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Abstract 

Labour income follows a deterministic growth trend and fluctuates between two values. Interest 
rates are drawn initially, fluctuate between two values and can differ in their arrival rates. Low 
interest rates imply a stationary long-run wealth distribution, high interest rates imply exploding 
wealth dynamics. When matching the NLSY 79 evolution of the wealth distribution from 1986 
to 2008, we obtain a fit of 96:1%: With a more flexible interest rate distribution, employing 
“superstar states”, the fit can increase to 96:7%. For the fit of 96:1%, the standard deviation 
of model returns is much lower than the empirical standard deviation. 
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1 Introduction

[Motivation] Understanding wealth distributions has always been of major academic and public
interest. Concerns about e¢ ciency and (in-) equality are central to this interest. In recent years,
there has been a rising concern about an increase in inequality; that is, a concern about changes
in wealth distributions over time. This suggests that understanding the determinants of wealth
distribution and especially its evolution over time is of enormous academic and public interest.
[The open issue] While there is quite some research on the distribution of wealth (see below),

very little is known about how quickly it changes over time. Therefore, this paper quantitatively
asks: What are the necessary building blocks of an explanation of the dynamics of wealth? To
make this question precise, we ask: Under which conditions can a relatively standard model of
idiosyncratic risk with standard parameter values match the evolution of the wealth distribution
of the National Longitudinal Survey of Youth 1979 (NLSY 79) from 1986 to 2008?
[The setup] Individuals face uncertain labour income as they stochastically move back and

forth between employment and unemployment. Individuals can self-insure against implied con-
sumption �uctuations by accumulating wealth. When unemployed, the individual�s maximum
debt level is given by a natural borrowing constraint. Individuals also face uncertain returns
on their wealth. The return �uctuates randomly between two values.2 The transition rates
between these values can di¤er between individuals, which we describe as an individual�s ��-
nancial type�. Each individual draws their type before entering the labour market. Individuals
with a high �nancial ability will experience high returns more frequently than individuals with
a lower �nancial ability. Because we want to understand one cohort of the US population, we
work with a partial equilibrium model.3 The wage, unemployment bene�ts, the growth rate of
the wage and bene�ts and the distribution of returns are exogenous.
The quantitative analysis is facilitated by the use of Fokker-Planck equations (FPEs). Treat-

ing wealth as a continuous variable, our FPEs take the form of a partial di¤erential equation
system that describes the evolution of the wealth distribution over time. They can be derived
from the fundamentals of the model, taking optimal consumption behaviour of agents into
account.
In our calibration, we compute the average wage, wage growth, the arrival rates of jobs and

the separation rate from the NLSY data. In our baseline calibration, we set the time preference
rate to 1% and the degree of risk aversion to 1. Our idiosyncratic interest rate �uctuates
between annual values of 3:5% and 4:5%. We perform various robustness analyses.
[Findings] Our main contribution lies in demonstrating the quantitative usefulness of FPEs

for understanding the evolution of entire distributions. We apply this tool to understand the
relative importance of capital income risk (as in Benhabib, Bisin and Zhu, 2011) vs. labour
income risk to match the evolution of NLSY 79 wealth densities from 1986 to 2008. We show
that for interest rate distributions with �awesome�or �superstar� states,4 we can match the
wealth density almost perfectly. For an empirically convincing interest rate and labour income
distribution, we �nd that both capital income risk (including type and scale dependence as in
Gabaix et al., 2016) and labour income risk are needed to obtain a �t of above 96%.

2To simplify the numerical analysis, we assume individuals are myopic with respect to changes in the interest
rate. Optimal policy functions are a function (inter alia) of the level of the interest rate. See footnote 27 for
further discussion.

3Our model below could also be seen as describing a small open economy with free international capital �ows
(see Bayer et al. 2019). As we focus on one this one NLSY cohort, the partial equilibrium interpretation seems
more appropriate.

4Labour income states with low probability but very high labour income where employed by Castaneda et
al. (2003) to obtain su¢ cient wealth inequality (Hubmer et al, 2017, Benhabib et al., 2018). These states
are sometimes referred to as �superstar� or �awesome� states. Here, we transfer these terms to describe an
idiosyncratic interest rate distribution which has a mean that exceeds the mean of empirical interest rate
distributions.
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In more detail, our �ndings are as follows: The empirical distribution of wealth in 2008
has more probability mass to the right and to the left than the empirical distribution in 1986
when individuals entered the labour market at the age of 21 to 28. We start by targeting the
2008 wealth distribution, using the 1986 distribution as the initial condition. According to our
measure of �t (focusing on densities directly rather than on wealth shares), the model density
in 2008 covers 96:1% of the empirical density.
To obtain this result, the low realization of the return (at 3:5%) needs to lie below the

threshold level, such that a stationary distribution obtains.5 Together with a parameter deter-
mining the minimum consumption level at the natural borrowing limit, this allows us to assure
that the left tail of the wealth distribution converges in 22 years from the initial distribution to
the density in 2008. The high realization (set at 4:5%) needs to lie above this threshold level,
yielding exploding wealth dynamics. Employing this �exploding regime�(Benhabib and Bisin,
2018) is essential to obtain the fat right tail (i.e. high Pareto coe¢ cient) in the distribution of
wealth in 2008.
This �t of 96% for our baseline model is obtained with 30 di¤erent �nancial types. The share

of individuals in the NLSY cohort belonging to each of these �nancial types is computed and
lies between 0:3% to 8:0%. Technically, we compute the weights of a mixture of densities from
di¤erent types in the model by minimizing the absolute distance between our model density
and the empirical density. We can obtain similarly good measures of �ts for other target years
than 2008. When we target all years jointly (i.e. when the evolution of the wealth distribution
is taken into account for each year with empirical wealth information), the average �t over all
years is higher (at 88:9%) than the average �t when targeting one speci�c year.
Our robustness checks �rst analyse the relative importance of capital income risk to labour

income risk. We show that one can obtain similarly good �ndings as in the baseline model when
abstracting from any labour income risk. In various �pure capital risk�speci�cations, we obtain
�ts of up to 96:7%. Returning to the baseline model, an increase of the high interest rate (from
4:5% to 8%) hardly increases the �t for 2008 (to 97:3%). A lower degree of risk aversion (0:8)
worsens the overall �t (to 90:3%), a higher degree (1:2) implies that the �t falls dramatically
(to 44:7%) as the exploding regime vanishes. Given that we target densities directly rather
than wealth shares, we also inquired into the �t in terms of wealth shares. When we target the
average of densities over all years, (non-targeted) wealth shares di¤er from empirical wealth
share on average by 2:6%. When we target wealth shares, the model Lorenz curve coincides
with the empirical Lorenz curve of 2008 by 99:5%.
We �test� our baseline model and the pure-capital-risk speci�cations by comparing the

implied standard deviations of the idiosyncratic interest rate in our calibrations with empirical
standard deviations reported in the literature. While pure-capital-risk models yield a very high
�t, they include what could also be termed �awesome�or �superstar states�. The mean return
in these pure-capital-risk models is too high compared to empirical means of idiosyncratic risk.
When we look at the baseline model, the calibrated mean return is in line with empirical
evidence. Yet, it seems that empirical standard deviations are one or two orders of magnitude
larger than those needed in our model to match the dynamics of the wealth distribution. Interest
rate uncertainty joint with labour income uncertainty is, therefore, almost �too successful�in
explaining wealth inequality.
We also provide empirical Pareto coe¢ cients for measuring the fatness of the right tail for

all waves and compare them to our model. Taking right-truncation into account, the empirical
coe¢ cients are similar to those reported in the literature. The (non-targeted) model coe¢ cients

5In models with idiosyncratic income risk without economic growth, there is a stationary distribution if the
interest rate lies below the time preference rate, r < �. Because we allow for growth, there is a stationary
distribution in our setup if the interest rate lies below the time preference rate plus the product of risk aversion
and the growth rate, r < �+ �g:
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are su¢ ciently close to the empirical ones.
[Related literature] We see our paper (i) in the tradition of the literature that studies one

cross-section of wealth, especially with a focus on capital income risk, (ii) sharing features of
analyses that look at the dynamics of distributions and (iii) as most closely related to two
quantitative studies that investigate into the empirical relevance of capital income risk for the
evolution of wealth.
The determinants of one distribution of wealth have been studied for a long time. The

conventional view starts from idiosyncratic labour income risk in the Bewley-Huggett-Aiyagari
tradition. In the tradition of Castañeda et al. (2003), many authors have successfully replicated
empirical wealth distributions. To obtain su¢ ciently thick right tails in the wealth distribution,
usually some (low-probability and very high) labour income state is introduced where the in-
come level is an order of magnitude larger than is empirically plausible. This is what Benhabib
and Bisin (2018) and Benhabib, Bisin and Luo (2017) refer to as the �awesome state�. It,
therefore, seems reasonable to search for other determinants of wealth distributions (Benhabib
et al. 2017). As shown in the seminal contribution by Benhabib, Bisin and Zhu (2011), risky
idiosyncratic returns are one such highly promising source.6 In an overlapping generations
framework, the authors analytically show that their stationary distribution has a Pareto dis-
tribution in the right tail and that the thickness of the right tail increases in capital income
risk.7 We see our paper in this tradition.8 We �nd that capital income risk is a quantitatively
necessary ingredient to match the density of wealth over its entire range when an empirically
convincing labour income process (i.e. without a �superstar�or �awesome�state) is employed.
So far, the dynamics of distributions have received far less study. Gabaix et al. (2016)

study the dynamics of income inequality.9 Conventional models do not generate su¢ ciently
high transition speeds to match the empirical rise in top income inequality. They introduce
scale and type dependence for income dynamics to obtain transition speeds for distributions
that are su¢ ciently large. We also allow for exogenous types (our �nancial abilities), which
in our framework leads to endogenous scale dependence (via the exploding regime). We apply
our method to quantify the importance of type and scale dependence. Kaymak and Poschke
(2016) present how top 1%, 5% and 10% wealth shares evolve over time. We extend their work
inter alia by looking at the entire density and, thereby, at all wealth shares and by studying
the e¤ect of capital income risk.10

To the best of our knowledge, our paper is the �rst to employ FPEs to understand the
quantitative relevance of capital income risk on the evolution of entire wealth densities over
time. There are, however, two recent studies that share some of our features, although our
paper di¤ers from these studies in many important respects. Benhabib, Bisin and Luo (2019)

6There is an earlier work that studies the e¤ects of capital income risk as well. Angeletos and Calvet (2005,
2006) employ CARA preferences and allow for additive endowment risk. Angeletos (2007) does not have additive
endowment risk but employs Epstein-Zin preferences with CEIS and CRRA. In addition to idiosyncratic capital
income risk (housholds own private business), there is a second riskless asset. This leads to closed-form solutions
for policy functions (as in Merton, 1971). Krusell and Smith (1998) have stochastic discount factors which play
a similar role as stochastic interest rates.

