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Abstract 
 
Two duopolists compete in price on the market for a homogeneous product. They can ‘profile’ 
consumers, i.e., identify their valuations with some probability. If both firms can profile 
consumers but with different abilities, then they achieve positive expected profits at equilibrium. 
This provides a rationale for firms to (partially and unequally) share data about consumers, or 
for data brokers to sell different customer analytics to competing firms. Consumers prefer that 
both firms profile exactly the same set of consumers, or that only one firm profiles consumers, 
as this entails marginal cost pricing (so does a policy requiring list prices to be public). 
Otherwise, more protective privacy regulations have ambiguous effects on consumer surplus. 

JEL-Codes: D110, D180, L120, L860. 
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1 Introduction

Context. Advances in digital technology have greatly facilitated firms’ access to detailed infor-

mation on consumers’ willingness to pay. This has improved their ability to offer personalized

prices and, potentially, to raise their profitability. Shiller (2014) provides empirical evidence

that web browsing data gives firms more information on consumer willingness to pay compared

to ‘old school’ demographic data, which increases profits by around 12.2%. Similarly, a report

of McKinsey&Company (2016) shows that finer data analytics has improved customer segmen-

tation and firm’s profitability, while Mikians et al. (2012) empirically demonstrate the existence

of personalized pricing. In addition, firms are also more open nowadays regarding their use of

differential pricing strategies.1 On the other hand, anecdotal evidence suggests that consumers

are not always aware that other prices may be available to them, or that even if they are aware,

it may be (too) costly to obtain access to a lower price. This paves the way for firms to price dis-

criminate some consumers against others by selling the same good at different prices to different

consumers.

Against this backdrop, we want to revisit price competition in data-rich environments where

firms are able to profile customers and potentially differ in their ability to do so. Differences

in abilities to profile consumers could come from different capacities to collect and analyze

data (think of Amazon or Alibaba vs smaller online shops).2 This could also be due to having

obtained different customer analytics from data collecting and processing companies, so-called

‘data brokers’.3

More precisely, we study a model of price competition between firms in a homogenous good

setting. Thanks to a clever use of big data, firms are able to ‘profile’ consumers, i.e., to identify

their willingness to pay. Yet, they can only do this imperfectly : there is always a positive

probability that any particular consumer will remain anonymous. This may be due to the

available data being not sufficiently precise, or to consumers acting to protect their privacy.4

Firms then charge a personalized price to those consumers that they are able to profile, while

setting a ‘uniform’ price for all consumers who remain anonymous. Consumers may observe

that firms charge different prices, but it is assumed that they can only buy at the price they

have been individually offered.

1For instance, Ant Financial Services Group (the financing unit of Alibaba) announced in 2015 the launch
of Sesame Credit, a credit-scoring service that leverages big data and customer behavior analytics to calculate
personalized interest rates for micro loans or personalized premiums for insurance services; see Business Wire
(2015). See also EIOPA (2019) for a review of how motor and health insurance companies use big data for
pricing.

2BenMark et al. (2017) describe the expertise that firms must develop to be effective in applying differential-
pricing solutions.

3One such data broker is the Belgian Realdolmen, which clearly details on its website that it offers ‘tailored’
data services (see http://www.realdolmen.com/tactical-ict/ict-trends/big-data, accessed on January 25,
2018). Interestingly, Realdolmen is partially controlled by Belgian supermarket chain Colruyt. One may speculate
that Colruyt, given its privileged relationship with Realdolmen, may have an advantage when it comes to obtaining
information about potential consumers compared to other companies, including its competitors. This advantage
may translate into asymmetric abilities to profile and target consumers.

4Consumers can use obfuscation strategies such as clearing cookies from their browsers, logging off their Google
and Facebook accounts, or adopting proxy servers or ad-blockers. In our baseline model, we take such hiding as
exogenous; in Section 5, we discuss how our results could be affected if hiding was endogenized.
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We assume that firms have correlated abilities to profile consumers, which makes sense if

they both use the services of the same data broker or if they share the data that one of them

collected. In this setting, we address the following questions: Is being able to profile consumers

enough to obtain market power through price discrimination in a duopolistic setting? If the

firms’ profiling ability depends on the data they need to purchase from a data broker, would

this data broker sell these data exclusively to one firm? Is an improved profiling ability good

or bad news for consumers? If consumers would have the option to hide their characteristics,

would they like to do so? If uniform prices were observable (‘list prices’) would this lead to more

competition?

Main results. Without the possibility to price discriminate, price competition in uniform

prices would result in marginal cost pricing, the classical Bertrand Paradox. Yet, having the

ability to profile consumers does not automatically translate into market power. It only does so

when both firms have the ability to profile consumers but they do not always profile the same

consumers. The mechanism that yields market power in our model relies on the strategic effect

of the firms’ uniform prices (set in stage 1) on both firms’ personalized prices. Indeed, there

will be a positive probability that the better informed firm recognizes consumers the other firm

does not and this firm can thus guarantee positive profits as long as the uniform price of the less

informed firm is above the marginal cost. Hence, when the latter increases its uniform price,

competitive pressure on ‘profiled’ consumers decreases. Therefore, the less-informed firm will

always have an incentive to set a uniform price above its cost, yielding a price equilibrium that

displays market power. This mechanism breaks down in two scenarios: when both firms always

profile the exact same set of consumers and when the less informed firm can never profile any

consumer. In these two cases, the only equilibrium is the Bertrand paradox, where both firms

charge all consumers a price equal to marginal cost (irrespective of consumers being profiled

or not). Hence, having the ability to price discriminate against profiled consumers does not

necessarily imply market power.

Yet, our analysis also indicates that firms are likely to escape these situations in which the

Bertrand Paradox continues to prevail. It is indeed in the interest of any data provider to make

sure that both firms are able to profile consumers, albeit with different abilities to do so. If

data about consumers is collected by one of the firms, our results show that this firm has an

incentive to share part of this data with its competitor, so as to relax price competition. If data

brokers are the data providers, they will find it optimal to provide data services of different

‘quality’ (in terms of profiling ability) to the two firms. That is, data brokers will ‘tailor’ their

data services in a non-exclusive way, not to satisfy the ‘needs’ of the firms that demand data

services, but rather to soften price competition in the product market and, thereby, increase the

firms’ willingness to pay for their services.

We also assess how competitive differential pricing affects consumers. Obviously, consumers

are hurt as soon as firms are both able to profile them but in differentiated ways, as equilibrium

prices are then set above marginal cost. The more interesting question is how consumers are

affected when the firms’ profiling abilities are improved or become more similar. To address

this question, we focus on the simpler case of perfectly correlated ‘profiling technologies’; in
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this case, any consumer profiled by the so-called ‘less-informed’ firm is also profiled by the

so-called ‘better-informed’ firm, but the reverse is not true. In this setting, we provide a set

of comparative statics results with respect to the precision of the profiling technology and the

degree of asymmetry between firms’ profiling technologies. We show that increasing the precision

of profiling technologies increases both uniform and personalized prices, leading to instances in

which some profiled consumers are right to fear that they are being priced closer to their ‘pain

point’ compared to the uniform price they would receive if they would be able to hide. This

provides incentives to hide so as to avoid excessive prices, i.e., there is a demand for privacy.

However, some consumers may gain from improved profiling, namely those consumers with a

low valuation, who start purchasing (and enjoying a positive surplus) when they are no longer

anonymous; as what they gain may outweigh what other consumers lose, improved profiling may

lead to an overall increase in consumer surplus.

We then show that reducing the asymmetry between firms’ profiling technologies has a non-

monotone effect on the uniform prices. More specifically, uniform prices are at their highest

level for an intermediate level of asymmetry.5 We also establish that for given uniform prices,

personalized prices decrease as firms’ profiling technologies become more symmetric, which is due

to the higher intensity of competition between firms for consumers profiled by both firms. This

has interesting implications for consumer surplus. For relatively high levels of symmetry between

firms’ profiling technologies, further increasing the symmetry benefits the consumers as it leads

to both lower uniform prices and lower personalized prices. For relatively low levels of symmetry,

however, increasing the symmetry leads to higher uniform prices but lower personalized prices.

We finally confirm that when consumers can always purchase the product at the ‘list’ price,

competitive pressure is higher. The intuition is simple: a firm that wants to price discriminate

does not just compete against the prices of its competitor but also against its own uniform price.

The effect is very stark in our model: marginal cost pricing prevails again at the subgame-perfect

equilibrium, bringing us back in the Bertrand Paradox. Firms thus have incentives to prevent

consumers from having access to multiple prices. In addition, we show in a simplified version

of our model in which consumers can only be of two types, that no other (mixed strategy)

subgame-perfect equilibrium exists.

Related literature. Price competition with imperfect profiling has rarely been studied in

an oligopoly setting before. Either imperfect price discrimination is considered in a monopoly

setting, as done recently by Belleflamme and Vergote (2016), and Valletti and Wu (2016).

Or oligopolistic competition is introduced, but with restricted discrimination abilities for the

competing firms. Seminal papers are Thisse and Vives (1988), Corts (1998), Liu and Serfes

(2004), Encaoua and Hollander (2007); see also Taylor and Wagman (2014) for a synthesis,

Kehoe et al. (2017) for an analysis of the impacts of big data on price competition in an

oligopoly market for branded experience goods, and Kim et al. (2018) for an analysis of the

effects of consumer profiling on merger analysis. In this literature, the choice given to firms

is often between the two extremes of perfect discrimination and uniform pricing; when third-

5This result, which holds generally, contributes to explain why firms are willing to share data and data brokers
to tailor their services.
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degree price discrimination (i.e., group pricing) is considered, the focus is on symmetric situations

where firms have the same ability to discriminate. One exception is Chen and Iyer (2002), who

study price competition under imperfect consumer addressability and establish price dispersion

in equilibrium. This paper differs from Chen and Iyer (2002) in two ways. First, we fully

characterize the two stage price competition equilibrium with uniform price and personalized

price.6 Second, the strategic uncertainty that firms face come from a different source: in Chen

and Iyer (2002), imperfect addressability makes each firm uncertain as to whether it is competing

with the other firm or not (similar to Varian, 1980, and Burdett and Judd, 1983), whereas in

our paper, imperfect profiling makes each firm not sure about the pricing strategy of the other

firm, while knowing that competition is always present. Our paper is also related to classical

papers on targeted advertising such as Shaffer and Zhang (2002) and Iyer et al. (2005). In

these papers, firms have perfect information about consumers’ preferences and decide on which

segment of consumers to target their advertisement. Asymmetric targeting arises as part of the

equilibrium to limit the intensity of price competition, whilst firms have the same ability to

target. Our paper, however, allows firms to differ in their ability to profile and focus on varying

the intensity of price discrimination.7

Our paper also provides some important insights into the debate on privacy regulation. An

early contribution, Calzolari and Pavan (2006), focuses on the incentives of firms to share private

information about consumers. More recently, the literature on targeting and privacy has grown

considerably, triggered by advances in digital tracking; see Acquisti et al. (2016) for a survey.

However, this literature focuses on independent targeting, whereas we study correlated targeting.

Also, by covering the whole spectrum from no discrimination to perfect discrimination, and by

letting firms differ in their intensity of price discrimination, we are able to shed new light on

issues related to privacy.

This paper further relates to the literature that studies the incentives of data brokers. For

example, Clavora Braulin and Valletti (2016) and Montes et al. (2019) also consider competitive

targeting. However, there are two important differences. First, we consider homogeneous prod-

ucts, whereas they consider differentiated products. Second, we examine the mixed strategies

equilibria under different ‘degrees’ of asymmetry and correlation in profiling technologies, but

they focus on the pure strategies equilibria under perfectly asymmetric profiling technologies

(i.e., one firm is unable to profile consumers). When products are differentiated vertically (Cla-

vora Braulin and Valletti, 2016) and horizontally (Montes et al., 2019), they find that the data

broker finds it profitable to sell its data exclusively to only one firm. We, however, show that the

ability to profile is irrelevant to market power if firms’ profiling technologies are fully symmetric

(and perfectly correlated) or fully asymmetric, as the Bertrand paradox prevails in both cases.

Because of this, we find that in contrast to the result of Clavora Braulin and Valletti (2016)

and Montes et al. (2019), the data broker may have incentives to sell its data to all competing

6Chen and Iyer (2002) mainly characterize the price competition equilibrium in personalized prices. They
briefly discuss price competition in both uniform price and personalized price in Section 5, but with consumers
observing both uniform prices and personalized prices.

7Moreover, our model differs with respect to discount and poaching models (e.g., Villas-Boas, 1999), as firms
here can set personalized prices above the previously set uniform price.
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firms, as long as firms end up with different abilities to profile consumers. Another example is

Jentzsch et al. (2013), who study price discrimination in two dimensions (group and individual

price discrimination) in a Hotelling model. However, they do not study the effect of imperfect

profiling; that is, in their model, each firm knows its rival’s information set. Therefore, price

discrimination arises in equilibrium but not price dispersion, though they also find that partial

information sharing is profitable for firms.

The rest of the paper is organized as follows. In Section 2, we present our modeling framework.

In Section 3, we solve the model for its subgame-perfect equilibrium and explain why competitive

differential pricing may relax competition. We then derive the implications of our results for

data markets (Section 4) and for consumers (Section 5). Finally, in Section 6, we draw some

policy and empirical implications from our analysis.

2 The model

We consider a market where two firms produce a homogeneous product at a constant marginal

cost, which is set to zero for simplicity. We describe in turn the main assumptions regarding

consumers and firms, as well as the timing of the game.

Consumers. There is a unit mass of consumers who vary in the valuation that they attach to

the homogeneous product. The valuation of consumer x is noted r(x), which is randomly and

independently drawn according to the distribution function F (.) : R→ [0, 1] with support [0, r̄],

and with associated continuously differentiable density function f(.) : R→ R. Consumers wish

to purchase at most one unit of the product and they do so from the firm that offers the lowest

price (we say more on this below). Noting this price p, we can express the expected demand from

consumer x at p as the probability that the consumer has a valuation that is at least as large as

p, i.e. prob(r(x) > p). This probability is given by the survival function S(.) : R→ [0, 1] where

S(p) = 1−F (p). Since we assume that the mass of consumers is equal to 1 and that valuations

are drawn independently, the survival function also represents the aggregate expected demand

(referred to hereafter as the ‘demand’). We impose the additional assumption that demand is

log-concave: S′(p)/S(p) = −h(p) is non-increasing in p, where h(p) is the hazard rate.

Firms. Each firm has access to a ‘profiling technology’ that allows it to identify the valuation

of a consumer probabilistically. When a firm identifies the valuation of a consumer, it is in a

position to price discriminate and charge this consumer a personalized price. For the consumers

that a firm does not profile, the firm sets a uniform price.

Without loss of generality, assume that the probability of identifying the valuation of a

consumer is equal to λA = λ ∈ [0, 1] for firm A and λB = βλ for firm B, where 0 ≤ β ≤ 1.

