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Abstract 
 
This paper proposes an estimator of factor strength and establishes its consistency and 
asymptotic distribution. The estimator is based on the number of statistically significant factor 
loadings, taking multiple testing into account. Both cases of observed, and unobserved factors 
are considered. The small sample properties of the proposed estimator are investigated using 
Monte Carlo experiments. It is shown that the proposed estimation and inference procedures 
perform well, and have excellent power properties, especially when the factor strength is 
sufficiently high. Empirical applications to factor models for asset returns show that out of 146 
factors recently considered in the literature, only the market factor is truly strong, while all other 
factors are at best semi-strong, with their strength varying considerably over time. Similarly, we 
only find evidence of semi-strong factors using a large number of U.S. macroeconomic 
indicators. 
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1 Introduction

This paper is concerned with the characterisation and estimation of individual factor strengths in the context of

multi-factor models, both when the factors are observed and when they are latent. We propose to measure the

strength of a given factor by the degree of its pervasiveness identified by the number of its associated non-zero

factor loadings. The degree of factor strength is measured by the rate at which the number of non-zero factor

loadings rises with the total number of loadings, n. A factor is said to have maximum strength (equal to 1) if all

its associated loadings are non-zero. A factor is deemed to be weak if the rate of non-zero factor loadings increase

is less than 1/2, and factors with strength between 1/2 and 1 will be referred to as semi-strong in the sense that

they are pervasive but not necessarily strong. More formally, for illustrative purposes, consider the following single

factor model
xit = ci + γift + uit, i = 1, 2, . . . , n; t = 1, 2, . . . , T, (1)

where ft, is a known factor, ci is the unit-specific effect, uit ∼ IID(0, σ2
i ) is an idiosyncratic error, and γi is the

factor loading for unit i. In the standard factor literature, the strength of ft is measured by the rate at which

ω2
n =

∑n
i=1 γ

2
i rises with n. Denoting the expansion rate of ω2

n in terms of n by α, the standard large n and T

latent factor models assume that α = 1, as required, for example, by Assumption B in Bai and Ng (2002) and

Bai (2003). At the other extreme, a factor is deemed to be weak if 0 ≤ α < 0.5. This case is studied in Onatski

(2012). Similar notions of factor strength are also used in recent financial studies by Lettau and Pelger (2018),

and Anatolyev and Mikusheva (2019).

The rate α is determined by the number as well as the size of non-zero loadings, γi. In this paper we focus

on the former whilst a number of papers in the literature that consider the case of weak factors, assume that

γi = γin = δi/n
(1−α)/2, with bounded and non-zero δi for all i, which yields ω2

n =
(
n−1

∑n
i=1 δ

2
i

)
nα. See, for

example, Kleibergen (2009) or Onatski (2012) who consider factor models with α = 1/2. This approach restricts

all loadings, γin, to decline at the same rate with n, when α < 1. In our view declining values for γi, as n increases,

make little empirical sense. Our chosen setup where the main determinant of factor strength is the number of

non-zero factor loadings is empirically more defensible and verifiable. Estimation of α under our formulation is

also easier to implement as compared to the alternative formulation, γin = δi/n
(1−α)/2. To our knowledge there is

no literature on how to estimate α under this alternative specification.

In most empirical applications, the value of α is unknown. Incorrectly setting it to α = 1 can result in

misleading inference. Also, as we shall see, without further a priori restrictions on the factor loadings, it is not

possible to identify α when the factor in question is weak (α < 1/2). But in most empirical applications in finance

and macroeconomics, the values of α that are of interest and of consequence, are within the range α ∈ (0.5, 1].

As recently shown by Pesaran and Smith (2019), factor strengths play a crucial role in the identification of risk

premia in arbitrage asset pricing models, and determine the rates at which risk premia can be estimated. The
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strength of macroeconomic shocks is also of special interest, as its value has important bearing on forecasting and

policy analysis. Contributions in terms of factor selection and factor model estimation when α ∈ (0.5, 1) include

Freyaldenhoven (2019) and Uematsu and Yamagata (2019).

The analysis of this paper is also closely related to the literature on strong and weak cross-sectional dependence.

One important example is the role of dominant units in production or financial networks and how to identify and

measure their degree of dominance when interconnections are known (Acemoglu et al. (2012), Pesaran and Yang

(2020)), or unknown (Kapetanios et al. (2020)). Bailey et al. (2016) (BKP hereafter) give a thorough account

of the rationale and motivation behind the need for determining the extent of CSD, be it in finance, micro or

macroeconomics. To estimate the degree of CSD in a panel dataset, BKP analyse the rate at which the variance

of the cross section average of observations in that panel tends to zero and show that it depends on the degree or

exponent of CSD which they denote by α. They explore a latent factor model setting as a vehicle for characterising

strong and semi-strong covariance structures as defined in Chudik et al. (2011). They relate these to the degree

of pervasiveness of factors in unobserved factor models often used in the literature to model CSD. In a follow

up paper to BKP, Bailey et al. (2019) extend their analysis in two respects. First, they consider a more generic

setting which does not require a common factor representation and holds more generally for both moderate and

sizeable CSD. They achieve this by directly considering the significance of individual pair-wise correlations and

base the estimation of α on the proportion of statistically significant correlations. Second, they show that their

estimator also applies to the residuals obtained from panel data regressions.

The estimators developed in Bailey et al. (2016, 2019) are helpful as overall measures of CSD, but they do

not provide information on the strength of individual factors which is of interest, for example, in the pricing of

risk in empirical finance and in identifying dominant factors in macroeconomic fluctuations. In this paper we

propose an estimator of factor strength and establish its consistency and asymptotic distribution when α > 1/2.

The proposed estimator is based on the number of statistically significant factor loadings, taking account of the

multiple tests being carried out. We find that it is a powerful and highly accurate estimator, especially for higher

levels of factor strength. Despite its simplicity, the distribution of the estimator, being based on sums of random

variables that follow, potentially heterogeneous, Bernoulli distributions, is quite complicated and non-standard.

While the parameters of these distributions are hard to pin down, they can be bounded in such a way as to provide

both grounds for the validity of a central limit theorem for the asymptotically dominant part of the estimator

and an upper bound for the asymptotic variance. These two elements allow for the construction of asymptotically

conservative test statistics.

We focus mainly on the case where the factors are observed, which is of primary interest in tackling the

financial empirical example mentioned earlier, among many others. We also consider using cross section averages

as a proxy in the case of unobserved common factors. In practice, we face a significant factor identification issue
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when there are more than one unobserved common factors. In the case of multiple unobserved factor models, our

contribution is best viewed as providing inferential information about the exponent of the strongest factor shared

amongst the cross section units, even though we present some results on estimating the strength of weaker factors

with 1/2 < α < 1.

We investigate the small sample properties of the proposed estimator by means of Monte Carlo experiments

under a variety of scenarios. In general, we find that the estimator, and the associated inference, perform well.

The test is conservative under the null hypothesis, but, nevertheless, has excellent power properties, especially

when α is close to unity, even for moderate sample sizes.

We illustrate the relevance of our proposed estimator by means of two empirical applications, using well known

datasets in finance and macroeconomics. First, we consider a large number of factors proposed in the finance

literature for asset pricing. For example, Harvey and Liu (2019) document over 400 such factors, and Feng et al.

(2020) consider the problem of factor selection using penalised regressions. In view of recent theoretical results

in Pesaran and Smith (2019), our empirical contribution focuses on the estimation of factor strengths, since

factor selection is only meaningful for asset pricing if the factors under consideration are sufficiently strong. We

compute 10-year rolling estimates of α (together with their standard error bands) for the excess market return

(as a measure of the market factor), and the remaining 145 factors considered by Feng et al. (2020). Out of the

146 factors considered, we find that only the market factor is sufficiently strong over all rolling windows, with its

average strength estimated to be around 0.99 over the full sample (from September 1989 to December 2017). In

contrast, none of the other factors achieve strengths exceeding 0.90 over the full sample, but over the sub-sample

that includes the recent financial crisis as many as 48 (out of 145) have average strength estimated to lie between

0.9 and 0.94. Remarkably, the well-known size and value factors introduced in Fama and French (1993) are not

particularly prominent as compared to cash and leverage factors. Further, of special interest is the high degree of

time variation in the estimates of factor strengths, which cannot be attributed to sampling variation, considering

the high precision with which the factor strengths are estimated, particularly when the true factor strength is close

to unity.

Our second empirical application considers an unobserved factor model and asks if there exists any strong

latent factor shared by the set of macroeconomic variables originally investigated by Stock and Watson (2012).

In particular, we consider an updated version of Stock and Watson (SW) dataset covering 187 variables over the

period 1988Q1-2019Q2. Although it is not possible to separately identify the strengths of individual latent factors,

we are able to show that the strength of the strongest of the latent factors in the updated SW data set is around

0.94 which is sufficiently high for the factor to be important for macroeconomic analysis, but yet statistically

different from 1, usually assumed in the literature.

The rest of the paper is organised as follows: Section 2 introduces our proposed measure of factor strength
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and develops the estimation and inference theory for the single factor case. A general multi-factor set up is then

considered in Section 3 which includes the main theoretical results of the paper. Section 4 discusses the case of

unobserved factors, and after highlighting the identification problem involved, considers first the estimation of the

strength of the strongest factor implied by the model, and then estimation the strength of all sufficiently strong

unobserved factors. Sections 5 and 6 provide extensive simulation and empirical evidence of the performance of

our estimator. Section 7 provides some concluding remarks. Mathematical proofs and additional empirical and

simulation results are contained in an online Appendix.

Notation: Generic positive finite constants are denoted by Ci, for i = 1, 2, . . .. They can take different

values at different instances. If {fn}∞n=1 is a real sequence and {gn}∞n=1 is a sequence of positive numbers, then

fn = O (gn), if there exists a positive finite constant C0 such that |fn| /gn ≤ C0 for all n. fn = o (gn) if fn/gn → 0

as n → ∞. If {fn}∞n=1 and {gn}∞n=1 are both positive sequences of real numbers, then fn = � (gn) if there exist

n0 ≥ 1 and positive finite constants C0 and C1, such that infn≥n0 (fn/gn) ≥ C0, and supn≥n0
(fn/gn) ≤ C1. →d

denotes convergence in distribution as n, T →∞.

2 Estimation strategy

To illustrate the basic idea behind our estimation strategy we begin with a single factor model where the factor

is observed, and turn subsequently to the cases of observed or unobserved multiple factors. Suppose that T

observations are given, on n cross section units, namely {xit, i = 1, 2, . . . , n, t = 1, 2, . . . , T}, and follow the single

factor model (1), repeated here for convenience:

xit = ci + γift + uit, (2)

where ft, t = 1, 2, . . . , T is a known factor, ci is the unit-specific effect, uit ∼ IID(0, σ2
i ) is an idiosyncratic error,

and γi is the factor loading for unit i. The factor loadings are assumed to be non-zero for the first [nα] units, and

zero for the rest, where [·] denotes the integer part function. More specifically, suppose that, for some c > 0,

|γi| > c a.s. for i = 1, 2, . . . , [nα], (3)

|γi| = 0 a.s. for i = [nα] + 1, [nα] + 2, . . . , n,

where α measures the strength of factor ft, which in the case of the single factor model coincides with the exponent

of cross section dependence discussed in BKP.1 The exponent α measures the degree of pervasiveness or strength

of the factor. It is important to reiterate that BKP focus on estimating an overall measure of cross-sectional

dependence in xit, without particular reference to a single specific factor. They base their estimator on the

variance of the cross-sectional average, while noting the pros and cons of alternative approaches, based on other

1More generally, we can have |γi| = c1γ
i−[nα], with |γ| < 1 and c1 > 0, for i = [nα] + 1, [nα] + 2, . . . , n, in (3). But for simplicity of

exposition, we opt for |γi| = 0 a.s. instead.
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characteristics of xit, such as, e.g., the maximum eigenvalue of the covariance of xit. Given the prominence of this

maximum eigenvalue as a basis for characterising CSD, they note existing work, as well as reasons for which a

formal eigenvalue analysis may not be promising for this purpose.

As we noted above our aim is different. We wish to determine the strength or pervasiveness of particular

factors and use α, as defined through (3), as a tool for that purpose. To estimate α we begin by running n least

squares regressions of {xit}Tt=1 for each i = 1, 2, . . . , n on an intercept and ft to obtain

xit = ĉiT + γ̂iT ft + ν̂it, t = 1, 2, . . . , T

where ĉiT and γ̂iT are the Ordinary Least Squares (OLS) estimates of this regression. Denote by tiT = γ̂iT / s.e. (γ̂iT )

the t-statistic corresponding to γi:

tiT =
(f ′Mτ f)1/2 γ̂iT

σ̂iT
=

(f ′Mτ f)−1/2 (f ′Mτxi)

σ̂iT
, (4)

where Mτ = IT − T−1τTτ
′
T , τT is a T × 1 vector of ones, f = (f1, f2, . . . , fT )′, xi = (xi1, xi2, . . . , xiT )′, and

σ̂2
iT = T−1

∑T
t=1 ν̂

2
it. Also assume that, for some c > 0, T−1f ′Mτ f > c, which is necessary for identification of γi.

Consider the proportion of the n regressions with statistically significant coefficients γi:

π̂nT = n−1
n∑
i=1

d̂i,nT , (5)

where d̂i,nT = 1 [|tiT | > cp(n)] , 1 (A) = 1 if A > 0, and zero otherwise, and the critical value function, cp(n), is

given by
cp(n) = Φ−1

(
1− p

2nδ

)
. (6)

Here p is the nominal size of the individual tests, δ > 0 is the critical value exponent and Φ−1(·) denotes the

inverse cumulative distribution function of the standard normal distribution.

Suppose that π̂nT > 0, and consider the following estimator of α

α̃ = 1 +
ln π̂nT
lnn

.

In the rare case where π̂nT = 0, we then set α̃ = 0. Overall

α̂ =


α̃, if π̂nT > 0,

0, if π̂nT = 0.

(7)

Clearly α̂ ∈ [0, 1] a.s.; also, α̂ and α̃ are asymptotically equivalent since for α > 0 then P(n π̂nT = 0) → 0 as

n→∞.

It is tempting to argue in favour of using the proportion of non-zero loadings, π, instead of the exponent α.

The two measures are clearly related - π = nα−1, and coincide only when α = 1. But when α < 1, π becomes

smaller and smaller as n → ∞, and eventually tends to 0, for all values of α < 1. The rate at which π tends to

zero with n is determined by α, and hence α is a more discriminating measure of pervasiveness than π. It is also
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unclear how a particular value of π should be chosen as a measure of pervasiveness. It is also important to note

that when π is set to π0 > 0, a fixed value, then α = 1 + ln(π0)/ ln(n), and α → 1 as n → ∞, if π0 is fixed in

n. Therefore, unlike α which can be chosen to be fixed in n, any choice of π which is fixed in n implies α→ 1 as

n→∞, albeit at the very slow ln(n) rate.

2.1 Asymptotic distribution

Denote the true α by α0, let d0
i = 1 [γi 6= 0] and note that D0

n =
∑n

i=1 d
0
i = nα0 (the integer part symbol is dropped

for simplicity). Let
D̂nT = nπ̂nT =

n∑
i=1

d̂i,nT , (8)

and note that D̂nT /D
0
n = nα̂−α0 . Taking logs, we obtain

(lnn) (α̂− α0) = ln

(
D̂nT

D0
n

)
= ln

(
1 +

D̂nT − nα0

nα0

)

= ln (1 +AnT +BnT )

= AnT +BnT +Op
(
A2
nT

)
+O

(
B2
nT

)
+Op (AnTBnT ) + . . . , (9)

where

AnT =

∑n
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
nα0

, (10)

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
. (11)

To motivate the proposed estimator and to simplify the derivations, here we assume σi is known and uit is Gaussian,

and turn to the more general multi-factor case with non-Gaussian errors in Section 3. In this simple case we have

the following lemmas proven in the online Appendix A.

Lemma 1 Let the model be given by (2) where (3) holds, σi is known and uit is a Gaussian martingale difference

process for all i. Then, for some C1 > 0,

BnT =
p (n− nα0)

nδ+α0
+O

[
exp

(
−TC1

)]
, (12)

where p is the nominal size of the individual tests, and δ is the exponent of the critical value function defined in
(6).

Lemma 2 Let the model be given by (2) where (3) holds, σi is known and uit is a Gaussian martingale difference

process for all i. Then, in the case where α0 < 1, for some C1 > 0,

V ar (AnT ) = ψn(α0) +O
[
n−α0/2 exp

(
−TC1

)]
, (13)

where
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ψn(α0) = p (n− na0)n−δ−2α0

(
1− p

nδ

)
. (14)

If α0 = 1, for some C1 > 0,
V ar (AnT ) = O

[
exp

(
−TC1

)]
. (15)

As we note from the above lemmas, we need to distinguish between the two cases where α0 = 1 and where

α0 < 1. In the former case, AnT →p 0 exponentially fast in T , and overall

(lnn) (α̂− 1) = Op
[
n−1 exp (−C2T )

]
+O [exp (−C1T )] ,

for some positive constants C1 and C2. Furthermore, in the case where α0 < 1, using (13) and (14), it follows that

AnT = Op

[
ψn(α0)1/2

]
+O

[
n−α0/2 exp (−C1T/2)

]
= Op

(
n1/2−δ/2−α0

)
+O

[
n−α0/2 exp (−C1T/2)

]
.

Therefore, AnT = op(1) if δ > 1− 2α0, which is in turn met if δ > 0, for all values of α0 > 1/2.

It is clear that the distribution of α̂ experiences a form of degeneracy when α0 = 1, and α̂ tends to its true

value of 1 exponentially fast. We refer to this property as ultraconsistency to distinguish it from the more usual

terminology of superconsistency that refers to rates of convergence that are faster than the usual one of the square

root of the sample size. Usually faster rates are polynomial in the sample size and not exponential, and therefore

the new term reflects this important difference.

The above results suggest the following scaling of α̂ when α0 < 1:

ψ−1/2
n (lnn) (α̂− α0) = ψ−1/2

n AnT + ψ−1/2
n BnT + op(1).

Also, using (A.6) from the online Appendix A, we have

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
=
p (n− nα0)

nδ+α0
+O [exp (−C1T )] .

It is also easily seen that BnT = o(1) if δ > 1− α0.

Since 1/2 < α0 < 1 (recall that the case of α0 = 1 is treated separately), then for values of α0 close to unity

(from below) it is sufficient that δ > 0, and for values of α0 close to 1/2, we need δ > 1/2. In the absence of

a priori knowledge of α0, it is sufficient to set δ = 1/2. In practice, factors that are sufficiently strong with α0

falling in the range [2/3, 1] are likely to be of greater interest, and for precise estimation of such factors it would

be sufficient to set δ = 1/4. Our Monte Carlo results show that the estimates of factor strength are reasonably

robust to the choice of δ, so long as it is not too small and lies in the range 1/4 − 1/2. Alternatively, one can

consider various cross-validation methods to calibrate δ.

Also, since [ψn(α0)]−1/2AnT = Op(1), then [ψn(α0)]−1/2A2
nT = Op (AnT ) = o(1). Using these results we can

now write
[ψn(α0)]−1/2 (lnn) (α̂− α0 − ζn) = [ψn(α0)]−1/2AnT + op(1),
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where
ζn (α0) =

p (n− nα0)

(lnn)nδ+α0
.

Finally, since uit are independent across i, and d̂i,nT −E
(
d̂i,nT

)
have zero means, then by a standard martingale

difference central limit theorem, we have (as n and T →∞)

[ψn(α0)]−1/2AnT = [ψn(α0)]−1/2 1

nα0

n∑
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
→d N(0, 1).

Hence,
[ψn(α0)]−1/2 (lnn) [α̂− α0 − ζn (α0)]→d N(0, 1), (16)

where
ζn (α0) =

p (n− nα0)

(lnn)nδ+α0
. (17)

To test H0 : α = α0, we utilise the following score statistics where α0 in the normalisation part of the test is

replaced by its estimator, α̂:
zα̂:α0 =

(lnn) (α̂− α0)− p
(
n− nα̂

)
n−δ−α̂[

p (n− nâ)n−δ−2α̂
(
1− p

nδ

)]1/2 . (18)

The null will be rejected if |zα| > cv, where cv is the critical value of the standard normal distribution at the

desired significance level (which need not be the same as p). For a two sided test at 5% level, cv = 1.96.

3 A general treatment with a multi-factor model

As a generalisation of the above set up consider the multi-factor regressions

xit = ci +

m∑
j=1

γijfjt + uit = ci + γ ′ift + uit, for i = 1, 2, . . . , n and t = 1, 2, . . . , T (19)

where γi = (γi1, γi2, . . . , γim)′, and it is assumed that the m-dimensional vector, ft= (f1t, f2t, . . . , fmt)
′, is observed.

We also assume that, for some unknown ordering of units over i,

|γij | > c > 0 a.s. for i = 1, 2, . . . , [nαj0 ],

|γij | = 0 a.s. for i = [nαj0 ] + 1, [nαj0 ] + 2, . . . , n.

Throughout the paper we assume that αj0 > 0.5, for j = 1, 2, . . . ,m. As discussed in the Introduction and also in

Pesaran and Smith (2019) this is most relevant case, empirically.

Then the following strategy may be employed to provide inference on αj0, for j = 1, 2, . . . ,m. For a given unit

i, consider the least squares regression of {xit}Tt=1 on the intercept and ft. ĉiT and γ̂iT are the OLS estimates of

this regression. Denote by tijT = γ̂ijT / s.e. (γ̂ijT ), the t-statistic corresponding to γij :

tijT =

(
f ′j◦MF−j fj◦

)−1/2 (
f ′j◦MF−jxi

)
σ̂iT

, j = 1, 2, . . . ,m; i = 1, 2, . . . , n,

fj◦ = (fj1, fj2, . . . , fjT )′, xi = (xi1, xi2, . . . , xiT )′, MF−j = IT−F−j

(
F′−jF−j

)−1
F′−j ,

F−j = (τT , f1◦, . . . , fj−1◦, fj+1◦, . . . , fm◦)
′, σ̂2

iT = T−1
∑T

t=1 û
2
it, and ûit = xit − ĉiT − γ̂ ′iT ft.

8



Consider the total number of factor loadings of factor j, γij , that are statistically significant over i = 1, 2, . . . , n:

D̂nT,j =
n∑
i=1

d̂ij,nT =
n∑
i=1

1 [|tijT | > cp(n)] ,

where 1 (A) = 1 if A > 0, and zero otherwise, and the critical value function that allows for the multiple testing

nature of the problem, cp(n), is given by

cp(n) = Φ−1
(

1− p

2nδ

)
.

As before, p is the nominal size, δ > 0 is the critical value exponent and Φ−1(·) is the inverse cumulative distribution

function of the standard normal distribution. Let π̂nT,j be the fraction of significant loadings of factor j, and note

that π̂nT,j = D̂nT,j/n. As in the single factor case, we consider the following estimator of αj0, for j = 1, 2, . . . ,m

α̂j =


1 +

ln π̂nT,j
lnn , if π̂nT,j > 0,

0, if π̂nT,j = 0.

(20)

We make the following assumptions:

Assumption 1 The error terms, uit, and demeaned factors ft − E (ft), are martingale difference processes with

respect to Fuit−1 = σ (ui,t−1, ui,t−2, . . .) and Fft−1 = σ (ft, ft−1, . . .), respectively. uit are independent over i, and of

ft, and have constant variances, 0 < σ2
i < C <∞.

Assumption 2 E
{

[ft − E (ft)] [ft − E (ft)]
′} = Σ, where Σ is some positive definite matrix.

Assumption 3 There exist sufficiently large positive constants C0, C1,and s > 0 such that

supi,t Pr (|xit| > ν) ≤ C0 exp (−C1ν
s) , for all ν > 0, (21)

supj,t Pr (|fjt| > ν) ≤ C0 exp (−C1ν
s) , for all ν > 0. (22)

Then, we have the following theorem:

Theorem 1 Consider model (19) with m observed factors and let Assumptions 1 - 3 hold. Then, for any αj0 < 1,

j = 1, 2, . . . ,m,
ψn(αj0)−1/2 (lnn) (α̂j − αj0)→d N(0, C) (23)

for some C < 1, where
ψn(αj0) = p (n− nαj0)n−δ−2αj0

(
1− p

nδ

)
. (24)

The above theorem provides the inferential basis for testing hypotheses on the true value of αj . The proof of

the theorem is provided in the online Appendix B. Below we discuss operational matters concerning the above

result and how to relax some of the assumptions of Theorem 1.
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A test based on ψn(αj0)−1/2 (lnn) (α̂j − αj0) will be conservative, in the sense that the rejection probability

under the null hypothesis will be bounded from above by the significance level. The reason is that in general

we cannot get an asymptotic approximation for the variance of α̂j − αj0 but only an upper bound resulting in a

conservative test.

Assumptions 1 and 3 can be relaxed. Rather than independence over i for uit in Assumption 1, one can assume

some spatial mixing condition, which would still allow the central limit theorem underlying (23), to hold. Further,

the thin probability tails in Assumption 3 can be replaced with a suitable moment condition in order to derive

the variance bound needed to construct a test statistic. We abstract from such complications by maintaining

Assumption 3. The martingale difference assumption for ft simplifies the analysis and allows the use of the theory

in the main part of Chudik et al. (2018). Relaxing this to a mixing assumption is possible at the expense of further

mathematical complexity using, e.g., the results in the online appendix of Chudik et al. (2018).

Our distributional result is stated only for αj0 < 1. Similar arguments would apply for the variance α̂j − αj0

when αj0 = 1. But the upper bound for the variance of α̂j − αj0 would be a function of nuisance parameters

including γij . This is the case since the dominant term in the variance is the one relating to units not affected

by ft, when αj0 < 1, and for these units, γij = 0. But when αj0 = 1, the probability bounds that are used to

derive the variance bound will not have such a dominant term, and the remaining terms will contain γij . However,

testing under the null hypothesis that αj0 = 1 is further complicated by the fact that αj0 = 1 is at the boundary

of the parameter space for αj0. It is well known (see, e.g., Andrews (2001)) that such cases cannot be handled

using standard asymptotic inference, and therefore this case is discussed separately, in the online Appendix C.

Nevertheless, it is clear from the discussion of Section 2.1 that estimation when α0 = 1 has some very desirable

properties, such as a very fast rate of convergence, which we have referred to as ultraconsistency. We conjecture

that in the case where αj0 = 1 for some values of j, and αj0 < 1 for some values of j, the distributional results

presented in Theorem 1 hold for factors for which αj0 < 1.

4 Case of unobserved factors

When the factors are unobserved we can provide practical guidance on the strength of the strongest factor or

factors, and estimating the strength of other factors encounters a significant identification problem. This is related

to the known fact that latent factors are identified only up to a non-singular m ×m rotation matrix, Q = (qij),

where m is the assumed number of factors.

It is instructive to review this fact. Consider the multi-factor model (19) with ft unobserved. Without loss of

generality suppose that m = 2 and assume that factors, ft = (f1t, f2t)
′, are unobserved with strengths α10 > 1/2

and α20 > 1/2. Denote the principal component (PC) estimates of these factors by ĝt = (ĝ1t, ĝ2t)
′, and note that
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under standard regularity conditions in the literature (as n and T →∞)

f1t = q11ĝ1t + q12ĝ2t + op(1), (25)

f2t = q21ĝ1t + q22ĝ2t + op(1). (26)

Then the estimates of the loadings associated with these PCs are given by

γ̃i =

 γ̃i1

γ̃i2

 =
(
Ĝ′MτĜ

)−1
Ĝ′Mτxi =

(
Ĝ′MτĜ

)−1
Ĝ′MτFγi +

(
Ĝ′MτĜ

)−1
Ĝ′Mτui,

where Ĝ = (ĝ1, ĝ2, . . . , ĝT )′. Also since Q is non-singular, Ĝ→pFQ−1, and using the above we have γ̃i→pQγi.

It is now easily seen that the strength of f1t (or f2t) computed using the estimates, γ̃i1, i = 1, 2, . . . , n may

not provide consistent estimates of the associated factor strengths. To see this write the result γ̃i→pQγi in an

expanded format as

γ̃i1 = q11γi1 + q12γi2 + op(1),

γ̃i2 = q21γi1 + q22γi2 + op(1).

Squaring both sides and summing over i we have

n∑
i=1

γ̃2
i1 = q2

11

n∑
i=1

γ2
i1 + q2

12

n∑
i=1

γ2
i2 + 2q11q12

n∑
i=1

γi1γi2 + op(1),

n∑
i=1

γ̃2
i2 = q2

21

n∑
i=1

γ2
i1 + q2

22

n∑
i=1

γ2
i2 + 2q21q22

n∑
i=1

γi1γi2 + op(1).

Now using the definition of factor strength in (3) and assuming that α10 > α20, in general we have2

n∑
i=1

γ̃2
i1 = 	(nα10),

n∑
i=1

γ̃2
i2 = 	(nα10),

namely, using the estimated loadings of the principal components does not allow us to distinguish between the

strength of the two factors, and only the strength of the strongest factor can be identified. When α10 > α20,

identification of α20 requires setting q21 = 0, and conversely to identify α10 when α10 < α20 requires setting

q12 = 0. It is worth noting that using covariance eigenvalues does not help resolve this problem. There are two

separate issues – ordering eigenvalues and how to identify the factors associated with ordered eigenvalues. The

eigenvectors associated with the largest eigenvalues are not uniquely determined and therefore the identification

issue remains. In conclusion, any estimate, α̂2, is a function of the assumed rotation and the utility of such an

estimate, given the above analysis, is unclear.3

One approach to dealing with this identification problem is to estimate α0 = max(α10,α20). The exponent α0

can be estimated using the estimators proposed in Bailey et al. (2016) and Bailey et al. (2019). The approach of

2Note that
∣∣∑n

i=1 γi1γi2
∣∣ < supi |γi1|

(∑n
i=1 |γi2|

)
= 	(nα2).

