
 

8060 
2020 

January 2020 

 

Nonlinear Business Cycle and 
Optimal Policy: 
A VSTAR Perspective 
Vito Polito 



Impressum: 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
www.cesifo-group.org/wp 

An electronic version of the paper may be downloaded 
· from the SSRN website:  www.SSRN.com 
· from the RePEc website:  www.RePEc.org 
· from the CESifo website:         www.CESifo-group.org/wp

mailto:office@cesifo.de
http://www.cesifo-group.org/wp
http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.org/wp


CESifo Working Paper No. 8060 
 

 
 
 

Nonlinear Business Cycle and Optimal Policy: 
A VSTAR Perspective 

 
 

Abstract 
 
This paper studies optimal macroeconomic policy when nonlinearity in the business cycle is 
described by a vector smooth transition autoregression (VSTAR). A structural identification of 
the VSTAR that yields a low-dimension and certainty-equivalent nonlinear quadratic regulator 
(NLQR) problem is derived. Optimal rules are calculated by adapting from the engineering 
theory the approach of State Dependent Riccati Equation, which allows standard dynamic 
programming techniques to solve NLQR problems. The methodology is employed to study 
optimal conventional and quantitative easing (QE) monetary policy using a VSTAR model esti-
mated on data for the United States during 1979-2018. The model allows for regime changes 
during periods of economic slack and when interest rates are near the zero lower bound. The 
results highlight the quantitative significance of nonlinearity in the analysis of optimal monetary 
policy and how the size, timing and composition of QE can influence macroeconomic dynamics. 
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1 Introduction

This paper studies optimal macroeconomic policy when the interaction between
the economy and the policy instruments over the business cycle is described by a
widely-used class of nonlinear autoregression models: vector smooth transition
autoregression (VSTAR). VSTAR models have become increasingly popular in
macroeconometrics given their ability to better describe data compared to lin-
ear models. In applied works VSTAR is often used for forecasting and to high-
light history dependence in the response of macroeconomic variables to shocks.1

While the econometric literature has long established methods for speci�cation,
estimation and structural analysis with VSTAR,2 no attention has been devoted
so far to the analysis of optimal policy.
The present paper provides the �rst attempt to �ll this gap. The paper de-

scribes a methodology for calculating optimal policy rules when macroeconomic
dynamics are represented by a VSTAR. The methodology is used to study the
optimal coordination between conventional (interest rate) monetary policy and
large scale asset purchase programs, frequently referred to as quantitative eas-
ing (QE), undertaken by the Fed over the past ten years. The macroeconomic
dynamics resulting from the optimal policy serve as benchmark to evaluate
those observed from the data, which re�ect the actual policy undertaken by the
Fed. This seems a pertinent application of the proposed methodology, given the
extent of nonlinearity displayed by macroeconomic data of the United States
over the last 40 years and, particularly, by the federal funds rate and the Fed�s
balance sheet since the (2007-2009) Great Recession.3

To highlight the methodological contributions of the paper it is useful to re-
cap what is known from the literature on optimal policy analysis based on linear
vector autoregression (hereafter VAR). When the macroeconomy is described by
a reduced-form VAR at least two possible structural forms can be identi�ed for
the purpose of calculating an optimal policy rule (Sack, 2000; Stock and Wat-
son, 2001). These structural models di¤er in terms of the timing assumption
regarding the interaction between the economy and the policy instruments. Un-
der A1, the economy responds with a lag to change in policy. Under A2, the
economy responds within the same period in which policy is changed. If the
objective function of the decision maker is quadratic, an optimal decision rule
can be calculated as the solution to a linear quadratic regulator (LQR) problem
using either of these two structural models to represent the constraints faced by
the regulator. Crucially, decision rules under either A1 or A2 satisfy certainty
equivalence, solving the LQR problem regardless of the particular sequence of
disturbances. For this reason decision rules under A1 and A2 can be computed

1See, e.g., Weise (1999), Balke (2000), Galvão (2006), Auerback and Gorodnichenko (2012),
Caggiano, Castelnuovo and Groshenny (2014), Caggiano et al. (2015), Galvão and Owyang
(2018).

2See, e.g., Teräsvirta, Tjøstheim and Granger (2010), Hubrich and Teräsvirta (2013), Kilian
and Lütkepohl (2017).

3Nonlinearity in the mean and volatility of macroeconomic and �nancial time series of the
United States has long been documented, see, e.g., Stock and Watson (1996) and McConnell
and Pérez-Quirós (2000), Ang and Bekaert (2002). Many empirical studies on the transmission
mechanism of monetary policy over the business cycle in the United States give clear evidence
in support of models that, like the VSTAR, allow for gradually evolving parameters and
heteroscedastic shocks, including, among the others, Primiceri (2005); Canova and Gambetti
(2009); Baumeister, Liu, and Mumtaz (2013).
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using standard dynamic programming techniques.4

The �rst methodological contribution of the paper refers to the identi�cation
of a structural model suitable for optimal policy analysis from a reduced-form
VSTAR. The paper shows that both A1 and A2 can still be used to identify
two alternative nonlinear structural models from a reduced-form VSTAR. This
time, however, di¤erences between the two structural models go well beyond the
timing of interaction among variables. It is found that under A1 the structural
model forms a nonlinear quadratic regulator (NLQR) problem whose solution
is high dimensional and no longer consistent with certainty equivalence. In
contrast, A2 has the advantage of delivering a NLQR problem whose solution
is low dimensional and compatible with certainty equivalence.
The second methodological contribution of the paper refers to the calcula-

tion of optimal decision rules that solve NLQR problems when the constraint is
given by the nonlinear structural model identi�ed from the VSTAR. The paper
shows how to adapt from the engineering theory the so-called State Dependent
Riccati Equation (SDRE) method. This consists of employing state dependent
coe¢ cient (SDC) factorization to transform the nonlinear structural model into
an a¢ ne structure with SDC matrices. As a result, the NLQR problem becomes
isomorphic to the LQR problem. Under A2, the problem is also low dimensional
and certainty equivalent, and it can be solved with standard dynamic program-
ming methods. The solution gives an optimal feedback rule with time-varying
coe¢ cients. The paper further shows how to combine this with the structural
model to derive the VSTAR under the optimal rule for dynamic analysis.
It is important to highlight the usefulness of the SDRE method for applied

economics. Policy analysis presently done in macroeconomics is still largely
based on the well-known paradigm of the LQR (Ljungqvist and Sargent, 2018).
This is applicable as long as the model of the economy is linear. Of course,
any nonlinear model of the economy could be linearized and then analyzed
with LQR. However, as well as providing solutions that are not globally valid,
linearization assumes away three crucial features of macroeconomic data: asym-
metries, threshold e¤ects and large transitional changes. A VSTAR could well
capture these features, but the LQR solution would disregard them, potentially
resulting in incorrect and/or ine¢ cient decision making. Alternatively, policy
analysis using a nonlinear model could be carried out with numerical meth-
ods.5 While these deliver solutions that are globally valid without disregarding
nonlinearity, their main drawback is that they are computationally intensive.
In contrast, the SDRE method for solving NLQR problems has the advantage
of accounting for nonlinearity while being computationally simple and easy to
understand given his similarity to the LQR.
The quantitative contribution of the paper consists of applying the method-

ology on a VSTAR estimated with maximum likelihood on monthly data for the
United States during 1979-2018. The model includes four variables describing
the economy and the �nancial system conditions: the in�ation rate, the growth
rate of industrial production, the unemployment rate and an indicator of credit
risk. Monetary policy is described by three indicators: the federal funds rate
and assets held by the Fed, distinguishing between Treasury securities and as-

4See, e.g., chapter 5 of Ljungqvist and Sargent (2018) for LQR solution under A1; chapter
10 of Chow (1976) for LQR solution under A2; Polito and Wickens (2012) for qualitative and
quantitative comparison of the two solutions.

5See, e.g., Judd (1998), Miranda and Fackler (2002).
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sets issued by the private sector. For this reason the analysis can account for
the e¤ects on aggregate quantities and prices of changes in both the size and
composition of the Fed�s balance sheet.6 Nonlinearity in the mean and variance
of the VSTAR can come through two sources. One is the economy, capturing
changes in the coe¢ cients of the model during periods of economic slack, as in
Ramey and Zubairy (2018). The other is monetary policy, capturing changes
in coe¢ cients eventually occurring when the federal funds rate is near to the
zero lower bound (ZLB). For the purpose of validation, it is shown that the
estimated VSTAR provides (i) a good �t of the data, better than a number of
alternative speci�cations, and (ii) a plausible description of the response of the
policy instruments to shocks at di¤erent times of the United States�s monetary
history.
The estimated VSTAR is used to evaluate the macroeconomic e¤ects of

conventional and QE monetary policy undertaken by the Fed since 2008. To this
end, macroeconomic dynamics obtained from the VSTAR once the monetary
policy instruments are jointly optimized are used as benchmark. Three tasks
are carried out: evaluating the gains from the joint optimization of monetary
policy instruments; studying the economy and policy instruments responses to
shocks once the optimal policy is implemented; undertaking a counterfactual
simulation of macroeconomic dynamics under the optimal policy.
The gain from the joint optimization of the monetary policy instruments

it is found to be large. According to the quantitative analysis, the average
unemployment rate would have reduced by 1.7 percent had the federal funds
rate and QE been coordinated optimally since 2008. However, this is not as
large as the reduction achieved by the actual QE policy relative to a scenario of
no-QE which is measured to be about 2.8 percent. The optimization gain is also
found to be larger when measured over the Great Recession and its aftermath,
rather than the whole 1979-2018. This suggests that the measured bene�ts
from monetary policy coordination are larger during periods when nonlinearity
is more signi�cant. Further, the gain is recalculated using the VAR both over
the full sample and the post-2008 period. In both cases the measured gains
are higher than those from the VSTAR. This suggests that linear models can
potentially overstate the bene�ts from monetary policy optimization.
Both actual and optimal QE policy display a signi�cant degree of asymme-

try and history dependence in their responses to demand and supply shocks.
However, di¤erences in the responses to shocks of QE under the optimal and
the actual policy are signi�cant only in the very short-run horizon (four to six
months). The response of QE under the optimal policy shows two clear pat-
terns. After a demand shock QE results in increase in the size of the balance
sheet and shift in the portfolio mix of assets towards Treasury securities. After
a supply shock QE still leads to increase in the size of the balance sheet but
there is not shift in the portfolio mix, since holdings of both Treasuries and
private securities increase.

6The theoretical literature on the transmission mechanisms of QE argues that central bank
holdings of either government or private-sector bonds in�uence the economy through two
separate channels. These are referred to as the portfolio-balancing channel for government
assets and the credit channel for private assets, see, e.g. Joyce et al. (2012) or Kuttner (2018).
In this literature asset purchases of government and private bonds are frequently referred to
as quantitative and credit easing, respectively. As in Kuttner (2018), throughout this paper
asset purchases are referred to as QE regardless of whether these entail government or private
sector bonds.
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The counterfactual simulation of the likely evolution of the economy and
the policy instruments, had the federal funds rate and QE been coordinated
optimally since 2008, shows that the observed overall increase in the Fed�s bal-
ance sheet since 2008 was not far from that prescribed by the optimal policy.
Di¤erences between the actual and the optimal policy are larger during the �rst
phase of QE, as the latter would have prescribed larger purchases of Treasuries.
This would have further lowered the credit spread and increased in�ation dur-
ing 2008-2013. Finally, the observed duration of the ZLB period is found to be
not too far from that otherwise prescribed by the optimal policy. This result
is in contrast with the view that the ZLB should have terminated much earlier
(around the beginning of 2011) had monetary policy during the Great Recession
being conducted as predicted by a standard Taylor rule (Federal Reserve Bank
of St. Louis, 2015).
Two potential caveats should be highlighted about these results. The �rst

concerns to the speci�cation of the Fed preferences once QE is an available
monetary policy instrument. The economic theory o¤ers little guidance on this.
Dynamic stochastic general equilibrium (DSGE) models with QE feature, among
the others, heterogeneous households. For this reason a micro-founded loss func-
tion is unde�ned in these models, since the aggregation of agents�preferences
depends on arbitrary weights assigned to di¤erent households�type. Given the
Fed�s dual mandate of price stability and full employment, optimal policy is
computed in this paper assuming a standard quadratic loss function in in�ation
and unemployment, following from Sims and Wu (2019b). For robustness, the
likely e¤ects of alternative speci�cations of the Fed preferences are appraised by
varying the loss function parameters. The second caveat is that, in principle,
counterfactual policy analysis with the VSTAR is subject to the Lucas (1976)
critique. While the quantitative signi�cance of this observation is debated, see
Sims and Zha (2006), the latest consensus to guard against it is to consider
policy changes that entail small deviations from the observed dynamics, see
Rudebusch (2005) and Benati (2019). Following this, the loss function adopted
in the quantitative analysis is expanded to include explicit penalties for changes
in the policy instruments. This has the e¤ect of inducing a certain degree of
gradualism in the optimal policy reaction functions, while keeping the path of
the macroeconomy under the optimal policy close to that observed in the data.7

The paper makes several contributions to the literature. The methodological
part is related to the literature on nonlinear time series modelling with VSTAR,
surveyed by Granger and Teräsvirta (1993), Teräsvirta, Tjøstheim and Granger
(2010) and Hubrich and Teräsvirta (2013). This literature concentrates on the
speci�cation, estimation and structural analysis of VSTAR models. The present
paper tackles a di¤erent task, using VSTAR for optimal policy analysis. The
methodological part of the paper also contributes to the macroeconomic liter-
ature using dynamic programming to solve optimal decision making problems.
As mentioned above, the predominant paradigm here is still the LQR, which

7Despite the Lucas critique, there are many prominent examples of counterfactual analyses
based on reduced-from models in the macroeconomic literature of conventional monetary
policy, see Sack (2000), Stock and Watson (2001), Sims and Zha (2006), and more recently of
QE, see Lenza, Pill and Reichlin (2010), Chung et al (2012), Giannone et al (2012), Kapetanios
et al (2012), Baumeister and Benati (2013), Dahlhaus, Hess and Reza (2018). Many of these
works analyze counterfactual deviations of the policy instruments much larger than those
considered in this paper.
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applies to linear economic environments (Ljungqvist and Sargent, 2018). The
SDRE method described in the paper suggests a way of extending the appli-
cation of the same LQR techniques to nonlinear economic environments. The
applied part of the paper contributes to the empirical literature on the macro-
economic e¤ects of monetary policy. Within this a number of recent studies
quanti�es the e¤ects of QE through either impulse response function (IRF) or
counterfactual analysis using vector autoregressions or semi-structural models.
Examples include Lenza, Pill and Reichlin (2010), Chung et al. (2012), Gian-
none et al. (2012), Kapetanios et al. (2012), Baumeister and Benati (2013),
Gambacorta et al. (2014), Dahlhaus, Hess and Reza (2018). These works con-
sider only the e¤ects stemming from changes in the overall size of the balance
sheet, typically against a counterfactual scenario of no-QE intervention. The
present paper considers the impact of changes in both size and composition
of the Fed�s balance sheet, and evaluates these using as reference a di¤erent
counterfactual scenario, the optimal policy. Finally, the paper is also related
to the DSGE literature on the transmission channels of unconventional mone-
tary policy, see Curdia and Woodford (2011), Gagnon et al. (2011), Woodford
(2016), Harrison (2017), Reis (2017), providing instead an evaluation based on
an a-theoretical model like the VSTAR. Within this DSGE literature, Guerrieri
and Iacoviello (2017) and Sims and Wu (2019a,b) have recently emphasized the
signi�cance of macroeconomic asymmetries due to nonlinearity stemming from
both the private and the policy sectors of the macroeconomy. The present paper
shares with these works a similar emphasis on the dual sources of nonlinearity,
but for the purpose of empirical analysis.
The paper is organized as follows. Section 2 sets a reduced-form VSTAR

model that encompasses several speci�cations adopted in the applied macroeco-
nomic literature. This is used to identify the two possible structural represen-
tations under A1 and A2 and to highlight their di¤erences. Section 3 describes
how the SDRE method is employed to solve a NLQR problem where the con-
straint faced by the regulator is given by the structural VSTAR model under
A2. In this section it is also shown how to combine the optimal policy rule
with the NLQR constraint to derive the VSTAR under control. Potential issues
of stability and solutions are also discussed here. Section 4 presents the esti-
mated VSTAR model, describing the data, the econometric methodology, the
maximum likelihood results and the IRF analysis. Section 5 presents the results
from the analysis of optimal policy. Section 6 concludes with a summary. Ap-
pendix A gives more detail on the identi�cation of the structural representations
from the VSTAR model. Appendix B describes the derivation of the solution
to the NLQR problem. Appendix C gives more details on the data used for the
quantitative analysis. Appendix D describes the algorithm for calculating the
IRFs. Appendix E includes further robustness results from the optimal policy
analysis.

