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Race Meets Bargaining in Product Development 
 
 

Abstract 
 
We introduce a model of product development in a firm. Our model describes the process as a 
multi-stage contest (i.e., race) with an endogenous length (with one stage or two stages) between 
two workers. We model the payments to workers from the new product using the normatively 
appealing Nash bargaining solution (see Nash, 1950). In our model the disagreement payoffs 
endogenously depend on the contest outcome. More precisely, a bargaining advantage is given 
to the leading worker in the product development contest. We analytically characterize subgame 
perfect equilibrium effort levels of workers and describe the conditions under which a full-edged 
final (as opposed to, say, a prototype) product is developed. Our comparative static analyses 
reveal economically intuitive insights. Finally, we provide an answer to the firm’s problem of 
optimal incentive provision (considering both collective and individual incentives). 

JEL-Codes: C720, C780, D860, O310, O320. 
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1 Introduction

Most new product development or product innovation activities in companies or research centers are

undertaken by teams rather than single agents (see Levi and Slem, 1995; Sethi, 2000; Sethi et al.,

2001; Akgün and Lynn, 2002). It could be argued that the team, as a whole, has a collective interest

yet individuals may have competing interests regarding who among them achieves a breakthrough

or contributes the most (see Natter et al., 2001; Beersma et al. 2003; Kistruck et al. 2016). Hence,

balancing collective and individual incentives in these team environments is a challenge for the

firms (see Sarin and Mahajan, 2001; Chang et al., 2007; Garbers and Konradt, 2014; Hutchison-

Krupat and Chao, 2014; Lazaric and Raybaut, 2014; Nyberg et al., 2018). Naturally, two important

questions arise: (i) to what extent do these incentives influence workers’ behavior? and (ii) what

are the optimal (collective and individual) incentives that take into account the fairness aspect?

To answer such questions and alike, it is of interest to theoretically study these environments with

rich models that encompass both competitive and cooperative aspects of the interaction.

In this paper, we model product development by two workers in a firm.1 We describe this

process as a multi-stage contest (i.e., race) between the workers assigned to the corresponding

product development project. Our model incorporates the payments to workers as an outcome of

a cooperative bargaining problem. The fairness aspect is introduced by utilizing the normatively

appealing Nash bargaining solution (see Nash, 1950).2 Moreover, the disagreement point in the

bargaining problem we study is not exogenously given but rather depends on workers’ performances

in the race. More precisely, the better-performing worker receives an advantageous bargaining

position, a la Lockean desert. Finally, in contrast to the industry standard in the literature on

multi-stage contest games, our product development race does not have an exogenously fixed length.

Instead, two workers need to unanimously reach an agreement on the length of the race. A direct

consequence is that they may end up building only a prototype or a full-fledged final product

depending on their productivity levels, the values of the prototype and the final product, the

incentives provided by the firm, and the team-decision rule. We also study optimal incentive

1Throughout the paper, we use the words agents and workers interchangeably.
2Fairness and the Nash bargaining solution are almost synonymously used in empirical and applied work due to

the appealing normative properties of this solution. We follow that tradition here and argue that Nash bargaining
solution guarantees that the division of contest prizes is done in a fair fashion.
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provision by the firm, which would influence workers’ decisions regarding the race length.3

We first solve for the subgame perfect equilibrium effort levels, expected payoffs, and stop or

continue decisions of agents. The equilibrium analyses point toward two critical values for the

difference between the returns from the first stage and second stage contests. Given that the full-

fledged final product is more valuable than the prototype, if the difference between their values is

sufficiently large, then both agents decide to continue to develop the final product; if the difference

is sufficiently small, then both agents decide to stop at the end of the first stage contest and hence

only develop the prototype, and finally if the difference is neither too large nor too small, one agent

decides to continue whereas the other decides to stop. In the last case, whether they continue or

not depends on the particular team-decision rule (i.e., “both should agree to stop” or “both should

agree to continue”) employed. This last case emphasizes the importance of preference aggregation

or decision-making process in teams.

Second, we conduct comparative static analyses on model parameters. Our analyses, again,

offer economically intuitive results: (i) an increase in the difference between the values of the final

product and the prototype enlarges the set of parameter values for which the final product is

developed; (ii) an increase in the bargaining power given to the winner of the first (or, the second)

stage contest enlarges the set of parameter values for which the winner/loser in the first stage

contest prefers to stop/continue; (iii) an increase in the bargaining power given to the winner of

the first stage contest for sharing the prototype information enlarges the set of parameter values

for which the loser/winner in the first stage contest prefers to stop/continue; and finally (iv) an

increase in own marginal cost of effort shrinks the set of parameter values for which the agent

prefers to continue after the first stage contest, whereas an increase in the other agent’s marginal

cost of effort leads to an opposite effect.

