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Cognitive Uncertainty 
 
 

Abstract 
 
This paper introduces a formal definition and an experimental measurement of the concept of 
cognitive uncertainty: people’s subjective uncertainty about what the optimal action is. This 
concept allows us to bring together and partially explain a set of behavioral anomalies identified 
across four distinct domains of decision-making: choice under risk, choice under ambiguity, 
belief updating, and survey expectations about economic variables. In each of these domains, 
behavior in experiments and surveys tends to be insensitive to variation in probabilities, as in the 
classical probability weighting function. Building on existing models of noisy Bayesian 
cognition, we formally propose that cognitive uncertainty generates these patterns by inducing 
people to compress probabilities towards a mental default of 50:50. We document 
experimentally that the responses of individuals with higher cognitive uncertainty indeed exhibit 
stronger compression of probabilities in choice under risk and ambiguity, belief updating, and 
survey expectations. Our framework makes predictions that we test using exogenous 
manipulations of both cognitive uncertainty and the location of the mental default. The results 
provide causal evidence for the role of cognitive uncertainty in belief formation and choice, 
which we quantify through structural estimations. 
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1 Introduction

In many contexts of economic interest, behaving optimally is difficult. Consider decision-

making under uncertainty: forming and updating beliefs, and making choices among

risky options. In belief formation, people need to combine prior beliefs with new infor-

mation to arrive at a posterior. However, people may not know Bayes rule, succumb to

computational errors, or fail to retrieve relevant information from memory. In choice un-

der risk, people need to combine probabilities, payoffs and preferences into a certainty

equivalent. However, people may not know their true preferences, or fail at adequately

combining probabilities and utils. All of these issues, and potentially many more, may

introduce cognitive noise, which we use as a catch-all term for the noisiness that arises

from cognitive imperfections in the process of optimization.

The basic premise of our paper is that people are often aware of their own cognitive

noise, which induces cognitive uncertainty: subjective uncertainty about what the opti-

mal action or solution to a decision problem is. For example, people may think that they

do not really know their own certainty equivalent of a lottery; they may have a nagging

feeling that they do not remember what their prior information is; or they may worry

that they do not know how to compute rational beliefs in light of new information. This

stands in contrast to the vast majority of economic models, in which people potentially

make errors, but do not exhibit deliberate doubts about the optimality of their solution.

Because cognitive uncertainty reflects internal noise rather than stochasticity in the en-

vironment, it is distinct from standard notions of confidence. For example, an individual

may assign a subjective probability of 95% to the event that the stock market will go

up tomorrow (and hence be confident according to standard definitions), yet still be

cognitively uncertain about whether the rational posterior belief is indeed 95%, or 84%,

or 97%.

The objective of this paper is to propose and document empirically that cognitive un-

certainty shapes economic behavior in systematic and quantitatively meaningful ways,

and that it provides a unifying lens for understanding behavioral anomalies across dif-

ferent decision domains. To this effect, we first provide a formal definition and a corre-

sponding structured experimental measurement of cognitive uncertainty. We then use

these tools to bring together and partially explain a set of well-known but previously-

unconnected anomalies across four economic decision domains: choice under risk, choice

under ambiguity, belief updating, and survey expectations about economic variables.

Figure 1 depicts the set of behavioral anomalies that we focus on. All four functions

are estimated from experimental data and share in common a characteristic inverse S-

shape. First, panel A depicts the well-known probability weighting function in choice un-

der risk that goes back to Kahneman and Tversky’s (1979) prospect theory. It illustrates
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Figure 1: “Weighting functions” in choices and beliefs. Panel A depicts a probability weighting function in
choice under risk, estimated from the data described in Section 3; also see Tversky and Kahneman (1992)
and O’Donoghue and Somerville (2018). Panel B illustrates an “ambiguity weighting function,” where the
x-axis represents the ambiguous likelihood of an event and the y-axis the matching probability (adapted
from Li et al., 2019). Panel C visualizes the relationship between Bayesian posteriors and stated beliefs in
binary-state balls-and-urns belief updating experiments, constructed from the data described in Section 4;
also see Ambuehl and Li (2018). Finally, panel D depicts the relationship between objective probabilities
and stated subjective probabilities in a survey on inflation expectations, described in Section 5; also see
Fischhoff and Bruine De Bruin (1999).

how experimental subjects implicitly treat objective probabilities in choosing between

different monetary gambles. Relative to an expected utility maximizer, people behave

as if small probabilities were larger than they really are, and high probabilities as if they

were smaller than they really are, leading to a compression effect. Second, depicted in

panel B is an “ambiguity weighting function” that depicts the emerging consensus that,
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in choices between monetary gambles over gains, people are ambiguity averse for likely

events, yet ambiguity seeking for unlikely events. This reflects a compression effect that

is labeled “a-insensitivity” in the literature (Trautmann and Van De Kuilen, 2015). Third,

in panel C, we illustrate a less well-known stylized fact, which is an inverse S-shaped

relationship between participants’ posterior beliefs and the Bayesian posterior in canon-

ical “balls-and-urns” belief updating tasks of the type recently reviewed by Benjamin

(2019). Finally, panel D of Figure 1 shows the relationship between objectively correct

probabilities and the level of respondents’ probabilistic estimates in subjective expecta-

tions surveys about, e.g., stock market returns, inflation rates, or the shape of the income

distribution. Here, again, people’s beliefs are compressed towards 50:50 (Fischhoff and

Bruine De Bruin, 1999).

Each of these empirical findings represents a large and influential literature in be-

havioral economics. Yet, why do these four functions, drawn from different decision

contexts and experimental paradigms, look so strikingly similar? Thus far, attempts to

conceptualize these anomalies have focused on each decision domain in isolation.

This paper proposes cognitive uncertainty as a new lens through which these pat-

terns can be interpreted and unified. Our experimental analysis is based on a theoretical

framework that builds on the mathematical machinery of noisy Bayesian cognition mod-

els, in particular Gabaix (2019) and Khaw et al. (2017). We take a broad interpretation

of these models as capturing (i) noise that primarily results from high-level reasoning in

optimization rather than perceptual imperfections alone and (ii) measurable awareness

of the resulting subjective uncertainty about the optimal action. In the model, people

exhibit cognitive noise in translating probabilistic information into an optimal response.

Similarly to standard Bayesian signal extraction models, this cognitive noise induces

people to shrink objective probabilities towards a prior, or mental default. While we ac-

knowledge that the mental default in general likely depends on a multitude of factors,

we assume that in unfamiliar environments this default is influenced by an ignorance

prior, which assigns equal probability mass to all states of the world ex ante.

Given this setup, we formally define and characterize an empirically measurable no-

tion of cognitive uncertainty as subjective uncertainty about the optimal action. We show

that this cognitive uncertainty in turn governs an individual’s degree of insensitivity to

variation in probabilities, in both choice and belief formation. Building on insights from

the noisy cognition literature, we then demonstrate that under the additional assump-

tion that people perceive probabilities in log-odds space, cognitive uncertainty endoge-

nizes the sensitivity parameter in the familiar two-parameter version of the probability

weighting function proposed by Gonzalez andWu (1999). However, our framework clar-

ifies that we expect this weighting function to apply not only to choice under uncertainty

but also to belief formation. Moreover, endogenizing the weighting function parameters
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suggests that the precise shape of these functions will depend on the magnitude of cog-

nitive noise and the location of the mental default.

This theoretical framework makes three predictions: (a) correlationally, individuals

with higher cognitive uncertainty exhibit response functions that are more compressed

towards 50:50 and hence more insensitive; (b) an exogenous increase in cognitive uncer-

tainty generates more compressed response functions; and (c) an exogenous decrease

in the location of the mental default shifts the entire response function downwards. All

of these predictions have both a reduced-form and a structural interpretation in terms

of Gonzalez and Wu’s weighting function.

To test these predictions, we implement a series of pre-registered experiments with a

total of N = 2, 800 participants on AmazonMechanical Turk (AMT). Like the motivating

examples, our experiments cover the domains of choice under risk and ambiguity, balls-

and-urns belief updating tasks, and survey expectations about economic variables. Our

analysis rests on a new experimental paradigm to measure cognitive uncertainty. This

measure is readily portable across decision domains, fast and easy to implement, and

could in principle be added to a large set of experiments at little cost.

In choice under risk, each participant completes two decision screens per lottery.

On the first screen, we elicit subjects’ certainty equivalents for two-outcome gambles

such as “Get $20 with probability 75%; get $0 with probability 25%” in a standard

price list format. On the next screen, participants are asked how certain they are that to

them the lottery is worth exactly the same as the switching interval that they stated on

the previous screen. To answer this question, participants use a slider to calibrate the

statement “I am certain that the lottery is worth betwen x and y to me.” If a subject

moves the slider to the very right, x and y collapse to their own switching interval in

the price list. The further a subject moves the slider to the left, the wider the range of

cognitive uncertainty becomes. Thus, our measure of cognitive uncertainty (i) directly

reflects subjects’ own assessment of uncertainty and (ii) is quantitative in nature. It

is worth highlighting that existing theories – both traditional and behavioral – predict

that people know their certainty equivalent. However, our data show that about 50% of

the time, subjects exhibit cognitive uncertainty that is strictly wider than the switching

interval of $1.

As a test of prediction (a), we show that cognitive uncertainty is strongly correlated

with the magnitude of probability weighting, in both the gain and loss domains. Specif-

ically, as would be expected from the perspective of shrinking towards 50:50, cognitive

uncertainty is positively correlated with risk taking for low probability gains and high

probability losses, yet negatively correlated with risk taking for high probability gains

and low probability losses. These findings refute a plausible alternative hypothesis about

the effect of cognitive uncertainty, which is that people act cautiously in response to it

4



and hence appear universally more risk averse.

We test prediction (b) from above by introducing compound and ambiguous lotteries,

which we hypothesize increase cognitive uncertainty. To illustrate, a compound lottery

is a lottery that pays a non-zero amount with probability p ∼ U[0, 20]. Similarly, an am-

biguous lottery is a lottery that pays a non-zero amount with probability p ∈ [0, 20]. We

verify that compound and ambiguous lotteries indeed induce substantially higher cogni-

tive uncertainty than the corresponding reduced lotteries. Our model predicts that this

increase in cognitive uncertainty translates into a more compressed weighting function.

This again implies predictions about how compound or ambiguous lotteries should in-

duce higher or lower risk aversion depending on whether one considers gains or losses,

and high or low probabilities. In our experiments, we find consistent support for this

hypothesis: while subjects act as if they are aversive to compound lotteries or ambigu-

ity under high probability gains and low probability losses, they are more risk seeking

under compound lotteries (and “ambiguity seeking”) over small probability gains and

high probability losses.

In a final step of the analysis of choice under risk, we test prediction (c) from above by

exogenously manipulating the location of the mental default. To this effect, we leverage

our assumption that in unfamiliar environments the default is influenced by an igno-

rance prior. In the two-states lotteries discussed so far, this ignorance prior is given by

50:50. To manipulate the location of the mental default, we implement a partition ma-

nipulation and translate the two-states lotteries into ten-states lotteries, without chang-

ing the objective payoff profile. We hypothesize that this shifts the mental default to

an ignorance prior of 10%, which should move the entire probability weighting func-

tion closer towards zero. Our experimental results show that the probability weighting

function with ten states is indeed significantly shifted towards zero, although these pat-

terns are more pronounced for gains than for losses. These results also show that our

experimental results do not just reflect a “click-in-the-middle” heuristic because we can

manipulate people’s mental default in predictable ways.

In a second set of experiments, we conduct conceptually analogous exercises for be-

lief updating. Here, we implement canonical balls-and-urns updating tasks of the type

recently reviewed by Benjamin (2019). In these experiments, a computer randomly se-

lects one of two bags according to a known base rate, yet subjects do not observe which

bag got selected. The two bags both contain 100 balls, where one bag contains q > 50

red and (100−q) blue balls, while the other bag contains q blue and (100−q) red balls.

The computer randomly draws one or more balls from the selected bag and shows these

balls to the subject, who is then asked to provide a probabilistic assessment of which bag

was actually drawn. Across experimental tasks, the base rate, the signal diagnosticity q

and the number of random draws from the bags vary, but are always known to subjects.
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After subjects state their posterior belief, we again elicit cognitive uncertainty. In a

conceptually very similar fashion to choice under risk and ambiguity, we ask subjects to

use a slider to calibrate the statement “I am certain that the optimal guess is between

x and y .” We explain that the optimal Bayesian guess relies on the same information

that is available to subjects, and combines this information in a statistically optimal way.

Again, if a subject moves the slider to the very right, x and y collapse to the subject’s

own previously stated belief. The further the slider is moved to the left, the wider the

cognitive confidence interval becomes. In addition, we also elicit subjects’ willingness-to-

pay to replace their own guess by the optimal guess as a complementary and incentivized

measure of cognitive uncertainty.

Again, in contradiction to a large class of models in which agents do not exhibit

doubts about the rationality of their belief updating, the vast majority of subjects in-

dicate strictly positive cognitive uncertainty. As predicted by our model, this cognitive

uncertainty is strongly correlated with compression of posterior beliefs towards 50:50.

Moreover, we document that cognitive uncertainty strongly predicts the magnitude of

base rate insensitivity and likelihood ratio insensitivity, two of the key underreaction

anomalies highlighted in Benjamin’s (2019) meta-analysis.

To exogenously shift cognitive uncertainty, we implement compound belief updat-

ing tasks. We again hypothesize that cognitive uncertainty will be higher in compound

problems, hence giving rise to more compressed belief distributions. In our experimental

data, we find that cognitive uncertainty indeed increases by 33% under compound diag-

nosticities. Moreover, the distribution of beliefs becomes substantially more compressed

towards 50:50, as predicted by our framework.

In a last step of the analysis of belief updating tasks, we exogenously vary the location

of the mental default. Here, we once more employ the same partition methodology

as in our risky choice experiments: we increase the number of states (bags) from two

to ten, without changing the relevant Bayesian posterior. The results show that this

manipulation induces a substantial and statistically significant downward shift of the

entire distribution of posterior beliefs towards zero.

In the third part of the paper, we study the relationship between cognitive uncer-

tainty and survey expectations about the performance of the stock market, inflation

rates, and the structure of the national income distribution. For instance, we ask respon-

dents to guess the probability that in a randomly selected year between 1980 and 2018

the inflation rate was less than x%, where x varies across respondents. We measure cog-

nitive uncertainty after we elicit these beliefs, using the same methodology as before.

Again, we find that subjects with higher cognitive uncertainty exhibit survey expecta-

tions that are more regressive towards 50:50.

Next, we turn to estimating our model. For each decision domain, we structurally
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estimate the two-parameter “weighting function” that our model endogenized, sepa-

rately for above- and below-average cognitive uncertainty observations. The estimates

reveal that the structural sensitivity parameter estimates of low-cognitive uncertainty

observations are 60–150% higher across decision domains. Moreover, even though the

underlying decision domains and experimental paradigms are very different, we always

estimate fairly similar parameter values.

In the last part of the paper, we study whether variation in cognitive uncertainty is

largely due to between- or within-subject variation. In a heuristic decomposition exer-

cise, we find that – as a weak lower bound – at least 50% of the variation in our data

is due to between-subjects heterogeneity. Moreover, participants’ cognitive uncertainty

is highly correlated across domains, i.e., participants with high cognitive uncertainty in

choice under risk (or belief updating) also exhibit high cognitive uncertainty in survey

expectations. Across our different sets of experiments, this subject-level heterogeneity is

correlated with observables: women, participants with low cognitive skills, and subjects

with faster response times exhibit higher cognitive uncertainty.

In summary, the central contributions of our paper are (i) to introduce a formal

definition and a new experimental measure of cognitive uncertainty and (ii) to provide

both correlational and causal evidence for the role of cognitive uncertainty and a mental

default across four domains of economic decision making, each of which has received

substantial interest in the literature on its own.

Our paper builds on recent theoretical work on cognitive noise and resulting shrink-

age processes, see Woodford (2012, 2019), Khaw et al. (2017), Gabaix and Laibson

(2017), Gabaix (2019), Frydman and Jin (2019), Gershman and Bhui (2019) and Steiner

and Stewart (2016). In contrast to some of these theories, we posit that cognitive un-

certainty arises in the mental process of optimizing rather than from perceptual dis-

tortions of numeric quantities. We also do not require the neural coding of noise to be

Bayes-optimal. Abstracting from these interpretive differences, we view our experiments

as providing encouraging support for this emerging body of theoretical work. We show

that cognitive noise is not just a low-level subconscious phenomenon but instead mea-

surable and that it applies to, and unifies anomalies across, a broader range of economic

settings than prior literature has theorized.

In the experimental literature, Butler and Loomes (2007) propose a measurement

of preference imprecision in choice under risk, which is related in spirit to our mea-

sure. Agranov and Ortoleva (2017) show that experimental subjects often deliberately

randomize between lottery options. However, these authors do not conceptualize their

measures as cognitive uncertainty and resulting shrinking processes, and do not study

the types of behavioral anomalies that we focus on. Our paper also builds on various ex-

perimental literatures on the anomalies that we attempt to bring together in this paper,
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which are too voluminous to review here, such as Benjamin’s (2019) belief updating sur-

vey and his discussion of underreaction and “extreme belief aversion.” More broadly, our

paper fits into the recent theoretical and experimental literature on bounded rationality

that has focused on the mechanisms behind different behavioral anomalies (Bordalo et

al., 2012, 2017; Enke, 2017; Enke and Zimmermann, 2019; Enke et al., 2019; Esponda

and Vespa, 2016; Graeber, 2019; Martínez-Marquina et al., 2019).

