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Abstract 
 
This paper uses a modelling framework which includes two singularities (or poles) in the 
spectral density function, one corresponding to the long-run (zero) frequency and the other to 
the cyclical (non-zero) frequency. The adopted specification is very general, since it allows for 
fractional integration with stochastic patterns at the zero and cyclical frequencies and includes 
both long- and short- memory components. The cyclical patterns are modelled using 
Gegenbauer processes. This model is estimated using monthly data for five European stock 
market indices (DAX30, FTSE100, CAC40, FTSE MIB40, IBEX35) from January 2009 to 
January 2019. The results indicate that the series are highly persistent at the long-run frequency, 
but they are not supportive of the existence of cyclical stochastic structures in the European 
financial markets. The only clear evidence of a stochastic cycle is obtained in the case of France 
under the assumption of white noise disturbances; in all other cases, there is no evidence of 
cycles. 
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1. Introduction 

Understanding the behaviour of asset prices is crucial for both investors and monetary 

authorities to design effective portfolio management strategies and stabilisation policies 

respectively. However, there is still no agreement on the most appropriate modelling 

framework to use. Whilst the early literature used specifications based on the classical 

dichotomy between I(0) and I(1), more recently the possibility of fractional integration 

and long-memory behaviour has also been taken into account. For instance, a long-

memory specification was adopted by Caporale and Gil-Alana (2002) for US stock 

prices. In a subsequent paper, the same authors advocated an approach incorporating 

both long-run and cyclical components (see Caporale and Gil-Alana, 2014). The present 

study uses a similar modelling framework which includes two singularities (or poles) in 

the spectral density function, one corresponding to the long-run (zero) frequency and 

the other to the cyclical (non-zero) frequency. The adopted specification is very general, 

since it allows for fractional integration with stochastic patterns at the zero and cyclical 

frequencies and includes both long- and short- memory components. The cyclical 

patterns are modelled using Gegenbauer processes. A motivation for this type of 

specification is that it is sufficiently general to include as particular cases the Efficient 

Market Hypothesis, mean reversion with different speeds of adjustment towards the 

long-run equilibrium level, financial cycles, explosive patterns, etc. This model is then 

estimated in the case of five European stock market índices using monthly data for five 

European stock market indices (DAX30, FTSE100, CAC40, FTSE MIB40, IBEX35) 

from January 2009 to January 2019. 

Therefore, our contribution is twofold: we incorporate trends in a general 

framework with both long- and short-memory processes at both zero and non-zero 

frequencies, and then provide new evidence on the behaviour of various European stock 
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markets obtained by following this approach. The remainder of the paper is structured 

as follows. Section 2 reviews the relevant literature. Section 3 outlines the modelling 

approach. Section 4 describes the data and presents the empirical results. Section 5 

offers some concluding remarks. 

 

2. Literature Review 

According to Borio (2014), the term “financial cycle” refers to the self-reinforcing 

interactions among perceptions of value and risk, risk-taking, and financing constraints. 

Typically, rapid increases in credit boost property and asset prices, which in turn 

increases collateral values and the amount of credit the private sector can obtain, but the 

process subsequently tends to go into reverse. As highlighted by Borio et al. (2018), this 

mutually reinforcing interaction between financing constraints and perceptions of value 

and risks has historically been likely to generate severe macroeconomic imbalances. 

The financial cycle can be approximated in different ways. The empirical 

literature suggests that a reasonable strategy is to capture it through fluctuations in 

credit and property prices, but also by means of the debt service ratio, defined as interest 

payments plus amortisation divided by GDP. Drehmann et al. (2018) find a robust 

relationship between debt accumulation and subsequent debt service (i.e., interest 

payments plus amortisation), which has a large negative effect on economic growth. All 

these series may be used individually or combined, as a composite financial cycle proxy 

similar to that constructed by Drehmann et al. (2012). 