2 Macroeconomic Model

The macroeconomic model is a VSTAR including variables describing the econ-
omy and the policy sectors. There are two sources of nonlinearity, one stemming
from the economy, the other from the policy sector. Nonlinearity a¤ects the co-
e¢ cients of the mean and the variance structure of the VSTAR.
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2.1 Reduced Form

Let yt be a n � 1 vector partitioned as yt =
�
x0t u0t

�0
, with xt denoting

a p � 1 vector of variables describing the economy and ut a m � 1 vector of
policy instruments. The dynamic of yt for t � 0 is described by the nonlinear
�rst-order stochastic process:

yt+1 = [1� gM (s0uyt)]
�
[1� lM (s0xyt)] [�1 +�1 (L)yt] +

lM (s
0
xyt) [�2 +�2 (L)yt]

�
+ (1)

gM (s
0
uyt)

�
[1� lM (s0xyt)] [�3 +�3 (L)yt] +

lM (s
0
xyt) [�4 +�4 (L)yt]

�
+ vt+1;

where y0 is given; �j are vectors of constant coe¢ cients of dimensions n�1; L is

the lag operator; �j (L) denote q lags of the vector yt, i.e. �j (L) =
qP

k=1

�jkL
k

with each �jk being a n�n matrix of coe¢ cients; vt is a vector of reduced-form
disturbances to yt, with vt � N (0;
t), j = 1; :::; 4. The covariance matrix 
t
is given by:


t = [1� gV (s0uyt)] f[1� lV (s0xyt)]
1 + lV (s0xyt)
2g+ (2)

gV (s
0
uyt) f[1� lV (s0xyt)]
3 + lV (s0xyt)
4g ;

where 
j are symmetric matrices of coe¢ cients, j = 1; :::; 4.
The terms gi (s0uyt) and li (s

0
xyt) denote continuos (transition) functions,

bounded between zero and one, capturing the e¤ect of nonlinearity in the trans-
mission mechanism of shocks in the mean, i = M , and variance, i = V , of the
VSTAR model in (1) and (2), with sx and su being selection vectors identifying
transition variables from xt and ut respectively. Transition variables can be
either single, or linear combinations of, variables from the economy, s0xyt, and
the policy vector, s0uyt. These determine the state in which yt and 
t are tran-
siting during any given period t. In particular, li (s0xyt) determines changes in
the VSTAR coe¢ cients due to changes in the state of the economy. These are
nested within changes in the VSTAR coe¢ cients due to variation of the policy
stance, as captured by g (s0uyt).
The transition functions in the mean and variance of the VSTAR allow for

changes across regimes to be either gradual or abrupt. In this second case, the
model tends to a threshold vector autoregression model. Setting all transition
functions equal to zero yields a VAR model. The VSTAR also nests two al-
ternative speci�cations that attribute nonlinearity to the mean or the variance
alone. Using in (1) the restriction �j = � and �j (L) = � (L), j = 1; :::; 4,
yields a VSTAR with nonlinear variance only. Alternatively, the restriction in
(2) 
j = 
, j = 1; :::; 4, yields a VSTAR with nonlinear mean only.
Equations (1) and (2) encompass the typical speci�cation of the VSTAR

model adopted in the applied macroeconomic literature.8 This assumes that
there is only one source of nonlinerity due to change in the economy that impacts
at the same time on the mean and variance processes. Such a speci�cation is
obtained by restricting gi (s0uyt) = 0, i = M ,V , and lM (s0xyt) = lV (s

0
xyt)

in (1) and (2). However, macroeconomic policy decisions are also subject to

8See, e.g., Weise (1999), Balke (2000), Galvão (2006), Auerback and Gorodnichenko (2012),
Caggiano, Castelnuovo and Groshenny (2014), Caggiano et al (2015), Galvão and Owyang
(2018).
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nonlinearity. For example, conventional monetary policy action is constrained
by the ZLB on the nominal rate of interest. At the same time, the size and
composition of many central banks balance sheet display very di¤erent dynamics
before and after the Great Recession. In this respect, the VSTAR model in (1)-
(2) provides a natural framework to study monetary policy, as it can capture
the asymmetries stemming from policy action.
The idea of considering simultaneously the e¤ects of dual nonlinearity, from

the economy and the policy sector, is not new. This is explored in the recent
works of Guerrieri and Iacoviello (2017) and Sims and Wu (2019a,b) that use
DSGE models where nonlinearity stems from the private sector, due to the
presence of collateral constraints on borrowing, and from the policy sector, due
to the nonnegativity constraint on the monetary policy rate. The VSTAR model
speci�ed in (1) and (2) share with this works the similar emphasis on the dual
nonlinearity from the economy and policy sectors, with the purpose of evaluating
its signi�cance for empirical analysis.

2.2 Structural Form(s)

The VSTAR speci�ed in (1)-(2) is a reduced-form model, therefore suitable for
econometric estimation and dynamic analysis like forecasting. It can also be
used to analyze the response of the economy to two types of policy intervention:
unanticipated and anticipated changes in the policy instruments. The latter
involves replacing the coe¢ cients of the equations corresponding to the policy
instruments, which describe the so-called actual policy rules, with either ad-hoc
coe¢ cients or those calculated from an optimal policy. As in a VAR, both types
of policy analysis require identifying from the reduced-form model a structural
form (Sack 2000, Stock and Watson, 2001).
Identi�cation of a structural model to quantify the e¤ects of surprise policy

changes in a VSTAR is typically carried out through a full Cholesky factorization
(necessary condition) of the reduced-form covariance matrix. Since yt is a n�
1 vector, the number of possible structural transformations is n!.
In contrast, identi�cation of the structural model to quantify the e¤ects of

changes in the decision rules requires only a zero block transformation (su¢ cient
condition) of the reduced-form model, to separate the policy vector from the
economy vector. Therefore, there are (at least) two possible structural represen-
tations.9 A detailed description of the derivation of these two representation is
provided in Appendix A. To illustrate here, consider partitioning (1) to separate

9Given a zero block restriction, the economy and the policy vectors can be separated. Other
structural representations could be obtained by further restricting the covariance matrix of
the equations for the variables in the economy vector. These further restrictions are however
not necessary when using a VAR (or a VSTAR) to study the e¤ects of changes in the policy
rules.
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the economy from the policy instruments as:�
xt+1
ut+1

�
= (3)

[1� gM (s0uyt)]

8>><>>:
[1� lM (s0xyt)]

�
�x1
�u1

�
+

�
�x1 (L)
�u1 (L)

�
yt

+lM (s
0
xyt)

��
�x2
�u2

�
+

�
�x2 (L)
�u2 (L)

�
yt

�
9>>=>>;+

gM (s
0
uyt)

8>><>>:
[1� lM (s0xyt)]

�
�x3
�u3

�
+

�
�x3 (L)
�u3 (L)

�
yt

+lM (s
0
xyt)

��
�x4
�u4

�
+

�
�x4 (L)
�u4 (L)

�
yt

�
9>>=>>;+

�
vxt+1
vut+1

�
;

where �xj (L) =
�
�xxj (L) �xuj (L)

�
, �uj (L) =

�
�uxj (L) �uuj (L)

�
,

j = 1; :::; 4: The covariance matrix (2) is partitioned conformably as:


t =

�

xxt 
xut

uxt 
uut

�
(4)

= [1� gV (s0uyt)]

8>><>>:
[1� lV (s0xyt)]

�

xx1 
xu1

ux1 
uu1

�
+lV (s

0
xyt)

�

xx2 
xu2

ux2 
uu2

�
9>>=>>;+

gV (s
0
uyt)

8>><>>:
[1� lV (s0xyt)]

�

xx3 
xu3

ux3 
uu3

�
+lV (s

0
xyt)

�

xx4 
xu4

ux4 
uu4

�
9>>=>>; :

Assume that the economy does not react within the same period of a change
in policy, A1. This implies the restriction 
xut = 0 in (4) and yields the
structural representation for the economy vector:

yt+1 = [1� gM (s0uyt)]
�
[1� lM (s0xyt)] [�1 +�1 (L)yt + �1ut]
+lM (s

0
xyt) (�2 +�2 (L)yt + �2ut)

�
+ (5)

gM (s
0
uyt)

�
[1� lM (s0xyt)] [�3 +�3yt + �3 (L)ut]
+lM (s

0
xyt) [�4 +�4 (L)yt + �4ut]

�
+ et+1;

�t =

�

xxt 0
0 0

�
; (6)

where �j =
�
�0xj 00

�0
; �j (L) =

�
�xxj (L) �xuj (L)��xu1j

0 0

�
, with (i)

�xxj (L) and �xuj (L) denoting partitions of the responses of the economy vari-
ables, �xj (L), to their lagged values and to the policy instruments, respec-
tively, and (ii) �xu1j (L) denoting the responses of the economy variables to
the �rst lag of the policy instruments; �j =

�
�0xuj1 00

�0
; j = 1; :::; 4 and

et =
�
v0xt 00

�0 � N (0;�t).
Conversely, assume that the economy reacts within the same period of a

change in policy, A2. This implies the block restriction 
uxt = 0 in (4) yields
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the structural representation for the economy vector:

yt+1 = [1� gM (s0uyt)]
�
[1� lM (s0xyt)] [�1t +�1t (L)yt]
+lM (s

0
xyt) [�2t +�2t (L)yt]

�
+ (7)

gM (s
0
uyt)

�
[1� lM (s0xyt)] [�3t +�3t (L)yt]
+lM (s

0
xyt) [�4t +�4t (L)yt]

�
+ �tut+1 + et+1;

� =

�
�2x 0
0 0

�
; (8)

�t =
�
G0
12t I

�0
, G12t = 
xut


�1
uut (9)

where �jt =
�
(�xj �G12t�uj)

0
00
�0
, �jt (L) =

�
�xj (L)�G12t�uj (L)

0

�
,

j = 1; :::; 4, et =
�
(vxt �G12tvut)

0
00
�0 � N (0;�), and �2x denotes the

variance of vxt �G12tvut (see Appendix A).
The nonlinear dynamic structure of yt under both (5) and (7) describes

a VSTAR with exogenous variables, since the policy vector ut appears on the
right side in both models as an exogenous variable.10 Therefore, both (5) and (7)
can be used to represent the nonlinear economy constraint faced by a regulator
in charge of setting ut. When the objective of the regulator is approximated
by a quadratic function, the resulting problem is referred to as the nonlinear
quadratic regulator (NLQR) problem.
It is useful to point out the di¤erences between (5)-(6) and (7)-(9). The

structural model in (5)-(6) corresponds to the equations for the economy vector
xt in the reduced-form model (3). Under this representation, the economy
variables respond with a lag to changes in policy. In contrast, the structural
model (7)-(9) is obtained by extrapolating from the reduced-form covariance
matrix (4) the contemporaneous response of the economy to policy and then
incorporating this into the systematic part of xt. Thus the economy responds
within the period to changes in policy. This di¤erence in the timing of the two
structural representation is similar to that obtained when applying A1 and A2
to a VAR.11

Aside from the timing of interaction among variables, there are however
three further di¤erences between (5)-(6) and (7)-(9) that are speci�c to the
nonlinear nature of the VSTAR model in (1)-(2). The �rst refers to the type
of nonlinearity featuring the response coe¢ cient of the economy variables xt to
changes in the policy vector ut. In model (5) this re�ects the nonlinearity in
the mean of the VSTAR as it is given by �j =

�
�0xuj1 00

�0
, j = 1; :::; 4. In

model (7), this is determined by the nonlinearity in the variance of the VSTAR
as it is given by �t in (9). The second di¤erence between (5)-(6) and (7)-(9)
refers to the coe¢ cients �, � and � in the two structural models. In model
(5) these are �xed, and it is their nonlinear combination that varies across
states, re�ecting the state-dependent nature of time variation in the coe¢ cients
of the VSTAR. In model (7), these coe¢ cients are time varying and written as

10Note how the coe¢ cients corresponding to the equations for the policy instruments in ut
are all zero in both (5) and (7).
11There is not agreement on the correct timing protocol among economists. Sack (2000)

employs A1, whereas Stock and Watson (2001) argue in favour of A2. Starting from a reduced-
form VAR, Polito and Wickens (2012) evaluate optimal monetary policy in the United States
under these two alternative timing protocols and �nd that, quantitatively, di¤erences in the
solutions are generally not large.

10



�jt, �jt and �jt, j = 1; :::; 4, since they are re-calculated to incorporate time
variation from the reduced-form covariance matrix. The third di¤erence refers
to the variance structure of the disturbances in the two representations. While
this is not constant across observations and nonlinear in (6), disturbances are
homoscedastic in the structural model (9).
Both (5)-(6) and (7)-(9) can be employed as nonlinear dynamic constraints

of a NLQR problem. The structural model (5)-(6) has however two main draw-
backs. First, the solution to the NLQR problem becomes highly dimensional.
This is because the coe¢ cients in (5) depend on the lagged value of the policy
vector, the variable set by the regulator. Thus changes in ut a¤ect on impact the
entire system through �j and gM (s0uyt). Second, the solution would no longer
satisfy the certainty equivalence principle, since changes in the lagged value of
the policy vector would also a¤ect the variance structure in (6). In contrast,
the structural model in (7)-(9) yields a solution that has lower dimensionality
compared to (5)-(6). This is because changes in the policy vector ut+1 a¤ect
the economy through �j but not gM (s0uyt), which is pre-determined when pol-
icy choices are made. In addition, the structural model in (7)-(9) satisfy the
certainty-equivalence principle, because the disturbances in (7) have constant
variance given by (9). In other words, the representation in (7)-(9) brings a
low-dimension and certainty-equivalent structural identi�cation of the VSTAR
model.
To further appreciate the signi�cance of nonlinearity in the structural iden-

ti�cation of VSTAR for the analysis of changes in the policy rules, consider the
structural models obtained instead by applying A1 and A2 to a reduced-form
VAR. Setting gi (s0uyt) = li (s

0
xyt) = 0, i = M;V , in (1) and (2) yields the

reduced-form VAR:

yt+1 = �1 +�1 (L)yt + vt+1; vt � N (0;
t)

t+1 = 
1:

A1 and A2 yield the following structural representations:12

A1 : yt+1 = e�1 + e�1 (L)yt + e�1eut + evt+1; evt � N �0; e
�
A2 : yt+1 = b�1 + b�1 (L)yt + b�1but+1 + bvt+1; bvt � N �0; b
� :

The two structural representations from the VAR di¤er only in terms of the tim-
ing interaction between the economy and the policy instruments, being with a
lag under A1 and contemporaneous under A2. The use of either of them as con-
straint for optimization makes no di¤erence in terms of problem dimensionality
due to the absence of the transition functions. At the same time, disturbances
are homoscedastic in both models, implying that certainty-equivalent policy
rules can be calculated from both.
Given the advantages highlighted above, the NLQR problem is speci�ed and

solved in the next section using the structural representation based on A2 in
(7)-(9). Stock and Watson (2001) argue in favour of A2, on the ground that it
is reasonable to expect the economy to react within the the same period of a
change in policy whenever data are observed at monthly or lower frequency. This

12For the derivation of these two structural models from a VAR, see Polito and Wickens
(2012).
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point is further reinforced when the economy vector includes variables re�ecting
prices and �nancial market behaviour. The timing of A2 is also consistent with
that of a typical New Keynesian model, since the IS and Phillips curves in this
model result in quantities and prices that respond within the same period to
changes in the policy rate.