7Benhabib, Bisin, and Zhu (2015) extend their �ndings from Benhabib, Bisin, and Zhu (2011) by looking at an
in�nite horizon setup. Their in�nite horizon setup works with non-negative wealth levels, assumes i.i.d. processes
for the interest rates and labour income and analytically studies properties of the stationary distribution.

8De Nardi and Fella (2017) provide a comprehensive overview of various determinants of wealth distribution.
9In their online Appendix E, they also look at wealth inequality. The underlying maximization problem

assumes deterministic labour income, iid capital income and that individuals consume an exogenous fraction
of their wealth. We will see later, inter alia, that stochastic labour income is crucial for obtaining empirically
convincing descriptions of wealth dynamics.
10Bayer et al. (2019) provide proof of the existence and stability of stationary wealth distributions in

continuous-time models with labour income risk. Parra-Alvarez et al. (2017) structurally estimate a het-
erogenous agent model. They focus on the identi�ability of parameters and apply their method to the 2013
distribution of wealth in the SCF.
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quantitatively emphasize the importance of capital income risk in addition to persistent earnings
inequality and bequests to explain wealth distributions and social mobility patterns. While their
main analysis focuses on stationary distributions, their robustness check studies how wealth
distributions evolve over time. The length of one period of analysis in their approach is 36
years. They study the dynamics of wealth in the SCF over a length of 45 years. This length
of time is approximated by two time periods in their model. We track each of the 12 wealth
distributions in the NLSY data from 1986 to 2008 by our method. Employing a continuous
time framework, we can choose the model length such that it coincides with data length. Our
analysis also allows for explicit stochastic labour income over time.11 Our robustness check
shows that the absence of one source of uncertainty strongly reduces the model�s explanatory
power.
Capital income risk is also taken into account by Hubmer et al. (2019). They examine

drivers of the rise in wealth inequality in the United States over the last 30 years and �nd, inter
alia, that an increase in tax progresivity would reduce wealth inequality. Methodologically, they
study a �perfect-foresight transition experiment�and a �myopic transition experiment�. Our
numerical procedure does not require us to assume perfect foresight or myopic behaviour with
respect to all random events.12 We also allow for both of our labour income and our interest
rate processes to have persistent components. Idiosyncratic interest rate shocks in Hubmer et
al. (2019) are of a transitory nature and a¤ect individual behaviour only through their e¤ect
on end-of-period wealth (�cash on hand�).13 In our setup, the persistent nature of interest rate
shocks, which are a salient empirical property stressed by Fagereng et al. (2018), makes interest
rates a state variable of the household�s decision problem. The nature of wealth accumulation
(the standard regime and the �exploding�regime) depends on the interest rate level and it is
the central mechanism to explain fat right tails. They result from type and scale-dependence
(Gabaix et al., 2016) of capital income risk.
Our quantitative approach also o¤ers a new feature, not only in comparison to Hubmer

et al. (2019). Most of the papers that we are aware of describe wealth inequality by wealth
shares. How large is the share of wealth that the richest x% of the population own? In this
tradition, leading to Lorenz curves, growth processes and absolute wealth levels do not matter
when comparing model predictions with data. One can therefore work with stationary models.
Because FPEs describe the evolution of densities of levels of random variables, it is natural to
look at the densities predicted by the model directly and compare them to empirical densities.
To this end, we also allow for a growth process in labour income to make sure that model
densities grow in levels su¢ ciently fast as compared to (real) wealth densities.
Our paper can be further related to three other strands of the literature. Many authors

have recently inquired into the quantitative �t for the upper-tail of the wealth distribution.
Nirei and Aoki (2016) construct a neoclassical growth model that yields a Pareto distribution
for the upper tail.14 They work with closed-form solutions in the absence of labour income
risk. When there is labour income risk, they analyse a stationary economy. Similar to our
work, Aoki and Nirei (2017) also describe the dynamics of distributions by employing FPEs.
However, due to the absence of stochastic labour income, they are able to obtain closed form

11Benhabib, Bisin and Luo (2019) emphasize that �r and w are stochastic over generations only: agents face
no uncertainty within their life span�.
12We acknowledge that our partial equilibrium approach helps in this respect as the feedback from mean

wealth on aggregate variables is absent. See Pröhl (2017) for a novel numerical procedure that does allow us to
compute fully rational equilibria with aggregate shocks and distributions as elements of the state space.
13This modelling choice reduces the number of state variables of the individual�s maximization problem

(cash-on-hand, the persistent component of the earning process and the stochastic discount factor in the spirit
of Krusell and Smith, 1998) and makes computation faster. We are grateful to Joachim Hubmer for many
discussions about this and related issues.
14See Gabaix (2009) for an excellent introduction to Power law/ Pareto distributions.
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solutions, such as Angeletos (2007). Cao and Luo (2017) allow for stochastic returns and for
ex-ante heterogeneity in labour productivity in a growth model. They also have a closed-form
solution for policy functions that enables them to study transitional paths of the e¤ects of
policy reforms on top end wealth inequality and welfare.
Until recently, only a few papers have employed FPEs (i.e. forward Kolmogorov equations)

in their analysis. Bayer and Wälde (2010a, sect. 5) showed how to derive them for relatively
general cases (using a Bewley-Huggett-Aiyagari model as example).15 More recently, FPEs
became much more popular and we share the belief in their usefulness with Benhabib, Bisin
and Zhu (2016), Achdou et al. (2017), Jones and Kim (2017), Cao and Luo (2017), Aoki
and Nirei (2017), Kaplan et al. (2018)16 and Nuño and Moll (2018).17 We contribute to this
literature by enquiring into the quantitative merits of FPEs. We match theoretical densities
to empirical densities over their full range (hence, we do not focus on the upper tail or speci�c
moments). We study in particular how the density of wealth evolves over time and how well
such a model can replicate the empirical evolution of wealth densities. Due to the presence of
jump processes and the implied linearity of the partial di¤erential equations, we use the method
of characteristics to solve them (see app. D.2). We also inquire into the quantitative success
of the idiosyncratic interest rate hypothesis by comparing the mean and standard deviation
of our densities to the mean and standard deviations reported in the literature (e.g. Flavin
and Yamashita, 2002, Fagereng et al., 2018). As mentioned previously, we show that this
risky-return approach is quantitatively more than successful.18

Our labour income process is inspired by the search and matching literature starting with
Diamond (1982), Mortensen (1982) and Pissarides (1985). We let labour income �uctuate be-
tween a wage when employed and unemployment bene�ts when unemployed. Corresponding
transition rates are quanti�ed by average durations in employment and unemployment, re-
spectively, in the NLSY. We agree that any realistic income process would need much more
structure (see e.g. Blundell et al., 2015 or Guvenen et al., 2019). An outstanding example
for an empirically more convincing income process is the precautionary saving and on-the-job
search model by Lise (2013). Interestingly, his analysis does not require a �superstar� state
to obtain a satisfactory �t for one cross-section of wealth at a constant interest rate. Yet, he
treats all workers within one education class as being identical. This creates low probability
events such that workers in the state with the highest observed wage within this education class
have a very strong saving motive. An argument in favour of our simple income structure is the
well-known �nding that the empirical skewness in the earnings distribution is not enough to
generate su¢ ciently skewed and thick-tailed wealth distributions (Benhabib and Bisin, 2018,
sect. 3.1). Therefore, we demonstrate that even with such a simple process, we can match the
dynamics of the distribution of wealth.19 We also show below that two (instantaneous) income

15Bayer and Wälde (2015, p. 4) provide a short survey on the use of FPEs in economics.
16From a quantitative perspective, Kaplan et al (2018, table 5) target moments of the wealth distribution

and match top shares in a New Keynesian model with heterogenous agents. Their quantitative analysis focuses
on stationary distributions and they abstract from capital income risk.
17Achdou et al. (2014) provide an overview of partial di¤erential equation models in macroeconomics. Ahn et

al. (2017) describe numerical methods for continuous time models. These methods are faster and more accurate
than standard methods and allow to solve larger models as well.
18Kasa and Lei (2018) study a Blanchard-Yaari model with Knightian uncertainty where individuals are

uncertain about the true model - as opposed to (standard) models with risk. Modelling capital income risk
by Brownian motion, they also employ Fokker-Planck equations. Our wealth distributions are quantitatively
closer to data than theirs. By contrast, they do not require type- and scale-dependence to obtain su¢ ciently
fast increases in inequality.
19In a dynamic wealth-inequality accounting analysis, one would ask how changes of the wealth distribution

over time can be attributed to the labour income process, to the distribution of capital returns, to the role of
bequests, the �scal system, medical expenses or entrepreneurial activity. De Nardi and Fella (2017) conclude
that more data is needed to determine the relative importance of these potential factors.
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states nevertheless imply a continuous monthly or annual income distribution.
[Table of contents] The next section describes an individual facing idiosyncratic risk result-

ing from a stationary interest rate process and from idiosyncratic risk resulting from labour
income with (a deterministic) trend. Given this growth process, section 3 derives a stationary
representation of our dynamic economy and de�nes equilibrium. Section 4 analyses the dy-
namics of distributions for detrended variables and shows how distributions evolve for variables
with trend. Section 5 demonstrates the empirical �t of the evolution of the distributions for
wealth (with trend). Finally, section 6 concludes.