Borio et al. (2018) point out that previous literature has identified two important 

features of the financial cycle. First, its peaks generally coincide with banking crises or 

considerable financial stress. During expansions, the interaction between asset prices 

and risk-taking can overstretch balance sheets, making them more fragile and generating 

the consequent financial tightening. Second, financial cycles can be much longer than 
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business cycles: most of the former have lasted around 15 to 20 years since the early 

1980s, whilst the latter have typically lasted up to 8 years. Therefore, a financial cycle 

can span more than one business cycle, which is the reason why peaks in a financial 

cycle are generally followed by downturns, while not all recessions are preceded by one 

of those peaks. 

A number of recent studies have provided more evidence on financial cycles. 

Specifically, Oman (2019), using a frequency-based filter, details the existence of a 

Eurozone financial cycle and high- and low-amplitude national financial cycles. 

Applying concordance and similarity analysis to business and financial cycles, he 

provides evidence of several empirical regularities: the aggregate Eurozone credit to-

GDP ratio behaved pro-cyclically in the years preceding euro-area recessions; financial 

cycles are less synchronized than business cycles; business cycle synchronization has 

risen while financial cycle synchronization has decreased; financial cycle 

desynchronization was more pronounced between high-amplitude and low-amplitude 

countries; high-amplitude countries experienced divergent leverage dynamics after 

2002. Filardo et al. (2018) explore financial conditions (120 years of data) over time in 

order to improve our understanding of financial cycles. They find that financial cycles 

are characterised by recurrent, endogenous swings in financial conditions, which result 

in booms and busts. Yet the recurrent nature of such swings may not appear so obvious 

when looking at conventionally plotted time-series data. Using the pioneering 

framework developed by Stock (1987), they offer a new statistical characterisation of 

the financial cycle based on a continuous-time autoregressive (AR) model subject to 

time deformation.   

Iacoviello (2015), using Bayesian methods, estimates a DSGE model where a 

recession is initiated by losses suffered by banks and exacerbated by their inability to 
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extend credit to the real sector. Claessens et al. (2011) provide a wide-ranging analysis 

of financial cycles using a large database covering 21 advanced countries over the 

period 1960:1-2007:4. They study cycles in credit, house prices and equity prices. The 

main results are the following: 1) financial cycles tend to be long and severe, especially 

those in housing and equity markets; 2) financial cycles are highly synchronized within 

countries, especially with credit and house price cycles, and 3) financial cycles magnify 

each other, especially when the downturns in credit and housing markets coincide. 

DePenya and Gil-Alana (2006) propose a method for testing nonstationary cycles in 

financial time series data. They develop a procedure that enables the researcher to test 

unit root cycles in raw time series. Their test has several distinguishing features 

compared with alternative ones. In particular, it has a standard null limit distribution and 

is the most efficient test against the fractional alternatives. In addition, it allows the 

researcher to test unit root cycles at each of the frequencies, and, thus, to approximate 

the number of periods per cycle. Finally, as already mentioned, Caporale and Gil-Alana 

(2014) propose a general framework including linear and segmented time trends, and 

stationary and nonstationary processes based on integer and/or fractional degrees of 

differentiation; moreover, the spectrum is allowed to contain more than a single pole or 

singularity, occurring at both zero but non-zero (cyclical) frequencies. They find that 

US dividends, earnings, interest rates and long-term government bond yields exhibit 

fractional integration with one or two poles in the spectrum; further, a model with a 

segmented trend and fractional integration outperforms rival specifications over long 

horizons in terms of its forecasting properties. A similar approach is taken in the present 

study (see the next section for details). 
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3. The Model 

The adopted model is the following: 

           ,...,2,1,)cos21()1( 221 ==+−− tuxLLwL tt
d

r
d  (1) 

where xt is the observed time series; d1 and d2 are the orders of integration 

corresponding to the long-run (zero) and the (cyclical) (non-zero) frequency 

respectively, and ut is an I(0) process, defined as a covariance-stationary process with a 

spectral density function that is positive and finite at all frequencies in the spectrum. 