Finally, we study the optimal incentive provision problem of the firm. The equilibrium analysis

is conducted for all possible values of contest prizes and bargaining powers given to agents. In

this part, we consider a firm management optimally choosing these incentives to maximize its own

revenue. We first show that there exists a set of parameter values for which the firm prefers agents

to stop after the first stage contest and hence only develop the prototype. In this case, the firm sets

the winning prize for the first stage contest equal to the disagreement point of the winning agent

3Since we explain all details of the model in Section 2, we intentionally refrain from doing it here to avoid repetition.
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and also sets the respective losing prize to zero. We derive the optimal value of the winning prize as

a function of marginal costs of effort. Second, there also exist parameter values for which the firm

prefers agents to continue to the second stage contest, thereby developing the final product. Our

analysis shows that the firm should set the bargaining advantage given for sharing the prototype

information to its minimum possible level and set the value of the prize for the second stage contest

equal to the sum of the two disagreement points (i.e., assigned for the contest victory and for

information sharing).

The organization of the paper is as follows. In Section 2, we introduce the model of product

development in a firm as a race with endogenous length. In Section 3, we present our equilibrium

analysis, comparative static analyses, and results on optimal incentive provision. In Section 4, we

discuss our modeling assumptions and possible future research questions, and we conclude.

2 The Model

Consider two agents, denoted by i ∈ {1, 2}, working in the same firm and competing in a multi-

stage innovation contest. There are potentially two stages. The first stage can be thought of as

developing a prototype or an unfinished product, which still has some market value. The second

stage can be thought of as developing a full-fledged final product, which naturally has a higher

market value than the unfinished one. Below, we describe the sequence of events in these two

stages in detail.

In the first stage, agents compete in a one-shot contest game such that the winner gains an

advantageous position. One possible interpretation is that the winner of the first stage contest

achieved a breakthrough that leads to a prototype for a new product. In this contest, each agent

chooses an effort level, denoted by x for agent 1 and y for agent 2, and the winner is determined

by a standard Tullock contest success function (see Tullock, 1980):

p1 =
x

x+ y
and p2 =

y

x+ y
.

As usual, contest efforts are assumed to be costly and irreversible: Ci(a) = cia for each i ∈ {1, 2}

and a ∈ [0,∞).4 The total compensation for workers’ efforts in the development of the prototype

4Note that once agents exert efforts in a product development contest, then the corresponding product is developed
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is Vp ≥ 0, and it will be allocated by the firm using the Nash bargaining solution (see Nash,

1950). Noting that a higher disagreement payoff is a source of bargaining power in the Nash

bargaining solution, in our model the winner of the first stage contest is given a more advantageous

disagreement point, dr ≥ 0, whereas the loser’s disagreement point is normalized to 0.

The game does not necessarily end after the first stage: agents have an option to continue

working on the project to develop the final version of the product. In other words, our innovation

contest model is one with an endogenous length. Each agent individually decides whether to stop

or continue, and the unanimity rule determines whether they will or not. In Section 3, we consider

both cases for this rule separately: “both agents should agree to stop, otherwise they will continue”

or “both agents should agree to continue, otherwise they will stop”.

If agents jointly decide to continue, they forfeit their right of earning Vp and proceed to the

second stage in which there is another one-shot contest game. If that happens, it is assumed that all

information regarding the prototype built by the winner of the first stage contest is shared with the

other agent. In the second stage, agents collect a total earning of Vf ≥ Vp (again, to be allocated

by the firm), capturing the fact that the full-fledged final product has a value greater than the

prototype’s. The contest structure and the sharing rule are assumed to be the same. Similarly,

the winner in the second stage obtains an advantageous disagreement point, dr ≥ 0, whereas the

loser’s disagreement point is normalized to 0. However, now the winner of the first stage contest is

additionally given an advantage in return for the prototype information shared, ds ∈ [0, dr].

In line with the Nash’s axiomatic model of bargaining, we assume that dr ≤ Vp and dr+ds ≤ Vf .

