates. The vertical dotted lines indicate the 5% significance level.

[^14]Table C.10: Re-calculaed p-values of $P B$ estimates.

	All		Neutral		Treatment	
	Freq.	Prop. (\%)	Freq.	Prop. (\%)	Freq.	Prop. (\%)
Total \# estimates	220	100.0	162	100.0	58	100.0
$P B<1$	170	77.3	121	74.7	49	84.5
with $p<0.05$	73	42.9	45	37.2	28	57.1
$P B \geq 1$	50	22.7	41	25.3	9	15.5
with $p<0.05$	11	22.0	10	24.4	1	11.1

Note: Proportions of statistically significant $P B$ estimates $(p<0.05)$ are conditional on either $P B<1$ or $P B \geq 1$ depending on the row.

Figure C.31: P-curves (significant estimates split by the treatment type). (A) All observations. (B) Treatment type.

Figure C.32: P-curves (significant estimates split by the reward type). (A) Monetary-CTB. (B) Effort-CTB.

D List of Articles Included in the Master Data

Abebe, G., S. Caria, and E. Ortiz-Ospina (2017): "The Selection of Talent: Experimental and Structural Evidence from Ethiopia," Unpublished manuscript.

Alan, S. and S. Ertac (2015): "Patience, Self-Control and the Demand for Commitment: Evidence from a Large-Scale Field Experiment," Journal of Economic Behavior \& Organization, 115, 111122.
--- (2017): "Belief in Hard Work and Prosocial Behavior: Evidence from a Randomized Field Experiment," Unpublished manuscript.
-- (2018): "Fostering Patience in the Classroom: Results from Randomized Educational Intervention," Journal of Political Economy, 126, 1865-1911.
Andreoni, J., M. Callen, Y. Khan, K. Jaffar, and C. Sprenger (2017): "Using Preference Estimates to Customize Incentives: An Application to Polio Vaccination Drives in Pakistan," Unpublished manuscript.
Andreoni, J., C. Gravert, M. A. Kuhn, S. Saccardo, and Y. Yang (2018): "Arbitrage or Narrow Bracketing? Experimental Tests of Money as a Primary Reward," Unpublished manuscript.

Andreoni, J., M. A. Kuhn, and C. Sprenger (2015): "Measuring Time Preferences: A Comparison of Experimental Methods," Journal of Economic Behavior \& Organization, 116, 451-464.

Andreoni, J. and C. Sprenger (2012a): "Estimating Time Preferences from Convex Budgets," American Economic Review, 102, 3333-3356.
--- (2012b): "Risk Preferences are not Time Preferences," American Economic Review, 102, 33573376.

Angerer, S., P. Lergetporer, D. Glätzle-Rützler, and M. Sutter (2015): "How to Measure Time Preferences in Children: a Comparison of Two Methods," Journal of the Economic Science Association, 1, 158-169.
Ashton, L. (2015): "Hunger Games: Does Hunger Affect Time Preferences?" Unpublished manuscript.

Atalay, K., F. Bakhtiar, S. Cheung, and R. Slonim (2014): "Savings and Prize-Linked Savings Accounts," Journal of Economic Behavior \& Organization, 107, 86-106.

Augenblick, N., M. Niederle, and C. Sprenger (2015): "Working over Time: Dynamic Inconsistency in Real Effort Tasks," The Quarterly fournal of Economics, 130, 1067-1115.
Aycinena, D., S. Blazsek, L. Rentschler, and B. Sandoval (2015): "Risk, Discounting and De-
mand for Intra-Household Control for Recipients of Conditional Cash Transfers," Unpublished manuscript.

Aycinena, D. and L. Rentschler (2018): "Discounting and Digit Ratio: Low 2D:4D Predicts Patience for a Sample of Females," Frontiers in Behavioral Neuroscience, 11, 1-13.

Balakrishnan, U., J. Haushofer, and P. Jakiela (2017): "How Soon is Now? Evidence of Present Bias from Convex Time Budget Experiments," Unpublished manuscript.

Banerji, A., J. Goto, H. Ishizaki, T. Kurosaki, K. Lai, S. Paul, Y. Sawada, and S. Tsuda (2018): "Entrepreneurship in Micro and Small Enterprises: Empirical Findings from Resurveys in Northeastern Areas of Delhi, India," Unpublished manuscript.
Barcellos, S. H. and L. Carvalho (2014): "Information about Self-Control and Intertemporal Choices," Unpublished manuscript.
Barton, B. (2015): "Interpersonal Time Inconsistency and Commitment," Unpublished manuscript.