The paper proceeds as follows. Section 2 lays out a theoretical framework of the

role of cognitive uncertainty. Sections 3 to 5 present the experiments on choice under

risk, choice under ambiguity, belief updating, and survey expectations. Section 6 pro-

vides parametric estimations of our model. Section 7 studies the correlates of cognitive

uncertainty, Section 8 provides robustness checks, and Section 9 concludes.

2 A Model of Cognitive Uncertainty

2.1 Overview

Our formal framework directly builds on the cognitive imprecision models of Khaw et

al. (2017) and Gabaix (2019). Following these contributions, our central assumption

is the existence of cognitive noise in decision-making. In contrast to some earlier work,

we interpret this noise not necessarily as reflecting low-level perceptual imperfections,

but as resulting primarily from higher-level reasoning during optimization.¹ Translating

a set of problem inputs (e.g., probabilities) into an optimal response (e.g., a certainty

equivalent) is often difficult, which could introduce noise through various psychologi-

cal mechanisms, including computational errors, retrieval from memory, or even from

reading off and implementing one’s own preferences. Such cognitive noise creates cog-

nitive uncertainty: subjective uncertainty about what the optimal action is. We focus on

a notion of cognitive uncertainty that people have access to through introspection. To

illustrate informally, suppose your prior belief that it rains tomorrow is 15%. Next, a

weather forecast predicts that it will rain. You know from experience that the weather

forecast is correct 80% of the time. What is your posterior belief that it will rain tomor-

row? 45%? Really? Not 40%? Or perhaps 52%? To take another example, suppose you

were asked to state your certainty equivalent of a 25% chance of getting $15. Suppose

you are small-stakes risk averse. You announce that your certainty equivalent is $3. But

is it really $3? Or maybe $2.50 or $3.20?

Our second key assumption is that people represent quantities (probabilities) in log

odds space, which is closely linked to the notion of a Weber’s Law that describes percep-

¹We hence follow the behavioral science tradition going back to at least Prospect Theory of recognizing
that evidence about low-level processes can shed light on high-level decision-making.
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tual patterns across various domains (Izard and Dehaene, 2008; Zhang and Maloney,

2012). The model’s key prediction about the effect of cognitive uncertainty on decisions

(which is a form of insensitivity) does not depend on the assumption of log coding.

However, as we show below, the assumption of log coding is instructive because in com-

bination with cognitive noise it endogenously produces a canonical inverse S-shaped

response function from the literature.

In this paper, we focus on noisy processing of probabilities. However, since cogni-

tive noise may also stem from processing other problem inputs, our general notion of

cognitive uncertainty could also be applied to other contexts.

2.2 Cognitive Noise, Shrinkage and their Interpretation

We focus our presentation on the casewith normally distributed data and linear-quadratic

utility but provide a generalization in Appendix A. Assume a decision-maker takes an

action a and derives utility u(a, x) that depends on a one-dimensional quantity x:

u(a, x) = −
1
2
(a− Bx)2 . (1)

The quantity x may be a problem parameter explicitly presented to the decision-maker,

or a value calculated by or retrieved form the agent’s memory. By “action,” we generically

refer to the solution to a decision problem such as a stated posterior belief or a stated

certainty equivalent. Here, x may correspond to the payout probability of a gamble in

choice under risk, or to the Bayesian posterior in a belief updating task. We abstract

away from both taste-based risk aversion and systematic biases in belief updating and

choice – not because we think that they are unimportant but merely to keep our stylized

framework as simple as possible.

The rational action is

ar(x) = Bx . (2)

We assume that the cognitive process required to identify an optimal action a is subject

to cognitive noise. We model this as the agent receiving a signal s = x + ε instead of

having direct access to x .

It is important to emphasize that we view this “noisy perception” formalization as

if, in that it arises in the process of optimizing. In choice under risk, we think of x as

payout probability. Here, cognitive noise arises because combining probabilities, pay-

outs and preferences into a certainty equivalent is hard. In belief updating, x represents

the Bayesian posterior belief that the agent attempts to compute. Here, cognitive noise

arises in the complicated process of combining the available information into a ratio-

nal belief. Finally, in survey expectations, x represents the true probability of an avent.
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Here, cognitive noise arises through the process of retrieving information from memory

(Azeredo da Silveira and Woodford, 2019).

The agent is aware of the existence of cognitive noise. He perceives the noise term to

be distributed according to ε ∼ N (0,σ2
ε
). The agent’s subjectively perceived cognitive

noise need not be equal to the true noise that he is exposed to, ε̃ ∼ N (0,σ2
ε̃
). This

assumption highlights that we do not require that an agent’s cognitive uncertainty as

defined below reflects the objective level of noise in his internal processing.

The agent holds a prior x ∼N (x d ,σ2
x), where we refer to x d as the “mental default.”

The prior may be influenced by a multitude of factors and we do not model how exactly

it is determined. As we discuss in greater detail below, in all of our applications x will

represent a probability and we will specify x d as influenced by a discrete ignorance prior

that assigns equal probability mass to all possible states.

This assumption is plausible in our particular set of experiments because these are

setups that are unfamiliar to most participants. We do not posit that the prior is always

shaped by an ignorance prior.

Agents account for their cognitive noise by forming an implicit update about x . For

a Bayesian agent, this creates a standard Gaussian signal extraction problem:

P(x |s)∼N (λs+ (1−λ)x d , (1−λ)σ2
x), (3)

with the shrinkage factor

λ=
σ2

x

σ2
x +σ2

ε

∈ [0, 1]. (4)

A rational agent takes an action by solving: maxaE
�

−1
2 (a− Bx)2 |s

�

. Only expectations

matter in the linear first-order condition, leading to a rational action

ar(s) = B(E[x |s]) = Bλs+ B(1−λ)x d (5)

For a given x , the median action ae across many agents with individual realizations of

cognitive noise is then

ae(x) =Median (ar(s)|x) = Bλx + B(1−λ)x d , (6)

which should be compared with equation (2). We see that the agent dampens his re-

sponse by λ, generating shrinkage towards the default (prior). The key takeaway is that

the existence of cognitive noise makes the rational action insensitive to variations in the

problem parameter x .
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2.3 Cognitive Uncertainty

Awareness of cognitive noise generates subjectively perceived uncertainty about what

the optimal action is. We label this cognitive uncertainty. Our objective is to characterize

this uncertainty at the level of an individual action, and derive empirical implications.

The agent’s subjective uncertainty about his optimal action takes as given his individ-

ual draw of s, and reflects how the agent’s rational action ar (equation (2)) subjectively

varies due to the agent’s own posterior distribution of x (equation (3)), i.e., based on²

P(ar(x)|s)∼N (Bλs+ B(1−λ)x d , B2(1−λ)σ2
x). (7)

Definition. The agent’s cognitive uncertainty is given by

σCU = σar (x)|s = |B|
p

1−λσx = |B|
σεσx

Æ

σ2
ε
+σ2

x

. (8)

In our applications, cognitive uncertainty will reflect the agent’s subjective uncer-

tainty about (i) what exactly their certainty equivalent for a lottery is; (ii) what exactly

the Bayesian posterior in a belief updating task is; and (iii) what (their knowledge of)

the probability of some economic event is.

It is worth pointing out that cognitive uncertainty exclusively refers to a form of

internal uncertainty about what the optimal response or behavior is. This is what dis-

tinguishes this concept from the notion of confidence, which usually involves external

uncertainty. For example, an individual may assign a subjective probability of 95% to

the event that the stock market will go up tomorrow (and hence be confident according

to standard definitions), yet still be cognitively uncertain about whether the rational

posterior belief is indeed 95%, or 84%, or 97%.

In our empirical analysis, we will measure a variant of (8). We reiterate that we do

not require cognitive uncertainty to reflect the true amount of cognitive noise. Because

we are concerned with empirical applications, all that matters for us is subjectively per-

ceived cognitive uncertainty.

We make the following observation about the shrinkage factor λ:

λ= 1−
σ2

CU

B2σ2
x

(9)

That is, higher cognitive uncertainty generates more shrinking towards the default and

makes people more insensitive to variation in x .³

²Note that the mean of ar(x)|s is B(λs+ (1−λ)xd) as in equation (5).
³While in literal terms our model posits shrinkage of the “input” quantity x , it also permits an equiv-
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2.4 Log Coding

Following prior work in both cognitive science and economics (Gabaix, 2019; Zhang and

Maloney, 2012), we assume that a probability p is transformed into a quantity q in log

odds space by applying

q =Q(p) = ln
p

1− p
. (11)

In our model of probabilistic reasoning, people process probabilities with cognitive noise

that occurs in log odds space. This means we now assume that the decision-relevant

quantity x from (1) is a probability in log odds space q about which an agent receives

a signal s = q+ ε. This will result in shrinkage of probabilities in log odds space:

q(s) = λs+ (1−λ)qd . (12)

In the following, we will focus on medians, which have the attractive property that for

any strictly monotone function Y , Median(Y (x)) = Y (Median(x)). Over many draws of

s – fixing x , but varying ε – the median posterior qe about probability p after encoding

in log odds space and shrinkage is:

qe(q) := Median (q(s)|q) = λq+ (1−λ)qd . (13)

From this we can derive the implied median posterior probability p by applying the

inverse log odds function P(q) =Q−1(q) = 1
1+e−q :

pe(p) = P(qe) =
1

1+ exp
�

−λln p
1−p − (1−λ)ln

pd

1−pd

� . (14)

2.5 Empirical Applications and Predictions: “Weighting” Functions

Equation (14) delivers the microfoundation for our empirical analysis. Similarly to the

models in Khaw et al. (2017), equation (14) can be reformulated as

w(p) := pe(p) =
δpλ

δpλ + (1− p)λ
, (15)

where δ = exp
�

(1−λ)ln pd

1−pd

�

. This reformulation is instructive because it corresponds

to the well-known two-parameter specification of a probability weighting function sug-

alent interpretation of shrinkage of the response a. Using ar(x) = Bx and letting ad = Bxd we get

ae(x) = Bλx + B(1−λ)xd = λar(x) + (1−λ)ad . (10)
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gested by Gonzalez andWu (1999). The original motivation by Gonzalez andWu (1999)

is that the log odds transformation allows a convenient characterization of the weighting

function in which one parameter, λ, primarily represents the sensitivity of the weighting

function to changes in probabilities, while another parameter, δ, controls the function’s

elevation. Our model motivates this functional form by endogenizing its parameters: λ

directly corresponds to our shrinkage factor (and hence implicitly depends on cognitive

uncertainty), while δ is a transformation of the constant term that jointly reflects the

default and λ.

An implication of our approach, however, is that we expect this “weighting” function

to adequately capture decision making not just in choice under risk, but also in choice

under ambiguity, laboratory belief updating tasks, and survey expectations about eco-

nomic variables. In all of these applications, we will operate under the assumption that

the mental default about probabilities is influenced by an ignorance prior. We do not

posit that the default is always affected by this ignorance prior – we just posit that this is

the case in our experimental applications, with which people have no or very little prior

experience.

Prediction 1. Higher cognitive uncertainty is associated with more compressed weighting

functions.

Prediction 2. An exogenous increase in cognitive uncertainty induces more compressed

weighting functions.

Prediction 3. An exogenous decrease in the mental default induces the entire weighting

function to move closer towards zero. That is, if the response is in the positive domain, a

lower default leads to lower responses, holding fixed other problem parameters.

Figures 13 and 14 in Appendix A illustrate these predictions graphically. We test

the predictions in both reduced-form and structural analyses in which we estimate the

“weighting function” from equation (15) across decision domains.

3 Choice Under Risk

3.1 Experimental Design

All experiments reported in this paper were designed with the same objective in mind:

replicate standard experimental designs from the literature to elicit choices and beliefs,

and supplement these tasks with a measurement of cognitive uncertainty.
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3.1.1 Measuring Choice Behavior

To estimate a probability weighting function, we follow a large set of previous works and

implement price lists that elicit certainty equivalents for lotteries (see, e.g. Bernheim

and Sprenger, 2019; Bruhin et al., 2010; Tversky and Kahneman, 1992). Recent work

suggests that these types of price lists are particularly easy for subjects to understand and

give rise to more internally consistent and externally predictable choices than alternative

measurement tools (Andreoni and Kuhn, 2019).

In treatment Baseline Risk, each subject completed a total of six price lists. On the

left-hand side (Option A), a simple lottery was shown that paid y with probability p and

nothing otherwise. On the right-hand side (Option B), a safe payment s was offered that

increased by $1 for each row that one proceeds down the list. As in Bruhin et al. (2010)

and Bernheim and Sprenger (2019), the end points of the list were given by s = $0 and

s = $y . Thus, each decision screen required y + 1 choices. A subject would typically

start out by preferring Option A at the top of the list and then switch to Option B at

some point as the safe payment increases.

Throughout, we enforce that subjects behave in internally consistent ways within

a given choice list. That is, we do not allow for multiple switching points. This facili-

tates a simpler elicitation of cognitive uncertainty, as discussed below. To aid subjects’

decision-making, we implemented an auto-completion mode: if a subject chose Option

A in a given row, the computer implemented Option A also for all rows above this row.

Likewise, if a subject chose Option B in a given row, the computer automatically and

instantaneously ticked Option B in all lower rows. However, participants could always

revise their decision and the auto-completion before moving on. See Figure 15 in Ap-

pendix B.1 for a screenshot of a decision screen.

The non-zero payout of the lottery y and the payout probability p were drawn ran-

domly and independently from the sets y ∈ {15,20, 25} and p ∈ {5,10, 25,50, 75,90, 95}.
These lotteries are rather simple and well in line with previous work on probability

weighting. We implemented both gain and loss gambles, where the loss amounts are

the mirror images of y . In the case of loss gambles, the lowest safe payment was given

by s = −$y and the highest one by s = $0. In loss choice lists, subjects received a mone-

tary endowment of $y from which potential losses were deducted. Out of the six choice

lists that each subject completed, three concerned loss gambles and three gain gambles.

We presented either all loss gambles or all gain gambles first, in randomized order.

Finally, with probability 1/3, a lottery choice list in treatment Baseline Risk was pre-

sented in a compound lottery format. We will describe, motivate and analyze these data

in Section 3.3. For now we focus on the baseline (reduced) lotteries discussed above.
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3.1.2 Measuring Cognitive Uncertainty

After a participant had completed a choice list, the next screen elicited their cognitive un-

certainty with respect to this decision. Conceptually, we are interested in measuring the

analog of σCU in the model (equation (8)). However, many people are not naturally fa-

miliar with the concept of a standard deviation. To strike a balance between conceptual

clarity and quantitative interpretation on the one hand and participant comprehension

on the other hand, we hence elicit an intuitive version of a subjective confidence interval.

Figure 2 provides a screenshot. Here, a participant was reminded of their valuation

(switching interval) for the lottery. They were then asked to indicate how certain they are

that to them the lottery is worth exactly the same as their previously indicated certainty

equivalent. To answer this question, subjects used a slider to calibrate the statement “I

am certain that the lottery is worth between a and b to me.” If the participant moved the

slider to the very right, a and b corresponded to the previously indicated switching in-

terval. For each of the 20 possible ticks that the slider was moved to the left, a decreased

and b increased by 25 cents, in real time. In gain lotteries, a was bounded from below

by zero and b bounded from above by the lottery’s upside. Analogously, for losses, a was

bounded from below by the lottery’s downside and b from above by zero. The slider did

not have a default value, meaning that subjects had to click somewhere on the slider in

order to proceed.

This measure of cognitive uncertainty can be thought of as a subjective confidence

interval.⁴ We note that we deliberately did not financially incentivize the elicitation of

cognitive uncertainty. The reason is that we do not know the objective truth (subjects’

valuation for a lottery) because we do not know subjects’ true preferences.

Two remarks are in order. First, this measure of cognitive uncertainty only captures

internal uncertainty about what the certainty equivalent is, rather than also external

uncertainty that arises due to stochasticity in the environment. Second, both traditional

and behavioral models that do not feature cognitive uncertainty would predict a cogni-

tive uncertainty of zero: in these models, people may be loss averse, engage in proba-

bility weighting or be otherwise behavioral, yet they are always assumed to know their

valuation for a lottery.

