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Measurement of Factor Strength:
Theory and Practice

Abstract

This paper proposes an estimator of factor strength and establishes its consistency and
asymptotic distribution. The estimator is based on the number of statistically significant factor
loadings, taking multiple testing into account. Both cases of observed, and unobserved factors
are considered. The small sample properties of the proposed estimator are investigated using
Monte Carlo experiments. It is shown that the proposed estimation and inference procedures
perform well, and have excellent power properties, especially when the factor strength is
sufficiently high. Empirical applications to factor models for asset returns show that out of 146
factors recently considered in the literature, only the market factor is truly strong, while all other
factors are at best semi-strong, with their strength varying considerably over time. Similarly, we
only find evidence of semi-strong factors using a large number of U.S. macroeconomic
indicators.
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1 Introduction

This paper is concerned with the characterisation and estimation of individual factor strengths in the context of
multi-factor models, both when the factors are observed and when they are latent. We propose to measure the
strength of a given factor by the degree of its pervasiveness identified by the number of its associated non-zero
factor loadings. The degree of factor strength is measured by the rate at which the number of non-zero factor
loadings rises with the total number of loadings, n. A factor is said to have maximum strength (equal to 1) if all
its associated loadings are non-zero. A factor is deemed to be weak if the rate of non-zero factor loadings increase
is less than 1/2, and factors with strength between 1/2 and 1 will be referred to as semi-strong in the sense that
they are pervasive but not necessarily strong. More formally, for illustrative purposes, consider the following single

factor model
Tit :c,;+'yift+uit, 1=1,2,...,n;t=1,2,...,T, (1)

where f, is a known factor, ¢; is the unit-specific effect, u; ~ ITD(0,0?) is an idiosyncratic error, and ~; is the
factor loading for unit 7. In the standard factor literature, the strength of f; is measured by the rate at which

w2 =

=Dy %-2 rises with n. Denoting the expansion rate of w? in terms of n by «, the standard large n and T

latent factor models assume that o = 1, as required, for example, by Assumption B in Bai and Ng (2002) and
Bai (2003). At the other extreme, a factor is deemed to be weak if 0 < o < 0.5. This case is studied in Onatski
(2012). Similar notions of factor strength are also used in recent financial studies by Lettau and Pelger (2018),
and Anatolyev and Mikusheva (2019).

The rate « is determined by the number as well as the size of non-zero loadings, ;. In this paper we focus
on the former whilst a number of papers in the literature that consider the case of weak factors, assume that
Vi = Yin = (5i/n(1*°‘)/2, with bounded and non-zero §; for all ¢, which yields w,% = (nfl Z?:l (512) n®. See, for
example, Kleibergen (2009) or Onatski (2012) who consider factor models with o = 1/2. This approach restricts
all loadings, 7;n, to decline at the same rate with n, when a < 1. In our view declining values for v;, as n increases,
make little empirical sense. Our chosen setup where the main determinant of factor strength is the number of
non-zero factor loadings is empirically more defensible and verifiable. Estimation of o under our formulation is
also easier to implement as compared to the alternative formulation, ~;, = d;/ n1=®)/2 To our knowledge there is
no literature on how to estimate o under this alternative specification.

In most empirical applications, the value of « is unknown. Incorrectly setting it to @ = 1 can result in
misleading inference. Also, as we shall see, without further a priori restrictions on the factor loadings, it is not
possible to identify oz when the factor in question is weak (o < 1/2). But in most empirical applications in finance
and macroeconomics, the values of o that are of interest and of consequence, are within the range a € (0.5, 1].
As recently shown by Pesaran and Smith (2019), factor strengths play a crucial role in the identification of risk

premia in arbitrage asset pricing models, and determine the rates at which risk premia can be estimated. The



strength of macroeconomic shocks is also of special interest, as its value has important bearing on forecasting and
policy analysis. Contributions in terms of factor selection and factor model estimation when a € (0.5, 1) include
Freyaldenhoven (2019) and Uematsu and Yamagata (2019).

The analysis of this paper is also closely related to the literature on strong and weak cross-sectional dependence.
One important example is the role of dominant units in production or financial networks and how to identify and
measure their degree of dominance when interconnections are known (Acemoglu et al. (2012), Pesaran and Yang
(2020)), or unknown (Kapetanios et al. (2020)). Bailey et al. (2016) (BKP hereafter) give a thorough account
of the rationale and motivation behind the need for determining the extent of CSD, be it in finance, micro or
macroeconomics. To estimate the degree of CSD in a panel dataset, BKP analyse the rate at which the variance
of the cross section average of observations in that panel tends to zero and show that it depends on the degree or
exponent of CSD which they denote by a. They explore a latent factor model setting as a vehicle for characterising
strong and semi-strong covariance structures as defined in Chudik et al. (2011). They relate these to the degree
of pervasiveness of factors in unobserved factor models often used in the literature to model CSD. In a follow
up paper to BKP, Bailey et al. (2019) extend their analysis in two respects. First, they consider a more generic
setting which does not require a common factor representation and holds more generally for both moderate and
sizeable CSD. They achieve this by directly considering the significance of individual pair-wise correlations and
base the estimation of o on the proportion of statistically significant correlations. Second, they show that their
estimator also applies to the residuals obtained from panel data regressions.

The estimators developed in Bailey et al. (2016, 2019) are helpful as overall measures of CSD, but they do
not provide information on the strength of individual factors which is of interest, for example, in the pricing of
risk in empirical finance and in identifying dominant factors in macroeconomic fluctuations. In this paper we
propose an estimator of factor strength and establish its consistency and asymptotic distribution when o > 1/2.
The proposed estimator is based on the number of statistically significant factor loadings, taking account of the
multiple tests being carried out. We find that it is a powerful and highly accurate estimator, especially for higher
levels of factor strength. Despite its simplicity, the distribution of the estimator, being based on sums of random
variables that follow, potentially heterogeneous, Bernoulli distributions, is quite complicated and non-standard.
While the parameters of these distributions are hard to pin down, they can be bounded in such a way as to provide
both grounds for the validity of a central limit theorem for the asymptotically dominant part of the estimator
and an upper bound for the asymptotic variance. These two elements allow for the construction of asymptotically
conservative test statistics.

We focus mainly on the case where the factors are observed, which is of primary interest in tackling the
financial empirical example mentioned earlier, among many others. We also consider using cross section averages

as a proxy in the case of unobserved common factors. In practice, we face a significant factor identification issue



when there are more than one unobserved common factors. In the case of multiple unobserved factor models, our
contribution is best viewed as providing inferential information about the exponent of the strongest factor shared
amongst the cross section units, even though we present some results on estimating the strength of weaker factors
with 1/2 < a < 1.

We investigate the small sample properties of the proposed estimator by means of Monte Carlo experiments
under a variety of scenarios. In general, we find that the estimator, and the associated inference, perform well.
The test is conservative under the null hypothesis, but, nevertheless, has excellent power properties, especially
when « is close to unity, even for moderate sample sizes.

We illustrate the relevance of our proposed estimator by means of two empirical applications, using well known
datasets in finance and macroeconomics. First, we consider a large number of factors proposed in the finance
literature for asset pricing. For example, Harvey and Liu (2019) document over 400 such factors, and Feng et al.
(2020) consider the problem of factor selection using penalised regressions. In view of recent theoretical results
in Pesaran and Smith (2019), our empirical contribution focuses on the estimation of factor strengths, since
factor selection is only meaningful for asset pricing if the factors under consideration are sufficiently strong. We
compute 10-year rolling estimates of a (together with their standard error bands) for the excess market return
(as a measure of the market factor), and the remaining 145 factors considered by Feng et al. (2020). Out of the
146 factors considered, we find that only the market factor is sufficiently strong over all rolling windows, with its
average strength estimated to be around 0.99 over the full sample (from September 1989 to December 2017). In
contrast, none of the other factors achieve strengths exceeding 0.90 over the full sample, but over the sub-sample
that includes the recent financial crisis as many as 48 (out of 145) have average strength estimated to lie between
0.9 and 0.94. Remarkably, the well-known size and value factors introduced in Fama and French (1993) are not
particularly prominent as compared to cash and leverage factors. Further, of special interest is the high degree of
time variation in the estimates of factor strengths, which cannot be attributed to sampling variation, considering
the high precision with which the factor strengths are estimated, particularly when the true factor strength is close
to unity.

Our second empirical application considers an unobserved factor model and asks if there exists any strong
latent factor shared by the set of macroeconomic variables originally investigated by Stock and Watson (2012).
In particular, we consider an updated version of Stock and Watson (SW) dataset covering 187 variables over the
period 1988Q1-2019Q2. Although it is not possible to separately identify the strengths of individual latent factors,
we are able to show that the strength of the strongest of the latent factors in the updated SW data set is around
0.94 which is sufficiently high for the factor to be important for macroeconomic analysis, but yet statistically
different from 1, usually assumed in the literature.

The rest of the paper is organised as follows: Section 2 introduces our proposed measure of factor strength



and develops the estimation and inference theory for the single factor case. A general multi-factor set up is then
considered in Section 3 which includes the main theoretical results of the paper. Section 4 discusses the case of
unobserved factors, and after highlighting the identification problem involved, considers first the estimation of the
strength of the strongest factor implied by the model, and then estimation the strength of all sufficiently strong
unobserved factors. Sections 5 and 6 provide extensive simulation and empirical evidence of the performance of
our estimator. Section 7 provides some concluding remarks. Mathematical proofs and additional empirical and
simulation results are contained in an online Appendix.

Notation: Generic positive finite constants are denoted by Cj, for ¢ = 1,2,.... They can take different
values at different instances. If {f,} -, is a real sequence and {g,} -, is a sequence of positive numbers, then
fn =0 (gn), if there exists a positive finite constant Cy such that |f,| /g, < Cp for all n. f,, = o (gn) if fn/gn — 0
as n — oo. If {fp}.2, and {gn},—, are both positive sequences of real numbers, then f,, = © (gy) if there exist
no > 1 and positive finite constants Cp and C1, such that inf,>n, (fn/9n) > Co, and sup,>,, (fn/gn) < C1. —4

denotes convergence in distribution as n, T — oo.

2 Estimation strategy

To illustrate the basic idea behind our estimation strategy we begin with a single factor model where the factor
is observed, and turn subsequently to the cases of observed or unobserved multiple factors. Suppose that T
observations are given, on n cross section units, namely {x;,7 =1,2,...,n,t =1,2,...,T}, and follow the single

factor model (1), repeated here for convenience:
Tit = Ci + Yift + wit, (2)

where f;, t =1,2,...,T is a known factor, ¢; is the unit-specific effect, u;z ~ ITD(0,07) is an idiosyncratic error,
and ; is the factor loading for unit i. The factor loadings are assumed to be non-zero for the first [n®] units, and

zero for the rest, where [-] denotes the integer part function. More specifically, suppose that, for some ¢ > 0,

I, 3)

lvi| = 0 as. for i = [n®] +1,[n* +2,...,n,

7| > cas. fori=1,2,...,[n

where o measures the strength of factor f;, which in the case of the single factor model coincides with the exponent
of cross section dependence discussed in BKP.! The exponent o measures the degree of pervasiveness or strength
of the factor. It is important to reiterate that BKP focus on estimating an overall measure of cross-sectional
dependence in z;, without particular reference to a single specific factor. They base their estimator on the

variance of the cross-sectional average, while noting the pros and cons of alternative approaches, based on other

"More generally, we can have |v;| = ¢;7" "], with |y| < 1 and ¢1 > 0, for i = [n®] 4+ 1,[n%] 4+ 2,...,n, in (3). But for simplicity of
exposition, we opt for |y;| = 0 a.s. instead.



characteristics of x;, such as, e.g., the maximum eigenvalue of the covariance of x;;. Given the prominence of this
maximum eigenvalue as a basis for characterising CSD, they note existing work, as well as reasons for which a
formal eigenvalue analysis may not be promising for this purpose.

As we noted above our aim is different. We wish to determine the strength or pervasiveness of particular
factors and use «, as defined through (3), as a tool for that purpose. To estimate a we begin by running n least

squares re ressions Of Tit f1— fOI' eaCh 7 = 1, 2, ..., on an intercept and + to Obtain
g t=1
Tip = éiT—l-"Ayint—i-ﬁit, t=1,2,...,T

where ¢;7 and 4;7 are the Ordinary Least Squares (OLS) estimates of this regression. Denote by t;7 = ;1 / s.e. (Yir)

the t-statistic corresponding to v;:

(MDY 50 (FME) Y2 (M)

aiT aiT

: (4)

tir =

where M, = Iy — T rprh, 71 is a T x 1 vector of ones, f = (f1, f2,..., fr), xi = (i1, %2, ..., zi7), and
Oip = 71 ZtT:1 192%. Also assume that, for some ¢ > 0, T~'f'M,f > ¢, which is necessary for identification of ~;.

Consider the proportion of the n regressions with statistically significant coefficients ~;:
n
ﬁnT - nil Z di,nT7 (5)
i=1

where cii’nT = 1[|tir| > cp(n)], 1 (A) = 1if A > 0, and zero otherwise, and the critical value function, c,(n), is
given by . D
cp(n) =@ (1 - 2—716) . (6)
Here p is the nominal size of the individual tests, § > 0 is the critical value exponent and ®~!(-) denotes the
inverse cumulative distribution function of the standard normal distribution.

Suppose that 7,7 > 0, and consider the following estimator of a

In 7,7

a=1+ .
Inn

In the rare case where 7,7 = 0, we then set & = 0. Overall

&, if o, >0,
&= (7)
0, if 7,7 = 0.
Clearly & € [0,1] a.s.; also, & and & are asymptotically equivalent since for a > 0 then P(n 7,7 = 0) — 0 as
n — oo.
It is tempting to argue in favour of using the proportion of non-zero loadings, =, instead of the exponent «.
The two measures are clearly related - # = n®~!, and coincide only when o = 1. But when a < 1, 7 becomes

smaller and smaller as n — oo, and eventually tends to 0, for all values of a < 1. The rate at which 7 tends to

zero with n is determined by «, and hence « is a more discriminating measure of pervasiveness than . It is also



unclear how a particular value of 7 should be chosen as a measure of pervasiveness. It is also important to note
that when 7 is set to 7° > 0, a fixed value, then o = 1 + In(7%)/In(n), and @ — 1 as n — oo, if 70 is fixed in
n. Therefore, unlike o which can be chosen to be fixed in n, any choice of 7w which is fixed in n implies a — 1 as

n — oo, albeit at the very slow In(n) rate.

2.1 Asymptotic distribution

Denote the true a by ap, let d) = 1[y; # 0] and note that DY = 3" | d? = n® (the integer part symbol is dropped

i=1"

for simplicity). Let ) no

D1 =nmyr = Z di,nT’ (8)
i=1

and note that D, /D% = n%~ 0, Taking logs, we obtain

. B Dur\ _ Dy — n®
(lnn)(aao)—ln<Dg ) =In <1+W“0>

=1In (1 + AnT + BnT)

= AnT + BnT + Op (A»%T) + O (B,%T) + Op (AnTBnT) +... ) (9)

where

o fhar ()] .

neo
Z?:l E (‘Zi,nT) —n

neo

Byr = (11)

To motivate the proposed estimator and to simplify the derivations, here we assume o; is known and u;; is Gaussian,
and turn to the more general multi-factor case with non-Gaussian errors in Section 3. In this simple case we have

the following lemmas proven in the online Appendix A.

Lemma 1 Let the model be given by (2) where (3) holds, o; is known and u; is a Gaussian martingale difference
process for all i. Then, for some C7 > 0,

p(n—n)

B =
nT n§+a0

+ O [exp (—Tcl)] , (12)

where p is the nominal size of the individual tests, and 0 is the exponent of the critical value function defined in

(6).

Lemma 2 Let the model be given by (2) where (3) holds, o; is known and u; is a Gaussian martingale difference

process for all i. Then, in the case where ag < 1, for some Cy > 0,

Var (Anr) = Yn(ag) + O [n_o‘o/2 exp (—Tcl)} , (13)

where



Yn(ap) = p(n — n)p-0-20 (1 - £> . (14)

If ag =1, for some Cp > 0,
Var (Ayr) = O [exp (-T)] . (15)
As we note from the above lemmas, we need to distinguish between the two cases where oy = 1 and where

ag < 1. In the former case, A,,7 —, 0 exponentially fast in 7', and overall
(Inn) (& —1) = O, [0  exp (—=CoT)] + O [exp (=C1T)],
for some positive constants C; and Cy. Furthermore, in the case where g < 1, using (13) and (14), it follows that

At = 0, [¢n(a0)1/2] ) [n—aoﬂ exp (—clT/z)}
=0, (n1/2_5/2_a0> +0 {n_ao/z exp (—ClT/Q)] )

Therefore, A, 7 = 0p(1) if 6 > 1 — 20, which is in turn met if § > 0, for all values of ap > 1/2.

It is clear that the distribution of & experiences a form of degeneracy when oy = 1, and & tends to its true
value of 1 exponentially fast. We refer to this property as ultraconsistency to distinguish it from the more usual
terminology of superconsistency that refers to rates of convergence that are faster than the usual one of the square
root of the sample size. Usually faster rates are polynomial in the sample size and not exponential, and therefore
the new term reflects this important difference.

The above results suggest the following scaling of & when ag < 1:
Y2 (lnn) (& — ao) = ¥, 2 Aur + 4,2 Bur + 0,(1).

Also, using (A.6) from the online Appendix A, we have

— i E (di’"T> - _p(n—n®) + O lexp (—C1T)].

noo n5+0{0

BnT

It is also easily seen that B,r = o(1) if § > 1 — .

Since 1/2 < ap < 1 (recall that the case of ap = 1 is treated separately), then for values of aq close to unity
(from below) it is sufficient that 6 > 0, and for values of ag close to 1/2, we need § > 1/2. In the absence of
a priori knowledge of «p, it is sufficient to set § = 1/2. In practice, factors that are sufficiently strong with ag
falling in the range [2/3, 1] are likely to be of greater interest, and for precise estimation of such factors it would
be sufficient to set § = 1/4. Our Monte Carlo results show that the estimates of factor strength are reasonably
robust to the choice of 0, so long as it is not too small and lies in the range 1/4 — 1/2. Alternatively, one can
consider various cross-validation methods to calibrate §.

Also, since [t ()] Y2 App = Op(1), then [thn ()] /2 A2, = O, (Anr) = 0(1). Using these results we can

now write

[Wn ()] ™% (Inn) (& — g — Ga) = [Wn(a0)] ™ Apr + 0,(1),



where . (a0) p(n —n)
Qp) = ——.
AT (Inp) ndteo
Finally, since u;; are independent across ¢, and cii,nT - F (cfi,nT> have zero means, then by a standard martingale

difference central limit theorem, we have (as n and T — 00)

n(a0)] 2 Aur = Wn(00)] 2 5™ [dir — B (dinr) | 54 N(0,1).
i=1
Hence,
(a0 2 () [& = a0 — G (a0)] =4 N0, 1) (16)
where p(n —no)

Cn () = W' (17)

To test Hy : a = «, we utilise the following score statistics where ag in the normalisation part of the test is
replaced by its estimator, &: (Inn) (6 — ag) — p (n _ nd) n—9—a

Ra:ag = - - ‘ (18)
[p (n — n#) n=0-25 (1 — 2)]'/?

The null will be rejected if |z,| > cv, where cv is the critical value of the standard normal distribution at the

desired significance level (which need not be the same as p). For a two sided test at 5% level, cv = 1.96.

3 A general treatment with a multi-factor model

As a generalisation of the above set up consider the multi-factor regressions

m
Tip = ci—i—Z’yijfjt—i—uit =ci+7f +uy, fori=1,2....,nandt=1,2,...,T (19)
j=1
where v; = (Yi1, %2, - - -, Yim) , and it is assumed that the m-dimensional vector, f;= (fi¢, fot, - - ., fnt)', is observed.

We also assume that, for some unknown ordering of units over i,

"7ij| >c¢>0as. fori=1,2,...,[n%°],

|vij] =0 a.s. for i = [n®°] +1,[n%°] +2,...,n.

Throughout the paper we assume that oo > 0.5, for j = 1,2,...,m. As discussed in the Introduction and also in
Pesaran and Smith (2019) this is most relevant case, empirically.
Then the following strategy may be employed to provide inference on o, for j = 1,2,...,m. For a given unit
i, consider the least squares regression of {z;;}._; on the intercept and f;. &7 and 4, are the OLS estimates of
this regression. Denote by t;j7 = Jij7 / s.e. (%i;j7), the t-statistic corresponding to ~;;:
/ 12,
(B Mr g0) " (HME )

oiT

tijT = ,i=12....m;i=1,2,...,n,

1
fjo = (fjh fj?a sy ij)/a X = (xilyxi% ceey xiT),a MF,J' = IT_Ffj (FL]F7]> FL],

_ 122 -1 NT p2 N A ]
F_;= (7, 10y, fj—1o,fj+1o, e ,fmo) y 0p =T thl w3y, and Uy = x4 — G — Yirft



Consider the total number of factor loadings of factor j, 7;;, that are statistically significant over ¢ = 1,2,...,n:
n n
Dury = dijur =Y 1[ltyr| > cp(n)],
i=1 i=1

where 1 (A) = 1if A > 0, and zero otherwise, and the critical value function that allows for the multiple testing

nature of the problem, ¢,(n), is given by

- p
cp(n) =1 (1 - —) .
o) L
As before, p is the nominal size, § > 0 is the critical value exponent and ®~1(-) is the inverse cumulative distribution

function of the standard normal distribution. Let 7,7 ; be the fraction of significant loadings of factor j, and note

that 7,7 ; = DnT,j /n. As in the single factor case, we consider the following estimator of o, for j =1,2,...,m
14 BITs if s> 0,
Gy = (20)

0, if 7y, = 0.

We make the following assumptions:

Assumption 1 The error terms, u;, and demeaned factors fy — E (f), are martingale difference processes with
respect to Fi' = o (Uig—1,Uit—2,...) and .7-"tf_1 = o (f;,£-1,...), respectively. u; are independent over i, and of

f;, and have constant variances, 0 < 0? < (C < o0.
Assumption 2 E{[f, — E (f)][f, — E (f,)]'} = 2, where 3 is some positive definite matriz.

Assumption 3 There exist sufficiently large positive constants Cy, C1,and s > 0 such that

sup; ; Pr (|zi¢| > v) < Coexp (~C1v*), for allv >0, (21)

sup;, Pr (| fjt| > v) < Coexp (=C1v°), for all v > 0. (22)
Then, we have the following theorem:

Theorem 1 Consider model (19) with m observed factors and let Assumptions 1 - 3 hold. Then, for any ajo < 1,
ji=12,....m,
Ynlajo) ™% (Inn) (& — ajo) —a N(0,C) (23)

for some C < 1, where

Yalajo) = p(n—no0) =720 (1 L) (24)

The above theorem provides the inferential basis for testing hypotheses on the true value of «;. The proof of
the theorem is provided in the online Appendix B. Below we discuss operational matters concerning the above

result and how to relax some of the assumptions of Theorem 1.



A test based on 9, (ajo) /2 (Inn) (4; — ajo) will be conservative, in the sense that the rejection probability
under the null hypothesis will be bounded from above by the significance level. The reason is that in general
we cannot get an asymptotic approximation for the variance of &; — «jo but only an upper bound resulting in a
conservative test.

Assumptions 1 and 3 can be relaxed. Rather than independence over ¢ for u;; in Assumption 1, one can assume
some spatial mixing condition, which would still allow the central limit theorem underlying (23), to hold. Further,
the thin probability tails in Assumption 3 can be replaced with a suitable moment condition in order to derive
the variance bound needed to construct a test statistic. We abstract from such complications by maintaining
Assumption 3. The martingale difference assumption for f; simplifies the analysis and allows the use of the theory
in the main part of Chudik et al. (2018). Relaxing this to a mixing assumption is possible at the expense of further
mathematical complexity using, e.g., the results in the online appendix of Chudik et al. (2018).

Our distributional result is stated only for oo < 1. Similar arguments would apply for the variance &; — o
when ajo = 1. But the upper bound for the variance of &; — a;jo would be a function of nuisance parameters
including «;;. This is the case since the dominant term in the variance is the one relating to units not affected
by f;, when ajo < 1, and for these units, v;; = 0. But when ajo = 1, the probability bounds that are used to
derive the variance bound will not have such a dominant term, and the remaining terms will contain ;;. However,
testing under the null hypothesis that oo = 1 is further complicated by the fact that oo = 1 is at the boundary
of the parameter space for ajg. It is well known (see, e.g., Andrews (2001)) that such cases cannot be handled
using standard asymptotic inference, and therefore this case is discussed separately, in the online Appendix C.
Nevertheless, it is clear from the discussion of Section 2.1 that estimation when ag = 1 has some very desirable
properties, such as a very fast rate of convergence, which we have referred to as ultraconsistency. We conjecture
that in the case where oo = 1 for some values of j, and ajp < 1 for some values of j, the distributional results

presented in Theorem 1 hold for factors for which ajp < 1.

4 Case of unobserved factors

When the factors are unobserved we can provide practical guidance on the strength of the strongest factor or
factors, and estimating the strength of other factors encounters a significant identification problem. This is related
to the known fact that latent factors are identified only up to a non-singular m x m rotation matrix, Q = (g;;),
where m is the assumed number of factors.

It is instructive to review this fact. Consider the multi-factor model (19) with f; unobserved. Without loss of
generality suppose that m = 2 and assume that factors, f; = (f1, for)', are unobserved with strengths agg > 1/2

and agy > 1/2. Denote the principal component (PC) estimates of these factors by g; = (g1, §2¢)’, and note that
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under standard regularity conditions in the literature (as n and T' — o0)

fit = qugie + @292t + 0p(1), (25)

fat = @1911 + g2292¢ + 0p(1). (26)

Then the estimates of the loadings associated with these PCs are given by

- Vi1 ~ A\ —1 4 ~ ~\—1 . N N—1 .
A = ! = (G’MTG) G'M,x; = (G’MTG> G'M,Fv, + (G’MTG> G'M,u;,
Yi2
where G = (&1,82,--. ,&7)'. Also since Q is non-singular, G —>pFQ_1, and using the above we have v;,—,Q;.
It is now easily seen that the strength of fi; (or fo) computed using the estimates, 4,1, ¢ = 1,2,...,n may

not provide consistent estimates of the associated factor strengths. To see this write the result 4;,—,Q~,; in an

expanded format as

Fi1 = qu1Yi1 + q127%i2 + 0op(1),
Fi2 = @211 + q22%i2 + 0p(1).

Squaring both sides and summing over ¢ we have
n n n n
SAh=ah Y i+ ah Y b+ 2aae Y vz + op(1),
i=1 i=1 i=1 i=1

n n n n
<2 2 2 2 2
Z Yi2 = 421 Z Vi1 T G2 Z Yiz + 2q21G22 Z Yiryiz + 0p(1).
i=1 i=1 i=1 i=1
Now using the definition of factor strength in (3) and assuming that ayp > aag, in general we have?
n n
) ~2
>oF=0m™), Y 5h = em),
i=1 i=1
namely, using the estimated loadings of the principal components does not allow us to distinguish between the
strength of the two factors, and only the strength of the strongest factor can be identified. When a9 > a9,
identification of agg requires setting ¢o; = 0, and conversely to identify ajp when a19 < agg requires setting
q12 = 0. It is worth noting that using covariance eigenvalues does not help resolve this problem. There are two
separate issues — ordering eigenvalues and how to identify the factors associated with ordered eigenvalues. The
eigenvectors associated with the largest eigenvalues are not uniquely determined and therefore the identification
issue remains. In conclusion, any estimate, &o, is a function of the assumed rotation and the utility of such an
estimate, given the above analysis, is unclear.?

One approach to dealing with this identification problem is to estimate ap = max(aqg a20). The exponent ag

can be estimated using the estimators proposed in Bailey et al. (2016) and Bailey et al. (2019). The approach of

*Note that |37 yiryiz| < sup; [va| (i, [vi2l) = ©(n2).
31t may be the case that using a rotation criterion can provide an interesting avenue for further research on this issue. See, for
example, Kaiser (1958), Rockovd and George (2016) and Freyaldenhoven (2019).
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this paper can also be used to estimate oy by computing the strength of the first PC, or that of the simple cross
section average, namely Z; = n~! > xi. One can also use the weighted cross section average Ty, = Y i | W;Zit,
where 10; is estimated as the slope of Z; in the OLS regression of x; on an intercept and z;.*

Accordingly, we again emphasise that we assume that the m unobserved factors are strong and/or semi-strong
with 1/2 < ajo < 1, and focus on estimation of ag = max;(cjo). In Section 4.1 we suggest how to identify,
in theory, the strengths of weaker factors. Reintroducing a subscript 0 to denote true parameters, we assume
that {z;,1=1,2,...,n; t =1,2,...,T} are generated from the multi-factor model (19) where the factors are
unobserved with strengths a9 > g > agg > -+ > amo > 1/2. Clearly ag = aj9. To emphasise the focus on the

strongest factor we recast the model as follows:

Tig = ¢ +vift +vi, fori=1,2,.... nandt=1,2,...,T (27)
m

vie =Y Yij Fjt + i, (28)
j=2

where the strongest factor f; has strength «ag while the rest of the factors have strengths aog > agg > -+ - > ayno >
1/2. We assume that the m-dimensional vector, f; = (fi, for, ..., fm+)’, is unobserved. We also assume that, for
some unknown ordering of units over 1,

|vil > ¢>0as. fori=1,2,...,[n%], (29)

|v:] = 0 a.s. for i = [n®°] +1,[n*°] +2,...,n.

|vij| >c¢>0as. fori=1,2,...,[n"], j=2,...,m (30)
|vi] =0 as. for i = [n°]+1,[n%° +2,...,n, j=2,...,m.
In what follows, we continue to consider that Assumptions 1 and 3 hold for the above representation, and use the
simple cross section average, Ty to consistently estimate ag = ayg. Taking the first factor to be the strongest is

made for convenience (with ag — ajo > 0, for j = 2,3,...,m). The strength of the strongest factor, ay, is defined

by (with =; denoting the associated loadings)
n
> il = e ®m™),
i=1

and the strengths of the remaining factors by

n
Z|’Yij| =06 (nY°), for j =2,3,...,m.

i=1

4In most applications, a can be estimated consistently using the simple average. But as shown in Pesaran (2015), pp. 452-454,
the weighted average is more appropriate when the loadings of the strong factors have zero means. Also note that by construction

i i =1
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In addition, we assume that the non-zero factor loadings have non-zero means, namely

n n

. —o . e

lim n™° g 1%- # 0, and 1}1_{1;071 30 E 1%]- # 0,
1= 1=

n—o0

and hence, ) n )
F=m=n"") vi=06n""),
i=1
n
v = n_lz'yij =0 (no‘jo_l) yfor j=2,...,m.

i=1

Note that we do not assume any ordering of the zero loadings across the units.
For each i, consider the least squares regression of {xit}?zl on an intercept and the cross section average

of x;+, Ty, and denote the resulting estimators by ér and Bz’T’ respectively. As in the single factor case, ay =

max;(ajo) is estimated by (7), except that when computing the t-statistics, t;7, defined by (4), f is replaced by

X = (Z1,Z2,...,Z7)". Denote by t;r = BzT/ s.e. (BzT) , the t-statistic corresponding to ~;:

T = ~ )
a;T

: (FM.%)"V2 (M, x;)

x; = (zi1, X2, - .., 2i7) , and &Z-QT =T 'xMpx;, where My =Ir — H (I:I’I:I)_1 H', with H = (77, %).