These imply that the possible disagreement points are elements of the bargaining set. Note that

the formal definition of the Nash bargaining solution will be provided in Section 3.1 below.

Our innovation contest model formulated above can be classified as a race (see Figure 1)5

(see Harris and Vickers, 1985, 1987; Klumpp and Polborn, 2006; Konrad and Kovenock, 2009;

Doğan et al., 2018), but with a number of important differences: (i) We present an outside option

at the end of the first stage: agents can choose to leave the game at nodes (0,1) and (1,0) in

the figure. This leads to an endogenously and strategically determined winning threshold in a

for sure. In reality, whether a product is developed or not may be a stochastic function of team’s efforts. Since such
a stochastic process is not the focus of this paper, here we assume a deterministic process for the sake of simplicity.

5This is a standard illustration for a race model in the contest theory literature. A node represents the number
of battle victories each agent has, for instance, at node (m,n), agent 1 has m victories and agent 2 has n victories.
Two battle victories collected by an agent would move the game to a terminal node in which the agent wins the race.

5



(0, 0)

(0, 1)

(1, 0)

(1, 1)

Agent 2 wins Agent 2 wins

Agent 1 wins

Agent 1 wins

Figure 1: Product Development Race

race. (ii) We incorporate state-dependent winning prizes, which are determined in a cooperative

bargaining model that takes the contest outcome as an input—something not observed in earlier

work on contest theory. (iii) With the current structure, it is as if we assume that there is a pre-

specified jump from nodes (0,1) and (1,0) to node (1,1) in the figure. An interpretation is that the

organizational environment makes the contest winner in the first stage share all the information

regarding the successfully-built prototype with the losing side. This is relevant in our setting,

since agents work in the same firm and it is in firm management’s interest to make any such

information common knowledge among agents because spending further resources for an already

existing prototype would be rather inefficient (see Foss et al., 2010; Hu and Randel, 2014).

3 The Results

This section is divided in to three subsections. In the first part, we present the equilibrium analyis

of the extensive form game formulated in Section 2. In the second part, we conduct comparative

static analyses on Vf − Vp, dr, ds, c1, and c2. Finally, in the third part, we investigate optimal

incentives (from the perspective of the firm, which aims to maximize its net earnings) that must

be provided to workers.
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3.1 Equilibrium Analysis

The extensive form game presented in Section 2 is a finite-horizon game with complete information.

Therefore, we can use backward induction to find the subgame perfect Nash equilibrium of the game.

Along those lines, we first analyze a generic Nash bargaining problem. Suppose that two agents

with linear utility functions share a pie of size V > 0 with disagreement points d1, d2 ≥ 0 satisfying

d1 + d2 ≤ V . The standard Nash bargaining solution (see Nash, 1950), which is given by

arg max
a1∈[0,V ]

(a1 − d1)((V − a1)− d2),

yields

a∗1 =
V + d1 − d2

2
and a∗2 =

V + d2 − d1
2

.

Now, utilizing this generic solution, we apply backward induction below. Consider node (1, 1),

which can only be reached if agents decided to continue developing the product. Without loss of

generality, assume that it was agent 1 who managed to develop the prototype in the first stage.

This means that the race proceeded from node (1, 0) to node (1, 1). Recall that this brings an

additional term to the disagreement point of agent 1, who then aims to maximize

x1,0
x1,0 + y1,0

Vf + dr + ds
2

+
y1,0

x1,0 + y1,0

Vf − dr + ds
2

− c1x1,0

where x1,0 and y1,0 denote the respective efforts exerted by the agents. Similarly, agent 2 aims to

maximize

x1,0
x1,0 + y1,0

Vf − dr − ds
2

+
y1,0

x1,0 + y1,0

Vf + dr − ds
2

− c2y1,0

After taking the first order conditions, the equilibrium analysis yields

x∗1,0 =
c2dr

(c1 + c2)2
and y∗1,0 =

c1dr
(c1 + c2)2

7



with the equilibrium expected payoffs of

EU c,11,0 =
Vf − dr + ds

2
+

c2
2dr

(c1 + c2)2

EU c,21,0 =
Vf − dr − ds

2
+

c1
2dr

(c1 + c2)2

(1)

On the other hand, if agents decided to stop at (1, 0), so that the game does not proceed to

node (1, 1), the agents immediately collect their payoffs:

U s,11,0 =
Vp + dr

2
and U s,21,0 =

Vp − dr
2

. (2)

Accordingly, we can write that agent 1 prefers to continue if

Vf − Vp > 2dr − ds −
2c2

2dr
(c1 + c2)2

,

whereas agent 2 prefers to continue if

Vf − Vp > ds −
2c1

2dr
(c1 + c2)2

.