Throughout the paper, we normalize cognitive uncertainty to be in [0,1], where

⁴Our elicitation procedure did deliberately not specify which particular confidence interval (e.g., 95%)
we are interested in. The reason is that (i) we aimed at keeping the elicitation simple and (ii) we are op-
erating precisely under the assumption that subjects do not really know how to translate 90% or 95%
confidence into an appropriate certainty equivalent. In Appendix H, we report on “calibration” experi-
ments in which we explicitly elicit 70%, 90%, 95%, 99% and 100% confidence intervals, and compare
them with our baseline measure. We find that subjects always indicate approximately identical cognitive
uncertainty ranges, on average, regardless of which confidence interval we elicit. This supports our belief
that providing a specific interval would not be helpful to subjects.
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Figure 2: Decision screen to elicit cognitive uncertainty in choice under risk

one corresponds to the widest possible uncertainty interval. Figure 16 in Appendix B.1

shows a histogram of the distribution of cognitive uncertainty, which shows considerable

variation. Average cognitive uncertainty is 0.24, with a median of 0.14 and a standard

deviation of 0.21. 55% of our data indicate cognitive uncertainty that is strictly larger

than the one-dollar switching interval.⁵

3.1.3 Subject Pool

All experiments reported in this paper were conducted on Amazon Mechanical Turk

(AMT). AMT is becoming an increasingly used resource in experimental economics (e.g.

DellaVigna and Pope, 2018; Imas et al., 2016), including in work on bounded rationality

(Martínez-Marquina et al., 2019). Review papers suggest that experimental results on

AMT and in the lab closely correspond to each other (Paolacci and Chandler, 2014).

An important advantage of AMT that we also leverage in this study is that the pool of

potential subjects is very large, which allows for high-powered analyses and a relatively

large number of different treatments and tasks (Robinson et al., 2019).

We took four measures to achieve high data quality. First, our financial incentives are

unusually large by AMT standards. Average realized earnings in the choice under risk

experiments are $6.10 for a median completion time of 20 minutes. This implies average

hourly earnings of $18, compared to a typical hourly wage of about $5 on AMT. Second,

⁵As a basic validity check, in a small sample of 272 price lists, we implemented payout probabilities
of p = 0% or p = 100%, so that there is no external uncertainty. In these tasks, cognitive uncertainty
drops considerably to an average of 0.10.
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we aggressively screened out inattentive prospective subjects through comprehension

questions and attention checks, described in detail below. Third, we pre-registered anal-

yses that remove extreme outliers and speeders. Fourth, as explained above, subjects

only completed six choice lists, which is considerably less than in typical choice under

risk experiments.

3.1.4 Logistics and Pre-Registration

Based on the pre-registration (see below), we recruited N = 700 completes for treat-

ment Baseline Risk. In all experiments, we restricted our sample to AMT workers that

were registered in the United States, but did impose additional participation constraints

such as a minimal approval rating. The common practice of selectively sampling AMT

workers based on their reputation has recently been called into question as it limits the

sample to the group of most experienced workers without increasing data quality (Robin-

son et al., 2019). After reading the instructions, participants completed a set of three

comprehension questions that tested their understanding of the choice lists and the cog-

nitive uncertainty question. Participants who answered one or more control questions

incorrectly were immediately routed out of the experiment and do not count towards

the number of completes. In addition, towards the end of the experiment, a screen con-

tained a simple attention check. Subjects that answered this attention check incorrectly

are excluded from the data analysis and replaced by a new complete, as specified in

the pre-registration. In total, 62% of all prospective participants were screened out in

the comprehension checks. Of those subjects that passed, 2% were screened out in the

attention check. Thus, all of our results should be understood as being conditional on

a pretty attentive participant pool – given the link between cognitive uncertainty and

response times discussed in Section 7, we imagine that we would have identified even

more variation in cognitive uncertainty had we not restricted the sample. Screenshots

of instructions and control questions can be found in Appendix J.

In terms of timeline, subjects first completed six of the choice under risk tasks dis-

cussed above. Second, we elicited their survey expectations about various economic vari-

ables, as discussed in Section 5. Finally, participants completed a short demographic

questionnaire and an eight-item Raven matrices IQ test.

Participants received a completion fee of $1.70. In addition, each participant poten-

tially earned a bonus. The experiment comprised three financially incentivized parts:

the risky choice lists, the survey expectations questions, and the Raven IQ test. For each

subject, one of these parts of the experiment was randomly selected for payment. If

choice under risk was selected, a randomly selected decision from a randomly selected

choice list was paid out.
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All experiments reported in this paper were pre-registered in the AEA RCT registry,

see https://www.socialscienceregistry.org/trials/4493. The pre-registration
includes (i) the sample size in each treatment; (ii) data exclusion criteria such as the

aforementioned attention checks or the handling of extreme outliers; and (iii) predic-

tions about the relationship between cognitive uncertainty and our outcome measures.

3.2 Cognitive Uncertainty and the Probability Weighting Function

Because of the simple structure of our lotteries with only one non-zero payout state,

an instructive non-parametric way to visualize our data is to compute normalized cer-

tainty equivalents as NC E = C E/x , where the certainty equivalent CE is defined as the

midpoint of the switching interval⁶ and x is the non-zero payout. This measure hence ef-

fectively only represents the raw data, normalized by the non-zero payout. An attractive

feature of NC E is that it directly corresponds to subjects’ implied probability weights

if one assumes that utility is linear. Because this will be instructive, these normalized

certainty equivalents are negative for lotteries with losses.

For the purposes of the baseline analysis, we exclude extreme outliers as defined in

the pre-registration: these are observations for which (i) the normalized certainty equiv-

alent is strictly larger than 95% while the objective payout probability is at most 10%,

or (ii) the normalized certainty equivalent is strictly less than 5% while the objective

payout probability is at least 90%. For example, this excludes observations that state

that the certainty equivalent for a 5% chance of receiving $20 is strictly larger than $19.

This procedure of excluding outliers affects 3% of all data points. We report robustness

checks using all data below.

Because the normalized certainty equivalents reflect implied probability weights, Fig-

ure 3 plots these normalized certainty equivalents against objective payout probabilities

to visualize a heuristic version of the probability weighting function in our data. The

figure distinguishes between subjects above and below average cognitive uncertainty

within a given payoff probability bucket.

Focusing on the upper half of the figure (gain lotteries), first note that we replicate

prior findings on the shape of the weighting function: implied probability weights are

above the risk-neutral prediction for low probabilities but below the risk-neutral predic-

tion for intermediate and high probabilities. Thus, our subject pool doesn’t seem to be

unusual in this regard.

More importantly, we find that subjects with higher cognitive uncertainty exhibit

more pronounced probability weighting functions: still focusing on the top half, high

cognitive uncertainty subjects are slightly more risk seeking for small probability gains

⁶We restrict normalized certainty equivalents to be between zero and one.
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Figure 3: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty. The partition is done separately for each probability × gains / losses bucket. The plot shows
averages and corresponding standard error bars. Normalized certainty equivalents (implied probability
weights) are computed as certainty equivalent divided by payout probability. The figure is based on 2,525
certainty equivalents of 700 subjects.

and more risk averse for high probability gains. Thus, overall, cognitive uncertainty is

associated with more pronounced shrinking and hence a flatter relationship between

implied probability weights and objective payout probabilities.⁷

Note that the heuristic probability weighting function depicted in Figure 2 crosses

the 45-degree line to the left of p = 50%. This pattern is well-known in the literature

and in line with our hypothesis as long as subjects both (i) shrink towards 50:50 because

of cognitive uncertainty and (ii) exhibit genuine preference-based risk or loss aversion,

which shifts the function towards zero.

Next, we turn to the bottom panel of Figure 3, which depicts the analogous observed

data for losses. By the construction of our figure, the weighting function is now given by

the mirror image of the weighting function in the gain domain. Again, we see that the

implied probability weights of subjects with higher cognitive uncertainty are more com-

pressed. An attractive feature of visualizing the data as in Figure 3 is that it highlights

⁷This result resonates with the findings reported in Bruhin et al. (2010), who uncover substantial het-
erogeneity in individual-level probability weighting. Our notion of heterogeneity in cognitive uncertainty
provides a possible micro-foundation for their results.
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Table 1: Insensitivity to probability and cognitive uncertainty

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.77∗∗∗ 0.76∗∗∗ 0.68∗∗∗ 0.68∗∗∗ 0.74∗∗∗ 0.74∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

Probability of payout × Cognitive uncertainty -0.67∗∗∗ -0.67∗∗∗ -0.56∗∗∗ -0.55∗∗∗ -0.64∗∗∗ -0.64∗∗∗

(0.09) (0.09) (0.09) (0.09) (0.07) (0.07)

Cognitive uncertainty 25.2∗∗∗ 25.3∗∗∗ 35.7∗∗∗ 35.5∗∗∗ 31.6∗∗∗ 32.1∗∗∗

(5.88) (5.91) (5.26) (5.33) (4.12) (4.13)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1271 1271 1254 1254 2525 2525
R2 0.55 0.56 0.42 0.43 0.48 0.48

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s absolute normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
payout probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

that the relationship between cognitive uncertainty and risk aversion reverses in pre-

dictable ways depending on whether the payouts are positive or negative and whether

the payout probability is high or low. For instance, subjects with higher cognitive uncer-

tainty are more risk seeking for small probability gains, but less risk seeking for small

probability losses. Similarly, high cognitive uncertainty participants are more risk averse

for high probability gains, yet less risk averse for high probability losses. In other words,

as predicted, high cognitive uncertainty subjects exhibit a more pronounced fourfold

pattern of risk attitudes, by the logic of shrinking towards 50:50.

Table 1 provides a regression analysis of these patterns. Our object of interest is the

extent to which a subject’s normalized certainty equivalent is (in)sensitive to variations

in the probability of the non-zero payout state. Thus, we regress a participant’s absolute

normalized certainty equivalent on (i) the probability of receiving the non-zero gain /

loss; (ii) cognitive uncertainty; and (iii) a corresponding interaction term. The regres-

sion analysis hence immediately corresponds to the setup of Figure 2.

The results show that higher cognitive uncertainty subjects respond less to variations

in objective probabilities, in both the gains and the loss domain. In terms of quantitative

magnitude, the regression coefficients suggest the following: if one were to increase

the probability of the non-zero payout state from zero to one, then, on average, the

increase in valuation for that lottery of subjects with cognitive uncertainty of zero is

55–67 percentage points higher than for subjects with cognitive uncertainty of one.
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3.3 Exogenous Manipulation of Cognitive Uncertainty

3.3.1 Experimental Design

To exogenously manipulate cognitive uncertainty, we operate with compound lotteries

and ambiguous lotteries. To illustrate, consider the case of compound lotteries, where an

example lottery is given by: “We randomly draw an integer between 60 and 80, where

each number is equally likely to be selected. Call this number n. With probability n%,

you receive $20. With probability 100%-n%, you receive $0.” The analogous reduced

lottery has payout probability p = 70%. These two lotteries are identical under expected

utility theory because EU is linear in probabilities.

Our hypothesis is that compound lotteries induce higher cognitive uncertainty. As per

the model, compound lotteries should lead to more shrinking towards 50:50 – greater

risk aversion under high probability gains (Halevy, 2007) and low probability losses, yet

less risk aversion under low probability gains and high probability losses.

A causal interpretation of our experiments with respect to cognitive uncertainty re-

quires the assumption that the introduction of compound lotteries affects choices only

through cognitive uncertainty. While this is a strong assumption, we are not aware of

alternative theories that would predict the nuanced pattern of how risk aversion changes

as a function of reduced versus compound lotteries, depending on whether the lottery

features high or low probabilities and gains or losses. As noted above, we implemented

these compound lotteries as part of treatment Baseline Risk, where each lottery had a 1

in 3 chance of being presented in compound form. We collected 1,241 observations on

compound lotteries.

To supplement this analysis of compound lotteries, and to link back to our discussion

of an “ambiguity-weighting” function in the Introduction, we also ran separate exper-

iments in which we implemented both reduced and ambiguous lotteries in a within-

subjects design. Ambiguous lotteries follow the same format as compound lotteries, ex-

cept that the precise distribution from which payoff probabilities are drawn is unknown.

An example is: “There is a number n that lies between 60 and 80. With probability n%,

you receive $20. Otherwise, you receive $0.” We hypothesize that the introduction of

ambiguity has the same effects as compound lotteries.⁸ These experiments were added

to the pre-registration after the initial set of experiments was implemented. 300 sub-

jects completed these experiments, in which each subject completed both lotteries with

known payoff probabilities and ambiguous ones.⁹

⁸Consistent with our reasoning, Halevy (2007) and Gillen et al. (2019) report that the correlation
between ambiguity and compound attitudes aproaches one, once measurement error is accounted for.

⁹Appendix F presents an additional ambiguity experiment that we pre-registered and implemented.
In these experiments, we do not elicit certainty equivalents for ambiguous lotteries but instead matching
probabilities. These experiments also deliver statistically significant evidence for a correlation between
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3.3.2 Results

Relative to the baseline reduced lotteries, compound and ambiguous lotteries increase

stated cognitive uncertainty by 32% and 20%, on average. Figures 17 and 18 in Ap-

pendix B.1 show corresponding histograms. Thus, our experiments produce a strong

“first stage.”

Figure 4 shows the results. In the top panel, we plot average normalized certainty

equivalents separately for the baseline lotteries discussed above and for compound lot-

teries. We find that the probability weighting function is substantially more compressed

under compound than under reduced lotteries, for both gains and losses. Consistent

with many findings in the literature (Gillen et al., 2019; Halevy, 2007), subjects are

compound lottery averse for high probability gains (and low probability losses). How-

ever, as predicted by our framework, subjects behave as if they are compound lottery

loving for low probability gains and high probability losses.

The bottom panel presents analogous results for the comparison between risky and

ambiguous gambles. The results are very similar to the ones for compound lotteries: sub-

jects behave as if they are ambiguity loving for small probability gains and high proba-

bility losses, so that overall subjects’ certainty equivalents are less sensitive to variation

in payout “probabilities” under ambiguity.

Table 2 provides a corresponding regression analysis. We find that subjects’ certainty

equivalents are considerably less responsive to the objective payout probabilities under

compound and ambiguous lotteries than under reduced lotteries, for both gains and

losses. Moreover, we again find a within-treatment correlation between responsiveness

to payout probabilities and cognitive uncertainty. For example, even when we restrict

attention to ambiguous lotteries, the certainty equivalents of participants with higher

cognitive uncertainty are significantly less responsive to variation in ambiguous likeli-

hoods than those of subjects with low cognitive uncertainty (p < 0.01). This further

suggests that the finding of “a-insensitivity” in the ambiguity literature (Li et al., 2019;

Trautmann and Van De Kuilen, 2015) partly reflects cognitive uncertainty.

3.4 Exogenous Manipulation of the Mental Default

3.4.1 Experimental Design

In a final step of the analysis of choice under risk, we exogenously manipulate the loca-

tion of the mental default. Recall that we operate under the assumption that the default

is influenced by the ignorance prior. With two states of the world, the ignorance prior

cognitive uncertainty and “ambiguity-insensitivity.” We relegate these experiments to the appendix both
for brevity and, as we discuss in detail in the Appendix, we now believe that they are less clean than the
version that we present in the main text.
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Figure 4: Top panel: Probability weighting function separately for reduced and compound lotteries. Bot-
tom panel: “Probability” weighting function separately for reduced and ambiguous lotteries. In the bottom
panel, the payout “probability” for ambiguous lotteries is denoted by the midpoint of the interval of pos-
sible payout probabilities. The plot shows averages and corresponding standard error bars. Normalized
certainty equivalents (implied probability weights) are computed as certainty equivalent divided by pay-
out probability. The top panel is based on 3,766 certainty equivalents of 700 subjects. The bottom panel
is based on 1,796 certainty equivalents of 300 subjects.
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Table 2: Choice under risk: Baseline versus compound / ambiguous lotteries

Dependent variable:
Absolute normalized certainty equivalent

Risk vs. compound risk Risk vs. ambiguity

Gains Losses Pooled Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.62∗∗∗ 0.56∗∗∗ 0.72∗∗∗ 0.74∗∗∗ 0.54∗∗∗ 0.81∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.04) (0.03)

Probability of payout × 1 if compound lottery -0.30∗∗∗ -0.25∗∗∗ -0.24∗∗∗

(0.03) (0.03) (0.02)

Probability of payout × Cognitive uncertainty -0.54∗∗∗ -0.80∗∗∗

(0.05) (0.09)

1 if compound lottery 12.3∗∗∗ 12.3∗∗∗ 10.8∗∗∗

(1.89) (1.84) (1.31)

Cognitive uncertainty 27.6∗∗∗ 39.5∗∗∗

(3.46) (6.05)

Probability of payout × 1 if ambiguous lottery -0.20∗∗∗ -0.16∗∗∗ -0.13∗∗∗

(0.03) (0.04) (0.02)

1 if ambiguous lottery 6.91∗∗∗ 8.82∗∗∗ 5.39∗∗∗

(1.14) (2.31) (1.23)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 1918 1848 3766 889 880 1769
R2 0.44 0.35 0.42 0.58 0.34 0.50

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s absolute normalized certainty equivalent, computed as midpoint of the switching
interval divided by the non-zero payout. In columns (1)–(3), the sample includes choices from the baseline
and compound lotteries, where for comparability the set of baseline lotteries is restricted to lotteries with
payout probabilities of 10%, 25%, 50%, 75%, and 90%, see Figure 4. In columns (4)–(6), the sample includes
choices from the baseline and ambiguous lotteries. For ambiguous lotteries, we define the payout “probability”
as the midpoint of the interval of possible payout probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

is 50:50. To vary the default, we implement a partition manipulation and increase the

number of states to ten. Under the maintained assumption that the default is given by

the ignorance prior, this means that the ignorance prior for each state is now given by

10%. We further designed this treatment variation with the objective of holding cog-

nitive uncertainty fixed (which we verify below). Following the logic of the model in

Section 2, we hence predict that the entire probability weighting function shifts towards

zero as the number of states increases. This means that for the ten states lotteries we

predict higher risk aversion for gains but lower risk aversion for losses.

