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Abstract 
 
Our novel approach to modeling monopolistic competition with heterogeneous consumers 
involves a space of characteristics of a differentiated good (consumers’ ideal points), alike 
Hotelling (1929). Firms have heterogeneous costs à la Melitz (2003). In addition to price setting, 
each firm also chooses its optimal location/niche in this space. We formulate conditions for 
positive sorting: more efficient firms serve larger market segments and face tougher competition 
in the equilibrium. Our framework entails rich equilibrium patterns displaying non-monotonic 
markups, high in the most and least populated niches, and the unequal gains from trade across 
different consumers. 
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... The Fox seemed perplexed, and very curious. ... “Are there hunters on that planet?” “No.”

“Ah, that is interesting! Are there chickens?” “No.” “Nothing is perfect,” sighed the fox.

“Le Petit Prince”. Antoine de Saint-Exupéry.

1 Introduction

Ever since Dixit and Stiglitz (1977), monopolistic competition has been a workhorse model in

international trade, New Economic Geography, growth, and macroeconomics. A large literature

on monopolistic competition1 demonstrates the important role of firm heterogeneity in determining

general equilibrium outcomes and in explaining a broad array of empirically observed phenomena

(Melitz 2003; Chaney 2008; Zhelobodko et al. 2012; Mrazova and Neary 2017; Dhingra and Morrow

2019). At the same time, little attention has been paid to the role of consumer heterogeneity and

to the interplay between heterogeneous demand and heterogeneous supply under monopolistic

competition (which can be, for instance, crucial for policy analysis). We seek to narrow this

gap in the literature and to make one more step towards understanding the implications of this

two-sided heterogeneity in a general equilibrium framework.

In this paper, we develop a novel theory of monopolistic competition with bilateral hetero-

geneity: (i) horizontal heterogeneity of consumers in tastes; (ii) vertical heterogeneity of firms in

productivities. Consumer tastes are represented as locations in a space of product types (or prod-

uct space, for short), and follow a one-dimensional, symmetric, and unimodal distribution with a

compact support. These assumptions capture the idea of “popularity”: the product type located

at the origin is the most popular among consumers, while the endpoint locations are the least

popular. In modeling firm behavior, our major departure from traditional Melitz-type models of

monopolistic competition with variable elasticity of substitution is that, apart from setting the

profit-maximizing price, each active firm chooses its location in the product space.2 This new

dimension of firm behavior can be considered as choosing a product niche: i.e., which group of

consumers to serve.

Each firm’s location choice entails the following trade-off. On the one hand, a more popular

niche results in a higher demand for the firm’s product and, thereby, in a potentially higher profit.

On the other hand, assume that all active firms choose to serve the most popular niche. Then,

the local competitive pressure there becomes so high that incentives arise to switch to less popular

but less competitive niches. To sum up, each firm compromises between access to a larger local

market and softer local competition. Or, as in our epigraph, a firm (a fox) wishes to “hunt” for

numerous consumers (chickens), but tries to avoid fierce competitors (hunters). Such a setup

1See Thisse and Ushchev (2018) for a recent survey.
2Recent work on monopolistic competition with variable elasticity of substitution (see, for instance, Behrens

and Murata 2007) has pointed out that not only this model is tractable but also flexible and capable of explaining
a broad array of empirically observed phenomena, e.g. variable markups (Bellone et al. 2014) and incomplete
pass-through (De Loecker et al. 2016).
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provides new insights on general equilibrium outcomes of monopolistic competition models (for

instance, the distribution of firm sales, prices, markups, etc.), which standard representative-

consumer-based models fail to deliver. Moreover, it enables us to explore the interaction between

two very different aspects of product differentiation: (i) the hedonic aspect (see Rosen 1974) and

(ii) the market power aspect.

We then ask what patterns of equilibria may arise in this new setting. First, we consider

the most general case by allowing consumers purchasing product types different from their most

preferred ones that comes at a cost: given other things equal, the utility derived from consuming

product types different from the most preferred one is lower and negatively related to the distance

between the product types (as in the Hotelling model). In other words, besides monopolistic

competition we consider direct spatial competition among firms (Hotelling 1929; Kaldor 1935;

Lancaster 1966; Beckmann 1972; Rosen 1974; Salop 1979). We also do not specify functional forms

of the consumer utility and distance decay. Hence, the shape of the market demand is affected by

the exogenous spatial distribution of consumer tastes, the endogenous spatial distribution of local

competitive toughness, and the exogenous decay rate of utility (derived from consuming several

product types) with distance.

It appears that such a setup makes a complete analytical characterization of equilibria a pro-

hibitively complex task. However, we are still able to describe some properties of the equilibrium

in the most general case (conditional on that the equilibrium exists). In particular, we find that

more productive firms charge lower prices and produce larger volumes. More importantly, we

show that if the firm’s profit function (as a function of firm’s productivity, location, and price) is

supermodular in location and price, then each equilibrium displays positive assortative matching:

i.e., more productive firms locate in denser niches. This finding has important implications for the

distribution of firm’s sales, prices, and markups and may result in a deeper understanding of data:

a firm may be 10 times smaller than another, not because it has 10 times higher costs, but because

it is slightly less efficient and forced to take a much narrower market niche. Moreover, this outcome

is important for understanding the distribution and relative size of the gains from international

trade across consumers. Compared to standard models of trade with monopolistic competition,

in our framework trade has an additional effect on consumer’s well-being. Namely, it affects the

matching between firms and locations, which in turn creates a variation in the magnitude of the

gains from trade across consumers.

To get sharper results, we explore in more detail a special case of our model, in which the

distance decay rate of the consumer utility is infinitely high. In this case, a firm serves only

those consumers, for whom the firm’s product type is the most preferred one. Though, this

simplification assumes away direct spatial competition among firms, there is still indirect spatial

competition channeled through the general equilibrium mechanism. Moreover, it is in line with

recent evidence that households tend to concentrate their spending on a few preferred products

that vary across households (see Neiman and Vavra 2019). We find that, if the price elasticity

3



of demand is decreasing with consumption3 (the Marshall’s Second Law of Demand), then (i)

an equilibrium always exists, and (ii) all equilibria exhibit positive assortative matching. If, in

addition to that, the taste distribution is log-concave, then the equilibrium is always unique.

Another implication of our theory is that markups vary non-monotonically across the product

space. Specifically, we prove that the markups are highest in the most populated locations (where

the most productive firms are located) and in the least populated ones (where the least productive

firms are located). This result on markups differs from that in models of spaceless monopolistic

competition (see, for instance, Zhelobodko et al. 2012), where firms’ markups increase with their

productivity. Our non-monotonicity result is driven by the interplay of two forces: firm hetero-

geneity and consumer heterogeneity. If firms were homogeneous, then the markup distribution

would follow the spatial distribution of local competitive toughness. Since less popular niches ex-

hibit lower competitive pressure, markups there are higher. In other words, to compensate lower

demand in more “remote” locations, homogeneous firms would charge higher prices there. How-

ever, because firms are actually heterogeneous, positive assortative matching drives less productive

firms further away from denser locations. Since less productive firms charge, ceteris paribus, lower

markups, positive assortative matching creates another component in the markup distribution,

which decreases with the distance from the densely populated but extremely competitive niche

– the origin. As a result, the markup distribution appears to be non-monotonic on the product

space.

We then consider the effects of a uniform increase in the population density that can be

interpreted as the effects of frictionless trade with a similar country. Naturally, more firms enter

the market, which increases the toughness of competition within each product type. This in turn

changes the matching pattern: firms relocate to less popular niches, and the range of served niches

expands. This finding is in line with patterns in the data. In particular, Fieler and Harrison (2019)

find that one of the implications of tariff reductions on manufacturing in China in 1998-2007 was

the introduction of new products. Also, our theory is potentially in line with findings in Holmes

and Stevens (2014) who show that in the US smaller firms are less affected by competition with

China as they produce custom or specialty goods. As foreign exporting firms are typically more

productive, in our framework they choose more populated niches with a weaker impact on firms

located in less populated niches (that can be interpreted as custom or specialty product types).

We also find that, while prices decrease for all products in response to a uniform population

increase, markups set by unproductive smaller firms can rise. This outcome also finds some empir-

ical support. Fieler and Harrison (2019) find that the tariff cuts in China resulted in an increase in

firm’s revenue to cost ratios or, equivalently, in firm’s markups. Moreover, this rise in markups was

higher for small firms than for large firms. Thus, our model provides theoretical underpinnings for

some recent empirical findings, which the standard Dixit-Stiglitz-Melitz paradigm fails to explain.

3This is case is often viewed as the most relevant one in monopolistic competition with variable elasticity of
substitution. See, e.g., Zhelobodko et al. 2012, Dhingra and Morrow (2019).
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Finally, we numerically analyze the welfare implications of a uniform change in the population

density.4 We find that, as in traditional models, all consumers gain from a rise in the population

size. However, these gains are quantitatively not the same across consumers. Our simulations

show that two patterns of the distribution of these gains prevail. The first pattern corresponds to

the case when the gains are decreasing in location: i.e., consumers located closer to the origin (that

is, consumers with more popular tastes) gain disproportionally more than all other consumers. In

the second pattern, the distribution of the gains has a hump shape with consumers located in

the middle or closer to the endpoint locations in the product space gaining more. The former

pattern is likely to take place when the level of firm heterogeneity is low, while the latter pattern

arises when the level of firm heterogeneity is high.5 Our numerical analysis also shows that a

proportional rise in the population density increases the level of inequality in the economy: on

average, a 5% increase in the population density raises the level of inequality (measured by the

Theil index) by 2.5%. These findings provide new insights on the distributional consequences of

international trade and on how international trade can affect welfare inequality.

Literature review

Our paper contributes to at least three important strands of literature. First, it connects with

papers that analyze markets with spatially distributed consumers (see Lancaster (1966, 1975),

Salop (1979), Chen and Riordan (2007), and Vogel (2008) among others). Regarding this litera-

ture, it is important to stress fundamental differences between our framework and standard spatial

competition. Indeed, although the product space is described as a one-dimensional interval, which

is akin to Hotelling (1929), we assume that consumers (i) buy in volume, and (ii) exhibit love

for variety. This leads to a very different demand structure compared to Hotelling-type setups.

Another distinctive feature of our approach is that monopolistically competitive firms make deci-

sions on entry, production, price, and location. To the best of our knowledge, no existing market

competition model captures a similarly rich pattern of firm behavior. The closest paper in this

literature is Goryunov et al. (2017) who consider a monopolistic competition framework with

spatially distributed consumers. However, in contrast to the present paper, this work focuses on

the case with homogeneous firms and uniformly distributed consumers. Another paper related to

ours is Ushchev and Zenou (2018), who develop a model of price competition in product-variety

networks. Both consumers and suppliers of a differentiated product are embedded into a network

which captures proximity between product varieties: two varieties are linked to each other if they

are close substitutes, otherwise no link exists. Each consumer’s location is her most preferred

variety, while her willingness to pay for other varieties decays exponentially with their geodesic

distance (induced by the network) from her most preferred variety. Like in most of the network

4The theoretical analysis of the welfare changes appears to be too complicated.
5In our simulations, we assume that the distribution of firm productivity is Pareto.
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literature, the network structure of the economy is assumed fixed. Therefore, Ushchev and Zenou

(2018) abstract from niche choices of firms and spatial sorting.