2 The model

2.1 The individual

Our individual owns wealth a (t) that increases in a deterministic fashion when capital income
r (t) a (t) plus labour income z (t) exceeds consumption c (t) ;

da (t) = fr (t) a (t) + z (t)� c (t)g dt: (1)

The instantaneous interest rate is denoted by r (t) : It �uctuates between a low value rlow and
a high value rhigh;

dr (t) = [rhigh � r(t)] dqlow (t) + [rlow � r(t)] dqhigh (t) : (2)

The arrival rates of the corresponding Poisson processes qlow (t) and qhigh (t) are �low > 0 and
�high > 0; respectively. The interest rate jumps from its current level r (t) to the new level rlow
or rhigh when the corresponding increment, dqhigh (t) or dqlow (t) ; equals unity.
The arrival rates �low and �high are heterogenous across individuals. This captures the idea

that individuals di¤er in their �nancial ability i. Each individual draws arrival rates from
a two-dimensional distribution before becoming economically active. Once drawn, the arrival
rates remain constant throughout life. When an individual draws a high �low; it leaves the state
with a low return relatively quickly. When the individual has a high �high; it leaves the state
with high returns relatively quickly. To make the model parsimonious, we make �high a falling
function of �low: This makes sure that an individual that draws a high �low has a low �high:
The individual with a high �low will therefore spend more time in expectation in the regime
with the high return than in the regime with the low return. A high �low therefore stands for
a high �nancial ability. To �x ideas, let us assume there are n di¤erent �nancial types i, i.e. n
di¤erent levels �lowi (and therefore n implied levels �highi ) from which the individual draws. The
probability to be an individual of �nancial type i is denoted by pi:
Labour income z (t) �uctuates between two paths, z (t) 2 fw (� (t)) ; b (� (t))g. The paths

are given by the wage path w (� (t)) = ŵ� (t) while working and unemployment bene�t path
b (� (t)) = b̂� (t) while unemployed. Initial income levels at t = 0 are denoted by ŵ > b̂ > 0.
The underlying trend component � (t) follows

� (t) � �0egt (3)

and can be imagined to result from technological progress with initial level �0. Labour income
therefore grows at a constant rate g with occasional jumps. Formally, labour income z (t)
follows

dz (t) = gz (t) dt+ [w (� (t))� z (t)] dq�(t) + [b (� (t))� z (t)] dqs (t) : (4)

The growth process is visible in the deterministic dt-part of this equation. The jumps are
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described by the increments dqi (t), i 2 fs; �g, of Poisson processes with constant arrival rates
� > 0 moving the individual from unemployment to employment and s > 0 moving the indi-
vidual from employment to unemployment.20

Initial conditions for these three di¤erential equations (1), (2) and (4) are random. Wealth
of an employed worker and wealth for an unemployed worker are given by two independent
densities (that could be degenerate).21 The initial value r (0) is drawn from a distribution with
realizations frlow; rhighg and the individual is allocated to the state of being employed with a
certain probability.22

There is a long and fruitful tradition in macroeconomics where trends are �ltered out of the
data before comparing model predictions with data. We allow for a growth component in our
model and compare the model predictions with data directly for two reasons. First, we would
like to understand the evolution of wealth distributions over time and it seemed more natural
and more parsimonious not to detrend changing wealth distributions. Second, our model is
then closer to the discussions surrounding Piketty�s �r > g�hypothesis.23

Individuals maximize their expected present value of their utility streams. Given a time
preference rate �; their intertemporal utility U (0) reads

U (0) = E

Z 1

0

e��tu (c (t)) dt: (5)

Instantaneous utility u (c (t)) is a function of consumption and is assumed to re�ect constant
relative risk aversion (CRRA) with a risk aversion parameter �,

u(c(t)) =

(
c(t)1���1
1�� ; � > 0; � 6= 1;

ln(c(t)); � = 1:
(6)

We let the individual choose optimal consumption as a function of the wealth level a (t), labour
income z (t) and the interest rate r (t) ; c (t) � c (a (t) ; z (t) ; r (t)) :
Individuals can borrow up to their natural borrowing limit. It is given by the amount of

debt that they can pay back with probability one, i.e. in all possible states of the world. We
assume that all debt contracts are such that the current personal interest is paid (in the case of
positive wealth) or has to be paid (in the case of debt). The worst possible state for a person in
debt is therefore the high interest rate rhigh: We further require consumption to be su¢ ciently
large to guarantee survival of the individual, i.e. cz (a) � cmin: For notational simplicity, we
relate this minimum consumption level to unemployment bene�ts by

cmin (t) = �b (t) (7)

where 0 < � < 1 measures the amount of unemployment bene�t needed to survive.24 As a

20We emphasize that this process implies a continuous income distribution for e.g. monthly or annual income.
See footnote 40 for details.
21While a density for initial wealth sounds unusual, it becomes very plausible when thinking of durable

consumption goods or assets like e.g. a bike, a car or a house. The price of these goods is not easily quanti�ed
at a high precision.
22In our calibrated version, the probability for an individual to be unemployed in 1986 is set equal to the

empirical unemployment rate in 1986. The product of the unemployment rate and the empirical wealth density
for the unemployed is the initial condition for the wealth density of the unemployed. The initial condition for
the employed is the empirical wealth density for the employed times one minus the unemployment rate. The
initial interest rate r (0) can be either rlow or rhigh with a probability of p0 and 1� p0.
23See e.g. Piketty (2015a,b), Mankiw (2015), Jones (2015) or Hubmer et al. (2019). We brie�y discuss our

�ndings in this respect in footnote 32.
24We introduce this strictly positive minimum consumption level out of plausibility and as � allows us to

adjust the left tail of the theoretical wealth distribution in our calibration.
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consequence, a share 1�� of unemployment bene�ts can be used to pay interests on debt. This
implies (see app. A.1) that the natural borrowing limit is

anat (t) = �(1� �) b (t)

rhigh � g
: (8)

The debt level is the higher, the larger the growth rate g of unemployment bene�ts. It falls
when the minimum consumption level requires a larger share � of unemployment bene�ts and
when the interest rate r rises.25 As our natural borrowing limit is negative, we explicitly allow
for debt in our model. We assume that individuals are charged the same interest rate on debt
as they earn on positive wealth levels.26

2.2 Keynes-Ramsey rules

Optimal consumption is a function c (a (t) ; z (t) ; r (t)) : To simplify notation, we write this in
short hand as cz(t)r(t) (a (t)) and, if possible, we will suppress time arguments. When our individ-
ual maximizes utility, they take the current wealth level, the uncertainty from labour income
growth, the current technological level and the interest rate level into account. Individuals are
assumed to be myopic with respect to interest rate changes. Changes in individual returns
come as a surprise and are not anticipated.27 Optimal consumption for an employed worker is
described by a Keynes-Ramsey rule that reads (see app. A.2)28

dcwr (a) =
cwr (a)

�

�
r � �+ s

��
cwr (a)

cbr (a)

��
� 1
��

dt+
�
cbr (a)� cwr (a)

�
dqs: (9a)

To understand this stochastic di¤erential equation, consider �rst the case of employment as
an absorbing state, i.e. the case of a separation rate s of zero. Consumption grows when the
interest rate r exceeds the time preference rate �: With a positive arrival rate s, we see that
consumption grows faster: The term in squared brackets in the deterministic part is positive
as consumption when employed at a wage w is larger than when unemployed when receiving
bene�ts b < w (which implies higher marginal utility from consumption when unemployed).
As a consequence, consumption growth tends to be faster. This is obviously the e¤ect of
precautionary saving. As individuals anticipate the risk of experiencing lower labour income,
they reduce the consumption level, accumulate wealth faster and thereby experience faster
consumption growth. The jump term says that consumption jumps from its optimal level
cwr (a) to the level c

b
r (a) when the worker loses their job.

For the unemployed worker, the Keynes-Ramsey rule reads

dcbr (a) =
cbr (a)

�

�
r � �� �

�
1�

�
cbr (a)

cwr (a)

����
dt+

�
cwr (a)� cbr (a)

�
dq�: (9b)

25The borrowing limit would not exist (it would be minus in�nity) if the growth rate g is higher than the
interest rate rhigh . In our quantitative analysis below, rhigh > g holds.
26One could think about more elaborate setups with explicit debt contracts. We follow the same idea for

negative wealth as for positive wealth: individuals di¤er in their luck when making investments. They also di¤er
in their luck when borrowing resources.
27This assumption allows us to work with a two-dimenisonal system. With anticipation of uncertain inter-

est rates, we would have four (coupled) Keynes-Ramsey rules and a system of four (coupled) Fokker-Planck
equations. While this is theoretically straightforward (and numerically only requires more code), we stick here
in this �rst quantitative application of Fokker-Planck equations in economics to this two-dimensional system.
Future work with anticipation of interest rate changes could actually reduce the dimensionality if one allowed
for a continuum of wage incomes (instead of our discrete labour income distribution) as in Lise (2013).
28This rule is very similar to the optimal consumption rule in Lise (2013) or in Bayer and Wälde (2010b).
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Here, the e¤ect of labour income uncertainty is reversed. Again, the term in squared brackets of
the deterministic part is positive such that overall consumption growth is smaller as compared
to a situation where unemployment lasts forever (i.e. when � = 0). Individuals anticipate
that at some point in the future labour income will be high again such that they increase their
consumption level and thereby save less. This could be called �post-cautionary dissaving�.

3 Detrending and equilibrium

3.1 Detrending

Before we can de�ne our solution concept for the individual�s maximization problem, we derive
a stationary version of the model. Based on the trend (3), we de�ne detrended variables,

ẑ (t) � z (t)

� (t)
; â (t) � a (t)

� (t)
; ĉẑr (â (t)) �

czr (a (t) ;� (t))

� (t)
; (10)

which evolve over time as well. Using the laws of motion for the underlying variables, the
detrended income process follows (see app. B.1)

dẑ (t) = (ŵ � ẑ) dq�(t) +
�
b̂� ẑ

�
dqs (t) : (11)

Detrended labour income is therefore either ŵ or b̂; consistent with the construction of labour
income before (3). The Poisson processes and arrival rates in (11) are identical to those used
in the version with trend in (2).
The evolution of detrended wealth â (t) reads

dâẑr (t) =
�
(r (t)� g) âẑr (t) + ẑ (t)� ĉẑr (â (t))

	
dt: (12)

The initial densities for âẑr (t) are given by the one from above for (1) as the trend (3) sets in
only at t = 0 such that the distribution for azr (0) and â

ẑ
r (0) are the same.