As before, consider the number of regressions with significant slope coefficients:
n n
Dypr = digr =) 1ltir| > cp(n)],
i=1 i=1

where the critical value function, c,(n), is as specified earlier. Then, setting 7,7 = Dyr/n, we have

1+ BTz if 7,0 > 0,
0, if 7,7 = 0.

To investigate the limiting properties of & we first consider the value of #;7 under (19) and note that

X=crr+F5+1, and x; = ¢;77 + F; + u;,

!/ —

where F = (f17 f2, ce ,fT)/, Yi= (’yi, Yi2sy - - - ;'}/im) , Y = n_l Z;L:l Yi, Wy = (u“, Uiy« o vy uiT)/ and T :n_l Z?:l Uj.
Using these results we have

oo TP EMx) T2 (F7+0) M, (Fv; + u) (31)
iT = = ’
Gir (TT'RMR)'? 60 [T (Fy+0)' M, (Fy+u)]

and
67p =T ' (Fy; +w) My (Fy; + w;). (32)

Before proceeding, we slightly modify our assumptions to address the identification issue inherent in considering

unobserved factors.
Assumption 4 E{[f; — E (f;)][f, — E ()]} = I,,,.

Lemma 3 below, which is of fundamental importance, is proven in the online Appendix A and provides prob-

ability bounds for ;7. It uses results from the auxiliary Lemma 4 (also stated and proved in the online Appendix
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A) in terms of the rates in probability and probability tail bounds for the constituent parts of t;7.
Lemma 3 Consider model (27)-(28) with factor loadings given by (29)-(30), where f; is unobserved, and let

Assumptions 1, 8 and 4 hold. Then, as long as VTn(®20=%) — 0, for some C > 0,

Pr[lfir] > epln) s # 0] > 1 - O [exp(~TC)] . (33)

and - Cp
Pr{ftir| > ep(n)lyi = 0] < 5. (34)
Equations (33) and (34) provide the crucial ingredients for the main result given below, as (33) ensures that
the t-statistic rejects with high probability when a unit contains a factor, while (34) ensures that the probability
of rejection for a unit that does not contain a factor, is small.
Overall, we have the following theorem, proven in the online Appendix B, justifying the proposed method for

unobserved factors.

Theorem 2 Consider model (27)-(28) with factor loadings given by (29)-(30), where f; is unobserved, let As-
sumptions 1, 8 and 4 hold and denote by g the true value of « (the strength of the strongest unobserved factor).

Then, as long as VTn(®20=%) — 0, for any ag < 1,

(o) ™2 (Inn) (& — ag) —q N(0,C)

for some C' < 1, where agy denotes the strength of the second strongest factor, and

Un() = p(n —n®)n =072 (1 - %) .

The above theorem provides the inferential basis for testing hypotheses on the true value of «, in the case of
unobserved factors. Clearly, since 1 > ag > o > 0.5, T/n — 0 is a necessary condition and, of course, the actual
sufficient condition may be more restrictive depending on the values of o and asg.

The above analysis readily extends to the case where two or more of the unobserved factors have the same
strength. For example, suppose that ag = max;(a;o) = 19 = ap > a3g > @40 > ... > . Then it is easily seen
that « is consistently estimated by &, even though aig = agg. What matters for identification of ag in this case

is that v/Tn(®0-a0) _ 0. This case is further investigated below using Monte Carlo techniques.

4.1 Multiple unobserved factors of differing strengths

Our analysis has focused on ag = a9 = max;(a; o). A possible way to provide some information on oo, j > 1,
may be based on a sequential application of weighted cross section averages. In particular, once the least squares

regression of {xit}?zl on an intercept and the cross section average of x;, T;, has been fitted, residuals can be
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obtained. Simple cross section averages of these residuals are easily seen to be identically equal to zero. However,
weighted cross section averages can be constructed, along the lines discussed in Pesaran (2015), pp. 452-454,
and the t-statistics of the relevant loadings can be used, in a similar way to that discussed above, to construct
estimators for agp and, sequentially via the construction of further sets of residuals, for a;o, 7 > 2. It is possible
to show that, if vTn(®+1.0-%0) — 0 j > 1, a result similar to that of Theorem 2 holds for ajo, j > 1. This is

stated formally in the following Theorem.

Theorem 3 Consider model (27)-(28) with factor loadings given by (29)-(30), where f; is unobserved. Suppose
that Assumptions 1, 3 and 4 hold, and denote by o the true value of o;. Then, as long as VT @i+1.0=%50) 5 ),

j>1, for any 0.5 < ajp10 < ajo < 1,

¥n(ajo) ! (Inn) (&5 — ajo) —a N(0,C)

for some C < 1, and
Yalajo) = p(n—no0) =020 (1 L)

The proof of the theorem is provided in the online Appendix B. However, this result clearly requires considerable
differences to exist between the successive values of a’s and/or very large values for n. The need for large values of
n in the case of unobserved factors, contrasts to our results for the case of observed factors, where a less stringent
condition on the relative expansion rates of n and T is required. The conditions of Theorem 3 must be born
in mind when attempting to estimate second or third (semi) strongest unobserved factors. Estimation of factor
strength in the case of unobserved factors involves the additional difficulty of how to distinguish between the
strongest, the second strongest, the third strongest and so on factors. The condition v/Tn(®i+1.0%0) — (0, j > 1 in
Theorem 3 relates to this identification problem, and requires a sufficient degree of difference between successive
factor strengths for consistent estimation. In practice, we can only hope to identify the first two or three strongest
factors so long as their strengths are close to unity and at the same time not too close to one another.

Finally, one may wish to have some indication of the value of m® (the true number of factors), and to this end
some preliminary investigation might be required. One possibility would be to consider various existing methods
for selecting the number of factors with all the attendant, well known, performance issues such methods present.
Of course, these issues are further exacerbated if factors under consideration are not sufficiently strong. In short,
special care needs to be exercised when estimating factor strength in the case of unobserved factors. In practice, it
might only be possible to identify and estimate the strengths of top 2 or 3 unobserved factors, at most. Also, when
factors are unobserved and their strengths are not known a priori, the meaning of m° itself is ambiguous, and
must be defined with reference to the strengths of the factors themselves. In our set up m? refers to the number
of factors with oo > 1/2. But condition VTn(¥+10-%0) _5 ( of Theorem 3 suggests that only factors with Qo

sufficiently large can be identified. This contrasts to the standard factor literature that assumes all factors are
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0

a priori strong with a0 = 1, for j = 1,2,...,m”. The concept of m? and its identification in the more general

setting where ajo < 1 requires further investigation.

5 Monte Carlo study

5.1 Design

We investigate the small sample properties of the proposed estimator of « under both observed and unobserved
factors using a number of Monte Carlo simulations. We consider the following two-factor data generating process

(DGP):
it = ¢ + vir fie + Vi for + wit, (35)

fori=1,2,...,nand t =1,2,...,T. We generate the unit specific effects as ¢; ~ IIDN (0,1), for i =1,2,...,n.

The factors, f; = (fit, for)', are generated as multivariate normal: f; ~ N (0,3 ), where

Uj%l P120f,0 f2
3= ,
P20} 02 OF
with oy = o050 = 1, and p12 = corr (fis, far), using the values p12 = 0.0,0.3. The factors are generated as

autoregressive processes (considering both stationary and unit root cases):

fit = prfur L= e i Jog] <1  fort = —49,-48,....1,...,T
fit—1+ejt, ifpp =1
with f; 50 =0 and ej; ~ i.i.d.N (0,1), j = 1,2. In the stationary case, we set py, = pg, = 0.5.

For the innovations, u;, we consider two cases: (i) Gaussian, where u;; ~ ITDN(0,0?) for i = 1,2,...,n; (ii)
non-Gaussian, where the errors are generated as u; = % (X%,it — 2) , where X%,it fori =1,2,...,n are independent
draws from a chi-squared distribution with 2 degrees of freedom, and o? are generated as I1D(1 + X%z) /3.

In terms of the factor loadings, ;1 and 72, first we generate v;; ~ IIDU (1, — 0.2, piy; +0.2), fori = 1,2,...,n
and j = 1,2 (such that F (vij) = ;). Next, we randomly assign [n*1°] and [n?°] of these random variables as
elements of vectors v; = (Y15, Y255 - - - ,’ynj)/, j = 1,2, respectively, where [.] denotes the integer part operator.®
For o and awg, we consider values of (aqg,ag0) starting with 0.75 and rising to 1 at 0.05 increments, namely
0.75,0.80, . ..,0.95,1.00, comprising of 36 experiments for all combinations of a1g and agg in the range [0.75, 1.00].5

We set 11, = 4y, = 0.71 so that both means are sufficiently different from zero. We then select the error variances,

02, so as to achieve an average fit across all units of around R2 = n~! 3" | R? ~ 0.34. This coincides with the
average fits of regressions from our finance application. Scaling o7 by 3/4 achieves R2 ~ 0.41. To this end, we

note that:

5The randomisation of loadings becomes important when analysing the case of unobserved factors, as discussed in Section 4.
SResults for combinations of a1o and agp below 0.75 are available upon request.
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R2 — i+ _ @} + why
i T2 2 2 = 2 2
Vit to; 1+ wh i
where wizj = ’yfj/af, for j = 1,2. Similarly, R? = w?/ (1 —|—wi21), if vi1 # 0 and vi2 = 0, R? = @/ (1 —f—w?Q),

, if for the 7" unit: both ;1 # 0 and 49 # 0,

Y2 # 0 and ;1 = 0, and clearly R? =0, if y;1 =72 =0.

We consider the following experiments:

EXP 1A: (observed single factor - Gaussian errors): Using (35) with ;2 = 0, for all 4, and Gaussian errors.

EXP 1B: (observed single factor - non-Gaussian errors): Using (35) with 7,2 = 0, for all ¢, and non-

Gaussian errors.

EXP 2A: (two observed factors - Gaussian errors) A two-factor model with correlated observed factors

(p12 = 0.3) and Gaussian errors.

EXP 2B: (two observed factors - non-Gaussian errors) A two-factor model with correlated observed fac-

tors (p12 = 0.3) and non-Gaussian errors.

EXP 3A: (unobserved single factor - non-Gaussian errors) Using (35) subject to ;2 = 0, for all 4, and

non-Gaussian errors with g = a9 computed using the simple cross section average Z; = n~! Z?:l Tit-

EXP 3B: (two unobserved factors - non-Gaussian errors) Using (35) with p12 = 0.0 and non-Gaussian
errors, ajg = 0.95,1.00, and agy = 0.51,0.75,0.95,1.00. In this case ap = max (g, agp) is estimated using

the simple cross section average z; = n~ ! o Tt

EXP 3C: (two unobserved factors - Gaussian errors) Using (35) with pjo = 0.0, a9 = 0.90,1.00; o =
0.51,0.75,0.90, and Gaussian errors. For this experiment a1y and gy are estimated using sequentially
weighted cross section averages of z;;, namely &1 = n =1 > 1 | W1;x4, where wy; = Zthl Tyxit/ Z’le 77, and
then the weighted cross section averages of the residuals, To;, obtained from the first stage regression of x;;

on an intercept and F1¢.”

Further, we consider an additional experiment that assumes a misspecified observed factor model that mirrors

the analysis of our empirical finance example in Section 6.1:

EXP 4: (observed misspecified single factor - Gaussian errors) A misspecified single observed factor model,
where the DGP is a two-factor model with correlated factors (p12 = 0.3) and Gaussian errors in (35), a9 = 1,
and agy = 0.75,0.80, ..., 0.95,1.00. For this experiment we report the estimates of a9 computed based on

the misspecified single factor model z;; = ¢; + Vi1 f1r + €.

"Details of the estimation procedure can be found in the online Appendix D.
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The factor strengths are estimated using (7), with the nominal size of the associated multiple tests set to
p = 0.10, and the critical value exponent to § = 1/4.8
For all experiments we report bias and RMSE of &;, size and power of tests of Hy : a; = o against a; = ajq,

7 =1,2, using the test statistic given by
—6—a,

Zéc]':ajo -

(Inn) (&; — ajo) —p (n —n%) =12 (36)

[p(n = n%) n=072% (1 -

We consider two-sided tests throughout. Empirical size is computed as

n
) 1/2

R

sizejp =R T(|2a;:0;0] > v |Ho), j=1,2
r=1

where cv is the critical value of the two-sided normal distribution test which we set to cv = 1.96 (for 95% coverage).
The empirical power of the tests of Hy : a; = «jo against the alternative Hy : a; = «j4, are obtained for
Qjo = ajo+ K, k = —0.05,—-0.045, . ..,0.045,0.05 (20 alternatives) for values of a;o € [0.75,1.00). Here, DGP (35)
is generated under H; and the rejection frequency is computed as

R
power; g = RilzI (‘z@j;aj0| > cv |H1) , 7 =1,2,
r=1

where 24;.q,, 18 given by (36). When ajo and/or aj, is equal to unity, we can compute size and power following
the randomisation procedure proposed in the online Appendix C.

For all experiments we consider all combinations of n = {100, 200, 500, 1,000} and 7" = {60, 120, 200, 500, 1,000},
and set the number of replications per experiment to R = 2,000. The parameter values of ¢; and ;; in the DGP

are redrawn at each replication.

5.2 MC findings

We start with the more general two factor model where the factors are observed (experiments 2A and 2B). Overall,
the outcomes are very similar when the model is generated under a one or two factor specification, or under normal
and non-normal errors. To save space, here we report the results for experiment 2B with moderately correlated
factors (p12 = 0.3) and non-Gaussian errors.” Table 1 reports bias, RMSE and size for the estimator of the strength
of factor fi¢, namely &y, for different values of «ayg, and different (n,7T') combinations, when the strength of the
second factor is set to agg = 0.85. As to be expected, bias and RMSE are universally low and gradually decrease
as n, T and aqq rise. Especially when aqp = 1, bias and RMSE are negligible even when 1" = 60. Similar results
hold when g is set to different values in the range 0.75 to 1.00. These are available in the online Appendix D.

Moving on to the rejection probabilities under the null hypothesis, we note that since the variance of our

8We also consider other values of p and 6, namely p = 0.05 and § = 1/3 or 1/2, and found the results to be qualitatively very similar
to those obtained when p = 0.10 and § = 1/4. See Tables S21-S25 in the online Appendix D which show bias, RMSE and size results
for Experiment 2B corresponding to these values.

9Corresponding results when factors are uncorrelated (p12 = 0.0) or under Gaussian errors are given in the online Appendix D.
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proposed estimator is quite small, the rejection probabilities are sensitive to the bias of &;. Hence, for smaller
values of ag the test is considerably oversized, which is to be expected. However, as the sample size and aqg
increase, the size distortion reduces considerably, resulting in a well behaved test under the null hypothesis. For
a1p = 0.95 correct empirical size is achieved even for moderate values of T', while, as mentioned earlier, when
a19 = 1 our estimator has an exponential rate of convergence and rapidly converges to its true value. Next, we
turn to the power of the test and consider the rejection probabilities under a sequence of alternative hypotheses.
Figure 1 depicts power functions corresponding to the strength of factor fi; under non-Gaussian errors, for values
of a9 = 0.80,0.85,0.90 and 0.95 when agy = 0.85, T' = 200, and as n increases from 100 to 1,000. This figure
clearly shows that the proposed estimator is very precisely estimated for all values of ajg considered, and for all
(n,T) combinations. Also as «ajq rises towards unity the power approaches unity even for very small deviations
from the null. We do not report power results for a1g = 1, due to the ultraconsistency of the estimator in this
case.

Similar findings hold when we consider models with one observed factor (experiments 1A and 1B), irrespective
of whether the errors are Gaussian. Bias, RMSE and size results under Gaussian and non-Gaussian errors are
shown in Tables Sla and S1b of the online Appendix D. Corresponding power functions are shown in Figures Sla
and S1b of the same appendix, and give a similar picture as the one we discussed for the two factor case.

We now consider experiments where at the estimation stage the number and/or the identity of factors are
assumed unknown. In the case of experiment 3A, the DGP is generated with a single factor, whilst under
experiments 3B and 3C the DGP is generated with two uncorrelated factors. In the first of these experiments
the factor strength g is computed with respect to the pervasiveness of the simple cross section average, T;.
This case is analysed in Section 4. The results corresponding to experiment 3A when errors are non-Gaussian
are summarised in Table 2 with the associated power functions in Figure 2. As can be seen, the small sample
performance of the estimator of factor strength deteriorates somewhat as compared to when the factor is known,
particularly for values of g that are not sufficiently close to unity. The empirical size is particularly elevated for
values of g < 0.9 when compared to the case of observed factors. However, for large sample sizes and values for
aq close to unity, the proposed estimator seems to be reasonably well behaved even if the factor is unobserved.

In the case of two unobserved factors (experiment 3B), we estimate ap = max (a10,a20), again using the
simple cross section average, Ty, first when ajp = 1 and agg = 0.51,0.75,0.95,1. As shown in the top panel of
Table 3 under non-Gaussian errors, when awg is set to the lower bound (= 0.51), then bias and RMSE results are
again universally very low and match the results of the case of one unobserved factor, which is expected. Some
deterioration in results can be detected as agg is increased towards unity, for small values of T', e.g. T" = 60 or
120, but again the size distortions vanish as T increases. The ultraconsistency of our estimator when aig = 1

is evident by the values for both bias and RMSE measures which are so small that we have scaled them up by
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10,000 in the top panel of Table 3. When «qp, 99 < 1, estimating oy becomes more challenging. This is clear
from the bias and RMSE results shown in the bottom panel of Table 3, when a1y = 0.95 and aygg is set to the
same values as before (here the scaling of all bias and RMSE values is returned to 100). In line with the conditions
of Theorem 2, namely VTnlezo—e10) 0, results worsen for values of asg relatively close to ag, but improve as
the distance between a9 and oy widens, for any given value of n and T. When agy = 1, then the estimator of
oo = max (a9, az0) becomes ultraconsistent, as was the case in the top panel of Table 3.1°

Experiment 3C continues with the case of two unobserved factors. In this case, we estimate both a9 and
aw, using the sequential weighted cross section average (CSA) procedure set out in Section 4.1. Table 4 presents
bias and RMSE results for ajp and gy over 2,000 replications when a9 = {0.90, 1}, and a9y = {0.51,0.75,0.90},
with a9 > agg. From these findings it is evident that the stronger factor strength, aqg, is accurately estimated
universally using this approach as well, especially so when a9 = 1. For the weaker factor with exponent aog, the
estimates show a larger bias and RMSE, as to be expected, but continue to be clustered around the true values as
n and T rise, and awgg is sufficiently distinct from ajg, namely when the gap, a9 — ag, is relatively large. Given
the challenges associated with the latent multi-factor setting in terms of identifying and estimating the true factor
strengths, the sequential weighted CSA approach produces encouraging initial results.!!

Finally, consider experiment 4 designed to reflect the setting of the empirical finance application presented in
subsection 6.1. Here we focus on a DGP with two factors that are correlated, but a single observed factor model
is used for estimating the strength of the first factor, fi;. The results for ajg = 1 are shown in Table S20a of the
online Appendix D, and as can be seen, omitting a second relevant and correlated factor in this case does not
unduly affect the performance of the estimator of the strength of the first factor.!?> This seems to be the case for
all (n,T) combinations and for different values of ago.!® However, misspecification is likely to be consequential if

the first factor is not sufficiently strong.

6 Empirical applications to finance and macroeconomics

6.1 Identifying risk factors in asset pricing models

The asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), and its multi-factor extension in the
context of the Arbitrage Pricing Theory (APT) developed by Ross (1976) are the leading theoretical contributions

implemented widely in modern empirical finance to analyse the cross-sectional differences in expected returns.

0Using the first principal component (PC) of z;; instead of the cross section average (CSA) produces similar results when ajo = 1,
j = 1,2, but under performs in comparison to CSA when ;o < 1.0. These results are available in the online Appendix D. See also
Section 19.5.1 of Pesaran (2015) where the asymptotic properties of cross section average and the first PC are compared.

Hgimilar observations can be made when considering non-zero correlation between fi+ and for, p12. Results when setting pi12 = 0.3,0.7
are available upon request.

12The bias and RMSE values for this experiment are negligible so that in Table S20a they are reported after scaling them up by the
factor of 10,000.

13Corresponding results for the case of uncorrelated factors (p12 = 0.0) are also available in the online Appendix D.
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Both approaches imply that expected returns are linear in asset betas with respect to fundamental economic
aggregates, and the Fama-MacBeth two-pass procedure (Fama and MacBeth (1973)) is one of the most broadly
used methodologies to assess these linear pricing relationships. The first stage in this approach entails choosing
the risk factors to be included in the asset pricing model. Given the upsurge in the number of factors deemed
relevant to asset pricing in the past few years, a rapidly growing area of the finance literature has been concerned
with evaluating the contribution of potential factors to these models. Harvey and Liu (2019) document over 400
such factors published in top ranking academic journals. The primary focus of this literature has been on factor
selection on the basis of performance metrics such as the Gibbons, Ross and Shanken statistic of Gibbons et al.
(1989), or the maximum squared Sharpe ratio of Fama and French (2018) among many others. More recent
contributions further allow for the possibility of false discovery when the number of potential factors is large and
multiple testing issues arise - see Feng et al. (2020).

Our application focuses on determining the strength of these factors as a means of evaluating whether their
risk can be priced correctly and abstracts from the question of factor selection as such. As shown by Pesaran
and Smith (2019), the APT theory requires that risk factors should be sufficiently strong if their associated risk
premium is to be estimated consistently. The risk premium of a factor with strength o can be estimated at the rate
of n=%2 where n is the number of individual securities under consideration. As a result, /7 consistent estimation
of the risk premium of a given factor requires the factor in question to be strong with its « equal to unity. Factors
with strength less than 0.5 cannot be priced and are absorbed in pricing errors. But in principle, it should be
possible to identify the risk premium of semi-strong factors (factors whose « lies in the range 1 > a > 1/2), but
very large number of securities are needed for this purpose. In practice, where n is not sufficiently large, at best
only factors with strength sufficiently close to unity can be priced.!* As an illustration of their theoretical results,
Pesaran and Smith (2019) consider the widely used Fama and French (1993) three-factor model applied to the
constituents of the S&P500 index and assess the strength of each of the factors included in the model, namely the
market, size and value factors. In what follows we carry out a more comprehensive investigation of this topic, by

assessing the strength of a total of 146 factors.

6.1.1 Data

We consider monthly excess returns of the securities included in the S&P 500 index over the period from September
1989 to December 2017. Since the composition of the index changes over time, we compiled returns on all 500
securities at the end of each month and included in our analysis only those securities that had at least 10 years

of history in the month under consideration. On average, we ended up with n = 442 securities at the end of

Y1 an early critique of tests of asset pricing theory, Roll (1977) argued that for a test to be valid, it is required that all assets
traded in the economy are included in the empirical analysis. In effect requiring n to be very large, and much larger than the number
of securities traded on exchanges.
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each month. The one-month US treasury bill rate (in percent) was chosen as the risk-free rate (ry), and excess
returns were computed as 7;; = 13 — ry¢, where 73 is the return on the ith security between months t — 1 and
t in the sample, inclusive of dividend payments (if any).!® In addition to the market factor (measured as the
excess market return) we consider the 145 factors considered by Feng et al. (2020), which are largely constructed
as long/short portfolios capturing a number of different characteristics.!® In order to account for time variations
in factor strength, we use rolling samples (340 in total) of 120 months (10 years) each. The choice of the rolling

window is guided by the balance between T and n, and follows the usual practice in the finance literature.'”

6.1.2 Factor models for individual securities

We commence with the following regressions:
k
Tit — Tt = Qi + Bim (Tt — Tpe) + Zﬁijfjt +uy, fori=1,2,...,n,, (37)
j=1

where n, are the number of securities in 10-year rolling samples from September 1989 to December 2017, with
7 =1,2,...,340. rp: denotes the return on investing in the market portfolio, which here is approximated by a
value weighted average of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ
that have data for month ¢. As such, this definition of the market portfolio is wider than one which assumes
an average of the 440 or so S&P500 securities considered in this study. The excess market return, (7 — rg),
then approximates the market factor. fj; for j =1,2,...,145 represent the potential risk factors in the active set
under consideration. As explained in Section 5 of Pesaran and Smith (2019), the strength of factor j is defined by
Sy (B — Bj)Z = ©(n%), and once the market factor is included in (37), it is the case that the coefficients are
expressed as deviations of the factor loadings from their means, as required.

Initially, we set k = 0 and consider the original CAPM specification of Sharpe (1964) and Lintner (1965),
Tit — 7t = Qim + Bim (Pmt — T't) + Wit,m- (38)

We apply our estimator (7) to the loadings Sim, ¢ = 1,2,...,n., and obtain estimates of the strength of the market
factor across the rolling windows, G, -, 7 =1,2,... ,340.18

Next, in order to assess the effect on the market factor strength estimates of adding more factors to (38), as

5 Further details relating to the construction of this dataset can be found in the online Appendix D and in Bailey et al. (2016, 2019).

16The authors would like to thank Dacheng Xiu for providing the dataset that covers all the 146 factors, inclusive of the market
factor. Apart from 15 factors obtained from specific websites, the remaining factors are constructed using only stocks for companies
listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11. Moreover, financial firms and firms with negative
book equity are excluded. For each characteristic, stocks are sorted using NYSE breakpoints based on their previous year-end values,
then long-short value-weighted portfolios (top 30% - bottom 30% or 1-0 dummy difference) are built and rebalanced every June for a
12-month holding period. Further details regarding the construction of this dataset can be found in Feng et al. (2020).

1"We also consider rolling samples of size 60 months (5 years). The results are shown in the online Appendix D.

18 A similar analysis using the simple CAPM model was conducted in the empirical application of Bailey et al. (2016) where a
preliminary suggestion of our estimator of factor strength was originally made. This accompanied the main empirical analysis of
quantifying the degree of cross-sectional dependence inherent in the rolling panels of S&P500 security excess returns studied, making
use of the estimator formally developed in that paper.
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well as to quantify the strength of these additional factors, we add the 145 factors to the CAPM regression, (38),

one at a time; namely we run the regressions
Tit = Tpt = is + Bimls (Tmt — 7p1) + Bisfst + Wits, 1 =1,2,...,nr (39)

for each s =1,2,...,145, and each rolling window 7 = 1,2,...,340. Our choice of model is motivated by the fact
that once we have conditioned on the market factor, we can use the One Covariate at the time Multiple Testing
(OCMT) methodology of Chudik et al. (2018) as an additional step for selecting the factors that ought to be
included in our final asset pricing model. Again, we compute the strength of the market factor with the s** factor
included, which we denote by &, ;|s, as well as the strength of each of the additional factors, which we denote by
G -, for all 340 rolling windows, 7 = 1,2,...,340. As with the Monte Carlo experiments, in the computation of
factor strength we set the nominal size of the associated multiple tests to p = 0.10, and the critical value exponent

tod =1/4.

6.1.3 Estimates of factor strengths

First, we consider the rolling estimates obtained for the strength of market factor, a,,, when using the CAPM and
the augmented CAPM specifications given by (38) and (39). Figure 3 displays duy, -, 7 = 1,2, ...,340; the 10-year
rolling estimates obtained using the CAPM regressions over the period September 1989 to December 2017. As
can be seen, all &,, ; are quite close to unity, and it can be safely concluded that the market factor is strong and
its risk premium can be estimated consistently at the usual rate of y/n. There is some evidence of departure from
unity over the period between December 1999 to January 2011 which saw a number of sizeable financial events
such as the Long-Term Capital Management (LTCM) crisis, the burst of the dot-com bubble and, more recently,
the global financial crisis. &, , records its minimum value of 0.958 in August 2008, around the time of the Lehman
Brothers collapse.!® As implied by our theoretical results of Section 3, standard errors around these estimates
are extremely tight and hard to distinguish graphically from the point estimates.? It is also interesting that the
estimates of market factor strength are generally unaffected if we consider the augmented CAPM regressions. For
each rolling window we now obtain 145 estimates of a,, denoted by &,, s for s = 1,2,...,145. We display the
average of these estimates, namely, &, = (1/145) Zif’l Qi r|s, in Figure 3. It is clear that G, closely track
O 7. The two series are almost identical during the periods September 1989 to December 1999 and January 2011
to December 2017. There are some minor deviations between &, ;s and &, r during the period December 1999
to January 2011, when they both deviate marginally from unity, with a maximum deviation of 0.011 in September

2008. The average estimates of a,, , also have very narrow confidence bands, with an average standard error of

19 Any deviations of &, from unity are not necessarily viewed as signs of market inefficiency. Factor strength could deviate from
unity even during non-crises periods.