3It may be the case that using a rotation criterion can provide an interesting avenue for further research on this issue. See, for
example, Kaiser (1958), Ročková and George (2016) and Freyaldenhoven (2019).
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this paper can also be used to estimate α0 by computing the strength of the first PC, or that of the simple cross

section average, namely x̄t = n−1
∑n

i=1 xit. One can also use the weighted cross section average x̄t,γ =
∑n

i=1 ŵixit,

where ŵi is estimated as the slope of x̄t in the OLS regression of xit on an intercept and x̄t.
4

Accordingly, we again emphasise that we assume that the m unobserved factors are strong and/or semi-strong

with 1/2 < αj0 ≤ 1, and focus on estimation of α0 = maxj(αj0). In Section 4.1 we suggest how to identify,

in theory, the strengths of weaker factors. Reintroducing a subscript 0 to denote true parameters, we assume

that {xit, i = 1, 2, . . . , n; t = 1, 2, . . . , T} are generated from the multi-factor model (19) where the factors are

unobserved with strengths α10 > α20 ≥ α30 ≥ · · · ≥ αm0 > 1/2. Clearly α0 = α10. To emphasise the focus on the

strongest factor we recast the model as follows:

xit = ci + γift + vit, for i = 1, 2, . . . , n and t = 1, 2, . . . , T (27)

vit =
m∑
j=2

γijfjt + uit, (28)

where the strongest factor ft has strength α0 while the rest of the factors have strengths α20 ≥ α30 ≥ · · · ≥ αm0 >

1/2. We assume that the m-dimensional vector, ft = (ft, f2t, . . . , fm,t)
′, is unobserved. We also assume that, for

some unknown ordering of units over i,

|γi| > c > 0 a.s. for i = 1, 2, . . . , [nα0 ], (29)

|γi| = 0 a.s. for i = [nα0 ] + 1, [nα0 ] + 2, . . . , n.

|γij | > c > 0 a.s. for i = 1, 2, . . . , [nαj0 ], j = 2, . . . ,m (30)

|γij | = 0 a.s. for i = [nαj0 ] + 1, [nαj0 ] + 2, . . . , n, j = 2, . . . ,m.

In what follows, we continue to consider that Assumptions 1 and 3 hold for the above representation, and use the

simple cross section average, x̄t to consistently estimate α0 = α10. Taking the first factor to be the strongest is

made for convenience (with α0 − αj0 > 0, for j = 2, 3, . . . ,m). The strength of the strongest factor, α0, is defined

by (with γi denoting the associated loadings)

n∑
i=1

|γi| = 	 (nα0) ,

and the strengths of the remaining factors by
n∑
i=1

|γij | = 	 (nαj0) , for j = 2, 3, . . . ,m.

4In most applications, α can be estimated consistently using the simple average. But as shown in Pesaran (2015), pp. 452-454,
the weighted average is more appropriate when the loadings of the strong factors have zero means. Also note that by construction∑n
i=1 ŵi = 1.
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In addition, we assume that the non-zero factor loadings have non-zero means, namely

lim
n→∞

n−α0

n∑
i=1

γi 6= 0, and lim
n→∞

n−αj0
n∑
i=1

γij 6= 0,

and hence,
γ̄ = γ̄1 = n−1

n∑
i=1

γi = 	
(
nα0−1

)
,

γ̄j = n−1
n∑
i=1

γij = 	
(
nαj0−1

)
, for j = 2, . . . ,m.

Note that we do not assume any ordering of the zero loadings across the units.

For each i, consider the least squares regression of {xit}Tt=1 on an intercept and the cross section average

of xit, x̄t, and denote the resulting estimators by ĉiT and β̂iT , respectively. As in the single factor case, α0 =

maxj(αj0) is estimated by (7), except that when computing the t-statistics, tiT , defined by (4), f is replaced by

x̄ = (x̄1, x̄2, . . . , x̄T )′. Denote by t̄iT = β̂iT / s.e.
(
β̂iT

)
, the t-statistic corresponding to γi:

t̄iT =
(x̄′Mτ x̄)−1/2 (x̄′Mτxi)

σ̂iT
,

xi = (xi1, xi2, . . . , xiT )′, and σ̂2
iT = T−1x′iMH̄xi, where MH̄ = IT − H̄

(
H̄′H̄

)−1
H̄′, with H̄ = (τT , x̄).

As before, consider the number of regressions with significant slope coefficients:

D̄nT =
n∑
i=1

d̄i,nT =
n∑
i=1

1 [|t̄iT | > cp(n)] ,

where the critical value function, cp(n), is as specified earlier. Then, setting π̄nT = D̄nT /n, we have

α̂ =


1 + ln π̄nT

lnn , if π̄nT > 0,

0, if π̄nT = 0.

To investigate the limiting properties of α̂ we first consider the value of t̄iT under (19) and note that

x̄ = c̄τT + Fγ̄ + ū, and xi = ciτT + Fγi + ui,

where F = (f1, f2, . . . , fT )′, γi= (γi, γi2, . . . , γim)′, γ̄ = n−1
∑n

i=1 γi, ui = (ui1, ui2, . . . , uiT )′ and ū =n−1
∑n

i=1 ui.

Using these results we have

t̄iT =
T−1/2 (x̄′Mτxi)

σ̂iT (T−1x̄′Mτ x̄)1/2
=

T−1/2(Fγ̄+ū)′Mτ (Fγi + ui)

σ̂iT
[
T−1(Fγ̄+ū)′Mτ (Fγ̄+ū)

]1/2 , (31)

and
σ̂2
iT = T−1 (Fγi + ui)

′MH̄ (Fγi + ui) . (32)

Before proceeding, we slightly modify our assumptions to address the identification issue inherent in considering

unobserved factors.

Assumption 4 E
{

[ft − E (ft)] [ft − E (ft)]
′} = Im.

Lemma 3 below, which is of fundamental importance, is proven in the online Appendix A and provides prob-

ability bounds for t̄iT . It uses results from the auxiliary Lemma 4 (also stated and proved in the online Appendix
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A) in terms of the rates in probability and probability tail bounds for the constituent parts of t̄iT .

Lemma 3 Consider model (27)-(28) with factor loadings given by (29)-(30), where ft is unobserved, and let

Assumptions 1, 3 and 4 hold. Then, as long as
√
Tn(α20−α0) → 0, for some C > 0,

Pr [|t̄iT | > cp(n)|γi 6= 0] > 1−O
[
exp(−TC)

]
, (33)

and
Pr [|t̄iT | > cp(n)|γi = 0] ≤ Cp

nδ
. (34)

Equations (33) and (34) provide the crucial ingredients for the main result given below, as (33) ensures that

the t-statistic rejects with high probability when a unit contains a factor, while (34) ensures that the probability

of rejection for a unit that does not contain a factor, is small.

Overall, we have the following theorem, proven in the online Appendix B, justifying the proposed method for

unobserved factors.

Theorem 2 Consider model (27)-(28) with factor loadings given by (29)-(30), where ft is unobserved, let As-

sumptions 1, 3 and 4 hold and denote by α0 the true value of α (the strength of the strongest unobserved factor).

Then, as long as
√
Tn(α20−α0) → 0, for any α0 < 1,

ψn(α0)−1/2 (lnn) (α̂− α0)→d N(0, C)

for some C < 1, where α20 denotes the strength of the second strongest factor, and

ψn(α0) = p (n− nα0)n−δ−2α0

(
1− p

nδ

)
.

The above theorem provides the inferential basis for testing hypotheses on the true value of α, in the case of

unobserved factors. Clearly, since 1 ≥ α0 ≥ α20 ≥ 0.5, T/n→ 0 is a necessary condition and, of course, the actual

sufficient condition may be more restrictive depending on the values of α0 and α20.

The above analysis readily extends to the case where two or more of the unobserved factors have the same

strength. For example, suppose that α0 = maxj(αj0) = α10 = α20 > α30 ≥ α40 ≥ .... ≥ αm0. Then it is easily seen

that α is consistently estimated by α̂, even though α10 = α20. What matters for identification of α0 in this case

is that
√
Tn(α30−α0) → 0. This case is further investigated below using Monte Carlo techniques.

4.1 Multiple unobserved factors of differing strengths

Our analysis has focused on α0 = α10 = maxj(αj0). A possible way to provide some information on αj0, j > 1,

may be based on a sequential application of weighted cross section averages. In particular, once the least squares

regression of {xit}Tt=1 on an intercept and the cross section average of xit, x̄t, has been fitted, residuals can be
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obtained. Simple cross section averages of these residuals are easily seen to be identically equal to zero. However,

weighted cross section averages can be constructed, along the lines discussed in Pesaran (2015), pp. 452-454,

and the t-statistics of the relevant loadings can be used, in a similar way to that discussed above, to construct

estimators for α20 and, sequentially via the construction of further sets of residuals, for αj0, j > 2. It is possible

to show that, if
√
Tn(αj+1,0−αj0) → 0, j > 1, a result similar to that of Theorem 2 holds for αj0, j > 1. This is

stated formally in the following Theorem.

Theorem 3 Consider model (27)-(28) with factor loadings given by (29)-(30), where ft is unobserved. Suppose

that Assumptions 1, 3 and 4 hold, and denote by αj0 the true value of αj. Then, as long as
√
Tn(αj+1,0−αj0) → 0,

j > 1, for any 0.5 < αj+1,0 < αj0 < 1,

ψn(αj0)−1/2 (lnn) (α̂j − αj0)→d N(0, C)

for some C < 1, and
ψn(αj0) = p (n− nαj0)n−δ−2αj0

(
1− p

nδ

)
.

The proof of the theorem is provided in the online Appendix B. However, this result clearly requires considerable

differences to exist between the successive values of α’s and/or very large values for n. The need for large values of

n in the case of unobserved factors, contrasts to our results for the case of observed factors, where a less stringent

condition on the relative expansion rates of n and T is required. The conditions of Theorem 3 must be born

in mind when attempting to estimate second or third (semi) strongest unobserved factors. Estimation of factor

strength in the case of unobserved factors involves the additional difficulty of how to distinguish between the

strongest, the second strongest, the third strongest and so on factors. The condition
√
Tn(αj+1,0−αj0) → 0, j > 1 in

Theorem 3 relates to this identification problem, and requires a sufficient degree of difference between successive

factor strengths for consistent estimation. In practice, we can only hope to identify the first two or three strongest

factors so long as their strengths are close to unity and at the same time not too close to one another.

Finally, one may wish to have some indication of the value of m0 (the true number of factors), and to this end

some preliminary investigation might be required. One possibility would be to consider various existing methods

for selecting the number of factors with all the attendant, well known, performance issues such methods present.

Of course, these issues are further exacerbated if factors under consideration are not sufficiently strong. In short,

special care needs to be exercised when estimating factor strength in the case of unobserved factors. In practice, it

might only be possible to identify and estimate the strengths of top 2 or 3 unobserved factors, at most. Also, when

factors are unobserved and their strengths are not known a priori, the meaning of m0 itself is ambiguous, and

must be defined with reference to the strengths of the factors themselves. In our set up m0 refers to the number

of factors with αj0 > 1/2. But condition
√
Tn(αj+1,0−αj0) → 0 of Theorem 3 suggests that only factors with αj0

sufficiently large can be identified. This contrasts to the standard factor literature that assumes all factors are
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a priori strong with αj0 = 1, for j = 1, 2, ...,m0. The concept of m0 and its identification in the more general

setting where αj0 ≤ 1 requires further investigation.

5 Monte Carlo study

5.1 Design

We investigate the small sample properties of the proposed estimator of α under both observed and unobserved

factors using a number of Monte Carlo simulations. We consider the following two-factor data generating process

(DGP):
xit = ci + γi1f1t + γi2f2t + uit, (35)

for i = 1, 2, . . . , n and t = 1, 2, . . . , T . We generate the unit specific effects as ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n.

The factors, ft = (f1t, f2t)
′, are generated as multivariate normal: ft ∼ N (0,Σf ), where

Σf =

 σ2
f1

ρ12σf1σf2

ρ12σf1σf2 σ2
f2

 ,

with σf1 = σf2 = 1, and ρ12 = corr (f1t, f2t), using the values ρ12 = 0.0, 0.3. The factors are generated as

autoregressive processes (considering both stationary and unit root cases):

fjt =


ρfjfj,t−1 +

√
1− ρ2

fj
εjt, if

∣∣ρfj ∣∣ < 1

fj,t−1 + εjt, if ρfj = 1

, for t = −49,−48, . . . , 1, . . . , T

with fj,−50 = 0 and εjt ∼ i.i.d.N (0, 1), j = 1, 2. In the stationary case, we set ρf1 = ρf2 = 0.5.

For the innovations, uit, we consider two cases: (i) Gaussian, where uit ∼ IIDN(0, σ2
i ) for i = 1, 2, . . . , n; (ii)

non-Gaussian, where the errors are generated as uit = σi
2

(
χ2

2,it − 2
)
, where χ2

2,it for i = 1, 2, . . . , n are independent

draws from a chi-squared distribution with 2 degrees of freedom, and σ2
i are generated as IID(1 + χ2

2,i)/3.

In terms of the factor loadings, γi1 and γi2, first we generate vij ∼ IIDU(µvj −0.2, µvj +0.2), for i = 1, 2, . . . , n

and j = 1, 2 (such that E (vij) = µvj ). Next, we randomly assign [nα10 ] and [nα20 ] of these random variables as

elements of vectors γj = (γ1j , γ2j , . . . , γnj)
′, j = 1, 2, respectively, where [.] denotes the integer part operator.5

For α10 and α20, we consider values of (α10, α20) starting with 0.75 and rising to 1 at 0.05 increments, namely

0.75, 0.80, . . . , 0.95, 1.00, comprising of 36 experiments for all combinations of a10 and a20 in the range [0.75, 1.00].6

We set µv1 = µv2 = 0.71 so that both means are sufficiently different from zero. We then select the error variances,

σ2
i , so as to achieve an average fit across all units of around R̄2

n = n−1
∑n

i=1R
2
i ≈ 0.34. This coincides with the

average fits of regressions from our finance application. Scaling σ2
i by 3/4 achieves R̄2

n ≈ 0.41. To this end, we

note that:

5The randomisation of loadings becomes important when analysing the case of unobserved factors, as discussed in Section 4.
6Results for combinations of α10 and α20 below 0.75 are available upon request.
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R2
i =

γ2
i1 + γ2

i2

γ2
i1 + γ2

i2 + σ2
i

=
$2
i1 +$2

i2

1 +$2
i1 +$2

i2

, if for the ith unit: both γi1 6= 0 and γi2 6= 0,

where $2
ij = γ2

ij/σ
2
i , for j = 1, 2. Similarly, R2

i = $2
i1/
(
1 +$2

i1

)
, if γi1 6= 0 and γi2 = 0, R2

i = $2
i2/
(
1 +$2

i2

)
,

γi2 6= 0 and γi1 = 0, and clearly R2
i = 0, if γi1 = γi2 = 0.

We consider the following experiments:

EXP 1A: (observed single factor - Gaussian errors): Using (35) with γi2 = 0, for all i, and Gaussian errors.

EXP 1B: (observed single factor - non-Gaussian errors): Using (35) with γi2 = 0, for all i, and non-

Gaussian errors.

EXP 2A: (two observed factors - Gaussian errors) A two-factor model with correlated observed factors

(ρ12 = 0.3) and Gaussian errors.

EXP 2B: (two observed factors - non-Gaussian errors) A two-factor model with correlated observed fac-

tors (ρ12 = 0.3) and non-Gaussian errors.

EXP 3A: (unobserved single factor - non-Gaussian errors) Using (35) subject to γi2 = 0, for all i, and

non-Gaussian errors with α0 = α10 computed using the simple cross section average x̄t = n−1
∑n

i=1 xit.

EXP 3B: (two unobserved factors - non-Gaussian errors) Using (35) with ρ12 = 0.0 and non-Gaussian

errors, α10 = 0.95, 1.00, and α20 = 0.51, 0.75, 0.95, 1.00. In this case α0 = max (α10, α20) is estimated using

the simple cross section average x̄t = n−1
∑n

i=1 xit.

EXP 3C: (two unobserved factors - Gaussian errors) Using (35) with ρ12 = 0.0, α10 = 0.90, 1.00; α20 =

0.51, 0.75, 0.90, and Gaussian errors. For this experiment α10 and α20 are estimated using sequentially

weighted cross section averages of xit, namely x̃1t = n−1
∑n

i=1 ŵ1ixit, where ŵ1i =
∑T

t=1 x̄txit/
∑T

t=1 x̄
2
t , and

then the weighted cross section averages of the residuals, x̃2t, obtained from the first stage regression of xit

on an intercept and x̃1t.
7

Further, we consider an additional experiment that assumes a misspecified observed factor model that mirrors

the analysis of our empirical finance example in Section 6.1:

EXP 4: (observed misspecified single factor - Gaussian errors) A misspecified single observed factor model,

where the DGP is a two-factor model with correlated factors (ρ12 = 0.3) and Gaussian errors in (35), α10 = 1,

and α20 = 0.75, 0.80, . . . , 0.95, 1.00. For this experiment we report the estimates of α10 computed based on

the misspecified single factor model xit = ci + γi1f1t + eit.

7Details of the estimation procedure can be found in the online Appendix D.
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The factor strengths are estimated using (7), with the nominal size of the associated multiple tests set to

p = 0.10, and the critical value exponent to δ = 1/4.8

For all experiments we report bias and RMSE of α̂j , size and power of tests of H0 : αj = αj0 against αj = αja,

j = 1, 2, using the test statistic given by

zα̂j :αj0 =
(lnn) (α̂j − αj0)− p

(
n− nα̂j

)
n−δ−α̂j[

p
(
n− nâj

)
n−δ−2α̂j

(
1− p

nδ

)]1/2 , j = 1, 2. (36)

We consider two-sided tests throughout. Empirical size is computed as

sizej,R = R−1
R∑
r=1

I
(∣∣zα̂j :αj0∣∣ > cv |H0

)
, j = 1, 2

where cv is the critical value of the two-sided normal distribution test which we set to cv = 1.96 (for 95% coverage).

The empirical power of the tests of H0 : αj = αj0 against the alternative H1 : αj = αja, are obtained for

αja = αj0 +κ, κ = −0.05,−0.045, . . . , 0.045, 0.05 (20 alternatives) for values of αj0 ∈ [0.75, 1.00). Here, DGP (35)

is generated under H1 and the rejection frequency is computed as

powerj,R = R−1
R∑
r=1

I
(∣∣zα̂j :αj0∣∣ > cv |H1

)
, j = 1, 2,

where zα̂j :αj0 is given by (36). When αj0 and/or αja is equal to unity, we can compute size and power following

the randomisation procedure proposed in the online Appendix C.

For all experiments we consider all combinations of n = {100, 200, 500, 1, 000} and T = {60, 120, 200, 500, 1, 000},

and set the number of replications per experiment to R = 2, 000. The parameter values of ci and γij in the DGP

are redrawn at each replication.

5.2 MC findings

We start with the more general two factor model where the factors are observed (experiments 2A and 2B). Overall,

the outcomes are very similar when the model is generated under a one or two factor specification, or under normal

and non-normal errors. To save space, here we report the results for experiment 2B with moderately correlated

factors (ρ12 = 0.3) and non-Gaussian errors.9 Table 1 reports bias, RMSE and size for the estimator of the strength

of factor f1t, namely α̂1, for different values of α10, and different (n, T ) combinations, when the strength of the

second factor is set to α20 = 0.85. As to be expected, bias and RMSE are universally low and gradually decrease

as n, T and α10 rise. Especially when α10 = 1, bias and RMSE are negligible even when T = 60. Similar results

hold when α20 is set to different values in the range 0.75 to 1.00. These are available in the online Appendix D.

Moving on to the rejection probabilities under the null hypothesis, we note that since the variance of our

8We also consider other values of p and δ, namely p = 0.05 and δ = 1/3 or 1/2, and found the results to be qualitatively very similar
to those obtained when p = 0.10 and δ = 1/4. See Tables S21-S25 in the online Appendix D which show bias, RMSE and size results
for Experiment 2B corresponding to these values.

9Corresponding results when factors are uncorrelated (ρ12 = 0.0) or under Gaussian errors are given in the online Appendix D.
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proposed estimator is quite small, the rejection probabilities are sensitive to the bias of α̂1. Hence, for smaller

values of α10 the test is considerably oversized, which is to be expected. However, as the sample size and α10

increase, the size distortion reduces considerably, resulting in a well behaved test under the null hypothesis. For

α10 = 0.95 correct empirical size is achieved even for moderate values of T , while, as mentioned earlier, when

α10 = 1 our estimator has an exponential rate of convergence and rapidly converges to its true value. Next, we

turn to the power of the test and consider the rejection probabilities under a sequence of alternative hypotheses.

Figure 1 depicts power functions corresponding to the strength of factor f1t under non-Gaussian errors, for values

of α10 = 0.80, 0.85, 0.90 and 0.95 when α20 = 0.85, T = 200, and as n increases from 100 to 1, 000. This figure

clearly shows that the proposed estimator is very precisely estimated for all values of α10 considered, and for all

(n, T ) combinations. Also as α10 rises towards unity the power approaches unity even for very small deviations

from the null. We do not report power results for α10 = 1, due to the ultraconsistency of the estimator in this

case.

Similar findings hold when we consider models with one observed factor (experiments 1A and 1B), irrespective

of whether the errors are Gaussian. Bias, RMSE and size results under Gaussian and non-Gaussian errors are

shown in Tables S1a and S1b of the online Appendix D. Corresponding power functions are shown in Figures S1a

and S1b of the same appendix, and give a similar picture as the one we discussed for the two factor case.

We now consider experiments where at the estimation stage the number and/or the identity of factors are

assumed unknown. In the case of experiment 3A, the DGP is generated with a single factor, whilst under

experiments 3B and 3C the DGP is generated with two uncorrelated factors. In the first of these experiments

the factor strength α10 is computed with respect to the pervasiveness of the simple cross section average, x̄t.

This case is analysed in Section 4. The results corresponding to experiment 3A when errors are non-Gaussian

are summarised in Table 2 with the associated power functions in Figure 2. As can be seen, the small sample

performance of the estimator of factor strength deteriorates somewhat as compared to when the factor is known,

particularly for values of α0 that are not sufficiently close to unity. The empirical size is particularly elevated for

values of α0 ≤ 0.9 when compared to the case of observed factors. However, for large sample sizes and values for

α0 close to unity, the proposed estimator seems to be reasonably well behaved even if the factor is unobserved.

In the case of two unobserved factors (experiment 3B), we estimate α0 = max (α10, α20), again using the

simple cross section average, x̄t, first when α10 = 1 and α20 = 0.51, 0.75, 0.95, 1. As shown in the top panel of

Table 3 under non-Gaussian errors, when α20 is set to the lower bound (= 0.51), then bias and RMSE results are

again universally very low and match the results of the case of one unobserved factor, which is expected. Some

deterioration in results can be detected as α20 is increased towards unity, for small values of T , e.g. T = 60 or

120, but again the size distortions vanish as T increases. The ultraconsistency of our estimator when α10 = 1

is evident by the values for both bias and RMSE measures which are so small that we have scaled them up by
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10, 000 in the top panel of Table 3. When α10, α20 < 1, estimating α0 becomes more challenging. This is clear

from the bias and RMSE results shown in the bottom panel of Table 3, when α10 = 0.95 and α20 is set to the

same values as before (here the scaling of all bias and RMSE values is returned to 100). In line with the conditions

of Theorem 2, namely
√
Tn(α20−α10) → 0, results worsen for values of α20 relatively close to α10, but improve as

the distance between α10 and α20 widens, for any given value of n and T . When α20 = 1, then the estimator of

α0 = max (α10, α20) becomes ultraconsistent, as was the case in the top panel of Table 3.10

Experiment 3C continues with the case of two unobserved factors. In this case, we estimate both α10 and

α20, using the sequential weighted cross section average (CSA) procedure set out in Section 4.1. Table 4 presents

bias and RMSE results for α10 and α20 over 2, 000 replications when α10 = {0.90, 1}, and α20 = {0.51, 0.75, 0.90},

with α10 > α20. From these findings it is evident that the stronger factor strength, α10, is accurately estimated

universally using this approach as well, especially so when α10 = 1. For the weaker factor with exponent α20, the

estimates show a larger bias and RMSE, as to be expected, but continue to be clustered around the true values as

n and T rise, and α20 is sufficiently distinct from α10, namely when the gap, α10 − α20, is relatively large. Given

the challenges associated with the latent multi-factor setting in terms of identifying and estimating the true factor

strengths, the sequential weighted CSA approach produces encouraging initial results.11

Finally, consider experiment 4 designed to reflect the setting of the empirical finance application presented in

subsection 6.1. Here we focus on a DGP with two factors that are correlated, but a single observed factor model

is used for estimating the strength of the first factor, f1t. The results for α10 = 1 are shown in Table S20a of the

online Appendix D, and as can be seen, omitting a second relevant and correlated factor in this case does not

unduly affect the performance of the estimator of the strength of the first factor.12 This seems to be the case for

all (n, T ) combinations and for different values of α20.13 However, misspecification is likely to be consequential if

the first factor is not sufficiently strong.

6 Empirical applications to finance and macroeconomics

6.1 Identifying risk factors in asset pricing models

The asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), and its multi-factor extension in the

context of the Arbitrage Pricing Theory (APT) developed by Ross (1976) are the leading theoretical contributions

implemented widely in modern empirical finance to analyse the cross-sectional differences in expected returns.

10Using the first principal component (PC) of xit instead of the cross section average (CSA) produces similar results when αj0 = 1,
j = 1, 2, but under performs in comparison to CSA when αj0 < 1.0. These results are available in the online Appendix D. See also
Section 19.5.1 of Pesaran (2015) where the asymptotic properties of cross section average and the first PC are compared.

11Similar observations can be made when considering non-zero correlation between f1t and f2t, ρ12. Results when setting ρ12 = 0.3, 0.7
are available upon request.

12The bias and RMSE values for this experiment are negligible so that in Table S20a they are reported after scaling them up by the
factor of 10,000.

13Corresponding results for the case of uncorrelated factors (ρ12 = 0.0) are also available in the online Appendix D.
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Both approaches imply that expected returns are linear in asset betas with respect to fundamental economic

aggregates, and the Fama-MacBeth two-pass procedure (Fama and MacBeth (1973)) is one of the most broadly

used methodologies to assess these linear pricing relationships. The first stage in this approach entails choosing

the risk factors to be included in the asset pricing model. Given the upsurge in the number of factors deemed

relevant to asset pricing in the past few years, a rapidly growing area of the finance literature has been concerned

with evaluating the contribution of potential factors to these models. Harvey and Liu (2019) document over 400

such factors published in top ranking academic journals. The primary focus of this literature has been on factor

selection on the basis of performance metrics such as the Gibbons, Ross and Shanken statistic of Gibbons et al.

(1989), or the maximum squared Sharpe ratio of Fama and French (2018) among many others. More recent

contributions further allow for the possibility of false discovery when the number of potential factors is large and

multiple testing issues arise - see Feng et al. (2020).

Our application focuses on determining the strength of these factors as a means of evaluating whether their

risk can be priced correctly and abstracts from the question of factor selection as such. As shown by Pesaran

and Smith (2019), the APT theory requires that risk factors should be sufficiently strong if their associated risk

premium is to be estimated consistently. The risk premium of a factor with strength α can be estimated at the rate

of n−a/2, where n is the number of individual securities under consideration. As a result,
√
n consistent estimation

of the risk premium of a given factor requires the factor in question to be strong with its α equal to unity. Factors

with strength less than 0.5 cannot be priced and are absorbed in pricing errors. But in principle, it should be

possible to identify the risk premium of semi-strong factors (factors whose α lies in the range 1 > α > 1/2), but

very large number of securities are needed for this purpose. In practice, where n is not sufficiently large, at best

only factors with strength sufficiently close to unity can be priced.14 As an illustration of their theoretical results,

Pesaran and Smith (2019) consider the widely used Fama and French (1993) three-factor model applied to the

constituents of the S&P500 index and assess the strength of each of the factors included in the model, namely the

market, size and value factors. In what follows we carry out a more comprehensive investigation of this topic, by

assessing the strength of a total of 146 factors.

6.1.1 Data

We consider monthly excess returns of the securities included in the S&P 500 index over the period from September

1989 to December 2017. Since the composition of the index changes over time, we compiled returns on all 500

securities at the end of each month and included in our analysis only those securities that had at least 10 years

of history in the month under consideration. On average, we ended up with n = 442 securities at the end of

14In an early critique of tests of asset pricing theory, Roll (1977) argued that for a test to be valid, it is required that all assets
traded in the economy are included in the empirical analysis. In effect requiring n to be very large, and much larger than the number
of securities traded on exchanges.

21



each month. The one-month US treasury bill rate (in percent) was chosen as the risk-free rate (rft), and excess

returns were computed as r̃it = rit − rft, where rit is the return on the ith security between months t − 1 and

t in the sample, inclusive of dividend payments (if any).15 In addition to the market factor (measured as the

excess market return) we consider the 145 factors considered by Feng et al. (2020), which are largely constructed

as long/short portfolios capturing a number of different characteristics.16 In order to account for time variations

in factor strength, we use rolling samples (340 in total) of 120 months (10 years) each. The choice of the rolling

window is guided by the balance between T and n, and follows the usual practice in the finance literature.17

6.1.2 Factor models for individual securities

We commence with the following regressions:

rit − rft = ai + βim (rmt − rft) +
k∑
j=1

βijfjt + uit, for i = 1, 2, . . . , nτ , (37)

where nτ are the number of securities in 10-year rolling samples from September 1989 to December 2017, with

τ = 1, 2, . . . , 340. rmt denotes the return on investing in the market portfolio, which here is approximated by a

value weighted average of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ

that have data for month t. As such, this definition of the market portfolio is wider than one which assumes

an average of the 440 or so S&P500 securities considered in this study. The excess market return, (rmt − rft),

then approximates the market factor. fjt for j = 1, 2, . . . , 145 represent the potential risk factors in the active set

under consideration. As explained in Section 5 of Pesaran and Smith (2019), the strength of factor j is defined by∑n
i=1

(
βij − β̄j

)2
= � (nαj ), and once the market factor is included in (37), it is the case that the coefficients are

expressed as deviations of the factor loadings from their means, as required.