The first polynomial in equation (1) refers to the standard case of fractional integration 

or I(d) that basically imposes a singularity or pole in the spectrum at the long-run or 

zero frequency. The literature includes plenty of papers with such a specification and 

testing for unit or fractional degrees of differentiation (for the unit root case, see, e.g., 

Fama and French, 1988a,b; Poterba and Summers, 1988; for the fractional case see 

instead Baillie, 1996; Gil-Alana and Robinson, 1997; Abbritti et al., 2006; and others). 

The second polynomial refers to the case of integration at a frequency away 

from zero and uses Gegenbauer processes, where wr = 2πr/T, and r = T/s. Thus, s 

indicates the number of time periods per cycle, while r refers to the frequency with a 

pole or singularity in the spectrum of xt. In this context, if r = 0 (s = 1), the second 

polynomial in (2) becomes (1 – L)2d2, and therefore the whole process corresponds to 

the classical fractional integration model widely studied in the literature. Andel (1986) 

introduced this process for values of r different from 0 and fractional values of d2, and 

Gray et al. (1989, 1994) showed that, by denoting rwcos=µ , one can express the 

polynomial in terms of the orthogonal Gegenbauer polynomial )(2, µdjC , so that, for all 

2d  ≠ 0, 
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where we can define )(2, µdjC  recursively as follows:  
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Authors such as Giraitis and Leipus (1995), Chung (1996a,b), Gil-Alana (2001) and 

Dalla and Hidalgo (2005), among others, subsequently examined these processes; a 

recent empirical application using UK inflation can be found in Gil-Alana and Trani 

(2019). 

In this paper we combine these two approaches in a single framework testing 

simultaneously for the orders of integration at both the zero and a non-zero frequency. 

This type of model has been already employed to analyse US inflation by Canarella et 

al. (2019), but to date there have been no applications to stock prices. 

 

4. Data Description and Empirical Results 

We use closing prices of the following five European stock market indices: DAX30 

(Germany), FTSE100 (UK), CAC40 (France), FTSE MIB40 (Italy) and IBEX35 

(Spain). The frequency is monthly, and the sample period goes from January 2009 to 

January 2019. The data source is Thomson Reuters Eikon. Plots of the series are shown 

in Figure 1. Visual inspection suggests that DAX30, FTSE100 and CAC40 exhibit an 

upward trend, whilst FTSE MIB40 and IBEX35 fluctuate around their mean. 

INSERT FIGURE 1 ABOUT HERE 

As a first step we compute the periodogram for the five series under 

examination. This is an asymptotically unbiased estimator of the spectral density 
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function and can be used to obtain some preliminary evidence about the peaks in the 

spectrum of the series.  

INSERT TABLE 1 ABOUT HERE 

 Table 1 displays the first five values of the periodogram for each series. It can be 

seen that for the stock markets of France, Germany and UK, the highest value 

corresponds to the smallest frequency, following by frequency 3; however, for France 

and Spain, it occurs at frequency 2, followed by frequency 1 and frequency 3 

respectively. 

 In order to avoid deterministic terms, we use the demeaned series and estimate 

the model given by equation (1), testing the null hypothesis: 

    ,: 00 ddH =      (2) 

where d = (d1, d2)T, with both values ranging from -2.00 to 2.00 with 0.01 increments. 

Thus, the estimated model under the null is: 

           ,...,2,1,)cos21()1( 21 2 ==+−− tuxLLwL tt
d

r
d oo   (3) 

where ut is assumed to be in turn an uncorrelated (white noise) process and an 

autocorrelated one, for the latter the exponential spectral approach of Bloomfield (1977) 

being used for the disturbances ut; this is a non-parametric method that only requires 

specifying the spectral density function, which is given by: 






 ∑=

=

m

r
r rf

1

2

)(cos2exp
2

);( λτ
p

sτλ ,   (4) 

where σ2 is the variance of the error term and m indicates the short-run dynamic 

components. Bloomfield (1973) showed that this function approximates fairly well the 

behaviour of highly parameterized ARMA models and performs well in the context of 

fractional integration (Gil-Alana, 2004). 
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 For the sake of generality, we do not restrict the first polynomial to be 

constrained at the zero frequency, and therefore consider initially a model with 2-factors 

of the Gegenbauer polynomial of the form: 