The parameter λ can be interpreted as a measure of firm A’s ability to profile consumers.

Alternatively, 1−λ can be interpreted as the capacity of consumers to hide from firm A. As for

the parameter β, it measures the degree of symmetry between the firms’ profiling technologies:

if β = 1, firms have symmetric technologies (they are ‘equally’ informed); for any β < 1, firm
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B’s is at a disadvantage with respect to firm A in terms of profiling consumers (firm A is the

‘better-informed’ firm and firm B, the ‘less-informed’ firm).

Let us now determine the probabilities for a given consumer x to be profiled by both firms,

only one of them, or none of them. To this end, we denote by a (resp. b) the conditional

probability that firm A (resp. B) profiles any consumer x in the event that firm B (resp. A)

does so as well. To allow for any degree of (positive) correlation between these two conditional

probabilities, we define a = φλ and b = φβλ, where φ ∈
[
1, 1

λ

]
.8 The parameter φ is a measure

of the correlation of the profiling technologies: the higher its value, the more correlated the

technologies. At the lower bound (φ = 1), the profiling technologies are independent, while at

the upper bound (φ = 1
λ), the technologies are perfectly correlated (i.e., firm A’s technology

profiles any consumer that firm B profiles as well, but not vice versa).

We can now compute the jointly correlated profiling probabilities for a given consumer.

Let M2 denote the probability that both firms profile the consumer, MK the probability that

only firm K profiles the consumer (K = A,B), and M0 the probability that no firm profiles

the consumer. Using the previous definitions, we have:9 M2 = aλB = bλA = βφλ2, MA =

(1− b)λA = λ (1− βφλ), MB = (1− a)λB = βλ (1− φλ), and M0 = 1 − (M2 +MA +MB) =

1− λ− βλ (1− φλ).

As we set the total a mass of consumers equal to unity, the latter probabilities can also be seen

as the respective masses of consumers in four distinct market segments. To ease the exposition,

we name these segments as follows: the ‘transparent ’ segment (with mass M2) comprises those

consumers that both firms have profiled; the ‘K-translucent ’ segment (with mass MK) comprises

those consumers that only firm K has profiled; the ‘opaque’ segment (with mass M0) comprises

those consumers that no firm has profiled. For future reference, we note that there are three

particular instances in which the B-translucent segment is empty: (i) β = 0 (firm B cannot

profile any consumer; in this case, we also have M2 = 0), (ii) λ = 1 (firm A is able to profile all

consumers; in this case, we also have M0 = 0), (iii) φ = 1/λ (profiling technologies are perfectly

correlated). As for the A-translucent segment, the only instance in which it is empty is when

φ = 1/λ and β = 1 (profiling technologies are perfectly correlated and equivalent).

Timing of the game. Before the game starts, the firms acquire their profiling technology, with

respective precisions λA and λB. The values (λA, λB) are assumed to be common knowledge.10

In the first stage of the game, firms set their uniform price pK , with K ∈ {A,B}, for the

consumers that they are not able to profile. In the second stage, after observing the uniform

prices, firms set personalized prices for the consumers that their profiling technology allows them

to profile; these prices are noted pK(x), with x referring to the identity of the consumer with

valuation r (x). This assumption can be justified in several ways. First, a sequential price setting

is commonly assumed in the literature (see Thisse and Vives, 1988). Second, it also reflects the

relative flexibility in the adjustment of personalized prices compared to uniform prices (see, e.g.,

8We would in general expect that the profiling technologies of firms are correlated: when one firm profiles a
consumer, it increases the chances that the other firm will do so as well.

9The conditions λ, β ∈ [0, 1] and φ ∈
[
1, 1

λ

]
ensure that all four probabilities are between 0 and 1.

10For now, we take the firms’ profiling technologies as exogenous. In Section 4, we discuss how to endogenize
the technologies by letting firms share datasets or by introducing data brokers in the game.
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Choe et al., 2017). Finally, as we show in the analysis, simultaneous pricing would lead firms

back to the Bertrand paradox.

In the third stage, consumers decide whether or not to buy the product, and from which firm

to buy after observing the price offered to them by each firm. We assume that consumers receive

only one price offer from each firm, either a uniform or a personalized price. As a consequence,

profiled consumers are not able to arbitrage between their personalized price and the uniform

price. This assumption is reasonable if price offers are sent out electronically and if consumers

have to incur some search cost to know about the uniform price.11 The fact that profiled

consumers do not (or have a hard time to) observe uniform prices is not incompatible with the

fact that firms do observe each other’s uniform price. Firms may indeed infer the other firm’s

uniform price by using sophisticated technologies (such as robots) that are not accessible to

consumers.12 We also need to set a couple of tie-breaking rules to decide how consumers choose

when firms charge them the exact same price. For this, we assume that although consumers

observe only one price from a given firm, they can determine whether this price is a personalized

price or a uniform price. If both firms quote the same price but one price is personalized while the

other is a uniform price, we assume that the consumer chooses the firm offering the personalized

price. If both prices are the same and of the same nature (both personalized or both uniform),

then we assume that the consumer chooses to purchase from each firm with equal probability.13

3 Why competitive differential pricing relaxes competition

We establish here our main result: although firms compete in prices on the market for a homo-

geneous product, they obtain positive profits at equilibrium whenever they are both able to profile

consumers but not the exact same set of consumers. In other words, competitive differential

pricing allows, in general, the duopolists to escape the so-called Bertrand paradox.

Before establishing this result formally, let us discuss the intuition behind it. The major

force driving the result is the uncertainty that the two firms face regarding the pricing strategy

of their competitor. In particular, when one firm (say firm A) profiles some consumer, it is

uncertain as to whether the other firm has profiled her as well or not. Firm A knows that with

probability 1− b, firm B did not profile this consumer (who belongs then to the A-translucent

segment) and offered her its uniform price pB; in that case, firm A can win this consumer with

an appropriate personalized price and assure itself positive profits. However, with probability b,

firm B did profile the consumer, which implies that both firms compete then for this consumer

through personalized prices (we are then on the transparent segment).14

11For instance, it appears that in the US, finding prices is very difficult for consumers to discover in the
health sector, even when firms have the legal obligation to publish prices. See https://qz.com/1518545/

price-lists-for-the-115-biggest-us-hospitals-new-transparency-law/, accessed on October 19, 2019.
12This is a common assumption made in the literature.
13There is evidence showing that consumers may favor either the personalized price or the uniform price. For

instance, Wattal et al. (2012) find a negative effect of personalization in e-mails due to privacy intrusion, whereas
Feld et al. (2013) find a positive effect of name personalization in direct mail. Using the other tie-breaking
rule slightly complicates matters but should not change anything qualitatively: although the equilibrium price
distribution of targeted prices will be different, they will generate the same expected payoff.

14The same goes for any consumer that firm B profiles, as this consumer could belong either to the B-translucent
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We show below that this uncertainty leads firms to set positive (i.e., above marginal cost)

personalized prices, most often in a randomized way. This means that the second-stage equi-

librium yields positive expected profits from profiling for both firms. What is key is that these

expected profits increase with the uniform prices that firms set in the first stage of the game.

The intuition is simple: as indicated above, a firm that profiles a consumer can secure a positive

profit by undercutting the competitor’s uniform price in the event that the competitor does not

profile this consumer; hence, the higher the competitor’s uniform price, the larger the expected

profit.

Moving now to the first-stage of the game, it becomes clear that, anticipating what we just

showed, firms will never set a uniform price equal to marginal cost (zero in this model); if they

were, they would lose any chance to make profits from the consumers that they manage to

profile. This completes the argument, as it proves that all prices (uniform and personalized)

will be set above marginal cost.

Yet, we should not forget that firms can only charge their uniform price to the consumers that

they fail to profile. Hence, the competition for these consumers drives uniform prices down (in

the traditional Bertrand fashion). When choosing its uniform price, each firm will thus balance

two opposite inclinations: lower the price to be more competitive on the opaque segment and

on the competitor’s translucent segment, but raise it to relax competition on the other two

segments (where it can set personalized prices). This trade-off may lead firms to randomize

uniform prices as well.

In short, the possibility to price discriminate together with uncertainty about the nature of

price discrimination competition (did only one firm identify the consumer or did they both?),

generates strictly positive prices and possible randomization of all prices. Let us now establish

this result more formally.

3.1 Personalized pricing equilibrium

We first study the optimal personalized prices, given the observed uniform prices (pA, pB).

That is, we focus on the competition that takes place on the transparent segment (of mass

M2 = βφλ2) and the two translucent segments (of respective masses MA = λ (1− βφλ) and

MB = βλ (1− φλ)). In other words, firms choose their personalized prices (pA(x), pB(x)) for

the consumers that they–and possibly their competitor–have identified.

As a first step, we establish that if the uniform prices are equal to marginal cost, so are the

personalized prices.

Lemma 1. If (pA, pB) = (0, 0), then (pA(x), pB(x)) = (0, 0) is the unique equilibrium at the

second stage of the game.

Proof. Proof. Clearly, pA(x) = 0 is a (weakly) best reply to pB(x) = 0 and vice versa. Thus

we can conclude that (pA(x), pB(x)) = (0, 0) is a Nash equilibrium. No other equilibrium in

pure strategies can exist, since there would be a profitable deviation. Suppose that there exists

an equilibrium in mixed strategies. The support of these strategies must contain only strictly

segment or to the transparent segment (with respective probabilities 1− a and a).
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positive prices (and be symmetric). But then, the upper limit of the support must have positive

mass. If not, playing this price will yield an expected payoff of zero. Yet, for any point with

positive mass in the support, there is an incentive to slightly undercut this price as to increase

profit.

We now show that when at least one uniform price is above marginal cost, then so are the

equilibrium personalized prices, meaning that firms can achieve positive expected profits on the

segments on which they profile consumers. To state the result, we define pxB ≡ min {pB, r (x)}
as the maximum personalized price that firm A can set to attract consumer x when firm B does

not profile this consumer; as the latter event occurs with conditional probability 1−b, firm A can

secure an expected profit of (1− b)pxB for any consumer belonging to the A-translucent segment.

We define pxA ≡ min {pA, r (x)} accordingly; then, the expected profit that firm B can secure

from consumers on the B-translucent segment is equal to (1−a)pxA. In what follows, we assume

(without loss of generality) that (1 − b)pxB ≥ (1 − a)pxA.15 The next proposition describes the

second-stage equilibrium when at least one first-stage uniform price is strictly above marginal

cost (the proof with the full characterization can be found in Appendix 7.1).

Proposition 1. Given uniform prices pA and pB, and r(x), and assuming that (1− b)pxB > 0,

then

• If (1−b)pxB > (1−a)pxA, there exists a unique second-stage personalized pricing equilibrium

with the following features:

1. If pxA/p
x
B ≤ a(1− b), the equilibrium is in mixed strategies, firm A has an

expected payoff of (1− b)pxB and firm B has an expected payoff of a(1− b)pxB;

2. If a(1 − b) < pxA/p
x
B < 1 − b, the equilibrium is in mixed strategies if

pxA/p
x
B < a or in pure strategies otherwise; in any case, firm A has an expected payoff

of (1− b)pxB and firm B has an expected payoff of pxA;

3. If pxA/p
x
B ≥ 1− b, the equilibrium is in mixed strategies and both firms have

an expected payoff of (1− b)pxB.

• If (1− b)pxB = (1− a)pxA there exists a mixed strategy equilibrium in which both firms have

an expected payoff of (1− b)pxB = (1− a)pxA.

At first glance, the price equilibrium in mixed strategies described in Proposition 1 could

be seen as a replay of the logic proposed by Varian (1980), with captive consumers (who only

know the price of one firm) and shoppers (who know both prices). Yet, the driver of price

randomization in our setting is not consumers’ information about pricing, but firms’ information

about the consumer segments to which their prices are being targeted; that is, when one firm

targets a customer, it does not know whether it has unique knowledge of the customer’s valuation

or whether there is competition from the other firm.

15The construction of the unique Nash equilibrium when (1 − a)pxA < (1 − b)pxB , as detailed in Appendix 7.1,
does not depend on the assumption that a > b. In other words, the equilibrium we construct does not depend on
the identity of the firm A or B: If (1 − a)pxA > (1 − b)pxB , we obtain an equivalent proposition by interchanging
pA and pB , as well as the parameters a and b in Proposition 1.
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3.2 Uniform pricing equilibrium

While Lemma 1 states that marginal cost pricing can be a Nash equilibrium of the two stage

pricing game, Proposition 1 suggests that it cannot be a subgame-perfect Nash equilibrium. The

reason is the following: firms can expect strictly positive profits at the second stage of the game

as soon as at least one uniform price is strictly positive; hence, a forward-looking firm cannot

find it optimal to set its uniform price equal to marginal cost. There are, however, two extreme

cases in which this reasoning breaks down, as stated in the following lemma.

Lemma 2. Marginal cost pricing, i.e., (pA, pB) = pA(x), pB(x)) = (0, 0), is the unique SPNE

of the game in either of the following two cases: (1) β = 0, or (2) β = 1 and φ = 1/λ.

Proof. Proof. In case (1), as firm B is not able to identify any consumer, only the opaque and

the A-translucent segments exist. Suppose by contradiction that firm B sets pB > 0. Then, firm

B does not make any sales on the A-translucent segment because firm A can always undercut

any offer pB > 0 with a personalized price. It follows that firm B competes only in the opaque

segment, on which Bertrand competition ensues: for any pB > 0, firm A has an incentive to

slightly undercut this price, which yields to a unique equilibrium with (pA, pB) = (0, 0) and, by

Lemma 1, (pA(x), pB(x)) = (0, 0). In case (2),16 firms are symmetric: they identify exactly the

same consumers as their profiling technologies are perfectly correlated and equivalent. Because

the two translucent segments are empty, all strategic links between the opaque and transparent

segments are severed. On the transparent segment, ‘classic’ Bertrand competition prevails for

each and every consumer. It follows that equilibrium personalized prices are (pA(x), pB(x)) =

(0, 0) for all x. This equilibrium outcome is independent of any uniform price pK that may

prevail on the opaque segment. As a consequence, competition for consumers on the opaque

segment is also equivalent to Bertrand competition, leading to uniform prices that also equal

marginal cost in equilibrium: (pA, pB) = (0, 0).

We now show that outside the two extreme cases of Lemma 2, firms have market power

at the SPNE of the game. As shown in Proposition 1, the expected payoff for firm A in the

second-stage equilibrium is an increasing function of pxB. As a consequence, firm B faces a

trade-off when raising its uniform price in the first stage of the game: on the one hand, a higher

pB increases expected profits on the transparent and B-translucent segments (as it induces firm

A to increase its prices), but on the other hand, it lowers expected profits on the opaque and

A-translucent segment (as it makes it easier for firm A to undercut B’s price).