We can express the evolution of detrended consumption as a function of detrended wealth for
the time in between transitions on the labour market and for a given interest rate r 2 frlow; rhighg
as (see app. B.1)

dĉŵr (â)

dâ
=

r��
�
� g + s

�

h�
ĉŵr (â)

ĉb̂r(â)

��
� 1
i

(r � g) â+ ŵ � ĉŵr (â)
ĉŵr (â) ; (13a)

dĉb̂r (â)

dâ
=

r��
�
� g � �

�

h
1�

�
ĉb̂r(â)
ĉŵr (â)

��i
(r � g) â+ b̂� ĉb̂r (â)

ĉb̂r (â) : (13b)

Finally, the detrended natural borrowing limit with the corresponding minimum consumption
level can be obtained from (7) and (8) as

ĉmin = �b̂; ânat =
anat (t)

� (t)
= �(1� �) b̂

rhigh � g
: (14)

Equations (11) to (14) form the basis of our analysis of the dynamics of (detrended) dis-
tributions and of our de�nition of optimal behaviour. These dynamics are conditional on the
interest rate r 2 frlow; rhighg : Before we de�ne optimal behaviour, let us gain some intuition
for the distribution of wealth �which crucially depends on r:
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3.2 Consumption and wealth dynamics

To understand the dynamics of consumption and wealth, it is crucial to distinguish between
three �regimes�. They are determined by the level of the interest rate relative to preference,
growth and job-market parameters. Our individual �nds themself in the low-interest-rate regime
when

r < �+ �g: (15)

This condition follows from analysing the Keynes-Ramsey rule (9a) of the employed worker
(see app. B.2). This is the regime the precautionary savings literature has looked at so far:
Individuals have an incentive to save because of precautionary motives. At the same time, they
have an incentive to dis-save as returns r to wealth are lower than the time preference rate �
(adjusted here for the growth rate as we allow for growth of labour income).
Our individual �nds herself in the high-interest-rate regime when the interest rate satis�es

�+ �g < r < �+ �g + �: (16)

This condition follows from analysing the optimal consumption rules (9) for both the employed
and the unemployed worker. For this regime, the dis-saving motive is no longer present.
Finally, there is a �very-high-interest-rate�regime when r exceeds �+ �g + �:29 We do not

consider this regime to be of empirically relevance: The arrival rate � for jobs is of an order of
magnitude larger than any real world interest rate (see tab. 1 below). As a consequence, we do
not expect that individual interest rates r are persistently larger than �+�g+�: The following
analysis will therefore employ the low-interest-rate and the high-interest-rate regime.30

� Low-interest-rate regime

For the low-interest-rate regime from (15), consumption and wealth dynamics can be il-
lustrated in �g. 1. The �gure depicts wealth â on the horizontal and consumption ĉŵrlow (â)
on the vertical axis. There are two zero-motion lines for wealth (for the employed and for the
unemployed worker) and one zero-motion line for consumption of employed workers. Consump-
tion for unemployed workers falls for any wealth-consumption pair. The implied arrow-pairs
indicating the changes in wealth and consumption over time are also drawn.
Employed workers experience rising (detrended) consumption ĉŵrlow (â) over time for â < a�ŵ;

i.e. as long as they are su¢ ciently poor. This is the dashed trajectory drawn in �g. 1. Detrended
consumption ĉb̂rlow (â) of unemployed workers always falls, as the solid trajectory illustrates. As
a consequence, wealth is constrained between a lower bound from (14) and an upper bound
â�ŵ:

31

As the �gure shows, there is a (temporary) steady state (TSS) at the upper end â�ŵ. In this
TSS where dâ=dt = 0 the consumption level in the state of employment satis�es

ĉŵrlow (â
�
ŵ) = rlowâ

�
ŵ + ŵ: (17)

The steady state is called temporary as any employed worker will eventually be hit by an
unemployment shock. Consumption then drops according to the following relative consumption

29We ignore the singular cases where r lies on the boundaries for brevity.
30These conditions illustrate that one could obtain similar quantitative �ndings for a stochastic time preference

rate (as in Krusell and Smith, 1998) and a �xed interest rate. Stochastic interest rates have the advantage that
they can be observed more easily than stochastic time preference rates. This allows to test the model predictions
more easily as we do in sect. 5.4.
31See app. B.2 for a more formal background and the web appendix of Lise (2013) for a similar illustration.

Lise does not look at exploding regimes and the evolution of wealth over time.
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level
ĉb̂rlow (â

�
ŵ)

ĉŵrlow (â
�
ŵ)
=

�
1� rlow � �� �g

s

��1=�
: (18)

This ratio also follows from (see again app. B.2) studying the Keynes-Ramsey rule (13a) of the
employed worker.

Figure 1 Consumption and wealth dynamics in the low-interest rate regime (15)

� High-interest-rate regime

When the interest rate is at a high level as in (16), consumption ĉŵrhigh (â) of employed
workers rises for any wealth level. This is the dashed trajectory depicted in �gure 2. Just as
in �g. 1, wealth is plotted on the horizontal and consumption on the vertical axis. There are
now two zero-motion lines for the state of unemployment and only one (for wealth) for the
employment state. Consumption ĉb̂r (â) of unemployed workers rises only for â > â�

b̂
; i.e. if the

unemployed worker is su¢ ciently rich (see app. B.3 for details). This is the solid trajectory of
�gure 2.

Figure 2 Consumption and wealth dynamics in the high-interest-rate regime (16)

The consumption level at the temporary steady state for the high interest rate is given by

ĉb̂rhigh
�
â�
b̂

�
= rhighâ

�
b̂
+ b̂ (19)
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and relative consumption is given by (see app. B.3)

ĉb̂rhigh

�
â�
b̂

�
ĉŵrhigh

�
â�
b̂

� = �1� rhigh � �� �g

�

�1=�
: (20)

The natural borrowing limit and the minimum consumption level remain unchanged as in (14).
Note that there is no saddle-path property of the consumption path ĉb̂rhigh (â) in this regime.

As we consider dĉb̂rhigh (â) =dâ > 0 to be empirically convincing, we impose that ĉ
b̂
rhigh

(â) crosses

the steady state
�
â�
b̂
; ĉb̂rhigh

�
â�
b̂

��
; as drawn.

� Consumption and wealth distributions

We are now in a position to gain some intuition about the distribution of wealth and
consumption in our model. When the interest rate is in the low-interest rate regime, the wealth
level of an individual is bounded, at least after some �nite transition period, between ânat and
â�ŵ: This follows from the trajectories drawn in �g. 1. With an initial distribution of wealth
between ânat and any wealth level lower than or equal to â�ŵ, there would be a density of wealth
within this support for any future point in time.
When the interest rate is in the high regime, as illustrated in �g. 2, there would be no

upper bound and a stationary long-run wealth distribution would not exist. With an initial
distribution of wealth between ânat and â�

b̂
, the right tail of the density of wealth for each future

point in time shifts to the right due to those who are employed. If initial wealth is distributed
between ânat and a wealth level higher than â�

b̂
, the right tail of the density of wealth shifts to

the right due to both the employed and the unemployed workers.
In our setup, the interest rate follows (2) and takes values both in the low and in the high

regime. Wealth will evolve �normally� for r < � + �g and remain bounded from above (and
below). Wealth will be accumulated very quickly when in the high regime from (16). The latter
is the basic mechanism through which we obtain a wealth distribution with enough probability
mass in the right tail. This regime is called �explosive wealth accumulation�by Benhabib and
Bisin (2018).32 The support of wealth we work with in our detrended model is therefore given
by

â 2
�
ânat; âmax

�
: (21)

The lower limit ânat is from (14), the upper limit âmax of our wealth variable is determined
further below such that the model density with trend in (24) covers all empirical wealth ob-
servations (see also footnote 45). For the time being, it is a large number. We know that this
âmax is a �nite number as we study individuals only over a �nite length of time (i.e. 22 years).

3.3 Optimal behaviour

We now describe optimal behaviour. An individual behaves optimally when following the
Keynes-Ramsey rules (13a) when employed and (13b) when unemployed. Consumption jumps
from one equilibrium path to the other when the individual loses or �nds a job, as shown in
(9).
In the low-interest-rate regime, the two boundary conditions for the two Keynes-Ramsey

rules are given by the consumption level ĉŵlow (â
�
ŵ) from (17) and the consumption level ĉ

b̂
low (â

�
ŵ)

32Conditions (15) and (16), distinguishing between a �normal�and an �explosive�regime provide an extension
of the r > g condition that can be derived from steady state analyses based on Pareto-distributions (Piketty
and Zucman, 2015, ch. 15.5.4).
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following from (18) at the temporary steady state. The wealth level â�ŵ at the temporary steady
state is de�ned such that consumption in the state of unemployment at the natural borrowing
limit is given by the minimum consumption level, i.e. ĉb̂low (â

nat) = ĉmin:33

When the interest rate jumps to the high regime, the boundary conditions at the temporary
steady state change to the values ĉb̂high

�
â�
b̂

�
from (19) and the consumption level ĉŵhigh

�
â�
b̂

�
following from (20). The wealth level â�ŵ for the zero-motion line of consumption is replaced by
â�
b̂
; where the latter is determined according to the same logic, i.e. such that ĉb̂high (â

nat) = ĉmin:

4 Distributional dynamics

Having understood the dynamics of consumption and wealth qualitatively for a realization of
uncertainty, we can now study the distribution of wealth more generally.

4.1 Densities and subdensities of wealth

We start by studying the joint distribution of detrended wealth â (t) and income ẑ (t) as gov-
erned by (12) and (11), given optimal consumption ĉẑr (â (t)) as just de�ned. We denote this
joint density for a point t in time by pẑ (â; t) : The density is continuous in wealth â and discrete
in labour income ẑ: For the time being, we describe densities for a given and constant interest
rate r:We explain further below how changes in the interest rate are taken into account. Given
the discrete nature of ẑ; the joint density can be split into two �sub-densities� pŵ(â; t) and
pb̂ (â; t) :34 The density of wealth p (â; t) is then

p (â; t) = pŵ (â; t) + pb̂ (â; t) : (22)

The dynamics of the subdensities pŵ (â; t) and pb̂ (â; t) is governed by the Fokker-Planck equa-
tions (FPEs). They read35

@

@t
pŵ (â; t) +

�
(r � g) â+ ŵ � ĉŵr (â)

� @
@â
pŵ (â; t) =

�
dĉŵr (â)

dâ
� (r � g)� s

�
pŵ (â; t) + �pb̂ (â; t) ;

(23a)

@

@t
pb̂ (â; t) +

h
(r � g) â+ b̂� ĉb̂r (â)

i @

@â
pb̂ (â; t) = spŵ (â; t) +

"
dĉb̂r (â)

dâ
� (r � g)� �

#
pb̂ (â; t) ;

(23b)

These two equations constitute a system of two coupled partial di¤erential equations. The
partial derivatives with respect to t and â describe the time evolution and the cross-sectional
dimension of the density of wealth, respectively. The evolution of the wealth density is directly
linked to optimal consumption-saving paths as the FPEs display optimal consumption levels
ĉẑ (â) and their derivatives. When the wealth distribution has reached its stationary distrib-
ution, the partial di¤erential equations simplify to a set of ordinary di¤erential equations in
wealth.36

33This also illustrates the idea behind the numerical solution: Guess â�ŵ and check whether ĉ
b̂ (ânat) = ĉmin

holds. If not, adjust the guess.
34Integrating the sub-density pb̂ (â; t) over the range of wealth gives the unemployment rate at t:
35The derivation follows the approach described in Bayer and Wälde (2010a, sect. 5).
36Describing distributions by di¤erential equations has a long tradition and goes back to the work of Karl

Pearson in the 19th century. See Johnson et al. (1994, ch. 4) for an overview.
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Note that this approach does not work with and does not require stationary distributions.
The equations rather describe the evolution of the distribution (which might converge to a
stationary distribution).37 We start at some (empirically) given initial distribution and then
compute the changes of the distribution over a certain length of time (see app. D.2 for more
details).