20The corresponding plot of @&, » estimates under (38) which includes its standard errors is shown at the top left corner of Figure
A1l in the online Appendix D.
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0.0038 over the full sample, taking its maximum value of 0.0099 in September 2008. Overall, it is evident that the
inclusion of an additional factor in (39) has little effect on estimates of the market factor strength, which is in line
with the Monte Carlo evidence for experiment 4 summarised in the previous Section.

We can safely conclude that the market factor is strong with the exception of a short period during the recent
financial crisis. We now consider the 10-year rolling estimates of the strength of the remaining factors, denoted
by s -, using the augmented CAPM regressions. These estimates together with their 90% confidence bands are
shown in Figures A1l to A10 of the online Appendix D. They show considerable time variation, especially during
December 1999 to January 2011. However, even though a rise in the average pair-wise correlations between the
146 factors is evident in the build up to the 1999 crisis, at no point during the full sample (September 1989 to
December 2017) do any of these factors become strong in the sense that é; , is clearly below 1, for all s and 7.
The market factor dominates all other factors in strength. Indeed, in Figure 4 we observe that the proportion of
factors (out of the 145 in total) whose strength exceeds the threshold values of 0.85,0.90 and 0.95 in each rolling
window progressively drops so that there are no factors left whose strength exceeds 0.95 throughout our sample
period. This suggests that only the market factor can be considered to be a risk factor whose risk premium can be
estimated consistently at the standard y/n rate. The role of the remaining 145 factors in the asset pricing models
(39) could be to filter out the effects of any additional semi-strong cross-dependence in asset returns in order to
achieve weak enough cross-sectional dependence in the errors u;, required for y/n consistent estimation of market
risk premia.

Next, we rank the 145 factors (plus the market factor) from the strongest to the weakest in terms of the
percentage of months in our sample period (340 in total) that their strength exceeds the threshold value of 0.90.
As shown in Table A1l of the online Appendix D, there are 65 factors that meet this criterion at least in some
instances during the sample period. As expected, the market factor ranks first with an average estimated strength
of 0.99, followed by factors associated with leverage, and the ratios of sales to cash, cash flow to price, net debt to
price and earnings to price. The second ranking factor, leverage, has average strength of 0.827, with only 37.9%
of the time being above 0.9. Interestingly, the Fama French value factor (high minus low) ranks 34th in our table
while the size factor (small minus big) does not even enter the group of 65 factors, recording values of & below 0.90
across all rolling windows. For completeness, Table Al also includes time averages of each factor strength over
the full sample (September 1989 - December 2017), and the three sub-samples: September 1989 - August 1999,
September 1999 - August 2009, and September 2009 - December 2017. While on average, the strengths of these
factors are around 0.80 in the first and the last decade in our sample, in the period between September 1999 to
August 2009, the strength of many factors rises to around 0.91. This rise could be due to non-fundamental factors
gaining importance over the fundamental factors during the recent financial crisis, and can be viewed as evidence

of market decoupling.
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Finally, it is of interest to investigate whether the strength of the strongest latent factor implied by the panel
of S&P 500 securities’ excess returns coincides with that of the market risk factor, which we identified as the
strongest observed factor under our previous analysis. In line with the discussion of Section 4, the strength of the
strongest unobserved factor will be captured by the strength of the cross section average of the excess returns in
each rolling window, noting the stricter conditions on the (n,T) dimensions of the panel implied by Theorem 2.
Figure 5 plots the 10-year rolling d.sq - estimates implied by the cross section average of excess returns against
the 10-year rolling &y, , estimates implied by the simple CAPM regression (38). It is evident that the two series
are almost identical throughout our sample period except for the period between September 1999 to January
2011 where they deviate from each other to some extent. The average correlation between Gsqr and Gy, » over
T =1,2,...,340 stands at 0.93. On this basis, we also computed the rolling correlation coefficients between the
cross section average of individual securities’ excess returns and the observed market risk factor again over the
rolling windows 7 =1, 2,...,340. These are consistently close to unity with an average value across all the rolling
windows of 0.95, and with the lowest value of 0.85 obtained for the period between September 1999 to January
2011.

6.2 Strength of common macroeconomic shocks

Similar considerations apply to macroeconomic shocks and their pervasive effects on different parts of the macroe-
conomy. As discussed in Giannone et al. (2017) and references therein, the advent of ‘high-dimensional” datasets
has led to the development of predictive models that are either based on shrinkage of useful information inherent
across the whole set of data into a finite number of latent factors (e.g. Stock and Watson (2015) and references
therein), or assume that all relevant information for prediction is captured by a small subset of variables from the
larger pool of regressors implied by these data (e.g. Hastie et al. (2015), Belloni et al. (2011) among others). Such
methods are appealing in macroeconomics since they tend to provide more reliable impulse responses and fore-
casts over traditional models, when used for macroeconomic policy analysis and forecasting. However, as argued
in Giannone et al. (2017), it is not evident that either approach is always clearly supported by the (unknown)
structure of the given data and that model averaging might be preferable.

To measure the pervasiveness of the macroeconomic shocks, we make use of an updated version of the macroe-
conomic dataset compiled originally by Stock and Watson (2012) and subsequently extended by McCracken and
Ng (2016). Here, we assume that the macroeconomic shocks are unobserved and estimate the strength of the
strongest of such shocks from the updated dataset which consists of balanced quarterly observations over the
period 1988Q1 —2019Q2 (T = 126) on n = 187 out of the 200 macroeconomic variables used in Stock and Watson

(2012).2! Ten out of the 200 macroeconomic variables used in Stock and Watson (2012) are no longer available in

21The raw data, which include both high-level economic and financial aggregates as well as disaggregated components, are updated reg-
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the updated version of the dataset.?? Further details on this dataset can be found in the online Appendix D.

6.2.1 How strong is the strongest of the unobserved macroeconomic shocks?

As discussed in Section 4, identifying and estimating the strengths of unobserved factors of varying strengths
becomes challenging due to the fact that, in general, factors are identified only up to a non-singular rotation
matrix. However, as argued above we are still able to identify and estimate the strength («) of the strongest shock
using the cross section average of the variables in the dataset.?> We computed estimates of o for the pre-crisis
period, 1988Q1 to 2007Q4, as well as for the full sample period ending on 2019Q)2. The factor strength estimates
are shown in Table 5. They are clustered around 0.94, and are quite robust to the choice of the parameters p
and ¢ in the critical value function (6), as well as to the time period considered. These estimates are consistently
below 1, and suggest that whilst there exist strong macroeconomic shocks, the effects of such shocks are not nearly
as pervasive as have been assumed in the factor literature applied to macro variables. This finding is further

corroborated by the estimates of the exponent of cross-sectional dependence of BKP, also shown in Table 5.2

7 Conclusions

Recent work by Bailey et al. (2016, 2019) has focused on the rationale and motivation behind the need for
determining the extent of cross-sectional dependence, be it in finance or macroeconomics, and has provided a
conceptual framework and tools for estimating the strength of such interdependencies in economic and financial
systems. However, this literature does not address the problem of estimating the strength of individual factors
that underlie such cross dependencies, which can be of interest, for example, for pricing of risk in empirical finance,
or for quantifying the pervasiveness of macroeconomic shocks. The current paper addresses this gap. It proposes
a novel estimator of factor strength based on the number of statistically significant t-statistics in a regression of
each unit in the panel dataset on the factor under consideration, and provides inferential theory for the proposed
estimator. Detailed and extensive Monte Carlo and empirical analyses showcase the potential of the proposed
method.

The current paper considers estimation and inference when the panel regressions are based on a finite number

ularly and can be found on the Federal Reserve Bank of St Louis website at: https://research.stlouisfed.org/econ/mccracken/static.html.
All variables were screened for outliers and transformed as required to achieve stationarity. Details about variable definitions, descrip-
tions and transformations can be found in the accompanying FRED-QD appendix to McCracken and Ng (2016) which links to Stock
and Watson (2012) and is downloadable from the aforementioned website.

#2These are: (1) Construction contracts, (2) Manufacturing and trade inventories, (3) Index of sensitive materials prices (disc),
(4) Spot market price index BLS&CRB: all commodities, (5) NAPM commodity price index, (6) 3m Eurodollar deposit rate, (7)
MED3-TB3MS, (8) GZ-spread, (9) GZ Excess bond premium, and (10) DJIA.

23 Again, one needs to take into consideration the stricter conditions on the (n,T) dimensions of the panel, as implied by Theorem 2.

24Using the Sequential Multiple Testing (SMT) detection procedure developed in Kapetanios et al. (2020), we also checked to see if
any of the unit(s) in the macro dataset can be viewed as pervasive, namely sufficiently influential to affect all other variables. The SMT
procedure could not detect any such variables for all choices pmax = 0,1,...,6, where pmaq, denotes the assumed maximum number of
potential factors in the dataset.

26



of observed factors. Some theoretical evidence is also provided for the case when the model contains unobserved
factors. Further research is required to link our analysis to the problem of factor selection discussed by Feng et al.
(2020). Also, it would be of interest to address the identification problem when there are multiple unobserved
factors. One possibility would be to exploit the approach recently developed in Kapetanios et al. (2020) to see

whether the unobserved factors can be associated with dominant units or some other observable components.
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Table 1: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment 2B
(two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85

Bias (x100) RMSE (x100) Size (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop — 0.85
100 | 1.13 1.18 1.15 1.07r 1.03 | 1.65 1.54 1.52 1.43 140 | 9.00 4.10 3.65 240 2.25
200 | 146 146 139 132 132|168 1.62 1.55 147 1.47 |1450 9.50 830 7.10 6.60
500 | 1.28 130 1.21 1.15 1.13 | 1.41 137 128 1.22 1.20 |2240 13.55 10.00 8.05 8.20
1000 | 1.27 1.25 1.20 1.12 1.10 | 1.36 1.30 1.24 1.16 1.14 | 26.30 15.00 11.45 7.70 6.40
a0 = 0.80, a0 = 0.85
100 | 0.63 0.67 0.65 0.61 058 | 1.13 1.00 1.00 0.95 092 | 27.60 1810 18.55 17.95 19.70
200 | 0.90 097 091 089 0.8 |1.11 1.10 1.05 1.01 0.98 | 2045 12.60 11.45 9.75 7.75
500 | 0.82 090 085 082 0.80]094 096 090 0.87 0.86 | 22.00 1245 830 7.00 7.10
1000 | 0.78 0.85 0.81 0.76 0.75 | 0.87 0.88 0.84 0.79 0.77 | 28.35 17.05 11.60 840 6.65
a1g = 0.85, agg = 0.85
100 | 0.51 0.66 0.68 0.62 0.61 | 0.87 0.85 0.87 081 0.79 |21.60 9.65 915 7.65 6.90
200 | 0.49 0.61 059 055 054|070 071 069 0.65 0.64 | 14.15 545 4.15 3.15 3.45
500 | 0.38 0.2 0.49 046 0.46 | 0.51 0.57 0.53 0.51 0.50 | 29.35 11.95 7.40 845 7.10
1000 | 0.37 049 048 044 043 | 046 0.52 0.50 0.47 0.45 | 31.50 11.00 7.65 545 4.10
Q10 = 0.907 Qop — 0.85
100 | 0.21 0.39 0.39 0.37 0.36 | 0.58 0.54 0.54 0.52 0.51 | 23.60 4.15 3.60 3.10 2.85
200 | 0.10 027 026 024 024|038 038 035 033 0.34 |36.30 15.10 12.60 12.25 12.55
500 | 0.11 0.29 0.28 0.27 0.26 | 029 032 031 030 0.29 | 4240 11.05 7.05 7.90 7.40
1000 | 0.10 0.27 0.28 0.26 0.25 [ 0.24 0.29 0.29 0.27 0.27 | 48.70 11.25 9.85 5.55 6.70
a0 = 0.95, a0 = 0.85
100 | -0.16 0.06 0.08 0.06 0.06 | 0.44 0.25 0.24 0.22 0.22 |3835 7.20 3.65 225 235
200 | -0.10 0.10 0.11 0.10 0.10 | 0.30 0.19 0.17 0.18 0.17 | 46.80 885 440 4.75 3.95
500 |-0.11 0.10 0.11 0.11 0.10|0.25 0.13 0.13 0.13 0.13 | 68.20 1445 865 7.55 7.80
1000 | -0.12 0.09 0.10 0.09 0.09 | 0.23 0.10 0.11 0.10 0.10 | 77.10 11.45 5.60 4.60 5.05
ao = 1.00, azg = 0.85
100 | -0.28 -0.02 0.00 0.00 0.00 | 0.41 0.06 0.02 0.00 0.00 - - - - -
200 | -0.25 -0.02 0.00 0.00 0.00 | 0.33 0.05 0.01 0.00 0.00 - - - - -
500 | -0.26 -0.02 0.00 0.00 0.00 | 0.32 0.03 0.01 0.00 0.00 - - - - -
1000 | -0.25 -0.02 0.00 0.00 0.00 | 0.31 0.03 0.00 0.00 0.00 - - - - -

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ¢; ~ ITDN (0,1), for ¢ = 1,2,...,n. The factors,

(fat, f2t), are multivariate normal with variances crjzcl = 0?2 =1 and correlation given by pi2 = corr(fi, f2) = 0.3. Each factor
assumes an autoregressive process with correlation coefficients py;, = 0.5, j = 1,2. The factor loadings are generated as

vij ~ ITDU (o, — 0.2, pty; + 0.2), for [n?°] units, j = 1, 2, respectively, and zero otherwise. We set 1y, = 1o, = 0.71. Both a1
and g range between [0.75,1.00] with 0.05 increments. The innovations u;; are non-Gaussian, such that u;; = % (xﬁ,, — 2)7 with
o? ~ IID(1 + X%,i)/& for i =1,2,...,n. In the computation of &;, j = 1,2, we use p = 0.10 and 6 = 1/4 when setting the critical
value. Size is computed under Ho: aj=ayo, for j = 1,2, using a two-sided alternative. The number of replications is set

to R = 2000.
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Figure 1: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85,

n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table 1 for details of the data generating process. Power is computed under Hi: ai,=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table 2: Bias, RMSE and Size (x100) of estimating the strength of strongest factor in the case of experiment 3A
(unobserved single factor - non-Gaussian errors) using cross section average

Bias (x100) RMSE (x100) Size (x100)
n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
10 = 0.75

100 | 2.22 240 2.70 434 6.69 | 2.76 2.84 3.12 470 6.98 | 2540 28.15 35.35 73.55 98.15
200 | 2.07 2.02 210 260 3.49 |241 226 233 280 3.69 | 3140 29.80 32.10 51.80 82.70
500 | 1.66 1.61 156 1.61 1.81 |1.88 1.75 1.67 1.72 1.92 | 33.00 29.30 28.05 30.15 43.60
1000 | 1.54 145 139 136 143 | 1.72 155 145 1.42 1.49 | 38.30 30.00 26.65 24.85 30.00
@10 = 0.80
100 | 1.21 1.28 1.40 2.17 332 |1.65 1.64 1.73 246 3.58 | 33.10 28.25 30.40 55.55 85.55
200 | 1.22 1.22 1.21 140 1.78 | 146 1.37 136 154 1.93 | 29.30 25.35 23.70 34.00 55.95
500 | 1.02 1.03 099 099 1.04 |1.16 1.11 1.05 1.06 1.09 |26.50 20.60 16.90 17.65 21.05
1000 | 0.92 092 0.87 085 0.86 |1.02 097 091 0.88 0.89 | 32.40 2445 19.95 17.35 17.70
10 = 0.85
100 | 0.87 093 096 127 172|115 114 116 146 191 | 2590 2080 22.05 3740 63.10
200 | 0.68 0.72 0.69 0.75 0.89 |0.86 0.83 0.80 0.86 1.00 | 15.70 10.65 8.90 12.50 20.25
500 | 0.46 0.57 0.55 0.53 0.53 | 0.62 0.62 0.59 0.57 0.58 | 25.35 13.60 10.75 9.50 11.00
1000 | 0.46 0.52 049 047 047 | 054 055 0.51 0.50 0.50 | 27.20 14.75 930 785 7.25
a1 = 0.90
100 | 0.41 0.50 0.50 0.61 0.78 | 0.66 0.64 0.66 0.76 093 |17.55 7.25 7.20 12.15 22.55
200 | 0.24 031 030 032 036|044 040 039 041 044 |28.10 1275 12.85 1235 12.90
500 | 0.20 0.30 0.30 0.28 0.28 |0.32 034 033 032 0313075 10.65 840 7.20 8.65
1000 | 0.17 0.29 0.28 0.27 0.26 | 0.26 0.31 0.29 0.28 0.28 | 38.65 14.25 945 7.65 7.75
a10 = 0.95
100 | 0.00 0.10 0.11 0.14 0.19 | 0.36 0.26 0.26 0.29 0.34 | 25.30 5.40 495 6.75 10.20
200 | 0.00 0.12 0.11 0.12 0.13]0.25 0.19 0.18 0.19 0.20 | 3290 7.20 485 575 6.15
500 |-0.02 0.11 0.12 0.11 0.11 |0.18 0.14 0.14 0.13 0.14 | 5455 11.65 7.10 7.60 9.6
1000 | -0.05 0.10 0.10 0.09 0.09 | 0.16 0.11 0.11 0.11 0.10 | 64.50 8.60 560 590 4.75
Q10 = 1.00
100 | -0.15 -0.01 0.00 0.00 0.00 | 0.26 0.04 0.00 0.00 0.00 - - - - -
200 | -0.16 -0.01 0.00 0.00 0.00 | 0.23 0.03 0.00 0.00 0.00 - - - - -
500 |-0.18 -0.01 0.00 0.00 0.00 | 0.23 0.02 0.00 0.00 0.00 - - - - -
1000 | -0.18 -0.01 0.00 0.00 0.00 | 0.23 0.02 0.00 0.00 0.00 - - - - -

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ¢; ~ ITDN (0,1), for i = 1,2,...,n. The factor,

fit, is normally distributed with variance O’;I = 1. The factor assumes an autoregressive process with correlation coefficient

pf, = 0.5. The factor loadings are generated as vi1 ~ IIDU (pty; — 0.2, fin, + 0.2), for [n*1°] units, and zero otherwise. v;2 = 0,
for all i. We set po; = 0.71. a19 ranges between [0.75,1.00] with 0.05 increments. The innovations u;; are non-Gaussian, such that
Uiy = G (X%,it — 2), with 02 ~ IID(1+ X%,z)/& fori=1,2,...,n. ap = ap is estimated by regressing observations, z;+, on an
intercept and the cross section average of i, Tr = n ™! S @i, for t=1,2,...,T. In the computation of & we use p = 0.10 and

0 = 1/4 when setting the critical value. The number of replications is set to R = 2000.
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Figure 2: Empirical power functions associated with testing different strengths of strongest factor in the

case of experiment 3A (unobserved single factor - non-Gaussian errors) using cross section average, when
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 2 for details of the data generating process. Power is computed under Hi: aio=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table 3: Bias and RMSE of estimating the strength of strongest factor in the case of experiment 3B (two unobserved
factors - non-Gaussian errors) using cross section average, when a9 = 1.00 and a9 = 0.95

Bias (<10, 000) RMSE (%10, 000)
n\T 60 120 200 500 1000 ‘ 60 120 200 500 1000
@10 = 1.00, Q0 = 0.51
100 | -16.43 -0.76 -0.02 0.00 0.00 | 28.19 4.20 0.69 0.00 0.00
200 | -18.70 -1.02 -0.06 0.00 0.00 |26.79 3.43 0.76 0.00 0.00
500 | -19.00 -1.09 -0.07 0.00 0.00 |24.47 2.37 048 0.07 0.00
1000 | -19.25 -1.24 -0.07 0.00 0.00 | 24.16 2.09 0.34 0.00 0.00
a10 = 1.00, Q0 = 0.75
100 | -17.02 -0.94 -0.01 0.00 0.00 | 28.75 4.68 0.49 0.00 0.00
200 | -18.06 -1.16 -0.09 0.00 0.00 |26.22 3.74 0.90 0.00 0.00
500 | -18.99 -1.10 -0.08 0.00 0.00 |24.71 2.38 0.52 0.00 0.00
1000 | -19.65 -1.24 -0.08 0.00 0.00 | 24.80 2.05 0.34 0.00 0.00
10 = 1.00, Qpp = 0.95
100 | -19.08 -1.80 -0.10 0.00 0.00 | 34.54 6.72 1.46 0.00 0.00
200 | -20.83 -2.07 -0.16 0.00 0.00 | 31.80 5.33 1.22 0.00 0.00
500 | -21.20 -2.07 -0.21 0.00 0.00 |29.65 3.76 0.89 0.00 0.00
1000 | -22.34 -2.24 -0.25 0.00 0.00 | 29.65 3.76 0.89 0.00 0.00
Q10 = 1.00, Q0 = 1.00
100 | -1.16 -0.01 0.00 0.00 0.00 | 549 049 0.00 0.00 0.00
200 | -1.48 -0.02 0.00 0.00 0.00 | 425 0.42 0.00 0.00 0.00
500 | -1.55 -0.02 0.00 0.00 0.00 | 3.30 0.27 0.00 0.00 0.00
1000 | -1.63 -0.03 0.00 0.00 0.00 | 2.81 0.23 0.03 0.00 0.00
Bias (x100) RMSE (x100)

a10 = 0.95, agp = 0.51
100 | 0.02 0.17 0.22 039 059 | 038 034 039 054 0.72
200 | 0.01 016 016 0.22 030 | 028 0.24 024 030 0.38
500 | -0.03 0.13 0.13 0.14 0.17 | 019 0.16 0.16 0.17 0.20
1000 | -0.06 0.10 o0.11 0.11 0.11 | 0.17 0.12 0.12 0.12 0.13
a10 = 0.95, agg = 0.75
100 | 0.68 1.25 158 1.72 180 | 0.97 140 1.67 1.79 1.87
200 0.47 1.00 1.26 151 154 | 0.70 1.11 1.33 1.54 1.57
500 0.23 0.60 0.84 119 1.26 | 043 0.71 091 1.21 1.27
1000 | 0.10 042 058 095 1.07 | 0.31 0.51 0.66 097 1.08
@10 = 0.95, Q0 = 0.95
100 | 3.51  3.99 4.05 4.05 4.05 | 3.56 4.01 4.07 4.07 4.07
200 | 3.35 3.88 395 396 396 | 339 3.89 396 397 3.96
500 | 3.17 373 382 3.82 383 | 320 3.74 382 383 3.83
1000 | 3.02 3.62 3.71 3.73 3.72 | 3.05 3.63 3.71 3.73 3.72
Q10 = 0.957 Q0 = 1.00
100 | -0.19 -0.02 0.00 0.00 0.00 | 0.32 0.07 0.02 0.00 0.00
200 | -0.21 -0.02 0.00 0.00 0.00 | 0.30 0.06 0.01 0.00 0.00
500 | -0.21 -0.02 0.00 0.00 0.00 | 0.29 0.04 0.01 0.00 0.00
1000 | -0.21 -0.02 0.00 0.00 0.00 | 0.29 0.04 0.01 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table 1, with p12 =

corr(fi, f2) = 0.0. ap = max (10, a20) is estimated by regressing observations, ;;, on

an intercept and the cross section average of i, T =n ! S wa, fort=1,2,...,T.

33



Table 4: Bias and RMSE (x100) of estimating factor strengths a19 and apgg in the case of experiment 3C (two

unobserved factors - Gaussian errors) using sequential weighted cross section averages

Factor strength estimate &1 ‘ Factor strength estimate ao
Bias (x100)
n\T 60 120 200 500 1000 ‘ 60 120 200 500 1000
Q10 = 0.907 Qo) = 0.51
100 | 0.655 0.800 0.879 1.051 1.266 | 11.520 17.727 22.232 31.552 37.511
200 | 0.356 0.472 0.501 0.583 0.698 | 9.113 13.627 17.095 25.466 32.358
500 | 0.277 0.403 0.397 0.427 0.469 | 7.169 10.353 12.142 17.343 23.671
1000 | 0.243 0.339 0.343 0.351 0.364 | 6.631 8.889 9.879 12.731 17.033
Q10 = 0.907 a0 = 0.75
100 | 2.581 3.391 3.680 3.874 3.875| 8.156 13.379 16.248 18.683 19.677
200 1.993 2.772 3.121 3.372 3.367 | 8.859 14.382 16.381 18.260 18.661
500 1.458 2.054 2380 2.792 2.843 | 8.650 13.955 16.164 17.735 17.864
1000 | 1.136 1.621 1.944 2374 2510 | 7.374 12.704 15.281 17.201 17.495
a0 = 1.007 a0 = 0.51
100 | -0.124 -0.003 0.000 0.000 0.000 | 13.553 20.193 25.998 36.385 42.517
200 | -0.138 -0.006 0.000 0.000 0.000 | 9.794 14.891 19.284 28.406 35.852
500 | -0.156 -0.007 0.000 0.000 0.000 | 7.089 10.842 13.649 20.566 27.360
1000 | -0.153 -0.008 -0.001 0.000 0.000 | 5.646 8.736 10.842 15.815 21.321
Q10 = 01.00, Qoo = 0.75
100 | -0.156 -0.007 0.000 0.000 0.000 | 16.121 22.226 24.081 24.962 24.999
200 | -0.158 -0.009 -0.001 0.000 0.000 | 14.141 20.615 23.234 24.829 24.989
500 | -0.162 -0.009 -0.001 0.000 0.000 | 10.813 17.304 21.024 24.277 24.901
1000 | -0.157 -0.009 -0.001 0.000 0.000 | 8.388 14.591 18.867 23.453 24.680
a1p = 1.00, agg = 0.90
100 | -0.228 -0.021 -0.002 0.000 0.000 | -2.407 2.234 4.407 6.852 7.902
200 | -0.224 -0.021 -0.002 0.000 0.000 | 0.527 4.578 6.362 8.159 8.855
500 | -0.226 -0.020 -0.002 0.000 0.000 | 2.759 6.436 7.890 9.123 9.544
1000 | -0.213 -0.019 -0.002 0.000 0.000 | 3.777 7.336 8.576 9.551 9.817
RMSE (x100)
a0 = 0.907 a0 = 0.51
100 | 0.888 0.995 1.074 1.223 1.399 | 12.701 18.343 22.719 31.855 37.731
200 | 0.536 0.592 0.621 0.698 0.804 | 9.945 14.022 17.433 25.727 32.541
500 | 0.377 0.449 0.441 0477 0.523 | 7.947 10.581 12.367 17.633 23.940
1000 | 0.317 0.362 0.368 0.377 0.391 | 7.244 9.012 10.002 12.921 17.258
a1 = 0.90, agy = 0.75
100 | 2.839 3.508 3.752 3.937 3.934 | 12.877 15.886 17.454 19.209 20.028
200 | 2.225 2.885 3.176 3.401 3.397 | 12.394 15.677 17.188 18.430 18.755
500 1.670 2.191 2457 2.805 2.853 | 10.661 14.519 16.417 17.741 17.866
1000 | 1.325 1.767 2.035 2.392 2515 | 9.026 13.051 15.387 17.202 17.496
Q10 = 1.00, Qo = 0.51
100 | 0.237 0.028 0.000 0.000 0.000 | 14.918 20.940 26.616 36.856 42.860
200 | 0.215 0.025 0.002 0.000 0.000 | 10.874 15.395 19.622 28.686 36.158
500 | 0.211 0.019 0.003 0.000 0.000 | 8.265 11.196 13.849 20.671 27.482
1000 | 0.199 0.015 0.003 0.000 0.000 | 7.011 9.146 11.031 15.892 21.366
Q10 = 1.00, a0 = 0.75
100 | 0.278 0.039 0.008 0.000 0.000 | 17.007 22.340 24.133 24.962 24.999
200 | 0.248 0.032 0.008 0.000 0.000 | 15.182 20.762 23.265 24.831 24.989
500 | 0.221 0.021 0.004 0.000 0.000 | 11.951 17.603 21.095 24.293 24.901
1000 | 0.208 0.016 0.003 0.000 0.000 | 9.338 14.955 18.965 23.457 24.680
a0 = ]..007 a0 = 0.90
100 | 0.411 0.075 0.018 0.000 0.000 | 3.562 2.663 4.554 6.892 7.924
200 | 0.349 0.0564 0.012 0.000 0.000 | 2.140 4.706 6.406 8.170 8.860
500 | 0.332 0.039 0.008 0.000 0.000 | 3.249 6.486 7.904 9.126 9.545
1000 | 0.308 0.033 0.006 0.000 0.000 | 4.191 7.365 8.583 9.552 9.817
Notes: Parameters of DGP (35) are generated as described in Table 1, with p12 = corr(f1, f2) = 0.0. aio

and awgo are estimated using sequentially regression of observations, x;:, on an intercept and the weighted

: . ~ - N . T T
cross section average of @iy, #1: = n~' Y1 W1:wit, where Wi = Y., Tewir/ >, s, for t =1,2,...,T.

Next, by running the same regression using residuals obtained from the first stage. Details of the

estimation procedure can be found in the online Appendix D.
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Figure 3: Comparison of the market factor strength estimates obtained from the original single factor CAPM
(Gum,r) and the average estimates of its strength when computed using 145 two-factor asset pricing models (&, 7),
over 10-year rolling windows
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Notes: The market factor strength rolling estimates are computed using (7). The market factor strength average estimates
produced from the 145 two-factor CAPMs are computed as Gm,» = (1/145) 312 (ds,7), for 7 = 1,2,...,340 rolling
windows.