Second, our paper is related to the literature on spatial selection/sorting of heterogeneous

firms. One of the most related papers is Nocke (2006) who considers sorting of heterogeneous

firms across imperfectly competitive markets of different size. He finds a similar outcome - more

productive firms choose to locate in larger markets. However, our paper differs in at least two

aspects. We tackle sorting between firms and product niches in a continuous fashion, somewhat

similar to continuous economic geography in Allen and Arkolakis (2014). More importantly, Nocke

(2006) mainly focuses on sorting per se, while we consider a general equilibrium framework with

monopolistic competition analyzing its existence and uniqueness and explore its implications for

markups and consumer welfare. Among other studies, Okubo et al. (2010) explores how trade

liberalization affects sorting across location in a two-country model with linear demand. Behrens

et al. (2014) construct a model of selection of talented individuals across ex-ante homogeneous

cities.6 Gaubert (2018) develops a quantitative model of sorting of heterogeneous firms across

cities where firm’s choice depends on local input prices and agglomeration externalities. Our

paper complements this strand of the literature by focusing in more detail on selection of firms

across product niches in a quite general setup with continuous product space. Carballo et al.

(2018) empirically study self-selecting of firms into specific foreign market niches, but their space

of products is very different from ours. There is some similarity of our approach with Eckel and

Neary (2010) who develop a model of flexible manufacturing with core competence of every firm.

However, sorting of firms is not addressed in this paper.

Finally, the present paper also contributes to the literature on the role of consumer heterogene-

ity in monopolistic competition and its implications for the distribution of the gains from trade.

Among this large literature, Fajgelbaum et al. (2011) and Tarasov (2012) develop models of inter-

national trade with income heterogeneity and non-homothetic preferences. Osharin et al. (2014)

consider a model of monopolistic competition where the elasticity of substitution between any pair

of varieties is consumer-specific. Nigai (2016) considers a quantitative trade model with heteroge-

neous (in income and preferences) consumers and shows that the assumption of a representative

consumer may overestimate (underestimate) the welfare gains from trade of the poor (rich). In

contrast to these studies and many others, our paper focuses on horizontal consumer heterogeneity

assuming away income effects and, therefore, provides a new rationale for the unequal distribution

of the gains from trade.

The rest of the paper is organized as follows. In Section 2 we develop a general framework with

unspecified functional forms of the consumer utility and distance decay rate. Section 3 considers

the special case of our model with an infinitely high distance decay rate. In Section 4 we perform

numerical analysis of our model. Section 5 concludes.

6See also Behrens and Robert-Nicoud (2015) for a survey.
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2 The general model

In this section, we develop a model of a closed economy which blends the features of monopo-

listic competition à la Melitz (2003) with the characteristics approach to product differentiation

developed by Lancaster (1966). Such a model allows us to study the role of interactions between

two very different facets of product differentiation: (i) the hedonic aspect: price of a certain type

of product depends on its type-specific characteristics (Rosen 1974); and (ii) the market-power

aspect: because varieties are differentiated, pricing above marginal cost need not result in losing

all the customers. Thus, the demand for a certain type of product is not only affected by its price,

but also by the “location” of the product in the space of product characteristics. As a result, each

firm chooses both price and location. In this context, a firm’s location choice means targeting a

certain market segment (taking into account its size and the level of competition).

2.1 Product space and demand

Spatial structure. Product space X is one-dimensional and is represented as a real line: X ≡ R.1

Each point of the product space corresponds to a certain type of product. A consumer’s location

x ∈ X represents her most preferred product type.2 Let l(x) ≥ 0 stand for the population density

at x ∈ X, and denote by L ≡
´
X
l(x)dx the total population in the economy. To simplify the

analysis, we assume that the population density is symmetric w.r.t. the origin x = 0, decreases

with the distance from the origin, and has compact support [−S, S], where S > 0. We also assume

that l(·) is continuously differentiable and strictly decreasing over (−S, S). In other words, product

types are ordered by “popularity” in the descending order: product type x ∈ X is preferred by

more consumers than product type y ∈ X if and only if |x| < |y|. Hence, we find it natural to

refer to l(·) as the spatial distribution of consumer tastes, which we treat as interchangeable with

“population density” in what follows. This is done both for brevity and for the sake of exploiting

the intuitive appeal of Hotelling’s spatial metaphor.

The utility function of a consumer located at x ∈ X is given by

Ux = V

(ˆ
X

kτ (x, y)

ˆ
Ωy

u(q(ω))dωdy

)
+ q0, (2.1)

where V : R+ → R is an upper-tier utility function, u : R+ → R is a lower-tier utility function,

Ωy is the set of varieties of type y ∈ X available at the market, kτ (x, y) is a spatial discount factor,

q(·) is an individual consumption pattern defined over the whole set Ω ≡
⋃
y∈X Ωy of varieties

1Alternatively, X could be represented by a compact interval, in which case it can be viewed as a geographical
space in a linear-city model.

2This bears some resemblance with the ideal variety concept introduced by Hotelling (1929). We refrain from
using the term “ideal variety” to avoid gibberish: in our model, a variety is something different from a product
type, as each type of product available on the market is represented by a continuum of varieties.
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available on the market, and q0 is the consumption of the outside good, which is chosen as a

numéraire. We impose the following assumptions:

Assumption 1. The upper-tier utility V (·) is sufficiently differentiable, satisfies V ′ (υ) > 0 and

V ′′ (υ) < 0 for all υ > 0, and satisfies the choke-price property: V ′(0) <∞.

Assumption 2. The lower-tier utility u(·) is sufficiently differentiable, satisfies u′ (q) > 0, u′ (0) <

∞, and u′′ (q) < 0 for all q > 0, and is normalized to zero at zero: u (0) = 0.

Assumption 3. The kernel kτ : X × X → R+ representing the spatial discount factor in (2.1)

has the following structure:

kτ (x, y) = τψ(τ |x− y|), (2.2)

where τ > 0 is a “transport cost” parameter which captures the decay rate of utility with distance

from the most preferred product type, while ψ : R+ → R+ is the distance decay function, which is

(i) decreasing: ψ′(·) < 0, and (ii) such that 2
´
R+
ψ(z)dz = 1. In other words, the family {kτ}0<τ<∞

of decay kernels constitutes a standard mollifier (see, e.g., Evans, 2010, p. 713). To give a few

examples, the distance decay function ψ(·) may be (i) negative exponential: ψ1(z) ≡ exp{−z};
(ii) Gaussian: ψ2(z) ≡ (2π)−1/2 exp{−z2/2}.

A consumer located at x ∈ X seeks to maximize her utility (2.1) subject to the budget

constraint given by ˆ
X

ˆ
ω∈Ωy

p (ω) q (ω) dωdy + q0 ≤ I, (2.3)

where p (ω) is the market price for variety ω of the y-type product, while I is consumer’s income.

Assuming I is sufficiently high and using the standard monotonicity argument, the consumer’s

utility maximization problem can be restated as follows:

max
q(·)

[
V

(ˆ
X

kτ (x, y)

ˆ
Ωy

u(qx(ω))dωdy

)
−
ˆ
X

ˆ
ω∈Ωy

p(ω)q(ω)dωdy

]
. (2.4)

The individual demand qx(ω) of a consumer located at x ∈ X for a variety ω ∈ Ωy can be obtained

from the consumer’s FOCs, which are as follows:

p(ω)

kτ (x, y)
=
u′(qx(ω))

λ(x)
, (2.5)

where y is such that ω ∈ Ωy, while λ(x) is a product-type specific demand shifter defined by

λ(x) ≡ 1

V ′
(´

X
kτ (x, y)

´
Ωy
u(qx(ω))dωdy

) . (2.6)
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The local aggregator λ(x) can be viewed as a measure of local competitive toughness associated

with the market segment x ∈ X: a higher λ(x) means a downward shift of the demand schedule

for each particular variety ω ∈ Ωx.

Solving (2.5) for qx(ω), we obtain the individual Marshallian demand of an x-type consumer

— i.e. a consumer whose preferred product type is x — for variety ω:

qx (ω) = D

(
λ(x)

p(ω)

kτ (x, y)

)
, (2.7)

where y is the product type variety ω belongs to (ω ∈ Ωy), while D(·) is the downward-sloping

demand schedule defined by D(z) ≡ max {0, (u′)−1(z)} for all z ∈
(
0, (u′)−1 (0)

)
.

To obtain the market demand Qx(ω) for variety ω ∈ Ωx, we integrate (2.7) across the product

space X with respect to the distribution of consumer tastes. Doing so, we obtain:

Qx(ω) =

ˆ
X

D

(
λ(y)

p(ω)

kτ (x, y)

)
l(y)dy. (2.8)

As can be seen from equation (2.8), the shape of market demands is affected by (i) the exogenous

spatial distribution l(·) of consumer tastes, (ii) the endogenous spatial distribution λ(·) of local

competitive toughness, and (iii) the spatial discount factor.

2.2 Firm behavior

The supply side in the model follows Melitz (2003). Each firm is single-product, i.e. it can produce,

at most, one variety.3 The only factor of production is labor, one unit of which is inelastically

supplied by each individual. To enter the market, firms need to pay a sunk entry cost, fe > 0.

After paying the cost, they draw their marginal cost c > 0 from an absolutely continuous univariate

distribution described by a differentiable cdf G : [cmin,∞)→ [0, 1], or, alternatively, by a pdf g(·)
defined by g(c) ≡ G′(c) for any c > cmin. Here cmin ≥ 0 is the marginal cost of the most efficient

firm which can ever exist. In what follows, we call a firm whose draw is c a c-type firm.

In addition to the variable cost, starting production requires a fixed cost f > 0. Firms whose

operating profits are not sufficient to cover the fixed cost, choose not to produce. The remaining

firms treat the pattern λ(·) of local competitiveness as given and choose their optimal location

and price (the price is determined by both the marginal cost of production and the location of a

firm).

Using equation (2.8) for the market demand yields a c-type firm’s operating profit Π(c, p, x),

which is a function of the firm’s price and the firm’s location choice:

Π(c, p, x) = (p− c)Q(p, x), (2.9)

3In this paper, we do not consider multi-product firms.
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where Q(p, x) is the demand schedule faced by a firm producing a variety of type x (see the

previous section):

Q(p, x) =

ˆ
X

D

(
λ(y)p

kτ (x, y)

)
l(y)dy. (2.10)

Note that, since l(x) is symmetric around zero, it is natural to consider a symmetric equilibrium

allocation of firms: i.e., firms are indifferent between locating at x > 0 and −x (this in turn implies

that λ(x) is symmetric around zero as well). In other words, the situation on (−∞, 0) is a mirror

image of that on (0,∞). Therefore, without loss of generality, hereafter we only consider locations

x ≥ 0.

Let π(c) stand for the profit a c-type firm earns under its profit-maximizing choices:

π(c) ≡ max {Π(c, p, x) | p ≥ c, x ≥ 0 }.

By the envelope theorem, π(c) is continuously differentiable in c and more productive firms earn

higher profits: π′(c) = Πc < 0, where (·)c stands for the partial derivative w.r.t. c. A firm chooses

to produce if and only if π(c) > f . If, in addition, we can guarantee that π(cmin) > f > π(∞), then

the equation π(c) = f has the unique solution c > cmin. We call c the cutoff cost. In other words,

c is the marginal cost of the least productive active firm, which is indifferent between producing

and non-producing.

For each c ∈ [cmin, c], let (p(c), x(c)) ∈ R2 stand for the c-type firm’s profit-maximizing choice

of price and location. Since the two equations, p = p(c) and x = x(c), define parametrically a

curve in the (p, x)-plane, it is natural to call the set {(p(c), x(c)) ∈ R2 | c ∈ [cmin, c]} the price-

location curve. Consider firms whose optimal locations x(c)∈ [0, S).4 For these firms, (p(c), x(c))

solve the following FOCs (see (2.9)):

ˆ
X

D

(
λ(y)p

kτ (x, y)

)
l(y)dy + (p− c)

ˆ
X

D′
(

λ(y)p

kτ (x, y)

)
λ(y)

kτ (x, y)
l(y)dy = 0, (2.11)

ˆ
X

D′
(

λ(y)p

kτ (x, y)

)[
∂kτ/∂x

kτ (x, y)2

]
λ(y)l(y)dy = 0. (2.12)

Equations (2.11) - (2.12) imply the following result.