To experimentally implement this manipulation, we replicate treatment Baseline Risk,

but now frame probabilities in terms of number of colored balls in an urn. For example,

we describe a lottery as:
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Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.

20 balls are blue. If a blue ball gets drawn: get $0.

In addition to this treatment, labeled High Default Risk, we also implement treatment

Low Default Risk. Here, we implement the same lotteries as in High Default Risk, yet we

split the zero-payout state into nine payoff-equivalent states with different probability

colors. For example, the lottery above would be described as:

Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.

2 balls are blue. If a blue ball gets drawn: get $0.

2 balls are black. If a black ball gets drawn: get $0.

2 balls are white. If a white ball gets drawn: get $0.

. . .

4 balls are yellow. If a yellow ball gets drawn: get $0.

This lottery is identical to the one described above in terms of the objective payout profile.

Still, we hypothesize that this manipulation shifts the probability weighting function

towards zero.

In total, 300 subjects participated in these two treatments, which we implemented in

a between-subjects design with random assignment to treatments within experimental

sessions. All procedures other than the ones described here (and corresponding compre-

hension questions) were identical to the ones in condition Baseline Risk.

3.4.2 Results

First note that cognitive uncertainty does not vary across these two treatments (p =
0.898), see the histograms in Figure 19 in Appendix B.1. This lends credence to our

implicit assumption that our experimental manipulation only affects the mental default

but not cognitive uncertainty.

Figure 5 shows average normalized certainty equivalents, separately for treatments

High Default Risk and Low Default Risk. We find that, in the gain domain, the probability

weighting function is significantly shifted downwards towards zero with 10 states (a

low default), as hypothesized. In the loss domain, our framework would predict that

the weighting function is shifted upwards towards zero. We only find mixed evidence

for this prediction: the weighting function appears to move up for low and intermediate

probabilities but not for high probabilities.

Table 3 provides a corresponding regression analysis that confirms these visual pat-

terns. Columns (1)–(3) analyze gain lotteries. Here, normalized certainty equivalents

(observed risk tolerance) are 10 percentage points lower in the Low Default Risk con-

dition. In the case of losses, the regression coefficient of the low default condition is

25



-100

-50

0

50

100
N

or
m

al
iz

ed
 c

er
ta

in
ty

 e
qu

iv
al

en
t

0 20 40 60 80 100
Probability

High default (2 states) Low default (10 states)
±1 std. error of mean Risk-neutral prediction

Figure 5: Probability weighting function separately for treatments High Default Risk and Low Default
Risk. The plot shows averages and corresponding standard error bars. Normalized certainty equivalents
(implied probability weights) are computed as certainty equivalent divided by payout probability. The
figure is based on 1,757 certainty equivalents of 300 subjects.

negative – as predicted by our framework – but not statistically significant (p = 0.15). A

potential (post-hoc) explanation for this null result is that, in all treatments, the choice

data in the loss domain appear to be considerably more noisy than in the gain domain.

This can be inferrred from the difference in R2 between columns (1) and (3) in Table 3

and similar patterns in all other tables above. Either way, the treatment effect of the low

default is statistically significant in the pooled gains and losses sample.

4 Belief Updating

4.1 Experimental Design

Our experimental design strategy for belief updating closely mirrors the one for choice

under risk: we (i) supplement an established experimental design from the literature

with a measurement of cognitive uncertainty; (ii) document a correlation between cog-

nitive uncertainty and the magnitude of compression in subjects’ beliefs; (iii) exoge-

nously manipulate cognitive uncertainty using a compound manipulation; and (iv) vary
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Table 3: Choice under risk: Treatments Low Default Risk and High Default Risk

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

0 if High Default, 1 if Low Default -10.4∗∗∗ -10.0∗∗∗ -2.02 -1.87 -6.21∗∗∗ -5.89∗∗∗

(1.81) (1.84) (2.11) (2.09) (1.47) (1.47)

Probability of payout 0.66∗∗∗ 0.66∗∗∗ 0.63∗∗∗ 0.63∗∗∗ 0.65∗∗∗ 0.65∗∗∗

(0.04) (0.04) (0.05) (0.05) (0.03) (0.03)

Probability of payout × Cognitive uncertainty -0.59∗∗∗ -0.58∗∗∗ -0.48∗∗∗ -0.48∗∗∗ -0.51∗∗∗ -0.52∗∗∗

(0.12) (0.12) (0.13) (0.13) (0.09) (0.09)

Cognitive uncertainty 25.7∗∗∗ 25.2∗∗∗ 43.3∗∗∗ 43.1∗∗∗ 34.3∗∗∗ 34.1∗∗∗

(5.86) (5.85) (7.59) (7.79) (4.95) (5.01)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 881 881 876 876 1757 1757
R2 0.41 0.42 0.32 0.34 0.35 0.36

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s absolute normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from treatments Low Default Risk and High
Default Risk. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

the location of the mental default by increasing the number of states of the world.

4.1.1 Measuring Belief Updating

In designing a structured belief updating task, we follow the recent review and meta-

study by Benjamin (2019) on so-called “balls-and-bags” or “bookbags-and-pokerchips”

experiments. In treatment Baseline Beliefs, there are two bags, A and B. Both bags con-

tain 100 balls, some of which are red and some of which are blue. The computer ran-

domly selects one of the bags according to a pre-specified base rate. Subjects do not

observe which bag was selected. Instead, the computer selects one or more of the balls

from the selected bag at random (with replacement) and shows them to the subject.

The subject is then asked to state a probabilistic guess that either bag was selected. We

visualized this procedure for subjects using the image at the top right of Figure 6.

The three key parameters of this belief updating problem are: (i) the base rate r ∈
{10,30, 50,70, 90} (in percent), which we operationalized as the number of cards out

of 100 that had “bag A” or “bag B” written on them; (ii) the signal diagnosticity q ∈
{70,90}, which is given by the number of red balls in bag A and the number of blue

balls in bag B (we only implemented symmetric signal structures such that P(red|A) =
P(blue|B)); and (iii) the number of randomly drawn balls N. These parameters were

randomized across trials.
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Each subject completed six belief updating tasks. In each task, they were asked to

state a probabilistic belief (0-100) that bag A got selected. The computer automatically

and instantaneously showed the corresponding subjective probability that bag B got

selected. The decision screen contained information on the base rate, the signal diag-

nosticity, the number of drawn balls, and their color, see Figure 29 in Appendix C.1 for

a decision screenshot.

Financial incentives were implemented through the binarized scoring rule (Hossain

and Okui, 2013). Here, subjects had a chance of winning a prize of $10. The probability

of receiving the prize was given by π = 100− 0.04 ∗ (b − t)2, where b is the guess (in

%) and t the truth (0 or 100).

With probability 5 in 6, a belief updating task was implemented using the design

discussed above, and with probability 1 in 6 in a compound design. We return to the

compound data in Section 4.3 and focus on the baseline problems for now.

4.1.2 Measuring Cognitive Uncertainty

Our main measure of cognitive uncertainty in belief updating is very similar to the one

for choice under risk, both conceptually and implementation-wise. The instructions ex-

plained the concept of an “optimal guess.” This guess, we explained to subjects, uses the

laws of probability to compute a statistically correct statement of the probability that

either bag was drawn, based on Bayes’ rule. We highlighted that this optimal guess does

not rely on information that the subject does not have.

After subjects had indicated their probabilistic belief that either bag was drawn, the

next decision screen elicited cognitive uncertainty. Here, we asked subjects how certain

they are that their own guess equals the optimal guess for this task. Operationally, simi-

larly to the case of choice under risk, subjects navigated a slider to calibrate the statement

“I am certain that the optimal guess is between a and b.”, where a and b collapsed to

the subject’s own previously indicated guess in case the slider was moved to the very

right. For each of the 30 possible ticks that the slider was moved to the left, a decreased

and b increased by one unit. a was bounded from below by zero and b bounded from

above by 100. Again, we did not set a default: subjects had to click somewhere on the

slider in order to proceed. Figure 6 shows a screenshot of the elicitation screen. For ease

of interpretation, we again normalize this measure to be between zero and one.

Just like our measure of cognitive uncertainty in choice under risk, this one is not fi-

nancially incentivized. However, in the case of belief updating, it is possible to devise an

incentivized measure because here an objectively optimal response (the Bayesian pos-

terior) exists. Thus, we additionally elicited a second measure of cognitive uncertainty

from each participant: their willingness-to-pay (WTP) for replacing their own guess with
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Figure 6: Decision screen to elicit cognitive uncertainty in belief updating

the optimal (Bayesian) guess. To this effect, before subjects stated their own guess, they

received an endowment of $3 for each task and then indicated how much of this budget

they would at most be willing to pay to replace their guess. Subjects’ WTP was elicited

using a direct Becker-deGroot-Marschak elicitation mechanism. That is, we randomly

drew a price p ∼ U[0,3] and the guess was replaced iff p ≤ WTP. See Figure 30 in

Appendix C.1 for a screenshot.

It is worth reiterating that – just like in choice under risk – leading behavioral theo-

ries of biased belief updating predict no cognitive uncertainty: in tehse models, people

may neglect the base rate, exhibit conservatism or be non-Bayesian in other ways, yet

they never exhibit deliberate doubt about the rationality of their posterior belief. More-

over, as in choice under risk, our cognitive uncertainty measures only captures internal

uncertainty about the rational solution to the decision problem, rather than also exter-

nal uncertainty that is due to the stochasticity of the environment (here: which bag is

selected).
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To maximize statistical power, subjects’ WTP and the resulting replacement of their

own decision was only implemented in randomly selected 10% of all tasks. To avoid

concerns about hedging, this uncertainty was resolved before subjects stated their own

posterior guess. The timeline of each task was hence as follows: (i) observe game param-

eters; (ii) indicate WTP; (iii) find out whether own guess or Bayesian guess potentially

counts for payment; (iv) state own posterior guess; and (v) indicate cognitive uncer-

tainty range. The analysis below excludes those tasks in which a subject’s guess got

replaced by the optimal guess (3% of all data), though we have verified that virtually

identical results hold if these (non-incentivized) guesses are included.

Figures 31 and 32 in Appendix C.1 show histograms of the cognitive uncertainty

measure as well as subjects’ WTP. Both measures exhibit considerable variation. Average

cognitive uncertainty is 0.31, with a median of 0.33 and a standard deviation of 0.27.

85% of our data indicate strictly positive cognitive uncertainty. The average WTP is

$0.85 with a median of $0.50 and a standard deviation of 0.93.¹⁰

The two measures exhibit a correlation of ρ = 0.21. While not incentivized, we view

the cognitive uncertainty measure as our primary measure because (i) by its nature, and

as exemplified by this paper, it is easily portable across different experimental contexts

and decision situations; (ii) it is more fine-grained and exhibits more variation (26% of

all WTPs are zero, perhaps due to some loss aversion vis-a-vis giving up safe money);

and (iii) it is not confounded by risk aversion. Still, below we verify that all of our results

are robust to using the WTP measure.

4.1.3 Logistics and Pre-Registration

Based on a pre-registration, we recruited N = 700 completes for treatment Baseline Be-

liefs. After reading the instructions, participants completed a set of four comprehension

questions. Participants who answered one or more questions incorrectly were imme-

diately routed out of the experiment and do not count towards the number of com-

pletes. Similarly, subjects are excluded from the analysis if they failed an attention

check, as specified in the pre-registration. In total, 49% of all prospective participants

were screened out in the comprehension checks. Of those subjects that passed, 6% were

screened out based on the attention check.

In terms of timeline, subjects first completed the belief updating tasks discussed

above. Second, we elicited their survey expectations about various economic variables,

discussed in Section 5. Finally, participants completed a short demographic question-

¹⁰As a basic validity check, in a small sample of 161 updating tasks, we implemented a signal diagnos-
ticity of d = 100, so that the selected bag is deterministically revealed. In these tasks, cognitive uncertainty
essentially drops to zero: the distribution of both the cognitive uncertainty range and subjects’ WTP has
a median of zero, with means of 0.06 and 0.26.
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naire and an eight-item Raven matrices IQ test. One of the three parts of the experi-

ments (belief updating, survey expectations, or Raven test) was randomly selected for

payment.

Average earnings are $4.80 with a median completion time of 23 minutes. The ex-

periments were pre-registered under the same AEA RCT trial as discussed above. Screen-

shots of the instructions and control questions can be found in Appendix J.

4.2 Cognitive Uncertainty and Belief Updating

As in the analysis of choice under risk, we begin by excluding extreme outliers to keep

the analysis clean. As specified in the pre-registration, these are defined as subjective

probability ps and Bayesian posteriors po such that ps < 25∧po > 75 or ps > 75∧po < 25.

This is the case for 5% of all data. We report robustness checks using the full sample

below.

Figure 1 in the Introduction depicts the “belief weighting function” that we estimate

in our data: the inverse S-shaped relationship between average stated and Bayesian

posteriors that is also documented in Ambuehl and Li (2018). Figure 7 replicates this

figure separately for subjects above or below average cognitive uncertainty as defined by

our unincentivized cognitive uncertainty range. We see that, over the entire support of

Bayesian posteriors, stated posteriors are more compressed towards 50:50 for subjects

with higher cognitive uncertainty. Figure 36 in Appendix C.1 replicates this figure based

on the financially incentivized WTP measure, with very similar results.

Columns (1)–(3) of Table 4 provide a corresponding econometric analysis. Here,

we regress a subject’s stated posterior on (i) the Bayesian posterior; (ii) cognitive un-

certainty; and (iii) their interaction term. We find that subjects with higher cognitive

uncertainty respond considerably less to variation in the objectively correct answer: the

quantitative magnitude of the regression coefficients suggests that the slope of the re-

gression line between stated posterior and Bayesian posterior is 0.80 for subjects with

measured cognitive uncertainty of zero, yet only 0.40 for subjects who state maximal

cognitive uncertainty of one.

Grether regressions. A different way of analyzing our data is through the lens of so-

called Grether regressions, see Grether (1992), El-Gamal and Grether (1995), and Ben-

jamin (2019). This specification is derived by expressing Bayes’ rule in logarithmic form,

which implies a linear relationship between the posterior odds, the prior odds, and the

likelihood ratio:

ln
�

b(A|s)
b(B|s)

�

= β1ln
�

p(A)
p(B)

�

+ β2ln
�

p(s|A)
p(s|B)

�

, (16)
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Figure 7: Relationship between average stated and Bayesian posteriors, separately for subjects above /
below average cognitive uncertainty. The partition is done separately for each Bayesian posterior. Bayesian
posteriors are rounded to the nearest integer. We only show buckets with more than ten observations. The
figure is based on 3,187 beliefs of 700 subjects.

where b(·) denotes the stated posterior belief, A and B the two bags (states of the world),

s a signal history, the first fraction on the right-hand side the prior odds, and the second

term on the right-hand side the likelihood ratio. This formulation is attractive because

it allows an assessment of the sensitivity of people’s posteriors to variation in both the

base rate and the likelihood ratio in a simple linear regression framework. The standard

finding in the literature is that β̂1 < 1 and β̂2 < 1, even though Bayesian updating

implies coefficients of one. This evidence hence points to paramount underreaction (in-

sensitivity) to both the prior odds and the likelihood ratio (Benjamin, 2019).

Columns (4)–(7) of Table 4 implement these regressions using our data. As shown in

column (4), similarly to past work, we find regression coefficients that are substantially

smaller than one. In fact, our estimates are well within the range of results discussed in

Benjamin’s (2019) meta-study. However, as shown in columns (5)–(7), these insensitivi-

ties are significantly more pronounced for subjects with higher cognitive uncertainty: the

responsiveness to the likelihood ratio (prior odds) decreases by 36% (65%) for subjects

with maximal cognitive uncertainty relative to those with zero cognitive uncertainty.

These patterns suggest that (at least a part of) what this literature has identified as
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Table 4: Belief updating: Baseline tasks

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.69∗∗∗ 0.83∗∗∗ 0.83∗∗∗

(0.01) (0.01) (0.01)

Bayesian posterior × Cognitive uncertainty -0.53∗∗∗ -0.53∗∗∗

(0.04) (0.04)

Cognitive uncertainty 24.8∗∗∗ 24.6∗∗∗ -0.058 -0.075
(2.43) (2.44) (0.07) (0.07)

Log [Likelihood ratio] 0.41∗∗∗ 0.46∗∗∗ 0.46∗∗∗

(0.01) (0.02) (0.02)

Log [Prior odds] 0.42∗∗∗ 0.55∗∗∗ 0.55∗∗∗

(0.02) (0.03) (0.03)

Log [Likelihood ratio] × Cognitive uncertainty -0.27∗∗∗ -0.27∗∗∗

(0.05) (0.05)

Log [Prior odds] × Cognitive uncertainty -0.46∗∗∗ -0.46∗∗∗

(0.07) (0.07)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 3187 3187 3187 3104 3104 3104
R2 0.72 0.74 0.74 0.62 0.64 0.64

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

base rate neglect or conservatism are in fact not independent psychological phenomena

but instead generated by people shrinking their responses towards 50:50 due to cogni-

tive uncertainty. Table 14 in Appendix C.2 replicates Table 4 using the WTP instead of

the cognitive uncertainty measure, with very similar results.