Given this trade-off, one option for firm B is to focus exclusively on the segments where

it profiles consumers and to forgo any profit on the segments where it does not profile any

consumer. To do so, firm B simply needs to set pB > pA for any pA. What would be firm B’s

expected profit be under that option? From Proposition 1, we know that the payoff firm B

expects from any consumer x is weakly increasing in pB. It follows that if firm B chooses to

focus only on consumers that it happens to profile, it will set the largest possible uniform price:

16Technically, Proposition 1 does not apply to this case: as b = φβλ = 1, it follows that (1 − b)pxB = 0, which
violates one of the assumptions on which Proposition 1 relies.
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pB = r̄. We can then compute the profit that firm B can expect for some pA set by firm A.

Recalling that pxB ≡ min {pB, r (x)}, we have here that pxB = r (x). Now, applying Proposition

1, we know that firm B’s profit is equal to:17

1. (1− b)r(x) for pxA/p
x
B ≥ 1− b, or r(x) ≤ pA/(1− b),

2. pA for a(1− b) < pxA/p
x
B < 1− b or pA/(1− b) < r(x) < pA/(a(1− b)), and

3. a(1− b)r(x) for pxA/p
x
B ≤ a(1− b) or r(x) ≥ pA/(a(1− b)).

Aggregating over all consumers, we thus have:

π̊B(r̄, pA) =

∫ pA
1−b

0
(1− b) rf(r)dr +

∫ pA
a(1−b)

pA
1−b

pAf(r)dr +

∫ r̄

pA
a(1−b)

a (1− b) rf(r)dr. (1)

As the total mass of the transparent and B-translucent segments is M2 +MB = λB = βλ, this

strategy will guarantee firm B, for some pA set by firm A, an expected profit of

πmin
B (pA) = βλπ̊B(r̄, pA). (2)

If firm B chooses pB = r̄, then firm A’s best response is to set the monopoly price, pm, which

solves maxp pS (p).18 This is so for two reasons. First, firm A is the only active firm on the

opaque and A- translucent segments since firm B priced itself out of these segments. Second,

the uniform price that firm A’s chooses bears no impact on the expected profit that it obtains

afterwards when setting its personalized prices (see Proposition 1).

We need now to examine under which condition setting pB = r̄ is firm B’s best response

when firm A sets pA = pm. The best alternative for firm B is to set pB = pm−ε, so as to compete

as well on the opaque and A-translucent segments without sacrificing too much profit on the

transparent and B-translucent segments later on. What would be firm B’s expected profit in

that case? With probability M2 +MB, firm B competes for consumers on the transparent and

B-translucent segments, on which it obtains expected profits (almost) equal to

π̊B(pm, pm) = (1− βφλ)

[∫ pm

0
rf(r)dr +

∫ r̄

pm
pmf(r)dr

]
.

With probability M0, it competes on the opaque segment and, as it slightly undercuts firm A,

it achieves profits (almost) equal to πm ≡ pmS (pm). Finally, with probability MA, it competes

on the A-translucent segment, where it makes (almost certainly) no sales and obtains (almost)

zero profit. In sum, firm B’s best expected deviation profit when firm A sets its uniform price

equal to the monopoly price is computed as

Πe
B(pm)|pA=pm = βλπ̊B(pm, pm) + [1− λ− βλ (1− φλ)]πm. (3)

17It is easily checked that pB = r̄ implies that (1− b)pxB ≥ (1− a)pxA.
18Our assumption that demand is log-concave makes sure that such price exists.
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Hence, if πmin
B (pm) ≥ Πe

B(pm)|pA=pm , there exists a pure-strategy equilibrium in which firm

A is a monopolist in the segments where consumers are not profiled or only by firm A, while

firm B gives up any sales to consumers it does not profile and chooses a uniform price that

maximizes its expected profits in the transparent segment. Using expression (2) and (3), we find

that πmin
B (pm) ≥ Πe

B(pm)|pA=pm is equivalent to:

βλ [̊πB (r̄, pm)− π̊B (pm, pm)] ≥ (1− λ− βλ (1− φλ))πm. (4)

Otherwise, if Condition (4) is not met, firm B will choose to compete as well for the consumers

that it does not profile. But then, firm A will have no reason to set the monopoly price.

As competition ensues on the opaque segment, both firms must randomize uniform prices, as

it is the only way for them to make positive profits and, thereby, to be indifferent with the

previous situation where firm B stays out of the opaque and A-translucent segments (and firm

A monopolizes them).

We have thus proven the following proposition.

Proposition 2. In the first stage of the game, the pair (pA, pB) = (pm, r̄) is an equilibrium in

pure strategies if and only if πmin
B (pm) ≥ Πe

B(pm)|pA=pm, which is equivalent to Condition (4).

Otherwise, the equilibrium is in mixed strategies.

We now draw a number of insightful implications for data markets and for consumers. Where

needed, we will base our analysis on the specific case of perfectly correlated profiling technologies,

for which we are able to fully characterize the subgame-perfect Nash equilibrium.

4 Implications for data markets

So far, we have not been very specific regarding the origin of the profiling technologies. We have

simply indicated that profiling was made possible by the use of data and customer analytics; we

also stated that it was reasonable to assume that the two profiling technologies were correlated

if firms had access to ‘similar’ data sets. Two scenarios fit the latter assumption quite well:

either one of the firms collected data and, then, decided to share the customer analytics with

the other firm; or customer analytics was produced by third parties (so-called ‘data brokers’)

and then sold to the firms. In either scenario, the data providers’ strategies on the supply side

are shaped by the data users’ willingness to pay on the demand side. Our previous results are

thus instrumental to shed light on the working of data markets, as they tell us about the profits

that competing firms can extract from their use of data and customer analytics for differential

pricing purposes.

A first important finding can be drawn from Lemma 2, which shows that equilibrium profits

are nil if either only one firm is able to profile consumers (i.e., if β = 0), or both firms can

profile the exact same set of consumers because their profiling technologies are symmetric and

perfectly correlated (i.e., if β = 1 and φ = 1/λ). The immediate consequence is that any (for-

profit) data supplier will chose to provide both firms with differentiated customer analytics. The

fact that both firms should be provided with data implies, in the first scenario, that a firm that
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collects data should share it with its competitor; in the second scenario, it means that data

brokers should avoid exclusive data contracts, the opposite recommendation to the one drawn

from previous studies (see Clavora Braulin and Valletti, 2016, and Montes et al., 2019).

Regarding the necessary differentiation of the customer analytics, what our model tells us is

that data suppliers must make sure that the competing firms end up profiling different sets of

consumers. Analyzing the optimal way to achieve this goes beyond the scope of this paper.19

However, we can give useful indications as to how the asymmetry (β) and correlation (φ) of

the profiling technologies should be calibrated. As shown in Proposition 2, the first stage of

the game has a pure-strategy equilibrium if Condition (4) is met. In this equilibrium, firm B

chooses to maximize its profits on the segments where it profiles consumers, while letting firm A

monopolize the other segments. As total (expected) profits are maximized in this equilibrium,

it is in the interest of any data supplier to design its offering so that this equilibrium is more

likely to occur.20 To see how, we rewrite Condition (4) as follows:

∫ pm

1−βφλ
pm βλ (1− βφλ) (r − pm) f (r) dr +

∫ pm

φλ(1−βφλ)
pm

1−βφλ
β2λ2φpmf (r) dr

+
∫ r̄

pm

φλ(1−βφλ)
βλ (1− βφλ) (φλr − pm) f (r) dr ≥ (1− λ− βλ (1− φλ))πm.

(5)

In the case of perfectly correlated profiling technologies (φ = 1/λ), Condition (5) boils down to

∫ pm

1−β

pm
βλ (1− β) (r − pm) f (r) dr +

∫ r̄

pm

1−β

βλ (1− β) (r − pm) f (r) dr ≥ (1− λ)πm,

which can be rewritten as

β (1− β) ≥ 1− λ
λ

πm

CSm
. (6)

where CSm ≡
∫ r̄
pm (r − pm) f (r) dr is the consumer surplus under (uniform) monopoly pricing.

As the right-hand side is independent of β, it is easily seen that the latter condition is most

likely to be satisfied when β = 1/2. Hence, if data providers were to provide firms with perfectly

correlated profiling technologies, they would set the level of asymmetry between the technologies

at β = 1/2, so as to extract the largest rents from the firms. To understand this result, note

that an increase in β expands the set of customers that firm B is able to profile, and so (other

things being equal), linearly increases demand. However, we show in Appendix 7.2 (where we

develop the perfect correlation case) that the lower bound to the price charged (and so the

expected payoff per customer) is proportional to 1 − β. It follows that firm B’s profits from

profiled customers are proportional to β(1−β). So, one way to interpret the previous result is to

say that the higher the uncertainty about the information firm B has, the higher the prices (as

it is precisely this uncertainty that drives the randomization of prices); in the case of perfectly

19We cannot, in our limited setting, consider the full set of strategies that data suppliers can choose from. For
instance, they can divide customer data in overlapping or non-overlapping tranches.

20To see this, note that expected payoff from profiling for both firms (which happens with joint probability
mass M2 +MA +MB), is maximized when pB = r̄. In addition, the payoff on the opaque segment (which occurs
with probability 1 −M2 + MA + MB) is maximized when min{pA, pB} = pm. So, in any of the events (when
there is profiling and when there is none), the sum of expected profits of both firms is maximized.
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correlated technologies, the maximum uncertainty is reached at β = 1/2.21

As expression (5) is continuous in φ on the interval
[
1, 1

λ

]
, the conclusion that it is optimal to

have some level of asymmetry holds more generally for a range of imperfectly correlated profiling

technologies. Interestingly, we can say a lot more in the case of a relatively high monopoly price,

namely pm ≥ (1− βφλ) r̄. Condition (5) simplifies then to∫ r̄

pm
βλ (1− βφλ) (r − pm) f (r) dr ≥ (1− λ− βλ (1− φλ))πm,

which is equivalent to

L (β) ≡ βλ (1− φβλ)− (1− λ− βλ (1− φλ))Rm ≥ 0,

where Rm stands for πm/CSm.

We find that
∂L

∂β
= 0⇔ β =

(1− λφ)Rm + 1

2λφ
≡ β∗,

with β∗ = 1/2 for φ = 1/λ and β∗ > 1/2 for φ < 1/λ. We see that it is not optimal for data

providers to propose symmetric profiling technologies when profiling technologies are sufficiently

correlated (which generalizes our previous result); formally,

β∗ < 1⇔ φ >
Rm + 1

Rm + 2

1

λ
.

To sum up, our analysis of the differential pricing game gives us precious information about

the profits that firms can expect for a given pair of profiling technologies. From there, we can

evaluate the firms’ willingnesses to pay for various offerings of customer analytics and so, the

revenues that data providers can achieve by providing these offerings. If the data provider is

one of the two firms, we show that it has an incentive to share its means to profile consumers

with its rival, but not entirely, so that the data provider remains ‘better informed’ than its

rival. This can be achieved by selling to the rival a profiling technology that is imperfectly

correlated and/or asymmetric with the data provider’s technology. Intuitively, when the less-

informed firm has a very poor profiling ability compared to the better-informed firm, it mainly

competes in the opaque segment. So, improving the less-informed firm’s ability enables it to

also compete in the transparent segment, which in turn relaxes competition in the opaque

segment. However, when the profiling abilities of the two firms are very similar, the two firms

mainly compete in the transparent segment. Improving the less-informed firm’s ability then

makes competition in the transparent segment even more intense, which in turn leads to more

competition in the opaque segment. The same intuition applies when profiling technologies are

sold by third-parties. A monopoly data broker will follow the same logic and target the two firms

with differentiated offerings. Similarly, two data brokers who cannot offer themselves a menu of

21Interestingly, Ireland (1993) reaches a similar result in a different context. In his two-stage Varian-like model,
firms choose first the fraction of consumers who will be made aware of their existence and next, the uniform price
at which to sell their good.
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options will vertically differentiate the offerings they sell at equilibrium.22

5 Implications for consumers

We investigate now how competitive differential pricing affects the surplus of consumers. As

the two firms produce a homogeneous product, we know that in the absence of differential

pricing, the unique Nash equilibrium is such that prices are equal to marginal cost; consumer

surplus reaches then its maximum. We also know from Lemma 2 that the possibility to price

discriminate is not a sufficient condition for departing from this benchmark: if only one firm

can profile consumers or if both firms can profile the exact same set of consumers, marginal cost

pricing continues to prevail at equilibrium.

This means that for consumers to be hurt, both firms must profile consumers but with

different abilities. Yet, as we explained in the previous section, this situation should be the norm

rather than the exception, as it serves the interests of data providers. It is thus legitimate to

fear the negative impacts that the data revolution may have on consumer welfare, as eloquently

expressed by Newman (2014, emphasis added):

“The darker version of online marketing is that it can facilitate what economists call ‘price

discrimination,’ selling the same exact good at a variety of prices in ways unknown to the

buyers. This is based on the reality that people have different maximum prices that they are

willing to pay, a so-called ‘pain point’ after which they won’t buy the product. The ideal

for a seller would be to sell a product to each customer at their individual ‘pain point’ price

without them knowing that any other deal is available.”

Such fears have led the Council of Economic Advisers of the Whitehouse to release a study on

big data and differential pricing in 2015, in which it is equally recognized that firms may be

engaging in random price testing.23

How does our analysis contribute to this debate? Although it seems extremely hard to per-

form a general analysis of the impacts of competitive differential pricing on consumer surplus,24

we are able to shed some light on a number of interesting issues when we focus on the specific

case of perfectly correlated profiling technologies. In a nutshell, we show that consumers are

22In that case, the data broker who sells the offering leading to the best profiling ability will earn more profits
(ignoring investments costs). In Appendix 7.2, we show indeed that when profiling technologies are perfectly
correlated, the better-informed firm achieves higher expected profits than the less-informed firm. By continuity,
this result also applies to highly but imperfectly correlated technologies.

23See Executive Office of the President of the United States (2015).
24Writing down the consumer surplus supposes being able to complete the following list of tasks. First, for each

consumer with value r, we need to obtain the (expected) prices that she is likely to face, taking into account that
she will face (i) the minimum of the two (potentially random) uniform prices if she is not profiled by any firm, (ii)
the minimum of both firms’ random personalized prices if she is profiled by both firms, or (iii) the minimum of
firm A’s random personalized price and firm B’s (potentially random) uniform price if she is profiled only by firm
B (and inversely if she is only profiled by firm B). Second, for each minimum of prices, we need to calculate the
densities of these minimum prices and the corresponding surplus to this consumer. Third, we need to integrate
over all prices to obtain the expected surplus of this consumer. Finally, we need to integrate over all consumers
to get the total consumer surplus. One understands that these operations are complex to perform, even in the
case of simple distributions such as the uniform distribution. Moreover, performing comparative static exercises
would add another layer of complexity.
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unequal in front of improved profiling: although many consumers may lose (and would thus be

willing to protect their privacy), some other consumers may win; it may even be the case that

the winners would benefit sufficiently so that they could compensate the losers, i.e., consumers

as a group would welcome improved profiling.