3 NLQR Problem

The structural model of the economy identi�ed from the VSTAR can be used to
evaluate optimal macroeconomic policy. This is done by formulating a general
NLQR problem in which the structural model represents the constraints faced by
a quadratic regulator. The optimal policy is calcuated with the SDRE method
and then combined with the structural model to derive the reduced-form VSTAR
under the optimal policy. Potential issues of stability are also considered.

3.1 Speci�cation

The problem of setting optimal policy is speci�ed as a closed-loop regulator
determining the sequence of policy instruments futg1t=1 that minimizes the
quadratic loss function

V0 = E0
1P
t=0
�t
�
(yt � y)0Q (yt � y)

�
; (10)

where E0 denotes mathematical expectation conditional on information at time
t = 0; � 2 (0; 1) is the discount factor; y is a vector of targets; Q is a symmetric
positive semide�nite matrix of coe¢ cients. The regulator takes the initial value
y0 as given and sets futg1t=1 subject to the constraint of the VSTARX model
in (7)-(9).13

It is not possible to derive a closed-form for the solution of the NLQR prob-
lem of minimizing (10) subject to the nonlinear structure of (7)-(9). Economists
typically proceed in two possible ways. One option is to linearize the nonlinear
model (7) so that the NLQR problem e¤ectively becomes an LQR and a closed-
form solution can be calculated with standard dynamic programming tecniques
(Ljungqvist and Sargent, 2018). The alternatively is to solve the problem nu-
merically using the nonlinear model of the economy as it is or a higher-order
approximation. Using linearization, would somehow be inconsistent with the
main aim of this paper, i.e. studying the signi�cance of macroeconomic non-
linearities for optimal policy analysis. The main drawback of numerical meth-
ods is that they can be computationally intensive. In the context of VSTAR,
Luukkonen, Saikkonen and Teräsvirta (1988) show how to employ Taylor-series
expansion of the transition function to derive a polynomial approximation of the
VSTAR that can be used to test for nonlinearity in the data. The issue of using
this approach for the purpose of solving a NLQR problem is that the economy
constraint would remain still highly nonlinear, even when using a �rst-order
approximation of the transition function.

13Finding the sequence of futg1t=1 that minimizes (10) is equivalent to calculate the solution
to the optimal policy under commitment. The analysis can be easily extended to (i) compute
solutions under discretion, where the regulator minimizes the loss function only in the current
period, (yt � y)0Q (yt � y), and/or (ii) allow for time variation in the weighting matrix Q.
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The control engineering community has a long history in modelling and solv-
ing NLQR problems. Most methods are designed to deal with a generic non-
linear model, rather than being tailored to the speci�cs of a VSTAR. Among
these, a method of increasing popularity is that of the State Dependent Riccati
Equation (SDRE). The SDRE method extends the method of Riccati equation
iteration used in LQR to the nonlinear case. In practice, this is done by ap-
proximating the NLQR problem into a sequence of one-period LQR problems
that can be solved independently and with standard dynamic programming tec-
niques. The SDRE method has the advantage of being numerically fairly simple
in comparison to many other nonlinear optimization tecniques, as well as being
closely related to the well-understood Riccati equation method used for LQR.14

The next sections describe the implementation of the SDRE method with the
VSTAR.

3.2 State Dependent Riccati Equation Method

The SDRE method applied to solve the NLQR problem of minimizing (10)
subject to (7)-(9) includes two steps. The �rst consists of employing state de-
pendent coe¢ cients (SDCs) factorization to transform the nonlinear model (7)
in an a¢ ne structure with SDC matrices. As a result, the NLQR problem can
be written in a form that is isomorphic to the LQR problem and it can be solved
with standard dynamic programming techniques. The second step consists of
solving the NLQR problem iterating on the resulting SDREs. The solution
yields feedback rules for the policy instruments with time-varying response co-
e¢ cients.

3.2.1 State Dependent Coe¢ cients Factorization

In the engineering control community SDC factorization is typically used for
solving (i) continuous time, (ii) deterministic NLQR problems, (iii) using the
method of variation. The method is adapted here for solving (i) discrete time,
(ii) stochastic NLQR problems, (iii) using dynamic programming. To illus-
trate the idea of SDC factorization, consider the di¤erential equation for an
autonomous system, with fully observable state, nonlinear in the state and
a¢ ne in the control:

:
x (t) = f (x) + g (x)u (t), x (0) = x0, where x 2 Rn is

the state vector, u 2 Rm is the control vector, f : Rn ! Rn and g : Rm ! Rn
are continuos functions, f (0) = 0, g (x) 6= 0 8x, and t 2 [0;1]. The two non-
linear functions can be factorized as f (x) = A (x)x and g (x) = B (x) where
A (x) and B (x) are matrices of coe¢ cients that depend on the state vector.
Thus the nonlinear di¤erential equation can be written in an a¢ ne form with
SDC matrices:

:
x = A (x)x + B (x)u. For this reason, early applications re-

fer to the SDC factorization as quasi linearization (Pearson, 1962) or apparent

14Early work in the engineering literature on the SDRE method was done by Pearson (1962),
Garrard, McClamroch and Clark (1967), Burghart (1969) and Wernly and Cook (1975).
Cloutier et al. (1996a,b) and Mracek and Cloutier (1998) illustrate the theory and appli-
cation of the SDRE in the context of a¢ ne nonlinear models, establishing conditions required
to achieve optimality, stability and convergence. Beeler, Tran and Banks (2000a) compare
SDRE with other methods for control of nonlinear models. Beeler, Tran and Banks (2000b)
develop SDRE in the context of tracking control and state estimation. Beeler (2004) reviews
the SDRE method and considers a number of possible variations to overcome numerical issues.
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linearization (Wernli and Cook, 1975).15

Following this, the nonlinear system in equation (7) can be factorized in
terms of SDC matrices and rewritten as

yt+1 = c (yt) +A (yt)yt +B (yt)ut+1 + et+1 (11)

for t � 0, using:

c (yt) = [1� gM (s0uyt)] f[1� lM (s0xyt)]�1t + lM (s0xyt)�2tg+
gM (s

0
uyt) f[1� lM (s0xyt)]�3t + lM (s0xyt)�4tg ;

A (yt) = [1� gM (s0uyt)] f[1� lM (s0xyt)]�1t (L) + lM (s0xyt)�2t (L)g+
g (s0uyt) f[1� lM (s0xyt)]�3t (L) + lM (s0xyt)�4t (L)g ;

B (yt) = �t;

with the upper part of �t, i.e. G12t, being given by (9).16 Three results of
the above SDC factorisation are worth highlighting. First, by construction the
SDC factorization gives a representation of the model of the economy that is
mathematically equivalent to the structural model in equation (7). Second,
the SDC vectors c (yt) and the SDC matrices A (yt) are constructed adding
through weighted coe¢ cients across the four states, with weights given by
[1� gM (s0uyt)] [1� lM (s0xyt)], [1� gM (s0uyt)] lM (s0xyt), gM (s0uyt) [1� lM (s0xyt)]
and gM (s0uyt) lM (s

0
xyt) for state j = 1; 2; 3 and 4, respectively. However, the

SDC matrix B (yt) encapsulates the highly nonlinear structure of (9). Third,
all SDC matrices in (11) depend on the previous period state vector. For this
reason, these are una¤ected in the current period by a change in policy.17

SDC factorizations are not new in macroeconomics. Guerrieri and Iacoviello
(2017) use it to solve a DSGE model with dual nonlinearity from both the
private and policy sector. Their solution takes the form of two SDC VAR
models, depending on whether the ZLB constraint is binding or not.

3.2.2 State Dependent Coe¢ cients Solution

Following the SDC factorization, the closed-loop regulator problem consists of
�nding the sequence fut+1g1t=0 that minimizes (10) subject to (11) given y0.
For convenience, this is re-written below:

min
fut+1g1t=0

V0 = E0
1P
t=0
�t
�
(yt � y)0Q (yt � y)

�
s:t: : yt+1 = c (yt) +A (yt)yt +B (yt)ut+1 + et+1;

et+1 � N (0;�) and y0 given.

15Wernli and Cook (1975) also consider the SDC factorization of the more general model
:
x = f (x; u; t). This is given by f (x; u; t) = A (x; u; t)x + B (x; u; t)u, where A (x; u; t) and
B (x; u; t) are matrices of coe¢ cients, both depending on x, u and t.
16 It is worth highlighting that the SDC factorization is very general, and it can be applied

to many other nonlinear structures, including threshold models, arti�cial neural networks and
bilinear time series models.
17An issue often highlighted in the engineering literature on the SDRE method, see Cloutier

et al. (1996a) or Beeler (2004), is that SDC factorizations are not unique, since there are many
nonlinear forms that can be encapsulated into the SDC matrices in equation (11). This is true
when the SDC factorization is used to approximate an unknown nonlinear model. However,
this issue does not apply here, since the starting point of the analysis is the regime changing
description of the economy through the known VSTAR model in (1)-(2).
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This formulation of the NLQR problem is isomorphic to the LQR except for
the objects c (yt), A (yt) and B (yt), whose elements are functions of the state
vector yt. Given this, the SDRE method treats the matrices c (yt), A (yt) and
B (yt) as �xed in any given period t � 0 and solves the NLQR problem in that
period as a LQR.18 The Bellman equation for any t � 0 can be written as

V (yt) = min
ut+1

�
(yt � y)0Q (yt � y) + �EtV (yt+1)

�
:

The value function is guessed to be quadratic and involving undetermined coef-
�cients: V (yt) = y0tPtyt+2y

0
tpt+ pt, where Pt, pt and pt are a positive semi-

de�nite symmetric matrix, a vector and a positive scalar, respectively, whose
coe¢ cients are �xed in any given period t � 0, but vary over time. After re-
placing the postulated solution on the right side of the Bellman equation and
using (11) to compute expectations, di¤erentiation with respect to ut+1 yields
the SDRE solution to the NLQR problem:

ut+1 = kt+Ktyt (12)

kt = �
�
B (yt)

0
PtB (yt)

��1
B (yt)

0
[Ptc (yt) + pt] ; (13)

Kt = �
�
B (yt)

0
PtB (yt)

��1
B (yt)

0
PtA (yt) ; (14)

where:

Pt = Q+ �A (yt)
0
PtA (yt)� (15)

�A (yt)
0
PtB (yt)

�
B (yt)

0
PtB (yt)

��1
B (yt)

0
PtA (yt) ;

pt =
�
I� �

�
K0
tB (yt)

0 �A (yt)0
�	�1� �

�
A (yt)

0
+K0

tB (yt)
0�

�Ptc (yt)�Qy

�
;(16)

pt = (1� �)�1
�

y0Qy + �c (yt)
0
Ptc (yt) + �k

0
tB (yt)

0

[Ptc (yt) + pt] + �tr [�t+1Pt] + 2�c (yt)
0
pt

�
: (17)

The optimal feedback rule (12) is a linear function of the state vector with
time-varying coe¢ cients, since the Kalman gain Kt in (14) and the intercept
term kt in (13) are both determined by SDCs matrices. The feedback rule (12)
is derived as follows in any given t � 0. First solve the Riccati equation (RE)
in equation (15) to obtain Pt. Since the coe¢ cients of A (yt) and B (yt) are
predetermined, the RE equation (15) can be solved, for example, iterating until
convergence on Pt. This solution is a function of yt and for this reason the
RE has to be solved conditional on the value of the state vector yt. Second,
calculate Kt from equation (14). Third, compute pt from (16). Fourth, use the
calculated values for Pt and pt to compute kt from (13). The optimal feedback
policy can then be calculated from equation (12). This gives a time-varying
sequence of ut+1 for t � 0. Finally, compute the sequence of pt from (17) for
t � 0.
The algorithm described above illustrates the simplicity and computational

advantages of the SDRE method. In any period t � 0; given yt, the objects
c (yt), A (yt) and B (yt) can be regarded as �xed and the feedback rule coe¢ -
cients in that period can be computed upon iteration of (15), which is e¤ectively
a standard algebraic Riccati equation. It is worth observing that in a LQR prob-
lem where the constraint of the regulator is a system with �xed coe¢ cients (i.e.

18Appendix B derives the solution step-by-step.
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c (yt) = c, A (yt) = A and B (yt) = B), the value function parameters P, p,
and p can be computed o ine before the policy rule in (12) is implemented,
since (15)-(17) depend only on the parameters of the objective function and the
time-invariant coe¢ cients c, A and B. In contrast, the derivation of the SDRE
solution described above can only be computed online, since the parameters of
the constraint in (11) depend on the state vector, which in turn changes over
time due to the implementation of the feedback rule (12). The online solution
works as follows. In period t = 0, equations (13)-(17) are solved given y0 and
(12) is used to compute u1. For t > 0, two options are available, depending
on whether the state vector is updated with simulated or observed yt�s. The
�rst consists of replacing the optimal ut into (11) to update the state and com-
pute yt+1, which can then be used for the next stage of optimization to derive
ut+1, and so on. The second option is only feasible for in-sample counterfactual
simulation since it consists of updating in every period the state vector using
its observed value. Clearly, the deviations between the observed and the opti-
mal paths of ut are smaller when the updating is based on the observed yt�s.
Constraints on some of the policy instruments included in ut, like for example
the nonnegativity of the federal funds rate in Section 5, are implemented in the
online solution directly upon computation of the policy vector ut in each t � 0.