4.2 Distributional dynamics of variables with trend

We have now obtained (i) the policy functions resulting from (13a) and (13b) for the two interest
rate regimes and (ii) the densities and their evolution over time from (23a) and (23b). In a
third step, we need to transform these �ndings for detrended variables back into levels before
we can compare them with data. Going back to levels for �normal�variables is straightforward
by inversion of (10), z (t) = ẑ (t) � (t) ; czr (a) = ĉẑr (â) � (t) and a (t) = â (t) � (t) : The densities
pẑ (â; t) and p (â; t) can be retransformed by Edgeworth�s method of translation (Benhabib
and Bisin, 2018, sect. 1.2, Wackerly et al., 2008, ch. 6.4, Wälde, 2012, theorem 7.3.2). This
translation describes the link between a random variable (â in our case) and its transformation
(a (t) = â (t) � (t) here). For our support (21) for detrended wealth â (t) and using trend (3),
this transformation implies a support for wealth a (t) that evolves over time t;

a (t) 2
�
ânat� (t) ; âmax� (t)

�
: (24)

The density g (a; t) of wealth with trend is then given by (see app. C.2.2)

g (a; t) =
p (a (t) =� (t) ; t)

� (t)
: (25)

5 The empirical �t

Let us now turn to the main objective of this paper �to explore how risky returns can help
to understand the evolution of wealth of the 1979 NLSY cohort over time. The importance of
risky returns have also been studied by Benhabib, Bisin and Zhu (2011, sect. 5) and Benhabib,
Bisin and Luo (2017). We complement their �ndings by always starting from an initial density
of wealth. Hence, even when we target only one year (in contrast to the entire path), we always
ask how the evolution from our initial (empirically given) wealth distribution to the �nal wealth
distribution can be understood.

5.1 Data and quantitative phase diagram

5.1.1 Some descriptive statistics

We extract the wealth distribution from the NLSY79 for all waves that provide information on
wealth.38 A visual impression of the fairly equal distribution of wealth when individuals are
young in 1986 and the steady increase in the spread as the cohort becomes older is provided by
the left �gure in �g. 3. The spread increases as some individuals become poorer as they were
initially and some become richer. Both the left and the right legs move outwards. The right

37In a setup with g = 0 and r < �; Bayer et al. (2019) prove that a unique stationary distribution exists and
is stable. The theoretical analysis by Benhabib et al. (2015) employs an exploding regime as well to obtain the
fat right tail. The interest rate distribution in their general equilibrium model makes sure that overall, their
model displays a stationary distribution of wealth.
38We employ the NLSY variable �net worth�, see Nagel (2013, ch. 6) for more background.
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�gure shows the density as predicted by our model with the (close to perfect) �t for 2008. We
will discuss this and other �ts in detail below.
The NLSY data is also used for computing various parameters in our model. An overview of

those parameters and also of exogenously �xed parameters is in table 1 below. The unit of time
in our model is 1 year. Given that our model emphasizes transitions between employment and
unemployment, we do not attempt to hit moments of income distributions. We rather match
the average duration in employment and unemployment by the (annual) job arrival rate � and
the separation rate s (implying an average unemployment rate of 5:1%). The average (annual)
wage in 1986 is ŵ and the (annual) growth rate of labour income is g:39 ;40 All nominal values
are expressed in prices of 2008. We infer unemployment bene�ts by assuming a replacement
rate of 30%. This is a compromise between the higher statutory replacement rate and the
fact that bene�ts are not paid forever in the US (but are done so in our model).41 The share
for consumption � is computed such that the natural borrowing limit (8) corresponds to the
smallest (perceivable) wealth level in the data.

Figure 3 The dynamics of the wealth distribution in the data and in the model (in 1000 US$
in prices of 2008)

The time preference rate � and risk aversion � are exogenously �xed and take standard
values employed in many other calibrations. Robustness analyses are undertaken in section 5.3

39App. C.1.1 shows how we compute continuous-time wage rates and interest rates. The wage growth rate is
so high as, inter alia, we look at a cohort whose average age is approx. 24 in 1986 and 46 in 2008.
40Obviously, individuals at each point in time earn one of two values (they are either employed or unemployed).

Individuals nevertheless face a continuous annual income distribution. When we de�ne annual income as
za (t) �

R t
t�1 z (�) d� where z (�) follows (4), we easily see that annual income is characterized by a continuous

distribution. The mean of our annual income in 2008 is 53,943 US$ and thereby basically the same as the mean in
the NLSY (53,471). Our standard deviation is considerably lower (4,218 US$) as compared to 50,679 in the data.
As written in the introduction, we want to match the average wage and unemployment bene�ts in the tradition
of Diamond-Mortensen-Pissarides models. Our labour income process therefore captures unemployment risk
and not general labour income risk.
41Hall and Milgrom (2008, p. 11) brie�y survey estimates in the literature of replacement rates. They consider

12% to be a lower bound and 36% to be an upper bound
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below. The (instantaneous) interest rates rlow and rhigh are also exogenously �xed. Their choice
was driven by two concerns. First, they must lie below and above the threshold level in (15),
i.e. they must obey rlow < �+ �g < rhigh. In all other cases, we would expect that the densities
of wealth cannot be matched in a convincing way. Second, they should lie in a �reasonable
range�. The empirical evidence in sect. 5.4 con�rms these values. Our model mean of 4:4%
(annually) is in accordance with evidence by Flavin and Yamashita (2002), it is a bit high for
Norwegian standards (Fagereng et al., 2018) and a bit lower than the �ndings in Cao and Luo
(2017) or Moskowitz and Vissing-Jorgensen (2002). The robustness check in section 5.3 also
includes the case of rhigh = 8%:

� s ŵ g b̂=ŵ � � � rlow rhigh

264% 14% 27; 330:8$ 3:4% 30% 97% 1% 1 3:5% 4:5%

Table 1 Parameter values

In contrast to Benhabib, Bisin and Zhu (2011) or Angeletos (2007), we cannot impose a
standard deviation on our idiosyncratic interest rate process. While we do not estimate as
in Benhabib, Bisin and Luo (2019), our calibration method implies a standard deviation that
results from �tting wealth densities. Once we have matched wealth distributions in the best
possible way, the implied standard deviation for the interest rate distribution will be compared
with the empirical standard deviation (see sect. 5.4).

5.1.2 Quantitative phase diagram

Given the parameters in tab. 1, we can now plot a quantitative version of our qualitative
phase diagrams in �gures 1 and 2. Figure 4 displays the quantitative consumption paths for
wealth levels between ânat and â�

b̂
. The natural borrowing limit is ânat = �$16; 341. The

(temporary) steady-state levels of wealth when the interest rate is low or high are â�ŵ = $2; 266
and â�

b̂
= $930; 132, respectively (again in 2008 prices).

This �gure is very instructive for understanding what the quantitative driving forces for the
spread in wealth distributions are. First, for a given interest rate, the change in the employ-
ment status hardly has any impact on the consumption level. By contrast, for levels of wealth
around â�ŵ or larger, an increase in the interest rate dramatically decreases the consumption
level. Changes in the interest rate therefore have a much larger e¤ect on the spread of wealth
distributions than changes in labour income. Second, when the interest rate is low, the distri-
bution of wealth converges to a range below â�ŵ which at $2; 266 is relatively low. The fat right
tail of the distribution of wealth is therefore entirely driven by employed individuals that enjoy
a high interest rate. This group experiences rising consumption and wealth levels. In fact,
all other groups (the unemployed and those with low interest rate) experience consumption
and wealth levels that fall over time. The high-interest-rate regime, or the �exploding regime�
in Benhabib and Bisin�s (2018) terminology, is crucial for generating fat right tails of wealth
distributions.
Looking at the vertical axis of �g. 4 shows that consumption increases by around 50% at

â�ŵ when the interest rate drops and more than doubles at 800:000US$ of wealth. How can this
increase be understood? The closed-form solution for consumption in a deterministic optimal
saving problem reads c (t) = ��(1��)r

�

�
a (t) +

R1
t
e�r[��t]w (�) d�

	
(see e.g. Wälde, 2012, ch. for

a textbook derivation). When the interest rate rises, the e¤ect via the consumption-propensity
(the fraction) is ambiguous and depends on risk aversion �: The quantitatively much larger
negative e¤ect comes through the fall in the present value of labour income (the integral) when
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the interest rate r rises. Even though we do not have a deterministic model, we believe that
this is the main channel for the drop in consumption when r jumps to rhigh:
One of the reasons for this large decline is the fact that individuals are myopic with respect

to interest rate changes.42 If the change in the interest rate was anticipated, the e¤ect would be
smaller as the discount rate employed by individuals would be a (time-varying) average of the
low and the high interest rate. Nevertheless, consumption would still decline when the interest
rate rises.
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Figure 4 Quantitative phase diagram

This �gure also demonstrates where the endogenous scale dependence in our model comes
from. As Gabaix et al. (2016), we allow for exogenous type dependence by working with di¤erent
�nancial types.43 This ex-ante heterogeneity then leads to endogenous scale dependence: High-
�nancial-ability individuals experience a higher average growth rate of wealth as they are more
often in the exploding regime, i.e. they are more often on the lower consumption path.