In the rest of this section, we focus on the case perfectly correlated profiling technologies, i.e.,

we assume that φ = 1/λ, so that a = 1 and b = β. We also assume that firm B is able to profile

consumers (β > 0) but not as well as firm A (β < 1, profiling technologies are asymmetric),

so that Lemma 2 does not apply. Under these assumptions, any consumer that firm B (the

‘less-informed’ firm) profiles is also profiled by firm A (the ‘better-informed’ firm), meaning that

the B-translucent segment is empty (MB = βλ(1−φλ) = 0). This greatly simplifies the analysis

and allows us to fully characterize the subgame-perfect Nash equilibrium, perform comparative

statics exercises, and draw insightful results about the sensitivity of consumer surplus and the

demand for privacy.

5.1 Equilibrium characterization and comparative statics

Developing Propositions 1 and 2 for the case under review, we obtain the following characteriza-

tion of the subgame-perfect equilibrium (the proof and the exact formulation of some functions

are relegated to Appendix 7.2).

Proposition 3. If profiling technologies are perfectly correlated, there exists a subgame-perfect

Nash equilibrium such that: (1) At the first stage, firms choose their uniform price according

to the following strategies. Firm A draws pA from the distribution HA (p) with probability ∇A,

or sets pA = pm with probability 1 − ∇A. Firm B draws pB from the distribution HB (p) with

probability ∇B, or sets pB = r̄ with probability 1 − ∇B. The distributions HA (p) and HB (p)

are defined on the interval [pl, p
m). If Condition (6) is met, then ∇A = ∇B = 0 and the pair

(pA, pB) = (pm, r̄) is an equilibrium in pure strategies.(2) At the second stage, if pB = 0, then

(pA (x) , pB (x)) = (0, 0) is the unique equilibrium; if pB > 0, firm B draws pB(x) from the

distribution Gx (p), with

Gx (p) =

{
p−(1−β)pxB

βp for p ∈ [(1− β)pxB, p
x
B] ,

0 otherwise,

and pxB ≡ min {pB, r (x)}; firm A does so as well with probability β, and sets pA(x) = pxB with

probability 1− β.

Our objective is now to understand how the equilibrium prices depend, for any log concave

demand function, on two key parameters of the model: the measure of firms’ abilities to profile

consumers (λ) and the level of asymmetry between the two profiling technologies (β).

Improved profiling. How do firms modify their pricing behavior when their ability to profile

consumers improves, i.e., when λ increases? Recall that we assume that the profiling technologies

of the two firms are perfectly correlated, with respective abilities to profile consumers λA = λ
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and λB = βλ. Hence, an increase in λ makes it easier for both firms to profile consumers. The

following corollary summarizes the answer to this question.25

Corollary 1. An improved ability to profile consumers increases the uniform prices in the sense

of first-order stochastic dominance, and it does not affect the distribution of personalized prices.

Hence, an increase in λ leads to higher uniform and personalized prices.

It is clear from Proposition 3 that for a given uniform price of firm B, pB, the distribution of

personalized prices is independent of λ. However, increasing λ has three effects on the uniform

prices. First, it increases the lowest possible uniform price charged by both firm A and firm

B, i.e. ∂pl/∂λ > 0. Second, it increases the probability that both firms charge their respective

highest uniform price, i.e. ∂∇A/∂λ < 0 and ∂∇B/∂λ < 0. Finally, they tend to charge higher

prices when they randomize their uniform prices, i.e. ∂HA(p)/∂λ < 0 and ∂HB(p)/∂λ < 0.

In sum, all three effects push the distributions of uniform prices to the right. Since λ has no

effect on the distribution of equilibrium personalized prices, we can be sure that an improved

ability to profile consumers leads, ceteris paribus, to higher prices. Intuitively, when profiling

is improved, it is more likely that firms will be competing in the transparent segment, which

relaxes competition in the opaque segment and thus raises uniform prices.

More symmetric profiling technologies. Let us now consider the effect on the pricing

behavior of both firms of increasing the symmetry between the profiling technologies (measured

by the parameter β). It would seem logical to expect that as the profiling technologies become

more similar, competition between the two firms would get more intense and prices would go

down. However, things are not as simple here, as stated in the following corollary.

Corollary 2. The uniform prices are at their highest level in the sense of first-order stochastic

dominance when the level of asymmetry is intermediate (i.e., β = 1/2).

As above, we can show that the lower bound of the uniform price distribution, the probability

of firms charging the highest uniform price, and the probability of firms charging higher uniform

prices when they randomize their uniform prices are at their highest level when β = 1/2. This

implies that more symmetry increases the uniform prices when firms’ detection technologies are

very different, but decreases the uniform prices when firms’ technologies are slightly different.

There is thus an intermediate level of asymmetry, β = 1/2, that maximizes the profits of the

two firms.

Another effect of increasing β is to push personalized prices down for given uniform prices.

This is due to the more intense competition between firms on the transparent segment.26

25The proofs of all comparative statics results can be found in Appendix 7.2.2.
26However, this result ignores the indirect effect a higher level of symmetry has on personalized prices through

the effect it has on uniform prices. The expected uniform price is:

EpB = (1−∇B)r̄ +∇B
∫ pm

pl

phB(p)dp = (1−∇B)r̄ +∇B

[
pl +

∫ pm

pl

(1−HB(p))dp

]
.

We can show that ∂EpB/∂β > 0 when β < 1/2, which means that the expected highest personalized prices are
maximized when β = 1/2.
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Corollary 3. For given uniform prices, the personalized prices decrease with the symmetry

between firms in the sense of first-order stochastic dominance.

In Appendix 7.2, we illustrate the previous comparative statics results with the case of a

uniform distribution of the consumer valuations.

5.2 Do consumers necessarily suffer from improved profiling?

To answer this question formally, we decompose the effects that improved profiling may have on

different categories of consumers. We know from Corollary 1 that an increase in λ decreases the

probability that either firm will charge any uniform price below some price p. This unequivocally

implies that all prices go up. It may then seem natural to conclude that the consumer surplus

goes down. But there is a twist: the impact of these higher prices is only clear for consumers

whose status does not change, i.e., those who remain anonymous (who face higher uniform

prices) and those who remain profiled (who face higher personalized prices). Yet, the impact

on consumers who switch status remains unclear. Improved profiling indeed means that some

consumers who used to be anonymous are now profiled. Among them, consumers with a low

valuation will start purchasing (which they did not do when they were anonymous), and will

thus enjoy a larger surplus; consumers with a larger valuation, who continue to purchase, may

also benefit if they are now charged a lower personalized price than the uniform price they

were paying before. As the following example shows, the positive impact on ‘switchers’ may

be sufficiently important to outweigh the negative impact on ‘non switchers’, so that improved

profiling ends up increasing consumer surplus on aggregate.

In Appendix 7.2, we compute the consumer surplus in the case of a uniform distribution

of consumer valuations; we show that it is an increasing function of λ in this particular case.

To understand this result, let us divide the group of ‘switchers’ into three subgroups. We have

first the ‘Low value switchers’ (group L), who did not purchase before precision improved; then

we have the ‘Middle value switchers’ (group M), who would have purchased at the monopoly

price but have now access, with higher precision, to a lower price (in expectation); finally, we

have the ‘High value switchers’ (group H), who would have purchased at the monopoly price

but are now faced with a targeted price that is higher than the monopoly price in expectations

(these consumers would prefer to ‘hide’). In the present example, the benefits to groups L and

M (a market expansion effect) outweigh the losses for group H (a price discrimination effect).

Moreover, the benefits for switchers with low and middle valuations also outweigh the losses for

all consumers who do not switch status.

But if consumers as a group benefit, does it necessarily imply that firms will have lower

profits? The answers is no. In fact, in the above example (see Appendix 7.2 for the details),

firm A’s profit remain constant, while firm B’s profit increases when λ increases. Hence, the

market expansion effect dominates for firms as well. This is no surprise for firm B, since it

only obtains positive profits on the transparent segment and prices in the transparent segment

are not affected by an increase in λ. For firm A the loss of profits on the opaque segment is

just compensated by the gain in profits in the transparent and translucent segments. Hence,

18



somewhat surprisingly, while consumers as a group are better off on average, this does not

happen at the expense of the firms’ profits. To the contrary, consumers (as a group) and firms

(as a group) strictly benefit from higher precision. This is due to the market expansion effect

and the corresponding reduction in the deadweight loss.

We can also study how consumers are affected when only the profiling technology of the

less-informed firm improves (i.e., when β increases). In this case, we see from Corollary 3 that

the impact depends of where we start from. For relatively high levels of symmetry between

firms’ profiling technologies (β > 1/2), increasing further the symmetry benefits consumers as

it leads to both lower uniform prices and lower personalized prices. In contrast, for relatively

low levels of symmetry (β < 1/2), increasing the symmetry leads to higher uniform prices but

lower personalized prices.

5.3 Exogenous and endogenous privacy

So far, we have assumed that it is not possible for consumers to escape being identified by the

firms when profiling technologies are effective. In reality, consumers may resort to obfuscation

strategies that make profiling technologies inoperative; for instance, consumers may delete cook-

ies, use tools to browse the web anonymously, or purchase ad blockers. Although a full analysis

of this possibility goes beyond the scope of this paper, we can discuss under which conditions

consumers may wish to ‘hide’ themselves.27

As we explained in Section 3, firm B may, when the opaque segment is relatively small, have

an incentive to focus only on consumers it can profile, by charging the choking price of demand as

its uniform price, while firm A charges the monopoly price as its uniform price. This pushes up

prices on the transparent segment, leading in some cases to a situation in which all personalized

prices lie above the monopoly price (charged to consumers that a firm does not profile). In this

case, some of these consumers would prefer to hide, as they will face lower prices in the opaque

segment. We saw in Corollary 1 that this situation becomes more likely the higher the precision

of the detection technology. This implies that the less privacy regulation there is (the higher λ),

the more it will lead to a demand for (endogenous) privacy. As a consequence, better privacy

regulation (lower λ) would tend to push prices down, increasing consumer surplus, and lower

the need for consumers to hide. We conclude that the fear for consumers to face higher prices

when they are ‘in the open’ rather than ‘in the dark’ does not disappear when it is not just one

but several competing firms that have the ability to profile consumers.

5.4 What if uniform prices are made public?

We now study the consequences of having ‘observable’ uniform prices. We have in mind what

is commonly known as list prices, i.e., (uniform) prices that any consumer can observe and can

thus claim to buy at. The immediate consequence of the presence of such prices is that firms

27To analyze the full implications of endogenous privacy choices by consumers, we would first need to assess
the interplay between consumers’ hiding behavior and firms’ pricing strategies; we could then characterize an
equilibrium with endogenous hiding, and study the effect of consumer hiding on firms’ profits and consumer
surplus. We leave this for future research.
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now face an upper bound on the personalized prices they can charge to the consumers they

profile. Hence, a firm does not just compete against the prices of its competitor but also against

its own uniform price. We expect that this would lead to more competition and lower prices in

equilibrium. We provide two results that allow us to confirm this conjecture.

First, it is immediate that setting all prices equal to marginal cost is now a subgame-perfect

equilibrium of the game. In contrast to the case where consumers only receive one price from

each firm, no firm has an incentive to increase its uniform price at stage 1, as all consumers

(profiled or not) always keep the possibility to purchase at the lowest listed uniform price. We

conclude that the observability of uniform prices restores the Bertrand Paradox even when firms

have asymmetric profiling technologies.

Proposition 4. If all consumers can purchase a good at the (observed) uniform price, then

marginal cost pricing is a subgame-perfect Nash equilibrium of the pricing game.

What remains to be shown, however, is whether this is the only equilibrium. Our second

result gives an indicative answer. We show in the following example that, in a simplified version

of our model where consumers can have valuations of only two types, high and low, no other

equilibrium can exist.

Example 4. A model with two types of consumers.

Assume that there is a unit mass of consumers and that any consumer x can be one of two

types: their valuation for the homogeneous product is either high, r(x) = 1, with probability

ϕ ∈ (0, 1) or low, r(x) = ζ < 1, with probability 1 − ϕ. Assume further that if the market

was served by a (non discriminating) monopolist, this firm would set a uniform price equal to

ζ and so, serve the whole market; this happens when ϕ < ζ. In this setting, we can show (see

Appendix 7.3) that there cannot exist a subgame-perfect Nash equilibrium of the game with

the features described in Proposition 3 (i.e., both firms draw from a connected interval
[
p, ζ
)

in which firm A draws pA according to the distribution HA (p) with probability ∇A, or sets

pA = ζ with probability 1 − ∇A, and in which firm B draws pB from the distribution HB (p)

with probability ∇B, or sets pB = ζ with probability 1−∇B).

Given the previous two findings, there are good reasons to believe that list prices exert

downward pressure on equilibrium prices in our model.

6 Discussion and concluding remarks

We have examined price competition in a homogenous goods setting in which firms can im-

perfectly profile consumers. When they do, they can charge these consumers a personalized

price, but firms (potentially) differ in their ability to profile. This asymmetry between the firms’

profiling technologies leads to uncertainty about the nature of price competition and, thereby,

generates market power. The necessary ingredients for this result are price competition and ‘im-

perfect consumer profiling’, which refers to the idea that firms are able to identify consumers’

valuations for the product but only in an imperfect way. The profiling of consumers enables price
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discrimination, but its imperfect nature makes firms uncertain about the competitor’s pricing

strategy, which triggers strategic random pricing. In sum, as long as both firms can track con-

sumers, asymmetric and/or imperfectly correlated profiling technologies can generate a way out

of the Bertrand paradox. Our results also imply that when only one firm can profile consumers,

it does not manage to obtain any market power.

Our analysis allows us to draw the following policy implications. First, it is not clear a

priori how consumers are affected by changes in privacy rules. We show indeed that modifying

these rules, and thereby affecting firms’ ability to practice differential pricing, have an ambiguous

impact on consumers. Take, for instance, the impact of less protective rules: on the one hand,

some consumers will pay higher prices because firms can profile them more easily; but on the

other hand, some consumers who used to be anonymous will now be profiled and among them,

those with a low valuation will start purchasing and will thus enjoy a larger surplus; we even show

the possibility that the positive impact on the latter consumers may be sufficiently important to

outweigh the negative impact on the former ones, so that improved profiling ends up increasing

consumer surplus on aggregate. The complex interplay between these countervailing forces may

explain why the United States and the European Union have recently taken contrasting decisions

regarding the protection of consumers privacy.28

Although we suggest that the effects of strengthening or relaxing privacy protection are hard

to ascertain, we are confident that all consumers should be better off if firms had the obligation

to make their uniform prices public. With such observable uniform prices, firms would face an

upper bound on the personalized prices they can charge to the consumers they profile, which is

likely to drive prices down (possibly back to marginal costs).