           ,...,2,1,)cos21(2
1

2)( )(
==+−∏ = tuxLLw tj t

dj
r

j
o   (5) 

where )1(
od  becomes d1o/2 if 0)1( =rw  (or j1 = 1). The estimated value of j is equal to 1 in 

all cases, which supports the existence of a pole or singularity in the spectrum at the 

zero frequency. Thus, in what follows we focus exclusively on the model given (3), 

estimating simultaneously d1o (the order of integration at the long-run or zero frequency, 

d2o (the order of integration at the cyclical frequency) and j2 (the frequency in the 

spectrum that goes to infinity and that is related to the number of periods per cycle in 

the cyclical structure, i.e., r2 = j2/T). 

Table 2 focuses on the case of white noise errors. It can be seen that that the 

frequency j2 is equal to 2 for France, Italy and Spain, and to 3 for the UK and Germany. 

This implies that the number of periods per cycle is approximately 60 (5 years) for the 

stock markets in the former three countries and 49 (T = 121)/3 ≈ 40 months (3.3 years) 

for the latter two. Concerning the estimates of the differencing parameters, d1 is smaller 

than 1 in the case of France, though the unit root null hypothesis cannot be rejected, 

while for the other countries the I(1) hypothesis is rejected in favor of values of d1 

above 1. As for the estimates of d2, the highest is for France (0.33) and only for this 

country and Germany (0.08) the values are significantly positive. In the other three 

cases, they are positive but very close to zero and the I(0) null cannot be rejected. 

INSERT TABLES 2 AND 3 ABOUT HERE 

Table 3 displays the results for the case of weak autocorrelation using the model 

of Bloomfield (1973). The values of j2 are now 2 for Italy and Spain and 3 for the other 
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three countries; d1 is substantially smaller than in the previous table, its estimates 

ranging between 0.58 (UK) and 0.71 (Spain), and evidence of mean reversion with 

respect to this frequency is only obtained in the UK case. In all other cases, the intervals 

indicate that the unit root null cannot be rejected. Finally, the estimates of d2 are all 

positive but the null d2 = 0 cannot be rejected in any country. 

On the whole, our results indicate high persistence at the long-run frequency but 

they are not very supportive of the existence of cyclical stochastic structures in the 

European financial markets. The only clear evidence of a stochastic cycle is obtained in 

the case of France under the assumption of white noise disturbances; in all other cases, 

although d2 is found to be positive, the confidence intervals are such that the null d2 = 0 

cannot be rejected, and therefore there is no evidence of cycles. 

 

5. Conclusions 

In this paper we have examined the possible presence of stochastic cycles in financial 

series. For this purpose, we have proposed a model that allows simultaneously for both 

long-run and cyclical patterns in the data using a method based on long-memory 

processes. For the zero frequency the standard I(d) approach is followed, whilst for the 

cyclical structure a Gegenbauer polynomial is used which also allows for fractional 

degrees of differentiation. Therefore, the chosen specification contains two singularities 

in the spectrum corresponding to the long-run (zero) and the cyclical (non-zero) 

frequencies respectively. 

 Using monthly data for five European stock market indices (namely, DAX30 

(Germany), FTSE100 (UK), CAC40 (France), FTSE MIB40 (Italy) and IBEX35 

(Spain)) over the period from January 2009 to January 2019 we find that the order of 

integration at the long-run or zero frequency is significantly higher than the one at the 
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cyclical frequency, the latter being insignificantly different from zero in the majority of 

cases. The cycles seem to have a periodicity between 3 and 5 years.  

However, these results should be taken with a degree of caution given the 

relatively short sample period. Specifically, with 121 monthly observations as in our 

case the smallest possible frequency apart from j1 = 1 (that corresponds to the long-run 

frequency) is 2, which implies cycles of T/ 2 at most, i.e. 60 months or 5 years. 