4.3 Exogenous Manipulation of Cognitive Uncertainty

4.3.1 Experimental Design

To manipulate cognitive uncertainty, we again resort to turning “reduced” problems

into compound problems. Consider belief updating problems in which the base rate

is given by 50:50 and the signal diagnosticity by d ≡ P(A|red) = P(B|blue). In the

compound version of these problems, the base rate is again 50:50, yet the diagnosticity

is the outcome of a random integer draw, d ∼ U[d − 10, d + 10]. It is straightforward
to verify that these two problems give rise to the same mean Bayesian posterior. For

instance, if a red ball gets drawn, the posterior in the reduced version equals the signal

diagnosticity d because the prior is 50:50. In the compound version, the posterior is

equally likely to be d − 10, d − 9, . . . , d + 10, hence d in expectation.
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As in choice under risk, we hypothesize that subjects exhibit higher cognitive un-

certainty in compound than in reduced updating problems. Hence, by the logic of our

framework, we expect that participants’ beliefs in compound problems will be more

compressed towards 50:50.¹¹

As noted above, we implemented these compound belief updating problems as part

of treatment Baseline Beliefs, where each belief updating problem had a 1 in 6 chance

of being presented in a compound form. We collected 592 observations on compound

belief updating problems.

4.3.2 Results

Relative to reduced updating problems, compound signal diagnosticities increase stated

cognitive uncertainty by 33% and subjects’ WTP for the Bayesian guess by 43%, on

average. Figures 33 and 34 in Appendix C.1 show corresponding histograms. Thus, as

in choice under risk, the compound manipulation produces a strong “first stage.”

Figure 8 shows the results on stated beliefs. Here, we plot average stated posteriors

as a function of Bayesian posteriors, separately for baseline and compound updating

problems. Because in compound problems the base rate is always 50:50, the figure only

includes data from tasks with a 50:50 base rate also for the baseline updating problems.

We see that subjects’ posteriors are substantially more compressed towards 50:50 in

compound updating problems.

Columns (1) and (2) of Table 5 provide a corresponding regression analysis. The

regression coefficients suggest that the sensitivity of stated posteriors to the Bayesian

posterior is 0.72 in baseline updating problem, yet only 0.21 in compound updating

problems. To provide an alternative perspective on the data, we again resort to Grether

regressions, see columns (4)–(6). Because in compound updating problems the base rate

is fixed at 50:50, the only explanatory variable of interest here is the log likelihood ratio.

The results show that subjects always underreact to variations in the likelihood ratio (the

regression coefficient is smaller than one in both reduced and compound updating tasks),

yet this underreaction is substantially more pronounced under compound lotteries.

4.4 Exogenous Manipulation of the Mental Default

4.4.1 Experimental Design

In a final step of the analysis of belief updating, we exogenously manipulate the loca-

tion of the mental default. We again employ a partition manipulation and increase the

¹¹In contemporaneous work, Liang (2019) identifies underreaction under compound relative to re-
duced updating problems. This is in line with our work, but he does not measure cognitive uncertainty.
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Figure 8: Stated average posteriors as a function of Bayesian posteriors, separately for reduced and com-
pound belief updating problems. The plot shows averages and corresponding standard error bars. To allow
for a valid comparison between baseline and compound updating problems, the sample is restricted to
updating tasks in which the base rate is 50:50. Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure is based on 1,947 beliefs of 691 subjects.

number of states to ten. Under the maintained assumption that the default is influenced

by an ignorance prior, our framework predicts that the entire distribution of posterior

beliefs shifts downwards.

Recall that in treatment Baseline Beliefs, an example updating problem is that the

base rates for bags A and B are 70% and 30%, and the signal diagnosticity (number

of red balls in bag A and number of blue balls in bag B) 70%. Now, in treatment Low

Default Beliefs, we split the probability mass for bag B up into nine different bags. That

is, there are now ten bags, labeled A through J. In the specific example above, the base

rate for A would again be 70%, the one for B through I 3% each and the one for J 6%.

Again, bag A would contain 70 red and 30 balls, and all bags B through J 30 red and 70

blue balls. That is, these bags have identical ball compositions.

Note that, regardless of what the actual draws of balls are, the Bayesian posterior

for bag A having been selected is identical in the baseline version and the version with

10 bags. The reason is that under the state space {A; not A} the base rates and signal

diagnosticities are identical. Thus, in treatment LowDefault Beliefs, we asked participants
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Table 5: Belief updating: Reduced versus compound signal diagnosticities

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.57∗∗∗ 0.72∗∗∗ 0.72∗∗∗

(0.01) (0.02) (0.02)

Bayesian posterior × 1 if compound problem -0.51∗∗∗ -0.51∗∗∗

(0.03) (0.03)

1 if compound problem 26.4∗∗∗ 26.5∗∗∗ 0.0058 0.0091
(1.75) (1.74) (0.05) (0.05)

Log [Likelihood ratio] 0.37∗∗∗ 0.45∗∗∗ 0.45∗∗∗

(0.01) (0.02) (0.02)

Log [Likelihood ratio] × 1 if compound problem -0.28∗∗∗ -0.27∗∗∗

(0.02) (0.02)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 1947 1947 1947 1890 1890 1890
R2 0.51 0.60 0.60 0.47 0.53 0.53

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

to indicate their belief that bag A got selected, and the computer automatically showed

the corresponding composite probability for one of the other bags having been selected.

300 subjects participated in treatment Low Default Beliefs, which was randomized

within the same experimental sessions as treatment Baseline Beliefs. All procedures other

than the ones described above were identical to the ones in Baseline Beliefs.

4.4.2 Results

Stated cognitive uncertainty is almost identical across conditions Baseline Beliefs and

Low Default Beliefs, p = 0.85. This corroborates our implicit assumption that the exper-

imental manipulation of increasing the number of bags only manipulates the mental

default but not cognitive uncertainty.

Figure 9 shows average stated posteriors as a function of Bayesian posteriors, sepa-

rately for treatments Baseline Beliefs and Low Default Beliefs. The results show that the

entire distribution of subjects’ beliefs is shifted down towards zero, consistent with our

hypothesis that a larger state space induces shrinking towards a lower mental default.

Table 6 provides a corresponding regression analysis that confirms these visual patterns.
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Figure 9: Stated average posteriors as a function of Bayesian posteriors, separately for treatments Baseline
Beliefs and Low Default Beliefs. Bayesian posteriors are rounded to the nearest integer. We only show
buckets with more than ten observations. The figure is based on 5,372 beliefs of 1,000 subjects.

5 Survey Expectations

5.1 Experimental Design

5.1.1 Measuring Beliefs

Miscalibrated survey expectations about economic variables have been documented in a

wide range of contexts, including beliefs about the macroeconomy, the stock market, or

personal life experiences (Hurd, 2009; Manski, 2004). A common theme is the presence

of 50:50 answers (Fischhoff and Bruine De Bruin, 1999).¹²

Survey expectations are different from the contexts discussed above in that respon-

dents are not confronted with all problem parameters that they need to provide a well-

informed response. Instead, people may have limited information or imperfect memory

about the value of (past or future) economic variables. However, our concept of cognitive

uncertainty nevertheless applies here: people oftentimes do not know the answer to a

¹²Drerup et al. (2017) suggest that the low explanatory power of survey expectations for economic
behavior might reflect that some people do not even hold meaningful belief distributions, which is remi-
niscent of cognitive uncertainty.
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Table 6: Belief updating: Low versus high mental default

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

0 if Baseline, 1 if Low Default -3.75∗∗∗ -4.12∗∗∗ -4.26∗∗∗ -0.25∗∗∗ -0.27∗∗∗ -0.28∗∗∗

(0.71) (0.69) (0.74) (0.05) (0.04) (0.05)

Bayesian posterior 0.64∗∗∗ 0.78∗∗∗ 0.78∗∗∗

(0.01) (0.01) (0.01)

Bayesian posterior × Cognitive uncertainty -0.54∗∗∗ -0.54∗∗∗

(0.03) (0.03)

Cognitive uncertainty 24.2∗∗∗ 24.0∗∗∗ -0.057 -0.062
(1.94) (1.96) (0.06) (0.06)

Log [Likelihood ratio] 0.36∗∗∗ 0.43∗∗∗ 0.43∗∗∗

(0.01) (0.01) (0.01)

Log [Prior odds] 0.48∗∗∗ 0.61∗∗∗ 0.61∗∗∗

(0.02) (0.03) (0.03)

Log [Likelihood ratio] × Cognitive uncertainty -0.27∗∗∗ -0.27∗∗∗

(0.03) (0.03)

Log [Prior odds] × Cognitive uncertainty -0.50∗∗∗ -0.50∗∗∗

(0.06) (0.06)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 5372 5372 5372 5226 5226 5226
R2 0.63 0.65 0.65 0.57 0.59 0.59

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

probabilistic question, which may induce them to shrink their reported beliefs to 50:50.

To illustrate the link between cognitive uncertainty and survey expectations, we elicit

beliefs about three variables that have attracted attention in the literature: the structure

of the national income distribution, inflation rates, and the development of the stock

market.

To be able to financially incentivize participants without going through the logistical

hassle of waiting for future variables to have realized, we elicited beliefs about contem-

poraneous or past variables. Each participant was asked three questions that elicited

their beliefs about some specific aspect of the income distribution, stock returns, and

the inflation rate. The question about the income distribution reads as:

Assume that in 2018, we randomly picked a household in the United States.

What do you think is the probability that this household earned less than USD

y in 2018, before taxes and deductions?

Beliefs about the performance of the stock market were elicited as:
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The S&P 500 is an American stock market index that includes 500 of the

largest companies based in the United States. We randomly picked a year X

between 1980 and 2018. Imagine that someone invested $100 into the S&P

500 at the beginning of year X. What do you think is the probability that, at

the end of that same year, the value of the investment was less than $y?

(In other words, what do you think is the probability that the S&P 500 [ lost more

than z% of its value / gained less than z%, or decreased in value]?

Finally, beliefs about the inflation rate were measured as:

The inflation rate in the United States measures the percentage change in

the consumer price index, which reflects the price level of a comprehensive set of

consumer goods and services purchased by households. The inflation rate in a

given time period captures how much more or less expensive goods and services

have become on average. We randomly picked a year X between 1980 and 2018.

Imagine that, at the beginning of year X, the set of products that is used to

compute the inflation rate cost $100. What do you think is the probability

that, at the end of that same year, the same set of products cost less than $y?

(In other words, what do you think is the probability that the inflation rate in year X

was lower than z%?)

The order of topics was randomized across participants. Across participants, y (and

hence z) varies randomly such that the true probability ranges fom 0% to 100%. Subjects’

beliefs were financially incentivized using the same binarized scoring rule as discussed

in Section 4, except that the prize a subject could win was $2. One of the three questions

was randomly selected for payment.

5.1.2 Measuring Cognitive Uncertainty

To measure cognitive uncertainty, we again make use of the same elicitation tool as

before. That is, subjects were asked how certain they are that their probabilistic guess is

correct. Subjects used a slider to calibrate the statement: “I am certain that the actual

probability that [...] is between a and b.”, where a and b collapsed to the subject’s own

previously indicated guess if the slider was moved to the very right. For each of the 30

possible ticks that the slider was moved to the left, a decreased and b increased by one

probability point. a was bounded from below by zero and b bounded from above by 100.

Figure 44 in Appendix D.1 shows a screenshot of the elicitation screen.

Figures 45–47 in Appendix D.1 show histograms of cognitive uncertainty for each

question type. Overall, cognitive uncertainty is substantial in these contexts, in particu-

lar regarding the stock market and inflation rates.
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5.1.3 Logistics and Pre-Registration

The elicitation of survey expectations took place with the same set of subjects that com-

pleted the choice under risk and belief updating tasks discussed in Sections 3 and 4.

Thus, the total sample size is N = 2,000. As explained above, one of the three parts

of the experiments (choice under risk or belief updating, survey expectations, or Raven

matrices test) was randomly selected for payment.

In addition to these “backward-looking” beliefs, in separate pre-registered robust-

ness experiments with N = 400 participants, we also elicit expectations about future

realizations of inflation rates, stock market returns and the income distribution. These

questions are conceptually more appropriate in that they ask about the future, but they

are not financially incentivized. The results in these robustness experiments are almost

identical to the ones that are reported here; we summarize these results in Appendix E.

5.2 Results

As in Section 4, and as pre-registered, we begin by excluding extreme outliers, defined

as ps < 25∧ po > 75 or ps > 75∧ po < 25, where ps is the subjective probability and po

the objective one. This results in the exclusion of 5% of all data.

Figure 10 shows average beliefs as a function of objective probabilities, separately

for subjects with above and below average cognitive uncertainty. Again, we see that

these “survey belief weighting functions” exhibit an inverse S-shape, yet this pattern is

substantially more pronounced for subjects who indicate higher cognitive uncertainty.

Table 21 in Appendix D.2 provides a corresponding non-parametric econometric analysis

that confirms the statistical significance of this pattern.

6 Parametric Estimations

Estimating the weighting functions. To supplement the non-parametric estimations

for Sections 3–5, we now turn to estimating the model in Section 2. The most straightfor-

ward way to do so is to estimate Gonzalez and Wu’s two-parameter weighting function

that we endogenized in equation (15), separately for decisions that are associated with

high and low cognitive uncertainty.

As called for by our framework, we estimate this function not just for choice under

uncertainty, but also for belief updating and survey expectations. In doing so, for sim-

plicity, we again abstract away from taste-based risk or ambiguity aversion. While our

data strongly suggest the presence of risk aversion, this procedure has the advantage

that we estimate exactly the same function across decision domains, hence allowing for
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Figure 10: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty. The partition is done separately for each probability bucket. In the top
panel, the question asks for the probability that a randomly selected U.S. household earns less than $x
(N = 1,974). In themiddle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x% (N = 1,887). In the bottom panel, the question asks for the probability
that in a randomly selected year the inflation rate was less than x% (N = 1,842).
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Table 7: Estimates of equation (15) across decision domains

Treatment / group Sensitivity λ̂ Elevation δ̂

Baseline Choice under risk: all observations
0.47 0.68
(0.02) (0.02)

Baseline Choice under risk: high CU observations
0.33 0.72
(0.02) (0.02)

Baseline Choice under risk: low CU observations
0.54 0.67
(0.02) (0.02)

Choice under ambiguity: all observations
0.36 0.69
(0.02) (0.03)

Choice under ambiguity: high CU observations
0.25 0.70
(0.03) (0.03)

Choice under ambiguity: low CU observations
0.43 0.67
(0.03) (0.04)

Baseline Belief updating: all observations
0.50 1.00
(0.01) (0.02)

Baseline Belief updating: high CU observations
0.38 0.99
(0.01) (0.02)

Baseline Belief updating: low CU observations
0.60 1.02
(0.02) (0.02)

Survey expectations pooled: all observations
0.42 0.97
(0.01) (0.02)

Survey expectations pooled: high CU observations
0.24 0.92
(0.01) (0.02)

Survey expectations pooled: low CU observations
0.59 1.03
(0.01) (0.03)

Notes. Estimates of equation (15), standard errors (clustered at subject level) reported in
parentheses. CU = cognitive uncertainty (split at average). The samples include the same
observations as in all baseline analyses in Sections 3–5.

a comparison of parameter estimates across domains.

Formally, for each decision domain, we estimate the parameters λ̂ and δ̂ by mini-

mizing the sum of squared residuals for the non-linear equation (15). In choice under

risk and ambiguity, the dependent variable is a subject’s normalized certainty equiva-

lent, while in belief updating and survey expectations it is a participant’s stated belief.

Table 7 summarizes the estimates for the baseline conditions in each set of experiments.

In choice under risk, pooled across all subjects, we estimate a sensitivity parameter

of λ̂ = 0.47 and an elevation parameter of δ̂ = 0.68. These estimates are close to the

estimates of λ̂ = 0.44 and δ̂ = 0.77 in the classic by Gonzalez and Wu (1999), which

again suggests that our sample and results are similar to previous findings. Comparing

42



subjects with above and below average cognitive uncertainty, we estimate that the sen-

sitivity parameter λ is 58% higher for low than for high cognitive uncertainty subjects.

We find similar patterns for choice under ambiguity, though of course a lower estimated

sensitivity parameter as per the discussion in Section 3.3.

For belief updating, we again find that λ̂ is significantly lower for subjects with above-

average cognitive uncertainty (λ̂ = 0.38) than for those with below-average cognitive

uncertainty (λ̂ = 0.60). Furthermore, the estimate of the insensitivity parameter λ is

strikingly similar to that estimated in choice under risk.

Finally, for the survey expectations data, we again estimate fairly similar parameter

values. In these analyses, the data are pooled across the three types of expectations.

Table 22 in Appendix D.2 reports the estimates for inflation rates, stock market returns

and the national income distribution separately.