Proposition 1. (i) More productive firms produce at larger scales and charge lower prices:

dp(c)

dc
> 0,

d

dc
Q(p(c), x(c)) < 0. (2.13)

(ii) More productive firms choose more competitive locations on [0, S) if and only if the profit

4Note that, since l(x) = 0 if x /∈ (−S, S), for some firms, the optimal choice of location can be at the corners
−S and S. Clearly, locations outside [−S, S] cannot be optimal, as demand there is equal to zero.
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is supermodular along the price-location curve:

Πpx(c, p(c), x(c)) > 0. (2.14)

Proof. (i) Totally differentiating both sides of the FOCs (2.11) - (2.12) w.r.t. c yields(
dp(c)/dc

dx(c)/dc

)
= −

(
Πpp Πpx

Πpx Πxx

)−1(
Πcp

Πcx

)
, (2.15)

where the right-hand side is evaluated at (p, x) = (p(c), x(c)). As implied by (2.9) - (2.10), we

have: Πcp = −Qp > 0, Πcx = −Qx = 0, plugging which back to (2.15) yields(
dp(c)/dc

dx(c)/dc

)
=

1

ΠppΠxx − Π2
px

(
ΠxxQp

−ΠpxQp

)
. (2.16)

Using (2.16) and the chain rule, and taking into account that Qx = 0, we obtain:

dp(c)

dc
=

Πxx

ΠppΠxx − Π2
px

Qp > 0,

d

dc
Q(p(c), x(c)) =

Πxx

ΠppΠxx − Π2
px

Q2
p < 0,

where both inequalities hold due to the SOC. This proves (2.13).

(ii) The equivalence of (2.14) to dx(c)/dc > 0 follows immediately from (2.16) and the SOC.

We assume that the appeal of a product type y to a x-type consumer decays with the distance

|x − y| between x and y. This is reminiscent to the model proposed by Ushchev and Zenou

(2018), where consumer’s willingness to pay for a variety decreases with the geodesic distance

from a consumer to a firm in a product-variety network. However, unlike these authors, we

neither use specific functional forms for preferences nor for the distance decay patterns. Therefore,

providing full analytical characterization of equilibria and a clear-cut comparative statics in the

most general case is problematic. In particular, as firms compete both within and across locations,

price competition among firms cannot be described as an aggregative game (Anderson et al. 2013),

since the whole schedule λ(·) of competitive toughness matters for individual pricing behavior of

each firm. To obviate this difficulty, we pay special attention to the case when the distance decay

rate is very high (formally, infinitely high), which can be viewed as the extreme case of fully

localized competition: firms compete within but not across locations in the product space. In this

case, price competition among firms can be described by an aggregative game, which radically

simplifies the analysis of firm behavior and equilibrium characterization.
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3 The special case

In this section, we consider the special case of the above model where the distance decay rate is

infinitely high. Formally, we take the limit in (2.1) under τ → ∞. This is where Assumption 3

plays its role: because the distance decay kernel kτ (x, ·) given by (2.2) is a standard mollifier, it

converges to the Dirac’s delta concentrated at x when τ →∞.1 Consequently, the utility function

(2.1) of an x-type consumer becomes

Ux = V

(ˆ
Ωx

u(q(ω))dω

)
+ q0. (3.1)

A consumer located at x ∈ X seeks to maximize her utility (3.1) subject to the budget constraint

(2.3), which becomes ˆ
ω∈Ωx

p (ω) q (ω) dω + q0 ≤ I. (3.2)

Along the same lines as in the general case, one can show that the market demand Qx(ω) for

a variety ω ∈ Ωx becomes

Qx(ω) = l(x)D(λ(x)p(ω)), (3.3)

where the product-type specific demand shifter λ(x) is now defined by

λ(x) ≡ 1

V ′
(´

ω∈Ωx
u (q (ω)) dω

) . (3.4)

The operating profit function is then given by

Π(c, p, x) = (p− c)l(x)D(λ(x)p).

3.1 Firm behavior: sorting between firms and locations

In this section, we show that under quite general assumption about the lower-tier utility u (·),
firms that choose internal locations, S > x(c) > 0, are completely sorted across the locations: less

productive firms choose to locate further from zero. In other words, x (c) is increasing in c.

When τ →∞, the first order condition in (2.11) can be written as follows:

∂Π (p, x, c)

∂p
= 0⇔ 1 +

(p− c)
D (λ(x)p)

· ∂
∂p
D (λ(x)p) = 0. (3.5)

1More precisely, we have: mτ ⇀ δx as τ → ∞ were mτ is the linear functional defined by mτ (ϕ) ≡´
X
kτ (x, y)ϕ(y)dy for any ϕ ∈ C(X), while ⇀ stands for convergence in the weak topology. The Dirac’s delta

δx concentrated at x ∈ X is a linear functional over C(X) defined as follows: δx(ϕ) ≡ ϕ(x) for all ϕ ∈ C(X). See
Evans (2010) for details.
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The latter is equivalent to
p− c
p

= − D (λ(x)p)

λ(x)pD′ (λ(x)p)
, (3.6)

which is the usual monopolistic condition of unit elasticity. The above equation gives the relation-

ship between the price and firm’s location in the taste space, which we define as p (x, c).

Given this relationship, the firm then chooses its optimal location by solving (2.12) (when

τ →∞), which implies2

l(x)

l′(x)
· λ
′(x)

λ(x)
= − D (λ(x)p (x, c))

λ(x)p (x, c)D′ (λ(x)p (x, c))
. (3.7)

Combining (3.6) and (3.7), we derive a neat expression for a markup M(x, c):

M(x, c) ≡ p (x, c)− c
p (x, c)

=
λ′(x)

λ(x)

l(x)

l′(x)
=
λ̂(x)

l̂(x)
, (3.8)

where λ̂(x) ≡ λ′(x)/λ(x) and l̂(x) ≡ l′(x)/l(x). The above expression for markups implies the

following lemma.

Lemma 1. If l(x) is strictly decreasing in x on (0, S), then for any interval (a, b) ⊆ (0, S) such

that Ωx is not empty for any x ∈ (a, b) in the equilibrium, λ(x) is strictly decreasing on (a, b) in

the equilibrium.

Proof. If Ωx is not empty for any x ∈ (a, b) in the equilibrium, then any point x on (a, b) is an

optimal location for some firms that stay in the market. The markups set by these firms are

strictly positive (since there is the fixed cost of production). From (3.8), positive markups imply

that λ′(x) < 0 on (a, b) (as l′(x) < 0 on (a, b)).

The result in the lemma is explained by a simple trade-off. Choosing an optimal location, firms

face a trade-off between the size of the location and the level of competition there. Decreasing

l(x) means that, all else equal, the further is firm’s location from zero, the lower is the demand for

its product. Hence, if firms find it profitable to locate further from zero, lower demand must be

compensated by a lower level of competition at this location, which in turn means lower λ(x). The

expression in (3.8) also implies that, depending on the behavior of the fraction λ̂(x)/l̂(x) (which

is, in fact, the ratio of the elasticities of the population and competition measures), markups can,

in general, grow or decline with a rise in the distance from the zero location.

Next, we explore how the marginal cost of production affects locations firms choose. It turns

out that necessary and sufficient conditions for spatial equilibria to exhibit positive (or negative)

spatial sorting of firms can be expressed in terms of the demand schedule properties. More

precisely, the following proposition holds.

2Due to the envelope theorem, ∂p (x, c) /∂x = 0. In what follows, we assume that λ(x) is differentiable.
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Proposition 2. Assume that l(x) is strictly decreasing in x for all x ∈ (0, S). If, in addition,

ED (λp) ≡ −(λp)D′ (λp) /D (λp) is strictly increasing (decreasing) in its argument λp (in other

words, the demand elasticity is strictly increasing (decreasing) in price), then, in equilibrium, for

all c such that S > x(c) > 0, we have: dx(c)/dc > 0 (< 0).

Proof. The proof is based on the log-supermodularity property of the variable profit function.

Specifically, we have

log Π (p, x, c) = log(p− c) + log l(x) + logD (λ(x)p) .

Thus,
∂2 log Π

∂p∂c
=

1

(p− c)2 > 0,

∂2 log Π

∂x∂c
= 0,

∂2 log Π

∂p∂x
= −λ′(x)

∂ED (λp)

∂λp
> 0⇐⇒ ∂ED (λp)

∂λp
> 0,

since −λ′(x) > 0. The above log-supermodularity properties of the profit function result in the

statements of the proposition.

Recall that, in the general case with finite τ , the necessary and sufficient condition for dx(c)/dc >

0 is that Πpx(c, p(c), x(c)) > 0. The issue is that, in the general case, this condition cannot be

expressed in terms of the primitives of the model. However, when τ = ∞, a natural condition

on the elasticity of demand (the Marshall’s Second Law of Demand) appears to be sufficient for

perfect sorting among firms located on (0, S) in the equilibrium - less productive firms locate

further from the zero location.

One can readily verify that linear demand has an increasing demand elasticity. Most specifi-

cations well established in the literature3 also satisfy this property. It is worth noting that CES

demand has a constant elasticity of demand. In particular, the variable profit of a firm can be

written as follows:

Π (c, p(x, c), x) = (p(x, c)− c) l(x)D (λ(x)p(x, c)) =
(σ − 1)σ−1

(σ)σ
c1−σ l(x)

(λ(x))σ
.

Such a profit function implies that, given λ(x), all firms (irrespective of their marginal cost) choose

the location(s) where l(x)/(λ(x))σ achieves its maximum on [0, S]. In the context of the general

equilibrium, this outcome may result in multiple equilibria. Indeed, if there exists a general

equilibrium with a certain equilibrium schedule of λ, then any reallocation of firms across the

3Other examples include the CARA demand system (Behrens and Murata, 2007) and Stone-Geary demnd
system (Simonovska, 2015). See Zhelobodko et al. (2012) and Arkolakis et al. (2018) for more examples.

14



locations that keeps λ(x) the same is also an equilibrium (see more on the concept of the general

equilibrium in the model in the next section).

3.2 The general equilibrium

In this section, we describe the general equilibrium in the model. We assume that l(S) is sufficiently

low. This assumption together with the presence of the fixed cost of production imply that the

location of the firm with marginal cost c̄, x(c̄), always belongs to [0, S). That is, there are some

locations (close to S) that are not served by firms (consumers there purchase only the numéraire).

This case is of a particular interest as it implies one more endogenous margin of production - the

set of niches served by firms in the market.

We showed that, when the demand elasticity is strictly increasing (see Proposition 2), firms

are positively sorted on (0, S): dx(c)/dc > 0. This implies that the most productive firms choose

zero as the optimal location: x(cmin) = 0. The mass of firms at location x ≥ 0 is then given by

µ(x) = Me g (c(x)) c′(x),

where c(x) is the inverse function of x(c) and represents the productivity of firms located at x.

The general equilibrium is then **a bundle** (Me, c̄, {λ(x), p(x, c), x(c)}x∈Ω,c∈[cmin,c̄]), such

that the following conditions hold:

C1 The measure of competition intensity satisfies:

λ(x) =
1

V ′ (µ(x)u(qx))
, (3.9)

where qx = D (λ(x)p(x, c)) is the per capita consumption of one variety produced by a firm located

at x. As there are no firms located at x > x(c̄) ≡ x̄, λ(x) = 1/V ′ (0) for all x ∈ (x̄, S]. To hold

the continuity of the problem, the value of λ(x) defined in (3.9) at the rightmost location x̄ must

be equal to 1/V ′ (0). Equivalently, c′(x̄) must be equal to zero.