Second, our results shed new light on the working of markets for data, which is also a heavily

debated topic. Currently, the focus is essentially on the supply side of data, with concerns about

potential barriers to entry stemming from the presence of economies of scale and/or of scope at

the successive stages of the ‘data value chain’ (i.e., collection, storage, analysis, and usage).29

Yet, conduct and strategies on the supply side of the markets for data cannot be properly

analyzed without a good understanding of the demand side of these markets. In this respect,

our contribution is to show that firms’ willingness to pay for data (for price discrimination

purposes) heavily depends on the profiling ability that this data confers and, more importantly,

on what kind of customer analytics can be accessed by competitors. As a consequence, data

owners/brokers have incentives to provide several firms with data as long as firms end up with

different abilities to profile consumers; that is, some form of ‘vertical data differentiation’ arises.

Regarding the regulation of markets for data, we note that exclusivity contracts offered by data

brokers do not necessarily harm consumers. Indeed, in our model exclusivity leads to more—

28In the U.S., recent regulatory changes contribute to make customer data even more widely available to firms.
In October 2016, the US Federal Communications Commission, then under Democratic majority, imposed a set
of privacy rules on Internet service providers, requiring them to get opt-in consent from consumers before using,
sharing, or selling their Web browsing data, app usage history and other private information. Yet, on April
3 2017, President Donald Trump signed a repeal of these rules, following actions taken by both houses of the
US Congress (see, e.g., Brodkin, 2017). As for the E.U., it adopted in April 2016 the General Data Protection
Regulation (GDPR), which is meant to strengthen and unify data protection for all individuals within the EU;
this regulation will become directly applicable in all Member States from 25 May 2018.

29See, e.g., Rubinfeld and Gal (2017) and Duch-Brown et al. (2017).
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rather than less—competition.

In terms of empirical implications, we establish that when there is uncertainty regarding

the nature of price competition, firms may randomize both their uniform and personalized

prices. Then, there may be three simultaneous explanations as to why two consumers end

up paying different prices: firms may charge them either different personalized prizes (price

discrimination), or randomized uniform prices (price dispersion), or randomized personalized

prices (price discrimination and dispersion).30 This provides a justification to the ‘Amazon

story’. In September 2000, a customer of Amazon.com accused Amazon of price discrimination

(a.k.a. differential pricing): this customer realized that after having deleted the cookie that

identified him as a regular Amazon customer, he was offered some DVD for a much lower price

than the one he observed the first time he visited the web site. The company later apologized

and explained that the price difference was not the result of differential pricing but of random

price testing.31 Our results suggest that both Amazon and its customer may have been right.

Meanwhile, a recent report by Bourreau et al. (2017) shows that although there is a lack of

evidence of price discrimination, a large volatility of prices is observed. A related implication of

our results is that the absence of direct observation of price discrimination should not be taken

as proof that such a pricing tactic is not practiced, as it cannot be distinguished from price

dispersion in some cases. In particular, when the nature of price competition is uncertain, it

would be useful to account for all sources of price variations empirically, not just some of them.
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7 Appendix

7.1 Proof of Proposition 1

The proof of this proposition is divided in 3 steps. In Step 1 we show under which conditions on

the parameters there exists a pure strategy equilibrium and characterize that Nash equilibrium.

In Step 2 we characterize the unique mixed strategy equilibrium when (1−a)pxA < (1−b)pxB and

determine the expected payoff for each firm. Finally, in step 3, we show that when (1− a)pxA =

(1 − b)pxB two mixed strategy equilibria exist with an expected payoff for each firm equal to

(1 − a)pxA = (1 − b)pxB. We therefore say that the mixed strategy equilibrium is essentially

unique.

Remark 1. The reader will note that our proof of steps 1 and 2 is done for the case when
(1 − a)pxA < (1 − b)pxB and that the construction of the mixed strategy equilibrium does not
depend on our assumption that a > b. In other words the equilibrium we constructed does
not depend on the identity of the firm A or B: If (1 − a)pxA > (1 − b)pxB we can just obtain
an equivalent proposition by interchanging pA and pB. We will make use of this in Step 3 to
characterize the mixed strategy equilibria when (1− a)pxA = (1− b)pxB.

Step I. Pure vs Mixed strategy equilibria

To guide the reader we illustrate the ranges for which there exists a pure strategy or mixed

strategy equilibrium in Figure 1.

Figure 1: Mixed vs Pure Strategy Nash Equilibrium

Lemma 3. Case I. When pxA < (1− b)pxB we need to distinguish two cases:

1. No pure strategy Nash equilibrium exists when pxA < apxB.

2. There is a pure strategy Nash equilibrium when apxB ≤ pxA ≤ (1 − b)pxB. In this Nash
equilibrium the strategies are (pA(x), pB(x)) = (pxB, p

x
A).
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Case II. No pure strategy Nash equilibrium exists when pxA ≥ (1− b)pxB.

Proof. Proof of Lemma 3.

Case I. When pxA < (1− b)pxB.
Firm A knows it can lure consumer x into buying as long as pA(x) ≤ pxB. Firm A will thus

never charge a targeted price, pA(x), below (1 − b)pxB since this is the expected payoff from
charging pA(x) = pxB. Nor does it make sense to sell at a price above the consumer’s willingness
to pay: pA(x) ≤ r(x). Now suppose that there exists a pure strategy equilibrium in which firm
A charges pA(x) such that (1− b)pxB ≤ pA(x) ≤ r(x). What is firm B’s best response when she
recognizes consumer x? Firm B can either try to obtain the consumer x with probability 1 by
charging pB(x) ≤ pxA or set at a higher price and sell to the consumer with probability a by just
undercutting pA(x). The first strategy yields profit pxA while the second yields profit apA(x).
When apA(x) ≤ pxA firm B’s best response is to play pB(x) = pxA, when apA(x) > pxA firm B
does not have a best response (wants to just undercut firm A, but because prices are chosen
from a continuum, there is no best response). So in any pure strategy equilibrium it must be
that pB(x) = pxA, but then the best response of firm A is to set pA(x) = pxB. To sum up, for
(pA(x), pB(x)) = (pxB, p

x
A) to be a pure strategy equilibrium it must be that apxB ≤ pxA. We also

have that pxA ≤ (1− b)pxB, so a pure strategy Nash equilibrium can only occur when if a ≤ 1− b.
This is ruled out when a + b > 1. In this pure strategy equilibrium firm A’s expected payoff is
(1− b)pxB while firm B’s expected payoff is pxA.

Case II. Mixed strategy Personalized pricing when pxA ≥ (1− b)pxB.

Proof. We follow the same reasoning as Case 1. Again, firm A will never set pA(x) < (1− b)pxB
or pA(x) > r(x). Suppose that there exists a pure strategy equilibrium in which firm A charges
pA(x) such that r(x) ≥ pA(x) ≥ (1− b)pxB. What is firm B’s best response when she recognizes
consumer x?
First let pA(x) ≥ pxA. Then firm B can either sell to consumer x with probability 1 by charging
pB(x) ≤ pxA or set a higher price and sell to the consumer with probability a by just undercutting
pA(x). The first strategy yields profit pxA while the second yields profit apA(x). Hence when
apA(x) ≤ pxA firm B’s best response is to play pB(x) = pxA, and when apA(x) > pxA firm B does
not have a best response. So in any pure strategy equilibrium it must be that pB(x) = pxA. Then
the best response of firm A would be to set pA(x) = pxB or to slightly undercut pB(x) = pxA.
Firm A will choose pA(x) = pxB when (1− b)pxB > pxA. This is a contradiction since we assumed
that pxA ≥ (1− b)pxB.
Now let pA(x) < pxA. Then firm B can either try to sell to consumer x with probability 1 by
charging pB(x) < pA(x) or set a higher price and sell to the consumer with probability 1− a by
charging pxA. The first strategy yields a profit arbitrarily close to pA(x) while the second yields
profit (1− a)pxA. Hence when pA(x) ≤ (1− a)pxA firm B’s best response is to play pB(x) = pxA,
and when pA(x) ≥ (1 − a)pxA firm B does not have a best response. So in any pure strategy
equilibrium it must be that pB(x) = pxA > pA(x). But then firm A has an incentive to increase
the targeted price anywhere between (pA(x), pxA). As a consequence there cannot be any pure
strategy equilibrium.

Step II. Characterizing the mixed strategy Nash equilibria

We now characterize the mixed strategy equilibrium and obtain expected payoffs for each

firm in equilibrium. We first introduce a series of useful results that will help us construct the
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equilibrium strategies. We emphasize that none of the arguments we make to characterize the

equilibrium strategies depends on our assumption that firm A is better at recognizing consumers

than firm (a ≥ b). We will focus on finding the mixed strategy equilibria when (1− a)pxA ≤ (1−
b)pxB, but by doing so we also characterize the mixed strategy Nash equilibria when (1− a)pxA ≥
(1− b)pxB.

Lemma 4. Assume that (1− a)pxA < (1− b)pxB.

• Then Firm A will never set a price below (1−b)pxB in equilibrium and can always guarantee
herself an expected payoff of (1− b)pxB.

• For firm B we have:

– If pxA ≤ a(1 − b)pxB firm B will never set a price below (1 − b)pxB in equilibrium and
can always guarantee herself an expected payoff of a(1− b)pxB.

– If a(1− b)pxB ≤ pxA ≤ (1− b)pxB firm B will never set a price below pxA in equilibrium
and can always guarantee herself an expected payoff of pxA.

– If pxA ≥ (1 − b)pxB firm B will never set a price below (1 − b)pxB in equilibrium and
can always guarantee herself an expected payoff of (1− b)pxB.

Proof. Proof. The result for firm A follows from the proof of lemma 3 above. The same logic
yields the result for firm B.

Lemma 5. Let p
i
(x) be the infimum of all the equilibrium prices charged to consumer x by firm

i = A,B. If p
A

(x) = p
B

(x) = p(x) then no firm attaches positive probability to p(x).

Proof. Suppose firm i attaches positive probability to p(x). Now consider a targeted price pj(x)
for firm j arbitrarily close to p(x) then firm j can deviate (and increase her payoff) by slightly
undercutting p(x), as she will add a strictly positive mass of sales (that she ‘stole’ from firm
i).

We conclude from lemma 5 that if one firm plays the lowest price with positive probability

then the other firm’s lowest price must be strictly higher. We now determine the upper bound

on prices in any equilibrium. This will allow us to pin down expected profits in any equilibrium.

Lemma 6. Let pi(x) be the supremum of all the equilibrium prices charged to consumer x by
firm i = A,B. Let p(x) = max{pA(x), pB(x)}. When (1 − a)pxA < (1 − b)pxB, then pB(x) ≤
pA(x) = p(x) = pxB.

Proof. Proof. We first show that p(x) ≤ pxB. Suppose not, then either pA(x) > pxB or pB(x) > pxB,
or both.
Suppose first that pA(x) > pxB. Since A will not sell to consumers it does not recognize it must
be the case that firm B sets prices equal to or higher than pA(x) with positive probability:
pB(x) ≥ pA(x). Firm B will only be willing to do so if pB(x) ≤ pxA . By lemma 4, firm B can
guarantee a payoff of (1− b)pxB. By playing pB(x) firm B obtains strictly less, a contradiction:

(1− a)pB(x) ≤ (1− a)pxA < (1− b)pxB.

Now suppose that pB(x) > p(x) ≥ pA(x). Again it must be that pB(x) ≤ pxA, otherwise
firm B would obtain zero expected profit from setting its price equal (or close) to its supremum
pB(x). We obtain the same contradiction:

(1− a)pB(x) ≤ (1− a)pxA < (1− b)pxB.
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We now show that p(x) ≥ pxB. First note that one cannot have that pB(x) < pA(x) < pxB
since otherwise firm A can increase profits by setting pA(x) = pxB. Then suppose that pA(x) ≤
pB(x) < pxB. In order for firm A to obtain profits equal to (1− b)pxB, firm B must assign positive
mass to prices from the set [pA(x), pxB] and pB(x) ≤ pxA. This would imply that if pA(x) < pxB
firm B will only play pB(x) from this interval. But then firm A can just increase her price
slightly above pA(x), not lose any customers and increase her expected profit. Hence the only
possibility left is pB(x) = pA(x) < pxB. Then B must play pB(x) with positive probability so
that firm A can guarantee herself a payoff of (1 − b)pxB while firm A attaches zero probability
to it. But then firm B will only be willing to do so if pB(x) = pA(x) ≤ pxA. By lemma 4,
firm B can guarantee a payoff of (1 − b)pxB. By playing pB(x) firm B obtains strictly less, a
contradiction.

Lemma 7. Let p̄(x) be the supremum of all the equilibrium prices charged to consumer x by
either firm. It cannot be that both firms play this price with positive probability.

Proof. This follows from the fact that both firms would have an incentive to slightly undercut
the other.

Lemma 8. When (1 − a)pxA < (1 − b)pxB, the expected payoff for firm A in any equilibrium is
(1− b)pxB.

Proof. This follows immediately from the fact that equilibrium prices cannot be above pxB
and that firm A is guaranteed a payoff of (1 − b)pxB. To have a higher expected payoff, firm B

should play pxB with positive probability. The payoff of firm B is then (1 − a)pxB < (1 − b)pxB
if pxB ≤ pxA. But in this case firm B can guarantee herself an expected profit of (1 − b)pxB, a

contradiction. If on the other hand pxB > pxA, firm B makes zero profits from playing pxB.

We are now ready to fully characterize the mixed strategy equilibrium. We need to consider

several different cases.

Step II Case 1. pxA < a(1− b)pxB

Figure 2: Step II case 1

This case is illustrated in Figure 2. In this case firm B, like firm A, will not set a price below

(1 − b)pxB. They must set the same lowest price and this price cannot be a mass point of the

price distribution of any firm (see Lemma 5). If one firm were to have a lowest price which is

higher than the one of the other firm, then the latter has an incentive to deviate and increase

her lowest price since it will not change her probability of selling to the consumer while at the

same time it increases her sales price.

Let F 1
B(p) be the probability distribution of prices of firm B in equilibrium in case 1. For

firm A the following must hold:
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1. For any price pA(x) firm A must get an expected payoff of (1 − b)pxB. Then firm A must

have a probability of selling equal to one when charging pA(x) = (1− b)pxB.

2. For any other price p: (1− b)p+ b(1− F 1
B(p)p = (1− b)pxB.

3. It follows that

F 1
B(p) = 1−

(1− b)(pxB − p)
bp

.

Let F 1
A(p) be the probability distribution of prices of firm A in equilibrium in case 1. For

firm B the following must hold:

1. For any price pB(x) charged firm B must get an expected payoff of a(1− b)pxB. Thus firm

B must have a probability of selling equal to a when charging pB(x) = (1− b)pxB.

2. For any other price p: a(1− FA(p))p = a(1− b)pxB,

F 1
A(p) = 1−

(1− b)pxB
p

.

3. Note that

F 1
A(pxB) = b.

We conclude that firm A must play pA(x) = pxB with probability 1− b.