In summary, the structural estimations deliver sensible parameter estimates that vary

in meaningful ways with cognitive uncertainty. Moreover, even though the underlying

decision domains and experimental paradigms are very different, we always estimate

fairly similar parameter values, in particular regarding the sensitivity parameter λ.

Decision-level analysis. The preceding analysis focused on estimating population-level

parameters. Structurally estimating the Gonzalez-Wu weighting functions at the level of

individual subjects is infeasible given the small number of decisions in our experiments.

However, we can make progress even at the level of individual decisions by restricting

attention to the sensitivity parameter λ. In particular, recall that

q(a) = λq(s) + (1−λ)q(pd),

where q(·) denotes the logit function. If we now explicitly impose that the mental default

is given by 50% (the ignorance prior) and noting that E[s] = x , one can back out the

sensitivity parameter λ that is implied in each decision using a (very) heuristic back-of-

the-envelope calculation:

λ̂≈
q(a)− q(.5)
q(x)− q(.5)

=
q(a)
q(x)

, (17)

where q(a) is a participant’s logit response (belief or normalized certainty equivalent)

and q(x) the logit objective probability in the respective decision domain.

Our model predicts that this sensitivity parameter λ is decreasing in cognitive un-

certainty, see equation (9). Figure 11 provides binscatters of the implied λ̂ against mea-

sured cognitive uncertainty. Despite the fact that our estimates of λ are very heuristic

and ignore any form of decision noise or non-linear utility, we find the expected relation-

ship: the implied λ are always negatively correlated with stated cognitive uncertainty.
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Figure 11: Correlations between implied decision-level sensitivity parameter (shrinkage factor) λ and
decision-level cognitive uncertainty. The estimate of λ is computed using equation (17). The plots rep-
resent binscatters. The top left panel includes decisions from treatment Baseline Risk and the top right
panel decisions from the treatment with ambiguous lotteries. The bottom left panel includes beliefs from
treatment Baseline Beliefs and the bottom right panel all survey expectations. In each panel, we exclude
observations with implied λ̂ < −1 or λ̂ > 2, which roughly corresponds to the 1st and 99th percentiles
across decision domains.

The correlations are ρ = −0.18 for choice under risk, ρ = −0.24 for choice under am-

biguity, ρ = −0.19 for belief updating, and ρ = −0.33 for survey expectations, all of

which are statistically significant at the 1% level.

7 Heterogeneity in Cognitive Uncertainty

In the final part of the paper, we shed some more light on the variation in cognitive

uncertainty. From an ex ante perspective, there are two plausible accounts. First, it is

conceivable that individuals exhibit reasonably stable cognitive uncertainty “types,” so

that a large part of the variation in cognitive uncertainty is between rather than within

subjects. Second, it is conceivable that cognitive uncertainty varies dramatically across

tasks, with little evidence for consistent types at the individual level.
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To decompose cognitive uncertainty into between- and within-subject variation, we

separately look at the choice under risk, belief updating, and survey expectations data

(we exclude choice under ambiguity here because we only have 200 subjects, much

less than for the other experiments). Within each dataset, we regress the collection of

cognitive uncertainty statements on subject fixed effects.¹³ We find that the variance

explained is 44% in choice under risk, 53% in belief updating, and 60% in survey expec-

tations. It is worth pointing out that these numbers represent fairly weak lower bounds

for the fraction of the true variation that is due to between-subject variation, as all mea-

surement error gets soaked up by the residual and hence by “within-subject variation.”

An additional way to investigate the existence of types is to look at subjects’ consis-

tency in cognitive uncertainty across task domains. Recall that each subject completed

the survey expectations tasks and additionally either the risky choice or the belief updat-

ing experiments. We now compute the correlation between average subject-level cog-

nitive uncertainty in choice under risk, belief updating and survey expectations for all

subjects in the respective baseline tasks. The correlation between average cognitive un-

certainty in belief updating and average cognitive uncertainty in survey expectations

is ρ = 0.57. The correlation between cognitive uncertainty in risky choice and survey

expectations is ρ = 0.35. Thus, subjects exhibit a reasonable degree of consistency even

across different types of experiments. We conclude from these analyses that cognitive

uncertainty varies in meaningful and reasonable stable ways across participants.

Next, we investigate correlates of this variation in cognitive uncertainty across indi-

viduals. For this purpose, we relate subjects’ cognitive uncertainty in each of the three

decision domains to a vector of individual characteristics: the score on an eight-item

Raven matrices IQ test as a proxy for cognitive skills, educational attaiment, response

times as a proxy for cognitive effort, gender, and age. All of these correlational analy-

ses except for the one with response times were pre-registered. Figure 12 summarizes

the results, separately for each of the types of experiments reported above. The figure

shows the results of different regressions, each of which relates average (subject-level)

cognitive uncertainty to a different subject-level variable, controlling for treatment fixed

effects. The figure reports standardized beta coefficients, so that the y-axis shows the

percent change in cognitive uncertainty that is associated with a 1% increase in the ex-

planatory variable of interest. While the results are mixed overall, the strongest andmost

consistent correlations reflect that women, people who take less time to complete the

experiment, and people with lower IQ test scores report higher cognitive uncertainty.

This correlational evidence suggests that the availability of cognitive resources – cog-

nitive skills and cognitive effort – may reduce cognitive uncertainty. This raises the ques-

tion whether an increase in financial incentives would increase effort and hence reduce

¹³Treatment fixed effects always explain less than 1% of the variation in the data.
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Figure 12: Correlates of average cognitive uncertainty. The figure shows the standardized beta coefficients
of regressions of a subject’s average cognitive uncertainty on different variables, controlling for treatment
fixed effects. The values on the y-axis show the percent change in cognitive uncertainty that is associated
with a 1% increase in the explanatory variable of interest. The beta coefficients are estimated conditional
on treatment fixed effects. Response times are computed as total completion time within the relevant
part of the experiment. N = 1,000 observations for choice under risk and belief updating and N = 2, 000
observations for survey expectations.

cognitive uncertainty. To test this, we ran a final set of experiments on choice under

risk (N = 150) and belief updating (N = 150). These experiments followed the same

procedure as outlined in Sections 3 and 4, except that across the six tasks the probabil-

ity of being payout-relevant varied within subjects. For five tasks, the probability that a

task would determine payment was 1% and for one task it was 95%. In both sets of ex-

periments, we find that subjects’ response times are about 20–30% higher under higher

incentives. Cognitive uncertainty, on the other hand, either remains unaffected (choice

under risk) or decreases only marginally (belief updating). See Appendix G for details.

8 Robustness Checks

Additional pre-registered analyses. The pre-registration specified that we will con-

duct our analyses on three different samples: (i) excluding extreme outliers, as done

thus far; (ii) using all data; and (iii) excluding “speeders,” defined as subjects in the

bottom decile of the response time distribution. Appendices B.2 and B.3 reproduce the

analysis of choice under risk on the full sample and excluding speeders. Appendices C.3

and C.4 provide analogous analyses for belief updating and Appendices D.3 and D.4 for
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survey expectations. The results are always very similar. Two minor exceptions are that

(i) the treatment difference between Low Default Risk and High Default Risk is statisti-

cally significant also for losses when we exclude speeders (the p-value was p = 0.15 in

the baseline analysis above) and (ii) the interaction between cognitive uncertainty and

payout probability in treatment Baseline Risk is marginally not significant for losses.

Censoring. In all our experiments, the use of a bounded response scale can lead to

censoring of both the choice or belief that a subject states and the range of cognitive un-

certainty indicated using the slider. This may affect the observed relationship between

actions and cognitive uncertainty in two ways. First, choices and beliefs may be influ-

enced by boundary effects. Assume, for example, that a subject in a belief updating task

wants to state a true posterior belief of 95%. However, some form of decision noise such

as trembling when submitting a response leads her to instead indicate a posterior belief

that is uniformly drawn from within +/− 10% of her true posterior, i.e., she would end

up with any posterior between 85% and 105% with equal probability. Since it is not pos-

sible to state a posterior greater than 100%, she will state 100% whenever she would

like to state something greater than 100%, leading to an observed posterior that is lower

than 95% in expectation. Importantly, this distortion in observed beliefs away from the

boundary will be greater for someone with greater decision noise. If subjects’ cognitive

uncertainty statements then accurately reflect the amount of trembling, i.e., the length

of the trembling interval in this case, this form of censoring will mechanically generate

a positive relationship between the extent of cognitive uncertainty and shrinkage. We

find that the actual amount of bunching at the upper and lower bounds of the response

scales, however, is small: it is 4.28% of observations in choice under risk, 2.6% of obser-

vations in belief updating, and 6.61% in survey expectations. In Appendix I.1, we show

that the observed relationship between cognitive uncertainty and choices or beliefs is

virtually unaffected when excluding these observations.

Second, censoring might occur when choosing an interval on the response scale to

indicate cognitive uncertainty. While the interval increases symmetrically when moving

the slider to the left, it increases asymmetrically once it hits one of the response scale

boundaries. One may think that subjects stop moving the slider to the left once they hit

a boundary. This implies that measured cognitive uncertainty tends to be smaller for re-

sponses that are closer to a boundary, again leading to a mechanic relationship between

observed cognitive uncertainty and the amount of shrinkage. In our data, we find that

23.25% of cognitive uncertainty intervals in choice under risk, 25.93% in belief updat-

ing and 16.66% in survey expectations are censored at one of the boundaries. However,

as we exclude those observations, the relationship between cognitive uncertainty and

choices or beliefs persists in the same way as before (see Appendix I.2), showing that
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our findings are not an artifact of censoring due to bounded response scales.

9 Conclusion

This paper has formally defined and introduced an experimental measurement of cogni-

tive uncertainty: people’s subjective uncertainty about the rational solution to a decision

problem. As we have documented using belief updating and survey expectations data,

such cognitive uncertainty does not just reflect preference uncertainty but captures a

more general uncertainty about how to behave optimally.

Based on a simple formal framework that draws from existing theories, we have ar-

gued that cognitive uncertainty induces people to shrink probabilities towards a simple

ignorance prior. This idea both reconciles existing evidence and makes new predictions.

To argue our case, the paper has brought together decision tasks on choice under risk

and ambiguity, belief updating, and survey expectations, all of which generate a stylized

pattern of inverse S-shaped response functions. Across all of these perhaps seemingly-

unrelated decision domains, participants with higher cognitive uncertainty exhibit more

strongly compressed response functions. Moreover, in an attempt to provide causal ev-

idence for our framework, we have exogenously manipulated both the magnitude of

cognitive uncertainty and the location of the ignorance prior, and have identified pre-

dictable changes in subjects’ beliefs and behaviors in response to these treatments.

We believe that the concept of cognitive uncertainty is likely to be important also

outside of the domains that we study in this paper. By providing a simple and portable

experimental tool that allows to measure cognitive uncertainty in a quantitative fashion,

our paper opens up the possibility for future experimental work on the relationship

between cognitive uncertainty and economic decision-making.
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ONLINE APPENDIX

A Model Extensions and Illustrations

A.1 Nonlinear Version

We now allow the rational action to be a nonlinear function of x , so that

ar = A(x). (18)

We make the simplifying assumptions that, first, the agent still chooses an action based

on the posterior expectation about x , as has been done in prior literature (Gabaix, 2019),

a(s) = A(E [x |s]), (19)

second, that the function A is strictly monotone, such that it can again be identified from

the median action ae,

ae(x) =Median(a(s)|x) = A(λx + (1−λ)x d), (20)

and third, that x d = 0, which is merely a notational simplification. In our empirical ap-

plications we will slightly deviate from this and elicit a different type of interval that is

wider than the interquartile range, but we here stick to the notation of cognitive uncer-

tainty as denoting one perceived standard deviation around the action for simplicity.

We define cognitive uncertainty analogously to (8) as the agent’s perceived uncer-

tainty about his rational action,

σCU(x) =

�

�

�

�

A
�

λx +
1
2

p

1−λσx

�

− A
�

λx −
1
2

p

1−λσx

�

�

�

�

�

. (21)

At the median, using ae(x) = A(λx) yields

σCU(x) =

�

�

�

�

ae

�

x +
1
2

p
1−λ
λ

σx

�

− ae

�

x −
1
2

p
1−λ
λ

σx

��

�

�

�

. (22)

A Taylor expansion of (22) gives

σCU =
�

�ae′(x)
�

�

p
1−λ
λ

σx . (23)

which is the nonlinear equivalent of equation (8):
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λ
p

1−λ
=
|ae′(x)|σx

σCU
. (24)

A.2 Illustration of Model Predictions
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Figure 13: Illustration of model predictions 1 and 2
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Figure 14: Illustration of model prediction 3
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B Additional Details and Analyses for Choice under Risk

Experiments

B.1 Additional Figures

Figure 15: Decision screen to elicit certainty equivalents for lotteries
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Figure 16: Histogram of cognitive uncertainty in baseline choice under risk tasks
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Figure 17: Histograms of cognitive uncertainty in choice under risk tasks, separately for reduced and
compound lotteries
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Figure 18: Histograms of cognitive uncertainty in choice under risk tasks, separately for reduced and
ambiguous lotteries
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Figure 19: Histograms of cognitive uncertainty in choice under risk tasks, separately for treatments High
Default Risk and Low Default Risk.
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Figure 20: Estimated probability weighting functions across treatments and groups of subjects.

B.2 Results with Full Sample
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Figure 21: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty (full sample). The partition is done separately for each probability × gains / losses bucket. The
plot shows averages and corresponding standard error bars. Normalized certainty equivalents (implied
probability weights) are computed as certainty equivalent divided by payout probability. The figure is
based on 2,601 certainty equivalents of 700 subjects.

Table 8: Insensitivity to probability and cognitive uncertainty (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.74∗∗∗ 0.73∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.63∗∗∗ 0.63∗∗∗

(0.03) (0.03) (0.04) (0.04) (0.03) (0.03)

Probability of payout × Cognitive uncertainty -0.68∗∗∗ -0.68∗∗∗ -0.29∗∗∗ -0.28∗∗∗ -0.49∗∗∗ -0.49∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.07) (0.07)

Cognitive uncertainty 25.1∗∗∗ 25.3∗∗∗ 28.5∗∗∗ 27.7∗∗∗ 27.6∗∗∗ 28.0∗∗∗

(6.17) (6.17) (5.68) (5.75) (4.35) (4.37)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1286 1286 1315 1315 2601 2601
R2 0.49 0.50 0.28 0.29 0.36 0.36

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 22: Probability weighting function separately for reduced and compound lotteries (full sample).
The plot shows averages and corresponding standard error bars. Normalized certainty equivalents (im-
plied probability weights) are computed as certainty equivalent divided by payout probability. The figure
is based on 3,905 certainty equivalents of 700 subjects.

-100

-50

0

50

100

N
or

m
al

iz
ed

 c
er

ta
in

ty
 e

qu
iv

al
en

t

0 20 40 60 80 100
Probability

Reduced lottery Ambiguous lottery
±1 std. error of mean Risk-neutral prediction

Figure 23: “Probability” weighting function separately for reduced and ambiguous lotteries (full sample).
The plot shows averages and corresponding standard error bars. Normalized certainty equivalents (im-
plied probability weights) are computed as certainty equivalent divided by payout probability. The figure
is based on 1,800 certainty equivalents of 300 subjects.
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Table 9: Choice under risk: Baseline versus compound lotteries (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.59∗∗∗ 0.70∗∗∗ 0.45∗∗∗ 0.50∗∗∗ 0.52∗∗∗ 0.61∗∗∗

(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

Probability of payout × 1 if compound lottery -0.34∗∗∗ -0.31∗∗∗ -0.25∗∗∗ -0.23∗∗∗ -0.29∗∗∗ -0.27∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.03) (0.03)

Probability of payout × Cognitive uncertainty -0.49∗∗∗ -0.24∗∗∗ -0.38∗∗∗

(0.08) (0.08) (0.06)

1 if compound lottery 13.6∗∗∗ 12.6∗∗∗ 12.3∗∗∗ 10.5∗∗∗ 12.9∗∗∗ 11.7∗∗∗

(2.09) (2.08) (1.98) (1.99) (1.46) (1.44)

Cognitive uncertainty 19.3∗∗∗ 24.8∗∗∗ 22.9∗∗∗

(4.87) (4.67) (3.70)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1958 1958 1947 1947 3905 3905
R2 0.37 0.40 0.21 0.24 0.28 0.30

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from the baseline and compound gambles, where for
comparability the set of baseline gambles is restricted to gambles with payout probabilities of 10%, 25%, 50%,
75%, and 90%, see Figure 4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 10: Choice under risk: Treatments Low Default and High Default (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

0 if High Default, 1 if Low Default -12.1∗∗∗ -11.5∗∗∗ -2.96 -2.63 -7.53∗∗∗ -7.05∗∗∗

(1.93) (1.98) (2.24) (2.22) (1.58) (1.58)

Probability of payout 0.59∗∗∗ 0.60∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.57∗∗∗ 0.57∗∗∗

(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)

Probability of payout × Cognitive uncertainty -0.53∗∗∗ -0.53∗∗∗ -0.38∗∗∗ -0.39∗∗∗ -0.43∗∗∗ -0.45∗∗∗

(0.12) (0.12) (0.13) (0.14) (0.09) (0.10)

Cognitive uncertainty 23.2∗∗∗ 23.1∗∗∗ 39.7∗∗∗ 39.6∗∗∗ 31.2∗∗∗ 31.1∗∗∗

(6.00) (6.01) (7.64) (7.90) (5.14) (5.26)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 900 900 900 900 1800 1800
R2 0.34 0.35 0.25 0.27 0.27 0.29

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from treatments Low Default andHigh Default. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 24: Probability weighting function separately for treatments High Default Risk and Low Default
Risk (full sample). The plot shows averages and corresponding standard error bars. Normalized certainty
equivalents (implied probability weights) are computed as certainty equivalent divided by payout proba-
bility. The figure is based on 1,800 certainty equivalents of 700 subjects.