Initially, we set k = 0 and consider the original CAPM specification of Sharpe (1964) and Lintner (1965),

rit − rft = aim + βim (rmt − rft) + uit,m. (38)

We apply our estimator (7) to the loadings βim, i = 1, 2, . . . , nτ , and obtain estimates of the strength of the market

factor across the rolling windows, α̂m,τ , τ = 1, 2, . . . , 340.18

Next, in order to assess the effect on the market factor strength estimates of adding more factors to (38), as

15Further details relating to the construction of this dataset can be found in the online Appendix D and in Bailey et al. (2016, 2019).
16The authors would like to thank Dacheng Xiu for providing the dataset that covers all the 146 factors, inclusive of the market

factor. Apart from 15 factors obtained from specific websites, the remaining factors are constructed using only stocks for companies
listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11. Moreover, financial firms and firms with negative
book equity are excluded. For each characteristic, stocks are sorted using NYSE breakpoints based on their previous year-end values,
then long-short value-weighted portfolios (top 30% - bottom 30% or 1-0 dummy difference) are built and rebalanced every June for a
12-month holding period. Further details regarding the construction of this dataset can be found in Feng et al. (2020).

17We also consider rolling samples of size 60 months (5 years). The results are shown in the online Appendix D.
18A similar analysis using the simple CAPM model was conducted in the empirical application of Bailey et al. (2016) where a

preliminary suggestion of our estimator of factor strength was originally made. This accompanied the main empirical analysis of
quantifying the degree of cross-sectional dependence inherent in the rolling panels of S&P500 security excess returns studied, making
use of the estimator formally developed in that paper.
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well as to quantify the strength of these additional factors, we add the 145 factors to the CAPM regression, (38),

one at a time; namely we run the regressions

rit − rft = ais + βim|s (rmt − rft) + βisfst + uit,s, i = 1, 2, . . . , nτ (39)

for each s = 1, 2, . . . , 145, and each rolling window τ = 1, 2, . . . , 340. Our choice of model is motivated by the fact

that once we have conditioned on the market factor, we can use the One Covariate at the time Multiple Testing

(OCMT) methodology of Chudik et al. (2018) as an additional step for selecting the factors that ought to be

included in our final asset pricing model. Again, we compute the strength of the market factor with the sth factor

included, which we denote by α̂m,τ |s , as well as the strength of each of the additional factors, which we denote by

α̂s,τ , for all 340 rolling windows, τ = 1, 2, . . . , 340. As with the Monte Carlo experiments, in the computation of

factor strength we set the nominal size of the associated multiple tests to p = 0.10, and the critical value exponent

to δ = 1/4.

6.1.3 Estimates of factor strengths

First, we consider the rolling estimates obtained for the strength of market factor, αm, when using the CAPM and

the augmented CAPM specifications given by (38) and (39). Figure 3 displays α̂m,τ , τ = 1, 2, . . . , 340; the 10-year

rolling estimates obtained using the CAPM regressions over the period September 1989 to December 2017. As

can be seen, all α̂m,τ are quite close to unity, and it can be safely concluded that the market factor is strong and

its risk premium can be estimated consistently at the usual rate of
√
n. There is some evidence of departure from

unity over the period between December 1999 to January 2011 which saw a number of sizeable financial events

such as the Long-Term Capital Management (LTCM) crisis, the burst of the dot-com bubble and, more recently,

the global financial crisis. α̂m,τ records its minimum value of 0.958 in August 2008, around the time of the Lehman

Brothers collapse.19 As implied by our theoretical results of Section 3, standard errors around these estimates

are extremely tight and hard to distinguish graphically from the point estimates.20 It is also interesting that the

estimates of market factor strength are generally unaffected if we consider the augmented CAPM regressions. For

each rolling window we now obtain 145 estimates of αm, denoted by α̂m,τ |s for s = 1, 2, . . . , 145. We display the

average of these estimates, namely, α̂m,τ = (1/145)
∑145

s=1 α̂m,τ |s , in Figure 3. It is clear that α̂m,τ closely track

α̂m,τ . The two series are almost identical during the periods September 1989 to December 1999 and January 2011

to December 2017. There are some minor deviations between α̂m,τ |s and α̂m,τ during the period December 1999

to January 2011, when they both deviate marginally from unity, with a maximum deviation of 0.011 in September

2008. The average estimates of αm,τ also have very narrow confidence bands, with an average standard error of

19Any deviations of α̂m from unity are not necessarily viewed as signs of market inefficiency. Factor strength could deviate from
unity even during non-crises periods.

20The corresponding plot of α̂m,τ estimates under (38) which includes its standard errors is shown at the top left corner of Figure
A1 in the online Appendix D.

23



0.0038 over the full sample, taking its maximum value of 0.0099 in September 2008. Overall, it is evident that the

inclusion of an additional factor in (39) has little effect on estimates of the market factor strength, which is in line

with the Monte Carlo evidence for experiment 4 summarised in the previous Section.

We can safely conclude that the market factor is strong with the exception of a short period during the recent

financial crisis. We now consider the 10-year rolling estimates of the strength of the remaining factors, denoted

by αs,τ , using the augmented CAPM regressions. These estimates together with their 90% confidence bands are

shown in Figures A1 to A10 of the online Appendix D. They show considerable time variation, especially during

December 1999 to January 2011. However, even though a rise in the average pair-wise correlations between the

146 factors is evident in the build up to the 1999 crisis, at no point during the full sample (September 1989 to

December 2017) do any of these factors become strong in the sense that α̂s,τ is clearly below 1, for all s and τ .

The market factor dominates all other factors in strength. Indeed, in Figure 4 we observe that the proportion of

factors (out of the 145 in total) whose strength exceeds the threshold values of 0.85, 0.90 and 0.95 in each rolling

window progressively drops so that there are no factors left whose strength exceeds 0.95 throughout our sample

period. This suggests that only the market factor can be considered to be a risk factor whose risk premium can be

estimated consistently at the standard
√
n rate. The role of the remaining 145 factors in the asset pricing models

(39) could be to filter out the effects of any additional semi-strong cross-dependence in asset returns in order to

achieve weak enough cross-sectional dependence in the errors uit, required for
√
n consistent estimation of market

risk premia.

Next, we rank the 145 factors (plus the market factor) from the strongest to the weakest in terms of the

percentage of months in our sample period (340 in total) that their strength exceeds the threshold value of 0.90.

As shown in Table A1 of the online Appendix D, there are 65 factors that meet this criterion at least in some

instances during the sample period. As expected, the market factor ranks first with an average estimated strength

of 0.99, followed by factors associated with leverage, and the ratios of sales to cash, cash flow to price, net debt to

price and earnings to price. The second ranking factor, leverage, has average strength of 0.827, with only 37.9%

of the time being above 0.9. Interestingly, the Fama French value factor (high minus low) ranks 34th in our table

while the size factor (small minus big) does not even enter the group of 65 factors, recording values of α̂ below 0.90

across all rolling windows. For completeness, Table A1 also includes time averages of each factor strength over

the full sample (September 1989 - December 2017), and the three sub-samples: September 1989 - August 1999,

September 1999 - August 2009, and September 2009 - December 2017. While on average, the strengths of these

factors are around 0.80 in the first and the last decade in our sample, in the period between September 1999 to

August 2009, the strength of many factors rises to around 0.91. This rise could be due to non-fundamental factors

gaining importance over the fundamental factors during the recent financial crisis, and can be viewed as evidence

of market decoupling.
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Finally, it is of interest to investigate whether the strength of the strongest latent factor implied by the panel

of S&P 500 securities’ excess returns coincides with that of the market risk factor, which we identified as the

strongest observed factor under our previous analysis. In line with the discussion of Section 4, the strength of the

strongest unobserved factor will be captured by the strength of the cross section average of the excess returns in

each rolling window, noting the stricter conditions on the (n, T ) dimensions of the panel implied by Theorem 2.

Figure 5 plots the 10-year rolling α̂csa,τ estimates implied by the cross section average of excess returns against

the 10-year rolling α̂m,τ estimates implied by the simple CAPM regression (38). It is evident that the two series

are almost identical throughout our sample period except for the period between September 1999 to January

2011 where they deviate from each other to some extent. The average correlation between α̂csa,τ and α̂m,τ over

τ = 1, 2, . . . , 340 stands at 0.93. On this basis, we also computed the rolling correlation coefficients between the

cross section average of individual securities’ excess returns and the observed market risk factor again over the

rolling windows τ = 1, 2, . . . , 340. These are consistently close to unity with an average value across all the rolling

windows of 0.95, and with the lowest value of 0.85 obtained for the period between September 1999 to January

2011.

6.2 Strength of common macroeconomic shocks

Similar considerations apply to macroeconomic shocks and their pervasive effects on different parts of the macroe-

conomy. As discussed in Giannone et al. (2017) and references therein, the advent of ‘high-dimensional’ datasets

has led to the development of predictive models that are either based on shrinkage of useful information inherent

across the whole set of data into a finite number of latent factors (e.g. Stock and Watson (2015) and references

therein), or assume that all relevant information for prediction is captured by a small subset of variables from the

larger pool of regressors implied by these data (e.g. Hastie et al. (2015), Belloni et al. (2011) among others). Such

methods are appealing in macroeconomics since they tend to provide more reliable impulse responses and fore-

casts over traditional models, when used for macroeconomic policy analysis and forecasting. However, as argued

in Giannone et al. (2017), it is not evident that either approach is always clearly supported by the (unknown)

structure of the given data and that model averaging might be preferable.

To measure the pervasiveness of the macroeconomic shocks, we make use of an updated version of the macroe-

conomic dataset compiled originally by Stock and Watson (2012) and subsequently extended by McCracken and

Ng (2016). Here, we assume that the macroeconomic shocks are unobserved and estimate the strength of the

strongest of such shocks from the updated dataset which consists of balanced quarterly observations over the

period 1988Q1− 2019Q2 (T = 126) on n = 187 out of the 200 macroeconomic variables used in Stock and Watson

(2012).21 Ten out of the 200 macroeconomic variables used in Stock and Watson (2012) are no longer available in

21The raw data, which include both high-level economic and financial aggregates as well as disaggregated components, are updated reg-
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the updated version of the dataset.22 Further details on this dataset can be found in the online Appendix D.

6.2.1 How strong is the strongest of the unobserved macroeconomic shocks?

As discussed in Section 4, identifying and estimating the strengths of unobserved factors of varying strengths

becomes challenging due to the fact that, in general, factors are identified only up to a non-singular rotation

matrix. However, as argued above we are still able to identify and estimate the strength (α) of the strongest shock

using the cross section average of the variables in the dataset.23 We computed estimates of α for the pre-crisis

period, 1988Q1 to 2007Q4, as well as for the full sample period ending on 2019Q2. The factor strength estimates

are shown in Table 5. They are clustered around 0.94, and are quite robust to the choice of the parameters p

and δ in the critical value function (6), as well as to the time period considered. These estimates are consistently

below 1, and suggest that whilst there exist strong macroeconomic shocks, the effects of such shocks are not nearly

as pervasive as have been assumed in the factor literature applied to macro variables. This finding is further

corroborated by the estimates of the exponent of cross-sectional dependence of BKP, also shown in Table 5.24

7 Conclusions

Recent work by Bailey et al. (2016, 2019) has focused on the rationale and motivation behind the need for

determining the extent of cross-sectional dependence, be it in finance or macroeconomics, and has provided a

conceptual framework and tools for estimating the strength of such interdependencies in economic and financial

systems. However, this literature does not address the problem of estimating the strength of individual factors

that underlie such cross dependencies, which can be of interest, for example, for pricing of risk in empirical finance,

or for quantifying the pervasiveness of macroeconomic shocks. The current paper addresses this gap. It proposes

a novel estimator of factor strength based on the number of statistically significant t-statistics in a regression of

each unit in the panel dataset on the factor under consideration, and provides inferential theory for the proposed

estimator. Detailed and extensive Monte Carlo and empirical analyses showcase the potential of the proposed

method.

The current paper considers estimation and inference when the panel regressions are based on a finite number

ularly and can be found on the Federal Reserve Bank of St Louis website at: https://research.stlouisfed.org/econ/mccracken/static.html.
All variables were screened for outliers and transformed as required to achieve stationarity. Details about variable definitions, descrip-
tions and transformations can be found in the accompanying FRED-QD appendix to McCracken and Ng (2016) which links to Stock
and Watson (2012) and is downloadable from the aforementioned website.

22These are: (1) Construction contracts, (2) Manufacturing and trade inventories, (3) Index of sensitive materials prices (disc),
(4) Spot market price index BLS&CRB: all commodities, (5) NAPM commodity price index, (6) 3m Eurodollar deposit rate, (7)
MED3-TB3MS, (8) GZ-spread, (9) GZ Excess bond premium, and (10) DJIA.

23Again, one needs to take into consideration the stricter conditions on the (n, T ) dimensions of the panel, as implied by Theorem 2.
24Using the Sequential Multiple Testing (SMT) detection procedure developed in Kapetanios et al. (2020), we also checked to see if

any of the unit(s) in the macro dataset can be viewed as pervasive, namely sufficiently influential to affect all other variables. The SMT
procedure could not detect any such variables for all choices pmax = 0, 1, . . . , 6, where pmax denotes the assumed maximum number of
potential factors in the dataset.
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of observed factors. Some theoretical evidence is also provided for the case when the model contains unobserved

factors. Further research is required to link our analysis to the problem of factor selection discussed by Feng et al.

(2020). Also, it would be of interest to address the identification problem when there are multiple unobserved

factors. One possibility would be to exploit the approach recently developed in Kapetanios et al. (2020) to see

whether the unobserved factors can be associated with dominant units or some other observable components.
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Table 1: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment 2B
(two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85

Bias (×100) RMSE (×100) Size (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.13 1.18 1.15 1.07 1.03 1.65 1.54 1.52 1.43 1.40 9.00 4.10 3.65 2.40 2.25
200 1.46 1.46 1.39 1.32 1.32 1.68 1.62 1.55 1.47 1.47 14.50 9.50 8.30 7.10 6.60
500 1.28 1.30 1.21 1.15 1.13 1.41 1.37 1.28 1.22 1.20 22.40 13.55 10.00 8.05 8.20
1000 1.27 1.25 1.20 1.12 1.10 1.36 1.30 1.24 1.16 1.14 26.30 15.00 11.45 7.70 6.40

α10 = 0.80, α20 = 0.85

100 0.63 0.67 0.65 0.61 0.58 1.13 1.00 1.00 0.95 0.92 27.60 18.10 18.55 17.95 19.70
200 0.90 0.97 0.91 0.89 0.86 1.11 1.10 1.05 1.01 0.98 20.45 12.60 11.45 9.75 7.75
500 0.82 0.90 0.85 0.82 0.80 0.94 0.96 0.90 0.87 0.86 22.00 12.45 8.30 7.00 7.10
1000 0.78 0.85 0.81 0.76 0.75 0.87 0.88 0.84 0.79 0.77 28.35 17.05 11.60 8.40 6.65

α10 = 0.85, α20 = 0.85

100 0.51 0.66 0.68 0.62 0.61 0.87 0.85 0.87 0.81 0.79 21.60 9.65 9.15 7.65 6.90
200 0.49 0.61 0.59 0.55 0.54 0.70 0.71 0.69 0.65 0.64 14.15 5.45 4.15 3.15 3.45
500 0.38 0.52 0.49 0.46 0.46 0.51 0.57 0.53 0.51 0.50 29.35 11.95 7.40 8.45 7.10
1000 0.37 0.49 0.48 0.44 0.43 0.46 0.52 0.50 0.47 0.45 31.50 11.00 7.65 5.45 4.10

α10 = 0.90, α20 = 0.85

100 0.21 0.39 0.39 0.37 0.36 0.58 0.54 0.54 0.52 0.51 23.60 4.15 3.60 3.10 2.85
200 0.10 0.27 0.26 0.24 0.24 0.38 0.38 0.35 0.33 0.34 36.30 15.10 12.60 12.25 12.55
500 0.11 0.29 0.28 0.27 0.26 0.29 0.32 0.31 0.30 0.29 42.40 11.05 7.05 7.90 7.40
1000 0.10 0.27 0.28 0.26 0.25 0.24 0.29 0.29 0.27 0.27 48.70 11.25 9.85 5.55 6.70

α10 = 0.95, α20 = 0.85

100 -0.16 0.06 0.08 0.06 0.06 0.44 0.25 0.24 0.22 0.22 38.35 7.20 3.65 2.25 2.35
200 -0.10 0.10 0.11 0.10 0.10 0.30 0.19 0.17 0.18 0.17 46.80 8.85 4.40 4.75 3.95
500 -0.11 0.10 0.11 0.11 0.10 0.25 0.13 0.13 0.13 0.13 68.20 14.45 8.65 7.55 7.80
1000 -0.12 0.09 0.10 0.09 0.09 0.23 0.10 0.11 0.10 0.10 77.10 11.45 5.60 4.60 5.05

α10 = 1.00, α20 = 0.85

100 -0.28 -0.02 0.00 0.00 0.00 0.41 0.06 0.02 0.00 0.00 - - - - -
200 -0.25 -0.02 0.00 0.00 0.00 0.33 0.05 0.01 0.00 0.00 - - - - -
500 -0.26 -0.02 0.00 0.00 0.00 0.32 0.03 0.01 0.00 0.00 - - - - -
1000 -0.25 -0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.00 0.00 - - - - -

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factors,

(f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor

assumes an autoregressive process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set µv1 = µv2 = 0.71. Both α10

and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with

σ2
i ∼ IID(1 + χ2

2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂j , j = 1, 2, we use p = 0.10 and δ = 1/4 when setting the critical

value. Size is computed under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. The number of replications is set

to R = 2000.
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Figure 1: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table 2: Bias, RMSE and Size (×100) of estimating the strength of strongest factor in the case of experiment 3A
(unobserved single factor - non-Gaussian errors) using cross section average

Bias (×100) RMSE (×100) Size (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75

100 2.22 2.40 2.70 4.34 6.69 2.76 2.84 3.12 4.70 6.98 25.40 28.15 35.35 73.55 98.15
200 2.07 2.02 2.10 2.60 3.49 2.41 2.26 2.33 2.80 3.69 31.40 29.80 32.10 51.80 82.70
500 1.66 1.61 1.56 1.61 1.81 1.88 1.75 1.67 1.72 1.92 33.00 29.30 28.05 30.15 43.60
1000 1.54 1.45 1.39 1.36 1.43 1.72 1.55 1.45 1.42 1.49 38.30 30.00 26.65 24.85 30.00

α10 = 0.80

100 1.21 1.28 1.40 2.17 3.32 1.65 1.64 1.73 2.46 3.58 33.10 28.25 30.40 55.55 85.55
200 1.22 1.22 1.21 1.40 1.78 1.46 1.37 1.36 1.54 1.93 29.30 25.35 23.70 34.00 55.95
500 1.02 1.03 0.99 0.99 1.04 1.16 1.11 1.05 1.05 1.09 26.50 20.60 16.90 17.65 21.05
1000 0.92 0.92 0.87 0.85 0.86 1.02 0.97 0.91 0.88 0.89 32.40 24.45 19.95 17.35 17.70

α10 = 0.85

100 0.87 0.93 0.96 1.27 1.72 1.15 1.14 1.16 1.46 1.91 25.90 20.80 22.05 37.40 63.10
200 0.68 0.72 0.69 0.75 0.89 0.86 0.83 0.80 0.86 1.00 15.70 10.65 8.90 12.50 20.25
500 0.46 0.57 0.55 0.53 0.53 0.62 0.62 0.59 0.57 0.58 25.35 13.60 10.75 9.50 11.00
1000 0.46 0.52 0.49 0.47 0.47 0.54 0.55 0.51 0.50 0.50 27.20 14.75 9.30 7.85 7.25

α10 = 0.90

100 0.41 0.50 0.50 0.61 0.78 0.66 0.64 0.66 0.76 0.93 17.55 7.25 7.20 12.15 22.55
200 0.24 0.31 0.30 0.32 0.36 0.44 0.40 0.39 0.41 0.44 28.10 12.75 12.85 12.35 12.90
500 0.20 0.30 0.30 0.28 0.28 0.32 0.34 0.33 0.32 0.31 30.75 10.65 8.40 7.20 8.65
1000 0.17 0.29 0.28 0.27 0.26 0.26 0.31 0.29 0.28 0.28 38.65 14.25 9.45 7.65 7.75

α10 = 0.95

100 0.00 0.10 0.11 0.14 0.19 0.36 0.26 0.26 0.29 0.34 25.30 5.40 4.95 6.75 10.20
200 0.00 0.12 0.11 0.12 0.13 0.25 0.19 0.18 0.19 0.20 32.90 7.20 4.85 5.75 6.15
500 -0.02 0.11 0.12 0.11 0.11 0.18 0.14 0.14 0.13 0.14 54.55 11.65 7.10 7.60 9.65
1000 -0.05 0.10 0.10 0.09 0.09 0.16 0.11 0.11 0.11 0.10 64.50 8.60 5.60 5.90 4.75

α10 = 1.00

100 -0.15 -0.01 0.00 0.00 0.00 0.26 0.04 0.00 0.00 0.00 - - - - -
200 -0.16 -0.01 0.00 0.00 0.00 0.23 0.03 0.00 0.00 0.00 - - - - -
500 -0.18 -0.01 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 - - - - -
1000 -0.18 -0.01 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 - - - - -

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factor,

f1t, is normally distributed with variance σ2
f1

= 1. The factor assumes an autoregressive process with correlation coefficient

ρf1 = 0.5. The factor loadings are generated as vi1 ∼ IIDU(µv1 − 0.2, µv1 + 0.2), for [nα10 ] units, and zero otherwise. vi2 = 0,

for all i. We set µv1 = 0.71. α10 ranges between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that

uit = σi
2

(
χ2
2,it − 2

)
, with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n. α0 = α10 is estimated by regressing observations, xit, on an

intercept and the cross section average of xit, x̄t = n−1∑n
i=1 xit, for t = 1, 2, . . . , T . In the computation of α̂1 we use p = 0.10 and

δ = 1/4 when setting the critical value. The number of replications is set to R = 2000.
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Figure 2: Empirical power functions associated with testing different strengths of strongest factor in the
case of experiment 3A (unobserved single factor - non-Gaussian errors) using cross section average, when
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 2 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table 3: Bias and RMSE of estimating the strength of strongest factor in the case of experiment 3B (two unobserved
factors - non-Gaussian errors) using cross section average, when α10 = 1.00 and α10 = 0.95

Bias (×10, 000) RMSE (×10, 000)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 1.00, α20 = 0.51

100 -16.43 -0.76 -0.02 0.00 0.00 28.19 4.20 0.69 0.00 0.00
200 -18.70 -1.02 -0.06 0.00 0.00 26.79 3.43 0.76 0.00 0.00
500 -19.00 -1.09 -0.07 0.00 0.00 24.47 2.37 0.48 0.07 0.00
1000 -19.25 -1.24 -0.07 0.00 0.00 24.16 2.09 0.34 0.00 0.00

α10 = 1.00, α20 = 0.75

100 -17.02 -0.94 -0.01 0.00 0.00 28.75 4.68 0.49 0.00 0.00
200 -18.06 -1.16 -0.09 0.00 0.00 26.22 3.74 0.90 0.00 0.00
500 -18.99 -1.10 -0.08 0.00 0.00 24.71 2.38 0.52 0.00 0.00
1000 -19.65 -1.24 -0.08 0.00 0.00 24.80 2.05 0.34 0.00 0.00

α10 = 1.00, α20 = 0.95

100 -19.08 -1.80 -0.10 0.00 0.00 34.54 6.72 1.46 0.00 0.00
200 -20.83 -2.07 -0.16 0.00 0.00 31.80 5.33 1.22 0.00 0.00
500 -21.20 -2.07 -0.21 0.00 0.00 29.65 3.76 0.89 0.00 0.00
1000 -22.34 -2.24 -0.25 0.00 0.00 29.65 3.76 0.89 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -1.16 -0.01 0.00 0.00 0.00 5.49 0.49 0.00 0.00 0.00
200 -1.48 -0.02 0.00 0.00 0.00 4.25 0.42 0.00 0.00 0.00
500 -1.55 -0.02 0.00 0.00 0.00 3.30 0.27 0.00 0.00 0.00
1000 -1.63 -0.03 0.00 0.00 0.00 2.81 0.23 0.03 0.00 0.00

Bias (×100) RMSE (×100)

α10 = 0.95, α20 = 0.51

100 0.02 0.17 0.22 0.39 0.59 0.38 0.34 0.39 0.54 0.72
200 0.01 0.16 0.16 0.22 0.30 0.28 0.24 0.24 0.30 0.38
500 -0.03 0.13 0.13 0.14 0.17 0.19 0.16 0.16 0.17 0.20
1000 -0.06 0.10 0.11 0.11 0.11 0.17 0.12 0.12 0.12 0.13

α10 = 0.95, α20 = 0.75

100 0.68 1.25 1.58 1.72 1.80 0.97 1.40 1.67 1.79 1.87
200 0.47 1.00 1.26 1.51 1.54 0.70 1.11 1.33 1.54 1.57
500 0.23 0.60 0.84 1.19 1.26 0.43 0.71 0.91 1.21 1.27
1000 0.10 0.42 0.58 0.95 1.07 0.31 0.51 0.66 0.97 1.08

α10 = 0.95, α20 = 0.95

100 3.51 3.99 4.05 4.05 4.05 3.56 4.01 4.07 4.07 4.07
200 3.35 3.88 3.95 3.96 3.96 3.39 3.89 3.96 3.97 3.96
500 3.17 3.73 3.82 3.82 3.83 3.20 3.74 3.82 3.83 3.83
1000 3.02 3.62 3.71 3.73 3.72 3.05 3.63 3.71 3.73 3.72

α10 = 0.95, α20 = 1.00

100 -0.19 -0.02 0.00 0.00 0.00 0.32 0.07 0.02 0.00 0.00
200 -0.21 -0.02 0.00 0.00 0.00 0.30 0.06 0.01 0.00 0.00
500 -0.21 -0.02 0.00 0.00 0.00 0.29 0.04 0.01 0.00 0.00
1000 -0.21 -0.02 0.00 0.00 0.00 0.29 0.04 0.01 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table 1, with ρ12 =

corr(f1, f2) = 0.0. α0 = max(α10, α20) is estimated by regressing observations, xit, on

an intercept and the cross section average of xit, x̄t = n−1∑n
i=1 xit, for t = 1, 2, . . . , T .
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Table 4: Bias and RMSE (×100) of estimating factor strengths α10 and α20 in the case of experiment 3C (two
unobserved factors - Gaussian errors) using sequential weighted cross section averages

Factor strength estimate α̂1 Factor strength estimate α̂2

Bias (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.90, α20 = 0.51

100 0.655 0.800 0.879 1.051 1.266 11.520 17.727 22.232 31.552 37.511
200 0.356 0.472 0.501 0.583 0.698 9.113 13.627 17.095 25.466 32.358
500 0.277 0.403 0.397 0.427 0.469 7.169 10.353 12.142 17.343 23.671
1000 0.243 0.339 0.343 0.351 0.364 6.631 8.889 9.879 12.731 17.033

α10 = 0.90, α20 = 0.75

100 2.581 3.391 3.680 3.874 3.875 8.156 13.379 16.248 18.683 19.677
200 1.993 2.772 3.121 3.372 3.367 8.859 14.382 16.381 18.260 18.661
500 1.458 2.054 2.380 2.792 2.843 8.650 13.955 16.164 17.735 17.864
1000 1.136 1.621 1.944 2.374 2.510 7.374 12.704 15.281 17.201 17.495

α10 = 1.00, α20 = 0.51

100 -0.124 -0.003 0.000 0.000 0.000 13.553 20.193 25.998 36.385 42.517
200 -0.138 -0.006 0.000 0.000 0.000 9.794 14.891 19.284 28.406 35.852
500 -0.156 -0.007 0.000 0.000 0.000 7.089 10.842 13.649 20.566 27.360
1000 -0.153 -0.008 -0.001 0.000 0.000 5.646 8.736 10.842 15.815 21.321

α10 = 01.00, α20 = 0.75

100 -0.156 -0.007 0.000 0.000 0.000 16.121 22.226 24.081 24.962 24.999
200 -0.158 -0.009 -0.001 0.000 0.000 14.141 20.615 23.234 24.829 24.989
500 -0.162 -0.009 -0.001 0.000 0.000 10.813 17.304 21.024 24.277 24.901
1000 -0.157 -0.009 -0.001 0.000 0.000 8.388 14.591 18.867 23.453 24.680

α10 = 1.00, α20 = 0.90

100 -0.228 -0.021 -0.002 0.000 0.000 -2.407 2.234 4.407 6.852 7.902
200 -0.224 -0.021 -0.002 0.000 0.000 0.527 4.578 6.362 8.159 8.855
500 -0.226 -0.020 -0.002 0.000 0.000 2.759 6.436 7.890 9.123 9.544
1000 -0.213 -0.019 -0.002 0.000 0.000 3.777 7.336 8.576 9.551 9.817

RMSE (×100)

α10 = 0.90, α20 = 0.51

100 0.888 0.995 1.074 1.223 1.399 12.701 18.343 22.719 31.855 37.731
200 0.536 0.592 0.621 0.698 0.804 9.945 14.022 17.433 25.727 32.541
500 0.377 0.449 0.441 0.477 0.523 7.947 10.581 12.367 17.633 23.940
1000 0.317 0.362 0.368 0.377 0.391 7.244 9.012 10.002 12.921 17.258

α10 = 0.90, α20 = 0.75

100 2.839 3.508 3.752 3.937 3.934 12.877 15.886 17.454 19.209 20.028
200 2.225 2.885 3.176 3.401 3.397 12.394 15.677 17.188 18.430 18.755
500 1.670 2.191 2.457 2.805 2.853 10.661 14.519 16.417 17.741 17.866
1000 1.325 1.767 2.035 2.392 2.515 9.026 13.051 15.387 17.202 17.496

α10 = 1.00, α20 = 0.51

100 0.237 0.028 0.000 0.000 0.000 14.918 20.940 26.616 36.856 42.860
200 0.215 0.025 0.002 0.000 0.000 10.874 15.395 19.622 28.686 36.158
500 0.211 0.019 0.003 0.000 0.000 8.265 11.196 13.849 20.671 27.482
1000 0.199 0.015 0.003 0.000 0.000 7.011 9.146 11.031 15.892 21.366

α10 = 1.00, α20 = 0.75

100 0.278 0.039 0.008 0.000 0.000 17.007 22.340 24.133 24.962 24.999
200 0.248 0.032 0.008 0.000 0.000 15.182 20.762 23.265 24.831 24.989
500 0.221 0.021 0.004 0.000 0.000 11.951 17.603 21.095 24.293 24.901
1000 0.208 0.016 0.003 0.000 0.000 9.338 14.955 18.965 23.457 24.680

α10 = 1.00, α20 = 0.90

100 0.411 0.075 0.018 0.000 0.000 3.562 2.663 4.554 6.892 7.924
200 0.349 0.054 0.012 0.000 0.000 2.140 4.706 6.406 8.170 8.860
500 0.332 0.039 0.008 0.000 0.000 3.249 6.486 7.904 9.126 9.545
1000 0.308 0.033 0.006 0.000 0.000 4.191 7.365 8.583 9.552 9.817

Notes: Parameters of DGP (35) are generated as described in Table 1, with ρ12 = corr(f1, f2) = 0.0. α10

and α20 are estimated using sequentially regression of observations, xit, on an intercept and the weighted

cross section average of xit, x̃1t = n−1∑n
i=1 ŵ1ixit, where ŵ1i =

∑T
t=1 x̄txit/

∑T
t=1 x̄

2
t , for t = 1, 2, . . . , T .