3.3 Reduced Form

The closed-loop solution in equations (12)-(14) takes the form of a linear feed-
back rule with time-varying matrices of coe¢ cients, Kt and kt. In any t � 0,
these can be combined with the equations for the economy in SDC form in (11)
as: �

I �B (yt)
0 I

� �
xt+1
ut+1

�
=

�
c (yt)
kt

�
+

�
A (yt)
Kt

�
yt +

�
et+1
0

�
: (18)

The system (18) can be written as a reduced-form model with time varying
coe¢ cients:

yt+1 = �
�
t +�

�
t (L)yt + e

�
t+1; (19)

where

��t =

�
c (yt) +B (yt)kt

kt

�
, ��t (L) =

�
A (yt) +B (yt)Kt

Kt

�
, e�t =

�
et
0

�
and et � (0;�), with covariance matrix � being de�ned in (9). Equation (19) is
the VSTAR model under the optimal feedback rule, written in SDC form. This
di¤ers from the reduced-form VSTAR in (1) and (2) in three respects. First, the
coe¢ cients corresponding to the equations for the economy in the VSTAR in (1)
and (2) are replaced with a linear combination of the corresponding coe¢ cients
from the structural model (7)-(9) and the policy rule coe¢ cients (see the top
parts of ��t and �

�
t (L)). Second, the coe¢ cients corresponding to the equations

for the policy vector in the VSTAR in (1) and (2) are replaced with those in
(12). Third, the variance structure of the VSTAR in (19) is constant, while it
is time-varying and state-dependent in the the original VSTAR in (1) and (2).
It is worth noting that the system (11) can be used to study the e¤ects of any

policy rule including those with ad-hoc coe¢ cients. To this end it is su¢ cient
to replace the coe¢ cients Kt and kt in (18) with any given values, say eKt andekt, and then derive the corresponding reduced-form system as in (19).
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3.4 Stability

The VSTAR model under the optimal feedback rule in (19) describes a closed-
loop system with time-varying parameters, since the feedback rule coe¢ cients,
kt and Kt, and the coe¢ cients of the regulator constraint, c (yt), A (yt) and
B (yt), are time varying. This system is asymptotically stable if Q is positive
semide�nite and the pair fA (yt) ;B (yt)g is stabilizable for all yt over t �
0 (su¢ cient conditions). Stabilizability requires that yt converges to a �xed
point at t ! 1, given any starting value y0. For any t � 0, assume the
eigenvalues of ��t (L) to be distinct and consider the time-varying eigenvalue
decomposition ��t (L) = DtRtD

�1
t , where each column of Dt is an eigenvector

of ��t (L) and Rt is a diagonal matrix of eigenvalues of ��t (L). Ignoring the
intercept and considering only its deterministic part, the closed-loop system
(19) can be written as yt+1 = DtRtD

�1
t yt in any t � 0. The solution to this

di¤erence equation in any given period t � 0 can be calculated using backward
substitution, which yields yj = DtR

j
tD

�1
t y0.19 This is stable in any given

period t � 0 and for any initial condition y0 if and only if in that period the
eigenvalues in the matrix A (yt) +B (yt)Kt, i.e. the diagonal elements of Rt;
are all strictly less than unity in absolute value.
In general, as long as the matrix Q is positive semide�nite it is always pos-

sible for the control solution to stabilize the pair fA (yt) ;B (yt)g. Even if the
open-loop system (i.e. the VSTAR) is highly unstable in a given period t � 0,
for example dysplaying one or more explosive roots, then the closed-loop sys-
tem is still stable. Convergence may show poor dynamics in the sense that the
control may display an erratic initial path and large swings, thereby requiring
the system longer time to settle. If the instruments vector is subject to con-
straints, these may be binding in some t � 0 therefore further deteriorating
the performance of the control solution. Lewis, Vrabie and Syrmos (2012) sug-
gest that asymptotic stability can be insured more e¢ ciently by employing in
any period in which the pair fA (yt) ;B (yt)g is highly unstable another sta-
bilizable pair,

�
A (yt) ;B (yt)

	
, whose roots are more stable than the original

fA (yt) ;B (yt)g. To construct the stabilizable pair
�
A (yt) ;B (yt)

	
, one can

use the time-invariant pair fA;Bg obtained from the time-invariant version of
(1)-(2), i.e. the VAR. If this pair is stabilizable than it can be used as replace-
ment for fA (yt) ;B (yt)g in any period t � 0 when this is either highly unstable
or not stabilizable at all.
Arguably, the choice of the stabilizable pair

�
A (yt) ;B (yt)

	
is not unique

and the time-invariant pair fA;Bg is not necessarely the most e¢ cient. For
example, the control algorithm could be executed one-period ahead only over
a given time horizon, say t 2 (0; T ) and several stable fA (yt) ;B (yt)g pairs
could be identi�ed. Each of these, or some linear combination of them, could
be used as stabilizable pair. The preferred pair may be chosen as that yielding
less volatility. However, the time-invariant pair fA;Bg has three advantages
compared to these alternatives. First, it can be computed o ine before knowing
the state of the economy and before computing the optimal control rule, as it
only requires knowledge of the time invariant matrices A and B. Second, it
is faster to implement as it does not require any preliminary assessment of the
many possible stable pairs. Third, the stabilizing pair fA;Bg exists as long as
19Note that this result is derived in any period t � 0 keeping Rt and Dt �xed and com-

pounding over the upper script j, starting from a given y0.
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Figure 1: Aggregate monthly data, United States, 1979:8 to 2018:10. NBER
recessions in grey.

a stable VAR can be inferred from the VSTAR, while there is not guarantee
that a stable fA (yt) ;B (yt)g pair can be identi�ed over t 2 (0; T ).
Given the above, stability of the VSTAR under control in the numerical

analysis is monitored as follows. First, the numerical algorithm implementing
the SDRE solution in (12)-(16) is applied. If the resulting loss is lower that that
obtained from the simulation of the VSTAR, then the closed-loop solution is
kept. Otherwise, the solution is recomputed using the stabilizing pair fA;Bg
from the VAR in any period t � 0 in which the VSTAR under control in (19) is
unstable. If this still delivers an higher loss, then the the solution is recomputed
using the stabilizing pair fA;Bg from the VAR in any period t � 0 in which
the open-loop pair fA (yt) ;B (yt)g is unstable.

4 Estimated VSTAR

This section describes the data used for the empirical analysis and the steps
undertaken to specify, estimate and validate the VSTAR model used for the
subsequent analysis of the optimal monetary policy.

4.1 Data

The VSTAR model is estimated using aggregate monthly data for the United
States from 1979:8 to 2018:10.20 The economy vector includes four variables:
the credit risk, measured as the spread between the Baa corporate rate and
the 10-year treasury rate (s); the in�ation rate (p), measured as the annual
change in the personal consumption expenditures de�ator; the growth rate of
industrial production (ip); and the di¤erence between the actual and the natural
rate of unemployment, the unemployment gap (ug). The policy vector includes

20Details on the sources of the raw data and how these are transformed to obtain the time
series used for the quantitative analysis are given in Appendix C.
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three variables: Treasury securities held by the Fed as a proportion to GDP
(TS); other private securities held by the Fed as a proportion to GDP (PS);
and the federal fund rate (R). The selected measure of credit risk is used as a
proxy for �nancial conditions in the macroeconomic system.21 In�ation and the
unemployment gap are used as indicators for the Fed targets for price stability
and maximum employment, respectively, as in Federal Reserve Bank of St. Louis
(2015). The sum of TS and PS equals total assets held in the Fed�s balance
sheet, as a proportion to GDP. Thus the speci�ed VSTAR includes conventional
and QE monetary policy tools, and can account for variation in both the size
of the Fed�s balance sheet and the composition of its assets portfolio.
Figure 1 plots the data, highlighting in grey periods of economic recessions

measured by the NBER.22 Several clear irregularities are visible over the sam-
ple period: the large spikes in the credit risk indicator, in�ation, industrial
production and unemployment gap data; the asymmetric dynamics of the un-
employment gap above and below zero; the large transitional changes in the QE
variables, TS and PS, around the Great Recession; and the �at path of the fed-
eral fund rate while at the ZLB. Most of the applied macroeconomic literature
uses VSTAR to capture asymmetries in the business cycle of the economy.23

The asymmetric dynamics of the unemployment gap also capture this. The
clear irregularities observed in the dynamics of the policy instruments further
motivate the use of a nonlinear model like the VSTAR in (1) and (2) that can
account for nonlinearity in both the economy and policy vectors.
The sample covers three key periods of the monetary economic history of

the United States. The �rst is from the appointment of Paul Volcker as Fed
Chairman in August 1979 until around the beginning of Great Recession in
September 2008. Over this period the main instrument of monetary policy
is federal funds rate. The size of the Fed�s balance sheet remaines relatively
constant, being on average about 6 percent of GDP. The composition of the
assets portfolio gradually changes, with the share of TS increasing from about 70
to about 90 percent of the total portfolio by mid 2007. The second period covers
the Great Recession and the post-crisis slow recovery, ending just before the Fed
announcement of the normalization program, in December 2015. Throughout
this phase the federal fund rate is near zero (below 25 base points) and the
Fed�s portfolio of assets increases in size, reaching about 25 percent of GDP,
and changes in composition, as PS cover on average about half of the portfolio
due to the large purchases of mortgage-backed assets.24 The third phase of the
United States monetary policy covered by the sample period includes the early
stage of the so-called normalization program, between January 2016 (when the
federal funds rate rises above 25 base points, 0.34 percent, for the �rst time after

21Galvão and Owyang (2018) use a factor VSTAR model to derive a �nancial conditions
factor that is highly correlated with macroeconomic and credit risk variables of the United
States economy. The indicator s is the measure of credit risk that display the highest cor-
relation with their �nancial conditions factor, see Table 2 in Galvão and Owyang (2018). A
popular alternative in the QE literature to proxy credit risk is the VIX. In contrast to those
required to construct s, time series of the VIX are only available from the 1990s onward.
22According to the NBER, over the sample period the United States economy was in re-

cession �ve times: between January-July 1980, July 1981-November 1982, July 1990-March
1991, March-November 2001 and December 2007-June 2009.
23See, e.g., Auerback and Gorodnichenko (2012), Caggiano, Castelnuovo and Groshenny

(2014), Caggiano et al (2015), Galvão and Owyang (2018).
24A detailed description of the di¤erent QE programs undertaken by the Fed since 2008 can

be found in Kuttner (2018).
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seven years) until the end of the sample. By October 2018, the federal funds rate
has reached 2.4 percent, the size of the balance sheet has declined to about 20%
of GDP, while the assets portfolio composition has remained diversi�ed with
TS averaging about 54.5 percent of total assets. This latest phase of monetary
policy in the United States is therefore characterized by a low federal funds rate,
yet away from the ZLB, and a size of the Fed�s balance sheet larger than in the
decades preceding the Great Recession. Whether this is a transitional period or
the beginning of a new policy con�guration is early to establish. Nevertheless
this feature of the data will be re�ected in the structure of the transmission
mechanism estimated through the VSTAR and in the analysis of optimal policy.
It is important to highlight at this stage a possible limitation the chosen

breakdown for the balance sheet variables, since this does not account for the
maturity structure of the assets held by the Fed. In principle, this could be
included in the VSTAR, at least to a �rst-order approximation, by separat-
ing short- and long-term holdings of TS. This would however require a large
increase in the number of coe¢ cients of the VSTAR, making the estimation
untractable. Thus the optimal policy analysis can only consider whether in
any given period TS and PS holdings should increase, decrease or remain un-
changed, The analysis is however silent on whether the maturity structure of
assets within these two cathegories should also change. This should be kept in
mind while interpreting the results in Section 5. Nevertheless, the distinction
between TS and PS is still important, both in theory and practice. As noted in
the Introduction, this distinction is highlighted in the economic theory on the
transmission mechanism of QE, where changes of TS and PS a¤ect aggregate
demand through the portfolio-balance and the credit channel, respectively. Ac-
cording to Kuttner (2018), TS and PS are also key tools of QE policy in the
United States which is focused on the asset side of the balance sheet.

4.2 Speci�cation

Variables are ordered as y0t =
�
st �t ipt ugt TSt PSt Rt

�
. As in

Dahlhaus, Hess and Reza (2018) and Galvão and Owyang (2018), the VSTAR
lag lenght is equal to one, since a larger number of lags would make the estima-
tion of the VSTAR parameters unfeasible.
Estimation requires the speci�cation of the transition functions li (s0xyt) and

gi (s
0
uyt), i = M;V . The function li (s0xyt) is set to capture nonlinearity due

to the amount of slack in the economy, measured using the unemployment gap.
Thus s0x =

�
0 0 0 1 0 0 0

�
and li (s0xyt) = li (ugt). This is similar to

Ramey and Zubairy (2018), except that in their work the natural unemployment
rate is constant at 6.5 percent, while it is time-varying in this paper following the
de�nition of unemployment gap adopted by Federal Reserve Bank of St. Louis
(2015). The unemployment gap is not the only possible measure of economic
slack. Auerbach and Gorodnichenko�s (2012), for example, employ the moving
average of GDP growth. Using this measure would however signi�cantly cut the
sample size, since monthly observations of real GDP are only available from the
early 1990s.25 The function gi (s0uyt) is set to capture changes in the VSTAR

25As explained in Appendix C, an estimate of the monthly GDP is still needed in order to
scale the QE variables before the 1990s. To this end, a series of monthly nominal GDP is
interpolated from available quarterly data. In principle, this could be added to the available
data on monthly GDP and then employed as transition variable. This however would a¤ect
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parameters depending on whether or not the economy is near to the ZLB. Thus
s0u =

�
0 0 0 0 0 0 1

�
and gi (s0uyt) = gi (Rt).

Transition across states due to nonlinearity in the economy is modelled using
a logistic function li (ugt) : (�1;+1)! [0; 1] described as

li (ugt) = f1 + exp [�li (ugt � ci)]g
�1
; (20)

where li > 0 denotes the speed of adjustment across states for the parameters
of yt, i = M , and 
t, i = V ; ci indicates the threshold parameter. Since the
federal funds rate cannot be negative, transition across states due to nonlinearity
in the policy vector is instead modelled with the incomplete gamma function
gi (Rt) : (0;+1)! [0; 1] described as:

gi (Rt) =
1

�
�
gi
� RtZ
0

e�ttgi�1dt; (21)

where �
�
gi
�
is the gamma function with shape parameter gi for yt, i = M ,

and 
t, i = V ; and the implied scale parameter has been set equal to one.
Logistic functions are widely employed in the applied macroeconomic litera-
ture to capture nonlinearity stemming from the economy, see, e.g., Auerback
and Gorodnichenko (2012), Caggiano et al. (2015) and Galvão and Owyang
(2018). The incomplete gamma function is used to capture nonlinearity driven
by a variable that is nonnegative, being for example volatility, as in Lanne and
Saikkonen (2005), or the nominal rate of interest, as in Hurn et al. (2018). To
discipline the economic interpretation of the estimated paremeters, the thresh-
olds in (20) are set equal to zero, i.e. ci = 0, i = M;V . This means that the
nonlinearity stemming from the economy vector depends on whether the actual
rate of unemployment is above or below the natural rate of unemployment or,
in line with Ramey and Zubairy (2018), equivalently the amount of slackness in
the economy.
To impose the positive de�niteness restriction on the covariance matrix while

simultaneously reducing the dimension of the parameter vector, the estimation
uses the covariance matrix decomposition based on the BEKK model of Engle
and Kroner (1995). This sets 
j = e
0j e
j in (2), where each e
j is a lower
triangular matrix, j = 1; :::; 4.
As well as estimating the unrestricted model (1)-(2), �ve alternative spec-

i�cations are considered for comparison, each being nested in the unrestricted
VSTAR: (i) VSTARC, which constraints the transition parameters in the logistic
and gamma function for the mean and variance to be the same, i.e. lM = lV
and gM = gV ; (ii) VSTARV, which allows for nonlinearity only in the variance
structure but keeps a constant mean; (iii) VSTARM, with allows for nonlinearty
in the mean but has contant variance; (iv) VSTARP, which restricts each equa-
tion for the QE instruments to follow an AR(1) when the federal funds rate is at
the ZLB, and the equation for the the federal funds rate to follow an AR(1) dur-
ing the ZLB period; (v) VAR, with constant mean and variance. The VSTARC
speci�cation imposes restrictions on the transition variables similar to those
used by Auerback and Gorodnichenko (2012) and Galvão and Owyang (2018).
The VSTARP speci�cation restricts the dynamics so that QE is exogenous when

the estimate of nonlinearity by any possible approximation error from the interpolation.
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conventional monetary policy is active, and viceversa, as assumed by Hurn et al.
(2018) and Sims and Wu (2019a,b). The VSTARM and VSTARV speci�cations
restrict nonlinearity to the mean and variance, respectively. The VAR gives a
linear benchmark against which to compare any nonlinear speci�cation.

4.3 Estimation

Each model is estimated with full information maximum likelihood using stan-
dard iterative algorithms. Assuming a normal distribution for the disturbance
terms, vt � N (0;
t), the log-likelihood function of yt at observation t 2 (0; T ),
for any of the VSTAR models described above with parameter vector � is
ln lt (�) = �n

2 ln 2� � 0:5 ln j
tj � 0:5v
0
t


�1
t vt. The full information maxi-

mum likelihood estimator �U for a sample T conditioning on the �rst q = 1
observations is calculated by maximizing the conditional log-likelihood function
lnLT (�) = [2 (T � q)]�1

PT
t=q+1 ln lt (�).