In summary, we obtain:

• Firm A mixes over ((1− b)pxB, pxB] according to distribution F 1
A(p) = 1 − (1−b)pxB

p where

F 1
A(pxB) = b.

• Firm B mixes over ((1− b)pxB, pxB) according to distribution F 1
B(p) = 1− (1−b)(pxB−p)

bp .

Step II Case 2. a(1− b)pxB < pxA < (1− b)pxB
This case is illustrated in Figure 3. If pxA ≥ apxB then there exists a pure strategy equilibrium,

as argued above. We characterize the mixed strategy equilibrium in the event that pxA < apxB.

Again we will use the fact that firm A must have an expected payoff in any equilibrium equal to

Figure 3: Step II case 1

(1− b)pxB in order to pin down the (unique) equilibrium strategies. Let F 2
i (p) be the probability

distribution of prices of firm i = A,B in equilibrium in case 2. We first state the equilibrium

strategies after which we develop the proof:
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• Firm A mixes over
(
pxA
a , p

x
B

]
– She plays pxB with probability ΨA =

pxA
apxB

≤ 1 and plays any price on
(
pxA
apxB

, pxB

)
according to distribution function F 2

A(p) = 1− pxA
ap .

• Firm B mixes over pxA and
(
pxA
a , p

x
B

)
– She plays pxA with probability ΨB = 1

b −
a(1−b)pxB

bpxA
and plays any price on

(
pxA
apxB

, pxB

)
according to F 2

B(p) = F 2
B(p) = 1

b −
(1−b)pxB

bp .

Since firm A obtains expected profit equal to (1 − b)pxB in any equilibrium, firm A will not

set a price below (1 − b)pxB while the supremum of its equilibrium prices is pxB in any mixed

strategy equilibrium. Now imagine that firm A and firm B would charge prices equal to or

slightly above (1 − b)pxB in equilibrium. For firm B this would mean that she would obtain an

expected payoff of approximately a(1 − b)pxB. Then firm B would have a profitable deviation

by lowering her price to pxA and obtain pxA > a(1 − b)pxB. Indeed, she is better off selling to

customer with probability 1 by charging pxA than selling to only those consumers that firm A

also recognizes (with probability a) as this yields a(1− b)pxB ≤ pxA. But if firm B will not charge

prices in neighborhood of (1− b)pxB, firm A will not play these prices as she can simply increase

her price, not lose any consumers and increase her expected payoff. In other words, (1 − b)pxB
cannot be the lowest price that firm A charges in equilbrium. What then will this lowest price,

p
A

(x), be? Following the above logic, the lowest price firm A charges in equilibrium, p
A

(x), must

make firm B indifferent between obtaining the consumer for sure and charging p
A

(x), obtaining

payoff ap
A

(x). We now detail this intuition.

Since firm A must be playing a mixed strategy it must be indifferent between the (infimum

of the) lowest price it charges, p
A

(x), and the (supremum of the) highest price it charges,

pA(x) = pxB. On the other hand firm B is also playing a mixed strategy and should be indifferent

between playing pxA and any other equilibrium price pB(x) price. But then the lowest price firm

B is willing to charge above pxA, call it p
B

(x), must guarantee her a payoff of pxA. This is

the case when ap
B

(x) = pxA for some p
B

(x) ≤ pxB. Hence p
B

(x) =
pxA
a . It then follows that

p
B

(x) = p
A

(x) =
pxA
a .

For firm A to be indifferent between p
A

(x) =
pxA
a and pxB it must be that firm B charges pxA

with probability ΨB where

(1− b)
pxA
a

+ b(1− ΨB)
pxA
a

= (1− b)pxB.

Hence ΨB = 1
b −

a(1−b)pxB
bpxA

. Let F 2
B(p) be the probability distribution of prices of firm B drawn

from
(
pxA
a , p

x
B

]
. For firm A to be indifferent between any price p ∈

(
pxA
a , p

x
B

]
it must be that

(1− b)p+ b(1− F 2
B(p))p = (1− b)pxB,
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F 2
B(p) =

1

b
−

(1− b)pxB
bp

.

Note that F 2
B(

pxA
a ) = 1

b −
(1−b)pxB
b
px
A
a

= ΨB and F 2
B(pxB) = 1

b −
(1−b)pxB
bpxB

= 1
b −

(1−b)
b = 1. Firm B must

also be indifferent between any price it charges given the mixed strategy chosen by firm A. Let

F 2
A(p) be the probability distribution of prices of firm A drawn from

(
pxA
a , p

x
B

]
. For firm B to

be indifferent between any price p ∈
(
pxA
a , p

x
B

)
it must be that

a(1− F 2
A(p))p = pxA,

F 2
A(p) = 1−

pxA
ap
.

This must imply that firm A plays pA(x) = pxB with positive probability ΨA equal to

ΨA = 1− (1−
pxA
apxB

) =
pxA
apxB

< 1.

Step II Case 3. pxA ≥ (1− b)pxB
This last case is illustrated in Figure 4:

Figure 4: Step II case 3

We need to consider two subcases:

• Step II Case 3i (1− b)pxB ≤ pxA <
(1−b)pxB
2−a−b .

• Step II Case 3ii
(1−b)pxB
2−a−b ≤ p

x
A <

(1−b)pxB
1−a .

Step II Case 3i Let F 3i
j (p) be the probability distribution of prices of firm j = A,B in case

3i in equilibrium in case 3i. When (1− b)pxB ≤ pxA <
(1−b)pxB
2−a−b we will prove the following:

• FirmB mixes its price pB(x) according to the distribution function F 3i
B (p) over the support:

[(1− b)pxB, pxA] ∪ [p̃(x), pxB)

and plays price p = pxA with probability ΦB = 1−b
a .

• Firm A mixes its price pA(x) according to the distribution function F 3i
A (p) over the support:

[(1− b)pxB, pxA) ∪ [p̃(x), pxB]

and plays price p = pxB with probability ΦA = 1−a
b .
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• For p ∈ ((1− b)pxB, pxA) we have that F 3i
A (p) = 1 − (1−b)pxB−(1−a)p

ap and F 3i
B (p) = 1 −

(1−b)(pxB−p)
bp .

• For p ∈ [p̃(x), pxB) we have that F 3i
A (p) = 1− (1−b)pxB

ap and F 3i
B (p) = 1− (1−b)(pxB−p)

bp .

The reasoning behind this case is similar to case 2. But now, if the infimum of the support

of prices charged by firm A is (1 − b)pxB then firm B no longer wants to set a price below

(1 − b)pxB in order to sell to consumer x with probability 1. However, when pxA ≥ (1 − b)pxB
another discontinuity of firm B’s expected profit with respect to its targeted price potentially

occurs at pB(x) = pxA. In particular, whenever firm B charges higher prices in equilibrium

the support of price distributions for both firms cannot be connected. This happens when

(1 − b)pxB ≤ pxA <
(1−b)pxB
2−a−b . But then we ask: which price above pxA and below pxB, call it p̃(x),

makes firm B indifferent between charging this price, charging pxA or charging (1− b)pxB? Then

p̃(x) must be such that

• Charging pB(x) = pxA must yield (1− b)pxB : (1− a)pxA + a(1− F 3i
A (pxA))pxA = (1− b)pxB,

• Charging pB(x) = p̃(x) must yield (1− b)pxB : a(1− F 3i
A (p̃(x))p̃(x) = (1− b)pxB,

and imposing that F 3i
A (pxA) = F 3i

A (p̃(x)) we obtain that:

(1− aF 3i
A (pxA))pxA = (1− b)pxB,

F 3i
A (pxA) =

1

a
−

(1− b)pxB
apxA

=
pxA − (1− b)pxB

apxA
= F 3i

A (p̃(x)),

we then have that

1− F 3i
A (pxA) = 1−

pxA − (1− b)pxB
apxA

=
(1− b)pxB − (1− a)pxA

apxA
.

We find p̃(x) in the following way:

a(
(1− b)pxB − (1− a)pxA

apxA
)p̃(x) = (1− b)pxB;

p̃(x) =
pxA(1− b)pxB

(1− b)pxB − (1− a)pxA
.

It must also be the case that firm B obtains a payoff equal to (1− b)pxB for any price it charges

arbitrarily close to but below pxB. But then firm A must play pxB with positive probability, call

it ΦA. We find that:

• Charging pB(x) ∼ pxB must yield (1 − b)pxB : aΦAp
x
B = (1 − b)pxB. This happens when

ΦA = 1−b
a .

Let us now switch to the equilibrium price conditions for firm A.

• Charging pA(x) ∼ pxA must yield (1− b)pxB :

limpA(x)→pxA(1− b)pA(x) + b(1− F 3i
B (pA(x)))pA(x) = (1− b)pxB

32



or

(1− b)pxA + b(1− limpA(x)→pxAF
3i
B (pA(x)))pA(x) = (1− b)pxB.

• Charging pA(x) = p̃(x) must yield (1−b)pxB : (1−b)p̃(x)+b(1−F 3i
A (p̃(x))p̃(x) = (1−b)pxB.

These conditions imply that firm B must attach a positive probability to playing pB(x) = pxA
and firm A will charge all prices close to and strictly below pxA but price equal to pxA (this

interval of prices for A is open at pxA) since there is a positive probability it will have to ‘share’

the consumer since firm B plays this price with positive mass. Call this probability ΦB. We find

that ΦA = 1−a
b . What is left to determine are the probability distributions F 3i

A (p) and F 3
B(p).

For p ∈ ((1− b)pxB, pxA) we have that:

(1− a)p+ a(1− F 3i
A (p))p = (1− b)pxB and (1− b)p+ b(1− F 3i

B (p))p = (1− b)pxB,

hence

F 3i
A (p) = 1−

(1− b)pxB − (1− a)p

ap
and F 3i

B (p) = 1−
(1− b)(pxB − p)

bp
.

For p ∈ [p̃(x), pxB) we have that:

(1− F 3i
A (p))p = (1− b)pxB and (1− b)p+ b(1− F 3i

B (p))p = (1− b)pxB,

hence

F 3i
A (p) = 1−

(1− b)pxB
ap

and F 3i
B (p) = 1−

(1− b)(pxB − p)
bp

.

In addition we have that

ΦA =
1− a
b

and ΦB =
1− b
a

.

Step II Case 3ii To finish the proof we still need to tackle the case when
(1−b)pxB
2−a−b ≤ pxA ≤

(1−b)pxB
1−a .

Let F 3ii
j (p) be the probability distribution of prices of firm j = A,B in case 3ii in equilibrium

in case 3ii. This case is very similar to the previous one (when (1− b)pxB ≤ pxA <
(1−b)pxB
2−a−b ), but

slightly easier. There are two sub-cases to consider: pxA < pxB and pxA ≥ pxB.

Note that when pxA < pxB then there is no price p̃(x) < pxB as defined above that would

make firm B indifferent between selling to the consumer only when firm A also recognizes the

consumer and selling at price pxA guaranteeing to sell to the consumer in the event that firm A

does not recognize the consumer. We then have for p ∈ ((1− b)pxB, pxA) that:

(1− a)p+ a(1− F 3ii
A (p))p = (1− b)pxB and (1− b)p+ b(1− F 3ii

B (p))p = (1− b)pxB,

hence

F 3ii
A (p) = 1−

(1− b)pxB − (1− a)p

ap
and F 3ii

B (p) = 1−
(1− b)(pxB − p)

bp
,

and we equally find that

Φ3ii
A =

(1− b)pxB − (1− a)p

apxA
and Φ3ii

B =
(1− b)(pxB − pxA)

bpxA
,
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where Φ3ii
A is the probability mass firm A assigns to price pxB and Φ3ii

B is the probability mass

firm B assigns to price pxA.

Finally in the case that pxA ≥ pxB, the easiest case, the firms will randomize their prices over

the interval [(1− b)pxB, pxB) and in order for firm B to obtain positive profits (equal to (1−b)pxB),

firm A will assign probability mass a−b
b to price pxB which is the supremum of the support of

prices for both firms. For p ∈ [(1− b)pxB, pxB) we have that:

(1− a)p+ a(1− F 3ii
A (p))p = (1− b)pxB and (1− b)p+ b(1− F 3ii

B (p))p = (1− b)pxB,

hence

F 3ii
A (p) = 1−

(1− b)pxB − (1− a)p

ap
and F 3ii

B (p) = 1−
(1− b)(pxB − p)

bp
.

Step III. Mixed strategy Nash equilibria when (1− a)pxA = (1− b)pxB

We now construct the equilibrium strategies of two mixed strategy equilibria when (1 −
a)pxA = (1 − b)pxB. The two equilibria will be the ones obtained in the limit when (1 − a)pxA
approaches (1−b)pxB from below and from above. The expected payoff for both firms is equivalent

in both equilibria and equal to (1− a)pxA = (1− b)pxB.

Equilibrium 1: When (1−a)pxA approaches (1−b)pxB from below the highest price played in

equilibrium is anchored at pxB, a property which is preserved in the limit. Note that since a ≥ b
we have that pxA ≥ pxB. Hence the Nash equilibrium is the one that we have just described in the

previous paragraph. the firms will randomize their prices over the interval [(1− b)pxB, pxB) and

in order for firm B to obtain positive profits (equal to (1− b)pxB), firm A will assign probability

mass a−b
b to price pxB which is the supremum of the support of prices for both firms. For

p ∈ [(1− b)pxB, pxB) we have that:

(1− a)p+ a(1− F 3ii
A (p))p = (1− b)pxB and (1− b)p+ b(1− F 3ii

B (p))p = (1− b)pxB,

hence

F 3ii
A (p) = 1−

(1− b)pxB − (1− a)p

ap
and F 3ii

B (p) = 1−
(1− b)(pxB − p)

bp
.

It is immediately checked that any individual deviation to any other price cannot strictly

increase expected profit. Firm B will not charge any price below (1− b)pxB as this would yield

lower expected utility. The most she can hope for from charging a higher price is (1 − a)pxA,

but this is equal to (1− b)pxB. If firm A deviates to any other prices than prices in the interval

[(1− b)pxB, pxB] her expected profits will be lower than (1− b)pxB.

Equilibrium 2: When (1−a)pxA approaches (1− b)pxB from above the highest price played

in equilibrium is anchored at pxA, a property which is again preserved in the limit.

To characterize this equilibrium we just need to switch the firms’ labels in the above proof.

It is the case that pxB ≥ (1− a)pxA and hence we are in case 3 of the above proof. In particular

since
(1− a)pxA
2− a− b

=
(1− b)pxB
2− a− b

≤ pxB.
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We are in the second sub-case of case 3 while pxB ≤ pxA, which is the yields the equilibrium of

the first sub-case. We then have for p ∈ ((1− a)pxA, p
x
B) that:

(1− b)p+ a(1− F 3ii
B (p))p = (1− a)pxA and (1− a)p+ a(1− F 3ii

A (p))p = (1− a)pxA,

hence

F 3ii
B (p) = 1−

(1− a)pxA − (1− b)p
bp

and F 3ii
A (p) = 1−

(1− a)(pxA − p)
ap

,

and we equally find that

Φ3ii
B =

(1− a)pxA − (1− b)p
bpxB

and Φ3ii
A =

(1− a)(pxA − pxB)

apxB
,

where Φ3ii
B is the probability mass firm B assigns to price pxA and Φ3ii

A is the probability mass

firm A assigns to price pxB.