Next, by running the same regression using residuals obtained from the first stage. Details of the

estimation procedure can be found in the online Appendix D.
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Figure 3: Comparison of the market factor strength estimates obtained from the original single factor CAPM
(α̂m,τ ) and the average estimates of its strength when computed using 145 two-factor asset pricing models (α̂m,τ ),
over 10-year rolling windows

Notes: The market factor strength rolling estimates are computed using (7). The market factor strength average estimates
produced from the 145 two-factor CAPMs are computed as α̂m,τ = (1/145)

∑145
s=1(α̂s,τ ), for τ = 1, 2, . . . , 340 rolling

windows.

Figure 4: Percentage of factors (out of 145) whose estimated strength (α̂s,τ ), τ = 1, 2, . . . , 340 exceeds the thresholds
of 0.85, 0.90 and 0.95, in each 10-year rolling window

Notes: The 145 factor strength estimates, α̂s,τ , s = 1, 2, . . . , 145, are computed using (7).
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Figure 5: Comparison of the market factor strength estimates obtained from the original single factor CAPM
(α̂m,τ ) and those from using the cross section average (CSA) of S&P500 securities’ excess returns (α̂csa,τ ), over
10-year rolling windows

Notes: The market factor and CSA of S&P500 securities’ excess returns strength estimates over τ = 1, 2, . . . , 340 rolling
windows are computed using (7).

Table 5: Strength estimates of the strongest unobserved factor using the cross section average (CSA) of the Stock
and Watson (2012) dataset (n = 187 variables) and the corresponding exponent of cross section dependence (CSD)

Q1 1988 - Q4 2007
(T = 80)

Q1 1988 - Q2 2019
(T = 126)

α̂∗0.05 α̂ α̂∗0.95 α̂∗0.05 α̂ α̂∗0.95

p = 0.10

Strength of CSA (δ = 1/4) 0.962 0.964 0.966 0.928 0.930 0.933
Strength of CSA (δ = 1/2) 0.957 0.958 0.959 0.918 0.920 0.922
Exponent of CSD 0.833 0.873 0.913 0.858 0.920 0.981

p = 0.05

Strength of CSA (δ = 1/4) 0.962 0.963 0.964 0.927 0.929 0.931
Strength of CSA (δ = 1/2) 0.953 0.954 0.955 0.912 0.914 0.915
Exponent of CSD 0.828 0.869 0.908 0.856 0.918 0.979

Notes: *90% confidence bands. In the computation of the strength of CSA,

parameters p and δ are used when setting the critical value (6).

The exponent of CSD corresponds to the most robust estimator of cross-

sectional dependence proposed in Bailey et al. (2016) and corrects for both

serial correlation in the factors and weak cross-sectional dependence in the

error terms.
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Introduction

Appendices A and B provide proofs for the theoretical results (lemmas and theorems) of the main paper. Appendix
C discusses use of randomisation in testing the null hypothesis α = 1. Finally, Appendices D and D display
additional empirical and simulation results.

Appendix A Proofs of Lemmas

Proof of Lemma 1

We have that

E
(
d̂i,nT

)
= πi,nT = Pr [|tiT | > cp(n)]

= Φ
(
−cp(n) +

√
TθiT

)
+ Φ

(
−cp(n)−

√
TθiT

)
,

and
πi,nT = 1− Φ

(
−
√
TθiT + cp(n)

)
+ Φ

(
−cp(n)−

√
TθiT

)
(A.1)

where
θiT = (γi/σi)

(
T−1f ′Mτ f

)1/2
. (A.2)

Then,

n∑
i=1

E
(
d̂i,nT

)
=

n∑
i=1

1(γi 6= 0)
[
1− Φ

(
−
√
TθiT + cp(n)

)
+ Φ

(
−
√
TθiT − cp(n)

)]
+ (n− nα0) [2Φ (−cp(n))] .

Note that

[Φ (−cp(n))] = 1− [Φ (cp(n))] = 1− Φ
[
Φ−1

(
1− p

2nδ

)]
(A.3)

= 1−
(

1− p

2nδ

)
=

p

2nδ
.

Hence,

n∑
i=1

E
(
d̂i,nT

)
= nα0 +

n∑
i=1

1(θiT 6= 0)
[
Φ
(
−
√
TθiT − cp(n)

)
− Φ

(
−
√
TθiT + cp(n)

)]
+
p (n− nα0)

nδ
,

where θiT is defined by (A.2). Note also that

Φ
(
−
√
TθiT − cp(n)

)
− Φ

(
−
√
TθiT + cp(n)

)
=
[
1− Φ

(√
TθiT + cp(n)

)]
−
[
1− Φ

(√
TθiT − cp(n)

)]
= Φ

(√
TθiT − cp(n)

)
− Φ

(√
TθiT + cp(n)

)
.

Hence

Φ
(
−
√
TθiT − cp(n)

)
− Φ

(
−
√
TθiT + cp(n)

)
= Φ

(
−
√
T |θiT | − cp(n)

)
− Φ

(
−
√
T |θiT |+ cp(n)

)
. (A.4)
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Also since cp(n) > 0, for small p and δ > 0, then Φ
(
−
√
T |θiT | − cp(n)

)
< Φ

(
−
√
T |θiT |+ cp(n)

)
, and we have

n∑
i=1

1(θiT 6= 0)
[
Φ
(
−
√
TθiT − cp(n)

)
− Φ

(
−
√
TθiT + cp(n)

)]
=

n∑
i=1

1(θiT 6= 0)
[
Φ
(
−
√
T |θiT | − cp(n)

)
− Φ

(
−
√
T |θiT |+ cp(n)

)]
.

Suppose now that there exists T0 such that for all T > T0, and some i, |θiT | > 0, we have −
√
T |θiT |+ cp(n) < 0.

Such a T0 exists since cp(n)/
√
T → 0 as n, T →∞, jointly, for δ ≥ 0 - for a proof see result (a) in Lemma 2 of the

supplement to Bailey et al. (2019). Also

Φ
(
−
√
T |θiT |+ cp(n)

)
≤ (1/2) exp

{
−1

2

[√
TθiT − cp(n)

]2
}

= (1/2) exp

{
−Tθ2

iT

2

[
1− cp(n)√

TθiT

]2
}
, (A.5)

and ∣∣∣∣∣
n∑
i=1

1(γi 6= 0)
[
Φ
(
−
√
TθiT − cp(n)

)
− Φ

(
−
√
TθiT + cp(n)

)]∣∣∣∣∣
≤

n∑
i=1

1(θiT 6= 0)
[
Φ
(
−
√
T |θiT | − cp(n)

)
+ Φ

(
−
√
T |θiT |+ cp(n)

)]
≤ nα0 sup

i
exp

{
−Tθ2

iT

2

[
1− cp(n)√

T |θiT |

]2
}
.

Overall,

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
= C0 sup

i
exp

{
−Tθ2

iT

2

[
1− cp(n)√

T |θiT |

]2
}

+
p (n− nα0)

nδ+α0
. (A.6)

Proof of Lemma 2

Consider the first term of (9) and note that

AnT =
1

nα0

n∑
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
.

Under the assumption that uit are cross-sectionally independently distributed, zi,nT = d̂i,nT − E
(
d̂i,nT

)
are

uncorrelated across i and
V ar (zi,nT ) = V ar

(
d̂i,nT

)
= πi,nT (1− πi,nT ) ≤ 1/2,

where πi,nT is defined by (A.1). Then

V ar (AnT ) =
1

n2α0

n∑
i=1

πi,nT (1− πi,nT ).
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Now, using (A.1), first we note that (using (A.4))

|1− πi,nT | =
∣∣∣Φ(−√TθiT + cp(n)

)
− Φ

(
−cp(n)−

√
TθiT

)∣∣∣
=
∣∣∣Φ(−cp(n)−

√
TθiT

)
− Φ

(
−
√
TθiT + cp(n)

)∣∣∣
=
∣∣∣Φ(−√T |θiT | − cp(n)

)
− Φ

(
−
√
T |θiT |+ cp(n)

)∣∣∣
≤ Φ

(
−
√
T |θiT | − cp(n)

)
+ Φ

(
−
√
T |θiT |+ cp(n)

)
≤ 2Φ

(
−
√
T |θiT |+ cp(n)

)
,

and hence using (A.5) we have
|1− πi,nT | = O [exp (−C1T )] , if |θiT | > 0,

and when θiT = 0, using (A.3), we have

1− πi,nT = Φ [cp(n)]− Φ [−cp(n)]

= 1− 2Φ [−cp(n)] = 1− p

nδ
.

Overall,

V ar (AnT ) =
1

n2α0

{
(n− nα0)

p

nδ

(
1− p

nδ

)
+ nα0O [exp (−C2T )]

}
. (A.7)

Proof of Lemma 3

We proceed by considering t̄iT under (27) and note that

x̄ =c̄τT + Fγ̄+ū, and xi = ciτT + Fγi + ui.

Then,

t̄iT =
T−1/2 (x̄′Mτxi)

σ̂iT (T−1x̄′Mτ x̄)1/2
=

T−1/2(Fγ̄+ū)′Mτ (Fγi + ui)

σ̂iT
[
T−1(Fγ̄+ū)′Mτ (Fγ̄+ū)

]1/2 , (A.8)

and
σ̂2
iT = T−1 (Fγi + ui)

′MH̄ (Fγi + ui) .

Consider first the denominator of (A.8) and note that

T−1(Fγ̄ + ū)′Mτ (Fγ̄ + ū) = γ̄ ′
(
T−1F′MτF

)
γ̄ + 2T−1ū′MτFγ̄+T−1ū′Mτ ū.

Under our assumptions, Σ̂f = T−1F′MτF is a positive definite matrix and

λmin

(
Σ̂f

) (
γ̄ ′γ̄
)
≤γ̄ ′

(
T−1F′MτF

)
γ̄ ≤

(
γ̄ ′γ̄
)
λmax

(
Σ̂f

)
.

Since 0 < λmin

(
Σ̂f

)
< λmax

(
Σ̂f

)
< C, it follows that γ̄ ′

(
T−1F′MτF

)
γ̄ and γ̄ ′γ̄ have the same order in n.

Recalling that α0 > α20 . . . > αm0,

γ̄ ′
(
T−1F′MτF

)
γ̄ = 	p

(
n2(α0−1)

)
.

Also using results from Pesaran (2006) we have T−1ū′Mτ ū =Op(n
−1), and T−1ū′MτFγ̄ = Op(n

−1/2+α0−1). There-
fore, overall

[
T−1(Fγ̄+ū)′Mτ (Fγ̄+ū)

]1/2
=
[
γ̄ ′
(
T−1F′MτF

)
γ̄
]1/2 {

1 +Op(n
1/2−α0) +Op(n

1−2α0)
}1/2

.
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But since a0 > 1/2 then[
T−1(Fγ̄+ū)′Mτ (Fγ̄+ū)

]1/2
=
[
γ̄ ′
(
T−1F′MτF

)
γ̄
]1/2

[1 + op(1)] .

Using this result in (A.8) we now have

t̄iT =
T−1/2(Fγ̄+ū)′Mτ (Fγi + ui)

σ̂iT [γ̄ ′ (T−1F′MτF) γ̄]1/2
[1 + op(1)]

=

√
T γ̄′(T−1F′MτF)γi

[γ̄′(T−1F′MτF)γ̄]1/2
+ T−1/2ū′MτFγi

[γ̄′(T−1F′MτF)γ̄]1/2
+ T−1/2ū′MτFui

[γ̄′(T−1F′MτF)γ̄]1/2
+ T−1/2γ̄′F′Mτui

[γ̄′(T−1F′MτF)γ̄]1/2

σ̂iT
[1 + op(1)] .

Then the result of the lemma follows by Lemma 4.

Lemma 4 Consider model (27)-(28) with factor loadings given by (29)-(30), where ft is an m × 1 vector of
unobserved factors, and let Assumptions 1, 3 and 4 hold. Then,√

T γ̄ ′
(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
= 	p

(√
T γ̄ ′γi

(γ̄ ′γ̄)1/2

)
, (A.9)

T−1/2ū′MτFγi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
= Op

(
n1/2−α0

)
, (A.10)

T−1/2ū′MτFui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
= Op

(
n1/2−α0

)
(A.11)

T−1/2γ̄ ′F′Mτui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
→d N(0, σ2

i ). (A.12)

Further, for some C,C0, C1 > 0,

Pr

(√
T γ̄ ′

(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ C p

nδ
, if γi1 = 0, and T 1/2 = o(nα20−α0), (A.13)

Pr

(√
T γ̄ ′

(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ C p

nδ
, if γi1 6= 0, or nα20−α0 = o(T 1/2), (A.14)

Pr

(
T−1/2ū′MτFγi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ exp

[
−C0T

C1
]
, (A.15)

Pr

(
T−1/2ū′MτFui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ exp

[
−C0T

C1
]
, (A.16)

Pr

(
T−1/2γ̄ ′F′MτFui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ C p

nδ
. (A.17)

Proof of Lemma 4

To establish the orders of the first three terms, (A.9)-(A.11), we first note that
√
nū′MτFγi√

T
= Op(1),

√
nū′MτFui√

T
=

Op(1), T−1F′MτF = Op(1), and (γ̄ ′γ̄)1/2 = 	p
(
nα0−1

)
, where α0 is the true value of α = maxi(αi). Then it
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readily follows that

√
T γ̄ ′

(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
= 	p

(√
T γ̄ ′γi

(γ̄ ′γ̄)1/2

)
, (A.18)

T−1/2ū′MτFγi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
=

n−1/2
(√

nū′MτFγi√
T

)
[γ̄ ′ (T−1F′MτF) γ̄]1/2

= Op

(
n−1/2

(γ̄ ′γ̄)1/2

)
= Op

(
n1/2−α0

)
, (A.19)

T−1/2ū′Mτui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
=

n−1/2
(√

nū′Mτui√
T

)
[γ̄ ′ (T−1F′MτF) γ̄]1/2

= Op

(
n1/2−α0

)
. (A.20)

Regarding (A.12), we note that since by Assumption 1, ui is distributed independently of γi and F, we have

E

(
T−1/2γ̄ ′F′Mτui

[γ̄ ′ (T−1F′MτF) γ̄]1/2

)
= 0, and V ar

(
T−1/2γ̄ ′F′Mτui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
|F,γ̄

)
= σ2

i , (A.21)

then it readily follows that
T−1/2ū′MτFui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
→d N(0, σ2

i ).

Next we provide a more refined analysis to obtain exponential probability inequalities for each of (A.18)-(A.21).
We start with (A.18). First we handle the denominator. Let γ̄α,j = 1

nαj0

∑n
i=1 γij , j = 1, 2, . . . ,m, where

α0 = α10 > α20 ≥ α30 ≥ .... ≥ αm0. Then,

Fγ̄ =
1

n1−α0
(f1γ̄α,1,

1

nα0−α20
f2γ̄α,2, . . . ,

1

nα0−αm0
fmγ̄α,m) =

1

n1−α0
(fα,1,

1

nα0−α20
fα,2, . . . ,

1

nα0−αm0
fα,m)

where fα,j = (f1,α,j , . . . , fT,α,j)
′. Note now that ft,α,j are covariance stationary, martingale difference processes

with non-zero, finite second moment, σ2
fγ,j . Then by Lemma A9 of Chudik et al. (2018),

Pr

(√
T γ̄ ′

(
T−1F′MτF

)
γi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ Pr

(
n1−α0

√
T γ̄ ′

(
T−1F′MτF

)
γi

σfγ,1
> cp(n)

)
+ exp

(
−C0T

C1
)
. (A.22)

A similar result holds for (A.19)-(A.21). We proceed to analyse the first term on the RHS of (A.22). For some
0 < π < 1, it follows that

Pr

(
n1−α0

√
T γ̄ ′

(
T−1F′MτF

)
γi

σfγ,1
> cp(n)

)
(A.23)

≤
m∑
r=1

m∑
s=1

Pr

(
1

σfγ,1
T−1/2nαr0−α0

{ ∑T
t=1(ft,α,r − f̄α,r)(ft,sγis − f̄sγis)

−E
[
(ft,α,r − f̄α,r)(ft,sγis − f̄sγis)

] } > πcp(n)

)
(A.24)

+

m∑
r=1

m∑
s=1

Pr

(
[T 1/2nαr0−α0−1

∑n
j=1 γjrγis

σfγ,1
> (1− π)cp(n)

)
, (A.25)

where f̄α,r and f̄s are the sample averages of ft,α,r and ft,s respectively. By Lemma A10 of Chudik et al. (2018),

m∑
r=1

m∑
s=1

Pr

(
1

σfγ,1
T−1/2nαr0−α0

{ ∑T
t=1(ft,α,r − f̄α,r)(ft,sγis − f̄sγis)

−E
[
(ft,α,r − f̄α,r)(ft,sγis − f̄sγis)

] } > πcp(n)

)
≤ Cp

nδ
.

For (A.25), we consider two cases - γi = 0, and γi 6= 0. If γi1 = 0, (A.25) is bounded from below by 1 −
exp

[
−C0T

C1
]
, if nα0−α20 = o(T 1/2), and bounded from above by exp

(
−C0T

C1
)

if not. If γi 6= 0, (A.25) is
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bounded from below by 1− exp
(
−C0T

C1
)
, in any case. Identical arguments can be used to show that

Pr

(
T−1/2ū′MτFγi

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ exp

(
−C0T

C1
)
,

and

Pr

(
T−1/2ū′Mτui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ exp

(
−C0T

C1
)
.

Finally, and again using similar arguments,

Pr

(
T−1/2γ̄ ′F′Mτui

[γ̄ ′ (T−1F′MτF) γ̄]1/2
> cp(n)

)
≤ Cp

nδ
,

completing the proof of the lemma.

Appendix B Proofs of Theorems

Proof of Theorem 1

We abstract from the subscript j in what follows. We consider the following relations

(lnn) (α̂− α0) = ln

(
D̂nT

D0
n

)
= ln

(
1 +

D̂nT − nα0

nα0

)
= ln (1 +AnT +BnT )

= AnT +BnT +Op
(
A2
nT

)
+O

(
B2
nT

)
+Op (AnTBnT ) + . . . ,

where

AnT =

∑n
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
nα0

,

BnT =

∑n
i=1E

(
d̂i,nT

)
− nα0

nα0
, with d̂i,nT = 1 [|tiT | > cp(n)] .

Note that E
(
d̂i,nT

)
= πi,nT = Pr [|tiT | > cp(n)]. Then, we wish to determine

BnT =

∑n
i=1 Pr [|tiT | > cp(n)]− nα0

nα0
=

∑[nα0 ]
i=1 Pr [|tiT | > cp(n)|γi 6= 0]− nα0

nα0
+∑n

i=[nα0 ]+1 Pr [|tiT | > cp(n)|γi = 0]

nα0
.

Under regularity conditions and by Lemma A.10 of Chudik et al. (2018),

Pr [|tiT | > cp(n)|γi 6= 0] > 1−O
[
exp(−TC)

]
, for some C > 0.

So ∑[nα0 ]
i=1 Pr [|tiT | > cp(n)|γi 6= 0]− nα0

nα0
= O

[
exp(−TC)

]
.

Again by Lemma A.10 of Chudik et al. (2018),

Pr [|tiT | > cp(n)|γi = 0] ≤ Cp

nδ
.
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So, for some C > 0, ∑n
i=[nα0 ]+1 Pr [|tiT | > cp(n)|γi = 0]

nα0
≤ Cp (n− nα0)

nδ+α0
= O

(
n1−δ−α0

)
.

Overall,

BnT = O
(
n1−δ−α0

)
+O

[
exp(−TC)

]
.

Next, note that

AnT =
1

nα0

n∑
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
.

Under the assumption that uit are cross-sectionally independently distributed, a martingale difference central limit

theorem holds for zi,nT = d̂i,nT − E
(
d̂i,nT

)
and further

V ar (zi,nT ) = V ar
(
d̂i,nT

)
= πi,nT (1− πi,nT ).

Then,

V ar (AnT ) =
1

n2α0

n∑
i=1

πi,nT (1− πi,nT ) ≤ 1

n2α0

n∑
i=1

πi,nT =

1

n2α0

[nα0 ]∑
i=1

πi,nT +
1

n2α0

n∑
i=[nα0 ]+1

πi,nT = O
[
exp(−TC)

]
+O

(
n1−δ−2α0

)
.

So, AnT = Op
(
n1/2−δ/2−α0

)
, and further ψn(α0)−1/2AnT →d N(0, C), for some C < 1, where ψn(α0) =

p (n− na0)n−δ−2α0
(
1− p

nδ

)
.

Proof of Theorem 2

To prove this theorem it is sufficient to retrace the proof of Theorem 1 using

Pr [|t̄iT | > cp(n)|γi 6= 0] > 1−O
[
exp(−TC)

]
, for some C > 0, (B.26)

and

Pr [|t̄iT | > cp(n)|γi = 0] ≤ Cp

nδ
. (B.27)

Both (B.26) and (B.27) follow from Lemmas 3 and 4, proving the result.

Proof of Theorem 3

Consider the model given by

xit =


f1t + uit, if i = 1, ..., [nα10 ]

f2t + uit, if i = [nα10 ] + 1, ..., [nα10 ] + [nα20 ]
uit, if i = [nα10 ] + [nα20 ] + 1, ..., n

,

where α10 > α20. Let f1t be proxied by x̄1t =
∑

i=1w1ixit where
∑

i=1w1i = 1. γ̂1i denotes the regression
coefficient of xit on x̄1t and x̂it = xit − γ̂1in

1−α10 x̄1t. We use the normalisation n1−α10 for simplicity of analysis.
We can replace n1−α10 with 1√

1
T

∑
t=1(x̄1t−x̄1)2

, which is observable at some notational and analytical cost. Further

let x̄2t =
∑

i=1w2ix̂it where
∑

i=1w2i = 1. γ̂2i denotes the regression coefficient of x̂it on n1−α20 x̄2t. Let

γ1i =


1, if i = 1, ..., [nα10 ]

0, if i = [nα10 ] + 1, ..., [nα10 ] + [nα20 ]
0, if i = [nα10 ] + [nα20 ] + 1, ..., n
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Denote x2,it = xit − γ1if1t, x̄
u
2t =

∑
i=1w2ix2,it and γ̂u2i denotes the regression coefficient of x2,it on x̄u2t. Note that

x̂it − x2,it = (γ̂1i − γ1i)f1t + γ1i(f1t − n1−α10 x̄1t) +R,

where R is a generic notation of remainder terms of lower order than the rest of the terms in the relevant sum of
the terms. Similarly

x̄u2t − x̄2t = f1t

∑
i=1

w2i(γ̂1i − γ1i) + (f1t − n1−α10 x̄1t)
∑
i=1

w2iγ1i +R,

We wish to find the rate of γ̂2i − γ̂u2i. First consider

x̄1t =

n∑
i=1

w1ixit = f1t

[nα10 ]∑
i=1

w1i + f2t

[nα10 ]+[nα20 ]∑
i=[nα10 ]+1

w1i +

n∑
i=1

w1iuit = Op
(
nα10−1

)
+Op

(
nα20−1

)
+Op

(
n−1/2

)
or

n1−α10 x̄1t = n1−α10

n∑
i=1

w1ixit = n1−α10f1t

[nα10 ]∑
i=1

w1i + n1−α10f2t

[nα10 ]+[nα20 ]∑
i=[nα10 ]+1

w1i + n1−α10

n∑
i=1

w1iuit

= f1tw̄11 +Op
(
nα20−α10

)
+Op

(
n1/2−α10

)
Then,

γ̂1i =
1
T

∑
n1−α10 x̄1txit

1
T

∑
n2α10−2x̄2

1t

= γ1i +
1
T

∑
f1tuit

1
T

∑
f2

1t

+
1
T

∑(
nα10−1x̄1t − f1t

)
xit

1
T

∑
f2

1t

+
1
T

∑(
n2α10−2x̄2

1t − f2
1t

)(
1
T

∑
f2

1t

) (
1
T

∑
n2α10−2x̄2

1t

)
= 1 +A1 +A2 +A3

We have
A1 = Op(T

−1/2), A2 = Op
(
nα20−α10

)
, A3 = Op

(
nα20−α10

)
.

So
(γ̂1i − γ1i) = Op(T

−1/2) +Op
(
nα20−α10

)
and

(f1t − n1−α10 x̄1t) = Op
(
nα20−α10

)
.

Now,

γ̂u2i − γ̂2i =
1
T

∑
n1−α20 x̄u2tx2,it

1
T

∑
n2α20−2x̄2

2

−
1
T

∑
n1−α20 x̄2tx̂it

1
T

∑
n2α20−2x̄2

2t

= C1
1

T

∑
n1−α20 (x̄u2t − x̄2t)x2,it + C2

1

T

∑
n1−α20 x̄u2t (x2,it − x̂it) +R

where C1 and C2 are Op(1) terms leading to

γ̂u2i − γ̂2i = Op(T
−1/2) +Op

(
nα20−α10

)
.

Since for valid inference it is sufficient that γ̂u2i − γ̂2i is Op(T
−1/2) we conclude that a necessary condition is that

nα20−α10 is at most O(T−1/2). This result readily extends to α30 (< α20 < α10), and so on.

Appendix C Inference on α0 = 1 with randomised testing

As we noted in Section 3, the case of α0 = 1 is special and cannot be handled in a standard way. One way to
address testing for this value of α is to use randomised testing. Randomised testing, introduced, originally in
statistics by Pearson (1950), and further in econometrics, by, among others, Corradi and Swanson (2006) and
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Trapani (2018), is of use when a test statistic is, in some sense, lacking randomness under the null hypothesis.
Randomising then becomes useful by adding randomness, in a particular way, and making the resulting test better
behaved under the null hypothesis.

Our test statistic, based on α̂− α0, converges to zero exponentially fast when α0 = 1. Its inverse respectively
converges exponentially fast to infinity. Conversely, under the alternative hypothesis α̂ − α0 remains bounded.
Such behaviour is appropriate for constructing a randomisation testing procedure. In particular, we wish to test
the null, H0 : αj = αj0 against αj = αja, j = 1, 2 when αj0 = 1 which corresponds to the case when our estimator
of factor strength is ultraconsistent. For this purpose we use the randomisation procedure proposed in Trapani
(2018), which proceeds as follows:

Step 1 Let

ϕj =

{
[1/ (αj0 − α̂j)] , if α̂j < αj0(= 1)

exp (T ) , if α̂j = αj0(= 1)
.

Then, we generate an artificial sample {ξν}Nν=1 as i.i.d.N.(0, 1), and define the sequence ϕj × ξν , 1 ≤ ν ≤ N .

Step 2 Define the sample {ζj,ν}Nν=1 as
ζj,ν (u) = I [ϕj × ξν ≤ u] ,

with u extracted from a distribution F (u) with support U ⊂ R\ {0}. Here we set u = ±
√

2, chosen with
equal weight.

Step 3 Compute

ζj (u) =
2√
N

N∑
ν=1

[
ζj,ν (u)− 1

2

]
.

Step 4 Define the test statistic

Θj =

∫
U

[ζj (u)]2 dF (u)

and compare with χ2
1 (prand), prand = 1− 0.05

8( n
100)

1/4 .

Further details on the exact motivation of the various choices made in the above algorithm and its theoretical
properties, can be found in Trapani (2018) and references cited therein. We consider the small sample properties
of this algorithm in Appendix D.

Appendix D Empirical data construction and extra results

S&P500 security returns

As reference country for this study we pick the United States and as equity market index of preference we opt
for the Standard & Poor’s (S&P) 500 index. In this respect, we consider the distinct monthly composites of the
S&P500 index from September 1989 to December 2017. Our analysis is based on a rolling window sample scheme.
We work with security returns defined as

rit = 100

(
Pit − Pi,t−1

Pit−1

)
+
DYit
12

, for i = 1, 2, . . . , nτ and t = 1, 2, . . . , T,

where Pit and DYit stand for the price and dividend yield of security i at time t, and τ = 1, 2, . . . , 340 denote the
10-year rolling samples of security returns.

Historical end-of month security price and dividend yield data, Pit and DYit, for i = 1, 2, . . . , nτ and t =
1, 2, . . . , T, are obtained from Thompson Reuters Datastream. We are grateful to Takashi Yamagata for providing
part of the constructed dataset which is used in Pesaran and Yamagata (2017). nτ represents all 500 stocks
per monthly composition of the S&P500 from 09/1989 to 12/2017 as displayed at the end of each month and T
expands from 31/01/1950 to 31/12/2017. For example, code LS&PCOMP1210 will give the 500 constituents of
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the S&P500 index as of December 2010. Further, the 09/1989 S&P500 composition, for instance, uses observations
commencing in 10/1979. Pit is the price of security i at the market close of the last day of the month (t), adjusted for
subsequent capital actions. DYit is the dividend per share as a percentage of the share price based on an anticipated
annual dividend and excludes special or one-off dividends. Both Pit and DYit, for i = 1, 2, . . . , nτ , t = 1, 2, . . . , T
and τ = 1, 2, . . . , 340 are obtained at the default 4 decimal places for the US market. The codes used are
DPL#(CFM#(x(P#S),VAL),4) and DPL#(CFM#(x(DY#S),VAL),4) for price and dividend yield respectively.
Note that 499 securities were downloaded for November 20, 1999 and September 30, 2008. It is confirmed on
Standard & Poor’s website that the S&P 500 index on these days was based on 499 securities.