Bartoš, V., M. Bauer, J. Chytilová, and I. Levely (2018): "Effects of Poverty on Impatience: Preferences or Inattention?" Unpublished manuscript.

Batista, C., D. Silverman, and D. Yang (2015): "Directed Giving: Evidence from an InterHousehold Transfer Experiment," Journal of Economic Behavior \& Organization, 118, 2-21.
Blumenstock, J., M. Callen, and T. Ghani (2018): "Why Do Defaults Affect Behavior? Experimental Evidence from Afghanistan," American Economic Review, 108, 2868-2901.

Boonmanunt, S., T. Lauer, B. Rockenbach, and A. Weiss (2018): "Field Evidence on the Contested Role of Time Preferences in Resource Management," Unpublished manuscript.

Bousquet, L. (2016): "Measuring Time Preference and Anticipation: A Lab Experiment," Unpublished manuscript.

Bover, O., L. Hospido, and E. Villanueva (2018): "The Impact of High School Financial Education on Financial Knowledge and Choices: Evidence from a Randomized Trial in Spain," Unpublished manuscript.

Brocas, I., J. D. Carrillo, and J. Tarrasó (2018): "How long is a Minute?" Games and Economic Behavior, 111, 305-322.

Bulte, E., R. Lensink, and N. Vu (2016): "Gender Training and Female Empowerment: Experimental Evidence from Vietnam," Economics Letters, 145, 117-119.

Carvalho, L. S., S. Meier, and S. W. Wang (2016a): "Poverty and Economic Decision-Making: Evidence from Changes in Financial Resources at Payday," American Economic Review, 106,

260-284.
Carvalho, L. S., S. Prina, and J. Sydnor (2016b): "The Effect of Saving on Risk Attitudes and Intertemporal Choices," Journal of Development Economics, 120, 41-52.

Cerrone, C. and L. K. Lades (2017): "Sophisticated and Naïve Procrastination: An Experimental Study," Unpublished manuscript.
Chen, Y., M. Jiang, and E. L. Krupka (forthcoming): "Hunger and the Gender Gap," Experimental Economics.

Cheung, S. L. (2015): "Comment on 'Risk preferences are not Time Preferences': On the Elicitation of Time Preference under Conditions of Risk," American Economic Review, 105, 2242-2260.

Clot, S. and C. Y. Stanton (2014): "Present Bias Predicts Participation in Payments for Environmental Services: Evidence from a Behavioral Experiment in Uganda," Ecological Economics, 108, 162-170.

Clot, S., C. Y. Stanton, and M. Willinger (2017): "Are Impatient Farmers more Risk-Averse? Evidence from a Lab-in-the-Field Experiment in Rural Uganda," Applied Economics, 49, 156-169.

Corbett, C. H. (2016): "Preferences for Effort and Their Applications," Ph.D. thesis, University of Oregon.
de Oliveira, A. C. M. and S. Jacobson (2017): "(Im)Patience by Proxy: Making Intertemporal Decisions for Others," Unpublished manuscript.
de Quidt, J., J. Haushofer, and C. Roth (2018): "Measuring and Bounding Experimenter Demand," American Economic Review, 108, 3266-3302.

Dertwinkel-Kalt, M., H. Gerhardt, G. Riener, F. Schwerter, and L. Strang (2017): "Concentration Bias in Intertemporal Choice," Unpublished manuscript.
Ersoy, F. (2017): "Effects of Perceived Productivity on Study Effort: Evidence from a Field Experiment," Unpublished manuscript.

Esopo, K., D. Mellow, C. Thomas, H. Uckat, J. Abraham, P. Jain, C. Jang, N. Otis, M. RiisVestergaarda, A. Starcev, K. Orkin, and J. Haushofer (2018): "Measuring Self-Efficacy, Executive Function, and Temporal Discounting in Kenya," Behaviour Research and Therapy, 101, 30-45.

Franco, C. and M. Mahadevan (2017): "Behavioral Dynamics in Transitions from College to the Workforce," Unpublished manuscript.

Giné, X., J. Goldberg, D. Silverman, and D. Yang (2018): "Revising commitments: Field evidence on the adjustment of prior choices," The Economic fournal, 128, 159-188.

Grijalva, T. C., J. L. Lusk, R. Rong, and W. D. Shaw (2018): "Convex Time Budgets and Individual Discount Rates in the Long Run," Environmental and Resource Economics, 71, 259-277.

Hoel, J. B., B. Schwab, and J. Hoddinott (2016): "Self-Control Exertion and the Expression of Time Preference: Experimental Results from Ethiopia," Journal of Economic Psychology, 52, 136-146.