5.2 Targeting wealth distributions and measuring the �t

So far, we only talked about distributions of wealth for one individual that looks at some future
point t in time. To obtain cross-sectional distributions from our model requires us to use a law
of large numbers. When we assume that the number of individuals is su¢ ciently large within
our cohort, the individual probability to own wealth below a certain threshold is the same as
the share in the population (our 1979 cohort) of individuals holding this threshold or less. It
also means that the individual probability pi; introduced after (2), to be of a certain �nancial
type equals the share pi of individuals in the population to be of this �nancial type. We can

42While transitions in the employment state and the interest rate are both transitory by (2) and (4), interest
rate changes are perceived as permanent shocks.
43In contrast to Gabaix et al. (2016), our type dependence comes from an initial drawing of one�s �nancial

abilities. We do not model how individuals can switch types. In one of our robustness checks below we do �nd
that data suggests that individuals switch types indeed.
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therefore �t the aggregate wealth distributions to our individual densities as the latter also
represent cross-sectional densities in our model.44

5.2.1 Targeting 2008

� The overall �t

As a starting point, we �t the model distribution to the wealth distribution in 2008. This
requires three steps. First, starting from two initial subdensities pẑ (â; 0) for wealth in 1986, one
for ẑ = ŵ and one for ẑ = b̂; we solve the Fokker-Planck equations in (23) employing optimal
consumption paths ĉẑr (â (t)) shown in �g. 4.

45 For each of the n �nancial types, there is an
in�nity of realizations of possible interest rate paths. To make the numerical analysis simpler,
we employ two interest rate paths for each �nancial type. These paths j are characterized by
an expected duration in the high regime which is consistent with the type�s arrival rates �highi

and �lowi and di¤er in their initial interest rate level. We therefore solve the FPEs for the initial
interest rate, say rlow; for as long as there is no jump in the interest rate. The resulting densities
of wealth are then employed as initial densities for the next subperiod where the interest rate
is rhigh (see app. D.1).46 We eventually obtain 2n wealth densities (n �nancial types times 2
possible initial interest rate levels) for 22 years later in 2008.47. The probability for an interest
rate path is pj, j = 1; :::; 2n. There is one subdensity for âŵr (22) ; one subdensity for â

b̂
r (22)

and the implied wealth density for âr (22) from (22). Finally, for each interest rate path, we
add the trend and obtain densities gj (a; t) from (25).
Second, given an exogenous number n of �nancial types, we determine population shares/

probabilities pi to be of a certain �nancial type (via interest rate probabilities pj) by maximizing
our measure of �t,

F (t) = 1�
R1
�1

��gmodel (a; t)� gdata (a; t)
�� da

2
: (26)

The density predicted by the model,

gmodel (a; t) = �2nj=1pjgj (a; t) ; (27)

is the probability-pj weighted sum of the 2n densities gj (a; t) from (25). The density obtained
from the data is described by gdata (a; t) :Our measure of �t (which is related to the Kolmogorov�
Smirnov statistic) starts from the absolute distance of model and data density as indicated by
j:j : Imagine the densities do not have any overlap (like e.g. two uniform distributions one ending
at x and the other one starting at y > x). We would then obtain F (t) = 0 as the integral over
the densities would yield 2. The value of 0 would indicating no �t at all. By contrast, when the

44Stating laws of large numbers verbally is simpler than proving them. See He et al. (2017) for proposing a
�nowhere equivalence�condition that allows to use Lebesgue integrals to model many economic agents.
45When we employ empirical densities from 1986 as initial conditions for our partial di¤erential equation

system, we need to make sure that our theoretical support in (24) is su¢ ciently large to cover the empirical
range of observations. When we plot the empirical support for di¤erent years and compute the required initial
support such that all observations are covered by the theoretical support, we obtain an initial support from
ânat = amin (1986) = � b̂

r�g =-16,341US$ to â
max = amax (1986) = amaxdata(2008)=� (2008� 1986)

=1,020,400US$: As the highest empirical wealth observation for 1986 is 404,000 US $, we employ a density
of zero for the range from this maximium empirical level to the required theoretical level. See app. C.2.3 for a
plot of the empirical and the theoretical support.
46As an alternative, we could simulate interest rate paths and compute the Monte Carlo average of the

densities for each type. Given the good �t to be reported momentarily, we believe that simulations would not
outperform our shortcut. It would be interesting to con�rm this conjecture in future work.
47As our Fokker-Planck equations are linear, we solve them by employing the method of characteristics

(see app. D.2). Consumption paths are obtained by a shooting algorithm. The matlab code is available at
waelde.com/pub.
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model density is identical to the data density, we would obtain F (t) = 1; indicating a perfect
�t. With our cross-sectional interpretation, the probabilities pfi = p2i�1 + p2i to be of a certain
�nancial type i = 1; :::; n is equal to the share of individuals of that type. Fitting the wealth
distribution in 2008 therefore means making a statement on how many �nancial types there
are and how �nancial ability is distributed in our NLSY cohort.
Third, the optimal number n of �nancial types is chosen by computing measures of �t

F (2008) from (26) for n 2 f2; :::; 130g and selecting the number with the highest �t. This
yields n = 30 and a plot of the �t as a function of n suggests that this is the unique maximum.
Given two initial conditions each (starting with a high or with a low interest rate), this gives
2n = 60 densities of wealth for 2008.
An illustration of the empirical �t is in �g. 5 for probabilities pj that range from 0:3% to

8:0%.48 The upper �gure shows the empirical density and 60 (unweighted) partial densities
gj (a; t). Summing the (pj-weighted) partial densities up as in (27), the lower �gure shows that
the �t is almost perfect.49
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Figure 5 The wealth distribution in 2008 in the data and in the model

5.2.2 Measuring the �t for all years

When we choose pj such that the �t in 2008 is maximized, the �t for waves between the
initial distribution and 2008 is bound to be worse. The right �gure in �g. 3 provides a visual
impression of the �t between 1986 and 2008. As we would like to understand the �t also from
a quantitative perspective, we compute our measure of �t F (t) from (26) for all years. This
yields the values displayed in the following table.

t 1986 1987 1988 1989 1990 1992 1994 1996 1998 2000 2004 2008

F (t) 100 73.5 63.0 60.6 61.4 66.3 72.1 77.2 81.9 84.4 87.4 96.1

Table 2 The quantitative �t of the model according to (26) for target year 2008 in %
48The �gure displays densities up to a wealth level of 600 (thousand US$) only. The support for 2008 is up

to 2,123 (thousand US$), as described in app. C.2.3, but the visual impression for beyond 600 does not yield
any insights.
49Increasing the number of �nancial types does not imply a �t of 100% as the range or width of each partial

density is �nite and does not become smaller as n increases. Hence, in contrast to the intuition behind an
approximation of an integral by rectangles whose width reduces as the number of rectangles increases, here, we
have an optimal number of �nancial types.
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The �t is perfect by construction for 1986 as we use the density from the data as initial
distribution for the model. In terms of �g. 3, the empirical density in the left panel in 1986 is
identical to the density in 1986 in the right panel. Between 1986 and 2008, the �t �rst falls and
then rises. This is not a surprise as intermediate years were not targeted by the calibration.
Finally, in 2008, the �t is close to perfect again. This can be visually checked again in �g. 3.

5.2.3 Targeting other years and targeting distributional dynamics

How would the �t improve if, starting in 1986, each year was targeted individually? The next
table shows that the �t tends to increase over the years. The worst �t we obtain is 86% for 1987.
The best �t now reaches 96:3% for 2004. The rise in the �t over time should be expected as
the system, ceteris paribus, has more time to adjust to any given empirical wealth distribution.

t 1987 1988 1989 1990 1992 1994 1996 1998 2000 2004 2008

Fin. types (n) 8 40 40 52 30 34 28 22 30 30 30
F (t) 86:1 93:0 92:5 91:9 92:0 94:2 94:1 93:4 94:4 96:3 96:1

Table 3 The quantitative �t (in %) of the model according to (26) where each year t is targeted
individually

We also targeted the dynamics of the wealth distribution by maximizing the average of
F (t) over all 11 waves from 1987 to 2008. The average F (t) lies at 88:9%. We obtain a better
average �t, as appears reasonable, as compared to the average over the �ts in table 2 (which
is 77:0%) when we target 2008. The individual �ts range from 81:6% to 92:2% (see app. C.2.4
for a visual impression and the numbers).

5.3 Robustness checks

We undertook various robustness checks to understand how the �t would change when certain
quantitative assumptions are adjusted. We also inquired into the relative role of capital income
risk and labour income risk. We report the most relevant �ndings here.50

5.3.1 Capital vs. labour income risk and types

What is the relative importance of capital and labour income risk from a quantitative perspec-
tive? Benhabib, Bisin and Zhu (2011, p. 133) write in their theoretical study �... that it is
capital income risk (idiosyncratic risk on return on capital), and not labor income risk, that
determines the heaviness of the tail of the stationary distribution given by the tail index: the
higher is capital income risk, the more unequal is wealth�. Benhabib, Bisin and Luo (2019)
look at four channels, labour income risk, saving rates that di¤er across wealth levels, capital
income risk and a rate of return of wealth that increases in wealth. They �nd that all the
factors �have a fundamental role in generating the thick right tail of the wealth distribution�
(p. 3).
In our analysis of the evolution of distributions over time, we focus on labour income risk

and capital income risk. While or saving rates do change as a function of the wealth level of
households, we can not switch this e¤ect on and o¤ as easily as Benhabib, Bisin and Luo (2019)
can do in their two-period setup. We distinguish between three types of capital income risk (ex-
ante, ex-post and �nancial types) and �nd for our baseline model that the interaction between

50In earlier calibrations, we divided the sample into 12 observationally distinguishable groups. In the absence
of interest rate uncertainty, we were unable to match the upper tail of the wealth distribution. It is well-known
that, unless one assumes a �superstar�or �awesome�state, this would be the case even if we allowed for more
labour income states than just two. See Kaplan et al. (2018, footnote 35) for a similar argument.
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capital income risk and labour income risk explains the evolution of wealth distributions over
time. Neither labour income risk (which is well-understood), nor capital income risk on its own
can explain fat right tails. With a �exible interest rate distribution, allowing for �awesome�or
�superstar states� for capital income, we �nd that ex-ante capital income risk alone leads to
a �t of 89.8% of the density in 2008. With all sources of capital income risk (ex-ante, ex-post
and types), the �t increases to 96:7%. This �t is higher than the �t (of 96:1%) of our baseline
model. Section 5.4 will make clear why we nevertheless consider the baseline model with the
lower �t to be the most convincing calibration.