SW macroeconomic dataset

The SW macroeconomic dataset that we use extends from 1959Q1-2019Q2 and is an updated version of the dataset
compiled originally by Stock and Watson (2012). We opted for a time dimension commencing in 1988Q1 in order
to obtain a balanced panel. We excluded three variables as they recorded missing values beyond 1988Q1. These
are: (1) Manufacturers’ new orders, consumer goods and materials, (2) Case-Shiller 10 City average deflated by
PCEPILFE, and (3) Case-Shiller 20 City average deflated by PCEPILFE.

Additional empirical results

The table and graphs that follow show estimates of factor strengths associated with the asset pricing models
considered in Section 6 of the main paper:

Table A1: Ranking of all 145 factors (plus the market factor) in terms of the % of months their estimated strengths
exceed the threshold of 0.90 during the full sample period of September 1989 to December 2017, corresponding
number of influenced security returns and time averages of α̂s,τ , s = 1, 2, . . . , 145, over different subsamples

% of months No. of
when influenced

α̂s,τ > 0.90: securities∗ Time averages of α̂s,τ over:
over: (out of 442)

September 1989 - September 1999 - September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017
Market 100.0 415 0.990 0.999 0.974 0.997
Leverage 37.9 154 0.827 0.739 0.932 0.808
Sales to cash 37.9 145 0.817 0.716 0.936 0.793
Cash flow-to-price 37.9 159 0.832 0.765 0.933 0.792
Net debt-to-price 37.9 165 0.838 0.753 0.936 0.823
Earnings to price 37.9 140 0.811 0.743 0.935 0.745
Net payout yield 37.6 171 0.844 0.769 0.932 0.829
Years since first Compustat cover. 37.6 155 0.828 0.724 0.935 0.823
Cash flow to price ratio 37.6 146 0.818 0.737 0.934 0.775
Quick ratio 37.4 162 0.835 0.782 0.936 0.777
Altman’s Z-score 37.4 155 0.828 0.740 0.931 0.808
Payout yield 37.1 178 0.851 0.785 0.932 0.831
Earnings volatility 37.1 180 0.852 0.779 0.936 0.840
Change in shares outstanding 37.1 135 0.805 0.671 0.932 0.815
Enterprise book-to-price 36.8 157 0.830 0.741 0.933 0.812
Cash holdings 36.8 153 0.826 0.740 0.935 0.797
Dividend to price 36.5 173 0.846 0.789 0.932 0.811
Depreciation / PP&E 36.5 178 0.851 0.813 0.930 0.801
Kaplan-Zingales Index 36.2 149 0.822 0.731 0.930 0.801
R&D-to-sales 36.2 143 0.815 0.731 0.923 0.786
Cash flow volatility 36.2 118 0.783 0.617 0.924 0.812
Accrual volatility 36.2 115 0.779 0.613 0.926 0.803
Current ratio 35.9 173 0.846 0.815 0.926 0.785
Idiosyncratic return volatility 35.6 179 0.851 0.799 0.923 0.828
Debt capacity/firm tangibility 35.6 156 0.829 0.735 0.920 0.832
Maximum daily return 35.3 165 0.838 0.764 0.927 0.821
Bid-ask spread 35.3 174 0.847 0.786 0.931 0.821
Cash productivity 35.3 147 0.819 0.751 0.911 0.789
Return volatility 34.7 171 0.844 0.786 0.922 0.820
Robust Minus Weak 34.7 111 0.773 0.694 0.910 0.705
Whited-Wu Index 34.7 117 0.781 0.697 0.913 0.724
New equity issue 34.7 100 0.756 0.620 0.912 0.732
Sales to price 34.7 159 0.832 0.768 0.919 0.804
High Minus Low 34.4 157 0.830 0.757 0.926 0.802
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Table A1 continued from previous page

% of months No. of
when influenced

α̂s,τ > 0.90: securities∗ Time averages of α̂s,τ over:
over: (out of 442)

September 1989 - September 1999 - September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017
Vol. of liquidity (share turnover) 34.4 173 0.846 0.786 0.920 0.830
Market Beta 34.1 187 0.859 0.824 0.921 0.828
Zero trading days 34.1 183 0.855 0.808 0.918 0.836
Share turnover 34.1 185 0.857 0.815 0.917 0.834
Advertising Expense-to-market 34.1 139 0.810 0.707 0.914 0.809
Net equity finance 34.1 168 0.841 0.797 0.916 0.803
Asset turnover 34.1 122 0.788 0.643 0.911 0.815
Net external finance 32.1 154 0.827 0.781 0.900 0.793
Absolute accruals 31.8 146 0.818 0.750 0.903 0.799
Growth in long-term debt 31.5 107 0.767 0.678 0.902 0.711
Industry-adjusted book to market 30.9 139 0.810 0.771 0.901 0.748
Working capital accruals 30.6 140 0.812 0.748 0.900 0.783
HML Devil 30.3 147 0.820 0.747 0.905 0.805
Change in Net Financial Assets 29.4 70 0.697 0.581 0.907 0.583
Chg in Current Oper. Liabilities 28.2 111 0.773 0.710 0.904 0.690
Sin stocks 27.6 96 0.749 0.603 0.884 0.762
Sales to receivables 27.4 148 0.820 0.781 0.896 0.777
Employee growth rate 22.6 111 0.773 0.710 0.898 0.699
Net Operating Assets 16.8 114 0.778 0.664 0.900 0.767
HXZ Investment 13.2 128 0.797 0.739 0.892 0.753
Chg in Net Non-current Oper. Assets 8.2 124 0.791 0.729 0.886 0.753
Financial statements score 7.9 89 0.738 0.700 0.885 0.605
R&D Expense-to-market 7.6 134 0.804 0.770 0.883 0.751
R&D increase 5.3 92 0.742 0.676 0.873 0.664
Industry momentum 2.9 111 0.772 0.748 0.840 0.721
Abnormal Corporate Investment 2.9 61 0.674 0.497 0.866 0.654
Sales growth 2.4 103 0.761 0.706 0.876 0.690
Conservative Minus Aggressive 1.8 106 0.766 0.716 0.860 0.714
Momentum 1.2 99 0.755 0.715 0.793 0.758
Change in Short- term Investments 0.3 45 0.625 0.377 0.801 0.712
Return on net operating assets 0.3 105 0.764 0.645 0.877 0.773
Investment Growth 0.0 46 0.627 0.565 0.698 0.617
Seasonality 0.0 92 0.743 0.648 0.844 0.735
Illiquidity 0.0 28 0.549 0.433 0.578 0.652
Liquidity 0.0 61 0.674 0.624 0.632 0.787
Small Minus Big 0.0 112 0.774 0.766 0.846 0.697
Number of earnings increases 0.0 89 0.738 0.658 0.883 0.659
HXZ Profitability 0.0 115 0.778 0.748 0.835 0.746
Share price 0.0 74 0.706 0.721 0.673 0.727
Industry-adj. cash flow to price ratio 0.0 60 0.672 0.592 0.766 0.655
Industry-adjust. chg in employees 0.0 45 0.626 0.599 0.684 0.588
Change in 6-month momentum 0.0 50 0.642 0.654 0.602 0.676
Earnings announcement return 0.0 23 0.514 0.511 0.556 0.468
Revenue surprise 0.0 72 0.702 0.654 0.818 0.620
Return on assets 0.0 67 0.691 0.699 0.764 0.594
Betting Against Beta 0.0 107 0.767 0.645 0.872 0.787
Quality Minus Junk 0.0 125 0.793 0.774 0.855 0.740
Dollar trading volume 0.0 82 0.723 0.611 0.864 0.688
Vol. of liquidity (dollar trading volume) 0.0 43 0.619 0.580 0.647 0.632
Price delay 0.0 104 0.763 0.770 0.778 0.737
Book Asset Liquidity 0.0 160 0.833 0.811 0.866 0.821
Abnormal earnings announc. volume 0.0 104 0.763 0.728 0.806 0.751
Unexpected quarterly earnings 0.0 47 0.632 0.636 0.619 0.641
Cash flow to debt 0.0 67 0.690 0.645 0.747 0.674
% change in current ratio 0.0 40 0.606 0.448 0.817 0.541
% change in quick ratio 0.0 37 0.595 0.445 0.783 0.549
% change sales-to-inventory 0.0 33 0.574 0.500 0.756 0.446
Sales to inventory 0.0 109 0.770 0.832 0.728 0.746
% change in depreciation 0.0 52 0.647 0.430 0.834 0.683
Capital turnover 0.0 111 0.773 0.795 0.771 0.749
% chg in gross margin - % chg in sales 0.0 35 0.581 0.534 0.626 0.585
% chg in sales - % chg in inventory 0.0 32 0.571 0.536 0.704 0.453
% chg in sales - % chg in A/R 0.0 44 0.621 0.568 0.749 0.529
% chg in sales - % chg in SG&A 0.0 34 0.579 0.522 0.663 0.545
Effective Tax Rate 0.0 25 0.531 0.551 0.478 0.569
Labor Force Efficiency 0.0 32 0.568 0.517 0.573 0.623
Ohlson’s O-score 0.0 67 0.690 0.645 0.733 0.694
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Table A1 continued from previous page

% of months No. of
when influenced

α̂s,τ > 0.90: securities∗ Time averages of α̂s,τ over:
over: (out of 442)

September 1989 - September 1999 - September 2009 -
Factor Full sample Full sample August 1999 August 2009 December 2017
Industry adjg % chg in capital expend. 0.0 50 0.642 0.467 0.786 0.678
Change in inventory 0.0 62 0.677 0.744 0.684 0.588
Change in tax expense 0.0 59 0.670 0.640 0.708 0.659
Growth in long term net oper. assets 0.0 55 0.659 0.589 0.645 0.759
Order backlog 0.0 118 0.783 0.717 0.831 0.806
Chg in Long-term Net Operating Assets 0.0 86 0.731 0.639 0.834 0.719
Corporate investment 0.0 76 0.710 0.650 0.803 0.672
Changes in Net Operating Assets 0.0 25 0.529 0.481 0.577 0.528
Tax income to book income 0.0 68 0.693 0.544 0.848 0.686
Growth in common shareholder equity 0.0 101 0.757 0.697 0.814 0.761
Chg in Current Operating Assets 0.0 82 0.723 0.760 0.802 0.584
Chg in Net Non-cash Working Capital 0.0 49 0.639 0.691 0.671 0.536
Chg in Non-current Operating Assets 0.0 83 0.725 0.651 0.811 0.709
Chg in Non-current Oper. Liabilities 0.0 76 0.711 0.638 0.768 0.732
Total accruals 0.0 55 0.659 0.585 0.769 0.616
Change in Financial Liabilities 0.0 52 0.648 0.604 0.797 0.523
Change in Book Equity 0.0 113 0.776 0.706 0.857 0.764
Financial statements score 0.0 85 0.729 0.681 0.759 0.751
Growth in capital expenditures 0.0 44 0.622 0.566 0.602 0.713
Three-year Investment Growth 0.0 96 0.749 0.664 0.819 0.766
Composite Equity Issuance 0.0 119 0.784 0.774 0.833 0.737
Net debt finance 0.0 59 0.668 0.603 0.844 0.535
Revenue Surprises 0.0 44 0.622 0.692 0.583 0.584
Industry Concentration 0.0 148 0.821 0.820 0.870 0.763
Return on invested capital 0.0 88 0.734 0.754 0.827 0.600
Chg in PPE and Inventory-to-assets 0.0 70 0.697 0.663 0.675 0.763
Composite Debt Issuance 0.0 69 0.696 0.738 0.735 0.597
Profit margin 0.0 111 0.773 0.798 0.761 0.758
Industry-adj. change in asset turnover 0.0 43 0.616 0.650 0.618 0.573
Industry-adj. change in profit margin 0.0 24 0.521 0.427 0.583 0.559
Capital expenditures and inventory 0.0 72 0.702 0.664 0.688 0.765
Industry-adj. Real Estate Ratio 0.0 139 0.810 0.751 0.872 0.807
Percent accruals 0.0 84 0.727 0.704 0.792 0.678
Operating Leverage 0.0 132 0.801 0.784 0.817 0.803
Inventory Growth 0.0 45 0.626 0.714 0.552 0.608
Percent Operating Accruals 0.0 99 0.755 0.726 0.824 0.707
Enterprise multiple 0.0 81 0.722 0.742 0.704 0.719
Gross profitability 0.0 112 0.774 0.792 0.774 0.754
Organizational Capital 0.0 120 0.787 0.785 0.784 0.791
Convertible debt indicator 0.0 107 0.767 0.798 0.809 0.680
Long-Term Reversal 0.0 31 0.565 0.518 0.590 0.591
1-month momentum 0.0 78 0.714 0.767 0.647 0.732
6-month momentum 0.0 51 0.646 0.515 0.727 0.706
36-month momentum 0.0 86 0.732 0.726 0.798 0.660
Growth in advertising expense 0.0 44 0.622 0.501 0.812 0.540

Notes: All factor strength estimates, α̂s,τ , where s = 1, 2, . . . , 145, are computed using (7) of the main paper for 10-year rolling
windows τ = 1, 2, . . . , 340.
∗This statistic is computed using the time averages of α̂s,τ and number of securities nτ over the full sample.
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Figure A11: Comparison of the market factor strength estimates obtained from the original single factor CAPM
(α̂m,τ ) and the average estimates of its strength when computed using 145 two-factor asset pricing models (α̂m,τ ),
over 5-year rolling windows

Notes: The market factor strength rolling estimates are computed using (7) of the main paper. The market factor
strength average estimates produced from the 145 two-factor CAPMs are computed as α̂m,τ = (1/145)

∑145
s=1(α̂s,τ ), for

τ = 1, 2, . . . , 340 rolling windows.

Figure A12: Percentage of factors (out of 145) whose estimated strength (α̂s,τ ), τ = 1, 2, . . . , 340 exceeds the
thresholds of 0.85, 0.90 and 0.95, in each 5-year rolling window

Notes: The 145 factor strength estimates, α̂s,τ , s = 1, 2, . . . , 145, are computed using (7) of the main paper.
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Additional simulation details and results

EXP 3C (two unobserved factors): Estimation procedure

Assume the DGP design (35). We obtain the estimates for f1t and f2t, as well as for α10 and α10 as shown below:

Step 1: Run the OLS regressions
xit = ci + w1ix̄t + εit,

where x̄t = n−1
∑n

i=1 xit. The OLS coefficient estimates, ŵ1i, are given by

ŵ1i =

∑T
t=1 xit (x̄t − x̄)∑T
t=1 (x̄t − x̄)2

, with
n∑
i=1

ŵ1i = n,

where x̄ = T−1
∑T

t=1 x̄t. Then, we compute

x̃1t =
1

n

n∑
i=1

ŵ1ixit.

Step 2: Run OLS regressions
xit = ci + δ1ix̃1t + x2,it, (D.28)

and consider the estimate of the second factor

x̃2t =
1

n

n∑
i=1

ŵ2ix̂2,it,

where

x̂2,it = xit − ĉi − δ̂1ix̃t,

ŵ2i =

∑T
t=1 x̂2,it

(
x̂2t − x̂2

)∑T
t=1

(
x̂2t − x̂2

)2 with

n∑
i=1

ŵ2i = n,

x̂2t = n−1
∑n

i=1 x̂2,it and x̂2 = T−1
∑T

t=1 x̂2t.

Step 3: Run OLS regressions
xit = ci + γ1ix̃1t + γ2ix̃2t + uit, (D.29)

and obtain coefficient estimates of x̃1t and x̃2t denoted by γ̂1i and γ̂2i, which are thresholded following (4)
and (5), while α̂1 and α̂2 are obtained using (7) of the main paper.

Additional simulation results

The Monte Carlo simulation results provided in the tables and plots below are based on the designs set out in
Section 5 of the main paper.
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Table S0: Size (×100) when estimating the strength of a strong factor, α1 = 1, in the case of experiments 1B (1
observed factor), 2B (2 observed factors) and 3A (1 unobserved factor) with non-Gaussian errors

α1 = 1 - Size (×100)

n\T 60 120 200 500 1000

Experiment 1B

100 53.35 5.85 0.95 1.10 1.05
200 75.10 10.10 1.05 0.35 0.65
500 95.55 29.95 1.95 0.25 0.25
1000 99.10 50.15 5.45 0.60 0.30

Experiment 2B

100 65.50 8.00 1.45 1.10 0.85
200 84.70 16.95 1.95 0.55 0.50
500 97.70 40.90 4.50 0.35 0.25
1000 99.75 64.65 9.35 0.35 0.45

Experiment 3A

100 45.00 3.85 0.75 1.10 1.05
200 71.75 7.55 0.70 0.35 0.65
500 94.80 27.85 1.60 0.25 0.25
1000 98.95 48.50 4.75 0.60 0.30

Notes: Parameters of DGP (35) are generated

as described in Tables 1 and 2 of the main

paper, respectively.
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Table S1a: Bias, RMSE and Size (×100) of estimating different factor strengths in the case of experiment 1A
(observed single factor - Gaussian errors)

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75

100 1.26 1.18 1.17 1.12 1.04 1.70 1.55 1.52 1.48 1.41 7.05 3.90 3.00 3.00 2.35
200 1.54 1.47 1.39 1.29 1.28 1.75 1.63 1.54 1.44 1.44 17.25 10.10 8.15 6.45 6.90
500 1.41 1.32 1.23 1.16 1.14 1.53 1.40 1.30 1.23 1.21 23.00 14.70 10.40 8.10 7.85
1000 1.35 1.27 1.19 1.13 1.10 1.43 1.31 1.23 1.17 1.14 27.80 16.75 10.95 7.35 6.85

α10 = 0.80

100 0.71 0.70 0.69 0.66 0.59 1.13 1.05 1.01 0.99 0.95 24.25 19.25 17.55 17.40 20.20
200 0.98 0.97 0.93 0.86 0.85 1.17 1.10 1.05 0.99 0.97 21.55 12.80 10.85 9.30 9.60
500 0.93 0.92 0.87 0.82 0.80 1.03 0.98 0.92 0.87 0.85 20.75 13.25 9.90 7.50 6.15
1000 0.86 0.85 0.81 0.77 0.75 0.93 0.89 0.84 0.80 0.78 27.20 16.70 12.20 9.30 7.55

α10 = 0.85

100 0.64 0.68 0.69 0.66 0.62 0.92 0.88 0.87 0.85 0.82 17.75 10.05 9.30 8.55 8.15
200 0.57 0.62 0.59 0.55 0.53 0.74 0.72 0.69 0.65 0.64 12.20 6.30 4.10 3.25 3.35
500 0.45 0.53 0.50 0.47 0.46 0.58 0.58 0.54 0.51 0.50 23.60 11.75 9.10 7.90 7.70
1000 0.45 0.50 0.48 0.45 0.44 0.52 0.53 0.50 0.47 0.46 24.80 11.30 7.60 5.60 4.95

α10 = 0.90

100 0.31 0.40 0.40 0.39 0.37 0.58 0.55 0.54 0.53 0.52 16.20 5.15 3.50 3.70 3.35
200 0.19 0.28 0.27 0.24 0.23 0.39 0.38 0.36 0.33 0.33 26.95 12.20 12.30 11.30 13.50
500 0.21 0.30 0.28 0.27 0.26 0.31 0.34 0.32 0.30 0.29 30.30 9.65 7.05 6.90 6.35
1000 0.19 0.29 0.27 0.26 0.25 0.27 0.30 0.29 0.28 0.27 35.45 12.20 8.80 7.15 5.75

α10 = 0.95

100 -0.07 0.07 0.08 0.07 0.06 0.35 0.25 0.24 0.23 0.23 26.25 5.30 3.65 3.30 2.65
200 -0.01 0.11 0.11 0.10 0.10 0.24 0.19 0.17 0.17 0.17 32.65 6.80 4.10 3.60 3.90
500 0.00 0.12 0.12 0.11 0.11 0.17 0.15 0.14 0.13 0.13 48.05 11.90 8.45 8.40 8.05
1000 -0.03 0.10 0.10 0.09 0.09 0.15 0.11 0.11 0.10 0.10 56.80 8.60 5.50 5.10 5.25

α10 = 1.00

100 -0.17 -0.01 0.00 0.00 0.00 0.29 0.05 0.01 0.00 0.00 47.00 4.85 1.15 1.05 1.10
200 -0.16 -0.01 0.00 0.00 0.00 0.23 0.03 0.01 0.00 0.00 68.90 8.75 0.65 0.65 0.55
500 -0.15 -0.01 0.00 0.00 0.00 0.20 0.02 0.00 0.00 0.00 92.20 22.55 2.35 0.25 0.40
1000 -0.15 -0.01 0.00 0.00 0.00 0.20 0.02 0.00 0.00 0.00 98.40 40.10 3.70 0.50 0.35

Notes: Parameters of DGP (35) of the main paper are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for

i = 1, 2, . . . , n. The factor, f1t, is normally distributed with variance σ2
f1

= 1. The factor assumes an autoregressive process

with correlation coefficient ρf1 = 0.5. The factor loadings are generated as vi1 ∼ IIDU(µv1 − 0.2, µv1 + 0.2), for [nα10 ] units,

and zero otherwise. vi2 = 0, for all i. We set µv1 = 0.71. α10 ranges between [0.75, 1.00] with 0.05 increments. The innovations

uit are Gaussian, such that uit ∼ IIDN(0, σ2
i ), with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂1 we use

p = 0.10 and δ = 1/4 when setting the critical value. Size is computed under H0: α1=α10, using a two-sided alternative. The

number of replications is set to R = 2000.
∗Computation of size when α10 = 1.00 follows the randomisation procedure proposed in Trapani (2018).
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Figure S1a: Empirical power functions associated with testing different factor strengths in the case of experiment
1A (observed single factor - Gaussian errors), when n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1a for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S1b: Bias, RMSE and Size (×100) of estimating different factor strengths in the case of experiment 1B
(observed single factor - non-Gaussian errors)

Bias (×100) RMSE (×100) Size (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75

100 1.23 1.22 1.12 1.10 1.05 1.71 1.58 1.49 1.47 1.42 8.70 4.45 3.15 3.10 2.75
200 1.51 1.46 1.37 1.30 1.28 1.74 1.62 1.52 1.46 1.44 14.75 9.65 7.95 7.00 6.60
500 1.35 1.29 1.25 1.15 1.12 1.48 1.37 1.32 1.22 1.19 23.65 13.50 11.25 7.65 8.90
1000 1.32 1.27 1.18 1.13 1.11 1.41 1.32 1.22 1.17 1.15 26.50 17.40 10.90 9.10 7.00

α10 = 0.80

100 0.69 0.73 0.67 0.64 0.61 1.15 1.06 1.02 0.98 0.95 25.85 17.60 19.65 18.30 18.85
200 0.96 0.97 0.91 0.86 0.85 1.15 1.09 1.03 0.99 0.97 18.90 12.15 10.45 9.65 9.65
500 0.89 0.91 0.88 0.82 0.79 0.99 0.96 0.93 0.87 0.85 20.85 12.00 9.10 6.30 7.10
1000 0.83 0.86 0.80 0.77 0.76 0.91 0.89 0.83 0.80 0.78 26.30 18.20 11.20 10.50 7.40

α10 = 0.85

100 0.61 0.71 0.67 0.65 0.64 0.92 0.89 0.87 0.84 0.83 19.30 10.55 9.45 8.85 8.30
200 0.55 0.61 0.58 0.55 0.54 0.72 0.71 0.68 0.65 0.64 11.55 5.40 4.10 4.00 2.50
500 0.42 0.52 0.51 0.47 0.45 0.56 0.57 0.55 0.51 0.50 24.00 9.90 8.00 6.65 8.30
1000 0.42 0.50 0.47 0.45 0.44 0.50 0.53 0.49 0.47 0.46 26.80 11.85 7.05 6.65 5.50

α10 = 0.90

100 0.28 0.41 0.39 0.39 0.38 0.58 0.55 0.55 0.53 0.53 19.00 4.25 4.15 2.95 3.55
200 0.17 0.27 0.26 0.24 0.24 0.39 0.37 0.35 0.34 0.33 30.90 12.65 12.85 13.05 12.75
500 0.17 0.29 0.29 0.27 0.26 0.30 0.32 0.32 0.30 0.29 33.50 9.85 7.75 6.90 7.65
1000 0.16 0.28 0.27 0.26 0.25 0.25 0.30 0.28 0.27 0.27 40.70 12.40 8.35 7.45 6.80

α10 = 0.95

100 -0.08 0.07 0.07 0.07 0.07 0.38 0.24 0.24 0.23 0.24 30.10 4.75 3.30 3.15 3.45
200 -0.03 0.11 0.11 0.10 0.10 0.26 0.18 0.17 0.17 0.17 36.50 6.25 3.70 4.40 3.90
500 -0.04 0.11 0.12 0.11 0.10 0.19 0.14 0.14 0.13 0.13 56.25 12.40 7.15 8.25 9.70
1000 -0.06 0.09 0.10 0.09 0.09 0.17 0.11 0.11 0.10 0.10 65.85 8.75 5.75 6.05 4.35

α10 = 1.00

100 -0.20 -0.01 0.00 0.00 0.00 0.32 0.05 0.01 0.00 0.00 - - - - -
200 -0.18 -0.01 0.00 0.00 0.00 0.26 0.03 0.01 0.00 0.00 - - - - -
500 -0.19 -0.01 0.00 0.00 0.00 0.24 0.03 0.00 0.00 0.00 - - - - -
1000 -0.19 -0.01 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 - - - - -

Notes: Parameters of DGP (35) of the main paper are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for

i = 1, 2, . . . , n. The factor, f1t, is normally distributed with variance σ2
f1

= 1. The factor assumes an autoregressive process

with correlation coefficient ρf1 = 0.5. The factor loadings are generated as vi1 ∼ IIDU(µv1 − 0.2, µv1 + 0.2), for [nα10 ] units,

and zero otherwise. vi2 = 0, for all i. We set µv1 = 0.71. α10 ranges between [0.75, 1.00] with 0.05 increments. The innovations

uit are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂1 we use

p = 0.10 and δ = 1/4 when setting the critical value. Size is computed under H0: α1=α10, using a two-sided alternative. The

number of replications is set to R = 2000.
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Figure S1b: Empirical power functions associated with testing different factor strengths in the case of experiment
1B (observed single factor - non-Gaussian errors), when n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1b for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S2: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.75

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.75

100 1.18 1.19 1.07 1.08 1.04 1.66 1.55 1.43 1.43 1.41 8.25 3.95 2.75 2.40 2.75
200 1.48 1.45 1.39 1.31 1.27 1.71 1.61 1.53 1.47 1.43 16.80 11.25 7.30 6.55 7.30
500 1.33 1.29 1.22 1.15 1.13 1.46 1.36 1.30 1.22 1.20 22.85 13.85 9.50 7.85 7.40
1000 1.30 1.27 1.20 1.12 1.10 1.40 1.32 1.24 1.16 1.14 28.15 17.35 11.70 7.50 6.60

α10 = 0.80, α20 = 0.75

100 0.66 0.71 0.62 0.63 0.60 1.12 1.05 0.94 0.96 0.94 25.60 19.05 17.00 18.05 19.75
200 0.95 0.97 0.94 0.89 0.85 1.15 1.10 1.06 1.01 0.98 21.75 13.30 11.20 10.00 9.75
500 0.87 0.89 0.87 0.81 0.80 0.97 0.95 0.92 0.86 0.85 20.00 12.10 8.25 5.95 5.75
1000 0.82 0.86 0.82 0.77 0.75 0.90 0.89 0.85 0.79 0.78 28.80 18.50 13.20 7.80 7.30

α10 = 0.85, α20 = 0.75

100 0.57 0.69 0.65 0.65 0.63 0.91 0.90 0.84 0.84 0.81 20.90 11.65 7.90 8.20 7.40
200 0.52 0.61 0.59 0.56 0.54 0.72 0.72 0.69 0.66 0.64 15.10 6.05 4.10 3.55 3.25
500 0.42 0.51 0.50 0.47 0.46 0.54 0.56 0.54 0.51 0.50 26.75 10.35 8.20 7.30 7.25
1000 0.40 0.50 0.48 0.45 0.44 0.49 0.52 0.50 0.47 0.46 29.20 11.20 7.70 5.05 5.05

α10 = 0.90, α20 = 0.75

100 0.26 0.40 0.39 0.38 0.37 0.58 0.56 0.53 0.53 0.51 19.55 4.95 3.30 3.55 3.25
200 0.12 0.27 0.27 0.25 0.23 0.40 0.38 0.37 0.35 0.33 36.80 14.30 12.10 12.75 13.30
500 0.14 0.29 0.28 0.27 0.26 0.30 0.32 0.32 0.30 0.29 39.45 9.30 8.00 7.40 5.75
1000 0.14 0.28 0.28 0.26 0.25 0.26 0.30 0.29 0.27 0.27 43.80 12.65 8.45 6.10 6.65

α10 = 0.95, α20 = 0.75

100 -0.11 0.07 0.07 0.07 0.06 0.41 0.25 0.24 0.23 0.23 34.25 6.40 3.25 3.55 3.00
200 -0.08 0.11 0.11 0.10 0.10 0.30 0.19 0.18 0.17 0.17 43.85 8.60 4.85 3.90 4.30
500 -0.08 0.11 0.12 0.11 0.10 0.22 0.14 0.14 0.13 0.13 63.65 11.50 8.60 8.70 7.30
1000 -0.09 0.09 0.10 0.09 0.09 0.20 0.11 0.11 0.10 0.10 68.55 10.20 6.10 5.05 3.65

α10 = 1.00, α20 = 0.75

100 -0.24 -0.01 0.00 0.00 0.00 0.36 0.06 0.01 0.00 0.00 58.50 7.10 1.45 0.80 0.95
200 -0.23 -0.01 0.00 0.00 0.00 0.32 0.04 0.01 0.00 0.00 79.75 12.70 1.30 0.75 0.50
500 -0.22 -0.01 0.00 0.00 0.00 0.29 0.03 0.01 0.00 0.00 96.65 32.95 3.35 0.45 0.55
1000 -0.22 -0.02 0.00 0.00 0.00 0.27 0.02 0.00 0.00 0.00 99.55 56.35 6.45 0.25 0.45

Notes: Parameters of DGP (35) of the main paper are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for

i = 1, 2, . . . , n. The factors, (f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 =

corr(f1, f2) = 0.3. Each factor assumes an autoregressive process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor

loadings are generated asvij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set