C2 The schedule of prices, p(x, c), solves with respect to p

(p− c)λ(x) = −D (λ(x)p)

D′ (λ(x)p)
. (3.10)

C3 The optimal location of a firm with c, x(c), solves with respect to x

p(x, c)− c
p(x, c)

=
λ′(x)

λ(x)

l(x)

l′(x)
, (3.11)

with x(cmin) = 0.

C4 The cutoff c̄ is determined by the zero-profit condition:

Π (c̄, p(c̄), x(c̄)) = f. (3.12)

15



C5 The mass of entrants is determined by the free entry condition:

ˆ c̄

cmin

(Π (c, p(c), x(c))− f) · g (c) dc = fe. (3.13)

Next, we explore the existence and uniqueness of the equilibrium defined above. Note that

the above definition of the general equilibrium implies that the spatial pattern {c(x), λ(x)}x∈[0,x]

is described by the following system of differential equations

dλ

dx
= −a(x)λM(x, c),

dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(qx)
,

where a(x) ≡ −l′(x)/l(x) > 0 is the rate at which population decreases with the distance |x| from

the origin. It is straightforward to show (see Section 3.3) that M(x, c) and qx are functions of

λ(x)c. Thus, the system can be rewritten as follows:

dλ

dx
= −a(x)λM(λc), (3.14)

dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(q(λc))
. (3.15)

Hence, the existence of the equilibrium is in fact determined by the existence of the solution of the

above system with the following boundary conditions: c(0) = cmin and λ(x) = 1/V ′ (0) ≡ λmin.

In particular, the following proposition holds.

Proposition 3. If l(S) is sufficiently low and l(0) is sufficiently high, then there exists a general

equilibrium in the model described by the conditions in C1-C5.

Proof. In the Appendix.

Sufficiently low l(S) is implies that x̄ < S, while sufficiently high l(0) is necessary to guarantee

the positive mass of entrants, Me, into the market. In the Appendix, we formulate the exact

conditions on l(S) and l(0) in terms of the primitives in the model. We also show that, under

quite a general condition on l(x), the general equilibrium is unique. Specifically, the following

proposition holds.

Proposition 4. Assume that, in addition to the conditions in Proposition 3, a′(x) ≥ 0. Then,

the general equilibrium is unique.

Proof. In the Appendix.
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Notice that a′(x) ≥ 0 if and only if l′(x)2 − l′′(x)l(x) ≥ 0, which, for instance, holds for

l(x) = a − bxγ where γ ≥ 1.4 Note that the condition is sufficient meaning that the equilibrium

can be unique even when a′(x) < 0.

3.3 The distribution of markups

In this section, we explore how firm’s markup depends on that firm location and marginal cost of

production. To do so, we first express firm’s markups in terms of quantities sold. Specifically, the

firm’s profit maximization problem can be reformulated in the following way. Given the inverse

demand function, a firm maximizes its profit with respect to its location and the quantity per

consumer sold at this location, q. Taking into an account (2.5), the inverse demand function is

given by

p (q, x) = u′ (q) /λ(x).

Hence, a firm’s variable profit function can be written as follows:

Π (c, q, x) = (u′ (q) /λ(x)− c) ql(x).

This implies that given firm’s location x, the quantity per consumer supplied by the firm solves

∂Π (c, q, x)

∂q
= 0⇔ u′ (q) + q u′′ (q) = λ(x)c. (3.16)

Let us define the solution of the above expression as q(x, c): a quantity per consumer sold at x

by a firm with cost c. Note that q(x, c) is completely determined by λ(x)c and is a decreasing

function of λ(x)c.

Given q(x, c), the firm then chooses its optimal location (in the case, when the optimal location

is internal: x ∈ (0, S)) by solving:

∂Π (q, x, c)

∂x
= 0⇔ λ′(x)

λ(x)

l(x)

l′(x)
= 1− λ(x)c

u′ (q(x, c))
= −q(x, c)u

′′ (q(x, c))

u′ (q(x, c))
.

The latter implies that a firm’s markup,M(x, c), is equal to Eu′ (q(x, c)). Since, q(x, c) is a function

of λ(x)c,M(x, c) is a function of λ(x)c. Moreover, if ED is increasing in price, Eu′ is increasing in

quantity. This in turn implies that M(x, c) is a decreasing function of λ(x)c.

In the general equilibrium, less productive firms choose locations that are further from zero:

c(x) is increasing in x for all x > 0. At the same time, λ(x) is decreasing in x. As a result,

λ(x)c(x) and, therefore, the markup function can be non-monotonic in x. In fact, the behavior

of the markup function in the equilibrium is determined by the interplay of two forces: firm

heterogeneity and consumer heterogeneity. In particular, when firms are homogeneous in terms

4We need this condition on l(x) to guarantee the uniqueness of the cutoff c, which is not straightforward in our
framework.
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of their productivity and consumers have different tastes, the behavior of the markup function

is solely determined by λ(x), which is decreasing in x. This implies that the markup function

is increasing in x: firms located further from zero set higher markups. Indeed, to compensate

lower demand in more “remote” locations, homogeneous firms charge higher prices there. When

firms are heterogeneous, less productive firms choose more remote locations to avoid tougher

competition in denser locations. Since less productive firms charge lower markups, the presence

of firm heterogeneity adds a decreasing trend in the behavior of the markup function. As a result,

the markup function can be non-monotonic.

In particular, we can prove the following proposition.

Proposition 5. 1) (λ(x)c(x))′x=x̄ < 0. 2) If | l′(0) |<∞ and cmin is sufficiently close to zero, then

(λ(x)c(x))′x=0 > 0. 3) If, in addition, g′(c) ≥ 0 and (l′(x)/l(x))′x ≤ 0, then the markup function,

M(λ(x)c(x)), has a U-shape on [0, x̄].

Proof. In the Appendix.

The first two statements in the proposition mean that the markup function is decreasing around

zero (under some restrictions on the parameters) and increasing around x̄. The intuition behind

is as follows. Given other things equal, lower cmin implies a higher level of firm heterogeneity in

the neighborhood of 0 in the equilibrium. When this level is high enough, we have the decreasing

markup function in the neighborhood of 0 as discussed before. In the neighborhood of x̄, c′(x) is

close to zero, implying a low level of firm heterogeneity there. As a result, the markup function

is increasing. Finally, under some additional assumptions on g(c) and l(x), the markup function

is globally U-shaped. Note that the assumption on g(c) seems to be natural: it is more likely to

get a bad productivity draw than a good one. For instance, a Pareto distribution satisfies this

property.

An important implication of the above findings is that, due to the positive sorting in the

equilibrium, the relationship between firm’s marginal costs and markups has a U -shape as well. In

other words, in the equilibrium, the most and least productive firms set the highest markups, while

in traditional models of monopolistic competition with firm heterogeneity, the highest markups

are set by the most productive firms only - the relationship between firm’s marginal costs and

markups is negative.

3.4 Comparative static: A proportional rise in the population density

In this section, we analyze the implications of a proportional change in l(x) in all locations:

lnew(x) = δlold(x). Without loss of generality, we assume that δ > 1 meaning that the population

density rises that can be interpreted as the outcome of free trade with an identical economy. To

explore the effects of the change in l(x), we distinguish between the short-run and long-run effects.

This also simplifies understanding of the intuition behind. By the short-run effects we mean the
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implications of the change in l(x) when the mass of entrants, Me, does not react to changes in

l(x). The following lemma holds.

Lemma 2. Under fixed Me, a proportional rise in l(x) increases the cutoffs x̄ and c̄. Given this

change in l(x), the values of the functions λ(x) and c(x) rise in all locations (only c(0) = cmin

does not change).

Proof. In the Appendix.

The intuition of the findings above is as follows. All else equal, a rise in the population size

implies higher firm’s profits. As a result, some inefficient firms that did not produce before find

it profitable to produce now under a higher value of the population size: c̄ rises. In the similar

way, some product niches that were not “attractive” to firms before become now larger in terms

of their size and, therefore, generate positive profits: x̄ rises. Finally, a rise in the number of firms

in the neighborhood of x̄ leads to a higher level of competition in this region (increasing λ(x)).

As a result, tougher competition forces firms to relocate closer to the origin, implying that c(x)

rises in all locations, except for x = 0.

To analyze the long-run effects, one needs to take into account the corresponding change in

Me and its effects on the equilibrium outcomes. We expect that a uniform rise in the population

density leads to a higher value of Me. Though this outcome is very intuitive and, moreover,

confirmed by our simulations, under the presence of sorting between firms and product niches

we cannot provide a strict proof for this statement. Nevertheless, in the below considerations we

assume that Me increases. In the proof of the uniqueness of the equilibrium (see Step 4), we show

that a rise in Me implies that λ(x) increases at all locations. Combining this with the results in

Lemma 2, we can formulate the following lemma.

Lemma 3. Given a proportional rise in l(x), if the number of entrants in the equilibrium,Me,

increases under this change in l(x), then the function λ(x) shifts upwards implying that the cutoff

x̄ increases.

The above lemma implies that a uniform rise in the population size makes some firms choose

product niches that were not served before. This is because the short-run and long-run forces

work in the same direction with respective to λ(x) and x̄. In the long-run, new entrants induce

tougher competition at each location. As a result, less productive firms are forced to move to less

populated niches to avoid competition, which in turn increases x̄.

Regarding c(x) and c̄, the short-run and long-run effects seem to be different. On the one hand,

a uniform rise in l(x) shifts c(x) upwards and increases c̄ (as stated in Lemma 2 and discussed

after). On the other hand, in the long-run there are new entrants that force less productive firms

to choose less populated niches and least productive firms to exit: c(x) shifts downwards and c̄

decreases. It appears that it is very complicated to show which effect is stronger in our model.
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However, we run numerous simulations and in all of them the long-run effect is stronger meaning

that a uniform rise in the population density shifts c(x) downwards and decreases the productivity

cutoff c̄. The latter outcome is in line with results in standard models of monopolistic competition

with variable markups: a rise in the market size makes least productive firms leave the market.

4 Welfare implications: Numerical analysis

In this section, we explore the distributional consequences of a uniform rise in the population

density. Note that the explicit analysis of the welfare changes in the model is prohibitively com-

plicated. Therefore, we perform detailed numerical analysis.

In the equilibrium, the welfare at location x can be written as follows:

Ux = I + V (µ(x)u(q(x)))− µ(x)p(x)q(x),

where q(x) is the consumed quantity of each variety at x and p(x) is its price.

To explore in more detail, how changes in δ can affect consumer welfare, we employ the following

decomposition (that works for small changes in δ):

4Ux
Ux
≈ EUµ (x)

4µ(x)

µ(x)
+ EUq (x)

4q(x)

q(x)
+ EUp (x)

4p(x)

p(x)
,

where EUµ (x), EUq (x), and EUp (x) are the corresponding elasticities at location x. In the equilibrium,

EUq (x) = µ(x) (V ′ (µ(x)u(q(x)))u′(q(x))− p(x)) = 0.

Hence, we have
4Ux
Ux
≈ EUµ (x)

4µ(x)

µ(x)
+ EUp (x)

4p(x)

p(x)
. (4.1)

We call the first term in the right-hand side of the above the variety effect on welfare, while the

second term is the price effect on welfare.