26

Table 1 ranks each estimated model in terms of its log-likelihood, reported
in the second column. The following three columns report the number of para-
meters (NoP) estimated for each model; the likelihood ratio (LR) test compar-
ing the log-likelihood of each restricted model against the unrestriced VSTAR;
and the critical value of the chi-square distribution at 5 percent. The last
three columns report the Akaike (AIC), the Hannan and Quinn (HIC) and the
Schwarz (SIC) information criteria, which penalize the log-likelihood of each
model taking into account its dimensionality.
Overall, the results in Table 1 validate the use of the speci�ed VSTAR, as

this provides the best �t of the data along most criteria. All �ve restricted
speci�cations are rejected against the unrestricted VSTAR under the LR test.
The VSTAR is also selected as the preferred speci�cation under the AIC and
the HIC, while it ranks below the VSTARP only according to the SIC. It is
interesting to observe that all speci�cations allowing for nonlinearity in the
variance (the �rst four in Table 1) have a log-likelihood higher than the two
homoscedastic speci�cations (VSTARM and VAR). This points towards the rel-
ative importance of allowing for nonlinearity in the volatility, as also highlighted
in Polito and Spencer (2016). Perhaps unsurprisingly given the data dynamics
observed in Figure 1, the VAR provides in general the worst �t under almost
any diagnostic considered in Table 1.

The top panels in Figure 2 illustrates the evolution of the transition proba-
bilities determining variation in the coe¢ cients in the mean (top-left) and the
variance (top-right) of the estimated VSTAR. The black lines show the prob-
ability of the economy being in a slack state, li (ugt) ' 1, or not being in a
slack state, li (ugt) ' 0. The red lines those of policy being away from the

26The VSTAR is �rst estimated using as starting values the coe¢ cients from the OLS
VAR. All other restricted models are estimated after imposing the required restrictions on the
coe¢ cients estimated from the VSTAR and then using these as starting values. Restricting
the transition functions to zero returns the OLS VAR coe¢ cients. The VSTAR coe¢ cients
are re-estimated after normalizing the transtion variables ugt and Rt to have zero mean and
unit variance, but this does not lead to signi�cant di¤erences in the parameter estimates. The
log-likelihood function is maximized using the quasi Newtown method, the default option in
MATLAB fminunc.
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Model lnLT NoP LR �2NoR(5%) AIC HIC SIC
VSTAR 0.0089 340 1.43 2.61 4.43
VSTARP -0.1395 302 139.16 51 1.57 2.63 4.26
VSTARC -0.1704 338 29.04 5.99 1.78 2.95 4.77
VSTARV -0.8025 161 592.94 209.04 2.30 2.87 3.74
VSTARM -1.6298 224 1528.72 1368.90 4.22 5.01 6.22
VAR -2.2982 77 2155.68 1402.93 4.92 5.19 5.61

Notes: LR = �2 (T � q) [lnLT (�R)� lnLT (�U )]; AIC = �2lnLT (�)+ 2k
T�q ;

HIC = �2lnLT (�)+2k ln
h
ln(T�q)
T�q

i
; SIC = �2lnLT (�)+k ln(T�q)T�q ;

T = 471; q = 1; k = NoP :

Table 1: Maximum likelihood estimates of the unrestricted VSTAR model and
�ve alternative restricted speci�cations.

ZLB, gi (Rt) ' 1, or near to the ZLB, gi (Rt) ' 0. NBER recession periods are
also highlighted in grey for reference. With regard to nonlinearity in the mean
(top left panel), four sharp shifts in the VSTAR coe¢ cients can be observed, all
linked to the economy vector and occurring around (NBER) recessions. After
2001, nonlinearity stemming from the policy instruments becomes signi�cant
too, in particular during 2009-2015, when the federal funds rate is close to the
ZLB. With regard to volatility (top right panel), changes in the coe¢ cients due
to nonlinearity in the economy vector also occur around recessions. In contrast,
coe¢ cient changes driven by Rt increase in frequency over the whole sample
period, re�ecting the downward trend in the federal funds rate observable in
Figure 1.
The bottom panels in Figure 2 report scatter diagrams of lM (ugt) vs. lV (ugt)

(bottom left) and gM (Rt) vs. gV (Rt) (bottom right). These display the corre-
lation between coe¢ cient changes in the mean and variance. It can be clearly
observed that changes in coe¢ cients linked to the rate of unemployment in the
mean and variance of the VSTAR tend to comove, with transition probability
oscillatting above and below 0.5. Coe¢ cient changes linked to the federal funds
rate in the mean and variance of the VSTAR tend to comove too, though grad-
ually shifting over the whole sample period in line with the downward trend of
the federal fund rate.

4.4 Impulse Response Functions

IRF analysis is carried out to verify whether the estimated VSTAR can deliver
dynamics of the policy instruments in response to economic shocks consistent
with the economic theory. If this is the case, then the estimated VSTAR can
be regarded as a reliable starting point for the subsequent analysis of optimal
policy.
The transmission mechanism of shocks in the VSTAR depends on the mag-

nitude and size of the shocks, as well as the state of the economy when a shock
occurs. The IRFs are nonlinear, since they allow for regime changing in the mean
and variance over the simulation horizon and the ZLB constraint is enforced on
by restricting the IRFs of the simulated federal funds rate to be nonnegative.
The IRFs are also structural because they are computed from the simulation of
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Figure 2: Transition probabilities estimated from the VSTAR.

the structural rather than the reduced-form VSTAR.27

Existing analyses of IRFs with VSTAR are based on the algorithm for cal-
culating generalized IRFs of Koop, Pesaran and Potter (1996).28 This identi�es
shocks through the Cholesky factorization of the VSTAR covariance matrix 
t
in each �rst period when a shock hits the economic system. While in small
scale VAR the Cholesky decomposition yields structural shocks that can be eas-
ily reconciled with an economic interpretation, this is not necessarily the case
in larger (and nonlinear) models like the VSTAR in (1)-(2). For this reason,
identi�cation for IRF analysis is carried out using restrictions.2930

The sign restrictions are set to identify a demand and a supply shock. The
demand shock is such that both the spread and the unemployment gap increase
while in�ation and industrial production decrease at the one month horizon.31

The supply shock is such that in�ation and unemployment increase while in-

27For these reasons these are nonlinear structural IRFs, following from Kilian and Lütkepohl
(2017).
28A detailed account of how this algorithm is implemented in the VSTAR is given by Hubrich

and Teräsvirta (2013).
29Appendix D describe the algorithm used for computing the IRFs. In essence, in each

instance when the algorithm requires the computation of the Cholesky factor, this is replaced
with a set of modi�ed Cholesky factors obtained by post-multiplying the original one by an
orthogonal matrix, which is generated from the QR decomposition of a matrix of random
elements of the same size of the covariance matrix in the VSTAR.
30Bruns and Pi¤er (2017) also identify shocks in a VSTAR using sign restrictions. However,

in their VSTAR the transition function applies directly to the triangular decomposition of the
covariance matrix rather than the covariance matrix as a whole. In other words, Bruns and
Pi¤er estimate the structural VSTAR directly, rather than recovering it from the unrestricted
model as in the present paper and in most of the VSTAR literature.
31The sign restrictions on p, ip, and ug are standard in the identi�cation of demand shocks.

The sign on the spread is based on the observation that the sample correlation coe¢ cients of
the spread with p, ip, and ug are -0.543, -0.607 and 0.468, respectively.
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dustrial production falls at the one month horizon. To evaluate the di¤erent
responses during periods when either conventional monetary policy or QE is
active, unconditional IRFs are computed using as starting values for yt the av-
erages over two sub-samples of equal size, following from Kilian and Lütkepohl
(2017). The �rst is from 1994:6 to 2001:5. This is referred to as the normal times,
capturing a period of the United States economic history when the federal funds
rate is well above the ZLB constraint.32 The second set of unconditional IRFs
uses as starting values observations for the ZLB period, from 2009:1-2015:12.33

Figures 3 plots the IRFs of the VSTAR policy instruments plus the total
size of the Fed�s balance sheet (TS+PS) to demand and supply shocks over a
24 months horizon. In each panel, black lines denote the IRFs during normal
times, red lines the IRFs for the ZLB period, and shaded areas around the IRFs
denote two-standard deviations con�dence bands.
The response of the policy instruments to a demand shock in the top panels of

Figure 3 re�ect the expected form of expansionary monetary policy intervention
at di¤erent times. During normal times a demand shock leads to a reduction
of the federal funds rate, while QE shows little dynamics. During the ZLB the
monetary expansion occurs through QE. It is remarkable how the path of the
IRFs for the two QE variables reproduces changes in the Fed assets�portfolio
similar to those observed after QE1-QE2. These entail an initial expansion
through the increase of PS holding, subsequently supported by a large increase
of the TS holding.34 These changes in the composition of the Fed�s balance
sheet during QE1 and QE2, consisting of a large initial purchase of PS followed
by TS, are also visible from the dynamic of TS and PS around the Great
Recession in Figure 1.
The IRFs to the supply shock in the bottom panels of Figure 3 display two

interesting features. As for the demand shock, these show how di¤erent policy
instruments operate at di¤erent time periods (active conventional monetary
policy and passive QE during normal, passive conventional monetary policy
and active QE at the ZLB). Di¤erently from the demand shock, the monetary
policy response to a supply shock is contractionary during normal times while
it is expansionary during the ZLB period. This re�ects the fact that in the
data large changes in the Fed�s balance sheet are associated with the slow real
recovery in the aftermath of the Great Recession, which is captured by the
estimated VSTAR.
Overall, the IRF analysis suggests that the estimated VSTAR can well repli-

cates key features of the typical conduct of monetary policy in the United States
during normal times and during the ZLB years.

32Note how the transition function gM (Rt) in the top-left panel of Figure 2 is close to one
for most of the 1990s, which suggests that the policy rate is far from the ZLB over this period
of time.
33Table 6 at the end of Appendix D reports all starting values used for calculating the IRFs.
34QE1 lasted 17 months. The Fed initially purchased private securities, consisting of $500

billion in agency mortgage-backed securities (MBS) and $100 billion in agency debt from Fan-
nie Mae, Freddie Mac and Federal Home Loan Banks. Later the Fed purchased an additional
$750 billion of MBS, $100 billion in agency debt, and $300 billion in long-term Treasuries.
QE2 lasted for 8 months. During this phase, the Fed purchased a total of $767 billion of
long-term Treasuries. See Kuttner (2018), for further details.
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Figure 3: Unconditional IRFs of the policy instruments to demand and supply
shocks during normal times (black) and the ZLB period (red). Shaded areas are
two standard deviations con�dence bands.

5 Optimal VSTAR

Quantitative analyses of optimal macroeconomic policy typically accomplish
three tasks: evaluating the gains from the optimization of policy; studying the
economy response to shocks once the optimal policy is implemented; undertak-
ing counterfactual simulations to compare the actual macroeconomic dynamics
against the optimal ones. Each of these tasks is carried out here after applying
the methodology for computing optimal policy in Sections 2 and 3 starting from
the estimated VSTAR described in Section 4. Once optimal rules are computed,
macroeconomic dynamics can be simulated using the VSTAR under the optimal
policy in (19). This is used to derive a benchmark against which to compare the
dynamics observed from the data, which are a re�ection of the actual monetary
policy undertaken.
The benchmark dynamics obtained under the optimal policy are not unique.

These crucially depend on the assumptions on the optimization protocol followed
by the Fed (whether commitment or discretion); the constraints faced by Fed;
the preferences of the Fed in terms of objective function and targets; and the
number of available instruments. The analysis here considers solutions under
commitment for joint optimization (optimal coordination) of both the federal
funds rate and the QE instruments. Thus the economy vector is speci�ed as
x0t =

�
st �t ipt ugt

�
and the policy vector as ut =

�
TSt PSt Rt

�
.

As highlighted in section 2.2, the coe¢ cients from the estimated VSTAR are
used to recover the structural coe¢ cients for the nonpolicy variables xt under
the timing assumption A2. Therefore, the structural model for the nonpolicy
variables forming the constraint faced by the Fed is equivalent to that in (7)-(9).
The preferences of the Fed are speci�ed in terms of minimization of a dis-

counted intertemporal quadratic function that includes two main components.
The �rst penalizes deviations of the in�ation rate and the unemployment gap
form their respective targets. This is consistent with the Fed dual mandate of
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price stability and maximum employment. An alternative would be to use a
quadratic loss function derived from a fully micro-founded DSGE model of the
economy. As noted by Sims and Wu (2019b), DSGE models require heteroge-
neous agents for QE to be e¤ective in equilibrium. For this reason, derivation of
an aggregate objective function from a DSGE model would not be unique, since
this would necessarily rely on ad-hoc weights attached to di¤erent agents. The
second component of the loss function penalizes changes in the monetary policy
instruments. This allows to control for di¤erent degrees of gradualism in the
use of each policy instrument, mimicking for example the gradual movements
of the federal funds rate observed in several periods over 1979-2018, as well as
the sluggish evolution of the QE variables before the Great Recession. At the
same time, this second component ensures that the path of the economy and
policy instruments under the optimal rules does not deviate too much from that
observed in the data, therefore containing the quantitative importance of the
Lucas (1976) critique on the results, see Rudebusch (2005) and Benati (2019).
The extent to which this limited deviation is achieved in the present analysis is
highlighted in section 5.2.35

Given the above, the Fed�s objective function is speci�ed as:

V0 = E0 (1� �)
1P
t=0
�t
�

�p (pt � p)2+�ug (ugt � ug)2+
��TS�TS

2
t + ��PS�PS

2
t + ��R�R

2
t

�
; (22)

where p and ug denote in�ation and unemployment gap targets, respectively;
�z, z = p; ug; �TS; �PS and �R, denote weights attached to the stabiliza-
tion of in�ation, unemployment gap and the three policy instruments; � is the
lag operator. Thus, the �rst two terms on the right side of (22) capture the
Fed�s preferences for in�ation and unemployment stabilization, the next three
terms control the degree of gradualism in changes of the policy instruments.
The objective function (22) can be interpreted as capturing the Fed�s desire
for macroeconomic (prices and unemployment) stabilization while keeping to a
minimum changes of policy instruments relative to previous period.
The results of the optimal policy analysis also depend on the values assigned

to the six parameters included in the objective function (22): �, p, ug, �p, �ug,
��TS , ��PS , and ��R. The discount factor � is set equal to 0.996, correspond-
ing to an annual rate of interest equal to the sample average for Rt of 4.83
percent. The results are not signi�cantly a¤ected by other reasonable values
of the discount factor. The unemployment target is set as ug = 0, since the
unemployment gap is measured as the deviationof the actual rate of unemploy-
ment from the natural rate, and the Fed�s mandate includes full employment
(Federal Reserve Bank of St. Louis, 2015). The speci�cation of the remaining
parameters is less clear cut as it is reasonable to expect that the Fed preferences
in terms of in�ation target and weights on policy instruments may have changed
during 1979-2018. For this reason, to establish a baseline speci�cation the in-
�ation target is set equal to the sample average over the simulation horizon and
all policy weights are given equal value, �p=�u=��TS=��PS=��R = 1. When

35An alternative approach to limit the quantitative signi�cance of the Lucas critique is that
used by Sack (2000). This consists of calibrating the in�ation target and the relative weight
between in�ation and unemployment to minimize the in-sample distance between the actual
and the optimal the paths of the policy instruments. This approach however relies on the
assumption that the Fed�s preferences have not changed between 1979-2018.
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necessary, the robustness of the quantitative results that follow is evaluated
against other reasonable choices of these parameters.