Figure 4: Percentage of factors (out of 145) whose estimated strength (é,,), 7 = 1,2,. .., 340 exceeds the thresholds
of 0.85, 0.90 and 0.95, in each 10-year rolling window
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Notes: The 145 factor strength estimates, &s,r, s = 1,2,...,145, are computed using (7).
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Figure 5: Comparison of the market factor strength estimates obtained from the original single factor CAPM
(Gm,r) and those from using the cross section average (CSA) of S&P500 securities’ excess returns (¢iesq,r), over
10-year rolling windows
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Notes: The market factor and CSA of S&P500 securities’ excess returns strength estimates over 7 = 1,2,..., 340 rolling

windows are computed using (7).

Table 5: Strength estimates of the strongest unobserved factor using the cross section average (CSA) of the Stock
and Watson (2012) dataset (n = 187 variables) and the corresponding exponent of cross section dependence (CSD)

Q1 1988 - Q4 2007 | Q1 1988 - Q2 2019
(T = 80) (T = 126)
©0.05 a Q.95 | G0.05 a 40.95
p=20.10
Strength of CSA (6 =1/4) 0.962 0.964 0.966 | 0.928 0.930 0.933
Strength of CSA (6 =1/2) 0.957 0.958 0.959 | 0.918 0.920 0.922
Exponent of CSD 0.833 0.873 0.913 | 0.858 0.920 0.981
p=0.05
Strength of CSA (6 =1/4) 0.962 0.963 0.964 | 0.927 0.929 0.931
Strength of CSA (6 =1/2) 0.953 0.954 0.955 | 0.912 0.914 0.915
Exponent of CSD 0.828 0.869 0.908 | 0.856 0.918 0.979

Notes: *90% confidence bands. In the computation of the strength of CSA,

parameters p and ¢ are used when setting the critical value (6).

The exponent of CSD corresponds to the most robust estimator of cross-
sectional dependence proposed in Bailey et al. (2016) and corrects for both
serial correlation in the factors and weak cross-sectional dependence in the

error terms.
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Introduction

Appendices A and B provide proofs for the theoretical results (lemmas and theorems) of the main paper. Appendix
C discusses use of randomisation in testing the null hypothesis a = 1. Finally, Appendices D and D display
additional empirical and simulation results.

Appendix A Proofs of Lemmas

Proof of Lemma 1

We have that
E (czi,nT) = Tyt = Pr[tir] > cp(n)]
_@( o (n )+\F91T)+<1>( (1 )—\/TGZ-T),

. Tinr =1 — @ (—\/T&'T + cp(n)> + o (—cp(n) — \/THZ-T) (A.1)
where Oir = (yi)os) (T M) (A.2)
Then,

Zn: E (czl,nT) 3 1(y; # 0) [1 —® (—\/:FeiT + cp(n)) 4+ (—\/:FeiT - cp(n))}

=1 =1

+ (n = n%) 2@ (—cp(n))]
Note that
@ (—epm)] = 1 (@ (n)] = 1 — @ [0~ (1= 2] (A3
- (-2 2

Hence,

n

3 (dar) =+ 100 0 3 (T ) 8 (VT 400

i=1

TL—TL
+p( ! )’
n

where ;7 is defined by (A.2). Note also that

@ (~VTb;r — cp(n)) = ® (~vTix + c,(n))
=[1- (\F@Tﬂp N - [1-2 (VT - (m)]
=@ (VT0ir — c)(n)) = @ (VTbir + p(n) )
Hence
® (-ﬁeﬁ - cp(n)) ) <—\/T02T n cp(n))
_y; (—ﬁ 10i7| — cp(n)) — (—ﬁ 10:7] + cp(n)) . (A.4)
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Also since ¢,(n) > 0, for small p and 6 > 0, then ¢ <—\/T\<9iT] — cp(n)) <o <—\/T|9iT\ + cp(n)), and we have

f: 1(6ir # 0) [@ (—ﬁeﬁ - cp(n)) — P (—x/fen -+ cp(n))}

=1
n

=3 16 # 0) [@ (VT oir| — cpm)) — @ (VT [our| + )|

i=1

Suppose now that there exists Tp such that for all T' > Ty, and some 4, |#;7| > 0, we have —v/T |6;7| + cp(n) < 0.
Such a Ty exists since ¢,(n)/VT — 0 as n, T — oo, jointly, for § > 0 - for a proof see result (a) in Lemma 2 of the
supplement to Bailey et al. (2019). Also

@ (VT iz + ep(m) < (1/2) exp {_21 VTbir - cp(n)r} — (1/2) exp { _T;?T [1 _ () r} . (A5)

VT0;r
and
>~ 100 #0) [ (f\/:FezT - cp(n)) ) (—\/Tem + cp(n))} |
< Z 16 #0) |@ (—VT16ir| = ep(n)) + @ (VT |fir| +cy(m)) |
=1
ao —T6; ¢p(n) ?

-]

Overall, )
o ThE (:ZZT> e o { 18, [1 ) ﬁ(rZ)T\H pple =) A6)

Proof of Lemma 2

Consider the first term of (9) and note that

n

= 153 [ 8 )]

i=1

Under the assumption that wu;; are cross-sectionally independently distributed, z ,7 = chT - F (cfmT) are

uncorrelated across ¢ and
Var (ziur) = Var (dir) = minr(1 = minr) < 1/2,

where 7; 7 is defined by (A.1). Then

Var 2a E 7TznT 7Ti,nT)-
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Now, using (A.1), first we note that (using (A.4))
|1 —7minr| = ‘(I) (—\/ng’T + cp(n)) _) ( \F@T)‘
- \@ (—cp(n) - \/TeiT) ( VT + cpn )(
= | (=VT 7] = p(n)) = @ (~VT [0ir] + () )|
@ (<VT |0z = ep(m)) + @ (~VT|0ir| + cp(n)) <20 (~VT [oir] + cp(m))

and hence using (A.5) we have
’1 — Wi,nT‘ =0 [exp (—ClT)] s if sz‘ > 0,

and when ;7 = 0, using (A.3), we have

L= minr = ®[cp(n)] = @ [=cp(n)]

=1-20[—cy(n)] =1— %.
Overall, X
Var (Anr) 5o {(n — n20) % (1 - %) +n®0 [exp (—CQT)]} . (A.7)

Proof of Lemma 3

We proceed by considering ;7 under (27) and note that
X =ctr + F4+1, and x; = ¢;77 + Fy, + u,.

Then,
f T2 (2'M,x;) TV (Fy+1) M, (Fy, + ) (A-8)
T = - 7 '
r (TMR)2 5y [T (F7+1) M, (F3+1)]

and
67p =T " (Fy; +u;) My (Fy; +u;).

Consider first the denominator of (A.8) and note that
THFy+a)M, (Fy+ 1) =% (T 'F'M,F)7 + 2T 'a'M,Fy+T " 'a'M, @
Under our assumptions, s P = T~'F'M.,F is a positive definite matrix and
Mwin (21) (77) <7 (T FMF) 5 < (75) Aax (£ ) -

Since 0 < Amin (2f> < Amax (2f> < C, it follows that 5/ (T_IF’MTF) 4 and 4’4 have the same order in n.
Recalling that ag > agg ... > amo,

Y (T7'FM,F) 5 =0, <n2<a0—1>) .

Also using results from Pesaran (2006) we have T~'@'M, @ =0, (n~!), and T~'@'M,F5 = O, (n~"/?T®0~1). There-
fore, overall

17 (F7+0) M, (Fy+a)] = [ (T FMLF) 3] {14 0, (n!/2) +0p(n1—2a0)}1/ g
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But since ag > 1/2 then

[T (F7+0) ML (Fy+0)] 2 = [ (T F'MF) 3] 14 0,(1)].
Using this result in (A.8) we now have

_ T-Y2(Fy+a)M, (Fv, + u
fp = L@y M, (B, 1/2’) 1+ 0p(1)]
6ir [¥ (T-1F'M,F) ]
vT7' (T g/ MTF)—yi —1/2G'M, F, T-1/25'M, Fu; ~1/25/F' M, u;
_ F(TFMFR? Ty (T IFM.F)5]'° [ (T IFM-F)5]'° [ (T IF/M.F)5]'/? [

o;T

1+ 0,(1)].
Then the result of the lemma follows by Lemma 4.

Lemma 4 Consider model (27)-(28) with factor loadings given by (29)-(30), where f; is an m x 1 wvector of
unobserved factors, and let Assumptions 1, 3 and 4 hold. Then,

CECRT TEN .
F (T 'FMF)5Y2 T\ ()2
5 (I;ljzpunid FF>%]1/2 =0y (n/70). (A.10)
im0 ) o
7 ?T/Fl\ljll\;) 7 N0 A
Further, for some C, Co, Cl > 0,
( T 1F’11\1‘:I/1\§) F])l ; > cp(n)> < % if vi1 = 0, and T? = o(n20~0), (A.13)
( (T 1F’11\F/‘I/1\§) F])172 > cp(n)> < % if vi1 £ 0, or n®07%0 = 0(T1/2) (A.14)
( li;;\l/\f FE;%}UQ > cp(n)> < exp [—COTCI] , (A.15)
( 7;11/;1,\1/\1/1:;1 }1/2 > cp(n)> < exp [—COTCI] , (A.16)
Pr ({ T(—Tl/ij/llz/'IN;)F‘}m S cp(n)> < % (A.17)

Proof of Lemma 4
To establish the orders of the first three terms, (A.9)-(A.11), we first note that % = 0p(1), % =
Op(1), T'F'M,F = O,(1), and (’7”7)1/2 = Op (n*~1), where g is the true value of @ = max;(c;). Then it
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readily follows that

VIV (ITFMF) Y (VTY (A.15)
7 (T FME) A\ (7)) '
T-2WM,Fy, n—1/2 (x/ﬁﬁ’\l/\/ITTF‘n> Y nv2 0\ O (mi/2co Ao
5 (T FMEF)Y2 § T EME Y2\ Ge)2) (7). (419
1 —1/2 (/A0 Mou;
1/2 /M +U; _ n < \/T ) — Op ( 1/2—&0) . (A20)
& <T FMF)F)?[§(TFMF) 5]

Regarding (A.12), we note that since by Assumption 1, u; is distributed independently of v, and F, we have

T71/2_/F/M7— i T71/2_/F/M ;
E i =0, and Var i F5 | =02, (A.21)
¥ (T F'M,F)5]'/? ¥ (T F'M,F) 5]/ Z

then it readily follows that
T-1/2a'M, Fu,
¥ (T-'F'M, F) 5"/
Next we provide a more refined analysis to obtain exponential probability inequalities for each of (A.18)-(A.21).

We start with (A.18). First we handle the denominator. Let 7,,; = HD%Z?ZI vij, 7 = 1,2,...,m, where
ap = aqg > Qg > Q39 > .... > Qupg- Then,

—d N(O,O’Z-Q).

1 1 1 1 1 1
7(f1’7a 1, f2'7a,2a s mﬁ/a,m) = ,2y -

a,m)

no0—020 N0 —mo nl—ao ( > pag—azo N0 —mo

where £, ; = (f1,0,55---» [T aJ)’ . Note now that f; . j are covariance stationary, martingale difference processes
with non-zero, finite second moment, o2 %,.;- Then by Lemma A9 of Chudik et al. (2018),

e (YT AEME) N (T (M),
5 (T-'F'M,F)5]/2 ~ ") 1

cp(n)> + exp (—C’OTcl) . (A.22)

A similar result holds for (A.19)-(A.21). We proceed to analyse the first term on the RHS of (A.22). For some
0 < 7 < 1, it follows that

1—ap =/ —1gx/ .
Pr (n VT3 (ST FM-F) 7, > cp(n)) (A.23)
ol
m m 1 —1/2, aro—ao { thzl(ft,a,r _fa,r)(ft,s%s _f_s%'s) } > A
= Zl Zl br (Uf'y IT " = [(ft,oa,r - fa,r)(ft,s’)/is - fs’)/is)] ” ch(n) ( 24)
m m 1/2,, aro—ap—1 n A
+2 0P ( T e w)cpm)) , (A.25)
—1s=1 frl

where faﬂﬂ and fs are the sample averages of f;, and f: s respectively. By Lemma A10 of Chudik et al. (2018),

_1/2 aro—oaQ Z?:l(ft,oz,r - _fa,r)(ft,s%s — fs%’s) } >
; ;Pr <Of% ' { —-B [(ft,aﬂ‘ - fa,r)(ft,s’)/is - fs’)/is)] > 7TCp(n)
o

For (A.25), we consider two cases - v; = 0, and 7; # 0. If ;1 = 0, (A.25) is bounded from below by 1 —
exp [—COTcl] , if n®=20 — o(T/2) and bounded from above by exp (—C’oTcl) if not. If v; # 0, (A.25) is
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bounded from below by 1 — exp (—COTcl), in any case. Identical arguments can be used to show that

. ( T-1/28'M, F~,
k4

(T-1F'M,F) ,—”1/2 > CP(”)) < exp (_COT01) ’

and

—1/2=1 .
Pr| — r"u MTul_ > cp(n) | <exp (—CoTcl) .
5 (T~ F'M,F) 5]

Finally, and again using similar arguments,

T-125'F M, u; Cp
Pr p—— —17 > cp(n) | < —5,
¥ (T-'F'M,F)7]| n

completing the proof of the lemma.

Appendix B Proofs of Theorems

Proof of Theorem 1

We abstract from the subscript j in what follows. We consider the following relations

~ . DnT o DnT —n
(111”)(04—010)—1D<D2 ) =In <1+W“0>

=1In(1+ Anr + Bur)
= Aur + Bur + Oy (A27) + O (B2p) + Op (AnrBur) + - . .,

where

noo

E?:l E (‘i’i,nT

neo

)
B,p = , with d; 7 = 1{|tir| > ¢p(n)].

Note that FE (me> = Tinr = Pr[|tir| > ¢p(n)]. Then, we wish to determine

B, = Yo Prjtir] > ¢p(n)] — n B Zyjlo} Pr [|tir| > ¢p(n)|yi # 0] — no‘0+
ni — n&o - a0
2izpeoj 1 Prltir] > ¢p(n)]yi = 0]

neo
Under regularity conditions and by Lemma A.10 of Chudik et al. (2018),
Pr|tir| > cp(n)|vi #0] >1 -0 [exp(—TC)] , for some C > 0.

So
S P ([t ] > cp(n)|yi # 0] — 0o
ne«o

Again by Lemma A.10 of Chudik et al. (2018),

=0 [exp(—Tc)] .

Cp
Pr{ftir| > ¢p(n)lyi =0] < 5.
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So, for some C' > 0,

2 icneo]+1 P [[tir| > cp(n)|yi = 0] < Cp (7”2— no) _0 (n1—6—ao> '
nao n +ao

Overall,
Bur = O (n'707%) + O [exp(~T7)]

Next, note that

n

= 5 fr ()]

1=
Under the assumption that u;; are cross-sectionally independently distributed, a martingale difference central limit
theorem holds for z; ,7 = cii,nT —F (me> and further

Var (zinr) = Var (chT> = Tinr(1 — TinT).

Then,
Var (A, e Zm 2 (1 = T ) 2a0 Zm =
1 [n°0] 1 n
2a0 Z TinT + a0 Z TnT = O [eXp(fTC)] +0 <n1—5—2a0> )

So, Anr = O (n1/2*5/2*0‘0), and further wn(ao)*l/zAnT —q4 N(0,C), for some C < 1, where ¥,(ap) =
p(n —n%)p=92 (1 — L) )

-
Proof of Theorem 2
To prove this theorem it is sufficient to retrace the proof of Theorem 1 using
Pr(|tir| > ¢p(n)}vi # 0] > 1 — O [exp(=T7)] , for some C' > 0, (B.26)
and
Pr(fiir| > ey = 0] < 2.

Both (B.26) and (B.27) follow from Lemmas 3 and 4, proving the result.

(B.27)

Proof of Theorem 3

Consider the model given by

flt + Uit it i = 1 T [nalo]
Tig = for + wi, if 0 = [n*10] +1, .., [naw] + [ @20]
g, if i = [n®10] + [n O“20] +1,..

where a9 > ag9. Let fi; be proxied by Zi; = ) ,_; wijzy where >, wi; = 1. 41; denotes the regression

coefficient of x;; on Z1; and &y = i — A1t~ *10Z,. We use the normalisation n'~®10 for simplicity of analysis.

We can replace n'~10 with \/ T 1( = which is observable at some notational and analytical cost. Further
T t=1 T1t—1

let Tor = > ., woZy where Y. we; = 1. A9; denotes the regression coefficient of #;; on n!=%20%,,. Let
i=1 i=1

1,if i =1,..., [n°1]
V1§ = 0,ifi = [nalo] +1,..., [nam] + [TLOQO]
0, if i = [n®10] + [n*°] +1,...,n
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Denote x2 it = it — Y1ifie, T = > _;_q w224 and 43; denotes the regression coefficient of 9 ;; on z4,. Note that
~ ~ 1—aqo =
Zit — x4 = (Y1 — v10) fre + 7i(frie — " 4°Z14) + R,

where R is a generic notation of remainder terms of lower order than the rest of the terms in the relevant sum of
the terms. Similarly

T — Tor = fre _ wai(1i — 710) + (Fre — ' TO0Zy) > waiyis + R,
i=1 i=1

We wish to find the rate of 49; — 43;. First consider

n [n10] [n¥10]4[n>20] n
Tu=» wimi=fu Y wi+fu Y. wiu+ Y wiutg =0, (n" ) +0, (n™1) + 0, (n_1/2>
i=1 i=1 i=[no10]+1 i=1
or
n [n10] [n®10]+[n>20] n
n'm0gy, = T Z Wiy =n'T fy Z Wy + 'O foy Z wy; +n' T Z WUt
i=1 i=1 i=[no10]+1 i=1
= futn + O (n™20700) + 0, (n/270)
Then,
RS S RS0 R f)ee | BT (R f)
i =7 oo T i 1 1 1 1 o
T o202z, T 2 [ T 2 [ (TZf%t) (T > nPer 2ac%t)
=1+A1+ As+ A3
We have
A = 0,(T7Y?), 4, =0, (n®20710) - A3 = O, (n*20~10) .
So
(F1: — 1) = Op(T7%) + O, (noz0e10)
and
(flt B nlfaloj?lt) _ Op (na20*0110) .

Now,

1 1—a20 = 1 l—a20~_ -
iy = T Do 0T N PTy
2 T g 2000—272 1 20020—2 72

T 2 NP0 23 T 2 NP2,

1 _ _ _ 1 o — .
=Cig D om0 (3, — Fa) o + Cors > ' TO0EY (2o — d) + R

where C and Cy are Op(1) terms leading to
35 o = O(T%) 4.0, (o)

Since for valid inference it is sufficient that 45, — 49; is Op(T_l/ 2) we conclude that a necessary condition is that
n®20=10 js at most O(T~/2). This result readily extends to azp (< a9 < aig), and so on.

Appendix C Inference on oy =1 with randomised testing

As we noted in Section 3, the case of g = 1 is special and cannot be handled in a standard way. One way to
address testing for this value of « is to use randomised testing. Randomised testing, introduced, originally in
statistics by Pearson (1950), and further in econometrics, by, among others, Corradi and Swanson (2006) and
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Trapani (2018), is of use when a test statistic is, in some sense, lacking randomness under the null hypothesis.
Randomising then becomes useful by adding randomness, in a particular way, and making the resulting test better
behaved under the null hypothesis.

Our test statistic, based on & — g, converges to zero exponentially fast when ag = 1. Its inverse respectively
converges exponentially fast to infinity. Conversely, under the alternative hypothesis & — ap remains bounded.
Such behaviour is appropriate for constructing a randomisation testing procedure. In particular, we wish to test
the null, Hy : oj = o against aj = jq, j = 1,2 when ;o = 1 which corresponds to the case when our estimator
of factor strength is ultraconsistent. For this purpose we use the randomisation procedure proposed in Trapani
(2018), which proceeds as follows:

Step 1 Let
i exp (T) , if d] = ajU(: 1)

Then, we generate an artificial sample {f,,}]u\[:1 as 1.1.d.N.(0, 1), and define the sequence p; x &,, 1 <v < N.

Step 2 Define the sample {Cj,,j}]j:l as
G (u) = Ipj x & <],

with u extracted from a distribution F(u) with support U C R\ {0}. Here we set u = 4+/2, chosen with
equal weight.

Step 3 Compute
92 & 1
G (u) = \/N; [Cj,u (u) — 2] :

Step 4 Define the test statistic

0, - / ¢ (w2 dF (u)
U

0.05

8(5) """

and compare with X7 (Prand); Prand = 1 —

Further details on the exact motivation of the various choices made in the above algorithm and its theoretical
properties, can be found in Trapani (2018) and references cited therein. We consider the small sample properties
of this algorithm in Appendix D.

Appendix D Empirical data construction and extra results

S&P500 security returns

As reference country for this study we pick the United States and as equity market index of preference we opt
for the Standard € Poor’s (S&P) 500 index. In this respect, we consider the distinct monthly composites of the
S€P500 index from September 1989 to December 2017. Our analysis is based on a rolling window sample scheme.
We work with security returns defined as

Py TR fori=1,2,...,nrand t=1,2,...,T,

re = 100 (Pi - Pz',tl) . DYy
where P;; and DYj; stand for the price and dividend yield of security ¢ at time ¢, and 7 = 1,2, ...,340 denote the
10-year rolling samples of security returns.

Historical end-of month security price and dividend yield data, Py and DYy, for i = 1,2,...,n, and t =
1,2,...,T, are obtained from Thompson Reuters Datastream. We are grateful to Takashi Yamagata for providing
part of the constructed dataset which is used in Pesaran and Yamagata (2017). n, represents all 500 stocks
per monthly composition of the S&P500 from 09/1989 to 12/2017 as displayed at the end of each month and T

expands from 31/01/1950 to 31/12/2017. For example, code LS&PCOMP1210 will give the 500 constituents of
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the S&P500 index as of December 2010. Further, the 09/1989 S&P500 composition, for instance, uses observations
commencing in 10/1979. Pj; is the price of security ¢ at the market close of the last day of the month (¢), adjusted for
subsequent capital actions. DYj; is the dividend per share as a percentage of the share price based on an anticipated
annual dividend and excludes special or one-off dividends. Both P;; and DYy, fori=1,2,... ,n.,t=1,2,...,T
and 7 = 1,2,...,340 are obtained at the default 4 decimal places for the US market. The codes used are
DPL#(CFM#(x(P#S),VAL),4) and DPL#(CFM# (x(DY#5S),VAL),4) for price and dividend yield respectively.
Note that 499 securities were downloaded for November 20, 1999 and September 30, 2008. It is confirmed on
Standard & Poor’s website that the S&P 500 index on these days was based on 499 securities.

SW macroeconomic dataset

The SW macroeconomic dataset that we use extends from 1959Q1-2019Q2 and is an updated version of the dataset
compiled originally by Stock and Watson (2012). We opted for a time dimension commencing in 1988Q1 in order
to obtain a balanced panel. We excluded three variables as they recorded missing values beyond 1988Q1. These
are: (1) Manufacturers’ new orders, consumer goods and materials, (2) Case-Shiller 10 City average deflated by
PCEPILFE, and (3) Case-Shiller 20 City average deflated by PCEPILFE.

Additional empirical results

The table and graphs that follow show estimates of factor strengths associated with the asset pricing models
considered in Section 6 of the main paper:

Table Al: Ranking of all 145 factors (plus the market factor) in terms of the % of months their estimated strengths
exceed the threshold of 0.90 during the full sample period of September 1989 to December 2017, corresponding

number of influenced security returns and time averages of &, -, s =1,2,...,145, over different subsamples
% of months No. of
when influenced
G, > 0.90: securities™ Time averages of Gs,+ over:
over: (out of 442)
September 1989 - | September 1999 - | September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017
Market 100.0 415 0.990 0.999 0.974 0.997
Leverage 37.9 154 0.827 0.739 0.932 0.808
Sales to cash 37.9 145 0.817 0.716 0.936 0.793
Cash flow-to-price 37.9 159 0.832 0.765 0.933 0.792
Net debt-to-price 37.9 165 0.838 0.753 0.936 0.823
Earnings to price 37.9 140 0.811 0.743 0.935 0.745
Net payout yield 37.6 171 0.844 0.769 0.932 0.829
Years since first Compustat cover. 37.6 155 0.828 0.724 0.935 0.823
Cash flow to price ratio 37.6 146 0.818 0.737 0.934 0.775
Quick ratio 37.4 162 0.835 0.782 0.936 0.777
Altman’s Z-score 37.4 155 0.828 0.740 0.931 0.808
Payout yield 37.1 178 0.851 0.785 0.932 0.831
Earnings volatility 37.1 180 0.852 0.779 0.936 0.840
Change in shares outstanding 37.1 135 0.805 0.671 0.932 0.815
Enterprise book-to-price 36.8 157 0.830 0.741 0.933 0.812
Cash holdings 36.8 153 0.826 0.740 0.935 0.797
Dividend to price 36.5 173 0.846 0.789 0.932 0.811
Depreciation /| PP&E 36.5 178 0.851 0.813 0.930 0.801
Kaplan-Zingales Index 36.2 149 0.822 0.731 0.930 0.801
R&D-to-sales 36.2 143 0.815 0.731 0.923 0.786
Cash flow volatility 36.2 118 0.783 0.617 0.924 0.812
Accrual volatility 36.2 115 0.779 0.613 0.926 0.803
Current ratio 35.9 173 0.846 0.815 0.926 0.785
Idiosyncratic return volatility 35.6 179 0.851 0.799 0.923 0.828
Debt capacity/firm tangibility 35.6 156 0.829 0.735 0.920 0.832
Maximum daily return 35.3 165 0.838 0.764 0.927 0.821
Bid-ask spread 35.3 174 0.847 0.786 0.931 0.821
Cash productivity 35.3 147 0.819 0.751 0.911 0.789
Return volatility 34.7 171 0.844 0.786 0.922 0.820
Robust Minus Weak 34.7 111 0.773 0.694 0.910 0.705
Whited-Wu Index 34.7 117 0.781 0.697 0.913 0.724
New equity issue 34.7 100 0.756 0.620 0.912 0.732
Sales to price 34.7 159 0.832 0.768 0.919 0.804
High Minus Low 34.4 157 0.830 0.757 0.926 0.802
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Table Al continued from previous page

% of months
when
G, > 0.90:
over:

No. of
influenced
securities™®
(out of 442)

Time averages of &, over:

Factor

Full sample

Full sample

September 1989 -
August 1999

September 1999 -
August 2009

September 2009 -
December 2017

Vol. of liquidity (share turnover)
Market Beta

Zero trading days

Share turnover

Advertising Expense-to-market
Net equity finance

Asset turnover

Net external finance

Absolute accruals

Growth in long-term debt
Industry-adjusted book to market
Working capital accruals

HML Devil

Change in Net Financial Assets
Chg in Current Oper. Liabilities
Sin stocks

Sales to receivables

Employee growth rate

Net Operating Assets

HXZ Investment

Chg in Net Non-current Oper. Assets
Financial statements score

R&D Expense-to-market

R&D increase

Industry momentum

Abnormal Corporate Investment
Sales growth

Conservative Minus Aggressive
Momentum

Change in Short- term Investments
Return on net operating assets
Investment Growth

Seasonality

Tlliquidity

Liquidity

Small Minus Big

Number of earnings increases

HXZ Profitability

Share price

Industry-adj. cash flow to price ratio
Industry-adjust. chg in employees
Change in 6-month momentum
Earnings announcement return
Revenue surprise

Return on assets

Betting Against Beta

Quality Minus Junk

Dollar trading volume

Vol. of liquidity (dollar trading volume)
Price delay

Book Asset Liquidity

Abnormal earnings announc. volume
Unexpected quarterly earnings
Cash flow to debt

% change in current ratio

% change in quick ratio

% change sales-to-inventory

Sales to inventory

% change in depreciation

Capital turnover

% chg in gross margin - % chg in sales
% chg in sales - % chg in inventory
% chg in sales - % chg in A/R

% chg in sales - % chg in SG&A
Effective Tax Rate

Labor Force Efficiency

Ohlson’s O-score

34.4
34.1
34.1
34.1
34.1
34.1
34.1
32.1
31.8
31.5
30.9
30.6
30.3
29.4
28.2
27.6
27.4
22.6

173
187
183
185
139
168
122
154
146
107
139
140
147
70
111
96
148
111
114
128
124
89
134
92
111

103

105

0.846
0.859
0.855
0.857
0.810
0.841
0.788
0.827
0.818
0.767
0.810
0.812
0.820
0.697
0.773
0.749
0.820
0.773
0.778
0.797
0.791
0.738
0.804
0.742
0.772
0.674
0.761
0.766
0.755
0.625
0.764
0.627
0.743
0.549
0.674
0.774
0.738
0.778
0.706
0.672
0.626
0.642
0.514
0.702
0.691
0.767
0.793
0.723
0.619
0.763
0.833
0.763
0.632
0.690
0.606
0.595
0.574
0.770
0.647
0.773
0.581
0.571
0.621
0.579
0.531
0.568
0.690

All

0.786
0.824
0.808
0.815
0.707
0.797
0.643
0.781
0.750
0.678
0.771
0.748
0.747
0.581
0.710
0.603
0.781
0.710
0.664
0.739
0.729
0.700
0.770
0.676
0.748
0.497
0.706
0.716
0.715
0.377
0.645
0.565
0.648
0.433
0.624
0.766
0.658
0.748
0.721
0.592
0.599
0.654
0.511
0.654
0.699
0.645
0.774
0.611
0.580
0.770
0.811
0.728
0.636
0.645
0.448
0.445
0.500
0.832
0.430
0.795
0.534
0.536
0.568
0.522
0.551
0.517
0.645