µv1 = µv2 = 0.71. Both α10 and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit are Gaussian, such that

uit ∼ IIDN(0, σ2
i ), with σ2

i ∼ IID(1 + χ2
2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂j , j = 1, 2, we use p = 0.10 and δ = 1/4

when setting the critical value. Size is computed under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. The number of

replications is set to R = 2000.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S2: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.75,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S2 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S3: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.80

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.80

100 1.21 1.19 1.08 1.08 1.06 1.67 1.55 1.45 1.43 1.44 8.50 3.80 2.45 2.25 2.55
200 1.48 1.45 1.38 1.32 1.30 1.71 1.61 1.54 1.48 1.45 17.45 10.35 8.40 7.50 7.45
500 1.33 1.28 1.23 1.15 1.13 1.46 1.36 1.31 1.22 1.20 23.00 12.65 10.95 7.40 7.45
1000 1.31 1.27 1.20 1.12 1.11 1.40 1.32 1.24 1.16 1.14 28.40 18.05 11.90 7.15 6.15

α10 = 0.80, α20 = 0.80

100 0.66 0.72 0.64 0.64 0.61 1.15 1.05 0.97 0.97 0.94 27.65 17.90 17.25 17.20 18.20
200 0.94 0.96 0.92 0.88 0.85 1.15 1.08 1.05 1.00 0.98 21.95 13.10 11.40 10.15 9.85
500 0.86 0.91 0.87 0.82 0.81 0.97 0.96 0.92 0.87 0.86 22.10 12.05 9.30 5.75 5.95
1000 0.82 0.86 0.82 0.76 0.75 0.90 0.89 0.85 0.79 0.78 29.40 19.15 13.10 8.60 7.70

α10 = 0.85, α20 = 0.80

100 0.59 0.67 0.65 0.64 0.62 0.91 0.88 0.83 0.82 0.81 19.85 10.45 7.50 8.00 7.90
200 0.52 0.60 0.59 0.56 0.54 0.72 0.71 0.69 0.65 0.64 13.50 6.50 4.30 3.50 3.30
500 0.42 0.52 0.51 0.47 0.46 0.54 0.56 0.55 0.51 0.50 26.80 10.15 9.20 7.20 7.10
1000 0.40 0.50 0.48 0.44 0.44 0.49 0.53 0.50 0.46 0.46 30.85 12.25 7.30 5.15 5.25

α10 = 0.90, α20 = 0.80

100 0.25 0.40 0.38 0.38 0.37 0.58 0.56 0.52 0.53 0.52 20.15 6.30 3.05 3.40 3.15
200 0.12 0.27 0.26 0.25 0.23 0.40 0.37 0.36 0.34 0.33 35.20 13.30 11.95 12.15 13.05
500 0.14 0.29 0.29 0.27 0.26 0.30 0.32 0.32 0.29 0.29 37.65 10.85 8.60 5.80 6.35
1000 0.14 0.28 0.28 0.26 0.25 0.26 0.30 0.29 0.27 0.27 43.05 12.75 8.20 6.60 5.70

α10 = 0.95, α20 = 0.80

100 -0.11 0.08 0.07 0.07 0.05 0.41 0.25 0.23 0.23 0.22 32.60 6.00 3.05 2.95 2.55
200 -0.07 0.11 0.11 0.10 0.10 0.29 0.18 0.18 0.17 0.17 40.70 7.45 4.60 3.80 3.70
500 -0.08 0.11 0.12 0.11 0.11 0.22 0.14 0.14 0.13 0.13 63.05 12.05 7.10 7.90 8.85
1000 -0.09 0.09 0.10 0.09 0.09 0.21 0.11 0.11 0.10 0.10 69.85 11.25 6.25 5.10 4.45

α10 = 1.00, α20 = 0.80

100 -0.23 -0.01 0.00 0.00 0.00 0.36 0.06 0.01 0.00 0.00 57.65 7.00 1.60 0.70 1.00
200 -0.23 -0.01 0.00 0.00 0.00 0.32 0.04 0.01 0.00 0.00 78.40 12.75 1.75 0.45 0.45
500 -0.23 -0.01 0.00 0.00 0.00 0.29 0.03 0.01 0.00 0.00 96.35 33.10 3.35 0.60 0.70
1000 -0.22 -0.01 0.00 0.00 0.00 0.28 0.02 0.00 0.00 0.00 99.35 55.85 6.80 0.25 0.55

Notes: Parameters of DGP (35) are generated as described in Table S2.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S3: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.80,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S2 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S4: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.85

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.22 1.20 1.09 1.09 1.02 1.69 1.56 1.45 1.45 1.39 8.20 4.15 2.60 2.75 2.20
200 1.47 1.44 1.38 1.32 1.28 1.71 1.60 1.53 1.48 1.43 15.90 9.95 8.45 7.25 6.35
500 1.34 1.29 1.23 1.15 1.13 1.47 1.37 1.30 1.22 1.20 22.70 12.75 10.25 7.40 6.80
1000 1.31 1.27 1.20 1.12 1.11 1.40 1.32 1.24 1.16 1.14 26.20 18.20 11.00 6.85 7.35

α10 = 0.80, α20 = 0.85

100 0.65 0.72 0.63 0.62 0.60 1.12 1.05 0.97 0.97 0.94 25.55 18.65 18.45 19.45 18.50
200 0.95 0.96 0.93 0.88 0.84 1.16 1.09 1.05 1.00 0.97 22.95 12.65 11.10 9.70 9.10
500 0.87 0.90 0.87 0.82 0.80 0.98 0.96 0.92 0.87 0.85 21.25 13.05 7.90 7.25 5.80
1000 0.82 0.85 0.81 0.76 0.75 0.90 0.89 0.84 0.79 0.78 29.15 17.60 12.90 9.00 7.40

α10 = 0.85, α20 = 0.85

100 0.58 0.68 0.64 0.64 0.62 0.92 0.87 0.82 0.83 0.81 21.10 10.45 7.85 7.70 7.55
200 0.52 0.60 0.59 0.55 0.54 0.72 0.71 0.69 0.66 0.64 13.55 5.60 3.95 3.35 3.15
500 0.42 0.51 0.50 0.47 0.46 0.54 0.56 0.54 0.51 0.50 27.30 10.15 7.60 7.50 7.40
1000 0.41 0.49 0.48 0.45 0.44 0.50 0.52 0.50 0.47 0.46 28.70 11.00 7.90 5.55 5.15

α10 = 0.90, α20 = 0.85

100 0.23 0.40 0.39 0.37 0.37 0.58 0.56 0.54 0.52 0.52 21.20 5.75 4.00 3.15 2.95
200 0.13 0.27 0.26 0.24 0.23 0.39 0.38 0.35 0.34 0.32 34.70 14.70 13.35 12.90 11.90
500 0.15 0.29 0.29 0.27 0.26 0.29 0.32 0.32 0.30 0.29 37.80 9.25 7.45 7.50 6.10
1000 0.14 0.28 0.28 0.26 0.25 0.26 0.30 0.29 0.27 0.27 43.65 12.75 9.50 6.90 6.25

α10 = 0.95, α20 = 0.85

100 -0.12 0.07 0.07 0.07 0.07 0.41 0.24 0.23 0.23 0.23 33.00 5.45 3.30 3.10 2.95
200 -0.07 0.10 0.11 0.10 0.10 0.29 0.18 0.18 0.17 0.17 42.50 7.65 4.45 3.75 2.95
500 -0.08 0.11 0.11 0.11 0.10 0.23 0.14 0.14 0.13 0.13 63.05 11.65 9.15 8.75 9.20
1000 -0.09 0.09 0.10 0.09 0.09 0.20 0.11 0.11 0.10 0.10 69.75 10.75 6.60 5.80 4.90

α10 = 1.00, α20 = 0.85

100 -0.23 -0.02 0.00 0.00 0.00 0.37 0.07 0.02 0.00 0.00 56.85 7.80 1.60 0.75 1.20
200 -0.23 -0.02 0.00 0.00 0.00 0.32 0.04 0.01 0.00 0.00 80.20 14.50 1.20 0.30 0.60
500 -0.23 -0.01 0.00 0.00 0.00 0.29 0.03 0.01 0.00 0.00 96.25 31.90 3.15 0.30 0.40
1000 -0.22 -0.01 0.00 0.00 0.00 0.28 0.02 0.00 0.00 0.00 99.15 53.95 6.70 0.55 0.40

Notes: Parameters of DGP (35) are generated as described in Table S2.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S4: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.85,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S2 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S5: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.90

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.90

100 1.21 1.19 1.09 1.07 1.03 1.70 1.56 1.46 1.43 1.41 8.90 3.65 2.75 2.70 2.15
200 1.49 1.45 1.38 1.32 1.29 1.72 1.61 1.52 1.48 1.44 17.45 9.85 7.10 6.95 6.80
500 1.33 1.29 1.23 1.15 1.13 1.46 1.37 1.30 1.22 1.20 23.15 13.30 9.75 7.80 7.20
1000 1.31 1.27 1.20 1.12 1.10 1.40 1.32 1.24 1.16 1.14 27.60 18.10 10.85 7.50 7.05

α10 = 0.80, α20 = 0.90

100 0.65 0.72 0.63 0.62 0.60 1.12 1.05 0.97 0.96 0.94 27.50 16.95 18.10 18.25 19.10
200 0.95 0.95 0.92 0.87 0.85 1.16 1.09 1.05 1.00 0.98 22.45 13.05 11.10 10.25 9.15
500 0.86 0.90 0.86 0.81 0.79 0.97 0.95 0.91 0.86 0.84 20.90 11.70 8.95 6.25 6.05
1000 0.82 0.86 0.81 0.76 0.75 0.90 0.89 0.84 0.79 0.78 29.00 18.25 13.00 7.70 7.30

α10 = 0.85, α20 = 0.90

100 0.57 0.68 0.65 0.64 0.64 0.91 0.88 0.83 0.84 0.82 20.55 10.95 8.25 8.80 8.05
200 0.52 0.61 0.59 0.56 0.53 0.73 0.71 0.69 0.66 0.63 15.30 6.10 4.60 3.65 2.60
500 0.41 0.52 0.50 0.47 0.46 0.53 0.56 0.54 0.51 0.50 28.15 10.35 9.55 8.10 7.40
1000 0.40 0.50 0.48 0.45 0.44 0.49 0.52 0.50 0.47 0.46 29.95 11.80 7.55 5.60 5.75

α10 = 0.90, α20 = 0.90

100 0.25 0.40 0.38 0.38 0.36 0.58 0.56 0.52 0.52 0.50 19.80 5.35 3.25 3.40 2.70
200 0.12 0.28 0.26 0.25 0.23 0.40 0.38 0.36 0.34 0.32 35.10 14.35 13.05 11.45 12.55
500 0.15 0.29 0.28 0.27 0.26 0.29 0.32 0.31 0.30 0.29 38.05 9.70 7.40 7.30 6.25
1000 0.14 0.28 0.28 0.26 0.25 0.26 0.30 0.29 0.27 0.27 43.80 12.50 9.65 6.25 5.95

α10 = 0.95, α20 = 0.90

100 -0.12 0.07 0.07 0.07 0.07 0.42 0.25 0.23 0.23 0.23 33.35 6.80 3.35 2.95 3.00
200 -0.08 0.10 0.12 0.10 0.10 0.30 0.19 0.18 0.17 0.17 42.70 8.55 5.65 3.85 4.00
500 -0.07 0.11 0.12 0.11 0.11 0.22 0.14 0.14 0.13 0.13 62.25 12.15 8.05 7.10 7.20
1000 -0.08 0.09 0.10 0.09 0.09 0.21 0.11 0.11 0.10 0.10 69.85 9.85 5.85 5.15 4.50

α10 = 1.00, α20 = 0.90

100 -0.23 -0.01 0.00 0.00 0.00 0.37 0.06 0.01 0.00 0.00 56.25 6.80 1.25 0.90 0.80
200 -0.23 -0.01 0.00 0.00 0.00 0.32 0.04 0.01 0.00 0.00 79.20 13.95 1.20 0.50 0.15
500 -0.23 -0.01 0.00 0.00 0.00 0.29 0.03 0.01 0.00 0.00 96.25 34.10 3.60 0.30 0.30
1000 -0.22 -0.01 0.00 0.00 0.00 0.28 0.02 0.00 0.00 0.00 99.40 55.15 6.95 0.80 0.40

Notes: Parameters of DGP (35) are generated as described in Table S2.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S5: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.90,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S2 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S6: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.95

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.95

100 1.17 1.19 1.07 1.08 1.03 1.65 1.57 1.43 1.43 1.42 8.30 4.10 2.70 2.65 2.60
200 1.51 1.45 1.38 1.32 1.27 1.73 1.62 1.53 1.47 1.42 17.70 10.60 9.10 6.00 5.95
500 1.34 1.29 1.24 1.16 1.13 1.47 1.37 1.31 1.23 1.20 23.35 14.00 10.15 7.55 7.80
1000 1.31 1.27 1.20 1.12 1.10 1.40 1.32 1.24 1.15 1.14 27.80 17.90 10.70 7.55 6.55

α10 = 0.80, α20 = 0.95

100 0.64 0.71 0.62 0.63 0.63 1.12 1.04 0.95 0.96 0.98 25.50 17.10 17.05 17.60 20.10
200 0.93 0.96 0.93 0.88 0.85 1.14 1.08 1.06 1.00 0.97 22.30 12.25 10.65 8.50 9.60
500 0.87 0.90 0.87 0.82 0.80 0.98 0.95 0.93 0.87 0.85 21.95 10.80 9.05 5.85 6.55
1000 0.82 0.86 0.81 0.76 0.75 0.90 0.89 0.84 0.79 0.78 29.70 18.55 11.05 7.60 7.60

α10 = 0.85, α20 = 0.95

100 0.58 0.69 0.64 0.63 0.63 0.91 0.88 0.82 0.82 0.82 20.10 9.80 7.60 7.70 7.75
200 0.52 0.61 0.58 0.55 0.53 0.73 0.72 0.69 0.65 0.63 15.10 5.65 5.05 3.70 2.85
500 0.41 0.52 0.50 0.47 0.46 0.53 0.56 0.54 0.51 0.50 28.95 10.25 8.10 7.40 7.50
1000 0.40 0.50 0.47 0.45 0.44 0.49 0.52 0.50 0.47 0.46 29.90 12.35 8.65 5.55 4.95

α10 = 0.90, α20 = 0.95

100 0.24 0.40 0.39 0.38 0.37 0.58 0.55 0.54 0.52 0.52 20.75 4.80 3.65 2.80 3.25
200 0.13 0.26 0.26 0.25 0.24 0.40 0.37 0.35 0.34 0.34 35.35 14.85 11.90 11.80 13.15
500 0.14 0.29 0.29 0.26 0.26 0.30 0.32 0.32 0.29 0.29 36.65 10.35 7.00 6.25 6.00
1000 0.14 0.28 0.27 0.26 0.25 0.26 0.30 0.29 0.27 0.27 42.60 12.95 10.00 7.05 5.80

α10 = 0.95, α20 = 0.95

100 -0.11 0.07 0.07 0.06 0.07 0.40 0.24 0.24 0.23 0.23 32.45 5.25 3.20 2.75 2.70
200 -0.08 0.11 0.11 0.10 0.10 0.29 0.18 0.17 0.17 0.16 42.60 7.90 3.35 3.60 3.45
500 -0.08 0.11 0.12 0.11 0.11 0.22 0.14 0.14 0.13 0.13 63.75 13.00 9.85 7.85 7.25
1000 -0.08 0.09 0.10 0.09 0.09 0.20 0.11 0.11 0.10 0.10 69.95 11.20 5.30 4.90 5.15

α10 = 1.00, α20 = 0.95

100 -0.23 -0.02 0.00 0.00 0.00 0.37 0.06 0.01 0.00 0.00 57.90 8.00 0.95 0.95 0.90
200 -0.23 -0.01 0.00 0.00 0.00 0.32 0.04 0.01 0.00 0.00 79.55 13.15 0.70 0.40 0.45
500 -0.23 -0.01 0.00 0.00 0.00 0.29 0.03 0.01 0.00 0.00 96.70 31.95 3.55 0.70 0.55
1000 -0.22 -0.02 0.00 0.00 0.00 0.28 0.02 0.00 0.00 0.00 99.30 55.00 6.55 0.35 0.30

Notes: Parameters of DGP (35) are generated as described in Table S2.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S6: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 0.95,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S2 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S7: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 1.00

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 1.00

100 1.20 1.20 1.06 1.06 1.06 1.66 1.57 1.43 1.42 1.43 8.20 4.45 2.65 2.50 2.30
200 1.50 1.45 1.39 1.33 1.28 1.73 1.62 1.54 1.48 1.44 16.15 10.20 8.50 6.25 7.30
500 1.34 1.29 1.24 1.15 1.13 1.48 1.36 1.31 1.22 1.20 23.25 13.30 9.80 7.15 7.25
1000 1.31 1.27 1.20 1.12 1.10 1.41 1.31 1.24 1.15 1.14 27.35 16.65 11.85 8.00 7.05

α10 = 0.80, α20 = 1.00

100 0.66 0.70 0.63 0.62 0.61 1.13 1.04 0.96 0.95 0.94 27.00 18.75 17.80 17.55 18.10
200 0.93 0.97 0.93 0.87 0.84 1.14 1.10 1.06 1.00 0.97 20.90 13.40 11.70 9.95 9.25
500 0.86 0.89 0.88 0.81 0.80 0.97 0.95 0.93 0.87 0.85 21.65 11.55 9.25 6.00 6.00
1000 0.82 0.86 0.82 0.76 0.75 0.90 0.89 0.84 0.79 0.78 29.90 18.20 11.75 9.00 7.60

α10 = 0.85, α20 = 1.00

100 0.58 0.68 0.64 0.65 0.64 0.93 0.87 0.82 0.83 0.82 21.20 10.40 7.65 8.00 7.60
200 0.52 0.61 0.58 0.55 0.54 0.71 0.71 0.68 0.65 0.64 12.50 5.90 3.45 2.95 3.05
500 0.42 0.52 0.50 0.47 0.46 0.54 0.56 0.54 0.50 0.50 27.15 9.55 8.80 6.45 7.75
1000 0.40 0.49 0.48 0.45 0.44 0.49 0.52 0.50 0.47 0.46 30.75 11.75 7.55 6.55 4.65

α10 = 0.905, α20 = 1.00

100 0.23 0.40 0.39 0.39 0.38 0.58 0.55 0.53 0.54 0.52 21.70 5.35 3.70 3.50 3.00
200 0.14 0.27 0.27 0.24 0.24 0.40 0.38 0.35 0.33 0.33 33.20 15.10 10.70 11.05 11.40
500 0.15 0.29 0.29 0.26 0.26 0.30 0.32 0.32 0.29 0.29 38.90 9.95 7.45 7.20 6.85
1000 0.14 0.28 0.28 0.26 0.25 0.26 0.30 0.29 0.27 0.27 44.10 13.45 9.20 6.95 6.20

α10 = 0.95, α20 = 1.00

100 -0.10 0.07 0.08 0.07 0.07 0.40 0.25 0.24 0.24 0.23 32.30 6.75 3.50 3.45 2.70
200 -0.09 0.11 0.10 0.10 0.10 0.31 0.19 0.17 0.17 0.16 42.00 8.50 4.25 4.70 3.25
500 -0.07 0.11 0.11 0.11 0.11 0.22 0.14 0.14 0.13 0.13 62.55 11.75 8.55 7.80 8.35
1000 -0.08 0.09 0.10 0.09 0.09 0.20 0.11 0.11 0.10 0.10 69.50 10.80 6.10 4.25 3.95

α10 = 1.00, α20 = 1.00

100 -0.23 -0.02 0.00 0.00 0.00 0.37 0.06 0.02 0.00 0.00 56.80 7.50 1.05 0.35 0.70
200 -0.22 -0.01 0.00 0.00 0.00 0.32 0.04 0.01 0.00 0.00 79.30 12.60 1.20 0.45 0.70
500 -0.23 -0.01 0.00 0.00 0.00 0.29 0.03 0.01 0.00 0.00 97.20 31.65 3.30 0.70 0.45
1000 -0.22 -0.01 0.00 0.00 0.00 0.28 0.02 0.00 0.00 0.00 99.30 53.50 7.30 0.85 0.45

Notes: Parameters of DGP (35) are generated as described in Table S2.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S7: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2A (two observed factors - Gaussian errors), when the strength of the second factor is set to 1.00,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S2 for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S8: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.75

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.75

100 1.16 1.20 1.12 1.04 1.02 1.67 1.54 1.49 1.40 1.39 9.75 3.40 2.95 2.30 1.85
200 1.45 1.45 1.38 1.32 1.29 1.67 1.60 1.54 1.48 1.45 15.65 10.05 8.25 7.15 6.55
500 1.28 1.29 1.19 1.16 1.13 1.41 1.37 1.27 1.23 1.20 22.55 13.45 9.55 8.85 7.70
1000 1.27 1.25 1.20 1.11 1.10 1.36 1.29 1.24 1.15 1.13 26.30 14.60 10.90 7.55 5.90

α10 = 0.80, α20 = 0.75

100 0.58 0.68 0.68 0.61 0.57 1.12 1.01 1.01 0.94 0.91 28.80 16.95 18.20 18.00 18.35
200 0.89 0.96 0.91 0.86 0.86 1.11 1.09 1.04 0.99 0.98 22.05 13.20 11.85 10.30 8.95
500 0.82 0.90 0.85 0.82 0.80 0.94 0.95 0.90 0.87 0.85 21.30 11.70 7.95 7.65 6.65
1000 0.77 0.84 0.81 0.76 0.75 0.86 0.87 0.84 0.78 0.77 27.80 16.95 12.90 8.20 7.30

α10 = 0.85, α20 = 0.75

100 0.53 0.68 0.68 0.64 0.62 0.91 0.88 0.88 0.83 0.81 22.10 10.20 10.15 8.60 7.00
200 0.48 0.61 0.58 0.56 0.55 0.70 0.72 0.69 0.66 0.65 14.80 6.00 4.75 3.65 3.25
500 0.38 0.51 0.48 0.46 0.45 0.51 0.56 0.53 0.50 0.50 28.10 10.05 7.55 8.25 7.15
1000 0.37 0.49 0.48 0.44 0.44 0.46 0.51 0.50 0.46 0.46 31.25 10.30 8.05 5.55 4.65

α10 = 0.90, α20 = 0.75

100 0.19 0.40 0.39 0.38 0.36 0.58 0.55 0.54 0.53 0.50 25.20 5.60 3.85 3.15 2.50
200 0.11 0.28 0.27 0.25 0.24 0.38 0.38 0.36 0.35 0.33 34.85 14.10 12.00 12.70 12.90
500 0.10 0.29 0.28 0.26 0.26 0.28 0.32 0.31 0.30 0.30 42.80 10.15 7.30 7.05 8.05
1000 0.10 0.27 0.27 0.26 0.25 0.24 0.29 0.29 0.27 0.27 49.25 11.70 8.85 7.05 6.30

α10 = 0.95, α20 = 0.75

100 -0.18 0.06 0.07 0.06 0.06 0.45 0.24 0.24 0.23 0.22 39.30 5.90 3.95 2.75 2.65
200 -0.11 0.10 0.11 0.10 0.10 0.30 0.19 0.18 0.17 0.17 47.85 8.65 4.85 4.00 4.10
500 -0.11 0.11 0.11 0.11 0.11 0.25 0.14 0.14 0.13 0.13 67.10 14.55 8.30 8.55 8.50
1000 -0.12 0.09 0.10 0.09 0.09 0.22 0.11 0.11 0.10 0.10 78.30 12.50 6.30 4.35 4.55

α10 = 1.00, α20 = 0.75

100 -0.27 -0.02 0.00 0.00 0.00 0.41 0.07 0.02 0.00 0.00 64.95 8.55 1.80 1.00 0.90
200 -0.26 -0.02 0.00 0.00 0.00 0.33 0.04 0.01 0.00 0.00 84.90 17.00 1.75 0.30 0.60
500 -0.26 -0.02 0.00 0.00 0.00 0.32 0.03 0.01 0.00 0.00 97.70 40.40 4.75 0.25 0.55
1000 -0.26 -0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.00 0.00 99.90 64.65 9.40 0.55 0.40

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S8: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.75,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S9: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.80

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.80

100 1.15 1.17 1.15 1.04 1.02 1.66 1.54 1.52 1.41 1.40 9.65 3.50 4.00 2.15 2.35
200 1.47 1.45 1.38 1.33 1.31 1.69 1.61 1.53 1.48 1.46 15.15 10.45 7.25 6.85 7.00
500 1.28 1.29 1.20 1.14 1.13 1.41 1.37 1.27 1.22 1.20 21.75 13.50 9.60 8.45 8.50
1000 1.27 1.25 1.20 1.12 1.10 1.37 1.29 1.24 1.16 1.13 28.15 15.25 11.45 6.60 6.30

α10 = 0.80, α20 = 0.80

100 0.61 0.69 0.67 0.60 0.59 1.12 1.04 1.02 0.95 0.93 28.95 19.70 19.00 19.50 18.40
200 0.89 0.96 0.91 0.87 0.87 1.10 1.09 1.03 0.99 1.00 22.00 12.70 10.85 9.85 9.80
500 0.83 0.89 0.85 0.81 0.80 0.95 0.95 0.90 0.86 0.85 20.90 12.40 8.60 7.25 5.95
1000 0.77 0.84 0.81 0.76 0.75 0.86 0.88 0.84 0.79 0.77 28.65 16.75 13.40 9.15 7.15

α10 = 0.85, α20 = 0.80

100 0.51 0.67 0.67 0.63 0.61 0.88 0.87 0.87 0.82 0.80 21.25 10.10 9.75 7.35 7.80
200 0.46 0.61 0.58 0.54 0.54 0.68 0.72 0.69 0.64 0.65 14.45 6.40 4.35 3.05 2.75
500 0.38 0.51 0.49 0.46 0.45 0.51 0.56 0.53 0.50 0.50 28.80 10.15 7.75 7.20 7.00
1000 0.36 0.49 0.48 0.44 0.44 0.46 0.51 0.50 0.46 0.46 33.65 9.90 7.20 5.30 4.40

α10 = 0.90, α20 = 0.80

100 0.20 0.39 0.40 0.38 0.36 0.58 0.55 0.54 0.53 0.50 24.10 5.70 3.35 3.50 2.75
200 0.10 0.27 0.26 0.25 0.24 0.39 0.38 0.35 0.34 0.34 35.65 13.85 11.90 12.65 12.35
500 0.11 0.28 0.28 0.27 0.26 0.29 0.32 0.31 0.30 0.29 41.15 10.50 7.55 7.75 6.10
1000 0.10 0.27 0.27 0.26 0.25 0.24 0.29 0.29 0.27 0.27 48.80 12.40 9.05 7.10 5.95

α10 = 0.95, α20 = 0.80

100 -0.16 0.06 0.07 0.07 0.06 0.44 0.25 0.24 0.23 0.23 38.90 7.00 3.65 2.60 2.65
200 -0.11 0.11 0.11 0.11 0.10 0.30 0.19 0.18 0.18 0.17 46.70 9.45 5.55 4.80 4.00
500 -0.11 0.11 0.11 0.11 0.11 0.25 0.14 0.14 0.13 0.13 68.30 14.00 8.35 9.35 6.75
1000 -0.12 0.09 0.10 0.09 0.09 0.22 0.10 0.11 0.10 0.10 77.75 12.10 6.05 5.05 4.25

α10 = 1.00, α20 = 0.80

100 -0.28 -0.02 0.00 0.00 0.00 0.41 0.07 0.02 0.00 0.00 65.95 8.80 2.10 0.70 0.90
200 -0.25 -0.02 0.00 0.00 0.00 0.33 0.04 0.01 0.00 0.00 85.30 15.55 1.55 0.40 0.40
500 -0.26 -0.02 0.00 0.00 0.00 0.32 0.03 0.01 0.00 0.00 97.95 39.15 4.80 0.50 0.50
1000 -0.25 -0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.00 0.00 99.80 65.55 9.45 0.50 0.50

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S9: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.80,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S10: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.90

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.90

100 1.14 1.17 1.14 1.07 1.02 1.64 1.53 1.51 1.43 1.39 9.70 3.65 3.35 2.35 2.10
200 1.45 1.44 1.37 1.32 1.30 1.68 1.59 1.53 1.48 1.45 15.65 9.35 8.65 6.85 6.00
500 1.29 1.29 1.20 1.15 1.13 1.42 1.37 1.28 1.22 1.20 21.95 13.20 9.75 9.20 7.30
1000 1.27 1.25 1.20 1.12 1.09 1.36 1.30 1.24 1.15 1.13 26.50 15.25 11.25 7.30 6.65

α10 = 0.80, α20 = 0.90

100 0.63 0.69 0.67 0.61 0.59 1.11 1.03 1.02 0.95 0.93 26.35 18.70 19.10 18.50 19.05
200 0.89 0.96 0.91 0.88 0.86 1.10 1.09 1.03 1.00 0.99 20.40 13.10 10.10 10.25 9.50
500 0.82 0.91 0.84 0.81 0.80 0.94 0.96 0.90 0.86 0.85 23.70 13.00 7.70 7.10 6.35
1000 0.78 0.84 0.81 0.76 0.75 0.86 0.87 0.84 0.78 0.77 26.90 15.95 12.20 7.65 6.40

α10 = 0.85, α20 = 0.90

100 0.54 0.67 0.65 0.63 0.62 0.89 0.87 0.85 0.82 0.81 21.55 9.75 8.85 7.40 7.75
200 0.48 0.60 0.58 0.56 0.54 0.68 0.70 0.69 0.65 0.64 13.00 5.50 3.60 3.50 3.30
500 0.38 0.52 0.48 0.47 0.45 0.51 0.56 0.53 0.51 0.50 28.95 10.65 7.85 6.65 6.40
1000 0.36 0.49 0.48 0.44 0.44 0.45 0.51 0.50 0.47 0.45 31.30 10.55 8.50 5.45 4.55