4.1 Parameterization of the model

We consider the following parameterization of our model. The upper-tier utility function is given

by ln (ζ + µ (·)u (·)), where ζ is normalized to unity in the benchmark scenario (which implies

that λmin = 1). For the lower-tier utility we consider a quadratic function that generates linear

demand: u (q) = aq − b
2
q2. Following Hepenstrick and Tarasov (2015), we set a to unity and b to

0.22 in the benchmark.1

1Hepenstrick and Tarasov (2015) calibrate this utility function by targeting US consumers’ income elasticity of
the extensive margin of consumption.
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Table 1: Parameterization and Meta-analysis

Function Parameterization Benchmark values Meta-analysis

V (·) : ln (ζ + µ (·)u (·)) ζ = 1
u (q): aq − b

2
q2 a = 1, b = 0.22

l (x): A
(
1−

(
x
S

)γ)
A = 10, γ = 1, S = 100 A ∼ U (10, 15), γ ∼ U (1, 2.2)

g (c): αcα−1

cαmax−cαmin
α = 3.4, cmin = 0.05, cmax = 1.0 α ∼ U (1, 5)

I = 2,f = 0.68,fe = 0.02

For the distribution of consumer tastes, we take l (x) = A (1− (x/S)γ) where γ ≥ 1 (which

guarantees a unique equilibrium). In the benchmark case, we set A to 10, S is normalized to 100,

and the curvature parameter γ is equal to unity. Finally, the distribution of firm productivities

is truncated Pareto: the density function is g (c) = αcα−1/ (cαmax − cαmin). In the benchmark

scenario, the shape parameter α is set to 3.4 (Bernard et al. 2007), cmin is equal to 0.05, and cmax

is normalized to unity. The rest of the parameters is as follows: the consumer income I is set to

2, the fixed cost of production f is 0.68, and the cost of entry fe is 0.02. Table 1 summarizes the

above parameterization.

In the benchmark case, the equilibrium values of some key variables are the following: x̄ ≈ 84.4,

c̄ ≈ 0.359, and λ (0) ≈ 2.03 (recall that λmin is normalized to unity). In this equilibrium, the

product niches on (84.4, 100] remain unserved. Figure 1 depicts the matching function c(x) that

appears to be concave.

Figure 1: c (x)
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We also look at the distribution of prices and markups on the product space in the benchmark
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equilibrium (see Figure 2 and 3, respectively). It is not surprising that the price function is

increasing, as there is less competition in more remote locations and, moreover, there are less

productive firms. At the same time, as proved before, the markup schedule has a U -shape with

the maximum of about 0.7 at the origin. The average markup (weighted by the share of firms at

each location) is around 0.3726.

Figure 2: p (x)
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Figure 3: Markup (x)
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Finally, we look at the distribution of (per capita) welfare across locations (see Figure 4). As

it can be inferred from the figure, the welfare function is decreasing. In particular, the welfare

of consumers located at zero is by around 17% higher than the welfare of consumers at the most
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remote locations. In words, our model predicts more benefits from living in more densely populated

areas. This is not only due to a higher number of firms in larger product niches, but also due

to selection of more productive firms into these niches. The level of inequality (we use the Theil

index) is 1.687.

Figure 4: Ux
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4.2 The effects of increasing population density

In this section, we numerically explore how a 5% uniform increase in the population density (which

allows us to use the welfare decomposition in (4.1)) affects the equilibrium and, particularly, con-

sumer welfare. Under the benchmark specification, the change in the population density increases

x̄ from 84.4 to 85.2 and decreases c̄ from 0.359 to 0.356. As predicted by the theory, the matching

function shifts downwards – at each location (besides the origin) there are now more productive

firms located.

We also find that at all locations the number of varieties increases, while the prices fall. This

implies that all consumers gain from the increase in population, which is in line with traditional

models of monopolistic competition. However, these gains are quantitatively not the same across

consumers. Figure 5 depicts the percentage change in consumer welfare at each location. As can be

seen, the highest gains are at the origin, the lowest are around x̄, and the difference between them

is quite substantial.2 The average welfare (weighted by the share of consumers at each location)

rises by 0.39 (from 2.1923 to 2.2008). The inequality level increases as well, by 3.26 (from 1.687

to 1.742). This finding provides one more insight on how international trade can affect the level

2**Note** that in Figure 5 we consider welfare changes for locations that were served by firms before the change
in the population density (this is the interval [0, 84.4]). Taking into account that there are no changes in welfare
for locations from [85.2, 100] (as they remain unserved), the curve in the figure goes down very steeply to zero, if
we continue it.
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of inequality in the economy that channeled through the matching mechanism between firms and

product niches.

Figure 5: 4Ux total
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We then consider the decomposition of welfare changes into the variety and price effects.

Figures 6 and 7 depict changes in welfare across locations due to these effects, correspondingly.

As can be seen, both curves are decreasing with respect to location x (except for the price effect

which is slightly increasing around zero). In other words, consumers at more remote locations

gain less in terms of both variety and price effects - the number of varieties (the prices) goes up

(go down) by less at more remote locations. In the next subsection, we explore how this pattern

of relative welfare changes depends on some parameters in the model.
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Figure 6: 4Ux decomposition (“variety effect”)
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Figure 7: 4Ux decomposition (“price effect”)
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Finally, we look at changes in markups. As can be seen the left panel of Figure 8, markups

fall at all locations. Specifically, the average markup falls by 0.9% (from 0.3726 to 0.3692). This

finding is similar to that in spaceless models of monopolistic competition with variable markups

(see, e.g., Zhelobodko et al. 2012). However, if we consider the distribution of markups with

respect to productivity (the right panel of the figure), we will see that some relatively unproductive

smaller firms increase their prices after the increase in the population density. This outcome takes

place, as the uniform increase in l(x) forces firms to choose more remote niches where the level

of competition is lower. As a result, some firms find it profitable to increase their prices at new
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locations. As mentioned in the introduction, this firm behavior seems to be in line with some

empirical evidence and cannot be captured by standard monopolistic competition frameworks.

Figure 8: Markup (x) (left) and Markup (c) (right)
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4.2.1 Numerical meta-analysis

In this subsection, we numerically explore how the parameters characterizing the distribution

of consumer taste, A and γ, and the shape parameter of the firm productivity distribution, α,

affect the implications of the uniform increase in population considered in the previous section.

Specifically, we set this triple to some draws from uniform distributions: A ∼ U (10, 15), γ ∼
U (1, 2.2), and α ∼ U (1, 5); in total, we consider 600 independent draws for the triple (A, γ, α).

Then, for each draw, we compute the equilibrium and examine how a 5% uniform increase in

the population density affects this equilibrium (all other parameters remain the same) with a

particular interest in the size and distribution of the gains from the change and the inequality in

the economy.

First, we examine how the above parameters numerically affect the level of inequality. Specif-

ically, we run the following regression:

THi = 0.73
(0.007)

+ 0.09
(0.0005)

Ai + 0.23
(0.002)

γi − 0.02
(0.0006)

αi + ξi,

where THi is the Theil index corresponding to the triple (Ai, γi, αi) and ξi is the error term. The

standard errors are in the brackets. As can be seen, higher γ (that makes the distribution of

consumer tastes more dispersed) increases the level of inequality in the economy. A rise in the

level of firm heterogeneity (lower α) raises inequality as well, though the impact is not too strong:

reducing α by one adds 0.02 to the Theil index (note that the average Theil index in the sample

is 2.11).

We then look at the changes in welfare and inequality caused by the increase in the popu-
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lation density. We find that the average change (across all 600 draws) of the average welfare is

0.46%, while the average change in the inequality is around 2.47%. The role of the parameters in

explaining the changes in welfare and inequality can be represented by the following regressions:

4Ui = 0.84
(0.007)

− 0.003
(0.0005)

Ai + 0.003
(0.002)

γi − 0.12
(0.0006)

αi + εi,

4THi = 4.32
(0.02)

− 0.12
(0.002)

Ai − 0.38
(0.006)

γi + 0.08
(0.002)

αi + εi,

where 4Ui (4TH i) is the percentage change in the average welfare (inequality) corresponding to

the triple (Ai, γi, αi), εi and εi are the error terms.

The first thing to notice is that the effect of γ on the average welfare change is positive, but

not statistically significant. At the same time, the effect on the change in the level of inequality

is highly significant and negative: a rise of γ by one reduces the change in the inequality by

0.38. That is, in economies with more dispersed preferences, a uniform increase in the population

density has a smaller impact on the level of inequality. We also find that a higher level of firm

heterogeneity increases the welfare gains, which is in line with findings in Melitz and Redding

2015. Specifically, a decrease of α by one raises the change in the welfare by 0.12 (recall that the

average change is 0.46%). The effect of firm heterogeneity on the change in inequality appears to

be relatively less substantial and negative.

Finally, we examine how the parameters affect the location of consumers who have gains most

(in the benchmark case it is consumers located around the origin). Specifically, we consider the

following regression:

ARGMAXi = 58.7
(8.46)

+ 2.4
(0.58)

Ai + 0.29
(2.39)

γi − 22.8
(0.74)

αi + ζi,

where ARGMAXi is the location of consumers who gain most from the 5% increase in the pop-

ulation density given (Ai, γi, αi). As can be inferred, ARGMAX is mostly affected by A and α:

a uniformly higher number of consumers or a higher level of firm heterogeneity moves the loca-

tion of consumers with the highest gains further from the origin; the impact of γ is positive, but

insignificant.

Indeed, setting α to unity in the benchmark specification (all other parameters remain the

same), we observe a quite different distribution of the welfare gains under a 5% increase in the

population density (see Figure 9). The gains are relatively equal across the most of the locations

with a sharp decrease closer to x̄. The location of the highest gains is around 60. Decomposing

the welfare changes into the variety and price effects, one can see that both effects have a hump

shape (see Figures 10 and 11). In general, running a number of simulations, we find that the

discussed two patterns of the distribution of the welfare gains (see Figures 5 and 9) prevail. It is

either that consumers at the origin gain most (Figure 5) or that the gains are (slightly) increasing
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in x at the beginning of the interval [0, x̄] and then steeply go down (Figure 9).

Figure 9: 4Ux total
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Figure 10: 4Ux decomposition (“variety effect”)
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Figure 11: 4Ux decomposition (“price effect”)

0 10 20 30 40 50 60 70 80 90 100

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ric

e 
E

ffe
ct

 (
%

)

When α is equal to unity, the average welfare rises by 0.69 (from 2.7289 to 2.7478). The

inequality level increases by 2.96 (from 1.757 to 1.809). We also observe a similar pattern of

changes in the markup schedule with least productive firms charging higher prices.

5 Conclusion

This paper develops a monopolistic competition model that features matching between heteroge-

neous firms and product niches. Specifically, we formulate a sufficient condition for positive sorting

between firms and product niches: more productive firms choose more populated product niches;

while less productive firms move to smaller niches to avoid competition with the leaders. This

outcome provides new insights on the equilibrium distribution of firm sales, prices, and markups

that are now explained not only by comparative costs of these firms, but also by the distribution

and size of available market niches. Moreover, the positive sorting of firms on the product space

implies a new channel through which market shocks can affect the distribution of welfare across

consumers. This channel is absent in standard spaceless models of monopolistic competition. The

framework we develop seems to be quite rich in implications. A natural extension is to calibrate

the model on data, analogously to recent exercises provided by Melitz and Redding (2015) and

Arkolakis et al. 2018.
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Proofs

In this Appendix, we provide the proofs of some lemmas and propositions.

The Proof of Proposition 3

We proceed in four steps.

Step 1. We start with a series of definitions. First, we define the following function:

π(λc) ≡ max
z≥0

[(u′(z)− λc)z].

In fact, this is the rescaled profit of a c-type firm under local competitive toughness λ. We define

xmax ≡ l−1

(
λminf

π(λmincmin)

)
. (.1)

We assume that xmax < S ⇐⇒l(S) <λminf/π(λmincmin) (that is, l(S) is sufficiently low). We also

define

cmax ≡
1

λmin
π−1

(
λminf

l(0)

)
. (.2)

We assume that cmax > cmin ⇐⇒l(0) >λminf/π(λmincmin) (that is, l(0) is sufficiently high). Note

that, if the latter condition fails to hold, there clearly exists no equilibrium. Indeed, in this case,

the most productive firm would not break at x = 0, even if the competitive toughness λ is at

its minimum possible level: λ = λmin > 0. Therefore, l(0) >λminf/π(λmincmin) is an absolutely

necessary condition for the set of active firms to be non-empty.