Hvide, H. K. and J. H. Lee (2016): "Does Source of Income Affect Risk and Intertemporal Choices?" Unpublished manuscript.

Imai, T. and C. F. Camerer (2018): "Estimating Time Preferences from Budget Set Choices Using Optimal Adaptive Design," Unpublished manuscript.

Imas, A., M. Kuhn, and V. Mironova (2018): "Waiting to Choose," Unpublished manuscript.
Janssens, W., B. Kramer, and L. Swart (2017): "Be Patient when Measuring Hyperbolic Discounting: Stationarity, Time Consistency and Time Invariance in a Field Experiment," fournal of Development Economics, 126, 77-90.

Kölle, F. and L. Wenner (2018): "Time-Inconsistent Generosity: Present Bias across Individual and Social Contexts," Unpublished manuscript.

Kuhn, M. A., P. Kuhn, and M. C. Villeval (2017): "Decision-Environment Effects on Intertemporal Financial Choices: How Relevant are Resource-Depletion Models?" Journal of Economic Behavior \& Organization, 137, 72-89.

Lindner, F. and J. Rose (2017): "No Need for more Time: Intertemporal Allocation Decisions under Time Pressure," fournal of Economic Psychology, 60, 53-70.

Liu, E. M., J. Meng, and J. T.-y. Wang (2014): "Confucianism and Preferences: Evidence from Lab Experiments in Taiwan and China," Fournal of Economic Behavior \& Organization, 104, 106-122.

Lührmann, M., M. Serra-Garcia, and J. Winter (2018): "The Impact of Financial Education on AdolescentsâĂŹ Intertemporal Choices," American Economic fournal: Economic Policy, 10, 309-332.

Mayer, S. E., A. Kalil, P. Oreopoulos, and S. Gallegos (2015): "Using Behavioral Insights to Increase Parental Engagement: The Parents and Children Together (PACT) Intervention," Unpublished manuscript.

Miao, B. and S. Zhong (2015): "Comment on 'Risk Preferences are not Time Preferences': Separating Risk and Time Preference," American Economic Review, 105, 2272-2286.

Mudzingiri, C. (2017): "Incentivized Time Preferences, Level of Education in a Household and Financial Literacy: Laboratory Evidence," Unpublished manuscript.

Penczynski, S. and M. Santana (2016): "Measuring Trust in Institutions: A Lab-in-the-Field Study Using Time Preference Elicitation," Unpublished manuscript.

Potters, J., A. Riedl, and R. Smeets (2016): "Towards a Practical and Scientifically Sound Tool for Measuring Time and Risk Preferences in Pension Savings Devisions," Unpublished manuscript.
Rong, R., M. Gnagey, and T. Grijalva (2018): ""The Less You Discount, the More It Shows You Really Care": Interpersonal Discounting in Households," fournal of Economic Behavior and Organization, 154, 1-23.

Savani, K., A. Sengupta, and D. Wang (2018): "The Cancellation Heuristic in Intertemporal Choice," Unpublished manuscript.

Sawada, Y. and Y. Kuroishi (2015a): "How Does a Natural Disaster Affect People’s Preference? The case of a Large Scale Flood in the Philippines Using the Convex Time Budget Experiments," in Disaster Risks, Social Preferences, and Policy Effects: Field Experiments in Selected ASEAN and East Asian Countries, ed. by Y. Swada and S. Oum, Economic Research Institute for ASEAN and East Asia, chap. 2, 27-56.
--- (2015b): "How to Strengthen Social Capital in Disaster Affected Communities? The Case of the Great East Japan Earthquake," in Disaster Risks, Social Preferences, and Policy Effects: Field Experiments in Selected ASEAN and East Asian Countries, ed. by Y. Swada and S. Oum, Economic Research Institute for ASEAN and East Asia, chap. 6, 163-169.

Slonim, R., C. Wang, E. Garbarino, and D. Merrett (2013): "Opting-In: Participation Biases in Economic Experiments," Journal of Economic Behavior \& Organization, 90, 43-70.

Stango, V., J. Yoong, and J. Zinman (2017): "The Quest for Parsimony in Behavioral Economics: New Methods and Evidence on Three Fronts," Unpublished manuscript.
Sun, C. And J. Potters (2016): "Magnitude Effect in Intertemporal Allocation Tasks," Unpublished manuscript.

Sutter, M., S. Angerer, D. Glatzle-Rutzler, and P. Lergetporer (2018): "Language Group Differences in Time Preferences: Evidence from Primary School Children in a Bilingual City," European Economic Review, 106, 21-34.