5.1 Gain from Optimization

What would have been the gain in terms of macroeconomic stabilization if QE
policy had been optimally coordinated with interest rate policy? The answer
to this question is �rst quanti�ed by considering macroeconomic dynamics from
December 2007, 11 months before the Fed announcement of QE1, to October
2017, the date from which the Fed�s balance sheet is allowed to shrink gradu-
ally as existing assets mature.36 The gain from monetary policy optimization
is evaluated by comparing two scenarios. The �rst is referred to as the actual
policy, since this is based on the observed dynamics of the economy and policy
instruments over the considered subperiod. The second scenario is the optimal
policy. This is constructed assuming that the Fed chooses the optimal combi-
nation of conventional and QE policy in each month and this optimal policy
is implemented given the true state of the economy in each month, as in Sack
(2000).37 The economy response to the optimal policy in any given month is
computed including the actual shocks occurring in that month, using the VS-
TAR in (19). In addition, the in�ation target in the loss function (22) is set
as p = 3:38, corresponding to the average in�ation rate from December 2007
onward. As a further reference, a no-policy scenario is also simulated.38 This
is based on the implied economy and policy dynamics obtained if no-change in
QE had been implemented since December 2007.
Following from Dennis and Söderström (2006), two measures of the opti-

mization gain are computed. The �rst is the (percentage) change in the loss
due to implementation of a new policy, V 0, relative to the loss measured from
another policy, V , i.e. G = 100� [1�V 0=V ]. The second is the unemployment-
equivalent compensation. To clarify this, consider the unemployment gap term
in (22). This can be written as �ugug2t = �ug (ut � ut)2, where ut and ut
denote the actual and the natural rate of unemployment, respectively. The
unemployment-equivalent compensation is de�ned as the permanent deviationbu 6= 0 of the actual unemployment rate from the natural rate that results in

a change of the loss by (1� �)
1P
t=0
�t�ugbu2 such that V0 equals V 0. it follows

that bu = p(V � V 0) =�ug. Thus G is a direct measure of macroeconomic sta-
bilization di¤erential between two policies, whereas bu quanti�es the gain from
optimization in terms of implied permanent reduction in the rate of unemploy-
ment.
Table 2 presents the results. Columns 2 to 6 report the volatilities of the

�ve variables included in (22) relative to their respective targets; column 7
reports the implied losses; whereas the last two columns report the calculated

36The start date is chosen to account for possible aggregate responses in the economy before
the announcement of the �rst QE program, due to the private sector�s anticipation of future
policy intervention.
37There are several possible extensions of the present analysis, including computation of the

gains upon the optimization of the federal funds rate alone and/or QE alone.
38Counterfactual analyses based on a no-policy scenario are frequent in the recent literature

on the macroeconomic e¤ects of QE, see, e.g., Lenza, Pill and Reichlin (2010), Chung et
al (2012), Giannone et al (2012), Kapetanios et al (2012), Baumeister and Benati (2013),
Dahlhaus, Hess and Reza (2018).
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measures of the optimization gain. For robustness, six di¤erent speci�cations
of the weights in (22) are considered. The �rst (I) is the baseline which gives
equal weight to each item in (22). The remaining �ve speci�cations evaluate the
e¤ects of lower weight to the stabilization of either in�ation (II), unemployment
(III), all policy instruments (IV ), the two QE instruments (V ), or the federal
funds rate (V I). For each set of policy weights the loss is computed as the
undiscounted weighted average of the �ve terms in (22).39 For each set of policy
weights the stabilization gains and unemployment-equivalent compensations are
measured �rst to compare the e¤ects monetary policy optimization relative to
the actual policy undertaken by the Fed, and then to compare the actual policy
relative to the no-QE scenario.
Two main results emerge from Table 2. The �rst is that policy optimization

would have signi�cantly increased the stabilization gain to the United States
economy during 2008-2017. On average across di¤erent weight speci�cations,
optimal policy would have reduced macroeconomic volatility by about 28.5 per-
cent relative to the actual policy. In terms of unemployment-equivalent com-
pensation, policy optimization would have resulted in a average reduction of
the unemployment rate of about 1.7 percent. The second result emerging from
Table 2 is that the gains from switching from the actual to the optimal policy
are not as large as those achieved by the actual implementation of QE relative
to the no-QE policy scenario. On average across the di¤erent weight speci�-
cations, macroeconomic volatility and the unemployment rate would have been
about 43.6 and 2.8 percent higher, respectively, had QE not been implemented
during 2008-2017.
Looking across the di¤erent speci�cations of weights, it can be observed that

gains from either the actual or the optimal policy increase when the Fed targets
in�ation volatility more aggressively than unemployment volatility (compare
case II with either I or III). This is because in�ation is relative more volatile
than unemployment during 2008-2017, in turn implying that assigning a higher
weight to this variable brings larger gains. Reducing the weight attached to the
QE policy instruments in the objective function produces higher stabilization
gains (compare case I with cases IV and V). This is because the further reduction
in the volatility of in�ation and unemployment more than compensates the
increase in the volatility of the instruments. Changing the weight on the federal
funds rate makes little di¤erence, since this is the least volatile variable (compare
I and VI).
Two further robustness exercises are carried out. The �rst evaluates the

gains from the optimal coordination between interest rate and QE policy over
the whole sample period 1979-2018. To this end, the in�ation target in (10) is
set to be equal to the sample average, i.e. p = 5:84. The second robustness
exercise evaluates how the measured stabilization gains change once these are
calculated using the VAR, either post-2008 or over the full sample. Table 3
reports the averages across policy weight speci�cations of the stabilization gains
and unemployment-equivalent compensations obtained from these robustness
checks, together with those from the results in Table 2 for comparison.40

Two clear results are visible from Table 3. First, the measured gains from

39For � close to 1, the discounted quadratic loss is approximatively equal to the weighted
average of the deviation from target of the variables included in it, see Bertsekas (2012).
40The data calculated from these simulations for each set of policy weights are reported in

Appendix E.
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optimization reduce once evaluated over the full sample compared to the post-
2008 period. This holds whether they are calculated using the VSTAR or the
VAR. This suggests that the bene�t from the joint optimization of the federal
funds rate and the QE instruments are higher during the post Great Recession
periods relative to the so-called normal times. The second clear result visible
from Table 3 is that optimization gains are systematically overstated when using
the VAR. This points towards the importance of accounting for nonlinearity in
the quantitative analysis of monetary policy, highlighting the di¤erence it makes
using a VAR rather than a non linear model like the VSTAR.

5.2 Impulse Response Functions

How the economy and the policy instruments respond to shocks once QE and the
federal funds rate policies are optimally coordinated? To answer this question,
the IRFs are calculated from the VSTAR under the optimal policy in (19)
assuming that the economy and the policy instruments (yt) start from two
di¤erent positions.41 The �rst is the ZLB period, in which only QE is the
active policy instrument. The second is the post-ZLB period, in which both the
federal funds rate and QE are available.42 In both cases, the preferences of the
Fed are set as under the baseline calibration. The in�ation target is however
recalculated as the corresponding sub-sample average, being 3.05 percent during
the ZLB period and 4.30 for the post-ZLB period.43

Figures 4 and 5 plots the IRFs from the VSTAR under the optimal pol-
icy rules (blue) to a demand and a supply shock, respectively, during the ZLB
period. For comparison, in both �gures the corresponding responses from the
estimated VSTAR, which re�ect the dynamics under the actual Fed monetary
policy are also reported (red).44 The IRFs in Figure 4 show that when the federal
funds rate is constrained at the ZLB, the Fed responds under the optimal policy
to a demand shock by increasing the size of the balance sheet more sharply than
under the actual policy, at least in the short run (�rst 4 to 6 months). At the
same time there is signi�cant portfolio rebalancing towards Treasury securities,
since TS holdings increase while PS holdings decrease over the 24 months hori-
zon. These changes in size and composition of the Fed portfolio have the e¤ects
of dampening the impact of the demand shock on in�ation and unemployment.
All dynamics under the optimal policy rules are highly nonlinear, in particular
those for industrial production, which appears to decrease in the �rst 5 months
following the shock despite the expansion in the size of the balance sheet, before
increasing sharply over the subsequent 2 months and falling afterwards. The
main distinguishing feature of the IRFs to a supply shock in Figure 5 is that,

41As descrided in Appendix D, the IRFs under the optimal policy are computed using the
same algortihm for the IRFs in Section 4.4 except that simulation is now based on the VSTAR
in (19).
42For the ZLB period, the starting position is the average of yt from 2009:1-2015:12. For

the post ZLB period, is the average of the 2016:1-2018:8 period. See Table 6 in Appendix D.
43The IRFs to shocks during normal times are not reported here for reason of space since

these are known. The federal funds rate responds to shocks more aggressively under the
optimal monetary policy than under the actual response. See for examples Sack (2000),
Polito and Wickens (2012), Polito and Spencer (2015).
44The responses for the policy instruments under the actual policy rules are the same as

those in Figures 3.
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Volatilities Loss Stabilization
(pt � p)2 ug2t �TS2t �PS2t �R2t V G bu

Policy Baseline: �p = �ug = ��TS = ��PS = ��R = 1
Actual 3.63 5.55 0.02 0.05 0.38 9.64
Optimal 1.42 5.04 0.04 0.08 0.44 7.02 27.14* 1.62*
(No-QE) 11.46 5.68 0.02 0.00 0.00 17.17 43.87** 2.74**

Weights II: �p = 0:5, �ug = ��TS = ��PS = ��R = 1
Actual 3.63 5.55 0.02 0.05 0.38 7.82
Optimal 1.62 5.05 0.03 0.08 0.42 6.39 18.31* 1.20*
(No-QE) 11.46 5.68 0.02 0.00 0.00 11.43 31.60** 1.90**

Weights III: �ug = 0:5, �p = ��TS = ��PS = ��R = 1
Actual 3.63 5.55 0.02 0.05 0.38 6.86
Optimal 1.41 5.23 0.05 0.07 0.43 4.57 33.35* 2.14*
(No-QE) 11.46 5.68 0.02 0.00 0.00 11.43 52.11** 3.86**

Weights IV: �ug = �p = 1, ��TS = ��PS = ��R = 0:5
Actual 3.63 5.55 0.02 0.05 0.38 9.41
Optimal 1.25 4.76 0.06 0.12 0.47 6.35 32.53* 1.75**
(No-QE) 11.46 5.68 0.02 0.00 0.00 17.15 45.16** 2.78*

Weights V: �ug = �p = ��R = 1, ��TS = ��PS = 0:5
Actual 3.63 5.55 0.02 0.05 0.38 9.42
Optimal 1.34 4.76 0.05 0.12 0.42 6.42 31.85* 1.73*
(No-QE) 11.46 5.68 0.02 0.00 0.00 17.17 45.13** 2.78**

Weights VI: �ug = �p = ��TS = ��PS = 1, ��R = 0:5
Actual 3.63 5.55 0.02 0.05 0.38 9.62
Optimal 1.33 5.05 0.05 0.08 0.47 6.95 27.74* 1.63*
(No-QE) 11.46 5.68 0.02 0.00 0.00 17.15 43.90** 2.74**

Average (across weights)
Actual 3.63 5.55 0.02 0.05 0.38 8.79
Optimal 1.40 4.98 0.05 0.09 0.44 6.28 28.49* 1.68*
(No-QE) 11.46 5.68 0.02 0.00 0.00 15.73 43.63** 2.80**

Notes: Loss is weighted sum of volatilities; G = 100� [1� V 0=V ]; bu =q�V � V 0� =�ug ; �*�
indicates that G and bu are comparing actual and optimal policy; �**�indicates that G and bu
are comparing actual and no-QE policy.

Table 2: Gains from monetary policy optimization computed from the VSTAR
during 2008-2017.

Post-2008 Full sample
(2017:12-2016:10) (1979:8-2018:10)

VSTAR VAR VSTAR VAR
G 28.49 44.10 19.59 31.34bu 1.68 2.05 1.39 1.76

Table 3: Average gains from monetary policy optimization computed from the
VSTAR and the VAR for either the post-2008 or the 1979-2018 period.
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while the Fed�s balance sheet still increases more than under the actual policy,
both TS and PS increase over the 24 moths horizon.
Figures 6 and 7 show the IRFs under the actual (red) and optimal (blue)

policy to demand and supply shocks, respectively, during the post-ZLB period.
Figure 6 shows that the federal funds rate falls and the Fed�s balance sheet
expands in response to a demand shock under the actual policy. Remarkably,
the optimal policy response comes mainly in the form of a sharp rebalancing of
the Fed portfolio towards TS, with little action displayed by the the federal fund
rate and the size of the Fed portfolio. The IRFs of the policy instruments under
the optimal policy show less variability than under the actual policy, since both
in�ation and unemployment return to targets way more quickly than under the
actual policy. The responses to a supply shock under the actual policy in Figure
7 show a reduction in the federal funds rate and a slight increase in the Fed�s
balance sheet. In contrast, under the optimal policy, there is a large increase
in the Fed�s balance sheet due to the simultaneous rise in both TS and PS
holding.
In summary, QE under the optimal policy results in increase of the size of

the balance sheet and signi�cant portfolio rebalancing toward TS in response to
a demand shock. QE also results in increase of the size of the balance sheet in
response to a supply shock, but no portfolio rebalancing. These patterns hold
regardless of whether the federal funds rate is at the ZLB or (just) above.
There is another feature of the results in Figures 4 - 7 that is worth pointing

out. Above it was mentioned that the latest consensus to guard against the
quantitative relevance of the Lucas critique is that of considering only policy
changes that result in modest deviation of macroeconomic dynamics from the
observed ones. Rudebusch (2005) interprets �modest�as not being statistically
detectable. Benati (2019) considers deviations smaller than 1 percent �ve years
after the beginning of the policy intervention. The baseline calibration used
here, which penalizes changes in the policy instruments equally, achieves an
outcome in the spirit of the modest changes proposed in this literature. This
is because most of the IRFs calculated under the optimal policy lie within the
con�dence intervals of the actual IRFs by the end of the two-years horizon.