� The contribution of pure labour income risk

We employ our model to predict the e¤ect of pure labour income risk. In this scenario,
idiosyncratic labour income follows (4) but the process for interest rates (2) is switched o¤. We
rather set the interest rate at 3:5% for all individuals or at 4:5% for all individuals.
As visible in the left panel of �gure 6, an interest rate of 3:5% yields a wealth density in

2008 that is too far to the left. At the high interest rate 4:5%, given the non-stationary nature
of the evolution of wealth, the density is too far to the right. The corresponding measures of
�t are F3:5 (2008) = 29:2% and F4:5 (2008) = 8:3%, correspondingly. The result that means are
either too low or too high is not surprising. Yet, it is the lack of the spread that is crucial for
the low �t. Hence, even when the constant interest rate were between 3.5% or 4.5%, the spread
would always be too low.
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Figure 6 The density of wealth for pure labour income risk at a constant interest rate of 3.5%
(left �gure) and at a constant interest rate of 4.5% (right �gure)

� The contribution of pure capital income risk

Let us now ask how the density of wealth looks like when we allow for capital income
risk only. Let us remind ourselves about the sources of capital income risk. First, ex-ante
heterogeneity results from individuals drawing an initial interest rate with Prob

�
r (0) = rlow

�
=

p0: Second, ex-post heterogeneity follows from interest rates �uctuating over time. Third, there
is type dependence (Gabaix et al., 2016) as individuals belong to di¤erent �nancial types, i.e.
they di¤er in their arrival rates �lowi and �highi that govern the transition between the low and the
high-interest-rate regime. Pure capital income risk means the absence of any wage distribution,
neither ex-ante, nor ex-post. We will therefore work with one wage

~w (�) = u (�) b (�) + (1� u (�))w (�) (28)

which is a population-size weighted average of the wage w (�) and unemployment bene�ts b (�).
The initial density for wealth in 1986 will be the empirical density for wealth (and not the usual
sub-densities which do not apply in the presence of an average wage ~w (�)).
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Figure 7 The density of wealth for pure capital income risk at an invariant labour income ~w
with ex-ante and ex-post heterogeneity with 60 interest rate paths (left �gure) and the overall
density (right �gure)

We display the density of wealth for pure capital income risk (at invariant labour income
~w) with (i) ex-ante heterogeneity and (ii) ex-ante and ex-post heterogeneity with two interest
rate paths in app. C.3.1. When we add the third component of risky returns, �nancial types,
we look at 2n interest rate paths and solve for densities of wealth after 22 years. We employ
the 60 paths from the baseline model (left �gure) but compute shares pj optimally. The �t
(shown in the right �gure of �g. 7) is then 65:9%.
Hence, just as pure labour income risk, capital income risk as presented in our baseline

model is not enough to explain the dynamics of the distribution of wealth. It is the interaction
of capital income risk and labour income risk that leads to a �t of above 90%.

� Extended ex-ante heterogeneity

We can also ask how the model would �t the wealth density in 2008 if we had an extended
interest rate distribution that can take many values between 3.5% and 4.5%. This extension
does not yield any signi�cant improvement in the �t which stays at 64:7%. When we increase
the upper bound to 8%; the �t increases to 82:4%. We obtain a further increase of the �t to
89:8% of the density in 2008 when we allow for 69 realizations between 3.5% and 15%. With
these high �awesome�or �superstar realizations�(of close to 15%), ex-ante heterogeneity alone
(i.e. an interest rate is drawn at the beginning of life and is kept constant thereafter) would
almost be enough to reach the �t of the baseline model of 96:1%:
When we allow for all sources of capital income risk (ex-ante, ex-post and types), the �t

increases to 96:7%: It therefore exceeds the �t of the baseline model with capital income risk
(with two states) and labour income risk.51

� The role of types

Having understood the role of pure capital and pure labour income risk, we still need to
understand the role of �nancial types in the baseline model. How does the �t change, when
heterogeneity in �nancial types is removed in the full model with capital and labour income

51The broader conclusion from this analysis stresses how easily the e¤ects of capital income risk can be
overstated. When we remove labour income risk and allow for su¢ cient �exibility in the interest rate distribution,
the model can still provide a very good (if not better) �t. Yet, too much of the variation in the wealth
distributions would then be attributed to capital income risk and estimates might be biased.
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risk? Clearly, the �t depends on the arrival rates chosen for this speci�c �nancial type. In the
best of all cases, the �t is F (2008) = 67:8%: While this might sound like a good result, the
qualitative �t, as the �gure in app. C.3.2 shows, is not acceptable. Quantitatively, allowing for
heterogeneity in types increases the �t up to the already reported 96:1%. Hence, allowing for
types increases the �t in the baseline model by almost 30 percentage points or more than 40%.
We conclude that allowing for type-heterogeneity is essential.

5.3.2 Wealth shares

When we target the density in 2008, the (non-targeted) wealth shares in the model in 2008
di¤er on average 3:9% from data wealth shares. For all waves, the average di¤erence is at 7:6%.
When we target the average over all years, the di¤erence for 2008 increases to 5:7%. For all
years, however, the average di¤erence is 2:6% only.
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Figure 8 Fit of the (targeted) density (identical to �g. 5) and the corresponding (non-targeted)
Lorenz curve in 2008

This �gure provides a visual impression. The �t for the density is F (2008) = 96:2% as in
�g. 5. To obtain a �t for the Lorenz curve, we measure the area A between the theoretical
and the empirical Lorenz curve by A �

R 1
0

��!model (x)� !data (x)
�� dx where x is the population

share and ! is the wealth share. The measure of �t is 0 < F Lorenz (t) = 1� 2A < 1. It equals
1 when A = 0 (the two Lorenz curves coincide) and equals 0 when A = 1=2:52 The �t for the
Lorenz curve is then F Lorenz (2008) = 92:0%:
Figure 9 shows the �t, when we target wealth shares in 2008. We obtain the model Lorenz

curve by starting from the 60 interest rate paths in our baseline model. The densities of
these paths are visible in �g. 5. Then we optimally choose probabilities pLorenz2008j such that
the area A between the theoretical and the empirical Lorenz curve is minimized. According
to our distance measure, the curves coincide by F Lorenz (2008) = 99:5%. The corresponding
density in 2008, visible to the right in �g. 9, however, shows that the density �t is not very
convincing when wealth shares are targeted. Employing the measure from (26), we �nd a value
of F (2008) = 74:5%:
This �nding shows the strong trade-o¤ between �tting densities and Lorenz curves. It also

shows how useful it is to introduce Gabaix et al. (2016) types also for quantitatively �tting
Lorenz curves. When one is interested in a good �t of both the density and wealth (or other)

52The measure is not the di¤erence between the Gini-coe¢ cient in the model and in the data. Obviously, for
one Gini coe¢ cients there is an in�nity of di¤erent Lorenz curves.
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shares and only one object is targeted, the density as a target seems to yield the better overall
�t.
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Figure 9 Fit of the (targeted) Lorenz curve and the corresponding �t of the (non-targeted)
density in 2008

5.3.3 The e¤ect of the high interest rate and of risk aversion

One might inquire into the e¤ect of a broader range of the idiosyncratic interest rate. We
therefore targeted 2008 under a high interest rate of 8% instead of 4:5%. All other parameters
were left unchanged. This implies that a�b moves to the left (66; 273US$ instead of 930; 132 US$
as visible in �g. 4) and the �t increases slightly to F (2008) = 97:3%. (For more details, see
app. C.3.4.) As with a rate of 4:5%, the unemployed accumulate wealth beyond a�b : As this
range is now much larger, the right tail becomes fatter. Overall, however, our general �ndings
are con�rmed.
As discussed after �g. 4, the drop in consumption in the high-interest-rate regime is due to

the drop in the present value of labour income. We nevertheless inquire into the e¤ect of risk
aversion on our �ndings. When we set � equal to 0:8, the �t F (2008) drops to 90:3%. This is
still a reasonable value and there is enough probability mass in the right tail as � = 0:8 still
satis�es rlow < � + �g < rhigh: There is a low-interest-rate regime and the high-interest-rate
regime is actually an exploding regime (see app. C.3.5). For risk aversion equal to 1:2, the �t falls
dramatically to F (2008) = 44:7% (even though the average �t over all years is still at 69:8%).
This follows from the fact that for � = 1:2; the interest rates satisfy rlow < rhigh < � + �g:
Hence, there is no longer any exploding regime, both regimes are low-interest-rate regime, all
wealth is below a�w from �g. 1 and there is a very thin right tail (see again app. C.3.5 for a
visual impression).

5.3.4 Thickness of the right tail

We also study how well our model replicates thick right tails that we observe in empirical
wealth distributions. The literature typically estimates the Pareto coe¢ cient of this tail and
treats this coe¢ cient as a measure of thickness. The higher the coe¢ cient, the fatter the tail.
When this approach is applied to city size, �rm size or income, the typical log-log plots (see e.g.
Gabaix, 2009) provide a straight line. One well-known issue of this approach (discussed e.g.
by Atkinson, 2017, in the context of income distributions) consists in �xing where actually the
right tail starts. Another, less discussed issue revolves around possible right-censoring. This
has been reported by Aban et al. (2006) for applications in �nance, hydrology and atmospheric
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science. This feature can be suspected in the data when the log-log plot displays a strong
concavity after some threshold. Aban et al. also propose a solution to this issue by estimating
a truncated Pareto distribution.
We indeed �nd typical features of right-censorship in the NLSY wealth distributions (see

app. C.3.7). After some threshold that di¤ers across survey waves, the straight line curves
strongly downwards.53 For the wealth distribution in 2008, this concavity starts at the level of
about 1.34 million US Dollar. One possible reason for this lies in the questionnaire nature of
the NLSY dataset. Individuals with very high wealth levels might just report lower levels.54

Given this strong concavity, we calibrate the parameters of a right-censored Pareto density as
presented in Aban et al. (2006, eq. (3)).
Employing this (right-censored) Pareto density for the right tail, we provide measures of its

thickness, the so-called Pareto coe¢ cients. The economics literature reports Pareto coe¢ cients
for wealth of around 1.5 (Gabaix, 2009, p. 275) and 2 (Cao and Luo, 2017, table 2), usually
not taking right-censoring into account.55 For comparison purposes, we report the slope of the
straight line that follows from our estimation of the truncated Pareto distribution. The slope
is measured from the 80th percentile to the 90th percentile. Beyond the 90th percentile, the
e¤ect of the truncation sets in strongly.56 Our empirical measures of thickness (i.e. the Pareto
coe¢ cient) are reported in app. C.3.7, an illustration is in �gure 10.
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Figure 10 Pareto coe¢ cients (non-targeted) in data and model for two di¤erent calibrations

The empirical and model Pareto coe¢ cients are by construction identical in 1986. The
measures are very close in 2008, both for the calibration where we target the density in 2008
and for the calibration where we target the average over all years. As expected, the Pareto-
coe¢ cient is closer in 2008 for the calibration where we target the density in 2008. Targeting
the average density over all years implies better average Pareto coe¢ cients, however: The model

53This is what Atkinson (2017, �g. 1) calls the �Baronial shape�.
54Looking at the plot in the online appendix H of Cao and Luo (2017) suggests that right censoring might

also be present in the SCF dataset.
55When we apply the short-cut based on wealth shares employed by Cao and Luo (2017, footnote 1 and

section 6.1) on wealth data from Saez and Zucman (2016), we �nd Pareto coe¢ cients (for the range from the
90th to the 99th percentile for the period from 2000 to 2012) that lie between 1.36 and 1.50.
56There is no obvious rule - as argued by Atkinson (2017) - where the right tail starts. We choose the 80th

percentile as wealth seems to be almost perfectly Pareto distributed in all waves as of the 80th (and up to the
90th) percentile.
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coe¢ cient exceeds the data coe¢ cient on average by 46.5% when we target 2008. When we
target the average �t of all densities, the average �t of Pareto coe¢ cients is higher (with an
average excess of 44.1% only). More generally, if we targeted wealth shares (and not densities),
the Pareto coe¢ cients would �t even better. As our objective consisted in targeting densities,
we consider this �t in Pareto coe¢ cients as very good.