Yang, X. and F. Carlsson (2016): "Influence and Choice Shifts in Households: An Experimental Investigation," Journal of Economic Psychology, 53, 54-66.

References

Andreoni, J., M. A. Kuhn, and C. Sprenger (2015): "Measuring Time Preferences: A Comparison of Experimental Methods," Journal of Economic Behavior \& Organization, 116, 451-464.

Andreoni, J. and C. Sprenger (2009): "Estimating Time Preferences from Convex Budgets," Unpublished manuscript.
--- (2012): "Estimating Time Preferences from Convex Budgets," American Economic Review, 102, 3333-3356.

Andrews, I. and M. Kasy (2019): "Identification of and Correction for Publication Bias," American Economic Review, 109, 2766-2794.
Augenblick, N., M. Niederle, and C. Sprenger (2015): "Working Over Time: Dynamic Inconsistency in Real Effort Tasks," Quarterly fournal of Economics, 130, 1067-1115.
Barcellos, S. H. and L. Carvalho (2014): "Information about Self-Control and Intertemporal Choices," Unpublished manuscript.

Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein (2009): Introduction to Meta-Analysis, West Sussex, United Kingdom: John Wiley \& Sons.

Furukawa, C. (2019): "Publication Bias under Aggregation Frictions: Theory, Evidence, and a New Correction Method," Unpublished manuscript.
Hedges, L. V., E. Tipton, and M. C. Johnson (2010): "Robust Variance Estimation in MetaRegression with Dependent Effect Size Estimates," Research Synthesis Methods, 1, 39-65.
lau, J., E. M. Antman, J. Jimenez-Silva, B. Kupelnick, F. Mosteller, and T. C. Chalmers (1992): "Cumulative Meta-Analysis of Therapeutic Trials for Myocardial Infarction," New England fournal of Medicine, 327, 248-254.
Lau, J., C. H. Schmid, and T. C. Chalmers (1995): "Cumulative Meta-Analysis of Clinical Trials Builds Evidence for Exemplary Medical Care," Journal of Clinical Epidemiology, 48, 45-57.

Liu, E. M., J. Meng, and J. T.-y. Wang (2014): "Confucianism and Preferences: Evidence from Lab Experiments in Taiwan and China," Journal of Economic Behavior \& Organization, 104, 106-122.
Moral-Benito, E. (2015): "Model Averaging in Economics: An Overview," Journal of Economic Surveys, 29, 46-75.
Simonsohn, U., L. D. Nelson, and J. P. Simmons (2014): "P-Curve: A Key to the File-Drawer." Journal of Experimental Psychology: General, 143, 534-547.

Stanley, T. D., S. B. Jarrell, and H. Doucouliagos (2010): "Could It Be Better to Discard 90\%
of the Data? A Statistical Paradox," The American Statistician, 64, 70-77.
Steel, M. F. J. (forthcoming): "Model Averaging and its Use in Economics", Journal of Economic Literature.

Van den Noortgate, W., J. A. López-López, F. Marín-Martínez, and J. Sánchez-Meca (2013): "Three-Level Meta-Analysis of Dependent Effect Sizes," Behavior Research Methods, 45, 576594.

[^0]: ${ }^{1}$ See, for example, DellaVigna and Malmendier (2006), Gruber and Kőszegi (2001), Heidhues and Kőszegi (2010), and O'Donoghue and Rabin $(1999,2001)$ for applications of (naïve) present-biased preferences and O'Donoghue and Rabin (2015) for a short overview.

[^1]: ${ }^{2}$ See a list of relevant publications indexed on RePec at: https://ideas.repec.org/k/metaana.html.
 ${ }^{3}$ Cohen et al. (forthcoming) document the design characteristics of 222 empirical studies identified using Google Scholar, but they do not analyze parameter estimates reported in these studies.
 ${ }^{4}$ An experimental design concept that is similar to the CTB is discussed in Cubitt and Read (2007).

[^2]: ${ }^{5}$ Tables B. 1 and B. 2 in Online Appendix list all studies (and their basic design characteristics) in the dataset, split by the existence of parameter estimates. Online Appendix D presents the full list of references.

[^3]: ${ }^{6}$ We are currently conducting a larger-scale meta-analysis using papers which estimate discounting parameters using any method, extending the scope beyond CTB.