It is then easy to see that for sufficiently high values of Vf − Vp, both agents prefer to continue; for

sufficiently low values of Vf −Vp, both agents prefer to stop; and for intermediate values of Vf −Vp,

either agent 1 or agent 2 prefers to continue, and in such a case, how the unanimity rule is applied

would be critical in determining the outcome.

Notice that in the case where it was agent 2 who managed to develop the prototype in the first

stage, so that the race follows the path of nodes: (0, 0)→ (0, 1)→ (1, 1), the equilibrium strategies

and expected payoffs for both agents can symmetrically be written. Accordingly, we can write that

agent 1 prefers to continue if

Vf − Vp > ds −
2c2

2dr
(c1 + c2)2

.

whereas agent 2 prefers to continue if

Vf − Vp > 2dr − ds −
2c1

2dr
(c1 + c2)2

,

8



This completes the analysis of the second stage contest. For the one-shot contest in the first

stage, backward induction dictates that we should consider four possibilities: (i) agents would

continue no matter who wins, (ii) agents would continue if agent 1 wins, but stop if agent 2 wins,

(iii) agents would stop if agent 1 wins, but continue if agent 2 wins, and (iv) agents would stop no

matter who wins.

We analyze the equilibrium strategies case by case. In case (i), agents anticipate that they will

jointly decide to proceed to the second stage independent of who wins the first stage. Then, at

node (0, 0), agent 1 aims to maximize

xcc0,0
xcc0,0 + ycc0,0

EU c,11,0 +
ycc0,0

xcc0,0 + ycc0,0
EU c,10,1 − c1x

cc
0,0

where xcc0,0 and ycc0,0 denote the respective efforts exerted by the agents in this particular case.

Similarly, agent 2 aims to maximize

xcc0,0
xcc0,0 + ycc0,0

EU c,21,0 +
ycc0,0

xcc0,0 + ycc0,0
EU c,20,1 − c2y

cc
0,0

The equilibrium analysis yields

xcc∗0,0 =
c2ds

(c1 + c2)2
and ycc∗0,0 =

c1ds
(c1 + c2)2

with the equilibrium expected payoffs of

EU cc,10,0 =
Vf − dr − ds

2
+
c2
2(dr + ds)

(c1 + c2)2

EU cc,20,0 =
Vf − dr − ds

2
+
c1
2(dr + ds)

(c1 + c2)2

(3)

In case (ii), agents anticipate that they will proceed to the second stage in case agent 1 wins

the first stage and they will stop in case agent 2 wins the first stage. At node (0, 0), agent 1 aims

to maximize
xcs0,0

xcs0,0 + ycs0,0
EU c,11,0 +

ycs0,0
xcs0,0 + ycs0,0

EU s,10,1 − c1x
cs
0,0

where xcs0,0 and ycs0,0 denote the respective efforts exerted by the agents in this particular case.

9



Similarly, agent 2 aims to maximize

xcs0,0
xcs0,0 + ycs0,0

EU c,21,0 +
ycs0,0

xcs0,0 + ycs0,0
EU s,20,1 − c2y

cs
0,0

The equilibrium analysis yields

xcs∗
0,0 =

c2
(
(c1 + c2)2(Vf − Vp − ds) − (2c2

2 + 4c1c2)dr
) (

(c1 + c2)2(Vf − Vp + ds) − 2c2
2dr

)2
2(c1 + c2)2 ((c1 + c2)(c22(Vf − Vp + 2dr + ds) − c12(Vf − Vp − ds)) + 2c1c2(c2ds + c1(2dr + ds))2

ycs∗
0,0 =

c1
(
(c1 + c2)2(Vf − Vp − ds) − (2c2

2 + 4c1c2)dr
)2 (

(c1 + c2)2(Vf − Vp + ds) − 2c2
2dr

)
2(c1 + c2)2 ((c1 + c2)(c22(Vf − Vp + 2dr + ds) − c12(Vf − Vp − ds)) + 2c1c2(c2ds + c1(2dr + ds))2

The equilibrium expected payoffs can be calculated by plugging these equilibrium strategies into

the expected payoff functions above.

Noting that case (iii) is symmetric to case (ii), here we omit the respective equilibrium analysis.