5.3.5 Is �nancial ability time-invariant?

Financial ability i of one individual is captured by a pair of arrival rates �lowi and �highi : These
arrival rates describe how quickly on average an individual moves from low to high returns (and
back). The transition rates capture the deeper idea that individuals are born or enter their
economically active life with certain skills which, given some economic environment, imply this
pair of arrival rates. When we look at a period of 22 years with big changes on �nancial markets
over this period (think of the dot-com bubble in the late 1990s or the direct access for private
and small investors via the internet to almost all asset types), it would be hard to argue that
�nancial ability i is invariant over these 22 years. We therefore also inquired into potential
breaks in the distribution of �nancial ability.
Our starting point is the �t F (2008) for 2008 with 30 �nancial types of 96:1% in table 3.

When we employ the quantitative weights pi of these 30 �nancial types (see app. C.3.8), we �nd
that individuals spent 36:3% of their time in the high-interest-rate regime. Hence, on average,
individuals experience 8 years (36:3% out of 22 years) of high interest rates. When we take the
same number of �nancial types and �t 1998, we �nd that individuals spent 47:1% of their time
in the high-interest-rate regime.
Changes in average returns over time can have many reasons. Individual learning or simpler

access to �nancial markets over time for this cohort are obviously not strong enough as periods
of high returns fall after 1998. We conclude that the positive e¤ects of learning or lower
transaction costs is overcompensated by falling average idiosyncratic returns after 1998.

5.4 The distribution of idiosyncratic interest rates

We have presented various quantitative versions of our model. The most relevant ones yield a
�t of the empirical density of wealth in 2008 of around 90%. We can �test�these calibrations
by inquiring whether the idiosyncratic interest rate distributions in the model have properties
that are broadly consistent with empirical idiosyncratic interest rate distributions. We focus
on the baseline model, the model with ex-ante capital risk only and on the model with three
sources of capital income risk (ex-ante, ex-post and types).
The empirical evidence is summarized in table 4.57 The means range from slightly negative

values to values up to 14%. The (unweighted) average mean from this table is 5:7%. The
standard deviations all lie above 3% with the highest estimate above 27%. The average standard
deviation is 12:1%.
Turning to capital income risk in our baseline model, given that r (t) 2 f3:5%; 4:5%g and

type i speci�c arrival rates �lowi and �highi ; we can compute the probabilities �i (�) �Prob(ri (�) = rhigh)
that a �nancial type i has a high interest rate at a point in time �: Using the population shares
pi; we can predict the unconditional probability for an investor that the interest rate is high,
� (�) �Prob(r (�) = rhigh) : For any �t, we can therefore compute time paths of moments and
compare them to empirical moments. For our target year 2008, we obtain a annual mean return
of 4:4% with a standard deviation of 0:44%. Standard deviations for our robustness checks are
57The table either displays all assets reported in these studies or representative ones. Our general conclusion

drawn below does not depend on this selection.
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of the same order of magnitude. The highest one is generated when the high interest rate is at
8%. Even then, the standard deviation is only 1:34%.58

Asset Mean St.dev. Country Source
T-bills �0:38% 4:35% US Flavin and Yamashita (2002)
Bonds 0:60% 8:40% PSID: 1968 to 1992
Stocks 8:24% 24:15% S&P 500: 1926 to 1992
Mortgage 0:00% 3:36%
House 6:59% 14:24%

Wealth (1) 7:92% 27:14% US Cao and Luo (2017)
Wealth (2) 5:94% 11:27% PSID: 1984, 1989 and 1994
Private equity 13:1% 6:90% US Moskowitz and
Public equity 14:0% 17:00% Vissing-Jorgensen (2002)
Financial wealth 4:19% 14:35% Norway Fagereng et al. (2018, tab. 3)
Housing 4:59% 6:09% Administrative tax data: 1993 to 2013
Net worth (3) 3:66% 7:46%

(1) with capital gains, (2) without capital gains, (3) after tax

Table 4 Empirical idiosyncratic interest rate distributions

Is our low standard deviation a quantitatively interesting �nding or an artefact of our
assumed structure where the idiosyncratic interest rate can take only two values, rlow and
rhigh? When we replace this discrete distribution by a continuous uniform distribution, the
standard deviation is given by �uniform=

�
rhigh � rlow

�
=
p
12. With our values of 3.5% and 4.5%,

the standard deviation amounts to 0:29%. Hence, our �ndings do not seem to be driven by the
discrete and simple distribution of the interest rate.
When we turn to the ex-ante capital risk calibration, the best �t is obtained for 2:5% �

ri (0) � 8% with n = 22 equidistant realizations of r (0) : The probabilities pi to draw an ri (0)
imply a mean of 7:99%. This exceeds means in empirical interest rate distributions.
When we take the same number of paths as in our baseline model, allow for all three sources

of capital income risk as in �g. 7 with an invariant labour income ~w from (28) but increase the
upper bound of the interest rate to 15%; i.e. r (t) 2 f3:5%; 15%g, the mean of the interest
rate distribution in 2008 is 10:1%. Again, this is larger than the mean in empirical interest rate
distributions.59

Summarizing, we can construct interest rate distributions where capital income risk alone,
without any labour income risk, can generate extremely good �ts for the dynamics of the dis-
tribution of wealth. These interest rate distributions include �awesome�or �superstar states�,
however, and are therefore empirically not convincing. When we turn to distributions of inter-
est rates that have reasonable average idiosyncratic returns and combine them with empirically
convincing labour income risk, we obtain a level of �t (96:1%) which is highly satisfactory. We

58See also Bach et al. (2015) who use administrative data of Swedish residents. They �nd that the hetero-
geneity in returns is attributed to not only the allocation of wealth but also the level of wealth. They document
that returns on �nancial wealth are on average 4% higher per year for households in the top 1% compared to
the median household.
59Future work could go beyond comparing means and standard deviations in models and data. Autocorrelation

and other properties of stochastic processes should be modelled and taken into account as well. Empirical
analyses seem to suggest that individual �xed e¤ects for idiosyncratic interest rates could be augmented by
AR(1) or, more convincing, MA(2) processes for the error term. If, in addition, regime switching processes
could be estimated, more �exible distributional assumptions than in AR or MA processes could be allowed for.
This would bring theory (generalizing our 2-state process for the interest rate to n states) and empirical analyses
closer together. We are grateful to Luigi Pistaferri for discussions of their �ndings in Fagereng et al. (2018).
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do stress, however, that this baseline calibration seems to �overexplain�wealth inequality as
the standard deviation of the interest rate distribution in the baseline model is considerably
lower than in the data.60

6 Conclusion

This paper began by describing an optimal saving model for an individual facing idiosyncratic
labour income shocks and idiosyncratic capital income shocks. Labour income grows over
time but interest rates are stationary. Interest rates �uctuate between a value that implies a
stationary wealth distribution, as in standard precautionary savings models, and a value that
implies non-stationary wealth distributions (a so-called �exploding regime�). In addition to
the two sources of ex-post heterogeneity, labour and capital income risk, we allow for ex-ante
heterogeneity in �nancial abilities of individuals.
We solve the FPEs to describe the evolution of wealth for one individual and thereby also

for a cross-section of individuals of identical individuals. When we aggregate over di¤erent
�nancial types, we obtain a distribution of wealth that evolves over time and that can be used
to understand the wealth distributions of the NLSY 79 cohort. Our agents form rational expec-
tations (subject to our numerical caveat from footnote 27) and no approximation techniques
are required to study the evolution of distributions over time.
We quantify our model by employing parameter values that imply, for example, wage levels

and wage growth that are consistent with empirical values from the NLSY. The initial densities
of wealth for our model are taken from the 1986 wave of the NLSY. By computing the share of
individuals that have a certain �nancial ability, our model density for 2008 overlaps with the
empirical density by more than 96%. For intermediate years, the �t can fall down to 60:6%.
When we maximize the �t for all 12 waves with wealth information, the average �t is 88:9%.
The fat right tail of wealth distributions can be understood by a quantitative version of

qualitative phase diagrams for the two interest rate regimes. Optimal consumption level drops
strongly in the exploding regime compared to the low-interest-rate regime. This drop yields fast
wealth accumulation (at least for employed workers) and, therefore, moves su¢ ciently many
individuals into the right tail of the wealth distribution.
Computing the shares of �nancial abilities yields a prediction of capital income risk. When

we check the empirical plausibility of the quantitative interest rate distribution in our model,
we �nd that the standard deviation for interest rates needed in capital income risk models to
generate plausible wealth distributions with fat right tails is much lower than what is observed
empirically. The capital income risk approach to understanding wealth distributions, therefore,
also seems to be promising from a quantitative perspective.
When we compare our baseline model to a model with pure capital income risk, we �nd

that such a model (that abstracts from any labour income risk) can generate an even higher �t
for the evolution of wealth. Yet, this high �t comes at a cost of having to allow for �superstar
states�in the interest rate distribution; that is, for returns that are empirically not convincing.
Future work should allow for continuous wage and interest rate distributions. This would

generalize our approach and also allow agents to form expectations about uncertain interest
rates without additional numerical complexities. Studying the dynamics of wealth distribution
in general equilibrium would be another interesting project. While this has been done in the
past, standard formation of expectations still needs to be taken into account in numerical
methods. We are con�dent that an approach based on FPEs can help in reaching this goal.

60A next step in the analysis of this conjecture would work with a theoretical structure that is rich enough
to allow households to invest in as many assets as reported by the studies sumarized in tab. 4.
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