0.920
0.921
0.918
0.917
0.914
0.916
0.911
0.900
0.903
0.902
0.901
0.900
0.905
0.907
0.904
0.884
0.896
0.898
0.900
0.892
0.886
0.885
0.883
0.873
0.840
0.866
0.876
0.860
0.793
0.801
0.877
0.698
0.844
0.578
0.632
0.846
0.883
0.835
0.673
0.766
0.684
0.602
0.556
0.818
0.764
0.872
0.855
0.864
0.647
0.778
0.866
0.806
0.619
0.747
0.817
0.783
0.756
0.728
0.834
0.771
0.626
0.704
0.749
0.663
0.478
0.573
0.733

0.830
0.828
0.836
0.834
0.809
0.803
0.815
0.793
0.799
0.711
0.748
0.783
0.805
0.583
0.690
0.762
0.777
0.699
0.767
0.753
0.753
0.605
0.751
0.664
0.721
0.654
0.690
0.714
0.758
0.712
0.773
0.617
0.735
0.652
0.787
0.697
0.659
0.746
0.727
0.655
0.588
0.676
0.468
0.620
0.594
0.787
0.740
0.688
0.632
0.737
0.821
0.751
0.641
0.674
0.541
0.549
0.446
0.746
0.683
0.749
0.585
0.453
0.529
0.545
0.569
0.623
0.694



Table Al continued from previous page

% of months No. of
when influenced
G, > 0.90: securities™ Time averages of &, over:
over: (out of 442)
September 1989 - | September 1999 - | September 2009 -

Factor Full sample Full sample August 1999 August 2009 December 2017
Industry adjg % chg in capital expend. 0.0 50 0.642 0.467 0.786 0.678
Change in inventory 0.0 62 0.677 0.744 0.684 0.588
Change in tax expense 0.0 59 0.670 0.640 0.708 0.659
Growth in long term net oper. assets 0.0 55 0.659 0.589 0.645 0.759
Order backlog 0.0 118 0.783 0.717 0.831 0.806
Chg in Long-term Net Operating Assets 0.0 86 0.731 0.639 0.834 0.719
Corporate investment 0.0 76 0.710 0.650 0.803 0.672
Changes in Net Operating Assets 0.0 25 0.529 0.481 0.577 0.528
Tax income to book income 0.0 68 0.693 0.544 0.848 0.686
Growth in common shareholder equity 0.0 101 0.757 0.697 0.814 0.761
Chg in Current Operating Assets 0.0 82 0.723 0.760 0.802 0.584
Chg in Net Non-cash Working Capital 0.0 49 0.639 0.691 0.671 0.536
Chg in Non-current Operating Assets 0.0 83 0.725 0.651 0.811 0.709
Chg in Non-current Oper. Liabilities 0.0 76 0.711 0.638 0.768 0.732
Total accruals 0.0 55 0.659 0.585 0.769 0.616
Change in Financial Liabilities 0.0 52 0.648 0.604 0.797 0.523
Change in Book Equity 0.0 113 0.776 0.706 0.857 0.764
Financial statements score 0.0 85 0.729 0.681 0.759 0.751
Growth in capital expenditures 0.0 44 0.622 0.566 0.602 0.713
Three-year Investment Growth 0.0 96 0.749 0.664 0.819 0.766
Composite Equity Issuance 0.0 119 0.784 0.774 0.833 0.737
Net debt finance 0.0 59 0.668 0.603 0.844 0.535
Revenue Surprises 0.0 44 0.622 0.692 0.583 0.584
Industry Concentration 0.0 148 0.821 0.820 0.870 0.763
Return on invested capital 0.0 88 0.734 0.754 0.827 0.600
Chg in PPE and Inventory-to-assets 0.0 70 0.697 0.663 0.675 0.763
Composite Debt Issuance 0.0 69 0.696 0.738 0.735 0.597
Profit margin 0.0 111 0.773 0.798 0.761 0.758
Industry-adj. change in asset turnover 0.0 43 0.616 0.650 0.618 0.573
Industry-adj. change in profit margin 0.0 24 0.521 0.427 0.583 0.559
Capital expenditures and inventory 0.0 72 0.702 0.664 0.688 0.765
Industry-adj. Real Estate Ratio 0.0 139 0.810 0.751 0.872 0.807
Percent accruals 0.0 84 0.727 0.704 0.792 0.678
Operating Leverage 0.0 132 0.801 0.784 0.817 0.803
Inventory Growth 0.0 45 0.626 0.714 0.552 0.608
Percent Operating Accruals 0.0 99 0.755 0.726 0.824 0.707
Enterprise multiple 0.0 81 0.722 0.742 0.704 0.719
Gross profitability 0.0 112 0.774 0.792 0.774 0.754
Organizational Capital 0.0 120 0.787 0.785 0.784 0.791
Convertible debt indicator 0.0 107 0.767 0.798 0.809 0.680
Long-Term Reversal 0.0 31 0.565 0.518 0.590 0.591
1-month momentum 0.0 78 0.714 0.767 0.647 0.732
6-month momentum 0.0 51 0.646 0.515 0.727 0.706
36-month momentum 0.0 86 0.732 0.726 0.798 0.660
Growth in advertising expense 0.0 44 0.622 0.501 0.812 0.540
Notes: All factor strength estimates, &, -, where s = 1,2,...,145, are computed using (7) of the main paper for 10-year rolling

windows 7 = 1,2, ..., 340.

*This statistic is computed using the time averages of &s , and number of securities n, over the full sample.
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Figure A11: Comparison of the market factor strength estimates obtained from the original single factor CAPM

(Gm,r) and the average estimates of its strength when computed using 145 two-factor asset pricing models (Em,T),
over b5-year rolling windows
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Notes: The market factor strength rolling estimates are computed using (7) of the main paper. The market factor
strength average estimates produced from the 145 two-factor CAPMs are computed as um, » = (1/145) 33149

s=1(ds,‘r)7 fOI‘
T=1,2,...,340 rolling windows.

Figure A12: Percentage of factors (out of 145) whose estimated strength (és,), 7 = 1,2,...,340 exceeds the
thresholds of 0.85, 0.90 and 0.95, in each 5-year rolling window
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Notes: The 145 factor strength estimates, &s,-, s = 1,2,...,145, are computed using (7) of the main paper.
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Additional simulation details and results

EXP 3C (two unobserved factors): Estimation procedure

Assume the DGP design (35). We obtain the estimates for f1; and for, as well as for a9 and «g as shown below:

Step 1: Run the OLS regressions
Tit = ¢ + W1k + €t

where 7; = n~! Z?:l xit. The OLS coefficient estimates, wy;, are given by

T (. = n
Wy = Lt it (T ):?7 with Zﬁ)u =n,
i=1

ZtT:1 (T — =

_ AT -
where z =T-1>",_| #;. Then, we compute
n
- 1 .
Tt = — E W1iLit-
n-
=1

Step 2: Run OLS regressions
Tit = ¢ + 01iT1¢ + T2,it, (D.28)

and consider the estimate of the second factor

1 n
Top = — E Woi T2 it
n <
=1
where

L2t = Lit — € — 015 T,

Wi = —

Zthl (5215 - 332)

= R | n ~ =~ _ m—1 T =
Tog=n"" Y Togand To =T ), Toy.

T A~ = = n
_1 X924t (Xot — X
thl 2,0t ( 2t 2) with Zﬁ)% =n,
=1

Step 3: Run OLS regressions
Tit = ¢ + Tt + Y2iT2t + Ui, (D.29)

and obtain coefficient estimates of Z1; and Zg; denoted by “41; and 49;, which are thresholded following (4)
and (5), while &; and &y are obtained using (7) of the main paper.
Additional simulation results

The Monte Carlo simulation results provided in the tables and plots below are based on the designs set out in
Section 5 of the main paper.
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Table S0: Size (x100) when estimating the strength of a strong factor, oy = 1, in the case of experiments 1B (1
observed factor), 2B (2 observed factors) and 3A (1 unobserved factor) with non-Gaussian errors

a1 =1 - Size (x100)

n\T [ 60 120 200 500 1000

Experiment 1B
100 | 53.35 5.85 0.95 1.10 1.05
200 | 75.10 10.10 1.05 0.35 0.65
500 | 95.55 2995 1.95 0.25 0.25
1000 | 99.10 50.15 5.45 0.60 0.30
Experiment 2B
100 | 65.50 8.00 145 1.10 0.85
200 | 84.70 16.95 1.95 0.55 0.50
500 | 97.70 40.90 4.50 0.35 0.25
1000 | 99.75 64.65 9.35 0.35 0.45
Experiment 3A
100 | 45.00 3.85 0.75 1.10 1.05
200 | 7175 7.55  0.70 0.35 0.65
500 | 94.80 27.85 1.60 0.25 0.25
1000 | 98.95 48.50 4.75 0.60 0.30

Notes: Parameters of DGP (35) are generated
as described in Tables 1 and 2 of the main

paper, respectively.
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Table Sla: Bias, RMSE and Size (x100) of estimating different factor strengths in the case of experiment 1A
(observed single factor - Gaussian errors)

Bias (x100) RMSE (x100) Size* (x100)
n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a10=0.75

100 | 1.26 1.18 1.17 1.12 1.04 | 1.70 1.55 1.52 1.48 141 | 7.05 390 3.00 3.00 2.35
200 | 1.54 147 139 129 128 |1.75 1.63 154 144 1.44 1725 10.10 8.15 6.45 6.90
500 | 1.41 132 1.23 1.16 1.14 |153 1.40 130 1.23 1.21 |23.00 14.70 10.40 810 7.85
1000 | 1.35 1.27 1.19 113 1.10 | 143 1.31 1.23 1.17 1.14 |27.80 16.75 1095 7.35 6.85
Q10 = 0.80
100 | 071  0.70 0.69 0.66 059 |1.13 1.056 1.01 099 095 | 2425 19.25 17.55 17.40 20.20
200 | 0.98 097 0.93 086 0.85 |1.17 1.10 1.05 0.99 0.97 | 21.55 12.80 10.85 9.30 9.60
500 | 0.93 092 087 082 0.80|1.03 098 092 0.87 0.85 2075 1325 990 7.50 6.15
1000 | 0.86 085 0.81 077 0.75 093 089 084 0.80 0.78 | 27.20 16.70 12.20 9.30 7.55
a0 = 0.85
100 | 0.64 0.68 0.69 0.66 0.62 | 092 0.88 0.87 085 0.82 |17.75 10.05 9.30 855 8.15
200 | 0.57 062 059 055 053|074 072 069 065 064 1220 630 410 325 3.35
500 | 0.45 0.3 0.50 047 0.46 | 0.58 0.58 0.54 0.51 0.50 | 23.60 11.75 9.10 7.90 7.70
1000 | 0.45 050 048 045 044 | 052 053 050 047 0.46 | 24.80 11.30 7.60 5.60 4.95
a1 = 0.90
100 | 0.31 040 040 0.39 0.37 | 0.58 0.55 0.54 0.53 0.52 | 16.20 5.15 3.50 3.70 3.35
200 | 0.19 028 0.27 024 023|039 038 036 033 033 ]2695 1220 1230 11.30 13.50
500 | 0.21 030 0.28 027 026|031 034 032 030 0.29 3030 965 7.05 690 6.35
1000 | 0.19 0.29 0.27 0.26 0.25 | 0.27 0.30 0.29 0.28 0.27 | 35.45 1220 880 7.15 5.75
Q10 = 0.95
100 | -0.07 0.07 0.08 0.07 0.06 | 0.35 0.25 0.24 0.23 0.23 |26.25 530 3.65 3.30 2.65
200 | -0.01 0.11 0.11 0.10 0.10 | 0.24 0.19 0.17 0.17 0.17 | 32.65 6.80 4.10 3.60 3.90
500 | 0.00 0.12 0.12 0.11 0.11 | 0.17 0.15 0.14 0.13 0.13 | 48.05 11.90 845 840 8.05
1000 | -0.03 0.10 0.10 0.09 0.09 | 0.15 0.11 0.11 0.10 0.10 | 56.80 8.60 550 5.10 5.25
10 = 1.00
100 | -0.17 -0.01 0.00 0.00 0.00 | 0.29 0.05 0.01 0.00 0.00 | 47.00 4.85 1.15 1.05 1.10
200 |-0.16 -0.01 0.00 0.00 0.00|0.23 0.03 0.01 0.00 0.00 6890 875 065 0.65 0.55
500 | -0.15 -0.01 0.00 0.00 0.00 | 0.20 0.02 0.00 0.00 0.00 | 92.20 22.55 2.35 0.25 0.40
1000 | -0.15 -0.01 0.00 0.00 0.00 | 0.20 0.02 0.00 0.00 0.00 | 98.40 40.10 3.70 050 0.35

Notes: Parameters of DGP (35) of the main paper are generated as follows: for unit specific effects, ¢; ~ ITDN (0, 1), for

i=1,2,...,n. The factor, fis, is normally distributed with variance 0;1 = 1. The factor assumes an autoregressive process
with correlation coefficient py, = 0.5. The factor loadings are generated as vi1 ~ IIDU(py, — 0.2, f1, + 0.2), for [n®1°] units,
and zero otherwise. vz = 0, for all i. We set py, = 0.71. a10 ranges between [0.75,1.00] with 0.05 increments. The innovations
uie are Gaussian, such that uy ~ IIDN(0,07), with o7 ~ IID(1+ x3,)/3, for i = 1,2,...,n. In the computation of &; we use
p =0.10 and § = 1/4 when setting the critical value. Size is computed under Hy: ai=a10, using a two-sided alternative. The
number of replications is set to R = 2000.

*Computation of size when aq9 = 1.00 follows the randomisation procedure proposed in Trapani (2018).
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Figure Sla: Empirical power functions associated with testing different factor strengths in the case of experiment

1A (observed single factor - Gaussian errors), when n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table Sla for details of the data generating process. Power is computed under Hi: ai.=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S1b: Bias, RMSE and Size (x100) of estimating different factor strengths in the case of experiment 1B
(observed single factor - non-Gaussian errors)

Bias (x100) RMSE (x100) Size (x100)
n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
a10:0‘75

100 | 1.23 122 1.12 1.10 1.05 |1.71 158 149 147 142 | 870 445 3.15 3.10 2.75
200 | 1.51 146 137 130 1.28 | 1.74 1.62 1.52 146 1.44 |1475 965 795 7.00 6.60
500 | 1.35 129 1.25 1.15 1.12 | 148 1.37 1.32 1.22 1.19 | 23.65 13.50 11.25 7.65 8.90
1000 | 1.32 127 118 1.13 1.11 | 141 1.32 1.22 1.17 1.15|26.50 17.40 10.90 9.10 7.00
a10 = 0.80
100 | 0.69 0.73 0.67 0.64 0.61 |1.15 1.06 1.02 098 0.95 | 25.85 17.60 19.65 18.30 18.85
200 | 096 097 091 0.8 0.85|1.15 1.09 1.03 0.99 097 | 1890 12.15 10.45 9.65 9.65
500 | 0.89 091 0.88 0.82 0.79 | 0.99 0.96 0.93 0.87 0.85]20.85 12.00 9.10 630 7.10
1000 | 0.83 0.86 0.80 0.77 0.76 | 091 0.89 0.83 0.80 0.78 | 26.30 18.20 11.20 10.50 7.40
a10 = 0.85
100 | 0.61 0.71 0.67 0.65 0.64 092 089 087 0.84 0.83]19.30 10.55 945 885 830
200 | 0.55 0.61 058 055 054|072 071 0.68 065 0.64 |11.55 540 410 4.00 2.50
500 | 0.42 052 051 047 045|056 0.57 0.55 0.51 0.50 | 24.00 990 8.00 6.65 8.30
1000 | 0.42 0.50 047 045 044 | 050 0.53 049 047 046 | 26.80 11.85 7.05 6.65 5.50
10 = 0.90
100 | 0.28 041 0.39 0.39 038 | 0.58 0.55 0.55 0.53 0.53 | 19.00 4.25 415 295 3.55
200 | 0.17 027 026 024 024|039 037 035 034 0.33 |3090 12.65 1285 13.05 12.75
500 | 0.17 029 0.29 027 0.26 | 030 0.32 032 030 0.29 | 3350 98 7.75 690 7.65
1000 | 0.16 0.28 0.27 0.26 0.25 | 0.25 0.30 0.28 0.27 0.27 | 40.70 1240 835 7.45 6.80
Q10 = 0.95
100 |-0.08 0.07 0.07 0.07 0.07 | 038 024 024 023 0243010 47 330 3.15 345
200 | -0.03 0.11 0.1 0.10 0.10 | 0.26 0.18 0.17 0.17 0.17 | 36.50 6.25 3.70 440  3.90
500 | -0.04 0.11 0.12 0.11 0.10 | 0.19 0.14 0.14 0.13 0.13 | 56.25 1240 7.15 825 9.70
1000 | -0.06 0.09 0.10 0.09 0.09 | 0.17 0.11 0.11 0.10 0.10 | 65.85 875 575 6.05 4.35
a10 = 1.00
100 | -0.20 -0.01 0.00 0.00 0.00 | 0.32 0.05 0.01 0.00 0.00 - - - - -
200 | -0.18 -0.01 0.00 0.00 0.00 | 0.26 0.03 0.01 0.00 0.00 - - - - -
500 | -0.19 -0.01 0.00 0.00 0.00 | 0.24 0.03 0.00 0.00 0.00 - - - - -
1000 | -0.19 -0.01 0.00 0.00 0.00 | 0.23 0.02 0.00 0.00 0.00 - - - - -

Notes: Parameters of DGP (35) of the main paper are generated as follows: for unit specific effects, ¢; ~ IIDN (0, 1), for

i=1,2,...,n. The factor, fi, is normally distributed with variance 0?1 = 1. The factor assumes an autoregressive process

with correlation coefficient py, = 0.5. The factor loadings are generated as vi1 ~ IIDU (py, — 0.2, iy, + 0.2), for [n®1°] units,

and zero otherwise. v;2 = 0, for all 7. We set p,, = 0.71. a1 ranges between [0.75,1.00] with 0.05 increments. The innovations

ui¢ are non-Gaussian, such that u;; = % (X%,it — 2), with 67 ~ ITD(1 + x3.)/3, for i = 1,2,...,n. In the computation of &; we use
p =0.10 and § = 1/4 when setting the critical value. Size is computed under Ho: a1=a10, using a two-sided alternative. The

number of replications is set to R = 2000.
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Figure S1b: Empirical power functions associated with testing different factor strengths in the case of experiment

1B (observed single factor - non-Gaussian errors), when n = 100, 200, 500, 1000 and 7" = 200
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where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S2: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.75

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
a10 = 0.75, a0 = 0.75
100 | 1.18 1.19 1.07 1.08 1.04 | 1.66 1.55 143 1.43 141 | 825 395 275 240 2.75
200 | 1.48 145 139 131 127|171 1.61 153 147 143 |16.80 11.25 7.30 6.55 7.30
500 | 1.33 129 1.22 1.15 1.13 |146 136 130 1.22 1.20 | 22.85 13.85 9.50 7.85 7.40
1000 | 1.30 1.27 1.20 1.12 1.10 | 140 1.32 1.24 1.16 1.14 | 28.15 17.35 11.70 7.50 6.60
a10 = 0.80, a0 = 0.75
100 | 0.66 0.71 0.62 0.63 0.60 | 1.12 1.05 094 096 0.94 | 25.60 19.05 17.00 18.05 19.75
200 | 0.95 097 094 089 0.85|1.15 1.10 1.06 1.01 0.98 | 21.75 13.30 11.20 10.00 9.75
500 | 0.87 0.89 087 081 0.80|097 095 092 0.86 0.85 |20.00 1210 825 595 5.75
1000 | 0.82 086 0.82 077 0.75 | 090 0.89 085 0.79 0.78 | 28.80 1850 13.20 7.80 7.30
a9 = 0.85, agg = 0.75
100 | 0.57 0.69 0.65 0.65 0.63 | 091 090 0.84 084 0.81 |2090 11.65 790 820 7.40
200 | 0.52 061 059 056 054|072 072 069 066 0.64 | 1510 6.05 410 355 3.25
500 | 0.42 0.51 0.50 047 0.46 | 0.54 0.56 0.54 0.51 0.50 | 26.75 10.35 820 7.30 7.25
1000 | 0.40 050 048 045 044 | 049 0.52 050 047 0.46 |29.20 11.20 7.70 5.05 5.05
a10 = 0.90, a0 = 0.75
100 | 0.26 0.40 0.39 0.38 0.37 | 0.58 0.56 0.53 0.53 0.51 | 19.55 4.95 3.30 3.55 3.2
200 | 0.12 0.27 0.27 025 0.23|0.40 038 037 035 0.33 |36.80 14.30 12.10 12.75 13.30
500 | 0.14 029 0.28 0.27 026|030 032 032 030 0.29 3945 930 800 740 5.75
1000 | 0.14 0.28 0.28 0.26 0.25 [ 0.26 0.30 0.29 0.27 0.27 | 43.80 12.65 845 6.10 6.65
a10 = 0.957 a0 = 0.75
100 | -0.11 0.07 0.07 0.07 0.06 | 041 0.25 0.24 0.23 0.23 |34.25 640 325 3.55 3.00
200 | -0.08 0.11 0.11 0.10 0.10 | 0.30 0.19 0.18 0.17 0.17 | 43.85 8.60 4.85 3.90 4.30
500 | -0.08 0.11 0.12 0.11 0.10 | 0.22 0.14 0.14 0.13 0.13 | 63.65 11.50 8.60 870 7.30
1000 | -0.09 0.09 0.10 0.09 0.09 | 020 0.11 0.11 0.10 0.10 | 68.55 10.20 6.10 5.05 3.65
ag = 1.00, agg = 0.75
100 | -0.24 -0.01 0.00 0.00 0.00 | 0.36 0.06 0.01 0.00 0.00 | 58.50 7.10 145 0.80 0.95
200 |-0.23 -0.01 0.00 0.00 0.00|0.32 0.04 0.01 0.00 0.00 | 79.75 1270 1.30 0.75  0.50
500 | -0.22 -0.01 0.00 0.00 0.00 | 0.29 0.03 0.01 0.00 0.00 | 96.65 32.95 3.35 0.45 0.55
1000 | -0.22 -0.02 0.00 0.00 0.00 | 0.27 0.02 0.00 0.00 0.00 | 99.55 56.35 6.45 0.25 045

Notes: Parameters of DGP (35) of the main paper are generated as follows: for unit specific effects, ¢; ~ ITDN (0, 1), for

i=1,2,...,n. The factors, (fit, fot), are multivariate normal with variances a_?l = U_?-Q = 1 and correlation given by pi2 =
corr(fi1, f2) = 0.3. Each factor assumes an autoregressive process with correlation coefficients py, = 0.5, j = 1,2. The factor
loadings are generated asvi; ~ ITDU (ty; — 0.2, fiy; +0.2), for [n%i°] units, j = 1, 2, respectively, and zero otherwise. We set

foy = Hoy = 0.71. Both a10 and ago range between [0.75,1.00] with 0.05 increments. The innovations w;: are Gaussian, such that
wit ~ IIDN(0,0%), with 67 ~ ITD(1 + Xg,i)/?% fori=1,2,...,n. In the computation of &;, j = 1,2, we use p =0.10 and 6 = 1/4
when setting the critical value. Size is computed under Ho: aj=ajo, for j = 1,2, using a two-sided alternative. The number of
replications is set to R = 2000.

*Computation of size when a0 = 1.00, j = 1,2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S2: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.75,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table S2 for details of the data generating process. Power is computed under Hi: aia=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S3: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.80

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.80
100 | 1.21  1.19 1.08 1.08 1.06 | 1.67 1.55 1.45 1.43 144 | 850 3.80 245 225 2.55
200 | 1.48 145 138 132 130|171 1.61 154 148 145 |1745 10.35 840 7.50 7.45
500 | 1.33 1.28 1.23 1.15 1.13 |146 136 131 1.22 1.20 | 23.00 12.65 10.95 7.40 7.45
1000 | 1.31 1.27 1.20 1.12 1.11 | 140 1.32 124 1.16 1.14 | 28.40 18.05 11.90 7.15 6.15
a0 = 0.80, a0 = 0.80
100 | 0.66 0.72 0.64 0.64 061 |1.15 1.056 097 097 094 | 2765 1790 1725 17.20 18.20
200 | 0.94 096 0.92 088 0.85|1.15 1.08 1.05 1.00 0.98 | 21.95 13.10 11.40 10.15 9.85
500 | 0.86 091 087 082 0.81]097 096 092 0.87 0.86 | 22.10 12.06 9.30 575 595
1000 | 0.82 086 0.82 076 0.75 | 090 0.89 085 0.79 0.78 | 29.40 19.15 13.10 8.60 7.70
a9 = 0.85, agg = 0.80
100 | 0.59 0.67 0.65 0.64 062|091 0.88 0.83 082 081 |19.8 1045 7.50 8.00 7.90
200 | 052 060 059 056 054|072 071 069 065 0.64 1350 650 430 350 3.30
500 | 0.42 0.52 0.51 047 0.46 | 0.54 0.56 0.55 0.51 0.50 | 26.80 10.15 9.20 7.20 7.10
1000 | 0.40 050 048 044 044 | 049 053 050 0.46 0.46 |30.85 1225 730 515 5.25
Q10 = 0.90, Qop = 0.80
100 | 0.25 040 0.38 0.38 0.37 | 0.58 0.56 0.52 0.53 0.52 | 20.15 6.30 3.06 3.40 3.15
200 | 0.12 0.27 0.26 025 023|040 037 036 034 033 |3520 1330 11.95 12.15 13.05
500 | 0.14 029 0.29 027 026|030 032 032 029 0.29 3765 10.85 860 580 6.35
1000 | 0.14 0.28 0.28 0.26 0.25 | 0.26 0.30 0.29 0.27 0.27 | 43.05 12.75 820 6.60 5.70
a10 = 0.95, a0 = 0.80
100 | -0.11 0.08 0.07 0.07 0.05|041 0.25 0.23 023 0.22 3260 6.00 3.05 295 255
200 | -0.07 0.11 0.11 0.10 0.10 | 0.29 0.18 0.18 0.17 0.17 | 40.70 7.45 4.60 3.80 3.70
500 | -0.08 0.11 0.12 0.11 0.11 | 0.22 0.14 0.14 0.13 0.13 | 63.05 12.05 7.10 790 8.85
1000 | -0.09 0.09 0.10 0.09 0.09 | 0.21 0.11 0.11 0.10 0.10 | 69.85 11.25 6.25 510 445
ao = 1.00, azg = 0.80
100 | -0.23 -0.01 0.00 0.00 0.00 | 0.36 0.06 0.01 0.00 0.00 |57.65 7.00 1.60 0.70 1.00
200 |-0.23 -0.01 0.00 0.00 0.00|0.32 0.04 0.01 0.00 0.00 | 7840 12.75 1.75 045 0.45
500 |-0.23 -0.01 0.00 0.00 0.00|0.29 0.03 0.01 0.00 0.0096.35 33.10 3.35 0.60 0.70
1000 | -0.22 -0.01 0.00 0.00 0.00 | 0.28 0.02 0.00 0.00 0.00 | 99.35 55.85 6.80 0.25 0.55

Notes: Parameters of DGP (35) are generated as described in Table S2.
*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S3: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.80,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table S2 for details of the data generating process. Power is computed under Hi: a1,=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S4: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.85

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.85
100 | 1.22  1.20 1.09 1.09 1.02 |1.69 156 145 1.45 139 | 820 4.15 260 275 2.20
200 | 1.47 144 138 132 128 |1.71 1.60 153 148 1.43 |1590 995 845 7.25 6.35
500 | 1.34 129 1.23 1.15 1.13 |147 137 130 1.22 1.20 | 22.70 12.75 10.25 7.40 6.80
1000 | 1.31 1.27 1.20 1.12 1.11 | 140 1.32 1.24 1.16 1.14 | 26.20 18.20 11.00 6.85 7.35
a0 = 0.80, a0 = 0.85
100 | 0.65 0.72 0.63 0.62 0.60 | 1.12 1.056 0.97 097 094 | 25.55 18.65 1845 19.45 18.50
200 | 0.95 096 0.93 088 0.84 |1.16 1.09 1.05 1.00 0.97 | 22.95 12.65 11.10 9.70  9.10
500 | 0.87 090 087 082 0.80]098 096 092 0.87 0.85 |21.25 13.06 790 7.25 5.80
1000 | 0.82 085 0.81 076 0.75 | 090 0.89 084 0.79 0.78 | 29.15 17.60 1290 9.00 7.40
a9 = 0.85, agg = 0.85
100 | 0.58 0.68 0.64 0.64 0.62 | 092 0.87 082 083 081 |21.10 1045 7.8 7.70 7.55
200 | 052 060 059 055 054|072 071 069 066 064 | 1355 560 395 335 3.15
500 | 0.42 0.51 0.50 047 0.46 | 0.54 0.56 0.54 0.51 0.50 | 27.30 10.15 7.60 7.50 7.40
1000 | 0.41 049 048 045 044 | 0.50 0.52 0.50 0.47 0.46 | 28.70 11.00 790 5.55 5.15
Q10 = 0.90, Qop = 0.85
100 | 0.23 040 0.39 0.37 0.37 | 0.58 0.56 0.54 0.52 0.52 | 21.20 5.75 4.00 3.15 2.95
200 | 0.13 027 026 024 023|039 038 035 034 032 ]34.70 1470 13.35 1290 11.90
500 | 0.15 029 0.29 027 026|029 032 032 030 0.29 3780 925 745 750 6.10
1000 | 0.14 0.28 0.28 0.26 0.25 | 0.26 0.30 0.29 0.27 0.27 | 43.65 12.75 9.50 6.90 6.25
a10 = 0.95, a0 = 0.85
100 | -0.12 0.07 0.07r 0.07 0.07 | 041 0.24 0.23 023 023 |33.00 545 330 310 295
200 | -0.07 0.10 0.11 0.10 0.10 | 0.29 0.18 0.18 0.17 0.17 | 4250 7.65 4.45 3.75 295
500 | -0.08 0.11 0.11 0.11 0.10 | 0.23 0.14 0.14 0.13 0.13 | 63.05 11.65 9.15 875 9.20
1000 | -0.09 0.09 0.10 0.09 0.09 | 020 0.11 0.11 0.10 0.10 | 69.75 10.75 6.60 580 4.90
ao = 1.00, azg = 0.85
100 | -0.23 -0.02 0.00 0.00 0.00 | 0.37 0.07 0.02 0.00 0.00 | 56.85 7.80 1.60 0.75 1.20
200 | -0.23 -0.02 0.00 0.00 0.00|0.32 0.04 0.01 0.00 0.0080.20 1450 1.20 0.30 0.60
500 | -0.23 -0.01 0.00 0.00 0.00 | 0.29 0.03 0.01 0.00 0.00 | 96.25 31.90 3.15 0.30 0.40
1000 | -0.22 -0.01 0.00 0.00 0.00 | 0.28 0.02 0.00 0.00 0.00 | 99.15 5395 6.70 0.55 040

Notes: Parameters of DGP (35) are generated as described in Table S2.
*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S4: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.85,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table S2 for details of the data generating process. Power is computed under Hi: a1,=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.