B.3 Results excluding Speeders

Table 11: Insensitivity to probability and cognitive uncertainty (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.74∗∗∗ 0.74∗∗∗ 0.52∗∗∗ 0.51∗∗∗ 0.64∗∗∗ 0.64∗∗∗

(0.03) (0.03) (0.04) (0.04) (0.03) (0.03)

Probability of payout × Cognitive uncertainty -0.70∗∗∗ -0.70∗∗∗ -0.32∗∗∗ -0.30∗∗∗ -0.52∗∗∗ -0.51∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.08) (0.08)

Cognitive uncertainty 26.6∗∗∗ 27.1∗∗∗ 29.3∗∗∗ 28.3∗∗∗ 28.8∗∗∗ 29.1∗∗∗

(6.61) (6.55) (5.84) (5.90) (4.57) (4.58)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1162 1162 1187 1187 2349 2349
R2 0.49 0.50 0.28 0.29 0.36 0.37

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 25: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty (excl. speeders). The partition is done separately for each probability × gains / losses bucket. The
plot shows averages and corresponding standard error bars. Normalized certainty equivalents (implied
probability weights) are computed as certainty equivalent divided by payout probability. The figure is
based on 2,349 certainty equivalents of 630 subjects.
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Figure 26: Probability weighting function separately for reduced and compound lotteries (excl. speeders).
The plot shows averages and corresponding standard error bars. Normalized certainty equivalents (im-
plied probability weights) are computed as certainty equivalent divided by payout probability. The figure
is based on 3,519 certainty equivalents of 700 subjects.
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Figure 27: “Probability” weighting function separately for reduced and ambiguous lotteries (excl. speed-
ers). The plot shows averages and corresponding standard error bars. Normalized certainty equivalents
(implied probability weights) are computed as certainty equivalent divided by payout probability. The
figure is based on 1,608 certainty equivalents of 268 subjects.

Table 12: Choice under risk: Baseline versus compound lotteries (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.59∗∗∗ 0.70∗∗∗ 0.46∗∗∗ 0.51∗∗∗ 0.53∗∗∗ 0.61∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.02) (0.02)

Probability of payout × 1 if compound lottery -0.32∗∗∗ -0.29∗∗∗ -0.23∗∗∗ -0.21∗∗∗ -0.27∗∗∗ -0.25∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.03) (0.03)

Probability of payout × Cognitive uncertainty -0.49∗∗∗ -0.26∗∗∗ -0.39∗∗∗

(0.08) (0.08) (0.06)

1 if compound lottery 12.5∗∗∗ 11.5∗∗∗ 11.6∗∗∗ 9.55∗∗∗ 12.0∗∗∗ 10.7∗∗∗

(2.18) (2.18) (2.05) (2.06) (1.52) (1.50)

Cognitive uncertainty 19.9∗∗∗ 25.7∗∗∗ 23.6∗∗∗

(5.23) (4.92) (3.95)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1766 1766 1753 1753 3519 3519
R2 0.38 0.40 0.22 0.25 0.29 0.30

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from the baseline and compound gambles, where for
comparability the set of baseline gambles is restricted to gambles with payout probabilities of 10%, 25%, 50%,
75%, and 90%, see Figure 4. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 28: Probability weighting function separately for treatments High Default Risk and Low Default
Risk (excl. speeders). The plot shows averages and corresponding standard error bars. Normalized cer-
tainty equivalents (implied probability weights) are computed as certainty equivalent divided by payout
probability. The figure is based on 1,620 certainty equivalents of 270 subjects.

Table 13: Choice under risk: Treatments Low Default and High Default (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

0 if High Default, 1 if Low Default -12.5∗∗∗ -12.1∗∗∗ -4.86∗∗ -4.53∗ -8.67∗∗∗ -8.24∗∗∗

(2.06) (2.12) (2.35) (2.35) (1.68) (1.69)

Probability of payout 0.59∗∗∗ 0.59∗∗∗ 0.54∗∗∗ 0.55∗∗∗ 0.57∗∗∗ 0.57∗∗∗

(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)

Probability of payout × Cognitive uncertainty -0.54∗∗∗ -0.53∗∗∗ -0.36∗∗∗ -0.38∗∗∗ -0.44∗∗∗ -0.45∗∗∗

(0.13) (0.13) (0.14) (0.14) (0.10) (0.10)

Cognitive uncertainty 22.6∗∗∗ 22.1∗∗∗ 39.3∗∗∗ 39.0∗∗∗ 31.2∗∗∗ 31.2∗∗∗

(6.60) (6.57) (7.82) (8.11) (5.38) (5.47)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 810 810 810 810 1620 1620
R2 0.33 0.35 0.26 0.28 0.28 0.29

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from treatments Low Default andHigh Default. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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C Additional Details and Analyses for Belief Updating

Experiments

C.1 Additional Figures

Figure 29: Decision screen to elicit posterior belief in belief updating tasks
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Figure 30: Decision screen to elicit willingness-to-pay for optimal guess in belief updating
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Figure 31: Histogram of cognitive uncertainty in baseline belief updating tasks
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Figure 32: Histogram of willingness-to-pay to replace own guess by Bayesian posterior in baseline belief
updating tasks
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Figure 33: Histograms of cognitive uncertainty in belief updating tasks, separately for baseline and com-
pound diagnosticities
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Figure 34: Histograms of willingness-to-pay to replace own guess by Bayesian posterior in belief updating
tasks, separately for baseline and compound diagnosticities

0

.05

.1

.15

Fr
ac

tio
n

0 .2 .4 .6 .8 1
Cognitive uncertainty

Baseline Low default

 

Figure 35: Histograms of cognitive uncertainty in belief updating tasks, separately for treatments Baseline
and Low Default Beliefs.
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Figure 36: Relationship between stated and Bayesian posteriors, separately for subjects above / below
median WTP for the Bayesian guess. The partition is done separately for each Bayesian posterior. The
plot shows averages and corresponding standard error bars.
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Figure 37: Estimated belief weighting functions across treatments and groups of subjects.
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C.2 Additional Tables

Table 14: Belief updating: Baseline tasks: WTP measure

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.69∗∗∗ 0.76∗∗∗ 0.76∗∗∗

(0.01) (0.01) (0.01)

Bayesian posterior ×WTP for Bayes -0.096∗∗∗ -0.096∗∗∗

(0.01) (0.01)

WTP for Bayesian posterior 5.49∗∗∗ 5.47∗∗∗ 0.027 0.024
(0.76) (0.76) (0.02) (0.02)

Log [Likelihood ratio] 0.41∗∗∗ 0.43∗∗∗ 0.43∗∗∗

(0.01) (0.01) (0.01)

Log [Prior odds] 0.42∗∗∗ 0.44∗∗∗ 0.44∗∗∗

(0.02) (0.03) (0.03)

Log [Likelihood ratio] ×WTP for Bayes -0.042∗∗∗ -0.043∗∗∗

(0.01) (0.01)

Log [Prior odds] ×WTP for Bayes -0.028 -0.027
(0.02) (0.02)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 3187 3187 3187 3104 3104 3104
R2 0.72 0.73 0.73 0.62 0.63 0.63

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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C.3 Results with Full Sample
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Figure 38: Relationship between average stated and Bayesian posteriors, separately for subjects above
/ below average cognitive uncertainty (full sample). The partition is done separately for each Bayesian
posterior. Bayesian posteriors are rounded to the nearest integer. We only show buckets with more than
ten observations. The figure is based on 3,310 beliefs of 700 subjects.

Table 15: Belief updating: Baseline tasks (full sample)

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.62∗∗∗ 0.77∗∗∗ 0.77∗∗∗

(0.01) (0.02) (0.02)

Bayesian posterior × Cognitive uncertainty -0.56∗∗∗ -0.56∗∗∗

(0.05) (0.05)

Cognitive uncertainty 25.3∗∗∗ 25.3∗∗∗ -0.12 -0.12
(3.15) (3.18) (0.08) (0.08)

Log [Likelihood ratio] 0.36∗∗∗ 0.42∗∗∗ 0.42∗∗∗

(0.01) (0.02) (0.02)

Log [Prior odds] 0.36∗∗∗ 0.51∗∗∗ 0.51∗∗∗

(0.02) (0.03) (0.03)

Log [Likelihood ratio] × Cognitive uncertainty -0.28∗∗∗ -0.28∗∗∗

(0.05) (0.05)

Log [Prior odds] × Cognitive uncertainty -0.55∗∗∗ -0.54∗∗∗

(0.07) (0.07)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 3310 3310 3310 3222 3222 3222
R2 0.57 0.60 0.60 0.48 0.51 0.51

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

72



0
20

40
60

80
10

0
St

at
ed

 p
os

te
ri

or

0 20 40 60 80 100
Bayesian posterior

Baseline Compound diagnosticity
±1 std. error of mean Bayes

Figure 39: Stated average posteriors as a function of Bayesian posteriors, separately for reduced and
compound belief updating problems (full sample). The plot shows averages and corresponding standard
error bars. To allow for a valid comparison between baseline and compound updating problems, the
sample is restricted to updating tasks in which the base rate is 50:50. Bayesian posteriors are rounded to
the nearest integer. We only show buckets with more than ten observations. The figure is based on 2,056
beliefs of 697 subjects.

Table 16: Belief updating: Reduced versus compound signal diagnosticities (full sample)

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.44∗∗∗ 0.67∗∗∗ 0.67∗∗∗

(0.02) (0.02) (0.02)

Bayesian posterior × 1 if compound problem -0.69∗∗∗ -0.69∗∗∗

(0.04) (0.04)

1 if compound problem 34.5∗∗∗ 34.7∗∗∗ -0.046 -0.043
(2.17) (2.15) (0.06) (0.06)

Log [Likelihood ratio] 0.31∗∗∗ 0.40∗∗∗ 0.40∗∗∗

(0.01) (0.02) (0.02)

Log [Likelihood ratio] × 1 if compound problem -0.32∗∗∗ -0.32∗∗∗

(0.03) (0.03)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 2056 2056 2056 1954 1954 1954
R2 0.29 0.45 0.46 0.33 0.40 0.41

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 40: Stated average posteriors as a function of Bayesian posteriors, separately for treatments Baseline
Beliefs and Low Default Beliefs (full sample). Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure is based on 5,668 beliefs of 1,000 subjects.

Table 17: Belief updating: Low versus high mental default (full sample)

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

0 if Baseline, 1 if Low Default -6.94∗∗∗ -7.22∗∗∗ -7.67∗∗∗ -0.41∗∗∗ -0.43∗∗∗ -0.46∗∗∗

(0.97) (0.94) (1.00) (0.06) (0.06) (0.06)

Bayesian posterior 0.54∗∗∗ 0.66∗∗∗ 0.66∗∗∗

(0.01) (0.02) (0.02)

Bayesian posterior × Cognitive uncertainty -0.47∗∗∗ -0.47∗∗∗

(0.04) (0.04)

Cognitive uncertainty 19.5∗∗∗ 19.4∗∗∗ -0.12∗ -0.12
(2.46) (2.49) (0.07) (0.07)

Log [Likelihood ratio] 0.31∗∗∗ 0.38∗∗∗ 0.38∗∗∗

(0.01) (0.02) (0.02)

Log [Prior odds] 0.41∗∗∗ 0.56∗∗∗ 0.56∗∗∗

(0.02) (0.03) (0.03)

Log [Likelihood ratio] × Cognitive uncertainty -0.29∗∗∗ -0.29∗∗∗

(0.04) (0.04)

Log [Prior odds] × Cognitive uncertainty -0.56∗∗∗ -0.56∗∗∗

(0.07) (0.07)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 5668 5668 5668 5473 5473 5473
R2 0.44 0.46 0.46 0.42 0.45 0.45

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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C.4 Results excluding Speeders

0
20

40
60

80
10

0
St

at
ed

 p
os

te
ri

or

0 20 40 60 80 100
Bayesian posterior

Low cognitive uncertainty High cognitive uncertainty
±1 std. error of mean Bayes

Figure 41: Relationship between average stated and Bayesian posteriors, separately for subjects above /
below average cognitive uncertainty (excl. speeders). The partition is done separately for each Bayesian
posterior. Bayesian posteriors are rounded to the nearest integer. We only show buckets with more than
ten observations. The figure is based on 3,006 beliefs of 635 subjects.

Table 18: Belief updating: Baseline tasks (excl. speeders)

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.63∗∗∗ 0.78∗∗∗ 0.78∗∗∗

(0.01) (0.02) (0.02)

Bayesian posterior × Cognitive uncertainty -0.57∗∗∗ -0.57∗∗∗

(0.05) (0.05)

Cognitive uncertainty 27.1∗∗∗ 27.3∗∗∗ -0.066 -0.066
(3.20) (3.21) (0.09) (0.09)

Log [Likelihood ratio] 0.36∗∗∗ 0.42∗∗∗ 0.42∗∗∗

(0.01) (0.02) (0.02)

Log [Prior odds] 0.38∗∗∗ 0.53∗∗∗ 0.52∗∗∗

(0.02) (0.04) (0.04)

Log [Likelihood ratio] × Cognitive uncertainty -0.29∗∗∗ -0.29∗∗∗

(0.05) (0.05)

Log [Prior odds] × Cognitive uncertainty -0.55∗∗∗ -0.55∗∗∗

(0.08) (0.08)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 3006 3006 3006 2925 2925 2925
R2 0.59 0.62 0.62 0.49 0.51 0.51

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 42: Stated average posteriors as a function of Bayesian posteriors, separately for reduced and com-
pound belief updating problems (excl. speeders). The plot shows averages and corresponding standard
error bars. To allow for a valid comparison between baseline and compound updating problems, the sam-
ple is restricted to updating tasks in which the base rate is 50:50. Bayesian posteriors are rounded to
the nearest integer. We only show buckets with more than ten observations. The figure is based on 1,874
beliefs of 632 subjects.

Table 19: Belief updating: Reduced versus compound signal diagnosticities (excl. speeders)

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.45∗∗∗ 0.68∗∗∗ 0.68∗∗∗

(0.02) (0.02) (0.02)

Bayesian posterior × 1 if compound problem -0.68∗∗∗ -0.68∗∗∗

(0.04) (0.04)

1 if compound problem 33.9∗∗∗ 34.1∗∗∗ -0.071 -0.069
(2.25) (2.24) (0.06) (0.06)

Log [Likelihood ratio] 0.31∗∗∗ 0.41∗∗∗ 0.41∗∗∗

(0.02) (0.02) (0.02)

Log [Likelihood ratio] × 1 if compound problem -0.31∗∗∗ -0.31∗∗∗

(0.03) (0.03)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 1874 1874 1874 1779 1779 1779
R2 0.30 0.46 0.46 0.34 0.40 0.41

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 43: Stated average posteriors as a function of Bayesian posteriors, separately for treatments Baseline
Beliefs and Low Default Beliefs (full sample). Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure is based on 5,107 beliefs of 899 subjects.