Finally, in case (iv), agents anticipate that they will jointly decide to stop after developing the

prototype independent of who wins the first stage. Then, at node (0, 0), agent 1 aims to maximize

xss0,0
xss0,0 + yss0,0

U s,11,0 +
yss0,0

xss0,0 + yss0,0
U s,10,1 − c1x

ss
0,0

where xss0,0 and yss0,0 denote the respective efforts exerted by the agents in this particular case.

Similarly, agent 2 aims to maximize

xss0,0
xs0,0 + yss0,0

U s,21,0 +
yss0,0

xs0,0 + yss0,0
U s,20,1 − c2y

ss
0,0

The equilibrium analysis yields

xss∗0,0 =
c2dr

(c1 + c2)2
and yss∗0,0 =

c1dr
(c1 + c2)2

with the equilibrium expected payoffs of

EU ss,10,0 =
Vp − dr

2
+

c2
2dr

(c1 + c2)2
and EU ss,20,0 =

Vp − dr
2

+
c1
2dr

(c1 + c2)2
(4)
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3.2 Comparative Statics

Here we conduct comparative static analyses on various model parameters.

a) Changes in Vf−Vp: As it can be seen above in equilibrium analysis, the difference between the

total earnings in two contests directly enters into the inequalities that determine whether agents

would want to continue to stage 2 or not. It is clear that an increase in Vf − Vp enlarges the

parameter space where the second stage contest is reached and the final product is developed in

equilibrium. If Vf−Vp decreases from such a high value under which both agents prefer to continue,

then agent i ∈ {1, 2} prefers to stop in case she wins in the first stage before she stops in case of a

loss; however, if Vf − Vp decreases to a sufficiently low level, then both agents would want to stop

at the end of stage 1 no matter who wins the first stage contest. This is economically intuitive,

because a higher difference between the total earnings would make it more worthwhile for both

agents to continue.

b) Changes in dr or ds: Observing the same inequalities reported for the stop or continue

decision, one can see that in the inequality for the contest winner, the sign of the coefficient for

dr is positive and the sign of ds is negative; whereas the situation is the converse in the inequality

for the contest loser. Therefore, an increase in dr or a decrease in ds enlarges the set of parameter

values under which the winner in the first stage prefers to stop before stage 2 and the loser in

the first stage prefers to continue to stage 2. This is economically intuitive, because such changes

in these parameters would increase the importance of winning the first stage contest in case of

stopping and decrease the importance of the same in case of continuing to stage 2. As a result, it

would be better for the contest winner to stop and for the contest loser to continue.

c) Changes in c1 or c2: Taking the derivatives of the right-hand-side of each inequality reported

for the stop or continue decision with respect to the cost parameters, one can see that in the

inequality for agent i ∈ {1, 2}, an increase in ci leads to an increase while an increase in c−i leads

to a decrease in the expression. Accordingly, as ci increases, the set of parameters under which

agent i prefers to continue to stage 2 would get smaller. The same is true when c−i decreases. This

is economically intuitive, because a higher marginal cost parameter for an agent results in a lower

expected return form the contest, so that the agent would opt out of the contest if possible.

11



3.3 Optimal Incentive Provision

In this section, we study an optimal design problem from the perspective of the firm management

who employs the two competing agents in product development. Assume now that contest efforts are

productive such that the first stage efforts either influence the revenue generated by the prototype

(if the agents stop after stage 1) or the technology to be used in the final version production (if

the agents continue to stage 2), whereas the second stage efforts influence the revenue generated

by the final version. All revenue is completely collected by the firm management. By specifying

three items in the agents’ contracts, namely the (Vf , Vp) pair, the (dr, ds) pair, and the unanimity

rule, the firm aims to maximize its net earnings, calculated as the total revenue collected minus

the total winning prize offered to its workers.

In the following analysis, we consider a Cobb-Douglas type revenue function for the firm. In

particular, we assume that the revenue generated by the prototype is A
√
e1w where A > 0 is the

technology level and e1w is the effort exerted by the winner in the first stage. Also, we assume

that the revenue generated by the final version is Aj
√
e2w for any j ∈ {0,+} where Aj > 0 is the

technology level and e2w is the effort exerted by the winner in the second stage. In this context,

A+ > 0 represents a positive technology and A0 = 0 represents a zero technology such that the

positive technology will be achieved if a given effort threshold is reached in the first stage.