Next, we define the cutoff curve C ⊂ R2
+ as follows:

C ≡
{

(x, c) ∈ R2
+ : l(x)π(λminc) = λminf, 0 ≤ x ≤ xmax, cmin ≤ c ≤ cmax

}
.

Clearly, C is the set of all a priory feasible solutions (x, c) of the zero-profit condition. Geo-

metrically, C is a downward sloping curve on the (x, c)-plane connecting the points (0, cmax) and

(xmax, cmin), where xmax and cmax are defined, respectively, by (.1) and (.2). Note that, from the

definition of cmax, it follows that λmincmax < u′(0) (since π(λmincmax) = λminf/l(0) > 0).

Since xmax < S, the population decay rate a(x) ≡ −l′(x)/l(x) is a bounded continuous function

over [0, xmax].
1 Therefore, using the Weierstrass theorem, we can define:

A ≡ max
0≤x≤xmax

a(x) <∞. (.3)

Step 2. Consider any x ∈ (0, xmax]. Because the cutoff curve C is downward sloping, there

1Observe that a(x) need not be bounded and continuous over the whole range [0, S]. To see this, set S = 1 and
consider a linear symmetric population density: l(x) = 1 − |x| for x ∈ (−S, S). Then, we have a(x) = 1/(1 − x),
which is clearly unbounded over (0, 1).
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exists a unique c ∈ [cmin, cmax) such that (x, c) ∈ C. By Picard’s theorem (see, e.g., Pontrya-

gin, 1962), there exists ε > 0 such that, for any x ∈ (x − ε, x], there exists a unique solution

(λx(x), cx(x)) to (3.14) – (3.15) satisfying the boundary conditions: λx(x) = λmin, cx(x) = c.

Picard’s theorem applies here, since the right-hand sides of (3.14) – (3.15) are well-defined and

continuously differentiable and, thereby, locally Lipshitz in (λ, c) in the vicinity of (λmin, c). In

particular, the denominator of the right-hand side of (3.15) never equals zero. Indeed, because

(x, c) ∈ C, we have: λminc < λmincmax < u′(0) (see Step 1).

Next, we show that the above local solution (λx(x), cx(x)) can be extended backwards either

on [x0, x], where x0 ∈ [0, x) and cx(x0) = cmin, or on [0, x]. In intuitive geometric terms, it

means the following: the solution (λx(x), cx(x)) can be extended backwards either until it hits

the plane {(x, λ, c) ∈ R3 : x = 0} or up to the plane{(x, λ, c) ∈ R3 : c = cmin}. Note that

the case when (λx(x), cx(x)) hits the intersection line of these two planes, i.e. the straight line

{(x, λ, c) ∈ R3 : x = 0, c = cmin}, is not ruled out.

Assume the opposite: (λx(x), cx(x)) can be only extended backwards on (x0, x], where x0 ∈
(0, x) and limx↓x0 cx(x) > cmin. By the continuation theorem for ODE solutions (Pontryagin,

1962), this may only hold true in two cases:

Case 1: an “explosion in finite time” occurs, i.e.

lim sup
x↓x0

‖(λx(x), cx(x))‖ =∞, (.4)

where || · || stands for the standard Euclidean norm in R2.

Case 2: the right-hand side of the system (3.14)–(3.15) is not well defined at (x0, λ, c), where

(λ, c) = limx↓x0 (λx(x), cx(x)).

Let us first explore the possibility of Case 1. One can show that λx(x) is bounded on (x0, x].

Indeed, we have on (x0, x] (recall thatM (λc) is decreasing in λc, as the price elasticity of demand

is increasing)

0 >
dλx(x)

dx
> −AM (λmincmin)λx(x).

This implies that d lnλx(x)/dx is uniformly bounded from above in the absolute value, which in

turn means that λx(x) is bounded from above on (x0, x]. Clearly, cx(x) is also bounded, as it

increases in x and satisfies:

0 ≤ cmin < lim
x↓x0

cx(x) ≤ cx(x) ≤ cx(x) = c <∞,

for all x ∈ (x0, x]. As a result, (.4) cannot hold, meaning that Case 1 is not possible.

Let us now explore the possibility of Case 2. When u′(0) = ∞, this clearly cannot be the

case, as the right-hand side of (3.14)–(3.15) is well defined for all c > cmin, for all λ > λmin,

and for all x ≥ 0. Thus, it remains to explore the case when u′(0) < ∞. In this case, the
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ODE system (3.14)–(3.15) is not well defined, when limx↓x0 λx(x)cx(x) = u′(0) (in this case, the

denominator of the right-hand side in (3.15) is equal to zero). Assume that this is the case.

Then, (λx(x), cx(x))x∈(x0,x] and λc = u′(0) define each a curve in the (λ, c)-plane. Note that

u′(0) > λx(x)cx(x) for any x ∈ (x0, x], otherwise (λx(x), cx(x)) could not be extended backwards

on (x0, x]. Hence, the curve (λx(x), cx(x))x∈(x0,x] lies strictly below the curve λc = u′(0) in the

(λ, c)-plane and intersects it at (limx↓x0 λx(x), limx↓x0 cx(x)) (the limits exist, as λx(x) and cx(x)

are monotone and bounded). This in turn implies that

lim
x↓x0

∣∣∣∣ dcx(x)/dx

dλx(x)/dx

∣∣∣∣ ≤ u′(0)

limx↓x0 λ
2
x(x)

. (.5)

However, using (3.14)–(3.15), we have:

0 > lim
x↓x0

dλx(x)

dx
> −∞, lim

x↓x0

dcx(x)

dx
= +∞,

which contradicts the inequality (.5) when u′(0) < ∞. That is, Case 2 is not possible as well.

Hence, we observe a contradiction to that (λx(x), cx(x)) can be only extended backwards on (x0, x],

where x0 ∈ (0, x) and limx↓x0 cx(x) > cmin.

As a result, the solution (λx(x), cx(x)) can be extended backwards either up to the plane

{(x, λ, c) ∈ R3 : x = 0} or up to the plane{(x, λ, c) ∈ R3 : c = cmin}, or both options hold

simultaneously.

Step 3. We now construct an equilibrium without taking into account free entry into the

market: i.e., we assume that Me is given. To do this, we define the following function over

[0, xmax]:

ϕ(x) =

cx(0)− cmin, if (λx(x), cx(x)) can be extended up to {x = 0},

−c−1
x (cmin), if (λx(x), cx(x)) can be extended up to {c = cmin}.

(.6)

By continuity of solutions to ODE w.r.t. initial values (Pontryagin, 1962), ϕ(x) is a continuous

function of x. Furthermore, it is readily verified that the following inequalities hold:

ϕ(0) = cmax − cmin > 0, ϕ(xmax) = −xmax < 0.

Hence, by the intermediate value theorem, there exists x∗ ∈ (0, xmax), such that ϕ (x∗) = 0.

Setting (λ∗(x), c∗(x)) ≡ (λx∗(x), cx∗(x)) and c∗ ≡ cx∗(x
∗), derive a candidate equilibrium:{

x∗, c∗, (λ∗(x), c∗(x))x∈[0,x∗]

}
. (.7)

We now verify that the candidate equilibrium (.7) is indeed an equilibrium when Me is given.

That (λ∗(x), c∗(x)) is a solution to (3.14) – (3.15) follows by construction. The equality ϕ (x∗) = 0
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means that (λ∗(x), c∗(x)) can be extended simultaneously up to both planes: {x = 0} and {c =

cmin}. This, in turn, is equivalent to c∗(0) = cmin, i.e. (λ∗(x), c∗(x)) satisfies one of the boundary

conditions. The other boundary condition, λ∗ (x∗) = λmin, is satisfied by construction. Finally,

(x∗, c∗) ∈ C means that (x∗, c∗) satisfy the zero-profit condition (3.12).

Step 4. So far, we have been proceeding as if Me were a constant. However, Me is endogenous,

and is determined by the free entry condition given by:

Πe(Me) ≡
c∗(Me)ˆ

cmin

[
l(x∗(c,Me))

λ∗(c,Me)
π (λ∗(c,Me)c)− f

]
g(c)dc = fe, (.8)

where λ∗(c,Me) is a decreasing function parametrically described by the downwards-sloping curve

(λ∗(x,Me), c
∗(x,Me))|x∈[0,x∗], while x∗(·,Me) is the inverse to c∗(·,Me). We assume that l(0) is

such that

fe <

cmaxˆ

cmin

[
l(0)

λmin
π (λminc)− f

]
g(c)dc. (.9)

Further, we show that this condition is sufficient for equation (.8) to have a solution M∗
e > 0.

First, we show that Πe(∞) = 0. Observe that, when Me → ∞, equation (3.15) implies that

dc∗/dx becomes uniformly small. Taking into account that c∗(0) = cmin, we have that

lim
Me→∞

c∗(Me) = cmin, lim
Me→∞

x∗(Me) = xmax.

It is straightforward to see that the above implies that Πe(∞) = 0.

Next, we consider Πe(0). Observe that, when Me → 0, equation (3.15) implies that dc∗/dx

becomes uniformly large or, equivalently, dx∗/dc becomes uniformly small. This implies that

lim
Me→0

x∗(Me) = 0, lim
Me→0

c∗(Me) = cmax.

Hence,

Πe(0) =

cmaxˆ

cmin

[
l(0)

λmin
π (λminc)− f

]
g(c)dc.

According to our assumption, Πe(0) > fe > 0 = Πe(∞). This means that equation (.8) has a

solution M∗
e > 0. This completes the proof.

The Proof of Proposition 4

We proceed in four steps. Until Step 4, we ignore the free-entry condition and treat the mass

Me > 0 of entrants as exogenous. At Step 4, we take (.8) into account and show that it uniquely

determines Me.
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Step 1. Assume there are at least two equilibrium outcomes corresponding to the same value

of Me: {
x∗, c∗, (λ∗(x), c∗(x))x∈[0,x∗]

}
and

{
x∗∗, c∗∗, (λ∗∗(x), c∗∗(x))x∈[0,x∗∗]

}
.

Note that x∗ 6= x∗∗. Indeed, if x∗ = x∗∗, then c∗ = c∗∗ (since the cutoff curve C is downward-

sloping). Hence, (λ∗(x), c∗(x)) and (λ∗∗(x), c∗∗(x)) are solutions to the same system of ODE

satisfying the same boundary conditions. By Picard’s theorem, this implies that (λ∗(x), c∗(x)) =

(λ∗∗(x), c∗∗(x)) pointwise.

Let us assume without loss of generality that x∗ < x∗∗. Because (x∗, c∗) ∈ C and (x∗∗, c∗∗) ∈ C,

x∗ < x∗∗ implies that c∗ > c∗∗. Since
{
x∗∗, c∗∗, (λ∗∗(x), c∗∗(x))x∈[0,x∗∗]

}
is an equilibrium for given

Me, we have that c∗∗(0) = cmin. Furthermore, (c∗∗)′x (x) > 0. Combining this with x∗ < x∗∗, we

derive the following inequalities:

c∗∗(x∗∗ − x∗) > c∗∗(0) = cmin = c∗(0) = c∗(x∗ − x∗). (.10)

For each z ∈ [0, x∗], define ∆(z) as follows:

∆(z) ≡ c∗∗(x∗∗ − z)− c∗(x∗ − z). (.11)

As has been shown, ∆(x∗) > 0. Taking into account that c∗ > c∗∗, ∆(0) < 0. By the intermediate

value theorem, there exists ξ ∈ (0, x∗), such that ∆ (ξ) = 0. Let ξ0 be the smallest of such ξs.

Clearly, we have: c∗∗(x∗∗ − ξ0) = c∗(x∗ − ξ0) and c∗∗(x∗∗ − z) < c∗(x∗ − z) for all z < ξ0.