For the same reasons as equilibrium 1, it is immediately checked that any individual deviation

to any other price cannot strictly increase expected profit.

Expected payoff. It follows immediately from the equilibrium strategies that the expected

payoff for both firms is equal to

(1− a)pxA = (1− b)pxB.

7.2 Perfectly correlated profiling technologies

7.2.1 Proof of Proposition 3

Stage 2. Denote by π̃i(p) firm i’s expected profit obtained from consumer x when pricing

pi(x) = p at stage 2. These profits are conditional on being on segments where personalized

prices are relevant (i.e., the A-translucent and transparent segments for firm A, with probability

λ, and the transparent segment for firm B, with probability βλ). Supposing that firm B draws

its price pB (x) from some distribution GxB (p) that is defined on the interval [(1− β)pxB, p
x
B],

let us show that firm A achieves the same expected profit when playing pA(x) = (1− β) pxB or

pA(x) = pxB. As GxB((1− β) pxB) = 0 and GxB(pxB) = 1, we have indeed that

π̃A((1− β) pxB) = (1− β)2 pxB + β (1−GxB((1− β) pxB)) (1− β) pxB = (1− β) pxB,

π̃A(pxB) = (1− β) pxB + β (1−GxB(pxB)) pxB = (1− β) pxB.

For firm A to be indifferent among any price p ∈ [(1− β)pxB, p
x
B], its expected profit must always

be equal to (1− β) pxB; that is π̃A(p) = (1− β) p+ β(1−GxB(p))p = (1− β) pxB, from which we

obtain

GxB(p) =
p− (1− β) pxB

βp
= Gx (p) .

Suppose now that firm A plays the following strategy for any consumer x: with probability

∆A, it draws pa (x) from some distribution GxA (p) that is defined on the interval [(1− β)pxB, p
x
B],

while with probability 1 − ∆A, it sets pa (x) = pxB. As GxA((1− β) pxB) = 0, firm B’s expected
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profit from playing pB(x) = (1− β)pxB is equal to

π̃B((1− β)pxB) = ∆A (1−GxA((1− β) pxB)) (1− β) pxB + (1−∆A) (1− β) pxB = (1− β) pxB.

By taking limits, we obtain that firm B’s expected profit from playing pB(x) = pxB is given by

lim
p→pxB

π̃B(p) = lim
p→pxB

(∆A (1−GxA(p)) p+ (1−∆A) p) = (1−∆A) pxB.

For firm B to be indifferent between playing pB(x) = (1 − β)pxB or pB(x) = pxB, firm A must

choose ∆A such that (1− β) pxB = (1−∆A) pxB, or ∆A = β. In addition, firm B must also

be indifferent between any p ∈ [(1− β)pxB, p
x
B], which requires (1− β) p + β(1 − GxA(p))p =

(1− β) pxB, which is equivalent to

GxA(p) =
p− (1− β) pxB

βp
= Gx (p) .

Given that pB > 0, it follows that for any x such that r (x) > 0, both firms make positive

expected profits equal to (1− β) pxB = (1− β) min {pB, r (x)}.

Stage 1. In any mixed strategy equilibrium, firm B must be indifferent between charging

any price p in the support of HB, pl, limp→pm , and r̄. Recall that by choosing r̄, firm B can

secure a profit of πmin
B = β (1− β)λr̂. If firm B chooses some price p, then with probability

βλ, firm B competes for consumers on the transparent segment and will obtain expected profits

of π̊B(p); with probability 1 − βλ, firm B does not recognize consumers and will only obtain

positive profits if firm A does not recognize consumers either (the segment is opaque), which

happens with probability (1− λ) / (1− βλ) (conditional on the event in which firm B does not

recognize a consumer). Therefore, the probability that firm B is active on the opaque segment is

(1− λ). Given that with probability ∇A, firm A draws pA from the distribution HA (p) defined

on [pl, p
m] and, with probability 1−∇A, sets pA = pm, we can compute firm B’s expected profit

from choosing price p as

Πe
B(p) = βλπ̊B(p) + (1− λ)p (1− F (p)) [(1−∇A) +∇A (1−HA (p))] .

As firm B must be indifferent between charging any price p in the support of HB and r̄, we

must have that Πe
B(p) = πmin

B , from which we obtain

HA (p) =
βλ (̊πB(p)− (1− β) r̂) + (1− λ)p (1− F (p))

(1− λ)p(1− F (p))∇A

= 1− βλ ((1− β) r̂ − π̊B(p))− (1− λ) (1−∇A) p (1− F (p))

(1− λ)p(1− F (p))∇A
.

As HA (pl) = 0, firm B achieves the following expected profit when charging pl:

Πe
B(pl) = βλ

∫ pl

0
(1− β) rf(r)dr + βλ

∫ r̄

pl

(1− β) plf(r)dr + (1− λ) pl (1− F (pl))

= βλ

∫ pl

0
(1− β) rf(r)dr + (βλ (1− β) + 1− λ) pl (1− F (pl)) .

36



As firm B must be indifferent between charging pl and r̄, we have that Πe
B(pl) = βλ (1− β) r̂,

which implicitly defines pl as a function of β, λ and F :

pl =
βλ (1− β)

(
r̂ −

∫ pl
0 rf(r)dr

)
(βλ (1− β) + 1− λ) (1− F (pl))

.

As HA (pm) = 1, firm B’s expected profit from charging pmis obtained as follows

Πe
B(pm) = βλπ̊B(pm) + (1− λ)pm (1− F (pm)) (1−∇A) ,

which must be equal to πmin
B = β (1− β)λr̂. We obtain thus

1−∇A =
βλ (1− β)

(
r̂ −

∫ pm
0 rf(r)dr − πm

)
(1− λ)πm

> 0.

It must also be that ∇A > 0. This is satisfied when

(1− λ)πm ≥ βλ (1− β)

(
r̂ −

∫ pm

0
rf(r)dr − πm

)
.

When this condition is not satisfied, then ∇A = 0 and firm A plays pA = pm with probability

1. In this case, firm B’s optimal response is to play pB = r̄ with probability 1. In other words,

we obtain an equilibrium in pure strategies in which firm A will be a monopolist in markets for

consumers which are not identified, while firm B gives up any sales to consumers it does not

identify and chooses a price that maximizes its expected profits in the transparent segment.

Now assume that ∇A > 0, it must be that firm A is indifferent between charging pm and pl.

Denote by π̂A(∇B, HB) the expected profit of firm A given firm B’s regular price strategy. We

then have:

Πe
A (p) = λπ̂A(∇B, HB) + (1− λ) p (1− F (p)) (1−∇B +∇B (1−HB (p))) .

As HB (pm) = 1 and HB (pl) = 0, it follows that

Πe
A (pm) = λπ̂A(∇B, HB) + (1− λ) pm (1− F (pm)) (1−∇B) ,

Πe
A (pl) = λπ̂A(∇B, HB) + (1− λ) pl (1− F (pl)) .

For firm A to be indifferent, we need Πe
A (pm) = Πe

A (pl), which is equivalent to

1−∇B =
pl (1− F (pl))

pm (1− F (pm))
=

πl
πm

.

Since πl ≤ πm, it must be that ∇B ∈ [0, 1]. It must also be the case that Πe
A(p) = Πe

A(pl), from

which we obtain

HB (p) = 1− πl − p (1− F (p)) (1−∇B)

p (1− F (p))∇B
= 1−

πl − p (1− F (p)) πl
πm

p (1− F (p))
(
1− πl

πm

)
= 1− πl

πm − πl

(
πm

p (1− F (p))
− 1

)
.
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This completes the proof.

7.2.2 Comparative statics results

Proof of Corollary 1.

1. Let us show that ∂pl
∂λ > 0. We have that

pl (βλ (1− β) + 1− λ) (1− F (pl)) = βλ (1− β)

(
r̂ −

∫ pl

0
rf(r)dr

)
.

Totally differentiating with respect to λ we obtain

∂pl
∂λ

[(βλ (1− β) + 1− λ) (1− F (pl)− plf(pl))] + pl (β (1− β)− 1) (1− F (pl))

= β (1− β)

(
r̂ −

∫ pl

0
rf(r)dr

)
− ∂pl
∂λ

βλ (1− β)

∫ pl

0
rf(r)dr.

or
∂pl
∂λ

[
(βλ (1− β) + 1− λ) (1− F (pl)− plf(pl)) + βλ (1− β)

∫ pl

0
rf(r)dr

]
︸ ︷︷ ︸

=A

= β (1− β)

r̂ − ∫ pl

0
rf(r)dr − pl(1− F (pl))︸ ︷︷ ︸

=B

+ pl(1− F (pl)).

Since pl < pm we have that 1 − F (pl) − plf(pl) > 1 − F (pm) − pmf(pm) = ∂π
∂p

∣∣∣
p=pm

=

0, from which we obtain that A > 0. Also note that (1− β) r̂ = π̊B(r̄) > π̊B(pl) =

(1− β)
(∫ pl

0 rf(r)dr + pl(1− F (pl))
)

and hence B > 0. From this, it follows that ∂pl
∂λ > 0.

2. Let us show that ∂∇A
∂λ < 0 . Observe that

∇A = 1−
β (1− β)

(
r̂ −

∫ pm
0 rf(r)dr − πm

)
πm

× λ

1− λ
,

and hence

∂∇A
∂λ

= −
β (1− β)

(
r̂ −

∫ pm
0 rf(r)dr − πm

)
πm

× 1

(1− λ)2 < 0,

which can be rewritten as:

∂∇A
∂λ

= −ηA ×
1

λ (1− λ)
< 0.

3. Let us show that ∂HA(p)
∂λ > 0 . Recall that:

HA(p) = 1−
β (1− β) (r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

p(1− F (p))
× λ

(1− λ)∇A
+

1−∇A
∇A

;
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∂HA(p)

∂λ
= −

β (1− β) (r̂ −
∫ p
0
rf(r)dr − p(1− F (p)))

p(1− F (p))
×

(1− λ)∇A − λ
(
∂∇A
∂λ

(1− λ)−∇A
)

((1− λ)∇A)2
+
− ∂∇A

∂λ
∇A − ∂∇A

∂λ
(1−∇A)

(∇A)2
;

Grouping terms, we obtain

∂HA(p)

∂λ
= −

β (1− β) (r̂ −
∫ p
0
rf(r)dr − p(1− F (p)))

p(1− F (p))
×
∇A − ∂∇A

∂λ
λ(1− λ)

((1− λ)∇A)2
−

∂∇A
∂λ

(∇A)2
.

Note that ∇A − ∂∇A
∂λ λ(1− λ) = 1− ηA + ηA = 1 and hence we have

∂HA(p)

∂λ
= −

β (1− β) (r̂ −
∫ p

0 rf(r)dr − p(1− F (p)))

p(1− F (p))
× 1

((1− λ)∇A)2 +
ηA

λ (1− λ) (∇A)2 .

Since
β (1− β) (r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

p(1− F (p))

=
β (1− β)λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
× 1− λ

λ
> ηA

1− λ
λ

,

we have that

∂HA(p)

∂λ
< −ηA

1− λ
λ
× 1

((1− λ)∇A)2 +
ηA

λ (1− λ) (∇A)2

or
∂HA(p)

∂λ
< − ηA

λ (1− λ) (∇A)2 +
ηA

λ (1− λ) (∇A)2 = 0.

4. Let us show that ∂∇B
∂λ < 0. Recall that ∇B = 1 − pl(1−F (pl)

πm . Since ∂pl
∂λ > 0 and pl < pm,

we have that:
∂∇B
∂λ

= −
∂pl
∂λ (1− F (pl)− plf(pl))

πm
< 0.

5. Let us show that ∂HB(p)
∂λ < 0. Recalling that

HB(p) = 1− 1−∇B
∇B

×
(

πm

p(1− F (p))
− 1

)
,

we observe that
∂HB(p)

∂λ
=

(
πm

p(1− F (p))
− 1

) ∂∇B(p)
∂λ

(∇B)2
,

and hence ∂HB(p)
∂λ < 0 since ∂∇B(p)

∂λ < 0.

Proof of Corollary 2. We demonstrate here that for high levels of asymmetry (β < 1
2),

increasing β increases the uniform prices, whereas the opposite is true when the level of symmetry

is high (β > 1
2). That is, we show

∂pl
∂β

S 0⇔ β R
1

2
and

∂∇A
∂β

,
∂∇B
∂β

,
∂HA(p)

∂β

∂HB(p)

∂β
S 0⇔ β S

1

2
.

39



1. Let us show that ∂pl
∂β > 0⇐⇒ β < 1

2 . We have that

pl (βλ (1− β) + 1− λ) (1− F (pl)) = βλ (1− β)

(
r̂ −

∫ pl

0
rf(r)dr

)
.

Totally differentiating with respect to β we obtain

∂pl
∂β

[(βλ (1− β) + 1− λ) (1− F (pl)− plf(pl))] + plλ (1− 2β) (1− F (pl))

= λ (1− 2β)

(
r̂ −

∫ pl

0
rf(r)dr

)
− ∂pl
∂β

βλ (1− β)

∫ pl

0
rf(r)dr.

or
∂pl
∂λ

[
(βλ (1− β) + 1− λ) (1− F (pl)− plf(pl)) + βλ (1− β)

∫ pl

0
rf(r)dr

]
︸ ︷︷ ︸

=A

= λ (1− 2β)

r̂ − ∫ pl

0
rf(r)dr − pl(1− F (pl))︸ ︷︷ ︸

=B

 .

Since pl < pmwe have that 1 − F (pl) − plf(pl) > 1 − F (pm) − pmf(pm) = ∂π
∂p

∣∣∣
p=pm

=

0, from which we obtain that A > 0. Also note that (1− β) r̂ = π̊B(r̄) > π̊B(pl)) =

(1− β)
(∫ pl

0 rf(r)dr + pl(1− F (pl))
)

and hence B > 0. From this, it follows that ∂pl
∂β S

0⇐⇒ β R 1
2 .

2. Let us evaluate ∂∇A
∂β . Recall that

∇A = 1− β (1− β)

(
λ

(1− λ)πm

(
r̂ −

∫ pm

0
rf(r)dr − πm

))
, so that

∂∇A
∂β

= − (1− 2β)

(
λ

(1− λ)πm

(
r̂ −

∫ pm

0
rf(r)dr − πm

))
.

We thus have that

∂∇A
∂β

= −∂ηA
∂β

= −ηA ×
1− 2β

β (1− β)
S 0⇐⇒ β S

1

2
.