A35



Table S5: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.90

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.90
100 | 1.21  1.19 1.09 1.07r 1.03 | 1.70 1.56 1.46 1.43 141 | 890 3.65 275 270 2.15
200 | 1.49 145 138 132 1.29 |1.72 1.61 152 148 144 1745 985 7.10 6.95 6.80
500 | 1.33 129 1.23 1.15 1.13 |146 137 130 1.22 1.20 |23.15 1330 9.75 7.80 7.20
1000 | 1.31 1.27 1.20 1.12 1.10 | 140 1.32 1.24 1.16 1.14 | 27.60 18.10 10.85 7.50 7.05
a0 = 0.80, a0 = 0.90
100 | 0.65 0.72 0.63 0.62 0.60 | 1.12 1.056 0.97 096 094 | 2750 16.95 18.10 1825 19.10
200 | 0.95 095 0.92 087 0.85|1.16 1.09 1.05 1.00 0.98 | 22.45 13.05 11.10 10.25 9.15
500 | 0.86 090 086 081 0.79 |097 095 091 0.8 0.84 | 2090 11.70 895 6.25 6.0
1000 | 0.82 086 0.81 076 0.75 | 090 0.89 084 0.79 0.78 | 29.00 18.25 13.00 7.70 7.30
a9 = 0.85, agg = 0.90
100 | 0.57 0.68 0.65 0.64 0.64 | 091 0.88 0.83 0.84 0.82 |20.55 1095 825 880 8.05
200 | 0.52 061 059 056 053|073 071 069 066 063 1530 6.10 460 3.65 2.60
500 | 0.41 0.52 0.50 047 0.46 | 0.53 0.56 0.54 0.51 0.50 | 28.15 10.35 9.55 8.10 7.40
1000 | 0.40 050 048 045 044 | 049 0.52 0.50 047 0.46 | 2995 11.80 7.55 560 5.75
Q10 = 0.90, Qop = 0.90
100 | 0.25 040 0.38 0.38 0.36 | 0.58 0.56 0.52 0.52 0.50 | 19.80 5.35 3.25 340 2.70
200 | 0.12 028 0.26 025 0.23|040 038 036 034 032 |3510 14.35 13.05 11.45 12.55
500 | 0.15 029 0.28 027 026|029 032 031 030 0.29 3805 970 740 730 6.25
1000 | 0.14 0.28 0.28 0.26 0.25 | 0.26 0.30 0.29 0.27 0.27 | 43.80 12.50 9.65 6.25 5.95
a10 = 0.95, a0 = 0.90
100 | -0.12 0.07 0.07 0.07 0.07 | 042 0.25 0.23 023 023 3335 6.80 335 295 3.00
200 | -0.08 0.10 0.12 0.10 0.10 | 0.30 0.19 0.18 0.17 0.17 | 4270 855 5.65 3.85 4.00
500 | -0.07 0.11 0.12 0.11 0.11 |0.22 0.14 0.14 0.13 0.13 | 62.25 12.15 8.05 7.10 7.20
1000 | -0.08 0.09 0.10 0.09 0.09 | 0.21 0.11 0.11 0.10 0.10 | 69.85 9.8 585 515 4.50
ao = 1.00, azg = 0.90
100 | -0.23 -0.01 0.00 0.00 0.00 | 0.37 0.06 0.01 0.00 0.00 | 56.25 6.80 1.25 0.90 0.80
200 |-0.23 -0.01 0.00 0.00 0.00|0.32 0.04 0.01 0.00 0.00|79.20 1395 1.20 0.50 0.15
500 | -0.23 -0.01 0.00 0.00 0.00 | 0.29 0.03 0.01 0.00 0.00 | 96.25 34.10 3.60 0.30 0.30
1000 | -0.22 -0.01 0.00 0.00 0.00 | 0.28 0.02 0.00 0.00 0.00 | 99.40 55.15 6.95 080 0.40

Notes: Parameters of DGP (35) are generated as described in Table S2.
*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S5: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.90,

n = 100, 200, 500, 1000 and T = 200
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Notes: See the notes to Table S2 for details of the data generating process. Power is computed under Hi: a1,=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S6: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.95

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.95
100 | 1.17 1.19 1.07 1.08 1.03 | 1.65 1.57 143 1.43 142 | 830 410 270 2.65 2.60
200 | 1.1 145 138 132 1.27 |1.73 1.62 153 147 142 1770 10.60 9.10 6.00 5.95
500 | 1.34 129 1.24 116 1.13 |147 137 131 123 1.20 | 23.35 14.00 10.15 7.55 7.80
1000 | 1.31 1.27 1.20 1.12 1.10 | 140 1.32 1.24 1.15 1.14 | 27.80 17.90 10.70 7.55 6.55
a0 = 0.80, a0 = 0.95
100 | 0.64 0.71 0.62 0.63 063 |1.12 1.04 095 096 098 | 2550 17.10 17.05 17.60 20.10
200 | 0.93 096 0.93 088 0.85|1.14 1.08 1.06 1.00 0.97 | 22.30 12.25 10.65 8.50 9.60
500 | 0.87 090 087 082 0.80]098 095 093 0.87 0.85 |21.95 10.80 9.05 585 6.55
1000 | 0.82 086 0.81 076 0.75 | 090 0.89 084 0.79 0.78 | 29.70 18.55 11.05 7.60 7.60
a9 = 0.85, agg = 0.95
100 | 0.58 0.69 0.64 0.63 0.63 | 091 0.88 0.82 082 0822010 980 760 770 7.75
200 | 0.52 061 058 055 053|073 072 069 065 063 1510 565 505 3.70 2.85
500 | 0.41 0.52 0.50 047 0.46 | 0.53 0.56 0.54 0.51 0.50 | 28.95 10.25 &8.10 7.40 7.50
1000 | 0.40 0.50 0.47 045 044 | 049 0.52 0.50 0.47 0.46 | 29.90 12.35 8.65 555 4.95
Q10 = 0.90, Qop = 0.95
100 | 0.24 040 0.39 0.38 0.37 | 0.58 0.55 0.54 0.52 0.52 | 20.75 4.80 3.65 280 3.25
200 | 0.13 026 0.26 025 024|040 037 035 034 034 | 3535 14.85 11.90 11.80 13.15
500 | 0.14 029 029 026 026|030 032 032 029 0.29 |36.65 1035 7.00 6.25 6.00
1000 | 0.14 0.28 0.27 0.26 0.25 | 0.26 0.30 0.29 0.27 0.27 | 42.60 12.95 10.00 7.05 5.80
a10 = 0.95, a0 = 0.95
100 | -0.11 0.07 0.07 0.06 0.07 | 0.40 0.24 0.24 0.23 0.23 | 3245 5.25 320 275 2.70
200 | -0.08 0.11 0.11 0.10 0.10 | 0.29 0.18 0.17 0.17 0.16 | 4260 790 3.35 3.60 3.45
500 | -0.08 0.11 0.12 0.11 0.11 | 0.22 0.14 0.14 0.13 0.13 | 63.75 13.00 9.8 7.85 7.25
1000 | -0.08 0.09 0.10 0.09 0.09 | 020 0.11 0.11 0.10 0.10 | 6995 11.20 5.30 490 5.15
ao = 1.00, azg = 0.95
100 | -0.23 -0.02 0.00 0.00 0.00 | 0.37 0.06 0.01 0.00 0.00 | 57.90 8&8.00 0.95 0.95 0.90
200 |-0.23 -0.01 0.00 0.00 0.00|0.32 0.04 0.01 0.00 0.00 7955 13.15 0.70 040 0.45
500 |-0.23 -0.01 0.00 0.00 0.00|0.29 0.03 0.01 0.00 0.0096.70 31.95 3.55 0.70 0.55
1000 | -0.22 -0.02 0.00 0.00 0.00 | 0.28 0.02 0.00 0.00 0.00 |99.30 55.00 6.55 035 0.30

Notes: Parameters of DGP (35) are generated as described in Table S2.
*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S6: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.95,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table S2 for details of the data generating process. Power is computed under Hi: a1,=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S7: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 1.00

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 1.00
100 | 1.20 1.20 1.06 1.06 1.06 | 1.66 1.57 1.43 1.42 143 | 820 445 265 250 2.30
200 | 1.50 1.45 139 133 128 |1.73 1.62 154 148 1.44 |16.15 10.20 850 6.25 7.30
500 | 1.34 129 1.24 1.15 1.13 |148 136 131 1.22 1.20 |23.25 1330 9.80 7.15 7.25
1000 | 1.31 1.27 1.20 1.12 1.10 | 141 1.31 1.24 1.15 1.14 |27.35 16.65 11.85 8.00 7.05
a0 = 0.80, a0 = 1.00
100 | 0.66 0.70 0.63 0.62 061 |1.13 1.04 096 095 094 | 2700 1875 1780 17.55 18.10
200 | 0.93 097 0.93 087 0.84 |1.14 1.10 1.06 1.00 0.97 | 20.90 13.40 11.70 9.95 9.25
500 | 0.86 0.89 0.88 081 0.80|097 095 093 0.87 0.85 |21.65 11.55 9.25 6.00 6.00
1000 | 0.82 086 0.82 076 0.75 | 090 0.89 084 0.79 0.78 | 29.90 1820 11.75 9.00 7.60
a1 = 0.85, azg = 1.00
100 | 0.58 0.68 0.64 0.65 0.64 | 093 0.87 0.82 083 0.82 |21.20 1040 7.65 8.00 7.60
200 | 0.52 061 058 055 054|071 071 068 0.65 0.64 1250 590 345 295 3.05
500 | 0.42 0.52 0.50 047 0.46 | 0.54 0.56 0.54 0.50 0.50 | 27.15 9.55 880 6.45 7.75
1000 | 0.40 049 048 045 044 | 049 0.52 0.50 0.47 0.46 | 30.75 11.75 7.55 6.55 4.65
Q10 = 0.905, Qop = 1.00
100 | 0.23 040 0.39 0.39 0.38 | 0.58 0.55 0.53 0.54 052 |21.70 535 3.70 3.50 3.00
200 | 0.14 0.27 0.27 024 0.24 | 040 038 0.35 033 0.33 | 33.20 15.10 10.70 11.05 11.40
500 | 0.15 029 0.29 026 026|030 032 032 029 029 3890 995 745 720 6.8
1000 | 0.14 0.28 0.28 0.26 0.25 [ 0.26 0.30 0.29 0.27 0.27 | 44.10 1345 9.20 6.95 6.20
a10 = 0.95, a0 = 1.00
100 | -0.10 0.07 0.08 0.07 0.07 | 040 0.25 0.24 024 023 3230 6.75 350 345 2.70
200 | -0.09 0.11 0.10 0.10 0.10 | 0.31 0.19 0.17 0.17 0.16 | 42.00 850 4.25 4.70 3.25
500 | -0.07 0.11 0.11 0.11 0.11 |0.22 0.14 0.14 0.13 0.13 | 62.55 11.75 855 7.80 8.35
1000 | -0.08 0.09 0.10 0.09 0.09 | 020 0.11 0.11 0.10 0.10 | 69.50 10.80 6.10 4.25 3.95
10 = 1.00, Qon — 1.00
100 | -0.23 -0.02 0.00 0.00 0.00 | 0.37 0.06 0.02 0.00 0.00 | 56.80 7.50 1.05 0.35 0.70
200 |-0.22 -0.01 0.00 0.00 0.00|0.32 0.04 0.01 0.00 0.00 | 79.30 12.60 1.20 045 0.70
500 |-0.23 -0.01 0.00 0.00 0.00|0.29 0.03 0.01 0.00 0.00 9720 31.65 3.30 0.70 0.45
1000 | -0.22 -0.01 0.00 0.00 0.00 | 0.28 0.02 0.00 0.00 0.00 |99.30 53.50 7.30 085 045

Notes: Parameters of DGP (35) are generated as described in Table S2.
*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S7: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 1.00,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table S2 for details of the data generating process. Power is computed under Hi: a1,=a10 + K,
where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S8: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.75

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.75
100 | 1.16 1.20 1.12 1.04 1.02 | 1.67 154 149 140 139 | 9.75 340 295 230 1.85
200 | 1.45 145 138 132 1.29 |1.67 1.60 154 148 1.45 |15.65 10.05 825 7.15 6.55
500 | 1.28 1.29 1.19 1.16 1.13 |141 137 1.27 1.23 1.20 | 22.55 1345 9.55 885 7.70
1000 | 1.27 1.25 1.20 1.11 1.10 | 1.36 1.29 1.24 1.15 1.13 | 26.30 14.60 10.90 7.55 5.90
a10 = 0.80, Qo0 = 0.75
100 | 0.58 0.68 0.68 0.61 057 |1.12 1.01 1.01 094 091 | 2880 16.95 1820 18.00 18.35
200 | 0.89 096 091 086 0.86 |1.11 1.09 1.04 0.99 0.98 | 22.05 13.20 11.85 10.30 8.95
500 | 0.82 090 085 082 0.80]094 095 090 0.87 0.85 |21.30 11.70 7.95 7.65 6.6
1000 | 0.77 084 0.81 076 0.75 | 0.86 0.87 084 0.78 0.77 | 27.80 16.95 1290 820 7.30
a9 = 0.85, agg = 0.75
100 | 0.53 0.68 0.68 0.64 0.62 | 091 0.88 0.8 0.83 0.81 |2210 1020 10.15 &8.60 7.00
200 | 0.48 0.61 058 056 055|070 0.72 069 0.66 0.65 | 14.80 6.00 475 3.65 3.25
500 | 0.38 0.1 0.48 046 0.45 | 0.51 0.56 0.53 0.50 0.50 | 28.10 10.05 7.55 825 7.15
1000 | 0.37 049 048 044 044 | 046 0.51 050 0.46 0.46 |31.25 10.30 8.05 555 4.65
Q10 = 0.90, Qop = 0.75
100 | 0.19 040 0.39 0.38 0.36 | 0.58 0.55 0.54 0.53 0.50 | 25.20 5.60 3.85 3.15  2.50
200 | 0.11 028 0.27 025 0.24|038 038 036 035 033 |3485 14.10 12.00 12.70 12.90
500 | 0.10 029 0.28 026 0.26 |0.28 032 031 030 0.30 4280 1015 730 7.05 8.05
1000 | 0.10 0.27 0.27 0.26 0.25 [ 0.24 0.29 0.29 0.27 0.27 | 49.25 11.70 885 7.05 6.30
a10 = 0.95, a0 = 0.75
100 | -0.18 0.06 0.07 0.06 0.06 | 045 0.24 0.24 023 0.22 3930 590 395 275 265
200 | -0.11 0.10 0.11 0.10 0.10 | 0.30 0.19 0.18 0.17 0.17 | 4785 8.65 4.85 4.00 4.10
500 | -0.11 0.11 0.11 0.11 0.11 | 0.25 0.14 0.14 0.13 0.13 | 67.10 14.55 830 855 8.50
1000 | -0.12 0.09 0.10 0.09 0.09 | 0.22 0.11 0.11 0.10 0.10 | 7830 12,50 6.30 4.35 4.55
ao = 1.00, agg = 0.75
100 | -0.27 -0.02 0.00 0.00 0.00 | 0.41 0.07 0.02 0.00 0.00 | 64.95 855 1.80 1.00 0.90
200 | -0.26 -0.02 0.00 0.00 0.00|0.33 0.04 0.01 0.00 0.00|84.90 17.00 1.75 0.30 0.60
500 | -0.26 -0.02 0.00 0.00 0.00 | 0.32 0.03 0.01 0.00 0.00 | 97.70 40.40 4.75 0.25 0.55
1000 | -0.26 -0.02 0.00 0.00 0.00 | 0.31 0.03 0.00 0.00 0.00 |99.90 64.65 940 0.55 040

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.

*Computation of size when a0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S8: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.75,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
Hi: arg=a10 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S9: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.80

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.80
100 | 1.15 1.17 1.15 1.04 1.02 | 1.66 1.54 1.52 1.41 140 | 9.65 3.50 4.00 2.15 2.35
200 | 1.47 145 138 133 131|169 1.61 153 148 1.46 | 15.15 1045 7.25 6.85 7.00
500 | 1.28 1.29 1.20 1.14 1.13 |141 137 1.27 1.22 1.20 | 21.75 13.50 9.60 845 8.50
1000 | 1.27 1.25 1.20 1.12 1.10 | 1.37 1.29 124 1.16 1.13 | 28.15 15.25 11.45 6.60 6.30
a0 = 0.80, a0 = 0.80
100 | 0.61 0.69 0.67 0.60 059 |1.12 1.04 1.02 095 093 | 2895 19.70 19.00 19.50 18.40
200 | 0.89 096 0.91 087 0.87 |1.10 1.09 1.03 0.99 1.00 | 22.00 12.70 10.85 9.85 9.80
500 | 0.83 0.89 085 081 0.80]095 095 090 0.8 0.85 2090 1240 860 7.25 595
1000 | 0.77 0.84 0.81 076 0.75 | 0.86 0.88 084 0.79 0.77 | 28.65 16.75 13.40 9.15 7.15
a9 = 0.85, agg = 0.80
100 | 0.561 0.67 0.67 0.63 0.61 | 0.88 0.87 0.87 0.82 0.80 |21.25 10.10 9.75 735 7.80
200 | 0.46 061 058 054 054|068 072 069 064 065 | 1445 640 435 3.05 275
500 | 0.38 0.51 0.49 046 0.45 | 0.51 0.56 0.53 0.50 0.50 | 28.80 10.15 7.75 7.20 7.00
1000 | 0.36 049 048 044 044 | 046 051 050 0.46 0.46 |33.65 990 720 530 4.40
Q10 = 0.90, Qop = 0.80
100 | 0.20 0.39 040 0.38 0.36 | 0.58 0.55 0.54 0.53 0.50 | 24.10 5.70 3.35 3.50 2.75
200 | 0.10 027 0.26 025 024|039 038 035 034 0.34 | 3565 1385 11.90 12.65 12.35
500 | 0.11 028 0.28 0.27 0.26 |0.29 032 031 030 0.29 | 41.15 10,50 7.55 7.75 6.10
1000 | 0.10 0.27 0.27 0.26 0.25 [ 0.24 0.29 0.29 0.27 0.27 | 48.80 1240 9.05 7.10 5.95
a10 = 0.95, a0 = 0.80
100 | -0.16 0.06 0.07 0.07 0.06 | 044 0.25 0.24 023 0.23 3890 7.00 3.65 260 2.65
200 | -0.11 0.11 0.11 0.11 0.10 | 0.30 0.19 0.18 0.18 0.17 | 46.70 9.45 555 4.80 4.00
500 | -0.11 0.11 0.11 0.11 0.11 | 0.25 0.14 0.14 0.13 0.13 | 68.30 14.00 835 9.35 6.75
1000 | -0.12 0.09 0.10 0.09 0.09 | 0.22 0.10 0.11 0.10 0.10 | 77.75 12.10 6.05 5.05 4.25
ao = 1.00, azg = 0.80
100 | -0.28 -0.02 0.00 0.00 0.00 | 0.41 0.07 0.02 0.00 0.00 | 65.95 &880 210 0.70 0.90
200 | -0.25 -0.02 0.00 0.00 0.00 |0.33 0.04 0.01 0.00 0.00 8530 1555 1.55 040 0.40
500 | -0.26 -0.02 0.00 0.00 0.00|0.32 0.03 0.01 0.00 0.00 9795 39.15 4.80 0.50 0.50
1000 | -0.25 -0.02 0.00 0.00 0.00 | 0.31 0.03 0.00 0.00 0.00 |99.80 6555 945 050 0.50

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.

*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S9: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.80,
n = 100, 200, 500, 1000 and 7" = 200

a,,=0.80
T —— o 1 =
I\ .'l I-_\'-
1 ! “y
B E e A
08 LY Vi 08|
0.6 06+
04 04+
N =100 e N =100
02t ———— N=200 Ay ¢ 02t --—- N =200
) st bl GO
N=1000 ' N=1000
0 : : : 0 : : :
0.75 0.78 0.80 0.83 0.85 0.80 0.82 0.85 0.88 0.90
G = 0.90 By = 0.95
1 e [ 1 :
0.8 08+
0.6 06
0.4 04}
~N=100 d{r: 0 N =100
g, N =200 02l - N = 200
- ——— N=500 ———— N=500
N=1000 ! N = 1000
0 - - - 0 - - -
0.85 0.88 0.90 0.93 0.95 0.90 0.92 0.95 0.97 1.00

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
Hi: arg=a10 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S10: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.90

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.90
100 | 1.14 1.17 114 1.07r 1.02 | 1.64 153 1.51 143 139 | 9.70 3.65 335 235 2.10
200 | 1.45 144 137 132 1.30 | 1.68 1.59 1.53 148 1.45 |15.65 9.35 865 6.85 6.00
500 | 1.29 129 1.20 1.15 1.13 |142 137 1.28 1.22 1.20 |21.95 1320 9.75 9.20 7.30
1000 | 1.27 1.25 1.20 1.12 1.09 | 1.36 1.30 1.24 1.15 1.13 | 26.50 15.25 11.25 7.30 6.65
a0 = 0.80, a0 = 0.90
100 | 0.63 0.69 0.67 0.61 059 |1.11 1.03 1.02 095 093 2635 1870 19.10 1850 19.05
200 | 0.89 096 091 088 0.86 |1.10 1.09 1.03 1.00 0.99 | 20.40 13.10 10.10 10.25 9.50
500 | 0.82 091 084 081 0.80]094 096 090 0.8 0.85 |23.70 13.00 7.70 7.10 6.35
1000 | 0.78 0.84 0.81 076 0.75 | 0.86 0.87 084 0.78 0.77 | 26.90 1595 1220 7.65 6.40
a9 = 0.85, agg = 0.90
100 | 0.54 0.67 0.65 0.63 0.62 | 089 0.87 085 082 081 |21.55 9.7 88 740 7.75
200 | 0.48 0.60 058 056 054|068 070 069 0.65 0.64 | 13.00 550 3.60 350 3.30
500 | 0.38 0.52 0.48 047 0.45 | 051 0.56 0.53 0.51 0.50 | 28.95 10.65 7.85 6.65 6.40
1000 | 0.36 049 048 044 044 | 045 0.51 0.50 0.47 0.45 | 31.30 10.55 850 545 4.55
Q10 = 0.90, Qop = 0.90
100 | 0.20 0.39 0.38 0.37 0.36 | 0.58 0.54 0.53 0.52 0.50 | 23.55 4.75 395 3.60 2.45
200 | 0.10 027 0.26 024 024|039 037 036 034 033 |37.50 1545 12.75 13.20 11.70
500 | 0.10 0.28 0.28 0.27 0.26 |0.28 032 031 030 0.29 | 4220 10.60 880 7.15 7.45
1000 | 0.10 0.27 0.27 0.26 0.25 [ 0.24 0.29 0.29 0.27 0.27 | 51.60 12.00 8.50 5.80 5.35
a10 = 0.95, a0 = 0.90
100 | -0.17 0.07 0.07 0.06 0.06 | 044 0.25 0.23 023 023|377 690 355 3.15 3.05
200 | -0.10 0.11 0.11 0.10 0.10 | 0.30 0.19 0.18 0.17 0.17 | 46.05 850 5.10 4.20 3.95
500 | -0.11 0.11 0.11 0.11 0.11 | 0.24 0.14 0.14 0.13 0.13 | 69.80 13.60 9.30 8.05 8.95
1000 | -0.13 0.09 0.10 0.09 0.09 | 0.23 0.10 0.11 0.10 0.10 | 77.85 1235 640 5.05 4.25
ao = 1.00, azg = 0.90
100 | -0.28 -0.02 0.00 0.00 0.00 | 0.41 0.07 0.02 0.00 0.00 | 65.10 870 1.60 0.70 0.80
200 | -0.26 -0.02 0.00 0.00 0.00 |0.34 0.05 0.01 0.00 0.00 | 84.50 16.40 1.20 0.50 0.45
500 | -0.26 -0.02 0.00 0.00 0.00 | 0.32 0.03 0.01 0.00 0.00 | 98.35 40.20 4.20 0.75 0.75
1000 | -0.25 -0.02 0.00 0.00 0.00 | 0.31 0.03 0.00 0.00 0.00|99.75 6530 830 055 0.35

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.

*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S10: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.90,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
Hi: arg=a10 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S11: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.95

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 0.95
100 | 1.16 1.16 1.15 1.06 1.01 | 1.67 1.52 1.52 1.42 137 | 955 385 390 230 2.25
200 | 1.46 146 137 132 1.31 |1.68 1.61 153 147 1.47 |16.00 9.70 7.60 6.85 7.35
500 | 1.29 129 1.20 1.15 1.13 |142 137 1.28 1.22 1.20 | 20.75 14.60 9.50 8.05 7.65
1000 | 1.27 1.26 1.20 1.11 1.10 | 1.37 1.30 1.24 1.15 1.13 | 25.75 1545 11.35 6.95 6.50
a0 = 0.80, a0 = 0.95
100 | 0.62 0.67 0.66 0.61 057 |1.12 1.02 099 094 092 | 2735 1845 1885 17.75 19.60
200 | 0.89 0.97 0.90 087 0.8 |1.10 1.11 1.03 0.99 0.98 | 20.65 15.05 9.55 9.85 9.70
500 | 0.82 091 085 081 0.80]094 096 090 0.8 0.85 |2245 1260 795 6.95 6.45
1000 | 0.78 0.84 0.81 0.76 0.75 | 0.87 0.87 084 0.79 0.77 | 28.45 16.45 12.60 890 7.55
a9 = 0.85, agg = 0.95
100 | 0.55 0.66 0.67 0.65 0.61 | 093 0.85 0.8 083 080 |2285 950 920 7.65 6.95
200 | 0.47 059 058 056 0.56 |0.69 069 068 0.66 0.66 | 14.60 540 440 3.35 3.50
500 | 0.38 0.52 0.49 046 0.46 | 0.51 0.57 0.53 0.51 0.50 | 28.00 11.50 7.80 7.25 6.40
1000 | 0.36 049 048 044 044 | 046 0.51 050 0.46 0.46 |32.15 10.05 7.60 6.05 5.40
Q10 = 0.90, Qop = 0.95
100 | 0.21 040 040 0.36 0.37 | 0.59 0.55 0.55 0.52 0.51 |23.75 5.00 480 3.80 3.05
200 | 0.10 026 0.26 025 025|039 036 036 034 035 |38.65 13.30 1225 1290 12.55
500 | 0.11 028 0.28 0.27 026|029 032 031 030 0.29 | 4145 940 840 6.80 7.6
1000 | 0.10 0.27 0.27 0.26 0.25 [ 0.24 0.29 0.29 0.27 0.27 | 50.60 11.40 8.35 6.50 5.90
a10 = 0.95, a0 = 0.95
100 | -0.17 0.06 0.08 0.07 0.06 | 042 0.25 0.25 0.22 0.23 | 3750 6.60 440 250 2.75
200 | -0.10 0.10 0.10 0.10 0.10 | 0.30 0.18 0.17 0.17 0.17 | 45.55 8.00 4.50 4.00 4.45
500 | -0.11 0.11 0.11 0.11 0.11 | 0.25 0.14 0.14 0.13 0.13 | 67.70 1240 9.35 7.55 8.65
1000 | -0.12 0.08 0.10 0.09 0.09 | 0.22 0.10 0.11 0.10 0.10 | 7855 11.35 6.75 510 4.60
ao = 1.00, azg = 0.95
100 | -0.27 -0.02 0.00 0.00 0.00 | 0.40 0.07 0.02 0.00 0.00 | 65.10 895 180 1.20 1.20
200 | -0.26 -0.02 0.00 0.00 0.00 |0.34 0.04 0.01 0.00 0.0086.35 15.60 1.55 0.40 0.50
500 | -0.26 -0.02 0.00 0.00 0.00 | 0.32 0.03 0.01 0.00 0.00 | 98.20 40.00 4.65 0.65 0.60
1000 | -0.25 -0.02 0.00 0.00 0.00 | 0.31 0.03 0.00 0.00 0.00|99.85 64.15 945 035 0.20

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.

*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S11: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.95,
n = 100, 200, 500, 1000 and 7" = 200
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Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
Hi: arg=a10 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.