Step 2. Next, we show that

λ∗∗(x∗∗ − ξ0) > λ∗(x∗ − ξ0). (.12)

Using (3.14) yields (recall that λ∗∗(x∗∗) = λmin = λ∗(x∗))

(λ∗∗(x∗∗ − z))′z
∣∣
z=0

= a (x∗∗)λminM (λminc
∗∗) > a (x∗)λminM (λminc

∗) = (λ∗(x∗ − z))′z
∣∣
z=0

,

which holds true because a′(x) ≥ 0, c∗ > c∗∗, and the markup functionM (·) is strictly decreasing.

Furthermore, we have:

(λ∗∗(x∗∗ − z))′z
∣∣
z=0

> (λ∗(x∗ − z))′z
∣∣
z=0

> 0.

Thus, λ∗∗ (x∗∗ − z) > λ∗ (x∗ − z) holds true for sufficiently small values of z.

Assume that there is some ξ1 ∈ (0, ξ0), such that λ∗∗(x∗∗ − ξ1) = λ∗(x∗ − ξ1), while λ∗∗(x∗∗ −
z) > λ∗(x∗ − z) for all z < ξ1. Denote λ1 ≡ λ∗(x∗ − ξ1). Differentiating the log of the ratio
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λ∗∗(x∗∗− z)/λ∗(x∗− z) w.r.t. z at z = ξ1 yields (recall that, from the previous step, c∗∗(x∗∗− z) <

c∗(x∗ − z) for all z < ξ0):

[
ln

(
λ∗∗(x∗∗ − z)

λ∗(x∗ − z)

)]′
z

∣∣∣∣
z=ξ1

= a (x∗∗ − ξ1)M (λ1c
∗∗ (x∗∗ − ξ1))− a (x∗ − ξ1)M (λ1c

∗(x∗ − ξ1)) > 0.

By continuity,
[
ln
(
λ∗∗(x∗∗−z)
λ∗(x∗−z)

)]′
z
> 0 must hold for any z ∈ (ξ1 − ε, ξ1), where ε > 0 is sufficiently

small. Hence, the ratio λ∗∗(x∗∗− z)/λ∗(x∗− z) increases over (ξ1 − ε, ξ1) and strictly exceeds 1 at

z = ξ1− ε. Thus, λ∗∗(x∗∗− ξ1)/λ∗(x∗− ξ1) also strictly exceeds 1, i.e. λ∗∗(x∗∗− ξ1) > λ∗(x∗− ξ1).

Based on that, we conclude that ξ1 does not exist. This proves (.12).

Step 3. Differentiating the function ∆(z) defined by (.11) at z = ξ0, we obtain:

∆′z(ξ0) = − 1

Meg (c∗0)

[
(V ′)−1 (1/λ∗∗0 )

u (q (λ∗∗0 c
∗
0))
− (V ′)−1 (1/λ∗0)

u (q (λ∗0c
∗
0))

]
< 0. (.13)

where c∗0 ≡ c∗(x∗ − ξ0) = c∗∗(x∗∗ − ξ0), λ∗0 ≡ λ∗(x∗ − ξ0), and λ∗∗0 ≡ λ∗∗(x∗∗ − ξ0). The inequality

(.13) holds true because, by (.12), we have λ∗∗0 > λ∗0, while the function (V ′)−1 (1/λ) /u (q (λc))

increases in λ for any given c > cmin. However, by definition of ξ0, ∆(z) must change sign from

negative to positive at z = ξ0. Hence, it must be true that ∆′z(ξ0) ≥ 0. This contradicts (.13) and

implies that, for any fixed value of Me, there is a unique equilibrium outcome corresponding to

this value of Me.

Step 4. To finish the proof of uniqueness, it remains to show that dΠe(Me)/dMe < 0 for any

Me > 0. Let us define

N(c,Me) ≡
l(x∗(c,Me))

λ∗(c,Me)
π (λ∗(c,Me)c) .

Then, we have:

dΠe(Me)

dMe

=

c∗(Me)ˆ

cmin

∂N(c,Me)

∂Me

g(c)dc+ [N(c∗(Me),Me)− f ]
dc∗(Me)

dMe

,

where the last term equals zero due to the cutoff condition. Hence,

dΠe(Me)

dMe

=

c∗(Me)ˆ

cmin

∂N(c,Me)

∂Me

dG(c).

Thus, a sufficient condition for dΠe(Me)/dMe < 0 for any Me > 0 is given by

∂N(c,Me)

∂Me

< 0 for any Me > 0 and any c ∈ [cmin, c
∗(Me)] .

It is straightforward to see that, due to the envelope theorem, the latter is hold when
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∂λ∗(x,Me)

∂Me

> 0 for any Me > 0 and any x ∈ [0, x∗(Me)] .

In fact, it is sufficient to show that

∂λ∗(x,Me)

∂Me

≥ 0 for any Me > 0 and any x ∈ [0, x∗(Me)]

and ∂λ∗(x,Me)/∂Me > 0 on some non-zero measure subset of [0, x∗(Me)]. The rest of the proof

amounts to establishing the latter statement.

Assume that, on the contrary, for some Me > 0, there exists a compact interval [x1, x2] ⊆
[0, x∗(Me)], such that ∂λ∗(x,Me)/∂Me ≤ 0 for all x ∈ [x1, x2]. Without loss of generality, let us also

assume that [x1, x2] cannot be extended further without violating the condition ∂λ∗(x,Me)/∂Me ≤
0 (otherwise, we can replace it with a larger one). We will therefore refer to [x1, x2] as a non-

extendable interval. We consider several possible cases.

Case 1: Assume that x1 = 0. In this case, we have: c∗(x1,Me) = cmin, hence ∂c∗(x1,Me)/∂Me =

0. Recall that
dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(qx)
.

Since ∂λ∗(x1,Me)/∂Me ≤ 0, ∂c∗(x1,Me)/∂Me = 0, and Me rises, ∂ (c∗)′x (x1,Me)/∂Me < 0

(the right-hand side of the above equation decreases at x1 = 0 with a rise in Me). Note that

∂c∗(x1,Me)/∂Me = 0 and ∂ (c∗)′x (x1,Me)/∂Me < 0 imply that ∂c∗(x,Me)/∂Me < 0 in some right

neighborhood of x1 = 0.

Case 2: Assume that x2 = x∗(Me). We have λ∗(x∗(Me),Me) = λmin. This implies that

∂λ∗(x∗(Me),Me)

∂x

dx∗(Me)

dMe

+
∂λ∗(x∗(Me),Me)

∂Me

= 0.

The second term in the left-hand side of the above equation is non-positive (as assumed). Recall

that λ∗(x,Me) is strictly decreasing in x. As a result, dx∗(Me)/dMe ≤ 0. Combining this with the

fact (x∗(Me), c
∗(Me)) ∈ C, where C is the downward sloping cutoff curve, we get: dc∗(Me)/dMe ≥

0. That is,
∂c∗ (x∗(Me),Me)

∂x

dx∗(Me)

dMe

+
∂c∗ (x∗(Me),Me)

∂Me

≥ 0,

where the first term is non-positive because, as shown above, dx∗(Me)/dMe ≤ 0, while ∂c∗ (x∗(Me),Me) /∂x >

0. Hence, the second term, ∂c∗ (x∗(Me),Me) /∂Me, must be non-negative. If ∂c∗ (x∗(Me),Me) /∂Me =

0, then one can show that ∂ (c∗)′x (x∗(Me),Me)/∂Me < 0. Here, we use again the fact that

dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(qx)
.

This in turn implies that ∂c∗ (x∗(Me),Me) /∂Me > 0 in some left neighborhood of x2 = x∗(Me).
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Case 3: Assume that 0 < x1 < x2 < x∗(Me). Because [x1, x2] is non-extendable, there exists

a small open left half-neighborhood N1 of x1, and a small right half-neighborhood N2 of x2, such

that ∂λ∗ (x,Me) /∂Me > 0 for all x ∈ N ≡ N1 ∪N2. Hence, for a c-type firm where c = c∗ (x,Me)

with x ∈ [x1, x2], relocating marginally beyond [x1, x2] in response to a marginal increase in Me is

not profit-maximizing behavior. Indeed, that ∂λ∗ (x,Me) /∂Me ≤ 0 over [x1, x2] means that the

profit function increases uniformly over [x1, x2], while ∂λ∗ (x,Me) /∂Me > 0 for all x ∈ N means

that relocating from [x1, x2] into N would lead to a reduction of maximum feasible profit.2 This

immediately imply that
∂c∗(x1,Me)

∂Me

≤ 0,
∂c∗(x2,Me)

∂Me

≥ 0.

Moreover, for j = 1, 2 we have (the proof is the same as in the previous cases)

∂c∗(xj,Me)

∂Me

= 0⇒ ∂ (c∗)′x (xj,Me)

∂Me

< 0.

The findings in the above cases allow us to formulate the following important result. There ex-

ists a location x4 in an arbitrary small right half-neighborhood of x1, such that ∂c∗(x4,Me)/∂Me <

0. Similarly, there exists a location x5 in an arbitrary small left half-neighborhood of x2, such that

∂c∗(x5,Me)/∂Me > 0.

By the intermediate value theorem, there must exist a location x3 ∈ (x4, x5) ⊂ [x1, x2] such

that
∂c∗(x3,Me)

∂Me

= 0,
∂ (c∗)′x (x3,Me)

∂Me

≥ 0.

The non-negative sign of the derivative follows from the fact that c∗(x,Me) is increasing in x. This

in turn implies that the derivative of

1

Me

(V ′)−1 (1/λ∗(x3,Me))

g(c∗(x3,Me))u(q(λ∗(x3,Me)c∗(x3,Me)))

with respect to Me is non-negative. That is, the derivative of

(V ′)−1 (1/λ∗(x3,Me))

g(c∗(x3,Me))u(q(λ∗(x3,Me)c∗(x3,Me)))

with respect to Me is strictly positive. This means that ∂λ∗ (x3,Me) /∂Me > 0 (recall that

∂c∗(x3,Me)/∂Me = 0). However, since x3 ∈ [x1, x2], it must be that ∂λ∗(x3,Me)/∂Me ≤ 0, which

is a contradiction. This completes the proof of uniqueness of the equilibrium.

2One may wonder why no firm would relocate from [x1, x2] to somewhere beyond N in response to a marginal
increase of Me. This would mean, for at least some firm type c, that the firm’s profit-maximizing location choice
x∗(c,Me) has a discontinuity in Me. However, by the maximum theorem **(Sundaram, 1996),** x∗(c,Me) must
be upper-hemicontinuous in Me. Furthermore, by strict quasi-concavity of the profit function, x∗(c,Me) is single-
valued. For single-valued mappings, upper-hemicontinuity implies continuity. Hence, x∗(c,Me) cannot exhibit
discontinuities.
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The proof of Proposition 5

To prove the proposition, we use the equilibrium conditions for λ′(x) and c′(x). Specifically, from

(3.11) and (3.9),

λ′(x) =
l′(x)λ(x)

l(x)

p(x, c(x))− c(x)

p(x, c(x))
,

Meg (c(x)) c′(x)u (q(x, c(x))) = (V ′)
−1

(1/λ(x)) ⇐⇒ c′(x) =
(V ′)−1 (1/λ(x))

Meg (c(x))u (q(x, c(x)))
.

Hence,

(λ(x)c(x))′x = c(x)λ′(x) + λ(x)c′(x)

=
λ(x)

g (c(x))

[
c(x)g (c(x))

l′(x)

l(x)

p(x, c(x))− c(x)

p(x, c(x))
+

(V ′)−1 (1/λ(x))

Meu (q(x, c(x)))

]
.

Consider,

(λ(x)c(x))′x=0 =
λ(0)

g (cmin)

(
cmin g (cmin)

l′(0)

l(0)

p(0, cmin)− cmin
p(0, cmin)

+
(V ′)−1 (1/λ(0))

Meu (q(0, cmin))

)
.