Table 20: Belief updating: Low versus high mental default (excl. speeders)

Dependent variable:
Posterior belief Log [Posterior odds]

(1) (2) (3) (4) (5) (6)

0 if Baseline, 1 if Low Default -6.64∗∗∗ -6.88∗∗∗ -7.16∗∗∗ -0.40∗∗∗ -0.42∗∗∗ -0.43∗∗∗

(0.98) (0.96) (1.02) (0.06) (0.06) (0.06)

Bayesian posterior 0.55∗∗∗ 0.67∗∗∗ 0.67∗∗∗

(0.01) (0.02) (0.02)

Bayesian posterior × Cognitive uncertainty -0.48∗∗∗ -0.48∗∗∗

(0.04) (0.04)

Cognitive uncertainty 21.0∗∗∗ 20.9∗∗∗ -0.065 -0.057
(2.56) (2.59) (0.07) (0.08)

Log [Likelihood ratio] 0.32∗∗∗ 0.38∗∗∗ 0.38∗∗∗

(0.01) (0.02) (0.02)

Log [Prior odds] 0.43∗∗∗ 0.58∗∗∗ 0.58∗∗∗

(0.02) (0.03) (0.03)

Log [Likelihood ratio] × Cognitive uncertainty -0.28∗∗∗ -0.28∗∗∗

(0.04) (0.04)

Log [Prior odds] × Cognitive uncertainty -0.57∗∗∗ -0.57∗∗∗

(0.07) (0.07)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 5107 5107 5107 4930 4930 4930
R2 0.45 0.47 0.48 0.44 0.46 0.46

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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D Additional Details and Analyses for Survey Expecta-

tions

D.1 Additional Figures

Figure 44: Decision screen to elicit cognitive uncertainty in survey expectations
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Figure 45: Histogram of cognitive uncertainty in survey expectations about income distribution
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Figure 46: Histogram of cognitive uncertainty in survey expectations about the stock market
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Figure 47: Histogram of cognitive uncertainty in survey expectations about inflation rates
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D.2 Additional Tables

Table 21: Survey expectations and cognitive uncertainty

Dependent variable: Probability estimate about:

Income distr. Stock market Inflation rate

(1) (2) (3) (4) (5) (6)

Objective probability 0.92∗∗∗ 0.93∗∗∗ 0.74∗∗∗ 0.74∗∗∗ 0.80∗∗∗ 0.80∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

Objective probability × Cognitive uncertainty -0.60∗∗∗ -0.60∗∗∗ -0.70∗∗∗ -0.70∗∗∗ -0.81∗∗∗ -0.80∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Cognitive uncertainty 29.4∗∗∗ 29.0∗∗∗ 34.2∗∗∗ 34.6∗∗∗ 39.1∗∗∗ 38.5∗∗∗

(2.44) (2.50) (2.09) (2.13) (2.67) (2.74)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1980 1980 1892 1892 1848 1848
R2 0.84 0.84 0.54 0.55 0.56 0.56

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In columns
(1)–(2), the question about income distribution asks participants for the probability that a randomly selected
U.S. household earns less than $x. In columns (3)–(4), the question about the stock market asks participants
for the probability that in a randomly selected year the S&P500 increased by less than x%. In columns (5)–(6),
the question about inflation rates asks participants for the probability that in a randomly selected year the
inflation rate was less than x%. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 22: Estimates of “survey expectations weighting function”

Task / group Sensitivity λ̂ Elevation δ̂

Income distribution: high CU
0.51 1.08
(0.02) (0.04)

Income distribution: low CU
0.75 1.27
(0.02) (0.04)

Stock market performance: high CU
0.19 0.82
(0.01) (0.03)

Stock market performance: low CU
0.45 0.84
(0.02) (0.04)

Inflation rates: high CU
0.22 0.97
(0.01) (0.03)

Inflation rates: low CU
0.47 0.98
(0.02) (0.05)

Notes. Estimates of equation (15) for survey expectations, standard errors
(clustered at subject level) reported in parentheses. CU = cognitive uncer-
tainty (split at average).
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D.3 Results with Full Sample
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Figure 48: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty (full sample). The partition is done separately for each probability bucket.
In the top panel, the question asks for the probability that a randomly selected U.S. household earns less
than $x. In the middle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x%. In the bottom panel, the question asks for the probability that in a
randomly selected year the inflation rate was less than x%. N = 2, 000 observations each.
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D.4 Results excluding Speeders
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Figure 49: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty (excl. speeders). The partition is done separately for each probability bucket.
In the top panel, the question asks for the probability that a randomly selected U.S. household earns less
than $x. In the middle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x%. In the bottom panel, the question asks for the probability that in a
randomly selected year the inflation rate was less than x%. N = 1, 896 observations each.
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E Forward-Looking Survey Expectations

In Section 5 in the main text, we elicited respondents’ survey expectations about eco-

nomic variables with respect to past values, which allowed us to easily incentivize par-

ticipants. In a pre-registered robustness check, we implemented the same type of survey

questions, but now regarding future values of these variables. These questions are hence

theoretically more appropriate in that they elicit actual expectations, but they are not

financially incentivized. The sample size is N = 400 for each of the three domains. We

apply the same criteria regarding the exclusions of outliers as in Section 5.

The results are shown in Figure 50. Here, we define “objective probabilities” based

on historical data, akin to Figure 10 in the main text. The results are almost identical to

those reported in the main text.
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Figure 50: Survey beliefs about future variables as a function of “objective” probabilities, separately for
subjects above / below average cognitive uncertainty. The partition is done separately for each probability
bucket. “Objective” probabilities are defined using historical data, analogously to Figure 10. In the top
panel, the question asks for the probability that a randomly selected U.S. household will earn less than
$x (N = 491). In the middle panel, the question asks for the probability that the S&P500 will increase
by less than x% (N = 463) over the course of one year. In the bottom panel, the question asks for the
probability that the inflation rate will be than x% (N = 478).
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F Additional Ambiguity Experiment

In addition to the experiments reported in Section 3, we implemented an additional

set of pre-registered ambiguity experiments. These experiments delivered statistically

significant results in line with our pre-registered predictions. However, as explained be-

low, we now believe that these experiments are conceptually less-than-ideal from the

perspective of our framework, which is why we relegate them to an Appendix.

F.1 Experimental Design

The basic design builds on Dimmock et al. (2015) and aims at eliciting matching prob-

abilities for ambiguous lotteries. In a given choice list, the left-hand side option A was

constant and given by an ambiguous lottery. The ambiguous lottery was described as

random draw from an urn that comprises 100 balls of ten different colors, where the

precise composition of colors is unknown. A known number of these colors n were “win-

ning colors” that resulted in the same payout $x, while other colors resulted in a zero

payout. Option B, on the right-hand side, varied across rows in the choice list and was

also given by a lottery with upside $x. Here, the number of “winning balls” was known

and varied from 0% to 99% in 3% steps. Subjects were always given the option to pick

their preferred winning colors.

A subject completed six choice lists, where the payout x ∈ {15,20, 25} and the num-

ber of winning colors n ∈ {1, 2, . . . , 9} were randomly determined. Before each decision

screen, subjects were always given the opportunity to pick their winning colors.

Cognitive uncertainty was measured analogously to choice under risk. After subjects

had indicated their probability equivalent range for an ambiguous lottery, the subse-

quent screen asked them how certain they are that this range actually corresponds to

how much the lottery is worth to them. Operationally, subjects used a slider to calibrate

the statement “I am certain that to me the lottery is worth as much as playing a lottery

over $x with a known number of between x and y winning balls.” 200 AMT workers

participated in these experiments and earned an average of $7.20.

F.2 Results

In the baseline analysis, we again exclude extreme outliers, defined as matching proba-

bility strictly larger than 75% for at most two winning colors, and matching probability

strictly smaller than 25% for more than eight winning colors. This is the case for 1.6%

of our data. We find that the response function of subjects with higher cognitive uncer-

tainty is significantly less sensitive to variation in the number of winning colors (shal-

lower), see the regressions in Table 23. This reduction in sensitivity corresponds to our
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Table 23: Insensitivity to ambiguous “likelihood” and cognitive uncertainty

Dependent variable:
Matching probability

(1) (2)

Number of winning colors * 10 0.68∗∗∗ 0.67∗∗∗

(0.04) (0.04)

Number of winning colors * 10 × Cognitive uncertainty -0.26∗∗∗ -0.25∗∗

(0.10) (0.10)

Cognitive uncertainty 5.90 3.87
(5.14) (5.14)

Session FE No Yes

Demographic controls No Yes

Observations 1181 1181
R2 0.50 0.51

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level.
The dependent variable is a subject’s matching probability, computed as midpoint of the switching
interval. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

main hypothesis, which is also what we re-registered. At the same time, we do not find

that high cognitive uncertainty subjects are more ambiguity seeking than low cognitive

uncertainty subjects for unlikely events.

F.3 Interpretive Problems

The analysis above focuses on whether reported matching probabilities of subjects with

higher cognitive uncertainty are less sensitive to the variation in winning colors. How-

ever, our framework in Section 2 onlymakes this prediction if one assumes that the state

space is binary (win-lose), so that subjects are hypothesized to “shrink” ambigious prob-

abilities towards 50:50. However, in the experiments, the state space was represented

through ten different colors, some of which are winning and some of which are losing

colors. As discussed in Section 3.4, a plausible alternative view is that in this situation

there are actually ten states of the world, one for each color. In this case, our framework

does not predict that subjects shrink their matching probabilities towards 50:50. To see

this, take the example that there are three winning colors. In this case, the ignorance

prior (for winning) would be given by 30%. In other words, subjects would be hypoth-

esized to shrink an ambiguous probability of three winning colors towards a mental

default of 30%, which does not produce any shrinking theoretically. For this reason, we

view these experiments as imperfect.
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G Results on Stake Size Increase

G.1 Stake Size and Choice Under Risk

To manipulate the size of financial incentives, we implement a within-subjects manip-

ulation. We implemented the same procedures as described in Section 3, except that

we only implemented gain lotteries. Subjects completed six choice lists, one of which

determined a subject’s payment in case the choice under risk part of the experiment

got selected for payment (probability 1/3). Across the six choice lists, the probability of

being payout-relevant varied in a transparent way. On top of the decision screen, we in-

formed subjects about the probability that this choice list would determine their payout.

For five tasks, this probability was given by 1% and for one task by 95%. As a measure

of cognitive effort, we recorded subjects’ (log) response times. 150 subjects participated

in this treatment, which was also pre-registered.

The results are reported in Table 24.¹⁴ Exploiting variation within subjects across

tasks, we find that response times increase significantly from 25 seconds on average to

36 seconds on average in the high stakes task. However, this increase in response times

does not translate into a significant change in cognitive uncertainty.

Table 24: Effects of stake size increase in choice under risk

Dependent variable:
Log [Response time] Cognitive uncertainty Normalized CE

(1) (2) (3) (4) (5) (6)

1 if high stakes 0.26∗∗∗ 0.26∗∗∗ -0.0041 -0.0037 0.41 -1.65
(0.06) (0.06) (0.01) (0.01) (2.27) (2.16)

Probability of payout 0.69∗∗∗ 0.68∗∗∗

(0.03) (0.03)

Probability of payout × 1 if high stakes 0.022 0.065∗

(0.04) (0.04)

Subject FE No Yes No Yes No Yes

Observations 893 893 893 893 893 893
R2 0.02 0.50 0.00 0.53 0.60 0.79

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

¹⁴We again apply the same outlier exclusion criteria as in the main text.
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G.2 Stake Size and Belief Updating

To manipulate the size of financial incentives, we again implement a within-subjects

manipulation. We implemented the same procedures as described in Section 4, except

that we did not elicit the WTP for the optimal guess. Subjects completed six updating

tasks, one of which determined a subject’s payment in case the belief updating part

of the experiment got selected for payment (probability 1/3). Across the six tasks, the

probability of being payout-relevant varied in a transparent way. On top of the decision

screen, we informed subjects about the probability that this task would determine their

payout. For five tasks, this probability was given by 1% and for one task by 95%. As

a measure of cognitive effort, we recorded subjects’ (log) response times. 150 subjects

participated in this treatment, which was also pre-registered.

The results are reported in Table 25.¹⁵ Exploiting variation within subjects across

tasks, we find that response times increase significantly. Cognitive uncertainty decreases,

but only mildly so.

Table 25: Effects of stake size increase in belief updating

Dependent variable:
Log [Response time] Cognitive uncertainty Posterior belief

(1) (2) (3) (4) (5) (6)

1 if high stakes 0.19∗∗∗ 0.19∗∗∗ -0.024∗ -0.025 -2.76 -3.56
(0.06) (0.07) (0.01) (0.02) (2.53) (2.64)

Bayesian posterior 0.59∗∗∗ 0.58∗∗∗

(0.03) (0.03)

Bayesian posterior × 1 if high stakes 0.065 0.080∗

(0.04) (0.04)

Subject FE No Yes No Yes No Yes

Observations 869 869 869 869 869 869
R2 0.01 0.46 0.00 0.51 0.61 0.70

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

¹⁵We again apply the same outlier exclusion criteria as in the main text.
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H Calibrating the Cognitive Uncertainty Measurement

In all of our experiments, the elicitation of cognitive uncertainty did not specify which

particular version of a subjective confidence interval we intend to elicit, such as a 90%,

95%, 99% or 100% confidence interval. We deliberately designed our experiments in

this fashion because the hypothesis that underlines our research is that people have a

hard time translating “99% confidence” into a statement about e.g. their certainty equiv-

alent. In an attempt to trade off subject comprehension and quantitative interpretation,

we hence refrained from inducing a particular version of a confidence interval.

To provide evidence for our conjecture that respondents cannot really tell the dif-

ference between different types of confidence intervals, we implemented an additional

set of choice under risk experiments in which we elicited different versions of subjective

confidence intervals. In these experiments, subjects were specifically instructed to state

an interval such that they are “y% certain” that to them the lottery is worth between

a and b. Across experimental conditions, y varied from 75% to 90% to 95% to 99%

to 100%. To analyze these data, we compare average cognitive uncertainty within a

treatment with average cognitive uncertainty in our baseline treatments, in which we

did not provide a specific quantitative version of a confidence interval. In total, we ran

these experiments with N = 293 subjects.

Figure 51 summarizes the results. Here, we plot the coefficients of the different treat-

ment dummies in a regression with stated cognitive uncertainty as dependent variable.

In this regression, the omitted category is our (unspecific) baseline treatment. Each co-

efficient hence corresponds to the implied difference in cognitive uncertainty between

a treatment and our baseline treatment. There are two main results. First, cognitive un-

certainty does not vary in meaningful ways across conditions: subjects state statistically

indistinguishable cognitive uncertainty intervals, regardless of whether we specify them

as 75%, 90% etc. interval. Second, if anything, reported cognitive uncertainty is higher

in the more precise quantitative versions relative to our baseline version, as can be in-

ferred from the positive point estimates. This again suggests that subjects have a harder

time thinking about specific quantitative versions of a confidence interval relative to our

more intuitive question. We conclude from this exercise that a more precise quantita-

tive implementation of our cognitive uncertainty interval is unlikely to deliver a more

helpful quantitative interpretation of our measure.
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Figure 51: Comparison of average cognitive uncertainty across different elicitation modes in choice under
risk. Each dot represents the coefficient of a treatment dummy in a regressionwith cognitive uncertainty as
dependent variable. The explanatory variables are fixed effects for the different specifications of cognitive
uncertainty, where the omitted category is our baseline wording. The plot controls for lottery amount
fixed effects and probability of payout fixed effects.

I Censoring

In this section we replicate our weighting functions for subjects above and below average

cognitive uncertainty after excluding observations that are affected by the boundaries

of the response scales. Specifically, in the figures reported in section I.1 we exclude all

observations in which the choices or beliefs exactly equaled one of boundaries of the

response scale, whereas in section I.2 we exclude all observations in which the cognitive

uncertainty range included one of the boundaries. The observed differences between

high and low cognitive uncertainty choices or beliefs remain virtually unaffected by

these exclusions.

I.1 Censored choices and beliefs
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Figure 52: Probability weighting function excluding censored choices, separately for subjects above /
below average cognitive uncertainty. The partition is done separately for each probability × gains / losses
bucket. The plot shows averages and corresponding standard error bars. Normalized certainty equivalents
(implied probability weights) are computed as certainty equivalent divided by payout probability. The
figure excludes 4.28% of the original data that is based on 2,525 certainty equivalents of 700 subjects.
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Figure 53: Relationship between average stated and Bayesian posteriors after excluding censored beliefs,
separately for subjects above / below average cognitive uncertainty. The partition is done separately for
each Bayesian posterior. Bayesian posteriors are rounded to the nearest integer. We only show buckets
with more than ten observations. The figure excludes 2.6% of the original data that is based on 3,187
beliefs of 700 subjects.
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Figure 54: Survey beliefs as a function of objective probabilities after excluding censored beliefs, sepa-
rately for subjects above / below average cognitive uncertainty. The partition is done separately for each
probability bucket. In the top panel, the question asks for the probability that a randomly selected U.S.
household earns less than $x. In the middle panel, the question asks for the probability that in a randomly
selected year the S&P500 increased by less than x%. In the bottom panel, the question asks for the prob-
ability that in a randomly selected year the inflation rate was less than x%. The figure excludes 6.61% of
the original data that is based on 5,703 observations.
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I.2 Censored cognitive uncertainty ranges
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Figure 55: Probability weighting function excluding censored cognitive uncertainty ranges, separately for
subjects above / below average cognitive uncertainty. The partition is done separately for each probability
× gains / losses bucket. The plot shows averages and corresponding standard error bars. Normalized cer-
tainty equivalents (implied probability weights) are computed as certainty equivalent divided by payout
probability. The figure excludes 23.25% of the original data that is based on 2,525 certainty equivalents
from 700 subjects.
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Figure 56: Relationship between average stated and Bayesian posteriors after excluding censored cogni-
tive uncertainty ranges, separately for subjects above / below average cognitive uncertainty. The partition
is done separately for each Bayesian posterior. Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure excludes 25.93% of the original data that
is based on 3,187 beliefs of 700 subjects.
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Figure 57: Survey beliefs as a function of objective probabilities after excluding censored cognitive un-
certainty ranges, separately for subjects above / below average cognitive uncertainty. The partition is
done separately for each probability bucket. In the top panel, the question asks for the probability that
a randomly selected U.S. household earns less than $x. In the middle panel, the question asks for the
probability that in a randomly selected year the S&P500 increased by less than x%. In the bottom panel,
the question asks for the probability that in a randomly selected year the inflation rate was less than x%.
The figure excludes 16.66% of the original data that is based on 5,703 observations.
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J Experimental Instructions and Control Questions

J.1 Treatment Baseline Risk
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J.2 Treatment Low Default Risk
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J.3 Treatment Baseline Beliefs
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J.4 Treatment Low Default Beliefs
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J.5 Survey Expectations
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