α10 = 0.90, α20 = 0.90

100 0.20 0.39 0.38 0.37 0.36 0.58 0.54 0.53 0.52 0.50 23.55 4.75 3.95 3.60 2.45
200 0.10 0.27 0.26 0.24 0.24 0.39 0.37 0.36 0.34 0.33 37.50 15.45 12.75 13.20 11.70
500 0.10 0.28 0.28 0.27 0.26 0.28 0.32 0.31 0.30 0.29 42.20 10.60 8.80 7.15 7.45
1000 0.10 0.27 0.27 0.26 0.25 0.24 0.29 0.29 0.27 0.27 51.60 12.00 8.50 5.80 5.35

α10 = 0.95, α20 = 0.90

100 -0.17 0.07 0.07 0.06 0.06 0.44 0.25 0.23 0.23 0.23 37.75 6.90 3.55 3.15 3.05
200 -0.10 0.11 0.11 0.10 0.10 0.30 0.19 0.18 0.17 0.17 46.05 8.50 5.10 4.20 3.95
500 -0.11 0.11 0.11 0.11 0.11 0.24 0.14 0.14 0.13 0.13 69.80 13.60 9.30 8.05 8.95
1000 -0.13 0.09 0.10 0.09 0.09 0.23 0.10 0.11 0.10 0.10 77.85 12.35 6.40 5.05 4.25

α10 = 1.00, α20 = 0.90

100 -0.28 -0.02 0.00 0.00 0.00 0.41 0.07 0.02 0.00 0.00 65.10 8.70 1.60 0.70 0.80
200 -0.26 -0.02 0.00 0.00 0.00 0.34 0.05 0.01 0.00 0.00 84.50 16.40 1.20 0.50 0.45
500 -0.26 -0.02 0.00 0.00 0.00 0.32 0.03 0.01 0.00 0.00 98.35 40.20 4.20 0.75 0.75
1000 -0.25 -0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.00 0.00 99.75 65.30 8.30 0.55 0.35

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S10: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.90,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S11: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.95

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.95

100 1.16 1.16 1.15 1.06 1.01 1.67 1.52 1.52 1.42 1.37 9.55 3.85 3.90 2.30 2.25
200 1.46 1.46 1.37 1.32 1.31 1.68 1.61 1.53 1.47 1.47 16.00 9.70 7.60 6.85 7.35
500 1.29 1.29 1.20 1.15 1.13 1.42 1.37 1.28 1.22 1.20 20.75 14.60 9.50 8.05 7.65
1000 1.27 1.26 1.20 1.11 1.10 1.37 1.30 1.24 1.15 1.13 25.75 15.45 11.35 6.95 6.50

α10 = 0.80, α20 = 0.95

100 0.62 0.67 0.66 0.61 0.57 1.12 1.02 0.99 0.94 0.92 27.35 18.45 18.85 17.75 19.60
200 0.89 0.97 0.90 0.87 0.86 1.10 1.11 1.03 0.99 0.98 20.65 15.05 9.55 9.85 9.70
500 0.82 0.91 0.85 0.81 0.80 0.94 0.96 0.90 0.86 0.85 22.45 12.60 7.95 6.95 6.45
1000 0.78 0.84 0.81 0.76 0.75 0.87 0.87 0.84 0.79 0.77 28.45 16.45 12.60 8.90 7.55

α10 = 0.85, α20 = 0.95

100 0.55 0.66 0.67 0.65 0.61 0.93 0.85 0.86 0.83 0.80 22.85 9.50 9.20 7.65 6.95
200 0.47 0.59 0.58 0.56 0.56 0.69 0.69 0.68 0.66 0.66 14.60 5.40 4.40 3.35 3.50
500 0.38 0.52 0.49 0.46 0.46 0.51 0.57 0.53 0.51 0.50 28.00 11.50 7.80 7.25 6.40
1000 0.36 0.49 0.48 0.44 0.44 0.46 0.51 0.50 0.46 0.46 32.15 10.05 7.60 6.05 5.40

α10 = 0.90, α20 = 0.95

100 0.21 0.40 0.40 0.36 0.37 0.59 0.55 0.55 0.52 0.51 23.75 5.00 4.80 3.80 3.05
200 0.10 0.26 0.26 0.25 0.25 0.39 0.36 0.36 0.34 0.35 38.65 13.30 12.25 12.90 12.55
500 0.11 0.28 0.28 0.27 0.26 0.29 0.32 0.31 0.30 0.29 41.45 9.40 8.40 6.80 7.65
1000 0.10 0.27 0.27 0.26 0.25 0.24 0.29 0.29 0.27 0.27 50.60 11.40 8.35 6.50 5.90

α10 = 0.95, α20 = 0.95

100 -0.17 0.06 0.08 0.07 0.06 0.42 0.25 0.25 0.22 0.23 37.50 6.60 4.40 2.50 2.75
200 -0.10 0.10 0.10 0.10 0.10 0.30 0.18 0.17 0.17 0.17 45.55 8.00 4.50 4.00 4.45
500 -0.11 0.11 0.11 0.11 0.11 0.25 0.14 0.14 0.13 0.13 67.70 12.40 9.35 7.55 8.65
1000 -0.12 0.08 0.10 0.09 0.09 0.22 0.10 0.11 0.10 0.10 78.55 11.35 6.75 5.10 4.60

α10 = 1.00, α20 = 0.95

100 -0.27 -0.02 0.00 0.00 0.00 0.40 0.07 0.02 0.00 0.00 65.10 8.95 1.80 1.20 1.20
200 -0.26 -0.02 0.00 0.00 0.00 0.34 0.04 0.01 0.00 0.00 86.35 15.60 1.55 0.40 0.50
500 -0.26 -0.02 0.00 0.00 0.00 0.32 0.03 0.01 0.00 0.00 98.20 40.00 4.65 0.65 0.60
1000 -0.25 -0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.00 0.00 99.85 64.15 9.45 0.35 0.20

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S11: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.95,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S12: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 1.00

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 1.00

100 1.15 1.15 1.16 1.05 1.03 1.64 1.52 1.53 1.39 1.40 8.90 3.50 3.95 1.65 1.90
200 1.47 1.46 1.38 1.32 1.32 1.69 1.61 1.54 1.46 1.47 15.15 9.90 8.30 6.30 6.20
500 1.29 1.29 1.20 1.15 1.14 1.42 1.37 1.27 1.23 1.21 22.10 13.10 9.25 9.00 8.15
1000 1.27 1.25 1.21 1.11 1.10 1.37 1.30 1.25 1.15 1.13 26.30 15.75 12.45 6.90 6.90

α10 = 0.80, α20 = 1.00

100 0.60 0.69 0.66 0.61 0.59 1.12 1.04 1.01 0.95 0.92 28.60 19.00 18.80 17.35 17.90
200 0.90 0.96 0.91 0.89 0.86 1.11 1.09 1.04 1.02 0.99 20.35 13.45 11.05 10.50 9.80
500 0.82 0.91 0.85 0.81 0.80 0.94 0.97 0.90 0.87 0.85 21.80 11.75 7.95 7.30 6.85
1000 0.78 0.84 0.81 0.76 0.75 0.86 0.87 0.84 0.79 0.77 28.05 15.45 11.90 8.80 8.10

α10 = 0.85, α20 = 1.00

100 0.52 0.68 0.68 0.64 0.62 0.90 0.88 0.88 0.83 0.81 23.05 10.95 10.65 7.75 7.50
200 0.49 0.61 0.58 0.56 0.54 0.69 0.71 0.67 0.66 0.64 13.45 5.60 3.75 3.70 3.55
500 0.38 0.51 0.49 0.46 0.46 0.52 0.56 0.53 0.51 0.50 29.80 10.70 8.45 7.30 8.50
1000 0.36 0.49 0.48 0.45 0.44 0.45 0.51 0.50 0.47 0.46 32.65 9.95 8.00 5.80 4.90

α10 = 0.90, α20 = 1.00

100 0.20 0.38 0.38 0.37 0.35 0.57 0.55 0.53 0.52 0.49 23.95 5.90 3.55 2.95 2.05
200 0.10 0.27 0.27 0.24 0.24 0.38 0.37 0.36 0.34 0.34 37.65 12.75 11.95 12.70 11.95
500 0.11 0.29 0.28 0.26 0.26 0.29 0.32 0.31 0.29 0.29 41.50 10.95 7.00 6.55 7.15
1000 0.10 0.27 0.27 0.26 0.25 0.24 0.29 0.29 0.27 0.27 50.45 11.55 9.30 6.40 7.25

α10 = 0.95, α20 = 1.00

100 -0.16 0.06 0.07 0.06 0.06 0.44 0.25 0.24 0.23 0.23 36.85 6.95 4.30 2.85 3.40
200 -0.11 0.10 0.11 0.10 0.10 0.30 0.19 0.18 0.17 0.17 47.40 8.20 5.25 4.20 4.55
500 -0.11 0.10 0.11 0.11 0.11 0.24 0.14 0.14 0.13 0.13 68.00 14.90 8.70 7.85 7.40
1000 -0.12 0.09 0.10 0.09 0.09 0.22 0.10 0.11 0.10 0.10 78.10 11.60 4.80 5.25 5.20

α10 = 1.00, α20 = 1.00

100 -0.28 -0.02 0.00 0.00 0.00 0.42 0.07 0.02 0.00 0.00 65.75 8.60 1.95 0.85 0.95
200 -0.25 -0.02 0.00 0.00 0.00 0.34 0.05 0.01 0.00 0.00 84.65 17.15 1.45 0.35 0.45
500 -0.26 -0.02 0.00 0.00 0.00 0.32 0.03 0.01 0.00 0.00 98.45 39.55 5.00 0.55 0.35
1000 -0.25 -0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.00 0.00 99.75 65.45 9.10 0.20 0.60

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Figure S12: Empirical power functions associated with testing different strengths of first factor in the case of
experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 1.00,
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table 1 of the main paper for details of the data generating process. Power is computed under
H1: α1a=α10 + κ, where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S13: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed (uncorrelated) factors - Gaussian errors), when the strength of the second factor is set to 0.85

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.28 1.20 1.09 1.09 1.02 1.71 1.57 1.45 1.45 1.39 7.50 4.20 2.60 2.75 2.20
200 1.52 1.45 1.38 1.32 1.28 1.74 1.61 1.53 1.48 1.43 15.55 9.95 8.45 7.25 6.35
500 1.38 1.29 1.23 1.15 1.13 1.51 1.37 1.31 1.22 1.20 22.75 12.70 10.35 7.40 6.80
1000 1.35 1.28 1.20 1.12 1.11 1.44 1.32 1.24 1.16 1.14 27.70 18.40 11.00 6.85 7.35

α10 = 0.80, α20 = 0.85

100 0.70 0.72 0.63 0.62 0.60 1.13 1.05 0.97 0.97 0.94 24.20 18.60 18.45 19.45 18.50
200 1.00 0.96 0.93 0.88 0.84 1.19 1.10 1.05 1.00 0.97 21.85 12.80 11.10 9.70 9.10
500 0.92 0.91 0.87 0.82 0.80 1.02 0.96 0.92 0.87 0.85 21.30 13.20 7.90 7.25 5.80
1000 0.86 0.86 0.81 0.76 0.75 0.93 0.89 0.84 0.79 0.78 29.35 17.85 13.00 9.00 7.40

α10 = 0.85, α20 = 0.85

100 0.64 0.69 0.64 0.64 0.62 0.93 0.88 0.82 0.83 0.81 18.50 10.30 7.85 7.70 7.55
200 0.58 0.60 0.59 0.55 0.54 0.75 0.71 0.69 0.66 0.64 11.45 5.70 3.95 3.35 3.15
500 0.47 0.52 0.50 0.47 0.46 0.57 0.56 0.54 0.51 0.50 23.65 10.35 7.65 7.50 7.40
1000 0.45 0.50 0.48 0.45 0.44 0.53 0.52 0.50 0.47 0.46 25.70 11.15 8.05 5.55 5.15

α10 = 0.90, α20 = 0.85

100 0.29 0.40 0.39 0.37 0.37 0.58 0.56 0.54 0.52 0.52 17.30 5.50 3.95 3.15 2.95
200 0.19 0.28 0.26 0.24 0.23 0.39 0.38 0.35 0.34 0.32 29.90 14.25 13.20 12.90 11.90
500 0.20 0.29 0.29 0.27 0.26 0.30 0.33 0.32 0.30 0.29 30.35 9.00 7.40 7.50 6.10
1000 0.19 0.29 0.28 0.26 0.25 0.27 0.30 0.29 0.27 0.27 34.95 12.50 9.55 6.90 6.25

α10 = 0.95, α20 = 0.85

100 -0.06 0.07 0.07 0.07 0.07 0.36 0.24 0.23 0.23 0.23 27.25 4.65 3.20 3.10 2.95
200 -0.02 0.11 0.11 0.10 0.10 0.25 0.18 0.18 0.17 0.17 35.35 6.85 4.30 3.75 2.95
500 -0.03 0.11 0.12 0.11 0.10 0.19 0.14 0.14 0.13 0.13 54.85 10.35 9.15 8.75 9.20
1000 -0.03 0.10 0.10 0.09 0.09 0.16 0.11 0.11 0.10 0.10 59.20 8.95 6.60 5.80 4.90

α10 = 1.00, α20 = 0.85

100 -0.17 -0.01 0.00 0.00 0.00 0.30 0.05 0.01 0.00 0.00 48.45 5.60 1.35 0.75 1.20
200 -0.18 -0.01 0.00 0.00 0.00 0.26 0.03 0.01 0.00 0.00 72.05 9.85 0.95 0.30 0.60
500 -0.17 -0.01 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 93.40 22.75 2.05 0.30 0.40
1000 -0.17 -0.01 0.00 0.00 0.00 0.21 0.02 0.00 0.00 0.00 98.55 41.60 4.25 0.55 0.40

Notes: Parameters of DGP (35) are generated as described in Table S4. The factors, f1, f2, have correlation given by ρ12 =

corr(f1, f2) = 0.0.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Table S14: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2A (two observed (uncorrelated) factors - non-Gaussian errors), when the strength of the second factor is set to
0.85

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 1.19 1.19 1.15 1.07 1.03 1.67 1.54 1.52 1.43 1.40 8.05 4.00 3.60 2.40 2.25
200 1.51 1.47 1.39 1.32 1.32 1.72 1.62 1.55 1.47 1.47 14.05 9.60 8.30 7.10 6.60
500 1.33 1.30 1.21 1.15 1.13 1.46 1.38 1.28 1.22 1.20 22.55 13.60 10.05 8.05 8.20
1000 1.31 1.26 1.20 1.12 1.10 1.40 1.30 1.24 1.16 1.14 26.90 15.15 11.45 7.70 6.40

α10 = 0.80, α20 = 0.85

100 0.69 0.67 0.65 0.61 0.58 1.14 1.00 1.00 0.95 0.92 25.70 17.95 18.55 17.95 19.70
200 0.95 0.97 0.91 0.89 0.86 1.14 1.10 1.05 1.01 0.98 19.60 12.60 11.45 9.75 7.75
500 0.88 0.90 0.85 0.82 0.80 0.98 0.96 0.90 0.87 0.86 20.30 12.70 8.25 7.00 7.10
1000 0.83 0.85 0.81 0.76 0.75 0.91 0.88 0.84 0.79 0.77 26.60 17.35 11.65 8.40 6.65

α10 = 0.85, α20 = 0.85

100 0.57 0.67 0.68 0.62 0.61 0.89 0.86 0.87 0.81 0.79 19.65 9.60 9.15 7.65 6.90
200 0.54 0.61 0.59 0.55 0.54 0.72 0.72 0.69 0.65 0.64 12.60 5.45 4.15 3.15 3.45
500 0.43 0.53 0.49 0.46 0.46 0.54 0.57 0.53 0.51 0.50 25.45 11.75 7.35 8.45 7.10
1000 0.42 0.50 0.48 0.44 0.43 0.50 0.52 0.50 0.47 0.45 27.55 11.15 7.60 5.45 4.10

α10 = 0.90, α20 = 0.85

100 0.27 0.40 0.39 0.37 0.36 0.58 0.54 0.54 0.52 0.51 19.95 3.90 3.55 3.10 2.85
200 0.15 0.28 0.26 0.24 0.24 0.38 0.38 0.36 0.33 0.34 30.85 14.00 12.60 12.25 12.55
500 0.16 0.29 0.28 0.27 0.26 0.29 0.33 0.31 0.30 0.29 34.40 10.70 7.00 7.90 7.40
1000 0.15 0.28 0.28 0.26 0.25 0.24 0.29 0.29 0.27 0.27 40.65 10.95 9.80 5.55 6.70

α10 = 0.95, α20 = 0.85

100 -0.10 0.07 0.08 0.06 0.06 0.39 0.25 0.24 0.22 0.22 31.95 6.55 3.50 2.25 2.35
200 -0.05 0.11 0.11 0.10 0.10 0.26 0.19 0.18 0.18 0.17 38.50 7.70 4.35 4.75 3.95
500 -0.05 0.11 0.11 0.11 0.10 0.20 0.14 0.13 0.13 0.13 58.55 12.55 8.45 7.55 7.80
1000 -0.07 0.09 0.10 0.09 0.09 0.18 0.11 0.11 0.10 0.10 67.90 9.45 5.55 4.60 5.05

α10 = 1.00, α20 = 0.85

100 -0.21 -0.01 0.00 0.00 0.00 0.33 0.05 0.01 0.00 0.00 57.25 5.95 1.20 1.10 0.85
200 -0.19 -0.01 0.00 0.00 0.00 0.27 0.04 0.01 0.00 0.00 78.20 11.65 1.45 0.55 0.50
500 -0.20 -0.01 0.00 0.00 0.00 0.26 0.03 0.01 0.00 0.00 95.20 29.60 2.95 0.35 0.25
1000 -0.20 -0.01 0.00 0.00 0.00 0.25 0.02 0.00 0.00 0.00 99.45 52.55 6.10 0.35 0.45

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper. The factors, f1, f2, have correlation given

by ρ12 = corr(f1, f2) = 0.0.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Table S15: Bias, RMSE and Size (×100) of estimating the strength of strongest factor in the case of experiment
3A (unobserved single factor - with Gaussian errors instead) using cross section average

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75

100 2.19 2.39 2.72 4.31 6.78 2.75 2.84 3.13 4.68 7.07 24.75 26.65 34.90 73.60 97.80
200 2.06 2.03 2.12 2.58 3.49 2.38 2.28 2.36 2.78 3.68 32.75 27.80 32.10 51.40 82.25
500 1.71 1.61 1.55 1.60 1.80 1.93 1.75 1.67 1.71 1.91 35.75 31.95 28.85 29.75 41.50
1000 1.54 1.46 1.38 1.36 1.41 1.69 1.55 1.45 1.42 1.46 39.00 32.20 25.05 23.90 28.55

α10 = 0.80

100 1.19 1.29 1.40 2.16 3.41 1.64 1.65 1.73 2.46 3.68 28.95 27.25 31.10 56.10 86.20
200 1.24 1.22 1.23 1.40 1.77 1.46 1.38 1.39 1.53 1.90 30.05 23.70 25.05 33.10 56.30
500 1.05 1.03 0.98 0.97 1.03 1.18 1.11 1.05 1.04 1.09 26.80 22.25 18.25 16.80 19.30
1000 0.93 0.92 0.87 0.85 0.85 1.02 0.97 0.91 0.88 0.88 33.30 25.10 19.80 15.85 16.85

α10 = 0.85

100 0.88 0.94 0.97 1.26 1.76 1.16 1.14 1.17 1.45 1.96 22.95 21.05 23.15 38.20 63.85
200 0.69 0.71 0.71 0.75 0.88 0.85 0.83 0.81 0.85 0.98 15.10 10.55 9.45 10.40 19.10
500 0.47 0.57 0.54 0.52 0.54 0.65 0.63 0.59 0.57 0.58 25.95 15.65 11.95 10.35 10.10
1000 0.47 0.52 0.49 0.48 0.47 0.55 0.55 0.52 0.50 0.49 28.15 14.70 10.10 7.80 8.25

α10 = 0.90

100 0.43 0.50 0.51 0.61 0.80 0.68 0.66 0.66 0.75 0.96 15.15 8.50 7.60 11.95 25.40
200 0.25 0.32 0.31 0.31 0.35 0.42 0.42 0.40 0.40 0.44 24.55 12.80 12.60 10.10 12.85
500 0.23 0.32 0.30 0.28 0.28 0.33 0.35 0.33 0.32 0.31 28.65 12.10 8.50 7.90 6.25
1000 0.20 0.29 0.28 0.27 0.26 0.27 0.31 0.29 0.28 0.28 34.55 13.70 9.90 7.75 6.95

α10 = 0.95

100 0.01 0.10 0.12 0.14 0.19 0.33 0.27 0.27 0.28 0.34 20.80 5.50 5.10 6.60 10.75
200 0.02 0.12 0.12 0.12 0.13 0.23 0.20 0.19 0.19 0.20 28.25 7.25 5.95 6.15 6.50
500 0.01 0.12 0.12 0.11 0.11 0.16 0.15 0.14 0.14 0.13 47.25 12.10 9.55 8.25 7.85
1000 -0.02 0.10 0.10 0.09 0.09 0.15 0.11 0.11 0.11 0.10 55.05 8.00 5.95 5.00 5.65

α10 = 1.00

100 -0.12 -0.01 0.00 0.00 0.00 0.23 0.03 0.00 0.00 0.00 39.35 3.20 0.95 1.05 1.10
200 -0.14 -0.01 0.00 0.00 0.00 0.21 0.03 0.00 0.00 0.00 65.50 7.10 0.55 0.65 0.55
500 -0.14 -0.01 0.00 0.00 0.00 0.19 0.02 0.00 0.00 0.00 91.60 20.45 1.80 0.25 0.40
1000 -0.15 -0.01 0.00 0.00 0.00 0.20 0.02 0.00 0.00 0.00 98.20 39.85 3.35 0.50 0.35

Notes: Parameters of DGP (35) are generated as described in Table S1a. α0 = α10 is estimated by regressing

observations, xit, on an intercept and the cross section averages of xit, x̄t = n−1∑n
i=1 xit, for

t = 1, 2, . . . , T .
∗Computation of size when α10 = 1.00 follows the randomisation procedure proposed in Trapani (2018).
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Figure S13: Empirical power functions associated with testing different strengths of strongest factor in the case
of experiment 3A (unobserved single factor - with Gaussian errors instead) using cross section average, when
n = 100, 200, 500, 1000 and T = 200

Notes: See the notes to Table S1a for details of the data generating process. Power is computed under H1: α1a=α10 + κ,
where κ = −0.05,−0.045, . . . , 0.045, 0.05. The number of replications is set to R = 2000.
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Table S16: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - with Gaussian errors instead) using cross section average, when α10 = 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 1.00, α20 = 0.51

100 -13.80 -0.60 -0.01 0.00 0.00 25.08 3.75 0.49 0.00 0.00
200 -15.42 -0.66 -0.02 0.00 0.00 23.47 2.63 0.47 0.00 0.00
500 -15.54 -0.90 -0.04 0.00 0.00 20.63 2.12 0.35 0.00 0.00
1000 -16.07 -0.95 -0.05 0.00 0.00 20.89 1.70 0.29 0.03 0.00

α10 = 1.00, α20 = 0.75

100 -14.47 -0.74 -0.03 0.00 0.00 25.78 4.14 0.85 0.00 0.00
200 -15.45 -0.66 -0.02 0.00 0.00 23.56 2.57 0.42 0.00 0.00
500 -15.81 -0.89 -0.04 0.00 0.00 21.13 2.11 0.37 0.00 0.00
1000 -16.41 -0.97 -0.05 0.00 0.00 21.56 1.74 0.27 0.03 0.00

α10 = 1.00, α20 = 0.95

100 -18.19 -1.31 -0.16 0.00 0.00 33.50 5.70 1.89 0.00 0.00
200 -19.47 -1.81 -0.18 0.00 0.00 30.97 5.09 1.29 0.00 0.00
500 -19.50 -1.96 -0.20 0.00 0.00 27.39 3.85 0.85 0.00 0.00
1000 -20.15 -1.98 -0.19 0.00 0.00 27.39 3.85 0.85 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -0.55 0.00 0.00 0.00 0.00 3.45 0.00 0.00 0.00 0.00
200 -0.90 -0.01 0.00 0.00 0.00 3.29 0.37 0.00 0.00 0.00
500 -0.95 -0.01 0.00 0.00 0.00 2.43 0.18 0.00 0.00 0.00
1000 -0.96 -0.02 0.00 0.00 0.00 1.96 0.15 0.00 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table S2, with ρ12 =

corr(f1, f2) = 0.0. α0 = max(α10, α20) is estimated by regressing observations, xit, on

an intercept and the cross section average of xit, x̄t = n−1∑n
i=1 xit, for t = 1, 2, . . . , T .
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Table S17: Bias and RMSE (×100) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - with Gaussian errors instead) using cross section average, when α10 = 0.95

Bias (×100) RMSE (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.95, α20 = 0.51

100 0.05 0.19 0.24 0.39 0.59 0.38 0.35 0.40 0.54 0.72
200 0.03 0.15 0.16 0.21 0.31 0.26 0.23 0.24 0.30 0.39
500 0.01 0.13 0.13 0.14 0.16 0.17 0.16 0.16 0.17 0.19
1000 -0.02 0.10 0.11 0.10 0.11 0.15 0.12 0.12 0.12 0.13

α10 = 0.95, α20 = 0.75

100 0.73 1.27 1.55 1.75 1.78 1.02 1.42 1.64 1.82 1.85
200 0.48 0.96 1.24 1.52 1.55 0.70 1.08 1.31 1.55 1.58
500 0.25 0.61 0.84 1.19 1.26 0.43 0.72 0.91 1.21 1.27
1000 0.14 0.42 0.59 0.95 1.07 0.30 0.51 0.67 0.97 1.07

α10 = 0.95, α20 = 0.95

100 3.53 4.01 4.04 4.07 4.06 3.58 4.03 4.06 4.09 4.07
200 3.35 3.89 3.94 3.96 3.97 3.39 3.90 3.95 3.97 3.98
500 3.16 3.74 3.82 3.83 3.83 3.20 3.75 3.82 3.83 3.84
1000 3.03 3.63 3.71 3.73 3.72 3.06 3.63 3.71 3.73 3.72

α10 = 0.95, α20 = 1.00

100 -0.17 -0.02 0.00 0.00 0.00 0.32 0.06 0.01 0.00 0.00
200 -0.19 -0.02 0.00 0.00 0.00 0.30 0.05 0.01 0.00 0.00
500 -0.21 -0.02 0.00 0.00 0.00 0.30 0.04 0.01 0.00 0.00
1000 -0.21 -0.02 0.00 0.00 0.00 0.29 0.03 0.01 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table S2, with ρ12 =

corr(f1, f2) = 0.0. α0 = max(α10, α20) is estimated by regressing observations, xit, on

an intercept and the cross section averages of xit, x̄t = n−1∑n
i=1 xit, for t = 1, 2, . . . , T .
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Table S18: Bias and RMSE (×10, 000) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - non-Gaussian errors) using first principal component, when α10 = 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 1.00, α20 = 0.51

100 -15.95 -12.28 -8.11 -6.40 -5.11 59.36 55.00 40.19 32.55 26.69
200 -9.33 -4.50 -4.12 -2.81 -2.35 38.07 27.54 24.59 17.38 13.90
500 -4.23 -1.81 -1.60 -1.55 -1.40 19.34 14.44 12.84 11.71 10.53
1000 -2.49 -1.14 -0.62 -0.76 -0.61 10.24 9.32 5.80 7.20 6.46

α10 = 1.00, α20 = 0.75

100 -20.58 -9.43 -7.25 -5.78 -5.26 74.22 45.35 37.38 30.90 26.32
200 -9.84 -4.41 -4.02 -2.84 -2.10 37.74 25.85 24.80 17.88 13.52
500 -5.27 -3.25 -1.62 -1.27 -0.86 20.15 19.81 12.77 9.53 6.86
1000 -3.17 -1.27 -1.13 -0.57 -0.57 12.34 8.92 9.56 5.01 4.98

α10 = 1.00, α20 = 0.95

100 -15.52 -2.55 -0.44 0.00 0.00 35.18 15.52 5.22 0.00 0.00
200 -14.67 -2.43 -0.37 0.00 -0.02 27.82 12.55 4.19 0.21 0.85
500 -12.93 -1.59 -0.27 0.00 0.00 21.10 4.56 2.56 0.00 0.00
1000 -12.17 -1.62 -0.26 0.00 0.00 21.10 4.56 2.56 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -1.00 -0.14 0.00 0.00 0.00 10.15 5.68 0.00 0.00 0.00
200 -0.76 0.00 0.00 0.00 0.00 3.22 0.21 0.00 0.00 0.00
500 -0.75 -0.01 0.00 0.00 0.00 2.84 0.19 0.00 0.00 0.00
1000 -0.73 -0.02 0.00 0.00 0.00 1.40 0.16 0.03 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main paper,

with ρ12 = corr(f1, f2) = 0.0. α0 = max(α10, α20) is estimated by regressing observations, xit,

on an intercept and the first principal component of xit, i = 1, 2, . . . , n, t = 1, 2, . . . , T .
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Table S19: Bias and RMSE (×100) of estimating the strength of strongest factor in the case of experiment 3B
(two unobserved factors - non-Gaussian errors) using first principal component, when α10 = 0.95

Bias (×100) RMSE (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.95, α20 = 0.51

100 2.91 3.15 3.37 3.72 4.00 3.11 3.32 3.51 3.83 4.08
200 3.22 3.42 3.61 3.95 4.14 3.34 3.53 3.70 4.01 4.18
500 3.47 3.73 3.90 4.17 4.31 3.58 3.80 3.96 4.20 4.34
1000 3.60 3.87 4.04 4.29 4.41 3.70 3.94 4.08 4.31 4.43

α10 = 0.95, α20 = 0.75

100 2.98 3.28 3.49 3.78 4.01 3.14 3.41 3.59 3.86 4.08
200 3.25 3.50 3.71 4.01 4.19 3.36 3.59 3.78 4.06 4.23
500 3.47 3.78 3.97 4.23 4.36 3.57 3.85 4.02 4.25 4.38
1000 3.60 3.90 4.08 4.33 4.46 3.69 3.96 4.12 4.35 4.47

α10 = 0.95, α20 = 0.95

100 3.94 4.16 4.18 4.18 4.18 3.98 4.18 4.20 4.20 4.20
200 3.96 4.12 4.13 4.13 4.14 3.99 4.13 4.14 4.14 4.15
500 3.96 4.11 4.13 4.14 4.15 3.98 4.12 4.14 4.15 4.17
1000 3.96 4.11 4.14 4.18 4.25 3.98 4.13 4.16 4.20 4.27

α10 = 0.95, α20 = 1.00

100 -0.15 -0.02 -0.01 0.00 0.00 0.33 0.09 0.09 0.01 0.00
200 -0.14 -0.02 0.00 0.00 0.00 0.25 0.06 0.04 0.00 0.00
500 -0.12 -0.02 0.00 0.00 0.00 0.21 0.06 0.02 0.00 0.00
1000 -0.12 -0.02 0.00 0.00 0.00 0.18 0.03 0.01 0.00 0.00

Notes: Parameters of DGP (35) are generated as described in Table 1 of the main

paper, with ρ12 = corr(f1, f2) = 0.0. α0 = max(α10, α20) is estimated by regressing,

observations, xit on an intercept and the first principal component of xit, i = 1, 2, . . . , n,

t = 1, 2, . . . , T .
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Table S20a: Bias and RMSE (×10, 000) of estimating factor strength in the case of experiment 4 (observed
misspecified single factor - Gaussian errors) when set to 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 1.00, α20 = 0.75

100 -12.34 -0.70 -0.03 0.00 0.00 23.40 4.15 0.85 0.00 0.00
200 -13.71 -0.61 -0.04 0.00 0.00 22.09 2.62 0.60 0.00 0.00
500 -13.32 -0.75 -0.05 0.00 0.00 18.58 1.85 0.39 0.00 0.00
1000 -14.42 -0.78 -0.03 0.00 0.00 19.22 1.47 0.22 0.00 0.00

α10 = 1.00, α20 = 0.80

100 -12.00 -0.68 -0.01 0.00 0.00 23.20 3.97 0.49 0.00 0.00
200 -13.14 -0.58 -0.02 0.00 0.00 22.09 2.56 0.47 0.00 0.00
500 -12.67 -0.71 -0.04 0.00 0.00 18.02 1.77 0.37 0.00 0.00
1000 -13.77 -0.70 -0.03 0.00 0.00 18.77 1.37 0.24 0.00 0.00

α10 = 1.00, α20 = 0.85

100 -10.46 -0.56 -0.03 0.00 0.00 21.10 3.62 0.85 0.00 0.00
200 -12.15 -0.51 -0.05 0.00 0.00 21.82 2.39 0.67 0.00 0.00
500 -13.00 -0.62 -0.04 0.00 0.00 17.68 1.66 0.36 0.00 0.00
1000 -13.00 -0.63 -0.03 0.00 0.00 18.53 1.28 0.20 0.00 0.00

α10 = 1.00, α20 = 0.90

100 -9.53 -0.44 -0.02 0.00 0.00 20.67 3.24 0.69 0.00 0.00
200 -10.86 -0.42 -0.01 0.00 0.00 21.63 2.06 0.37 0.00 0.00
500 -10.58 -0.50 -0.03 0.00 0.00 16.93 1.47 0.31 0.00 0.00
1000 -11.85 -0.53 -0.02 0.00 0.00 18.75 1.12 0.19 0.00 0.00

α10 = 1.00, α20 = 0.95

100 -8.02 -0.32 -0.02 0.00 0.00 19.48 2.72 0.69 0.00 0.00
200 -9.49 -0.28 0.00 0.00 0.00 22.33 1.69 0.21 0.00 0.00
500 -9.04 -0.35 -0.02 0.00 0.00 17.65 1.21 0.24 0.00 0.00
1000 -10.11 -0.36 -0.01 0.00 0.00 19.09 0.90 0.14 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -6.14 -0.13 0.00 0.00 0.00 19.13 1.69 0.00 0.00 0.00
200 -7.31 -0.14 0.00 0.00 0.00 24.87 1.22 0.00 0.00 0.00
500 -6.82 -0.14 -0.01 0.00 0.00 19.43 0.77 0.14 0.00 0.00
1000 -7.92 -0.14 0.00 0.00 0.00 22.49 0.57 0.06 0.00 0.00

Notes: The parameters of the true DGP, (35), are generated as described in Table S2. The,

factors f1, f2, have correlation given by ρ12 = corr(f1, f2) = 0.3. We set α10 = 1 and α20 in

the range [0.75, 1.00] with 0.05 increments. The misspecified model assumes the existence of

factor f1 only.