3. We now turn to ∂HA(p)
∂β . Recall that:

HA(p) = 1− β (1− β)

∇A
λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
+

1−∇A
∇A

, so that
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∂HA(p)

∂λ
= −

λ(r̂ −
∫ p

0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
×

(1− 2β)∇A −
(
∂∇A
∂β β (1− β)

)
(∇A)2 −

∂∇A
∂β

(∇A)2

= −
λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
× (1− 2β)∇A + (1−∇A) (1− 2β)

(∇A)2

+
(1−∇A) (1− 2β)

β(1− β) (∇A)2

=
1− 2β

(∇A)2

 1−∇A
β(1− β)

−
λ(r̂ −

∫ p
0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))︸ ︷︷ ︸
C

 .
Note that, since p ≤ pm, we have

λ(r̂ −
∫ p

0 rf(r)dr − p(1− F (p)))

(1− λ)p(1− F (p))
≥

λ(r̂ −
∫ pm

0 rf(r)dr − pm(1− F (pm)))

(1− λ)pm(1− F (pm))
=

1−∇A
β (1− β)

.

Hence we obtain that C ≤ 0, which implies that ∂HA(p)
∂β S 0 ⇐⇒ β S 1

2 . In other words,

when β is low, increasing β increases prices on the opaque segment, as firms avoid cut-

throat competition. In other words, when β is relatively high, increasing β make the firms

even more symmetric, thereby increasing competition and lowering prices.

4. Now we consider ∂∇B
∂β . Recall that ∇B = 1 − pl(1−F (pl)

πm . We then obtain, since ∂pl
∂β > 0

and pl < pm, that:

∂∇B
∂β

= −
∂pl
∂β (1− F (pl)− plf(pl))

πm
S 0⇐⇒ β S

1

2
.

5. We finally discuss the sign of ∂HB(p)
∂β . As

HB(p) = 1− 1−∇B
∇B

×
(

πm

p(1− F (p))
− 1

)
,

we observe that

∂HB(p)

∂β
=

(
πm

p(1− F (p))
− 1

) ∂∇B(p)
∂β

(∇B)2
,

and hence
∂HB(p)

∂β
S 0⇐⇒ β S

1

2
.

Proof of Corollary 3. Let us consider ∂Gx(p)
∂β for p ∈ [(1− β)pxB, p

x
B].

∂Gx(p)

∂β
=

∂

∂β

(
1

β
−
pxB
p

1− β
β

)
=
pxB − p
β2p

> 0 for any p < pxB.
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Profit ranking. We establish here that the better-informed firm (firm A) earns higher expected

profits than the less-informed firm (firm B).

We know that firms are indifferent between all equilibrium uniform prices. Hence, the ex-

pected profit from any uniform price is equal to the expected profit from playing the lowest pos-

sible uniform price pl. When setting their price equal to pl, both firms have the same expected

profit from the opaque segment. Moreover, firm A gets additional profits from the translucent

segment since she has a lower targeted price than firm B’s observed uniform price. Finally, the

expected profit from the transparent market is higher for firm A than for firm B, since firm B

minimizes profits from the transparent market by setting pB = pl. Firm A’s expected profits on

the transparent market are averaged over all possible uniform prices firm B may choose, either

between pl and pm or equal to r̄, and these expected profits do not depend on its own uniform

price, pA. Adding these three effects, we see that A enjoys higher expected profits.

7.2.3 Uniform distribution

Suppose that consumer valuations are uniformly distributed on the unit interval and, to ease

the exposition, define k ≡ β (1− β). We know from Proposition 3 that the mixed-strategy

equilibrium in uniform prices is as follows: with probability 1 − ∇A, firm A plays pA = pm

and with probability ∇A, it draws a price from the distribution HA(p) defined on [pl, p
m); with

probability 1 − ∇B, firm B plays pB = r̄ = 1 and with probability ∇B, it draws a price from

the distribution HB(p) defined on [pl, p
m). Then, supposing that 2(1 − λ) > λk, we find the

following results:32

∇A =
2(1− λ)− λk

2(1− λ)
, ∇B =

(
2(1− λ)− λk
2(1− λ) + λk

)2

,

HA (p) =
1

p

(2 (1− λ) + λk) p− λk
2 (1− λ)− λk

,

HB (p) =
(2 (1− λ) (1− p)− λkp) (2 (1− λ) p− λk (1− p))

p (1− p) (2(1− λ)− λk)2 ,

pl =
λk

2(1− λ) + λk
, pm =

1

2
.

It is readily checked that ∇A, ∇B, HA (p), and HB (p) are decreasing function of λ and k, while

pl is an increasing function of λ and k. This means first, as stated in Corollary 1, that the

distributions of uniform prices are pushed to the right for both firms when profiling abilities

improve. Second, recalling that k ≡ β (1− β) is bell-shaped in β with a maximum at β = 1/2,

we also have that the distribution of uniform prices of both firms are also pushed to the right

when β comes closer to 1/2, as indicated in Corollary 2. Third, we observe in this example that

HB (p) > HA (p) for all p, meaning that firm B always puts more weight on lower prices than

32If 2(1−λ) ≤ λk, then ∇A = ∇B = 0, meaning that, with probability 1, firm A sets pA = 1/2 and firm B sets
pB = 1. See Appendix 7.2.2 for the detailed computations.
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Figure 5: Impact of improved profiling on price distributions

firm A whenever both firms randomize. Figure 1 illustrates these results by representing HA (p)

and HB (p) for different values of λ and β: going from left to right, the first locus is HB (p) for

(λ, β) = (1
2 ,

2
3), the second is HA (p) for (λ, β) = (1

2 ,
2
3), the third is HA (p) for (λ, β) = (3

4 ,
2
3),

and the fourth is HA (p) for (λ, β) = (3
4 ,

1
2).

Let F (.) be the uniform distribution on [0, 1]. It follows that the average valuation (r̂) and

the monopoly price (pm) are both equal to 1/2; the monopoly profit is computed as πm = 1/4.

Furthermore, we have

π̊B(p) =

∫ p

0
(1− β)rf(r)dr + (1− β)p(1− F (p)) = (1− β)(p− 1

2p
2),

and πminB = 1
2λβ(1− β). The lower bound of uniform price pl is then defined by

pl =
βλ(1− β)(r̂ −

∫ pl
0 rf(r)dr)

(βλ(1− β) + 1− λ)(1− F (pl))
⇔ pl =

βλ(1− β)

2(1− λ) + βλ(1− β)
.

We observe that pl is increasing in λ, increasing in β if β ≤ 1/2, and decreasing in β if β > 1/2.

This implies that the uniform price is less dispersed as tracking technologies become more precise

and the difference in profiling technologies between the two firms are neither too large nor too

small (i.e., pl is at the highest level when β = 1/2).

The probability of firm A randomizing its uniform price is defined by

∇A = 1− βλ(1− β)

(1− λ)πm

(
r̂ −

∫ pm

0
rf(r)dr − πm

)
= 1− βλ(1− β)

2(1− λ)
.

This probability is decreasing in λ, decreasing in β if β ≤ 1/2, and increasing in β if β > 1/2.

When 2(1 − λ) ≤ βλ(1 − β), we have ∇A = 0, so that firm A plays pA = pm = 1/2 with

probability 1, whereas firm B plays pB = 1 with probability 1. When 2(1− λ) > βλ(1− β), we
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have ∇A > 0; the probability of firm B randomizing its uniform is then defined by

∇B = 1− pl(1− F (pl))

pm(1− F (pm))
=

(
2(1− λ)− βλ(1− β)

2(1− λ) + βλ(1− β)

)2

.

The latter probability is decreasing in λ, decreasing in β if β ≤ 1/2, and increasing in β if

β > 1/2.

Thus, firm B plays pB = 1 with probability 1 − ∇B, and draws a price from [pl, 1/2] with

probability ∇B and with a distribution

HB(p) = 1− 1−∇B
∇B

(
1

4p(1− p)
− 1

)
,

which is increasing in ∇B.

Firm A plays pA = 1/2 with probability 1 − ∇A, and draws a price from [pl, 1/2] with

probability ∇A and with a distribution

HA(p) =
1

∇A

(
1− λβ(1− β)(1− p)

2(1− λ)p

)
.

Effect of improved profiling on consumer surplus. Suppose that β = 1/2 and λ > 8/9,

which implies that 2(1 − λ) − βλ(1 − β) < 0, so that ∇A = 0. Under these conditions, firm

A plays pA = pm = 1/2 with probability 1, whereas firm B plays pB = 1 with probability 1.

Consumers thus face the monopoly price when they remain anonymous. For the consumers

whom they profile, both firms draw their personalized price from the interval [r/2, r] according

to the distribution function G(p) = 2− (r/p), with density g(p) = r/p2. Hence, when consumers

are profiled only by firm A, they face one draw from G(p). When they are profiled by both firms,

they face the minimum of two draws from G(p), which follows the distribution Γ (p) = G(p)2,

with density γ(p) = 2G(p)g(p).

Suppose that β = 1/2 and λ > 8/9, which implies that 2(1 − λ) − βλ(1 − β) < 0, so that

∇A = 0. Under these conditions, firm A plays pA = pm = 1/2 with probability 1, whereas firm

B plays pB = 1 with probability 1. Consumer surplus is then computed as:

CS(λ)|λ≥8/9 = (1− λ)

∫ 1

1
2

(
r − 1

2

)
dr +

λ

2

∫ 1

0

(
r −

∫ r

r
2

pg(p)dp

)
dr

+
λ

2

∫ 1

0

(
r −

∫ r

r
2

pγ(p)dp

)
dr = (1− λ)

1

8
+ λ

4− 5 ln 2

4
.

It follows that

∂CS(λ)

∂λ

∣∣∣∣
λ≥8/9

= −1

8
+

4− 5 ln 2

4
=

7− 10 ln 2

8
≈ 0, 0086 > 0.
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For any λ > 8/9, firm A’s expected profit is computed as:

ΠA(λ)|λ≥8/9 = (1− λ)

∫ 1

1
2

1

2
dr + λ

(
1

2

∫ 1

0

∫ r

r
2

pg(p)dpdr +
1

2

∫ 1

0

∫ r

r
2

p(1−G(p))g(p)dpdr

)

= (1− λ)
1

4
+ λ

1

2

∫ 1

0

∫ r

r
2

r2

p2
dpdr = (1− λ)

1

4
+ λ

[
1

2

∫ 1

0
rdr

]
=

1

4
,

which is invariant with λ. As for firm B, we have

ΠB(λ)|λ≥8/9 = λ
1

2

∫ 1

0

∫ r

r
2

p(1−G(p))g(p)dpdr = λ
1

2

∫ 1

0

∫ r

r
2

r r−p
p2
dpdr = λ1

4 (1− ln 2) ,

which is an increasing function of λ (as ln 2 < 1).

7.3 Proof of the result in Example 4

Personalized prices. Note first that the second stage equilibrium prices are still characterized

by Proposition 3:

Gx (p) =

{
p−(1−β)p′xB

βp for p ∈ [(1− β)p′xB , p
′x
B ] ,

0 otherwise.

Where p′xB ≡ min {pA, pB, r (x)} . Given any uniform prices pA and pB, the expected payoff from

personalized pricing is equal to π̃ = (1− β) p′xB . Note that we assume that in stage one, no firm

will charge more than ζ and hence that p′xB ≡ min {pA, pB, r (x)} = min {pA, pB, } .

Uniform prices. Note that in any subgame-perfect mixed strategy Nash equilibrium, players

must choose prices from the same interval and only the upper bound of the interval can be

assigned positive mass by at most one firm. No firm wants to charge a price below the lower

bound of the interval since this decreases both first stage and second stage expected profits. No

firms wants to charge a price above the upper bound of the interval since this will guarantee zero

profits on anonymous consumers and does not affect expected profits obtained from personalized

pricing. Now take any price p in the interval different from the upper bound and suppose that at

least one firm, say firm A, plays this price with positive probability. Firm B should be indifferent

between playing price p and any other price p′ in the interval. However, since firm A plays p

with positive probability, firm B will always find a price p′ = p − ε that will guarantee higher

profits: instead of sharing the consumers at this price p it can sell to the consumer for sure by

slightly undercutting price p. However, it cannot be firm B that plays the upper bound, p = ζ

with positive probability. The expected payoff to firms A and B from setting a uniform price
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equal to p is equal to:

Πe
A(p) = λ

{
∇B

(∫ p

p
(1− β)ρhB(ρ)dρ+ (1− β)p(1−HB(p))

)
+ (1−∇B)(1− β)p

}
+(1− λ)p [1−∇B +∇B(1−HB(p))] ,

Πe
B(p) = βλ

{
∇A

(∫ p

p
(1− β)ρhA(ρ)dρ+ (1− β)p(1−HA(p))

)
+ (1−∇A)(1− β)p

}
+(1− λ)p [1−∇A +∇A(1−HA(p))] .

The first term is the expected payoff from personalized pricing given that the other firm

follows the strategies as defined in the proposed mixed strategy equilibrium. The second term

is the expected profits to be obtained from consumers it will not recognize given that the other

firm follows the strategies as defined in the proposed mixed strategy equilibrium.

Suppose first that ∇A < 1 and hence that ∇B = 1. Now consider the expected payoff to

firm A from setting a uniform price equal to p ∈
[
p, ζ
)

is equal to:

Πe
A(p) = λ

{∫ p

p
(1− β)ρhB(ρ)dρ+ (1− β)p(1−HB(p))

}
+ (1− λ)p [1−HB(p)] .

It must be that firm A is indifferent between any p in the interval
[
p, ζ
)
. We hence have that

∂Πe
A(p)/∂p = 0 for all p ∈

[
p, ζ
)
:

(1− λ)phB(p)− (1−HB(p))(1− λ+ (1− β)λ) = 0.

The explicit solution of this differential equation is HB(p) = cp−
1−λβ
1−λ + 1. But then it must be

that HB(ζ) = 1 = cζ−
1−λβ
1−λ + 1 and hence that c = 0, a contradiction.

Suppose now that ∇B < 1 and hence that ∇A = 1. Then, the expected payoff to firm B

from setting a uniform price equal to p ∈
[
p, ζ
)

is equal to:

Πe
B(p) = βλ

{∫ p

p
(1− β)ρhA(ρ)dρ+ (1− β)p(1−HA(p))

}
+ (1− λ)p [1−HA(p)] .

It must be that firm B is indifferent between any p in the interval
[
p, ζ
)
. We hence have that

∂Πe
B(p)/∂p = 0 for all p ∈

[
p, ζ
)
:

(1− λ)phA(p)− (1−HA(p))(1− λ+ (1− β)βλ) = 0.

The explicit solution of this differential equation is HA(p) = cp−
1−λ+(1−β)βλ

1−λ + 1. But then it

must be that HA(ζ) = 1 = cζ−
1−λ+(1−β)βλ

1−λ + 1 and hence that c = 0, again a contradiction.
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