Before starting the optimal design analysis, notice that the firm simply cares about the stop

or continue decision, hence cases (ii) and (iii) above, where the two agents would continue if one

agent wins in the first stage but they would stop if the other agent wins, can only be sub-optimal.

Accordingly, we concentrate on cases (i) and (iv) above. The firm maximizes its revenue in two

cases separately: (a) maximization after stage 1 (corresponding to case iv) and (b) maximization

after stage 2 (corresponding to case i).

Our analysis below shows that there exist sets of parameter values under which the firm man-

agement prefers each case: (a) stopping after stage 1 or (b) continuing to stage 2, after achieving

a positive technology level in stage 2.6 The respective conditions will be revealed at the end of

the analysis.

Case (a): Given our result in the previous subsection, we know that the winning probability for

6Note that staying below the effort threshold and ending up with a zero technology for the final product can never
be optimal for the firm management.
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agent i ∈ {1, 2} is ci/(c1 + c2) in the equilibrium. The objective function can be written as

max
Vp≥dr

A

(
c2

c1 + c2

√
xs∗0,0 +

c1
c1 + c2

√
ys∗0,0

)
− Vp

max
Vp≥dr

A

(
c1
√
c1dr + c2

√
c2dr

(c1 + c2)2

)
− Vp

The solution to this problem is trivial: V ∗p = dr. This indicates that the firm chooses an extreme

value for the winner’s disagreement point, so that it would be as if the Nash solution is not used

in the equilibrium. But then one can further maximize over dr:

max
dr≥0

A(c1
√
c1 + c2

√
c2)

(c1 + c2)2

√
dr − dr (5)

Taking the derivative with respect to dr and setting it equal to zero yields

A(c1
√
c1 + c2

√
c2)

(c1 + c2)2
1

2
√
d1

= 1

ds∗r =

[
A(c1

√
c1 + c2

√
c2)

2(c1 + c2)2

]2
(6)

To sum up, if the firm prefers the agents to stop after stage 1, V ∗p = ds∗r , which is given by (6), is

the optimal winning prize that should be offered to the winner in the first stage, while the loser

receives nothing.

Case (b): As mentioned earlier, in the second stage, there exists a threshold level for total exerted

effort, such that if it is reached, the firm achieves a positive technology of production, A+ > 0; but

if not, it ends up with a zero technology level, A0 = 0. Given that the equilibrium effort for each

agent i is given by

c−ids
(c1 + c2)2

,

so that the total equilibrium effort is ds/(c1 + c2), let δcrit > 0 be the respective critical level for ds,

which returns the total effort threshold in the equilibrium.

13



Then, the objective function can be written as

max
Vf≥dr+ds

Aj

[
c2

c1 + c2

(
c2

c1 + c2

√
x∗1,0 +

c1
c1 + c2

√
y∗1,0

)
+

c1
c1 + c2

(
c2

c1 + c2

√
x∗0,1 +

c1
c1 + c2

√
y∗0,1

)]
− Vf

for any j ∈ {0,+}. Since, by symmetry, the terms in the parentheses are equal to each other, the

objective function reduces to

max
Vf≥dr+ds

Aj

(
c2

c1 + c2

√
x∗1,0 +

c1
c1 + c2

√
y∗1,0

)
− Vf

max
Vf≥dr+ds

Aj

(
c1
√
c1dr + c2

√
c2dr

(c1 + c2)2

)
− Vf

This is very similar to the problem in the first stage. We know that the solution is trivial: V ∗f =

dr + ds. But then one can further maximize over dr and ds:

max
dr≥0, ds≥0

Aj(c1
√
c1 + c2

√
c2)

(c1 + c2)2

√
dr − dr − ds (7)

This immediately implies that ds should take its minimum value. Given that zero technology

level can never be optimal, since it would always return a zero revenue in the second stage, we can

conclude that the firm prefers d∗s = δcrit, aiming to achieve a technology level of A+. Then, taking

the derivative with respect to dr and setting it equal to zero yields

A+(c1
√
c1 + c2

√
c2)

(c1 + c2)2
1

2
√
d1

= 1

dc∗r =

[
A+(c1

√
c1 + c2

√
c2)

2(c1 + c2)2

]2
(8)

The optimization analysis above singles out the optimal selections of dr and ds values for each

possible case: (a) and (b). The final step is to compare the earnings those optimal selections yield

in order to identify which case would be preferred by the firm. Note that the optimal selections

in a specific case should be consistent in the sense that the equilibrium strategies must lead to

that particular case. For instance, if the firm prefers to produce the final version with a positive
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technology level, then it should be able to incentivize agents towards that direction. If this cannot

be achieved under the restriction that the firm made the optimal selections of dr and ds in case (b),

then further analysis would be necessary, which would possibly return a corner solution for dr.