Since g (c) is a density function, limcmin→0cmin g (cmin) = 0. Hence, if | l′(0) |< ∞, then for

sufficiently low cmin,

cmin g (cmin)
l′(0)

l(0)

p(0, cmin)− cmin
p(0, cmin)

+
(V ′)−1 (1/λ(0))

Meu (q(0, cmin))
> 0.

Similarly,

(λ(x)c(x))′x=x̄ =
λ(x̄)

g (c̄)

(
c̄ g (c̄)

l′(x̄)

l(x̄)

p(x̄, c̄)− c̄
p(x̄, c̄)

+
(V ′)−1 (1/λ(x̄))

Meu (q(x̄, c̄))

)
.

Note that, as there is the fixed cost of production f , p(x̄, c̄) > c̄. Moreover, λ(x̄) = 1/V ′ (0) in the

equilibrium, implying that (V ′)−1 (1/λ(x̄)) = 0 (this also means that c′(x̄) = 0). As a result, since

l′(x̄) < 0,

c̄ g (c̄)
l′(x̄)

l(x̄)

p(x̄, c̄)− c̄
p(x̄, c̄)

+
(V ′)−1 (1/λ(x̄))

Meu (q(x̄, c̄))
< 0.

To prove the third statement of the proposition, we rewrite (λ(x)c(x))′x in the following way:

(λ(x)c(x))′x =
λ(x)

g (c (x))

(
l′(x)

l(x)
c (x) g (c (x))M(λ(x)c(x)) +

(V ′)−1 (1/λ(x))

Meu (q(λ(x)c(x)))

)
,
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whereM(.) is the markup function. Let us denote x̃∈ (0, x̄) as an interior extremum of λ(x)c(x):

(λ(x̃)c(x̃))′x = 0. We know that (λ(x)c(x))′x=0 > 0 and (λ(x)c(x))′x=x̄ < 0. Hence, λ(x)c(x) has at

least one interior local maximizer.

Next, we show that, for any x̃, (λ(x̃)c(x̃))′′xx < 0. We have

(λ(x̃)c(x̃))′′xx =
(

λ(x̃)
g(c(x̃))

)′ (
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))M(λ(x̃)c(x̃)) + (V ′)−1(1/λ(x̃))
Meu(q(λ(x̃)c(x̃)))

)
+ λ(x̃)
g(c(x̃))

(
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))M(λ(x̃)c(x̃)) + (V ′)−1(1/λ(x̃))
Meu(q(λ(x̃)c(x̃)))

)′
x
.

Note that the first term in the right hand side of the above formula is equal to zero. Thus, we

have (recall that (λ(x̃)c(x̃))′x = 0)

(λ(x̃)c(x̃))′′xx = λ(x̃)
g(c(x̃))

(
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))M(λ(x̃)c(x̃)) + (V ′)−1(1/λ(x̃))
Meu(q(λ(x̃)c(x̃)))

)′
x

= λ(x̃)
g(c(x̃))

((
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))
)′
x
M(λ(x̃)c(x̃)) +

((V ′)−1(1/λ(x̃)))
′
x

Meu(q(λ(x̃)c(x̃)))

)
.

We have (
l′(x)

l(x)
c(x)g (c(x))

)′
x

=
l′(x)

l(x)
(c(x)g (c(x)))′x + c(x)g (c(x))

(
l′(x)

l(x)

)′
x

< 0,

since c′(x) > 0, g′(c) ≥ 0, and (l′(x)/l(x))′x ≤ 0. At the same time, (V ′)−1 (1/λ(x)) is decreasing

in x as V ′′(·) < 0 and λ′(x) < 0. Hence, (λ(x̃)c(x̃))′′xx < 0.

We now finish the proof of part (iii) of Proposition 3. As derived above, λ(x)c(x) has no interior

local minimum over (0, x) and at least one interior local maximizer. Assume that λ(x)c(x) has

at least two distinct local maximizers. Then, there must be a local minimizer in between, which

contradicts our above finding. We conclude that λ(x)c(x) is bell-shaped in x, while the markup

function M(λ(x)c(x)) is U -shaped in x. This completes the proof.

The proof of Lemma 2

Note that in this proof it is important that ∂λ(x,Me, δ)/∂δ and ∂c(x,Me, δ)/∂δ are analytic in

x over (0, x), meaning that they can be represented by convergent power series (this is the case,

when, for instance, the primitives in the model are analytic):

∂λ(x,Me, δ)

∂δ
=
∞∑
k=0

ak(Me, δ)x
k,

∂c(x,Me, δ)

∂δ
=
∞∑
k=0

bk(Me, δ)x
k.

This makes the case when ∂λ(x,Me, δ)/∂δ = 0 and ∂(λ)′x(x,Me, δ)/∂δ = 0 at some x impossible.

Why? If this is the case, then ∂c(x,Me, δ)/∂δ = 0 and ∂(c)′x(x,Me, δ)/∂δ = 0 as well implying
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that the derivatives of all orders of ∂λ(x,Me, δ)/∂δ w.r.t. x at this point equal to zero. An analytic

function with this property must be identically zero (Courant and John 2012, p. 545). This in turn

means that λ(x) does not change on the whole interval [0, x] when δ changes, which is impossible.

For the same reason, it is not possible that ∂c(x,Me, δ)/∂δ = 0 and ∂(c)′x(x,Me, δ)/∂δ = 0 at

some x.

To simplify the exposition of the proof, we divide it into several parts.

Part 1

In this part, we prove that ∂x(Me, δ)/∂δ > 0. Assume, on the contrary, that ∂x(Me, δ)/∂δ ≤ 0.

Then, because an increase in δ leads to an upward shift of the cutoff curve C, it must be that

∂c(Me, δ)/∂δ > 0. Note also that if ∂x(Me, δ)/∂δ < 0, then (by continuity) λ(x,Me, δ) must

decrease w.r.t. δ in some neighborhood of x (as λ(x,Me, δ) is decreasing in x). If x does not change

with the change in δ, one can derive from (3.14) that ∂
(
− (λ)′x (x,Me, δ)

)
∂δ < 0. This is because

∂c(Me, δ)/∂δ > 0 and λ(x,Me, δ) = λmin. This in turn also means that ∂λ(x,Me, δ)/∂δ < 0 in

some neighborhood of x. That is, if ∂x(Me, δ)/∂δ ≤ 0, λ(x,Me, δ) must decrease w.r.t. δ over

some interval (x1, x). Two cases may arise.

Case 1: x1 = 0. In this case, ∂λ(0,Me, δ)/∂δ < 0. Then, taking into account the boundary

condition c(0,Me, δ) = cmin, it is straightforward to see from the equilibrium condition in (3.15)

that ∂(c)′x(0,Me, δ)/∂δ < 0. This in turn implies that ∂c(x,Me, δ)/∂δ < 0 in the vicinity of

x = 0 (since c(0,Me, δ) = cmin is not affected by δ). As a result, we have the following situation:

given the rise in δ, c(x) falls in the neighborhood of zero and rises in the neighborhood of x as

∂c(Me, δ)/∂δ > 0. This implies that there exists x2 ∈ (0, x) such that ∂c(x2,Me, δ)/∂δ = 0 -

the value of c(x) at x2 is not affected by the rise in δ. Moreover, ∂(c)′x(x2,Me, δ)/∂δ > 0 (as

c(x) falls around zero). This in turn means (here we use the equilibrium condition in (3.15)) that

∂λ(x2,Me, δ)/∂δ > 0 which contradicts the assumption that ∂λ(x,Me, δ)/∂δ < 0 for all x > 0.

Note that we will use this particular way of deriving the contradiction throughout the whole proof

of the lemma.

Case 2 x1 > 0. In this case, it must be true that ∂λ(x1,Me, δ)/∂δ = 0. Moreover, the absolute

value of the slope of λ(x) at this point increases: ∂ (−(λ)′x(x1,Me, δ)) /∂δ > 0, as ∂λ(x,Me, δ)/∂δ <

0 on (x1, x). In this case, from the equilibrium condition in (3.14) we derive that ∂c(x1,Me, δ)/∂δ <

0. Now, we use the same argument as in the previous case. There exists x3 ∈ (x1, x) such that

∂c(x3,Me, δ)/∂δ = 0 and ∂(c)′x(x3,Me, δ)/∂δ > 0. This in turn implies that ∂λ(x3,Me, δ)/∂δ > 0

which contradicts the assumption that ∂λ(x,Me, δ)/∂δ < 0 for all x > x1.

Thus, we show that ∂x(Me, δ)/∂δ > 0.
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Part 2

Next, we show that ∂λ(x,Me, δ)/∂δ > 0 for all x. Assume that, on the contrary, there exists a

non-extendable interval (x4, x5) ⊂ [0, x] such that ∂λ(x,Me, δ)/∂δ ≤ 0 on this interval. Note that

since x rises (implying that ∂λ(x,Me, δ)/∂δ > 0 in some neighborhood of x), x5 < x. Consider

again two cases.

Case 1: x4 > 0. In this case, because (x4, x5) is a non-extendable interval where ∂λ(x,Me, δ)/∂δ <

0, it must be that:

∂λ(x4,Me, δ)

∂δ
= 0 =

∂λ(x5,Me, δ)

∂δ
.

Moreover,

∂
(
− (λ)′x (x4,Me, δ)

)
∂δ

> 0 >
∂
(
− (λ)′x (x5,Me, δ)

)
∂δ

.

In this case, (3.14) implies that

∂c(x4,Me, δ)

∂δ
< 0 <

∂c(x5,Me, δ)

∂δ
.

Hence, there exists x6 ∈ (x4, x5), such that

∂c(x6,Me, δ)

∂δ
= 0,

∂ (c)′x (x6,Me, δ)

∂δ
> 0.

This means that ∂λ(x6,Me, δ)/∂δ > 0, which contradicts the assumption that ∂λ(x,Me, δ)/∂δ ≤ 0

for all x ∈ (x4, x5).

Case 2: x4 = 0. In this case, it can potentially be that ∂λ(0,Me, δ)/∂δ = 0 or ∂λ(0,Me, δ)/∂δ <

0. Note that if ∂λ(0,Me, δ)/∂δ = 0, then ∂(λ)′x(x,Me, δ)/∂δ = 0 (as ∂c(0,Me, δ)/∂δ = 0). As

discussed at the beginning of the proof, this case is impossible. If ∂λ(0,Me, δ)/∂δ < 0, then from

(3.15), ∂(c)′x(0,Me, δ)/∂δ < 0, meaning that in some neighborhood of zero c(x) falls with the rise

in δ. Then, we use again the logic from the previous case and, thereby, derive the contradiction.

Part 3

The next step is to show that ∂c(x,Me, δ)/∂δ > 0 for all x ∈ (0, x]. Assume that, on the con-

trary, that there exists a non-extendable interval (x7, x8) ⊂ [0, x], such that ∂c(x,Me, δ)/∂δ ≤ 0

on this interval. If x7 = 0, then ∂(c)′x(0,Me, δ)/∂δ ≤ 0 and ∂c(0,Me, δ)/∂δ = 0. In this case,

∂λ(0,Me, δ)/∂δ ≤ 0 which contradicts our previous results. If x7 > 0, then again ∂c(x7,Me, δ)/∂δ =

0 and ∂ (c)′x (x7,Me, δ)/∂δ < 0 (recall that ∂ (c)′x (x7,Me, δ)/∂δ cannot be equal to zero). That is,

we derive the contradiction: ∂λ(x7,Me, δ)/∂δ < 0.

Finally, since ∂c(x,Me, δ)/∂δ > 0, ∂x(Me, δ)/∂δ > 0, and (c)′x > 0, ∂c(Me, δ)/∂δ > 0.
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