A49



Table S12: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 1.00

Bias (x100) RMSE (x100) Size* (x100)

n\T | 60 120 200 500 1000 | 60 120 200 500 1000 | 60 120 200 500 1000
Q10 = 0.75, Qop = 1.00
100 | 1.15 1.15 1.16 1.05 1.03 | 1.64 1.52 153 1.39 140 | 890 3.50 3.95 1.65 1.90
200 | 1.47 146 138 132 132|169 1.61 154 146 1.47 |15.15 990 830 6.30 6.20
500 | 1.29 129 1.20 1.15 1.14 |142 137 1.27 123 1.21 |22.10 13.10 9.25 9.00 8.15
1000 | 1.27 1.25 1.21 1.11 1.10 | 1.37 1.30 1.25 1.15 1.13 | 26.30 15.75 12.45 6.90 6.90
a0 = 0.80, a0 = 1.00
100 | 0.60 0.69 0.66 0.61 059 |1.12 1.04 1.01 095 092 | 2860 19.00 1880 17.35 17.90
200 | 0.90 096 091 089 0.86 |1.11 1.09 1.04 1.02 0.99 | 20.35 13.45 11.05 10.50 9.80
500 | 0.82 091 085 081 0.80]094 097 090 0.87 0.8 |21.80 11.75 795 7.30 6.8
1000 | 0.78 0.84 0.81 076 0.75 | 0.86 0.87 084 0.79 0.77 | 28.05 1545 11.90 880 8.10
a1 = 0.85, azg = 1.00
100 | 0.52 0.68 0.68 0.64 0.62 | 090 0.88 0.88 0.83 0.81 |23.05 10.95 10.65 7.75 7.50
200 | 0.49 061 058 056 054|069 071 067 066 064 | 1345 560 3.7 3.70 3.55
500 | 0.38 0.51 049 046 0.46 | 0.52 056 0.53 0.51 0.50 | 29.80 10.70 845 7.30 8.50
1000 | 0.36 049 048 045 044 | 045 0.51 0.50 0.47 0.46 |32.65 995 800 580 4.90
Q10 = 0.90, Qop = 1.00
100 | 0.20 0.38 0.38 0.37 0.35 | 0.57 0.55 0.53 0.52 049 | 2395 590 355 295 2.05
200 | 0.10 027 027 024 024|038 037 036 034 034 |37.65 1275 11.95 12.70 11.95
500 | 0.11 029 0.28 026 0.26|0.29 032 031 029 0.29 | 4150 1095 7.00 6.55 7.15
1000 | 0.10 0.27 0.27 0.26 0.25 [ 0.24 0.29 0.29 0.27 0.27 | 50.45 11.55 9.30 6.40 7.25
a10 = 0.95, a0 = 1.00
100 | -0.16 0.06 0.07 0.06 0.06 | 044 0.25 0.24 023 023 |3685 6.95 430 285 3.40
200 | -0.11 0.10 0.11 0.10 0.10 | 0.30 0.19 0.18 0.17 0.17 | 4740 820 525 4.20 4.55
500 | -0.11 0.10 0.11 0.11 0.11 | 0.24 0.14 0.14 0.13 0.13 | 68.00 1490 870 7.85 7.40
1000 | -0.12 0.09 0.10 0.09 0.09 | 0.22 0.10 0.11 0.10 0.10 | 7810 11.60 4.80 525 5.20
10 = 1.00, Qon — 1.00
100 | -0.28 -0.02 0.00 0.00 0.00 | 0.42 0.07 0.02 0.00 0.00 | 65.75 860 195 0.85 0.95
200 | -0.25 -0.02 0.00 0.00 0.00 |0.34 0.05 0.01 0.00 0.00|84.65 17.15 145 035 045
500 | -0.26 -0.02 0.00 0.00 0.00 |0.32 0.03 0.01 0.00 0.00 | 98.45 39.55 5.00 0.55 0.35
1000 | -0.25 -0.02 0.00 0.00 0.00 | 0.31 0.03 0.00 0.00 0.00|99.75 6545 9.10 0.20 0.60

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.

*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S12: Empirical power functions associated with testing different strengths of first factor in the case of

experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 1.00,
n = 100, 200, 500, 1000 and 7" = 200

a,,=0.80
1 — — 1
| ! Y
- ! A
A fid: % k)
0.8 L B 08
0.6 0.6
04 04|
< N=100 ‘d (¢ - | e N =100
02} ———— N =200 02+ - N =200 _
-~~~ N=500 ~— -~ N=500 i
N = 1000 N=1000
0 : : : 0 : : :
0.75 0.78 0.80 0.83 0.85 0.80 0.82 0.85 0.88 0.90
G = 0.90 By = 0.95
1 < T 1 T -
0.8 08+
0.6 067
0.4 04}
~N=100 AP : ] e N =100
02} ——— N =200 02f - N =200
- === N=500 —-——- N=500
N=1000 1 N = 1000
0 : ] : 0 : : :
0.85 0.88 0.90 0.93 0.95 0.90 0.02 0.95 0.97 1.00

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
Hi: arg=a10 + K, where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.

A51



Table S13: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed (uncorrelated) factors - Gaussian errors), when the strength of the second factor is set to 0.85

Bias (x100) RMSE (x100) Size* (x100)

n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a0 = 0.75, a0 = 0.85
100 | 1.28 1.20 1.09 1.09 1.02 |1.71 1.57 145 145 139 | 750 420 2,60 2.75 220
200 | 1.2 145 138 132 128 |1.74 1.61 153 148 1.43 | 1555 995 845 7.25 6.35
500 | 1.38 1.29 1.23 1.15 1.13 |1.51 137 131 1.22 1.20 |22.75 12.70 10.35 7.40 6.80
1000 | 1.35 128 1.20 1.12 1.11 |1.44 132 124 1.16 1.14 |27.70 1840 11.00 6.85 7.35
a1g = 0.80, agg = 0.85
100 | 0.70 0.72 0.63 0.62 0.60 | 1.13 1.056 0.97 097 094 | 24.20 18.60 1845 19.45 18.50
200 | 1.00 096 093 088 0.84 |1.19 1.10 1.05 1.00 0.97 | 21.85 1280 11.10 9.70 9.10
500 | 0.92 091 0.87 082 0.80 |1.02 096 092 087 0.85|21.30 1320 7.90 7.25 5.80
1000 | 0.86 0.86 0.81 076 0.75 | 093 0.89 084 0.79 0.78 | 29.35 17.85 13.00 9.00 7.40
Q10 = 0.857 Qon — 0.85
100 | 0.64 0.69 0.64 0.64 0.62 | 093 0.88 0.82 083 0.81 |1850 1030 7.8 7.70 7.55
200 | 0.58 0.60 059 055 054 |07 071 069 066 064 | 11.45 570 395 335 3.15
500 | 0.47 0.52 0.50 047 0.46 | 0.57 0.56 0.54 0.51 0.50 | 23.65 10.35 7.65 7.50 7.40
1000 | 0.45 0.50 0.48 045 0.44 |0.53 0.52 050 0.47 046 | 25.70 11.15 8.05 5.55 5.15
a10 = 0.90, a0 = 0.85
100 | 0.29 040 0.39 0.37 0.37 | 058 0.56 0.54 0.52 052 | 1730 550 3.95 3.15 295
200 | 0.19 028 0.26 024 023|039 038 035 034 0.32]29.90 14.25 13.20 1290 11.90
500 | 0.20 029 0.29 027 026|030 033 032 030 0.29 3035 9.00 740 750 6.10
1000 | 0.19 0.29 0.28 0.26 0.25 | 0.27 0.30 0.29 0.27 0.27 | 34.95 1250 9.55 6.90 6.25
a1g = 0.95, agg = 0.85
100 | -0.06 0.07 0.07 0.07 0.07 | 036 0.24 0.23 023 0232725 465 320 310 295
200 |-0.02 0.11 0.11 0.10 0.10 | 0.25 0.18 0.18 0.17 0.17 | 35.35 6.85 430 3.75 2.95
500 | -0.03 0.11 0.12 0.11 0.10 | 0.19 0.14 0.14 0.13 0.13 | 54.85 10.35 9.15 875 9.20
1000 | -0.03 0.10 0.10 0.09 0.09 | 0.16 0.11 0.11 0.10 0.10 | 59.20 895 6.60 580 4.90
a0 = 1.007 o) = 0.85
100 | -0.17 -0.01 0.00 0.00 0.00 | 0.30 0.05 0.01 0.00 0.00 | 4845 5.60 135 0.75 1.20
200 |-0.18 -0.01 0.00 0.00 0.00|0.26 0.03 0.01 0.00 0.00 7205 9.8 095 030 0.60
500 | -0.17 -0.01 0.00 0.00 0.00 | 0.23 0.02 0.00 0.00 0.00 | 93.40 22.75 2.05 0.30 0.40
1000 | -0.17 -0.01 0.00 0.00 0.00 | 0.21 0.02 0.00 0.00 0.00 | 98.55 41.60 4.25 0.55 0.40

Notes: Parameters of DGP (35) are generated as described in Table S4. The factors, f1, f2, have correlation given by p12 =

corr(fi, f2) = 0.0.
*Computation of size when a0 = 1.00, j = 1,2, follows the randomisation procedure proposed in Trapani (2018).
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Table S14: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2A (two observed (uncorrelated) factors - non-Gaussian errors), when the strength of the second factor is set to
0.85

Bias (x100) RMSE (x100) Size* (x100)

n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a1 = 0.75, Qo0 = 0.85
100 | 1.19 119 1.15 1.07 103 | 1.67 154 152 143 140 | 805 4.00 3.60 240 225
200 | 1.1 147 139 132 1.32 |1.72 1.62 1.55 147 1.47 |14.05 9.60 830 7.10 6.60
500 | 1.33 130 1.21 1.15 1.13 |1.46 138 128 1.22 1.20 | 2255 13.60 10.05 8.05 8.20
1000 | 1.31 126 1.20 1.12 1.10 | 1.40 1.30 124 1.16 1.14 |2690 1515 1145 7.70 6.40
a9 = 0.80, agg = 0.85
100 | 0.69 0.67 0.65 0.61 058 | 1.14 1.00 1.00 0.95 092 |25.70 17.95 1855 17.95 19.70
200 | 095 097 091 089 086|114 110 1.05 1.01 098 | 19.60 12.60 11.45 9.75 7.75
500 | 0.88 090 085 0.82 0.80|098 096 090 0.87 0.86 | 20.30 12.70 825 7.00 7.10
1000 | 0.83 085 0.81 076 0.75 | 091 088 084 0.79 0.77 | 26.60 17.35 11.65 840 6.65
a10 = 0.85, a0 = 0.85
100 | 0.57 0.67 0.68 0.62 0.61 | 0.89 0.86 0.87 081 0.79 | 19.65 9.60 9.15 7.65 6.90
200 | 0.54 061 059 055 054|072 072 069 0.65 0.64 | 12.60 545 415 3.15 3.45
500 | 0.43 053 049 046 046 | 054 057 053 051 050 | 2545 11.75 735 845 7.10
1000 | 0.42 050 0.48 044 043 | 0.50 0.52 0.50 0.47 0.45 |27.55 11.15 7.60 545 4.10
a10 = 0.907 a0 = 0.85
100 | 0.27 040 039 037 0.36 | 0.58 0.54 054 052 051 | 1995 390 355 3.10 2.85
200 | 0.15 028 0.26 024 0.24|038 038 036 0.33 0.34 | 30.85 14.00 12.60 12.25 12.55
500 | 0.16 0.29 0.28 0.27 0.26 | 029 033 031 030 0.29 | 3440 10.70 7.00 7.90 7.40
1000 | 0.15 0.28 0.28 0.26 0.25 | 024 0.29 0.29 0.27 0.27 | 40.65 1095 980 555 6.70
a1g = 0.95, agy = 0.85
100 | -0.10 0.07 0.08 0.06 0.06 | 0.39 0.25 0.24 0.22 0.22 |31.95 6.55 3.50 225 235
200 | -0.06 0.11 0.11 0.10 0.10 |0.26 0.19 0.18 0.18 0.17 | 3850 7.70 435 475 3.95
500 |-0.06 0.11 0.11 0.11 0.10 | 0.20 0.14 0.13 0.13 0.13 | 58.55 12.55 845 7.55 7.80
1000 | -0.07 0.09 0.10 0.09 0.09 | 0.18 0.11 0.11 0.10 0.10 | 67.90 945 555 4.60 5.05
Q10 — 1.00, a0 — 0.85
100 | -0.21 -0.01 0.00 0.00 0.00 | 0.33 0.05 0.01 0.00 0.00 | 57.25 5.95 1.20 1.10 0.85
200 |-0.19 -0.01 0.00 0.00 0.00|0.27 0.04 0.01 0.00 0.00 | 78.20 11.65 1.45 0.55 0.50
500 |-0.20 -0.01 0.00 0.00 0.00|0.26 0.03 0.01 0.00 0.00 9520 29.60 295 035 0.25
1000 | -0.20 -0.01 0.00 0.00 0.00 | 0.25 0.02 0.00 0.00 0.00 | 99.45 52.55 6.10 0.35 045

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper. The factors, f1, f2, have correlation given

by p12 = corr(fi, f2) = 0.0.
*Computation of size when a0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Table S15: Bias, RMSE and Size (x100) of estimating the strength of strongest factor in the case of experiment
3A (unobserved single factor - with Gaussian errors instead) using cross section average

Bias (x100) RMSE (x100) Size* (x100)
n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
@10 — 0.75

100 | 2.19 239 272 431 6.78 | 275 2.84 3.13 4.68 7.07 |24.75 26.65 3490 73.60 97.80
200 | 2.06 2.03 2.12 258 3.49 | 238 228 236 278 3.68 |32.75 27.80 32.10 51.40 82.25
500 | 1.71 1.61 1.55 1.60 1.80 |193 1.75 1.67 1.71 1.91 | 35.75 31.95 28.85 29.75 41.50
1000 | 1.54 146 1.38 1.36 1.41 [1.69 1.55 145 142 1.46 | 39.00 32.20 25.05 23.90 28.55
10 = 0.80
100 | 1.19 129 140 216 341 |1.64 1.65 1.73 246 3.68 | 28.95 27.25 31.10 56.10 86.20
200 | 1.24 122 1.23 140 1.77 |146 138 139 153 1.90 | 30.05 23.70 25.056 33.10 56.30
500 | 1.05 1.03 0.98 097 1.03 |1.18 1.11 1.05 1.04 1.09 | 26.80 22.25 18.25 16.80 19.30
1000 | 0.93 092 0.87 085 0.85 |1.02 097 091 0.88 0.88 |33.30 25.10 19.80 15.85 16.85
a1 = 0.85
100 | 0.88 094 097 126 1.76 | 1.16 1.14 1.17 1.45 196 | 2295 21.05 23.15 38.20 63.85
200 | 0.69 071 071 075 0.88 |08 083 081 0.85 098 | 1510 10.55 9.45 10.40 19.10
500 | 0.47 057 054 052 054|065 063 059 057 058 |2595 15.65 11.95 10.35 10.10
1000 | 0.47 0.52 0.49 048 0.47 [ 055 0.55 0.52 050 049 | 28.15 14.70 10.10 7.80 8.25
Q10 = 0.90
100 | 043 0.50 0.51 0.61 0.80 | 0.68 0.66 0.66 0.75 096 |15.15 &850 7.60 11.95 25.40
200 | 0.25 0.32 0.31 031 0.35 | 042 0.42 040 040 0.44 | 24.55 12.80 12.60 10.10 12.85
500 | 0.23 032 030 028 0.28 033 035 033 032 0312865 1210 850 7.90 6.25
1000 | 0.20 0.29 0.28 0.27 0.26 | 0.27 0.31 0.29 0.28 0.28 | 3455 13.70 990 7.75 6.95
10 = 0.95
100 | 0.01 0.10 0.12 0.14 0.19 | 033 0.27 0.27 0.28 0.34 | 2080 5.50 5.10 6.60 10.75
200 | 0.02 0.12 0.12 0.12 0.13 | 0.23 0.20 0.19 0.19 0.20 | 2825 7.25 595 6.15 6.50
500 | 0.01 0.12 0.12 0.11 0.11 | 0.16 0.15 0.14 0.14 0.13 | 47.25 12.10 9.55 825 7.85
1000 | -0.02 0.10 0.10 0.09 0.09 | 0.15 0.11 0.11 0.11 0.10 | 55.05 8.00 595 5.00 5.65
a0 = 1.00
100 | -0.12 -0.01 0.00 0.00 0.00 | 0.23 0.03 0.00 0.00 0.00 |39.35 3.20 095 1.05 1.10
200 |-0.14 -0.01 0.00 0.00 0.00|0.21 0.03 0.00 0.00 0.00 6550 7.10 0.55 0.65 0.55
500 |-0.14 -0.01 0.00 0.00 0.00|0.19 0.02 0.00 0.00 0.0091.60 20.45 1.80 0.25 0.40
1000 | -0.15 -0.01 0.00 0.00 0.00 [ 0.20 0.02 0.00 0.00 0.00 | 98.20 39.85 3.35 0.50 0.35

Notes: Parameters of DGP (35) are generated as described in Table Sla. ag = aio is estimated by regressing

. . . _ -1
observations, xi;, on an intercept and the cross section averages of @i, Tr =n~" Y .| @i, for
t=1,2,...,T.

*Computation of size when a19 = 1.00 follows the randomisation procedure proposed in Trapani (2018).
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Figure S13: Empirical power functions associated with testing different strengths of strongest factor in the case
of experiment 3A (unobserved single factor - with Gaussian errors instead) using cross section average, when

n = 100, 200, 500, 1000 and T = 200
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where kK = —0.05, —0.045, ...,0.045,0.05. The number of replications is set to R = 2000.
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Table S16: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - with Gaussian errors instead) using cross section average, when ayg = 1.00

Bias (x10,000) RMSE (x10,000)

n\T 60 120 200 500 1000 ‘ 60 120 200 500 1000
a1 = ]..00, a0 = 0.51

100 | -13.80 -0.60 -0.01 0.00 0.00 | 25.08 3.75 0.49 0.00 0.00
200 | -15.42 -0.66 -0.02 0.00 0.00 | 23.47 2.63 0.47 0.00 0.00
500 | -15.54 -0.90 -0.04 0.00 0.00 | 20.63 2.12 0.35 0.00 0.00
1000 | -16.07 -0.95 -0.05 0.00 0.00 | 20.89 1.70 0.29 0.03 0.00
a0 = 1.007 o) = 0.75

100 | -14.47 -0.v4 -0.03 0.00 0.00 | 25.78 4.14 0.85 0.00 0.00
200 | -15.45 -0.66 -0.02 0.00 0.00 | 23.56 2.57 0.42 0.00 0.00
500 | -15.81 -0.89 -0.04 0.00 0.00 | 21.13 2.11 0.37 0.00 0.00
1000 | -16.41 -0.97 -0.05 0.00 0.00 | 21.56 1.74 0.27 0.03 0.00
a0 = 1.00, a0 = 0.95

100 | -18.19 -1.31 -0.16 0.00 0.00 | 33.50 5.70 1.89 0.00 0.00
200 | -19.47 -1.81 -0.18 0.00 0.00 | 30.97 5.09 1.29 0.00 0.00
500 | -19.50 -1.96 -0.20 0.00 0.00 | 27.39 3.85 0.85 0.00 0.00
1000 | -20.15 -1.98 -0.19 0.00 0.00 | 27.39 3.85 0.85 0.00 0.00
10 = ]..00, Qon = 1.00

100 | -0.55 0.00 0.00 0.00 0.00 | 3.45 0.00 0.00 0.00 0.00
200 | -0.90 -0.01 0.00 0.00 0.00 | 3.29 0.37 0.00 0.00 0.00
500 | -0.95 -0.01 0.00 0.00 0.00 | 243 0.18 0.00 0.00 0.00
1000 | -0.96 -0.02 0.00 0.00 0.00 | 1.96 0.15 0.00 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table S2; with p12 =

corr(fi, f2) = 0.0. ap = max(a10,@20) is estimated by regressing observations, x;, on

an intercept and the cross section average of zit, Tt =n~' > 1| @y, for t =1,2,...,T.
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Table S17: Bias and RMSE (x100) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - with Gaussian errors instead) using cross section average, when ayg = 0.95

Bias (x100) RMSE (x100)

n\T 60 120 200 500 1000 ‘ 60 120 200 500 1000
a1g = 0.95, agy = 0.51

100 | 0.05 0.19 0.24 039 0.59 | 038 035 040 0.54 0.72
200 | 0.03 0.15 0.16 0.21 0.31 | 0.26 0.23 0.24 0.30 0.39
500 | 0.01 0.13 0.13 0.14 0.16 | 0.17 0.16 0.16 0.17 0.19
1000 | -0.02 0.10 0.11 0.10 0.11 |0.15 0.12 0.12 0.12 0.13
Q10 = 0.957 Qon — 0.75

100 | 0.73 1.27 1.55 1.75 1.78 | 1.02 1.42 1.64 182 1.85
200 | 048 096 1.24 152 1.55 |0.70 1.08 1.31 1.55 1.58
500 | 0.25 0.61 0.84 1.19 1.26 | 043 0.72 091 1.21 1.27
1000 | 0.14 0.42 0.59 095 1.07 | 0.30 0.51 0.67 097 1.07
a0 = 0.95, a0 = 0.95

100 | 3.53 4.01 4.04 4.07 4.06 | 3.58 4.03 4.06 4.09 4.07
200 | 3.35 3.89 394 396 397|339 390 395 397 3.98
500 | 3.16 3.74 3.82 3.83 3.83 |3.20 3.75 3.82 383 3.84
1000 | 3.03 3.63 3.71 3.73 3.72 | 3.06 3.63 3.71 3.73 3.72
a1g = 0.95, agy = 1.00

100 | -0.17 -0.02 0.00 0.00 0.00 |0.32 0.06 0.01 0.00 0.00
200 | -0.19 -0.02 0.00 0.00 0.00 | 0.30 0.05 0.01 0.00 0.00
500 | -0.21 -0.02 0.00 0.00 0.00 | 0.30 0.04 0.01 0.00 0.00
1000 | -0.21 -0.02 0.00 0.00 0.00 | 0.29 0.03 0.01 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table S2, with p12 =

corr(fi, f2) = 0.0. ap = max (10, @20) is estimated by regressing observations, x;, on

an intercept and the cross section averages of i, Ty = n ™! S i, fort=1,2,...,T.
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Table S18: Bias and RMSE (x10,000) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - non-Gaussian errors) using first principal component, when a19 = 1.00

Bias (x10,000) RMSE (x10, 000)

n\T 60 120 200 500 1000 ‘ 60 120 200 500 1000
a1 = ]..00, o0 = 0.51

100 | -15.95 -12.28 -8.11 -6.40 -5.11 | 59.36 55.00 40.19 32.55 26.69
200 | -9.33 -450 -4.12 -2.81 -2.35| 38.07 27.54 2459 17.38 13.90
500 | -4.23 -1.81 -1.60 -1.55 -1.40|19.34 14.44 12.84 11.71 10.53
1000 | -2.49 -1.14 -0.62 -0.76 -0.61| 10.24 9.32 580 7.20 6.46
a0 = 1.007 o) = 0.75

100 | -20.58 -9.43 -7.25 -5.78 -5.26 | 74.22 45.35 37.38 30.90 26.32
200 | -9.84 -441 -402 -284 -2.10|37.74 25.85 24.80 17.88 13.52
500 | -5.27 -3.256 -1.62 -1.27 -0.86 | 20.15 19.81 12.77 9.53 6.86
1000 | -3.17 -1.27 -1.13 -0.57 -0.57 | 1234 892 956 5.01 4.98
a0 = 1.00, a0 = 0.95

100 | -15.52 -2.55 -0.44 0.00 0.00 | 35.18 15.52 5.22 0.00 0.00
200 | -14.67 -243 -0.37 0.00 -0.02|27.82 1255 4.19 021 0.85
500 | -12.93 -1.59 -0.27 0.00 0.00 | 21.10 4.56 2.56 0.00 0.00
1000 | -12.17 -1.62 -0.26 0.00 0.00 | 21.10 4.56 256 0.00 0.00
Q10 = ]..00, aon = 1.00

100 | -1.00 -0.14 0.00 0.00 0.00 |10.15 5.68 0.00 0.00 0.00
200 | -0.76 0.00 0.00 0.00 0.00 | 322 021 0.00 0.00 0.00
500 | -0.75 -0.01 0.00 0.00 0.00 | 284 019 0.00 0.00 0.00
1000 | -0.v3 -0.02 0.00 0.00 0.00 | 140 0.16 0.03 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper,

with p12 = corr(fi, f2) = 0.0. ap = max(auo, a20) is estimated by regressing observations, ¢,

on an intercept and the first principal component of x;+, i =1,2,...,n,t =1,2,...,T.
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Table S19: Bias and RMSE (x100) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - non-Gaussian errors) using first principal component, when a;9 = 0.95

Bias (x100) RMSE (x100)
n\T | 60 120 200 500 1000 ‘ 60 120 200 500 1000
ag = 0.95, agy = 0.51
100 | 291 3.15 337 3.72 4.00 | 3.11 3.32 3.51 3.83 4.08
200 | 3.22 342 361 395 414|334 353 3.70 4.01 4.18
500 | 347 3.73 390 4.17 431 | 358 3.80 3.96 4.20 4.34
1000 | 3.60 3.87 4.04 429 441 |3.70 3.94 4.08 431 443
Q10 = 0.95, Qop = 0.75
100 | 298 3.28 349 3.78 4.01 | 3.14 341 3.59 3.86 4.08
200 | 3.25 3,50 3.71 401 419 |3.36 359 3.78 4.06 4.23
500 | 3.47 3.78 397 423 436 | 3.57 3.85 4.02 425 4.38
1000 | 3.60 3.90 4.08 4.33 4.46 | 3.69 3.96 4.12 435 4.47
a10 = 0.95, a0 = 0.95
100 | 3.94 4.16 4.18 4.18 4.18 | 3.98 4.18 420 4.20 4.20
200 | 3.96 4.12 413 4.13 4.14 | 3.99 4.13 4.14 4.14 4.15
500 | 3.96 4.11 413 4.14 4.15 | 3.98 4.12 414 4.15 4.17
1000 | 3.96 4.11 4.14 4.18 425|398 4.13 4.16 4.20 4.27
a1g = 0.95, agy = 1.00
100 | -0.15 -0.02 -0.01 0.00 0.00 | 0.33 0.09 0.09 0.01 0.00
200 | -0.14 -0.02 0.00 0.00 0.00 |0.25 0.06 0.04 0.00 0.00
500 | -0.12 -0.02 0.00 0.00 0.00 | 0.21 0.06 0.02 0.00 0.00
1000 | -0.12 -0.02 0.00 0.00 0.00 | 0.18 0.03 0.01 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main

paper, with p12 = corr(fi, f2) = 0.0. ag = max(ai0, @20) is estimated by regressing,

observations, x;; on an intercept and the first principal component of x;:, i = 1,2,...,n,

t=1,2,...,T.
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Table S20a: Bias and RMSE (x10,000) of estimating factor strength in the case of experiment 4 (observed
misspecified single factor - Gaussian errors) when set to 1.00

Bias (x10,000) RMSE (%10, 000)

n\T 60 120 200 500 1000 60 120 200 500 1000
a10 = 1.00, a0 = 0.75

100 | -12.34 -0.70 -0.03 0.00 0.00 | 23.40 4.15 0.85 0.00 0.00
200 | -13.71 -0.61 -0.04 0.00 0.00 | 22.09 2.62 0.60 0.00 0.00
500 | -13.32 -0.75 -0.05 0.00 0.00 | 1858 1.85 0.39 0.00 0.00
1000 | -14.42 -0.78 -0.03 0.00 0.00 | 19.22 1.47 0.22 0.00 0.00
ayg = 1.00, azg = 0.80

100 | -12.00 -0.68 -0.01 0.00 0.00 | 23.20 3.97 0.49 0.00 0.00
200 | -13.14 -0.58 -0.02 0.00 0.00 | 22.09 2.56 0.47 0.00 0.00
500 | -12.67 -0.71 -0.04 0.00 0.00 | 18.02 1.77 0.37 0.00 0.00
1000 | -13.77 -0.70 -0.03 0.00 0.00 | 18.77 1.37 0.24 0.00 0.00
Q10 = 1.00, Qop = 0.85

100 | -10.46 -0.56 -0.03 0.00 0.00 | 21.10 3.62 0.85 0.00 0.00
200 | -12.15 -0.51 -0.05 0.00 0.00 | 21.82 2.39 0.67 0.00 0.00
500 | -13.00 -0.62 -0.04 0.00 0.00 | 17.68 1.66 0.36 0.00 0.00
1000 | -13.00 -0.63 -0.03 0.00 0.00 | 18.53 1.28 0.20 0.00 0.00
a10 = 1.00, a0 = 0.90

100 | -9.53 -0.44 -0.02 0.00 0.00 | 20.67 3.24 0.69 0.00 0.00
200 | -10.86 -0.42 -0.01 0.00 0.00 | 21.63 2.06 0.37 0.00 0.00
500 | -10.58 -0.50 -0.03 0.00 0.00 | 16.93 1.47 0.31 0.00 0.00
1000 | -11.85 -0.53 -0.02 0.00 0.00 | 18.75 1.12 0.19 0.00 0.00
a1g = 1.00, agy = 0.95

100 | -8.02 -0.32 -0.02 0.00 0.00 | 19.48 2.72 0.69 0.00 0.00
200 | -949 -0.28 0.00 0.00 0.00 | 22.33 1.69 0.21 0.00 0.00
500 | -9.04 -0.35 -0.02 0.00 0.00 | 17.65 1.21 0.24 0.00 0.00
1000 | -10.11 -0.36 -0.01 0.00 0.00 | 19.09 0.90 0.14 0.00 0.00
Q10 = 1.00, Qop = 1.00