Analysing much longer series, possibly spanning decades, would be much more 

informative about the possible existence of stochastic cycles. This is left for further 

research.  
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Figure 1. Closing prices of five European stock market indices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2000

4000

6000

8000

10000

12000

14000

en
e-

09
se

p-
09

m
ay

-1
0

en
e-

11
se

p-
11

m
ay

-1
2

en
e-

13
se

p-
13

m
ay

-1
4

en
e-

15
se

p-
15

m
ay

-1
6

en
e-

17
se

p-
17

m
ay

-1
8

en
e-

19

DAX30 

3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

en
e-

09

se
p-

09

m
ay

-1
0

en
e-

11

se
p-

11

m
ay

-1
2

en
e-

13

se
p-

13

m
ay

-1
4

en
e-

15

se
p-

15

m
ay

-1
6

en
e-

17

se
p-

17

m
ay

-1
8

en
e-

19

FTSE100 

2000

2500

3000

3500

4000

4500

5000

5500

6000

en
e-

09

se
p-

09

m
ay

-1
0

en
e-

11

se
p-

11

m
ay

-1
2

en
e-

13

se
p-

13

m
ay

-1
4

en
e-

15

se
p-

15

m
ay

-1
6

en
e-

17

se
p-

17

m
ay

-1
8

en
e-

19

CAC40 

12000

14000

16000

18000

20000

22000

24000
en

e-
09

se
p-

09

m
ay

-1
0

en
e-

11

se
p-

11

m
ay

-1
2

en
e-

13

se
p-

13

m
ay

-1
4

en
e-

15

se
p-

15

m
ay

-1
6

en
e-

17

se
p-

17

m
ay

-1
8

en
e-

19

FTSE MIB40 

5000

6000

7000

8000

9000

10000

11000

12000

13000

en
e-

09

se
p-

09

m
ay

-1
0

en
e-

11

se
p-

11

m
ay

-1
2

en
e-

13

se
p-

13

m
ay

-1
4

en
e-

15

se
p-

15

m
ay

-1
6

en
e-

17

se
p-

17

m
ay

-1
8

en
e-

19

IBEX35 



15 
 

Table 1: First five values in the periodogram of the series 

Country 1 2 3 4 5 

FRANCE 0.17205* 0.00407 0.04472 0.02301 0.00021 

GERMANY 0.55260* 0.06697 0.10928 0.04837 0.00627 

ITALY 0.04423 0.04806* 0.04228 0.01590 0.00905 

SPAIN 0.01546 0.05215* 0.04449 0.00507 0.01091 

U.K. 0.08426* 0.02807 0.04186 0.01064 0.00331 
* refers to the largest value and in bold the largest two values. 

 

Table 2: Estimates of d based on a model with white noise disturbances 

Country j1 j2 d1 d2 

FRANCE 1 2 0.89    (0.73,   0.96) 0.33   (0.17,    0.65) 

GERMANY 1 3 1.36    (1.11,   1.44)     0.08   (0.01,    0.25) 

ITALY 1 2 1.24    (1.01,   1.39) 0.02   (-0.08,    0.14) 

SPAIN 1 2 1.38    (1.14,   1.52) 
 

0.08   (-0.03,    022) 

U.K. 1 3 1.34    (1.10,   1.53) -0.05   (-0.17,    0.15) 
 

 

Table 3: Estimates of d based on a model with autocorrelated disturbances 

Country j1 j2 d1 d2 

FRANCE 1 3  0.65    (0.27,   1.09) 0.05   (-0.27,   0.11) 

GERMANY 1 3 0.66    (0.49,   1.18) 0.04   (-0.09,   0.18 

ITALY 1 2 0.64    (0.45,   1.03) 0.01   (-0.18,   0.20) 

SPAIN 1 2  0.71    (0.56,   1.24) 0.05   (-0.14,   0.26) 

U.K. 1 3 0.58    (0.31,   0.99) 0.02   (-0.11,   0.21) 
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