A60



Table S20b: Bias and RMSE (×10, 000) of estimating factor strength in the case of experiment 4 (observed
misspecified single factor - Gaussian errors) when set to 1.00

Bias (×10, 000) RMSE (×10, 000)

n\T 60 120 200 500 1000 60 120 200 500 1000

α10 = 1.00, α20 = 0.75

100 -28.90 -1.80 -0.12 0.00 0.00 54.62 7.95 1.62 0.00 0.00
200 -28.50 -1.41 -0.11 0.00 0.00 48.65 4.75 1.08 0.00 0.00
500 -24.00 -1.46 -0.11 0.00 0.00 36.81 3.28 0.67 0.00 0.00
1000 -24.21 -1.46 -0.06 0.00 0.00 35.20 2.87 0.31 0.00 0.00

α10 = 1.00, α20 = 0.80

100 -33.38 -2.08 -0.10 0.00 0.00 65.02 9.26 1.46 0.00 0.00
200 -32.24 -1.87 -0.12 0.00 0.00 59.39 6.18 1.10 0.00 0.00
500 -27.52 -1.75 -0.14 0.00 0.00 45.11 3.99 0.89 0.00 0.00
1000 -27.65 -1.66 -0.09 0.00 0.00 42.68 3.27 0.39 0.00 0.00

α10 = 1.00, α20 = 0.85

100 -37.99 -2.43 -0.14 0.00 0.00 74.29 10.28 2.02 0.00 0.00
200 -37.21 -2.18 -0.10 0.00 0.00 72.05 7.16 1.01 0.00 0.00
500 -32.84 -2.06 -0.18 0.00 0.00 56.60 4.92 1.07 0.00 0.00
1000 -32.84 -2.04 -0.12 0.00 0.00 54.84 4.67 0.50 0.00 0.00

α10 = 1.00, α20 = 0.90

100 -44.60 -2.97 -0.19 0.00 0.00 92.88 14.24 2.35 0.00 0.00
200 -44.05 -2.65 -0.15 0.00 0.00 90.05 8.67 1.27 0.00 0.00
500 -38.84 -2.50 -0.20 0.00 0.00 73.68 6.25 1.16 0.00 0.00
1000 -40.27 -2.45 -0.16 0.00 0.00 73.66 5.72 0.71 0.00 0.00

α10 = 1.00, α20 = 0.95

100 -52.73 -3.58 -0.19 0.00 0.00 115.31 14.78 2.35 0.00 0.00
200 -53.44 -3.11 -0.16 0.00 0.00 117.70 10.48 1.25 0.00 0.00
500 -48.19 -3.16 -0.26 0.00 0.00 100.33 8.26 1.67 0.07 0.00
1000 -51.08 -3.03 -0.19 0.00 0.00 101.56 7.76 0.87 0.00 0.00

α10 = 1.00, α20 = 1.00

100 -61.81 -3.95 -0.25 0.00 0.00 142.02 17.77 2.44 0.00 0.00
200 -65.94 -3.87 -0.24 0.00 0.00 162.53 12.99 1.56 0.00 0.00
500 -62.15 -3.94 -0.33 0.00 0.00 143.05 10.79 2.00 0.07 0.00
1000 -68.10 -3.99 -0.24 0.00 0.00 153.47 10.59 0.99 0.00 0.00

Notes: The parameters of the true DGP, (35), are generated as described in Table S2. The,

factors f1, f2, have correlation given by ρ12 = corr(f1, f2) = 0.0. We set α10 = 1 and α20 in

the range [0.75, 1.00] with 0.05 increments. The misspecified model assumes the existence of

factor f1 only.
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Table S21: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (δ = 1/4,
p = 0.05)

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 0.28 0.41 0.39 0.34 0.30 1.01 0.86 0.84 0.79 0.76 15.75 4.70 3.35 3.55 2.35
200 0.63 0.75 0.70 0.65 0.63 0.94 0.92 0.87 0.81 0.79 19.85 11.00 7.35 5.60 5.15
500 0.53 0.64 0.58 0.54 0.51 0.72 0.73 0.67 0.62 0.59 21.05 9.55 6.25 4.40 4.30
1000 0.55 0.63 0.60 0.55 0.53 0.69 0.68 0.64 0.59 0.57 28.90 14.65 10.30 6.95 5.75

α10 = 0.80, α20 = 0.85

100 -0.02 0.14 0.13 0.10 0.08 0.78 0.59 0.58 0.56 0.52 19.30 3.25 3.15 2.35 1.25
200 0.31 0.47 0.43 0.42 0.39 0.62 0.61 0.57 0.56 0.52 19.85 7.55 4.20 4.60 2.90
500 0.30 0.45 0.43 0.40 0.39 0.49 0.52 0.49 0.45 0.44 30.25 11.35 8.70 6.45 6.00
1000 0.30 0.44 0.42 0.39 0.38 0.44 0.47 0.45 0.41 0.40 32.75 13.50 9.45 6.55 4.65

α10 = 0.85, α20 = 0.85

100 0.08 0.32 0.32 0.29 0.28 0.62 0.52 0.51 0.47 0.46 30.35 7.65 5.90 5.40 4.25
200 0.09 0.28 0.27 0.25 0.24 0.44 0.40 0.38 0.36 0.34 32.95 11.70 8.65 7.10 6.35
500 0.03 0.24 0.22 0.20 0.20 0.31 0.29 0.27 0.25 0.24 41.95 8.40 6.00 5.90 5.05
1000 0.05 0.23 0.23 0.21 0.20 0.27 0.26 0.26 0.23 0.22 46.85 13.30 9.20 6.35 4.00

α10 = 0.90, α20 = 0.85

100 -0.07 0.18 0.18 0.17 0.16 0.51 0.33 0.33 0.31 0.30 36.95 5.50 3.00 2.40 2.05
200 -0.15 0.08 0.07 0.06 0.06 0.38 0.21 0.19 0.18 0.17 42.80 8.20 3.20 2.60 2.30
500 -0.11 0.12 0.13 0.12 0.11 0.28 0.17 0.16 0.15 0.15 53.10 10.50 5.70 4.85 4.15
1000 -0.09 0.13 0.14 0.13 0.12 0.24 0.15 0.15 0.14 0.14 66.95 11.95 8.75 5.20 5.05

α10 = 0.95, α20 = 0.85

100 -0.32 -0.03 -0.02 -0.03 -0.02 0.52 0.19 0.17 0.16 0.16 53.00 10.95 5.60 3.85 4.70
200 -0.23 0.02 0.03 0.03 0.02 0.37 0.12 0.10 0.10 0.10 63.70 10.55 3.50 3.30 2.40
500 -0.22 0.03 0.05 0.04 0.04 0.32 0.08 0.07 0.07 0.07 78.85 13.20 2.30 1.80 1.65
1000 -0.22 0.02 0.04 0.04 0.04 0.30 0.05 0.05 0.05 0.05 90.55 24.70 10.15 8.60 7.55

α10 = 1.00, α20 = 0.85

100 -0.32 -0.02 0.00 0.00 0.00 0.46 0.07 0.02 0.00 0.00 70.35 8.95 1.55 1.10 0.85
200 -0.29 -0.02 0.00 0.00 0.00 0.38 0.05 0.01 0.00 0.00 87.55 18.65 2.10 0.55 0.50
500 -0.29 -0.02 0.00 0.00 0.00 0.36 0.04 0.01 0.00 0.00 98.35 43.70 4.95 0.35 0.25
1000 -0.28 -0.02 0.00 0.00 0.00 0.34 0.03 0.01 0.00 0.00 99.85 66.60 9.90 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factors,

(f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor

assumes an autoregressive process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set µv1 = µv2 = 0.71. Both α10

and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with

σ2
i ∼ IID(1 + χ2

2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂j , j = 1, 2, we use p = 0.05 and δ = 1/4 when setting the critical

value. Size is computed under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. The number of replications is set

to R = 2000.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).

A62



Table S22: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (δ = 1/3,
p = 0.10)

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 0.63 0.70 0.67 0.60 0.57 1.23 1.09 1.07 1.02 0.98 10.45 2.75 2.10 1.90 1.35
200 0.91 0.96 0.90 0.84 0.82 1.17 1.13 1.06 1.00 0.97 15.00 10.15 6.05 5.20 4.05
500 0.69 0.77 0.70 0.66 0.64 0.86 0.86 0.79 0.74 0.72 22.20 11.25 8.75 7.10 6.65
1000 0.66 0.72 0.67 0.62 0.60 0.78 0.76 0.72 0.66 0.64 30.40 16.40 12.25 8.25 7.25

α10 = 0.80, α20 = 0.85

100 0.26 0.34 0.32 0.28 0.26 0.87 0.72 0.71 0.67 0.65 12.50 2.05 1.75 1.15 0.80
200 0.52 0.62 0.57 0.55 0.52 0.77 0.76 0.70 0.69 0.64 14.65 5.80 3.75 3.35 2.30
500 0.42 0.55 0.51 0.48 0.48 0.58 0.61 0.57 0.53 0.53 25.25 11.10 8.00 5.70 5.85
1000 0.37 0.49 0.47 0.43 0.42 0.49 0.52 0.50 0.46 0.45 32.85 14.90 11.00 7.70 5.20

α10 = 0.85, α20 = 0.85

100 0.28 0.45 0.45 0.41 0.40 0.69 0.64 0.64 0.59 0.59 20.35 4.40 3.55 2.40 2.05
200 0.23 0.38 0.36 0.33 0.32 0.50 0.49 0.46 0.44 0.42 23.10 8.65 5.40 5.35 3.90
500 0.12 0.29 0.27 0.25 0.25 0.33 0.35 0.32 0.30 0.30 33.10 7.35 4.60 3.50 3.40
1000 0.10 0.27 0.27 0.24 0.23 0.28 0.30 0.29 0.26 0.25 46.50 13.40 10.50 7.70 6.30

α10 = 0.90, α20 = 0.85

100 0.06 0.26 0.26 0.24 0.23 0.50 0.41 0.41 0.38 0.37 32.10 7.00 5.85 4.80 3.70
200 -0.05 0.14 0.13 0.11 0.11 0.35 0.26 0.24 0.22 0.21 30.70 5.10 1.55 1.15 1.50
500 -0.05 0.16 0.16 0.15 0.14 0.26 0.20 0.19 0.18 0.18 55.05 13.40 7.75 9.10 8.25
1000 -0.06 0.15 0.16 0.14 0.14 0.22 0.17 0.17 0.16 0.15 60.45 9.25 7.35 4.45 3.90

α10 = 0.95, α20 = 0.85

100 -0.23 0.00 0.02 0.01 0.01 0.45 0.20 0.19 0.18 0.18 41.30 5.30 1.50 0.80 0.85
200 -0.17 0.04 0.05 0.05 0.04 0.32 0.13 0.12 0.12 0.12 56.10 11.05 5.55 5.60 4.80
500 -0.18 0.05 0.06 0.06 0.05 0.29 0.09 0.08 0.08 0.08 73.30 11.50 4.20 3.30 3.20
1000 -0.20 0.03 0.05 0.04 0.04 0.28 0.06 0.06 0.06 0.05 87.50 18.75 7.20 5.95 5.05

α10 = 1.00, α20 = 0.85

100 -0.27 -0.02 0.00 0.00 0.00 0.40 0.06 0.02 0.00 0.00 64.80 7.55 1.40 1.10 0.85
200 -0.25 -0.02 0.00 0.00 0.00 0.33 0.04 0.01 0.00 0.00 84.40 16.05 1.85 0.55 0.50
500 -0.26 -0.02 0.00 0.00 0.00 0.33 0.03 0.01 0.00 0.00 97.85 40.65 4.40 0.35 0.25
1000 -0.27 -0.02 0.00 0.00 0.00 0.33 0.03 0.00 0.00 0.00 99.80 64.75 8.80 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factors,

(f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor

assumes an autoregressive process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set µv1 = µv2 = 0.71. Both α10

and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with

σ2
i ∼ IID(1 + χ2

2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂j , j = 1, 2, we use p = 0.10 and δ = 1/3 when setting the critical

value. Size is computed under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. The number of replications is set

to R = 2000.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Table S23: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (δ = 1/3,
p = 0.05)

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 -0.08 0.15 0.15 0.11 0.07 0.91 0.66 0.63 0.61 0.56 24.25 7.20 5.45 4.70 3.05
200 0.25 0.47 0.44 0.41 0.39 0.69 0.65 0.61 0.57 0.55 26.50 10.45 6.90 4.80 4.15
500 0.12 0.35 0.32 0.28 0.27 0.48 0.45 0.41 0.37 0.35 37.10 10.90 10.25 9.75 8.55
1000 0.13 0.33 0.32 0.28 0.27 0.41 0.39 0.37 0.33 0.32 41.50 10.20 7.55 4.95 4.35

α10 = 0.80, α20 = 0.85

100 -0.31 -0.04 -0.04 -0.06 -0.09 0.81 0.50 0.47 0.47 0.43 29.70 6.70 4.70 4.10 2.60
200 0.03 0.27 0.26 0.24 0.22 0.51 0.43 0.40 0.38 0.36 30.90 8.25 4.45 3.25 2.90
500 0.00 0.26 0.25 0.23 0.23 0.40 0.33 0.31 0.29 0.28 40.20 8.80 4.70 3.15 3.05
1000 -0.01 0.23 0.24 0.21 0.21 0.32 0.27 0.27 0.24 0.24 55.45 13.90 9.25 7.65 6.60

α10 = 0.85, α20 = 0.85

100 -0.12 0.20 0.21 0.18 0.17 0.62 0.41 0.39 0.36 0.35 37.50 5.10 2.60 1.70 1.70
200 -0.12 0.16 0.16 0.14 0.13 0.45 0.29 0.26 0.25 0.24 43.75 7.10 2.75 1.95 1.75
500 -0.18 0.11 0.11 0.09 0.09 0.38 0.18 0.16 0.15 0.15 67.95 18.30 14.70 14.90 14.95
1000 -0.16 0.11 0.12 0.11 0.10 0.33 0.14 0.15 0.13 0.12 72.55 13.70 7.45 6.15 4.90

α10 = 0.90, α20 = 0.85

100 -0.22 0.10 0.12 0.11 0.10 0.56 0.27 0.26 0.24 0.23 48.85 11.60 8.20 6.95 6.00
200 -0.30 0.00 0.01 0.00 0.00 0.48 0.17 0.14 0.14 0.14 57.50 8.10 1.35 0.60 0.65
500 -0.26 0.05 0.06 0.06 0.06 0.40 0.11 0.10 0.09 0.09 75.65 12.25 3.40 1.85 2.20
1000 -0.25 0.06 0.08 0.07 0.07 0.36 0.09 0.09 0.08 0.08 86.60 17.40 8.55 5.20 4.95

α10 = 0.95, α20 = 0.85

100 -0.43 -0.07 -0.05 -0.06 -0.06 0.62 0.18 0.15 0.14 0.14 61.25 10.15 3.10 2.20 2.25
200 -0.34 -0.02 0.00 0.00 0.00 0.47 0.11 0.08 0.08 0.08 74.95 12.95 1.95 1.45 1.10
500 -0.33 0.00 0.02 0.02 0.02 0.44 0.06 0.05 0.05 0.04 91.90 23.40 2.70 1.25 0.95
1000 -0.33 -0.01 0.01 0.01 0.01 0.42 0.05 0.03 0.03 0.03 97.80 51.25 23.40 25.10 22.10

α10 = 1.00, α20 = 0.85

100 -0.39 -0.03 0.00 0.00 0.00 0.54 0.08 0.02 0.00 0.00 75.95 11.65 2.00 1.10 0.85
200 -0.36 -0.03 0.00 0.00 0.00 0.46 0.06 0.01 0.00 0.00 91.95 22.90 2.65 0.55 0.50
500 -0.37 -0.03 0.00 0.00 0.00 0.46 0.04 0.01 0.00 0.00 99.10 53.15 7.10 0.35 0.25
1000 -0.37 -0.03 0.00 0.00 0.00 0.44 0.04 0.01 0.00 0.00 100.00 77.25 14.55 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factors,

(f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor

assumes an autoregressive process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set µv1 = µv2 = 0.71. Both α10

and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with

σ2
i ∼ IID(1 + χ2

2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂j , j = 1, 2, we use p = 0.05 and δ = 1/3 when setting the critical

value. Size is computed under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. The number of replications is set

to R = 2000.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Table S24: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (δ = 1/2,
p = 0.10)

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 -0.14 0.11 0.11 0.07 0.04 0.92 0.64 0.61 0.58 0.54 24.70 7.05 4.60 4.10 2.55
200 0.12 0.38 0.36 0.33 0.32 0.65 0.57 0.54 0.50 0.48 29.55 7.80 4.30 2.65 2.45
500 -0.08 0.21 0.20 0.16 0.16 0.46 0.32 0.30 0.26 0.25 41.20 10.80 6.45 3.60 3.45
1000 -0.12 0.18 0.18 0.16 0.15 0.40 0.24 0.23 0.21 0.20 61.60 15.35 9.65 8.40 9.15

α10 = 0.80, α20 = 0.85

100 -0.36 -0.07 -0.07 -0.09 -0.12 0.83 0.49 0.46 0.45 0.43 31.20 6.25 3.95 3.70 2.35
200 -0.07 0.21 0.20 0.19 0.17 0.52 0.38 0.35 0.33 0.31 36.85 7.30 2.70 2.05 1.95
500 -0.15 0.17 0.18 0.15 0.15 0.44 0.24 0.23 0.21 0.21 55.50 10.45 4.35 2.80 2.45
1000 -0.20 0.13 0.15 0.13 0.13 0.39 0.18 0.18 0.16 0.16 68.70 13.10 7.25 4.50 3.45

α10 = 0.85, α20 = 0.85

100 -0.15 0.18 0.19 0.16 0.16 0.63 0.39 0.37 0.34 0.34 44.65 13.95 12.15 9.65 8.70
200 -0.20 0.11 0.12 0.10 0.10 0.49 0.25 0.23 0.22 0.21 52.50 12.50 6.70 5.60 5.15
500 -0.30 0.05 0.06 0.05 0.04 0.47 0.13 0.12 0.11 0.11 69.45 10.40 3.25 1.50 1.00
1000 -0.31 0.04 0.06 0.06 0.05 0.44 0.09 0.09 0.08 0.08 88.80 29.25 13.35 13.65 13.55

α10 = 0.90, α20 = 0.85

100 -0.25 0.09 0.11 0.10 0.09 0.58 0.26 0.24 0.23 0.22 50.30 11.40 7.05 6.10 5.35
200 -0.36 -0.03 -0.01 -0.02 -0.02 0.53 0.17 0.13 0.13 0.13 65.15 13.60 4.05 2.25 2.55
500 -0.35 0.01 0.03 0.03 0.03 0.48 0.09 0.08 0.07 0.07 85.25 18.55 4.55 2.20 2.05
1000 -0.36 0.02 0.05 0.04 0.04 0.47 0.06 0.06 0.06 0.06 95.25 28.05 5.75 2.80 2.75

α10 = 0.95, α20 = 0.85

100 -0.45 -0.08 -0.06 -0.06 -0.06 0.64 0.18 0.14 0.14 0.14 62.90 10.25 2.95 1.95 1.85
200 -0.39 -0.04 -0.01 -0.01 -0.01 0.51 0.11 0.08 0.08 0.07 80.20 18.90 6.70 5.75 4.30
500 -0.40 -0.02 0.01 0.01 0.01 0.51 0.06 0.04 0.04 0.03 95.45 33.30 5.90 3.10 2.25
1000 -0.43 -0.03 0.00 0.00 0.00 0.51 0.06 0.02 0.02 0.02 98.90 48.25 7.05 1.70 1.95

α10 = 1.00, α20 = 0.85

100 -0.41 -0.03 0.00 0.00 0.00 0.56 0.08 0.02 0.00 0.00 76.85 12.15 2.05 1.10 0.85
200 -0.40 -0.03 0.00 0.00 0.00 0.50 0.06 0.02 0.00 0.00 93.10 25.05 3.10 0.55 0.50
500 -0.43 -0.03 0.00 0.00 0.00 0.52 0.05 0.01 0.00 0.00 99.55 58.90 8.90 0.35 0.25
1000 -0.44 -0.04 0.00 0.00 0.00 0.53 0.05 0.01 0.00 0.00 100.00 83.40 18.50 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factors,

(f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor

assumes an autoregressive process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set µv1 = µv2 = 0.71. Both α10

and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with

σ2
i ∼ IID(1 + χ2

2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂j , j = 1, 2, we use p = 0.10 and δ = 1/2 when setting the critical

value. Size is computed under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. The number of replications is set

to R = 2000.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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Table S25: Bias, RMSE and Size (×100) of estimating different strengths of first factor in the case of experiment
2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85 (δ = 1/2,
p = 0.05)

Bias (×100) RMSE (×100) Size∗ (×100)

n\T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

α10 = 0.75, α20 = 0.85

100 -0.59 -0.17 -0.14 -0.18 -0.20 1.06 0.51 0.48 0.45 0.44 36.75 4.55 1.70 0.75 0.50
200 -0.26 0.14 0.15 0.13 0.12 0.68 0.35 0.32 0.29 0.28 48.90 8.85 3.45 1.80 1.45
500 -0.42 0.03 0.05 0.03 0.03 0.65 0.20 0.17 0.15 0.15 67.90 13.00 3.90 1.40 1.20
1000 -0.42 0.03 0.06 0.05 0.05 0.59 0.14 0.13 0.11 0.11 79.75 16.65 3.90 1.45 1.50

α10 = 0.80, α20 = 0.85

100 -0.71 -0.28 -0.25 -0.28 -0.28 1.05 0.47 0.42 0.41 0.40 80.20 70.70 70.00 74.10 73.70
200 -0.38 0.04 0.06 0.06 0.04 0.67 0.25 0.21 0.21 0.19 59.90 10.85 2.30 1.85 1.20
500 -0.42 0.04 0.08 0.06 0.06 0.62 0.15 0.14 0.12 0.12 80.15 22.85 9.40 5.10 6.10
1000 -0.43 0.03 0.07 0.06 0.06 0.58 0.11 0.10 0.09 0.09 90.00 27.10 8.25 3.75 3.75

α10 = 0.85, α20 = 0.85

100 -0.43 0.05 0.08 0.05 0.05 0.80 0.28 0.25 0.22 0.22 57.00 9.95 4.50 2.65 2.25
200 -0.46 0.00 0.02 0.02 0.02 0.67 0.18 0.15 0.14 0.13 73.60 20.45 9.20 7.00 6.20
500 -0.52 -0.04 -0.01 -0.01 -0.01 0.66 0.11 0.08 0.07 0.07 87.80 21.75 3.40 0.60 0.35
1000 -0.51 -0.03 0.02 0.01 0.01 0.63 0.08 0.05 0.04 0.04 95.90 36.55 7.20 2.75 2.30

α10 = 0.90, α20 = 0.85

100 -0.47 0.00 0.04 0.03 0.03 0.76 0.21 0.17 0.15 0.15 63.70 11.00 3.05 1.90 1.20
200 -0.57 -0.10 -0.07 -0.07 -0.07 0.72 0.17 0.12 0.11 0.11 81.90 18.00 2.50 0.55 0.25
500 -0.53 -0.04 0.00 0.00 0.00 0.66 0.09 0.05 0.04 0.04 95.05 34.95 6.35 1.40 1.85
1000 -0.53 -0.03 0.02 0.02 0.02 0.64 0.07 0.04 0.03 0.03 99.00 52.75 13.70 5.60 5.35

α10 = 0.95, α20 = 0.85

100 -0.64 -0.12 -0.09 -0.09 -0.09 0.83 0.19 0.14 0.13 0.13 75.50 12.90 2.15 0.55 0.60
200 -0.56 -0.08 -0.03 -0.03 -0.03 0.69 0.13 0.07 0.06 0.06 89.40 25.70 3.75 1.90 1.25
500 -0.55 -0.05 -0.01 -0.01 -0.01 0.67 0.08 0.03 0.03 0.02 98.55 52.35 11.40 4.10 3.75
1000 -0.57 -0.06 -0.01 -0.01 -0.01 0.67 0.08 0.02 0.02 0.02 99.95 89.40 65.00 62.70 61.70

α10 = 1.00, α20 = 0.85

100 -0.56 -0.05 0.00 0.00 0.00 0.73 0.11 0.03 0.00 0.00 84.80 18.60 3.05 1.10 0.85
200 -0.53 -0.04 0.00 0.00 0.00 0.65 0.08 0.02 0.00 0.00 96.95 34.50 4.65 0.55 0.50
500 -0.56 -0.05 0.00 0.00 0.00 0.67 0.07 0.01 0.00 0.00 99.80 70.75 13.10 0.35 0.25
1000 -0.57 -0.06 0.00 0.00 0.00 0.67 0.07 0.01 0.00 0.00 100.00 90.45 26.15 0.35 0.45

Notes: Parameters of DGP (35) are generated as follows: for unit specific effects, ci ∼ IIDN (0, 1), for i = 1, 2, . . . , n. The factors,

(f1t, f2t), are multivariate normal with variances σ2
f1

= σ2
f2 = 1 and correlation given by ρ12 = corr(f1, f2) = 0.3. Each factor

assumes an autoregressive process with correlation coefficients ρfj = 0.5, j = 1, 2. The factor loadings are generated as

vij ∼ IIDU(µvj − 0.2, µvj + 0.2), for [nαj0 ] units, j = 1, 2, respectively, and zero otherwise. We set µv1 = µv2 = 0.71. Both α10

and α20 range between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit = σi
2

(
χ2
2,it − 2

)
, with

σ2
i ∼ IID(1 + χ2

2,i)/3, for i = 1, 2, . . . , n. In the computation of α̂j , j = 1, 2, we use p = 0.05 and δ = 1/2 when setting the critical

value. Size is computed under H0: αj=αj0, for j = 1, 2, using a two-sided alternative. The number of replications is set

to R = 2000.
∗Computation of size when αj0 = 1.00, j = 1, 2, follows the randomisation procedure proposed in Trapani (2018).
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