5.3 Counterfactual Monetary Policy

What would have been the dynamics of the economy and the policy instruments
had the federal funds rate and QE been coordinated optimally since 2008? To
answer this question, the VSTAR under the optimal policy is used for a coun-
terfactual experiment. This consists of calculating the dynamic evolution of
the economy and policy instruments from 2008 onward under the assumption
that the federal funds rate and QE had been set optimally over that period of
time. The resulting dynamics are used as reference against which to evaluate
the observed dynamics for the economy and policy instruments, which re�ect
the actual monetary policy conducted over the same period of time. The simu-
lation is carried out taking as initial position the economy and the policy vector
in December 2007, and using the baseline speci�cation of the Fed preferences.
Given the uncertainty surrounding the e¤ective in�ation rate targeted by the

Fed over the past ten years, the counterfactual simulation is carried out for three
alternative values of the in�ation target: the sample average, � = 5:8, � = 4
and � = 2. These do not re�ect any speci�c view on the actual preferences of

32



5 10 15 20

0.2

0.1

0

0.1

0.2

s

5 10 15 20

0.2

0.1

0

0.1

0.2

p

5 10 15 20

0.2

0.1

0

0.1

0.2

ip

5 10 15 20

0.2

0.1

0

0.1

0.2

ug

5 10 15 20

0.2

0.1

0

0.1

0.2

TS

5 10 15 20

0.2

0.1

0

0.1

0.2

PS

5 10 15 20

0.2

0.1

0

0.1

0.2

R

5 10 15 20

0.2

0.1

0

0.1

0.2

TS+PS

Figure 4: Unconditional IRFs to a demand shock during the ZLB period under
the actual (red) and the optimal (blue) policy rules. Shaded areas are two
standard deviations con�dence bands.
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Figure 5: Unconditional IRFs to a supply shock during the ZLB period under
the actual (red) and the optimal (blue) policy rules. Shaded areas are two
standard deviations con�dence bands.
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Figure 6: Unconditional IRFs to a demand shock during the post ZLB period
under the actual (red) and the optimal (blue) policy rules. Shaded areas are
two standard deviations con�dence bands.
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Figure 7: Unconditional IRFs to a supply shock during the post ZLB period
under the actual (red) and the optimal (blue) policy rules. Shaded areas are
two standard deviations con�dence bands.
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the Fed, but are selected for gauging indication on the sensitivity of the results
to the choice of the in�ation target.45 It is important to clarify the role of the
in�ation target in these simulations. All other things equal, the optimal policy
would require expansionary (contractionary) QE whenever actual in�ation is
below (above) target. As the unemployment gap is positive during most of
the post-2008 period, the lower is actual in�ation relative to the target, the
stronger is the response of monetary policy to unemployment stabilization over
the counterfactual simulation.
Figure 8 plots the dynamics of the economy and the policy instruments from

these counterfactual simulations. In each subpanel, black lines denote the actual
dynamics observed from the data; whereas blue, red and green lines denote
the dynamics simulated from the optimal VSTAR under the three alternative
in�ation targets of 5.8, 4 and 2 percent, respectively. The simulation is carried
out assuming that in each period the Fed implements the optimal policy given
the observed state of the economy.
Three main results can be observed from Figure 8. First, the dynamics of

the economy are fairly similar across the three counterfactual simulations. Com-
pared to the observed dynamics the main di¤erences are for nominal and �nan-
cial variables, as credit risk would have been lower during 2008-2013 and there
would have not been de�ation during 2009 under the optimal policy regardless
of the choice of the in�ation target. The dynamics of industrial production and
the unemployment gap are remarkably similar to those observed from the data,
under any of the three counterfactual simulations.
The second result observable from Figure 8 concerns the path of the federal

funds rate, which appears close to that observed from the data under any of
the counterfactual simulations. To shed further light on this, Table 4 gives a
breakdown of the duration of the ZLB period under the actual and optimal
policies implied by the counterfactual.46 In the data, the ZLB period lasts
84 months, from December 2008 to September 2015, with the lifto¤ starting
in October 2015. The duration of the ZLB period from the counterfactual
simulations depends on the calibration of the in�ation target. With the highest
in�ation target of 5.8 percent, the ZLB period would have been slightly shorter,
80 months November 2008 to March 2015, and the lifto¤ would have started
in April 2015. With the 2 percent in�ation target the ZLB period would have
lasted longer, 101 months from November 2008 to April 2017, and the lifto¤
would have only started in May 2017. The 4 percent in�ation target replicates
the actual duration of the ZLB period more closely. To put these results into
context, it is worth highlighting that the durations of the ZLB period according
to this optimal policy analysis are considerably longer than those predicted by
a standard Taylor rule (without any nonnegative boundary on the policy rate).
According to the calculations made in Federal Reserve Bank of St. Louis (2015),
the ZLB should have terminated much earlier (around the beginning of 2011)
had monetary policy during the Great Recession being conducted as predicted

45Ball (2014) argues in favour of a 4 percent in�ation target. The 2 percent in�ation target
was o¢ cially announced by the Fed as a long-run objective in January 2012. Mumtaz and
Theodoridis (2019) �nd that the implicit in�ation target of the Fed has been on average close
to 2 percent between 2008 and 2016, picking above 5 percent around 2010. The average
in�ation rate from 2008 onward sits between the 2 and 4 percent targets, being 3.36 percent.
46For this purpose, the federal funds rate is deemed to be at the ZLB in any period in which

is equal to or below 0.25 percent.
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by a standard Taylor rule.
The third result observable from Figure 8 concerns the dynamics of the Fed�s

balance sheet. These appear quite close the observed ones under any of the three
counterfactual scenarios. The most notable exception is the period 2009-2013
period, when the size of the simulated Fed�s balance sheet is larger than the
actual one. This is due to the more rapid increase in TS purchases under any of
the counterfactual relative to the observed purchases. Further the normalization
phase, i.e. the gradual reduction in the Fed assets holding (see Federal Reserve
Bank of St. Louis, 2015), would have started around December 2015, regardless
of the choice of the in�ation target.
The counterfactual simulations for the QE instruments presented in Figure

8 can be used to provide direct evaluations of either speci�c segments of the QE
phase or speci�c asset purchase programs undertaken by the Fed since Novem-
ber 2008. In particular, the Fed undertook three large-scale asset purchases,
commonly known as QE1, QE2, and QE3; and the Maturity Extension Pro-
gram (MEP), also known as the �Operation Twist�.47 The upper part of Table
5 reports how TS holdings, PS holdings and the total size of the Fed�s balance
sheet changed during each of these programs. The remaining part of the Ta-
ble reports the corresponding changes under each of the three counterfactual
simulation. Under the actual QE policy, the total increase in the balance sheet
was about 17.96 percent of GDP. The size of the change of the Fed�s balance
sheet as a percentage of GDP prescribed under the optimal policy is close to
the actual one, ranging between 17 and 18.25 percent depending on the in�a-
tion target. Comparing across programs, it can be noted that according to this
analysis, QE1 should have been almost twice larger, regardless of the in�ation
target. Consequently, this would have resulted in QE2 and QE3 programs of
smaller size under the optimal policies compared to the actual. It would have
also resulted in a reduction of the size of the balance sheet (relative to GDP)
during the MEP under the optimal policy about four times larger compared to
the actual reduction observed in the data.
Overall, according to this analysis the scale of total QE intervention observed

in the data is close to that prescribed by the optimal QE policy under conven-
tional calibration of the Fed preferences. Rather than the overall size, the main
di¤erences between actual and optimal QE are in terms of their timing and
composition, since the optimal QE would have entailed earlier increases in the
Fed�s holding of TS compared to the actual policy. According to this analysis,
the main outcomes of these changes would have been a lower spread and higher
in�ation in the �ve years after the Great Recession. None of the counterfactual
simulation gives evidence in favour of an earlier lifto¤.

6 Conclusion

Macroeconomic data display many nonlinear features (asymmetries, thresholds
and large swings) that often make linear models inadequate for reliable quanti-
tative analysis. VSTAR is a popular tool employed in econometrics and applied
47The MEP had the the objective to put downward pressure on longer-term interest rates. It

consisted of purchases of long-term Treasuries, accompanied by the sale of the same quantity
of short term securities, leaving the overall size of the balance sheet unchanged.
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Figure 8: Optimal conventional and QE monetary policy in the United States
from 2007:12 to 2018:10.

Start End Duration
(months)

Actual Policy
Dec 08 Dec 15 85

�(%) Optimal Policy
5:8 Nov 08 Jun 15 80
4 Nov 08 Dec 15 86
2 Nov 08 Mar 17 101

Table 4: Duration of the ZLB period under the actual and optimal policy.
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QE1 QE2 MEP QE3 Total
Actual Policy

TS 2.02 5.10 -0.48 3.69
PS 5.35 -1.75 -0.08 4.12
Total 7.37 3.35 -0.56 7.81 17.96

Optimal Policy
� = 5:8

TS 3.34 3.89 -1.38 -0.01
PS 9.11 -2.92 -0.57 5.54
Total 12.45 0.97 -1.95 5.53 17.00

� = 4
TS 4.08 3.87 -1.36 1.45
PS 8.20 -2.93 -0.60 4.89
Total 12.28 0.94 -1.96 6.34 17.60

� = 2
TS 4.87 3.85 -1.34 3.03
PS 7.21 -2.94 -0.63 4.19
Total 12.09 0.91 -1.97 7.22 18.25

Table 5: Change in the Fed�s asset portfolio in percentage of GDP under actual
and optimal policy over di¤erent QE phases.

macroeconomics for inference, structural analysis and forecasting when data are
nonlinear. This paper uses VSTAR for a di¤erent task, the analysis of optimal
policy.
It is shown that at least two possible nonlinear structural representations

can be identi�ed from a reduced-form VSTAR for calculating an optimal policy
rule. One of these makes the analysis particularly tractable, since it preserves
certainty equivalence and ensures low dimensionality of the optimization prob-
lem.
This structural representation from the VSTAR can then be used as the

constraint faced by a nonlinear regulator in charge of setting the path of policy
instruments that minimizes a given quadratic objective. This NLQR problem
is solved by adapting from the engineering theory the SDRE method. This
consists of employing SDC factorization to transform the nonlinear structural
representation from the VSTAR into a VAR with SDC matrices, which makes
the NLQR problem isomorphic the LQR. Consequently, a nonlinear optimiza-
tion problem can be solved with standard dynamic programming techniques.
The advantage of the SDRE method relative to linearization is that it does

not neglect the potential e¤ects of nonlinearity on optimal decisions. At the
same time the SDRE method has the advantage compared to numerical methods
of being simple and computationally tractable, since it is still based on the
iteration upon convergence of the well-understood Riccati Equation.
The methodology is illustrated to study the optimal coordination between

conventional interest rate monetary policy and QE in the United States and
evaluate its e¤ects on aggregate quantities and prices along three important
dimensions: the gains from optimization; the responses to shocks; and a post-
2008 counterfactual analysis of the dynamic of the United States economy when
conventional monetary policy and QE are set optimally.
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The empirical results show that the gains from the joint optimization of
(conventional and QE) monetary policy instruments can be large though not
has those achieved by the actual QE policy relative to a scenario of no-QE.
The optimization gain is found to be larger when measured over the Great
Recession and its aftermath, suggesting that the bene�ts from monetary policy
coordination are more substantial during periods when nonlinearity is more
signi�cant. The optimization gain is also found to be larger when the analysis
is repeated using a VAR, which suggests that linear models can potentially
overstate the bene�ts from monetary policy optimization.
With regard to their responses to shocks, both actual and optimal QE policy

display a signi�cant degree of asymmetry and history dependence. However,
di¤erences between the optimal and the actual policy are signi�cant only in the
very short-run horizon (four to six months). The response of QE under the
optimal policy shows two clear patterns. After a demand shock, the size of the
balance sheet increases and the portfolio mix of assets shifts towards Treasury
securities. After a supply shock, the size of the balance sheet increases but there
is not shift in the portfolio mix.
The counterfactual simulation shows that the observed overall increase in the

Fed�s balance sheet since 2008 was not far from that prescribed by the optimal
policy. Di¤erences between the actual and the optimal policy are larger during
the �rst phase of QE, as the latter would have prescribed larger purchases of
Treasuries. The main macroeconomic outcome of this earlier expansion of the
balance sheet would have been a lower credit spread and higher rate of in�ation
in during 2008-2013. Finally, in contrast to the predictions of a Taylor-type
monetary policy rule, the observed duration of the ZLB period is found to be
in line with that otherwise prescribed by the optimal policy.
Overall, these results highlights not only the feasibility of optimal policy

analysis with VSTAR but also the many new interesting dimensions of monetary
policy that can be explored.
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A Structural Representations

Consider the reduced-form residuals in (4). These can can be written as�
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A.1 Assumption A1

Set G12t = 0, so that vxt = �xt. Under this restriction (4) becomes
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The matrix

H�1
t =
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can then be used to map the reduced-form model into a structural one. To this
end, pre-multiply both sides of (3) by the right side of H�1
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After moving the term G12txt+1 on the right side and multiplying through, the
equations for the economy vector can be written in state-space form as�
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In the above, note that �xuj (L) =
Pq

k=1�xujkL
k, j = 1; :::; 4. Thus the term

�xuj1 is the matrix of coe¢ cients pertinent to ut in each state. The state-space
representation above for the economy is equivalently written as in (5)-(6).
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The equations for the economy vector can be written in state-space form as�
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��
�x3 �G12t�u3

0

�
+

�
�x3 (L)�G12t�u3 (L)

0

�
yt

�
+

lM (s
0
xyt)

�
�x4 �G12t�u4

0

�
+

�
�x4 (L)�G12t�u4 (L)

0

�
yt

9>>=>>;+
+

�
G12t

I

�
ut+1 +

�
vxt+1 �G12tvut+1

0

�
;

or equivalently as in (7)-(9).

B Solution of the NLQR problem

The objective of the NLQR is to set the sequence of futg1t=1 that minimizes
(10) subject to (11), taking y0 as given. In any period t � 0 the guessed value
function for that period V (yt) = y0tPtyt + 2y

0pt + pt can be replaced into the
Bellman equation and the system (11) can be used to form expectations. This
yields:

V (yt) = min
ut+1

8>>>><>>>>:
(yt � y)0Q (yt � y)+

�

�
c (yt) +A (yt)yt
+B (yt)ut+1

�0
Pt

�
c (yt) +A (yt)yt
+B (yt)ut+1

�
+

�Ete
0
t+1Ptet+1

2� [c (yt) +A (yt)yt +B (yt)ut+1]
0
pt + �pt

9>>>>=>>>>; :

Multiplying through gives

V (yt) = min
ut+1

26666664

y0tQyt + y
0Qy � 2y0Qyt+

�c (yt)
0
Ptc (yt) + �y

0
tA (yt)

0
PtA (yt)yt+

�u0t+1B (yt)
0
PtB (yt)ut+1 + 2�y

0
tA (yt)

0
Ptc (yt)+

2�u0t+1B (yt)
0
Ptc (yt) + 2�u

0
t+1B (yt)

0
PtA (yt)yt+

�tr (�Pt) + 2�c (yt)
0
pt + 2�x

0
tA (yt)

0
pt+

2�u0t+1B (yt)
0
pt + �pt

37777775 :

Di¤erentiation of the above w.r.t. ut+1 gives

B (yt)
0
PtB (yt)ut+1 +B (yt)

0
Ptc (yt) +B (yt)

0
PtA (yt)yt +B (yt)

0
pt= 0;

which yields the solution

ut+1 = �
�
B (yt)

0
PtB (yt)

��1 �
B (yt)

0
[Ptc (yt) + pt] +B (yt)

0
PtA (yt)yt

	
:
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The above is then rewritten in terms of the feedback rule (12)-(14). Replacing
the above solution into the Bellman equation and multiplying through yields:

y0tPtyt + 2y
0
tpt + pt

= 26666664

y0tQyt + y
0Qy � 2y0Qyt + �c (yt)

0
Ptc (yt) + �y

0
tA (yt)

0
PtA (yt)yt

+�k0tB (yt)
0
PtB (yt)kt + �y

0
tK

0
tB (yt)

0
PtB (yt)Ktyt+

2�y0tK
0
tB (yt)

0
PtB (yt)kt + 2�y

0
tA (yt)

0
Ptc (yt) + 2�k

0
tB (yt)

0
Ptc (yt)

+2�y0tK
0
tB (yt)

0
Ptc (yt)+2�k

0
tB (yt)

0
PtA (yt)yt+

2�y0tK
0
tB (yt)

0
PtA (yt)yt + �tr [�Pt] + 2�c (yt)

0
pt+

2�y0tA (yt)
0
pt + 2�k

0
tB (yt)

0
pt + 2�y

0
tK

0
tB (yt)

0
pt + �pt

37777775 :

Equating the quadratic terms gives:

Pt = Q+ �A (yt)
0
PtA (yt) + �K

0
tB (yt)

0
PtB (yt)Kt +

2�K0
tB (yt)

0
PtA (yt) :

Using (14), if follows that �K0
tB (yt)

0
PtB (yt)Kt = ��K0

tB (yt)
0
PtA (yt) and

the above simpli�es as (15). Equating the linear terms gives:

pt = �Qy + �K0
tB (yt)

0
PtB (yt)kt + �A (yt)

0
Ptc (yt) + �K

0
tB (yt)

0
Ptc (yt)+

�A (yt)
0
PtB (yt)kt + �A (yt)