100 | -6.14 -0.13 0.00 0.00 0.00 | 19.13 1.69 0.00 0.00 0.00
200 | -7.31 -0.14 0.00 0.00 0.00 | 24.87 1.22 0.00 0.00 0.00
500 | -6.82 -0.14 -0.01 0.00 0.00 | 19.43 0.77 0.14 0.00 0.00
1000 | -7.92 -0.14 0.00 0.00 0.00 | 22.49 0.57 0.06 0.00 0.00

Notes: The parameters of the true DGP, (35), are generated as described in Table S2. The,

factors f1, f2, have correlation given by pi2 = corr(fi, f2) = 0.3. We set 10 = 1 and azo in

the range [0.75,1.00] with 0.05 increments. The misspecified model assumes the existence of
factor fi only.
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Table S20b: Bias and RMSE (x10,000) of estimating factor strength in the case of experiment 4 (observed
misspecified single factor - Gaussian errors) when set to 1.00

Bias (x10,000) RMSE (%10, 000)
n\T 60 120 200 500 1000 60 120 200 500 1000
a10 = 1.00, a0 = 0.75
100 | -28.90 -1.80 -0.12 0.00 0.00 | 54.62 795 1.62 0.00 0.00
200 | -28.50 -1.41 -0.11 0.00 0.00 | 48.65 4.75 1.08 0.00 0.00
500 | -24.00 -1.46 -0.11 0.00 0.00 | 36.81 3.28 0.67 0.00 0.00
1000 | -24.21 -146 -0.06 0.00 0.00 | 3520 2.87 0.31 0.00 0.00
ag = 1.00, azg = 0.80
100 | -33.38 -2.08 -0.10 0.00 0.00 | 65.02 9.26 146 0.00 0.00
200 | -32.24 -1.87 -0.12 0.00 0.00 | 59.39 6.18 1.10 0.00 0.00
500 | -27.52 -1.75 -0.14 0.00 0.00 | 45.11 3.99 0.89 0.00 0.00
1000 | -27.65 -1.66 -0.09 0.00 0.00 | 42.68 3.27 0.39 0.00 0.00
Q10 = 1.00, Qop = 0.85
100 | -37.99 -243 -0.14 0.00 0.00 | 74.29 10.28 2.02 0.00 0.00
200 | -37.21 -2.18 -0.10 0.00 0.00 | 72.06 7.16 1.01 0.00 0.00
500 | -32.84 -2.06 -0.18 0.00 0.00 | 56.60 4.92 1.07 0.00 0.00
1000 | -32.84 -2.04 -0.12 0.00 0.00 | 54.84 4.67 0.50 0.00 0.00
a10 = 1.00, a0 = 0.90
100 | -44.60 -2.97 -0.19 0.00 0.00 | 92.88 14.24 235 0.00 0.00
200 | -44.05 -2.65 -0.15 0.00 0.00 | 90.05 8.67 1.27 0.00 0.00
500 | -38.84 -2.50 -0.20 0.00 0.00 | 73.68 6.25 1.16 0.00 0.00
1000 | -40.27 -2.45 -0.16 0.00 0.00 | 73.66 5.72 0.71 0.00 0.00
a1g = 1.00, agg = 0.95
100 | -52.73 -3.58 -0.19 0.00 0.00 | 115.31 14.78 235 0.00 0.00
200 | -53.44 -3.11 -0.16 0.00 0.00 | 117.70 10.48 1.25 0.00 0.00
500 | -48.19 -3.16 -0.26 0.00 0.00 | 100.33 8.26 1.67 0.07 0.00
1000 | -51.08 -3.03 -0.19 0.00 0.00 | 101.56 7.76 0.87 0.00 0.00
Q10 = 1.00, Qop = 1.00
100 | -61.81 -3.95 -0.25 0.00 0.00 | 142.02 17.77 2.44 0.00 0.00
200 | -65.94 -3.87 -0.24 0.00 0.00 | 162.53 12,99 1.56 0.00 0.00
500 | -62.15 -3.94 -0.33 0.00 0.00 | 143.05 10.79 2.00 0.07 0.00
1000 | -68.10 -3.99 -0.24 0.00 0.00 | 153.47 10.59 0.99 0.00 0.00

Notes: The parameters of the true DGP, (35), are generated as described in Table S2. The,

factors f1, f2, have correlation given by pi2 = corr(fi, f2) = 0.0. We set 10 = 1 and azo in

the range [0.75,1.00] with 0.05 increments. The misspecified model assumes the existence of

factor fi only.
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Table S21: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (6 = 1/4,
p=10.05)

Bias (x100) RMSE (x100) Size* (x100)

n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a10 = 0.757 a0 = 0.85
100 | 0.28 041 039 034 030|101 086 0.84 0.79 0.76 | 1575 470 335 3.55 2.35
200 | 0.63 0.75 070 065 0.63 | 094 092 087 0.81 0.79 | 19.85 11.00 7.35 5.60 5.15
500 | 0.53 0.64 058 054 0.51 072 0.73 067 0.62 0.59 | 21.05 9.55 6.25 4.40 4.30
1000 | 0.55 0.63 0.60 0.55 0.53 | 0.69 0.68 0.64 0.59 0.57 | 2890 14.65 1030 6.95 5.75
a9 = 0.80, agg = 0.85
100 | -0.02 0.14 0.13 0.10 0.08 | 0.78 0.59 0.58 0.56 0.52 | 19.30 3.25 3.15 235 1.25
200 | 0.31 047 043 042 039 | 062 0.61 057 056 0.52|19.85 755 420 4.60 290
500 | 0.30 0.45 043 040 0.39 |0.49 0.52 049 0.45 044 |30.25 11.35 870 645 6.00
1000 | 0.30 044 042 039 038 | 044 047 045 041 040 | 3275 13.50 945 6.55 4.65
Q10 = 0.85, Qon = 0.85
100 | 0.08 0.32 032 0.29 0.28 |0.62 0.52 0.51 047 0.46 | 30.35 7.65 590 5.40 4.25
200 | 0.09 028 027 025 024 044 040 038 036 0.34|3295 11.70 8.65 7.10 6.35
500 | 0.03 024 022 020 0.20 031 029 027 025 024 |4195 840 6.00 590 5.05
1000 | 0.05 0.23 0.23 0.21 0.20 | 0.27 0.26 0.26 0.23 0.22 | 46.85 13.30 9.20 6.35 4.00
a10 = 0.90, a0 = 0.85
100 | -0.07 0.18 0.18 0.17 0.16 |0.51 033 033 031 030 |36.95 550 3.00 240 2.05
200 | -0.15 0.08 0.07r 0.06 0.06 |0.38 0.21 0.19 0.18 0.17 | 4280 820 3.20 2.60 2.30
500 | -0.11 0.12 0.13 0.12 0.11 | 0.28 0.17 0.16 0.15 0.15 | 53.10 10.50 5.70 4.85 4.15
1000 | -0.09 0.13 0.14 0.13 0.12 {024 0.15 0.15 0.14 0.14 | 66.95 11.95 875 520 5.05
a1g = 0.95, agy = 0.85
100 | -0.32 -0.03 -0.02 -0.03 -0.02|0.52 0.19 0.17 0.16 0.16 | 53.00 10.95 5.60 3.85 4.70
200 |-0.23 0.02 0.03 003 0.02 037 012 0.10 0.10 0.10 | 63.70 10.55 3.50 3.30 2.40
500 |-0.22 0.03 0.05 0.04 0.04 | 032 0.08 0.07 0.07 0.07 | 7885 1320 230 1.80 1.65
1000 | -0.22 0.02 0.04 0.04 0.04 | 0.30 0.05 0.05 0.05 0.05 |90.55 24.70 10.15 8.60 7.55
a0 = 1.00, ) = 0.85
100 | -0.32 -0.02 0.00 0.00 0.00 | 0.46 0.07 0.02 0.00 0.00 | 70.35 895 155 1.10 0.85
200 |-0.29 -0.02 0.00 0.00 0.00 | 038 0.06 001 0.00 0.00|87.55 18.65 210 0.55 0.50
500 |-0.29 -0.02 0.00 0.00 0.00 | 036 0.04 001 0.00 0.00|9835 43.70 495 0.35 0.25
1000 | -0.28 -0.02 0.00 0.00 0.00 | 0.34 0.03 0.01 0.00 0.00 | 99.85 66.60 9.90 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ¢; ~ IIDN (0,1), for i = 1,2,...,n. The factors,

(fat, fot), are multivariate normal with variances 0'?1 = afez =1 and correlation given by p12 = corr(f1, f2) = 0.3. Each factor
assumes an autoregressive process with correlation coefficients py, = 0.5, j = 1,2. The factor loadings are generated as

Vij ~ IIDU(,uv] = 0.2, pto; + 0.2), for [n“i°] units, j = 1,2, respectively, and zero otherwise. We set iy, = o, = 0.71. Both a1o
and azo range between [0.75,1.00] with 0.05 increments. The innovations u; are non-Gaussian, such that wi; = % (ngit - 2), with
07 ~IID(1+x3,)/3, for i = 1,2,...,n. In the computation of &;, j = 1,2, we use p = 0.05 and § = 1/4 when setting the critical
value. Size is computed under Ho: aj=ajo, for j = 1,2, using a two-sided alternative. The number of replications is set

to R = 2000.

*Computation of size when ajo = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Table S22: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (6 = 1/3,
p = 0.10)

Bias (x100) RMSE (x100) Size* (x100)

n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a10 = 0.757 a0 = 0.85
100 | 0.63 0.70 0.67 0.60 0.57 [1.23 1.09 1.07 1.02 098 | 1045 2.75 210 190 1.35
200 | 091 096 090 0.84 0.82]1.17 1.13 1.06 1.00 0.97 | 15.00 10.15 6.05 5.20 4.05
500 | 0.69 0.77r 070 0.66 0.64 |08 086 0.79 0.74 0.72 | 2220 11.25 875 7.10 6.65
1000 | 0.66 0.72 0.67 0.62 0.60 | 0.78 0.76 0.72 0.66 0.64 | 30.40 16.40 12.25 825 7.25
a9 = 0.80, agg = 0.85
100 | 0.26 0.34 0.32 0.28 0.26 [ 087 0.72 0.71 0.67 0.65 | 1250 2.05 1.75 1.15 0.80
200 | 0.52 0.62 0.57 055 052|077 076 0.70 0.69 064 |1465 580 3.75 335 230
500 | 0.42 0.55 0.51 0.48 0.48 | 0.58 0.61 0.57 0.53 0.53 |25.25 11.10 8.00 5.70 5.85
1000 | 0.37 049 0.47 043 042|049 0.52 050 0.46 0.45 |32.85 1490 11.00 7.70 5.20
Q10 = 0.85, Qon = 0.85
100 | 0.28 045 045 0.41 040 | 0.69 0.64 0.64 0.59 0.59 |20.35 4.40 3.55 240 2.05
200 | 0.23 038 0.36 033 032|050 049 046 044 042 | 2310 865 540 535 3.90
500 | 0.12 0.29 027 025 0.25 (033 035 032 030 030 |33.10 735 460 350 340
1000 | 0.10 0.27 0.27 0.24 0.23 | 0.28 0.30 0.29 0.26 0.25 | 46.50 13.40 10.50 7.70 6.30
a10 = 0.90, a0 = 0.85
100 | 0.06 0.26 0.26 0.24 023|050 041 041 038 0373210 7.00 585 480 3.70
200 | -0.06 0.14 0.13 0.11 0.11 | 0.35 0.26 0.24 0.22 0.21 | 30.70 5.10 1.55 1.15 1.50
500 | -0.05 0.16 0.16 0.15 0.14 | 0.26 0.20 0.19 0.18 0.18 | 55.056 1340 7.75 9.10 8.25
1000 | -0.06 0.15 0.16 0.14 0.14 | 0.22 0.17 0.17 0.16 0.15 | 60.45 9.25 735 445 3.90
a1g = 0.95, agy = 0.85
100 | -0.23 0.00 0.02 0.01 0.01 045 0.20 0.19 0.18 0.18 | 41.30 5.30 1.50 0.80 0.85
200 | -0.17 0.04 0.05 0.05 0.04 |0.32 0.13 0.12 0.12 0.12 | 56.10 11.05 5.55 5.60 4.80
500 | -0.18 0.06 0.06 0.06 0.05|0.29 0.09 0.08 0.08 0.08 [ 73.30 11.50 4.20 3.30 3.20
1000 | -0.20 0.03 0.05 0.04 0.04 | 028 0.06 0.06 0.06 0.05 |87.50 18.75 7.20 5.95 5.05
a0 = 1.00, ) = 0.85
100 | -0.27 -0.02 0.00 0.00 0.00 [ 0.40 0.06 0.02 0.00 0.00 | 64.80 7.55 140 1.10 0.85
200 | -0.25 -0.02 0.00 0.00 0.00 | 0.33 0.04 0.01 0.00 0.00 | 84.40 16.05 1.85 0.55 0.50
500 | -0.26 -0.02 0.00 0.00 0.00 | 0.33 0.03 0.01 0.00 0.00 |97.85 40.65 4.40 035 0.25
1000 | -0.27 -0.02 0.00 0.00 0.00 | 0.33 0.03 0.00 0.00 0.00 | 99.80 64.75 880 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ¢; ~ IIDN (0,1), for i = 1,2,...,n. The factors,

(f1t, f2¢), are multivariate normal with variances 0?1 = Ufcz =1 and correlation given by p12 = corr(fi, f2) = 0.3. Each factor
assumes an autoregressive process with correlation coefficients py; = 0.5, j = 1,2. The factor loadings are generated as

vij ~ IIDU(uUj = 0.2, po; + 0.2), for [n%°] units, j = 1, 2, respectively, and zero otherwise. We set pt,, = ftv, = 0.71. Both a10
and azo range between [0.75,1.00] with 0.05 increments. The innovations u;+ are non-Gaussian, such that w;; = % (X%,it - 2)7 with
07 ~IID(1+x3,)/3, for i = 1,2,...,n. In the computation of &;, j = 1,2, we use p = 0.10 and § = 1/3 when setting the critical
value. Size is computed under Ho: aj=ajo, for j = 1,2, using a two-sided alternative. The number of replications is set

to R = 2000.

*Computation of size when ajo = 1.00, j = 1,2, follows the randomisation procedure proposed in Trapani (2018).
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Table S23: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (6 = 1/3,
p=10.05)

Bias (x100) RMSE (x100) Size* (x100)

n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a10 = 0.757 a0 = 0.85
100 | -0.08 0.15 0.15 0.11 0.07v | 091 066 0.63 061 056 | 2425 720 545 470 3.05
200 | 0.25 047 044 041 0.39 |0.69 0.65 0.61 0.57 0.55 | 26.50 1045 6.90 480 4.15
500 | 0.12 035 032 0.28 027 | 048 045 041 037 0.35 | 3710 1090 10.25 9.75  8.55
1000 | 0.13 033 032 0.28 0.27 | 041 039 037 033 032 | 41.50 10.20 7.55 495 4.35
a1g = 0.80, agg = 0.85
100 | -0.31 -0.04 -0.04 -0.06 -0.09|0.81 0.50 0.47 047 043 | 2970 6.70 470 4.10 2.60
200 | 0.03 0.27 026 024 022051 043 040 038 0.36 | 3090 825 445 325 290
500 | 0.00 0.26 025 023 023|040 033 031 0.29 0.28 | 40.20 880 4.70 3.15 3.05
1000 | -0.01 0.23 0.24 0.21 0.21 | 0.32 0.27 0.27 024 0.24 | 5545 1390 9.25 7.65 6.60
Q10 = 0.85, Qop = 0.85
100 | -0.12 0.20 0.21 0.18 0.17 | 0.62 0.41 039 036 0.35 | 37.50 510 260 1.70 1.70
200 | -0.12 0.16 0.16 0.14 0.13 |0.45 0.29 026 0.25 024 | 43.75 710 275 195 1.75
500 | -0.18 0.11 0.11 0.09 0.09 | 038 0.18 0.16 0.15 0.15 | 67.95 1830 14.70 14.90 14.95
1000 | -0.16 0.11 0.12 0.11 0.10 | 0.33 0.14 0.15 0.13 0.12 | 72,55 13.70 7.45 6.15 4.90
a10 = 0.90, a0 = 0.85
100 | -0.22 0.10 0.12 0.11 0.10 | 056 0.27 0.26 0.24 0.23 | 4885 11.60 820 6.95 6.00
200 | -0.30 0.00 0.01 0.00 0.00 |048 0.17 0.14 0.14 0.14 | 5750 810 1.35 0.60 0.65
500 | -0.26 0.06 0.06 0.06 0.06 |0.40 0.11 0.10 0.09 0.09 | 75.65 12.25 340 1.85 220
1000 | -0.25 0.06 0.08 0.07 0.07 | 036 0.09 0.09 0.08 0.08 | 8.60 1740 855 520 4.95
a1g = 0.95, agy = 0.85
100 | -0.43 -0.07 -0.05 -0.06 -0.06 |0.62 0.18 0.15 0.14 0.14 | 61.25 10.15 3.10 220 2.25
200 | -0.34 -0.02 0.00 0.00 0.00 | 047 0.11 0.08 0.08 0.08 | 7495 1295 195 145 1.10
500 | -0.33 0.00 0.02 0.02 0.02 |044 0.06 0.05 0.05 0.04 | 91.90 2340 270 1.25 0.95
1000 | -0.33 -0.01 0.01 0.01 0.01 | 042 0.05 0.03 0.03 0.03 | 97.80 51.25 23.40 25.10 22.10
a0 = 1.00, ) = 0.85
100 | -0.39 -0.03 0.00 0.00 0.00 |0.54 0.08 0.02 0.00 0.00 | 7595 11.65 2.00 1.10 0.85
200 | -0.36 -0.03 0.00 0.00 0.00 | 046 0.06 0.01 0.00 0.00 | 91.95 2290 265 055 0.50
500 | -0.37 -0.03 0.00 0.00 0.00 | 046 0.04 0.01 0.00 0.00 | 99.10 53.15 7.10 035 0.25
1000 | -0.37 -0.03 0.00 0.00 0.00 | 0.44 0.04 0.01 0.00 0.00 | 100.00 77.25 14.55 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ¢; ~ IIDN (0,1), for i = 1,2,...,n. The factors,

1t, fat), are multivariate normal with variances 0% = 02, = 1 and correlation given by pi2 = corr(f1, f2) = 0.3. Each factor
f1 f P

assumes an autoregressive process with correlation coefficients py, = 0.5, j = 1,2. The factor loadings are generated as

vij ~ IIDU (pry; — 0.2, puy; 4 0.2), for [n%°] units, j = 1,2, respectively, and zero otherwise. We set py;, = ftu, = 0.71. Both a1
and azo range between [0.75,1.00] with 0.05 increments. The innovations u;; are non-Gaussian, such that wi; = % (X;“ — 2), with
07 ~IID(1+4x3,)/3, for i = 1,2,...,n. In the computation of &;, j = 1,2, we use p = 0.05 and § = 1/3 when setting the critical
value. Size is computed under Ho: aj=aj o, for j = 1,2, using a two-sided alternative. The number of replications is set

to R = 2000.

*Computation of size when ajjo = 1.00, j = 1,2, follows the randomisation procedure proposed in Trapani (2018).

A64



Table S24: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (6 = 1/2,
p = 0.10)

Bias (x100) RMSE (x100) Size* (x100)

n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a10 = 0.757 a0 = 0.85
100 | -0.14 0.11 0.11 0.07 0.04 [ 092 0.64 0.61 058 0.54 | 2470 705 4.60 410 2.55
200 | 0.12 038 036 033 032 |0.65 057 054 050 048 | 2955 780 430 265 245
500 | -0.08 0.21 020 0.16 0.16 |0.46 0.32 030 0.26 0.25 | 41.20 1080 6.45 3.60 3.45
1000 | -0.12 0.18 0.18 0.16 0.15 | 040 0.24 0.23 021 0.20 | 61.60 1535 9.65 840 9.15
a1g = 0.80, agg = 0.85
100 | -0.36 -0.07 -0.07 -0.09 -0.12|0.83 049 046 0.45 043 | 31.20 6.25 395 3.70 235
200 | -0.07 0.21 020 019 0.17 052 038 035 033 031 ] 3685 730 270 205 195
500 | -0.15 0.17 0.18 0.15 0.15 |0.44 0.24 0.23 0.21 0.21 | 55.50 1045 4.35 280 245
1000 | -0.20 0.13 0.15 0.13 0.13 {039 0.18 0.18 0.16 0.16 | 68.70 13.10 7.25 450 3.45
Q10 = 0.85, Qop = 0.85
100 | -0.15 0.18 0.19 0.16 0.16 | 0.63 0.39 0.37 034 0.34 | 44.65 13.95 12.15 9.65 8.70
200 | -0.20 0.11 0.12 0.10 0.10 | 049 0.25 0.23 0.22 0.21 | 52.50 1250 6.70 5.60 5.15
500 | -0.30 0.056 0.06 0.05 0.04 047 013 0.12 0.11 0.11 | 6945 1040 3.25 1.50 1.00
1000 | -0.31 0.04 0.06 0.06 0.05 | 044 0.09 0.09 0.08 0.08 | 88.80 29.25 13.35 13.65 13.55
a10 = 0.90, a0 = 0.85
100 | -0.25 0.09 0.11 0.10 0.09 | 058 026 024 0.23 022 | 5030 11.40 7.05 6.10 5.35
200 | -0.36 -0.03 -0.01 -0.02 -0.02|0.53 0.17 0.13 0.13 0.13 | 65.15 13.60 4.05 225 2.55
500 | -0.35 0.01 0.03 0.03 0.03 048 0.09 0.08 0.07r 0.07 | 8.25 1855 455 220 2.05
1000 | -0.36 0.02 0.05 0.04 0.04 | 047 0.06 0.06 0.06 0.06 | 9525 28.05 5.75 2.80 2.75
a1g = 0.95, agy = 0.85
100 | -0.45 -0.08 -0.06 -0.06 -0.06 |0.64 0.18 0.14 0.14 0.14 | 6290 10.25 295 195 1.85
200 | -0.39 -0.04 -0.01 -0.01 -0.01|0.51 0.11 0.08 0.08 0.07 | 80.20 1890 6.70 5.75 4.30
500 | -0.40 -0.02 0.01 0.01 0.01 |0.51 0.06 0.04 0.04 0.03 | 9545 33.30 590 3.10 225
1000 | -0.43 -0.03 0.00 0.00 0.00 | 0.51 0.06 0.02 0.02 0.02 | 9890 4825 7.05 1.70 1.95
a0 = 1.00, ) = 0.85
100 | -0.41 -0.03 0.00 0.00 0.00 | 0.56 0.08 0.02 0.00 0.00 | 76.85 12.15 2.05 1.10 0.8
200 | -0.40 -0.03 0.00 0.00 0.00 |0.50 0.06 0.02 0.00 0.00 | 93.10 25.05 3.10 0.55 0.50
500 | -0.43 -0.03 0.00 0.00 0.00 |0.52 0.05 0.01 0.00 0.00 | 99.55 5890 890 035 0.25
1000 | -0.44 -0.04 0.00 0.00 0.00 | 0.53 0.05 0.01 0.00 0.00 | 100.00 83.40 1850 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ¢; ~ IIDN (0,1), for i = 1,2,...,n. The factors,

(f1t, f2t), are multivariate normal with variances 0’?1 = 0"?'2 = 1 and correlation given by p12 = corr(fi, f2) = 0.3. Each factor
assumes an autoregressive process with correlation coefficients py, = 0.5, j = 1,2. The factor loadings are generated as

vij ~ IIDU (pry; — 0.2, puy; 4 0.2), for [n%°] units, j = 1,2, respectively, and zero otherwise. We set py;, = ftu, = 0.71. Both a1
and azo range between [0.75,1.00] with 0.05 increments. The innovations u;; are non-Gaussian, such that wi; = % (X;“ — 2), with
07 ~IID(1+4x3,)/3, for i = 1,2,...,n. In the computation of &;, j = 1,2, we use p = 0.10 and § = 1/2 when setting the critical
value. Size is computed under Ho: aj=aj o, for j = 1,2, using a two-sided alternative. The number of replications is set

to R = 2000.

*Computation of size when ajjo = 1.00, j = 1,2, follows the randomisation procedure proposed in Trapani (2018).
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Table S25: Bias, RMSE and Size (x100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (6 = 1/2,
p=10.05)

Bias (x100) RMSE (x100) Size* (x100)

n\T 60 120 200 500 1000 | 60 120 200 500 1000 60 120 200 500 1000
a10 = 0.757 a0 = 0.85

100 | -0.59 -0.17 -0.14 -0.18 -0.20 | 1.06 0.51 0.48 045 044 | 36.75 455 170 075 0.50

200 | -0.26 0.14 0.15 0.13 0.12 |0.68 0.35 032 0.29 0.28 | 4890 885 345 180 1.45

500 | -0.42 0.03 0.05 0.03 0.03 065 020 0.17 0.15 0.15 | 6790 13.00 3.90 140 1.20

1000 | -0.42 0.03 0.06 0.05 0.05 059 0.14 0.13 0.11 0.11 | 79.75 16.65 3.90 145 1.50
a1g = 0.80, agg = 0.85

100 | -0.71 -0.28 -0.25 -0.28 -0.28 | 1.05 047 042 041 040 | 80.20 70.70 70.00 74.10 73.70

200 | -0.38 0.04 0.06 0.06 004 067 025 021 021 0.19 ] 59.90 1085 230 1.8 1.20

500 | -0.42 0.04 0.08 0.06 0.06 |0.62 0.15 0.14 0.12 0.12 | 80.15 2285 940 5.10 6.10

1000 | -0.43 0.03 0.07 0.06 0.06 |0.58 0.11 0.10 0.09 0.09 | 90.00 27.10 825 3.75 3.75
Q10 = 0.85, Qop = 0.85

100 | -0.43 0.05 0.08 0.05 0.05 [0.80 0.28 0.25 0.22 0.22 | 57.00 9.95 450 2.65 2.25

200 | -0.46 0.00 0.02 0.02 0.02 067 018 0.15 0.14 0.13 | 73.60 2045 920 7.00 6.20

500 | -0.52 -0.04 -0.01 -0.01 -0.01 |0.66 0.11 0.08 0.07r 0.07 | 87.80 21.75 3.40 0.60 0.35

1000 | -0.51 -0.03 0.02 0.01 0.01 | 0.63 0.08 0.05 0.04 0.04 | 9590 36.55 7.20 2.75 2.30
a10 = 0.90, a0 = 0.85

100 | -0.47 0.00 0.04 0.03 0.03 |07 021 017 0.15 0.15 | 63.70 11.00 3.05 190 1.20

200 | -0.57 -0.10 -0.07 -0.07 -0.07 | 0.72 0.17 0.12 0.11 0.11 | 81.90 18.00 2.50 0.55 0.25

500 | -0.53 -0.04 0.00 0.00 0.00 | 0.66 0.09 0.05 0.04 0.04 | 9505 3495 635 140 1.8

1000 | -0.53 -0.03 0.02 0.02 0.02 | 0.64 0.07 0.04 0.03 0.03] 99.00 52.75 13.70 5.60 5.35
a1g = 0.95, agy = 0.85

100 | -0.64 -0.12 -0.09 -0.09 -0.09|0.83 0.19 0.14 0.13 0.13 | 75.50 1290 2.15 0.55 0.60

200 | -0.56 -0.08 -0.03 -0.03 -0.03 |0.69 0.13 0.07 0.06 0.06 | 89.40 25.70 3.75 190 1.25

500 | -0.55 -0.05 -0.01 -0.01 -0.01 | 0.67 0.08 0.03 0.03 0.02 | 98.55 52.35 1140 4.10 3.75

1000 | -0.57 -0.06 -0.01 -0.01 -0.01 | 0.67 0.08 0.02 0.02 0.02 | 99.95 89.40 65.00 62.70 61.70
a0 = 1.00, ) = 0.85

100 | -0.56 -0.05 0.00 0.00 0.00 |0.73 0.11 0.03 0.00 0.00 | 84.80 18.60 3.05 1.10 0.8

200 | -0.53 -0.04 0.00 0.00 0.00 | 0.65 0.08 0.02 0.00 0.00 | 96.95 34.50 4.65 0.55 0.50

500 | -0.56 -0.05 0.00 0.00 0.00 |0.67 0.07 001 0.00 0.00 | 99.80 70.75 13.10 0.35 0.25

1000 | -0.57 -0.06 0.00 0.00 0.00 | 0.67 0.07 0.01 0.00 0.00 | 100.00 90.45 26.15 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ¢; ~ IIDN (0,1), for i = 1,2,...,n. The factors,
(f1t, f2t), are multivariate normal with variances 0’?1 = 0"?'2 = 1 and correlation given by p12 = corr(fi, f2) = 0.3. Each factor
assumes an autoregressive process with correlation coefficients py, = 0.5, j = 1,2. The factor loadings are generated as

vij ~ IIDU (pry; — 0.2, puy; 4 0.2), for [n%°] units, j = 1,2, respectively, and zero otherwise. We set py;, = ftu, = 0.71. Both a1
and azo range between [0.75,1.00] with 0.05 increments. The innovations u;; are non-Gaussian, such that wi; = % (X;“ — 2), with
07 ~IID(1+x3,)/3, for i = 1,2,...,n. In the computation of &;, j = 1,2, we use p = 0.05 and § = 1/2 when setting the critical
value. Size is computed under Ho: aj=aj o, for j = 1,2, using a two-sided alternative. The number of replications is set

to R = 2000.

*Computation of size when ajjo = 1.00, j = 1,2, follows the randomisation procedure proposed in Trapani (2018).
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