[^4]: ${ }^{7}$ In our main meta-analysis below, we focus only on the aggregate-level estimates since there are not many individual-level estimates and the reporting format is not common across these studies. More precisely, we identified only 44 individual-level estimates from 10 studies. Six of these estimates are the mean of the distribution and the other 38 are the median. The former six estimates are accompanied with the standard deviation of the distribution. See Figure B. 1 in Online Appendix.

[^5]: ${ }^{8}$ These 29 countries are: Afghanistan; Australia; China; Colombia; Ethiopia; France; Germany; Guatemala; India; Italy; Japan; Kenya; Malawi; Mozambique; Nepal; Netherlands; Nigeria; Pakistan; Philippines; Singapore; South

[^6]: ${ }^{10}$ The common-effect and the unrestricted weighted least squares models give the same weighted average $\overline{P B}_{0}$ but their associated variances are different. The unknown constant ϕ is given by the residual variance from the standard weighted least squares.
 ${ }^{11}$ DFBETAS is intended to measure the impact of removing observation m on the k th coefficient. Let $\widehat{\gamma}_{k}$ and $\widehat{\gamma}_{k}^{(m)}$ be the estimated k th coefficient with and without observation m, respectively. Then, the impact of observation m is given by DFBETAS $S_{m}=\left(\widehat{\gamma}_{k}-\widehat{\gamma}_{k}^{(m)}\right) / \operatorname{SE}\left(\widehat{\gamma}_{k}^{(m)}\right)$, where $S E\left(\widehat{\gamma}_{k}^{(m)}\right)$ is the standard error of $\widehat{\gamma}_{k}^{(m)}$.
 ${ }^{12}$ Online Appendix Section C. 4 presents results with these three estimates included.

[^7]: ${ }^{13}$ More precisely, we assume a "three-level" model structure. The common-effect model (2) and the random-effects specification (3) described above can be seen as "two-level" models where the first level is $P B_{j}=\mu_{j}+\varepsilon_{j}$ and the second levels are $\mu_{j}=P B_{0}$ for the common-effect model and $\mu_{j}=P B_{0}+\xi_{j}$ for the random-effects model.

[^8]: ${ }^{14}$ This is an acronym for combination of Funnel Asymmetry Test (FAT), Precision Effect Test (PET), and Precision Effect Estimates with Standard Errors (PEESE).

[^9]: ${ }^{15}$ A closely related approach, PEESE, fits a quadratic relationship between $P B$ estimates and their standard errors, by replacing $S E_{i j}$ in model (4) with $S E_{i j}^{2}$. Stanley and Doucouliagos $(2012,2014)$ recommend the use of the PEESE when the PET finds a statistically significant effect (i.e., reject $H_{0}: \alpha_{0}=1$).

[^10]: ${ }^{16}$ In Abebe et al. (2017), the immediate reward was delivered on the next day of the experimental session. In other words, their definition of $t=0$ is extended to "today and tomorrow." Since our definition of "immediate" is limited up to the day of the experiment, estimates from this study (and only those estimates) are categorized into "Immediate" pay: No immediate rewards.

[^11]: ${ }^{1}$ For example, even though Andreoni and Sprenger's original study was published in 2012, the earliest accessible working paper version was circulated in 2009 (Andreoni and Sprenger, 2009, available online). As a result, for the purposes of ordering studies for our CMA, we count the year of this study as being 2009.
 ${ }^{2}$ Van den Noortgate et al.'s (2013) multi-level model is described in Section 4.1.
 ${ }^{3}$ Note that the confidence interval for the average level of present bias does not have to shrink as new studies are added, since estimates from studies that are substantially different from chronologically prior estimates will increase the estimated unconditional variance of the present-bias parameter between studies, hence new estimates can in fact cause the confidence interval for "true" value of the present-bias parameter (among the hypothetical population of studies) to increase.

[^12]: ${ }^{4}$ This means that estimates of present bias less than one will yield positive z values.

[^13]: ${ }^{5}$ It is tempting to think that there are simply no latent studies in which the aggregate estimate of the present-bias parameter indicates future bias, but in individual results for present bias, such as those provided by Andreoni and Sprenger (2012), a surprisingly large proportion of individuals do exhibit choices consistent with future bias, so it is not unlikely that there are a large number of latent studies indicating aggregate future bias.

[^14]: ${ }^{6}$ Focusing on 84 significant ($p<0.05$) estimates, we can make a p-curve introduced by Simonsohn et al. (2014) to detect p-hacking (which will produce disproportionately many estimates just below the desired threshold such as $p<0.05$. The shape of the p-curve does not indicate evidence of aggressive p-hacking (Figures C. 19 and C. 20 in Online Appendix).