0
pt + �K

0
tB (yt)

0
pt:

Using �K0
tB (yt)

0
PtB (yt)kt=� �K0

tB (yt)
0 [Ptc (yt)+pt] the above becomes

pt = �Qy � �K0
tB (yt)

0 [Ptc (yt)+p] + �A (yt)
0
Ptc (yt) + �K

0
tB (yt)

0
Ptc (yt)+

�A (yt)
0
PtB (yt)kt + �A (yt)

0
pt + �K

0
tB (yt)

0
pt;

= �Qy + �A (yt)0Ptc (yt)+�A (yt)0PtB (yt)kt + �A (yt)0 pt:

Using (13) to replace kt gives

pt = �Qy + �A (yt)0Ptc (yt)��A (yt)0PtB (yt)
�
B (yt)

0
PtB (yt)

��1
B (yt)

0
[Ptc (yt) + pt]

+�A (yt)
0
pt;

= �Qy + �A (yt)0Ptc (yt)��A (yt)0PtB (yt)
�
B (yt)

0
PtB (yt)

��1
B (yt)

0
Ptc (yt)

��A (yt)0PtB (yt)
�
B (yt)

0
PtB (yt)

��1
B (yt)

0
pt + �A (yt)

0
pt:

Using (14) yields:

pt=�Qy+�A (yt)0Ptc (yt)+�K0
tB (yt)

0
Ptc (yt)+�KtB (yt)

0
pt+�A (yt)

0
pt;

which simpli�es as

pt
�
I� �K0

tB (yt)
0 � �A (yt)0

�
=�Qy+�A (yt)0Ptc (yt)+�KtB (yt)

0
Ptc (yt) ;

that is solved as (16). Finally, combining the constant terms gives:

pt = y0Qy + �c (yt)
0
Ptc (yt) + �k

0
tB (yt)

0
PtB (yt)kt + 2�k

0
tB (yt)

0
Ptc (yt) +

�tr [�t+1Pt] + 2�c (yt)
0
pt + 2�k

0
tB (yt)

0
pt + �pt;
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so that

pt (1� �) = y0Qy + �c (yt)
0
Ptc (yt) + �k

0
tB (yt)

0
PtB (yt)kt +

2�k0tB (yt)
0
Ptc (yt) + �tr [�t+1Pt] + 2�c (yt)

0
pt + 2�k

0
tB (yt)

0
pt:

Using �k0tB (yt)
0
PtB (yt)kt = ��k0tB (yt)

0
[Ptc (yt)+pt] gives:

pt (1� �) = y0Qy + �c (yt)
0
Ptc (yt)��k0tB (yt)

0
[Ptc (yt)+pt] +

2�k0tB (yt)
0
[Ptc (yt) + pt] + �tr [�t+1Pt] + 2�c (yt)

0
pt;

which simpli�es as

pt (1� �) = y0Qy + �c (yt)
0
Ptc (yt) + �k

0
tB (yt)

0
[Ptc (yt) + pt] +

�tr [�t+1Pt] + 2�c (yt)
0
pt

and then rewritten as (17).

C Data

Credit risk

� Data sources:

�Moody�s, Moody�s Seasoned Baa Corporate Bond Yield [BAA], re-
trieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/BAA, January 27, 2019.

�Board of Governors of the Federal Reserve System (US), 10-Year
Treasury Constant Maturity Rate [DGS10], retrieved from FRED,
Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/DGS10, January 27, 2019.

� The credit risk indicator, s, is calculated as the di¤erence between BAA
and DGS10.

In�ation

� Data source:

�U.S. Bureau of Economic Analysis, Personal Consumption Expen-
ditures [PCE], retrieved from FRED, Federal Reserve Bank of St.
Louis;
https://fred.stlouisfed.org/series/PCE, January 27, 2019.

� The in�ation rate p is the percent change from year ago of PCE, monthly,
seasonally adjusted annual rate.

Industrial Production

� Data source:
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�Board of Governors of the Federal Reserve System (US), Industrial
Production Index [INDPRO], retrieved from FRED, Federal Reserve
Bank of St. Louis;
https://fred.stlouisfed.org/series/INDPRO, January 29, 2019.

� The growth rate of industrial production ip is the percent change from
year ago of INDPRO, monthly, seasonally adjusted.

Unemployment gap

� Data sources:

�U.S. Bureau of Labor Statistics, Unemployment Rate [UNRATE],
retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/UNRATE, January 27, 2019.

�U.S. Congressional Budget O¢ ce, Natural Rate of Unemployment
(Short-Term) [NROUST], retrieved from FRED, Federal Reserve Bank
of St. Louis;
https://fred.stlouisfed.org/series/NROUST, January 27, 2019.

� The series UNRATE is in percent, monthly, seasonally adjusted. NROUST
is in percent, quarterly, not seasonally adjusted. NROUST is converted in
a monthly series using the MATLAB function interp1. The unemployment
gap ug is calculated as the di¤erence between UNRATE and the monthly
NROUST.

Federal funds rate

� Data source:

�Board of Governors of the Federal Reserve System (US), E¤ective
Federal Funds Rate [FEDFUNDS], retrieved from FRED, Federal
Reserve Bank of St. Louis;

� https://fred.stlouisfed.org/series/FEDFUNDS, January 27, 2019.

� The federal funds rate R is the monthly FEDFUNDS.

Fed�s Balance Sheet

� Data sources (Total Assets held by the Fed and Total U.S. government
securities securities held by the Fed (all data refer to the end of month,
are in millions of dollars and not seasonally adjusted):

�From January 2003 to January 2019, Board of Governors of the Fed-
eral Reserve System (US), Assets: Total Assets: Total Assets (Less
Eliminations From Consolidation): Wednesday Level [WALCL], re-
trieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/WALCL, January 27, 2019.

�From June 1996 to December 2002, manually copied from the Con-
solidated Statement of Condition of All Federal Reserve Banks in the
Fed releases of Factors A¤ecting Reserve Balances - H.4.1;
https://www.federalreserve.gov/releases/h41/;
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�From May 1975 to January 1978, using data downloaded from:
https://fraser.stlouisfed.org/title/83.

� Data sources (monthly series of nominal GDP):

� (i) Quarterly data on nominal GDP taken from U.S. Bureau of Eco-
nomic Analysis, Gross Domestic Product [GDP], retrieved from FRED,
Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/GDP, January 27, 2019.
This is monthly interporlated between 1979 and 1992 using the MAT-
LAB function interp1 ;

� (ii) Monthly data nominal GDP between January 1992 and October
2018 using US Monthly GDP (MGDP) Index from Macroeconomic
Advisers by IHS Markit, downloaded from:
https://ihsmarkit.com/products/us-monthly-gdp-index.html.

� All assets time series are scaled by nominal GDP. TS is the Total U.S. gov-
ernment securities held by the Fed in percent of GDP. PS is the di¤erence
between Total Assets held by the Fed in percent of GDP and TS.

D Impulse Response Functions

The algorithm for computing nonlinear structural IRFs with sign restrictions
conditional on information at time t includes the following 9 steps.

1. Compute NQ matrices of random elements, each having the same size of
the covariance matrix 
t in equation (2). Compute the NQ orthogonal
matrices Qnq, nq = 1; :::; NQ each obtained from the QR decomposition
of one of these random matrices.

2. Set the sequence of lagged data up to period t � 1 to de�ne the history
zt�1 at date t.

3. Generate a baseline sequence of structural shocks at date t for each variable
in yt over the time horizon h = 0; :::;H. Then generate a sequence of
perturbated shocks, which is equal to the baseline except for the shock of
interest that is set equal to the value in the baseline plus a prespeci�ed
increase, �, denoting the magnitude of this shock.

4. Given zt�1 and the baseline sequence of shocks in step 3, generate NQ

new paths of realizations of yt+h; h = 0; :::;H, by recursively updating
the VSTAR model (1)-(2) conditional on zt�1, after pre-multiplying the
Cholesky decomposition of the covariance matrix (2) by the orthogonal
matrices Qnq, nq = 1; :::; NQ.

5. Given zt�1 and the perturbated sequence of shocks in step 3, generate
NQ new paths of realizations of yt+h; h = 0; :::;H, by recursively updating
the VSTAR model (1)-(2) conditional on zt�1, after pre-multiplying the
Cholesky decomposition of the covariance matrix (2) by the orthogonal
matrices Qnq, nq = 1; :::; NQ.
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Times Start End s p ip ug TS PS R
Normal Jun-94 May-01 1.91 6.11 4.80 -0.48 4.93 0.79 5.44
Pre-ZLB Jan-02 Dec-08 2.48 5.06 1.30 0.33 5.28 1.28 2.75
ZLB Jan-09 Dec-15 3.00 3.05 0.63 2.50 9.81 9.57 0.13
Post-ZLB Jan-16 Oct-18 2.30 4.30 1.05 -0.22 12.5 10.18 1.01

Table 6: Histories used for computing IRFs during normal times, pre-ZLB pe-
riod, ZLB period and post-ZLB period.

6. Subtract each path for yt+h in step 4 from the corresponding path for yt+h
in step 5, h = 0; :::;H. This gives NQ estimates of the IRFs conditional
on zt�1.

7. Set aside the IRFs in step 6 that satisfy the required sign restrictions.

8. Since the IRFs in step 7 depends on the particular random draw for the
structural shocks in 3, repeat steps 3 to 7 NR times and compute the
median of the resulting IRF estimates. By the law of large numbers,
this median converges to the conditional IRFs of yt+h at horizon h =
0; 1; :::;H, to a given shock conditional on zt�1.

9. The unconditional IRFs of yt+h at horizon h = 0; 1; :::;H, can be com-
puted by conditioning on the average of the subset of all histories of inter-
est. Alternatively, unconditional IRFs of yt+h at horizon h = 0; 1; :::;H,
can also be computed by repeating steps 2-8 over many histories zt�1,
each of which is randomly drawn with replacement from the original data,
and then averaging the values of the resulting conditional IRFs. This
second procedure is however more time consuming and computatinally
intensive than the �rst.

The IRFs calculated in the paper are based on H = 24, NQ = NQ = 1000.
In the data, the spread is negatively correlated with in�ation and industrial
production, while it is positively correlated with the unemployment gap. Thus,
� = 1 and in simulating the e¤ect of a (negative) demand shock the �rst element
in each sequence of perturbated shocks in step 3 is set equal to the baseline plus
delta. E¤etively, this is equivalent to consider increase in the credit spread as a
result of a demand shock. Con�dence bands are computed using two standard
deviations of the median IRF in step 8. The calculation of the IRF under the
optimal policy uses the same algorithm described above except that the NQ new
paths of realizations of yt+h; h = 0; :::;H, are obtained by recursively updating
the VSTAR model in (19) rather than the VSTAR in (1)-(2). The unconditional
IRFs are computed using subsample averages reported in Table 6.

E Gain from Optimization: Robustness Results
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Volatilities Loss Stabilization
(pt � p)2 ug2t �TS2t �PS2t �R2t V G bu

Policy Baseline: �p = �ug = ��TS = ��PS = ��R = 1
Actual 6.36 2.66 0.32 0.02 0.11 9.46
Optimal 2.23 2.46 0.37 0.10 0.20 5.37 43.24 2.02

Weights II: �p = 0:5, �ug = ��TS = ��PS = ��R = 1
Actual 6.36 2.66 0.32 0.02 0.11 6.28
Optimal 2.66 2.44 0.33 0.07 0.16 4.33 31.08 1.40

Weights III: �ug = 0:5, �p = ��TS = ��PS = ��R = 1
Actual 6.36 2.66 0.32 0.02 0.11 8.13
Optimal 2.19 2.58 0.38 0.09 0.20 4.15 49.00 2.82

Weights IV: �ug = �p = 1, ��TS = ��PS = ��R = 0:5
Actual 6.36 2.66 0.32 0.02 0.11 9.23
Optimal 1.93 2.33 0.46 0.15 0.27 4.70 49.10 2.13

Weights V: �ug = �p = ��R = 1, ��TS = ��PS = 0:5
Actual 6.36 2.66 0.32 0.02 0.11 9.39
Optimal 2.06 2.32 0.37 0.16 0.25 4.96 47.20 2.11

Weights VI: �ug = �p = ��TS = ��PS = 1, ��R = 0:5
Actual 6.36 2.66 0.32 0.02 0.11 9.30
Optimal 2.10 2.47 0.47 0.09 0.22 5.11 45.00 2.05

Table 7: Gains from monetary policy optimization computed from the VSTAR:
1979-2018

Volatilities Loss Stabilization
(pt � p)2 ug2t �TS2t �PS2t �R2t V G bu

Policy Baseline: �p = �ug = ��TS = ��PS = ��R = 1
Actual 3.63 5.55 0.02 0.05 0.38 9.64
Optimal 2.06 5.49 0.03 0.06 0.26 7.89 18.07 1.32

Weights II: �p = 0:5, �ug = ��TS = ��PS = ��R = 1
Actual 3.63 5.55 0.02 0.05 0.38 7.82
Optimal 2.46 5.48 0.02 0.05 0.25 7.03 10.15 0.89

Weights III: �ug = 0:5, �p = ��TS = ��PS = ��R = 1
Actual 3.63 5.55 0.02 0.05 0.38 6.86
Optimal 2.06 5.53 0.02 0.06 0.26 5.17 24.58 1.84

Weights IV: �ug = �p = 1, ��TS = ��PS = ��R = 0:5
Actual 3.63 5.55 0.02 0.05 0.38 9.41
Optimal 1.60 5.41 0.03 0.09 0.30 7.22 23.22 1.48

Weights V: �ug = �p = ��R = 1, ��TS = ��PS = 0:5
Actual 3.63 5.55 0.02 0.05 0.38 9.42
Optimal 1.63 5.36 0.02 0.09 0.30 7.21 23.47 1.49

Weights VI: �ug = �p = ��TS = ��PS = 1, ��R = 0:5
Actual 3.63 5.55 0.02 0.05 0.38 9.62
Optimal 2.02 5.54 0.04 0.06 0.26 7.89 18.06 1.32

Table 8: Gains from monetary policy optimization computed from the VAR:
2008-2017
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Volatilities Loss Stabilization
(pt � p)2 ug2t �TS2t �PS2t �R2t V G bu

Policy Baseline: �p = �ug = ��TS = ��PS = ��R = 1
Actual 6.36 2.66 0.32 0.02 0.11 9.46
Optimal 3.54 2.61 0.26 0.05 0.20 6.67 29.46 1.67

Weights II: �p = 0:5, �ug = ��TS = ��PS = ��R = 1
Actual 6.36 2.66 0.32 0.02 0.11 6.28
Optimal 4.26 2.61 0.25 0.03 0.14 5.16 17.78 1.06

Weights III: �ug = 0:5, �p = ��TS = ��PS = ��R = 1
Actual 6.36 2.66 0.32 0.02 0.11 8.13
Optimal 3.55 2.64 0.26 0.05 0.19 5.37 33.89 2.35

Weights IV: �ug = �p = 1, ��TS = ��PS = ��R = 0:5
Actual 6.36 2.66 0.32 0.02 0.11 9.23
Optimal 2.75 2.58 0.27 0.10 0.32 5.68 38.48 1.89

Weights V: �ug = �p = ��R = 1, ��TS = ��PS = 0:5
Actual 6.36 2.66 0.32 0.02 0.11 9.39
Optimal 2.85 2.55 0.26 0.11 0.33 5.89 37.35 1.87

Weights VI: �ug = �p = ��TS = ��PS = 1, ��R = 0:5
Actual 6.36 2.66 0.32 0.02 0.11 9.30
Optimal 3.38 2.64 0.29 0.05 0.19 6.41 31.07 1.70

Table 9: Gains from monetary policy optimization computed from the VAR:
1979-2018
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