Now, let E∗s (A) be the maximum level of earnings the firm collects after stage 1, which can be

calculated by implementing ds∗r in (6) into (5) and setting Vp = ds∗r . Similarly, let E∗c (A+) be the

maximum level of earnings the firm collects after stage 2 in case of high technology level, which

is equivalent to the case when dc∗r in (8), d∗s = δcrit, and Aj = A+ are implemented into (7) and

(Vp, Vf ) is set to (dc∗r , d
c∗
r + δcrit).

To control for consistency, we make the following observations. If it turns out that E∗s (A) >

E∗c (A+), then the firm would choose the values Vp = Vf = ds∗r , dr = ds∗r and ds = 0. If the firm

further sets the unanimity rule in such a way that “both agents should agree to continue, otherwise

they will stop”, one can see that agents would stop, because the winner in the first stage prefers

stopping before moving onto the second stage. On the other hand, if E∗c (A+) > E∗s (A), then the

firm would choose the values Vp = dc∗r , Vf = dc∗r + δcrit, dr = dc∗r and ds = δcrit. If the firm

further sets the unanimity rule in such a way that “both agents should agree to stop, otherwise

they will continue”, one can see that agents would continue, since the loser in the first stage prefers

moving onto the second stage. This results in a high technology level. With these arguments, we

have shown that all optimal selections found above are consistent with the respective cases. This

completes the analysis of optimal design problem for the firm.

4 Conclusion

We formulate a model of product development where (i) two agents in a firm compete to receive

a more advantageous share of earnings from a new product, (ii) the competition between agents is

modeled as a race with an endogenous length (with one stage or two stages), and (iii) the agents’

contest payoffs are determined using the Nash bargaining solution with endogenously-determined

disagreement points depending on the race outcome. Agents may choose not to proceed to the

second stage, which would lead to a semi-developed product, or a prototype, that has a lower

value than the full-fledged final product. We solve for the subgame perfect Nash equilibrium of the

corresponding sequential game, describe the conditions under which the final product is developed,
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conduct comparative static analyses on model parameters, and solve the firm management’s optimal

contract problem.

Our paper contributes to literature on applied industrial organization (more precisely, product

development and optimal contract design) and the literature on contest theory. Our contribution

to the applied literature is the introduction of a rich yet tractable model of product innovation,

which allows us to study (i) cooperation and competition in product development teams, (ii) fair

and optimal incentives (both collective and individual) to be given to workers, (iii) knowledge

sharing in teams, and (iv) influence of different team decision rules on product development. Our

theoretical innovation is threefold: to the best of our knowledge, ours is the first model to study a

race with (i) an endogenous length, (ii) state-dependent prizes, and (iii) a cooperative bargaining

game embedded in it (i.e., prize determination).

A few words about our modeling assumptions is in order. We model product development

process and the corresponding race between agents with two-stages (representing a prototype and

a final product). We could have had more than two stages. However, that would have complicated

the analysis yet not have brought significantly new insights (on top of what the current model

offers). A similar argument is valid regarding a possible extension to a multi-agent setup. Another

possible extension would about the form of the effort cost functions. We expect our qualitative

results to hold under a more general form of cost functions (e.g., increasing and convex). Finally,

in line with Nash (1950), the source of bargaining power comes from disagreement points in our

model. Another way of introducing bargaining power is by using the asymmetric Nash bargaining

solution, which maximizes (x− xd)α(y− yd)β. The relative values of α and β can be thought of as

a measure of power asymmetry. We believe that this way of incorporating bargaining power would

likely lead to a less tractable model without bringing significantly new insights.

Finally, we believe that our model can be used in studying further questions related to product

development teams. For instance, future research may model the demand side in greater detail

by introducing (heterogenous) consumer preferences for the prototoype and for the final product,

and explicitly solving for their utility maximization problems. Another potentially fruitful venue

could be modeling duopolistic (or, more generally, oligopolistic) competition using the framework

we introduced here. Also, the optimal formation of product development teams can be studied to

answer questions such as “Should teams be formed with similar or different agents?”.

16



Acknowledgments
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