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Economic Activity Due to Extreme Weather 

 
Abstract 

 
Weather events reduce economic activity at the local level and may lead to the relocation of 
economic activity towards nearby locations. But how are the economic effects of weather events 
transmitted between locations? And, which role does the connection of small economic units 
play? This paper takes a granular approach to identify the role of connectivity on economic 
activity due to severe weather events. We combine a grid-cell level dataset on economic activity 
and weather events with global geographic information on national borders and road networks. 
We explore how a potential disruption of connectivity through an international border affects 
local spillovers in case of weather shocks. Next, we use road infrastructure as a proxy for overall 
connectivity to examine how this affects the diversion of economic activity across local 
economic units. Results suggest that international borders limit economic relocation due to 
extreme weather to domestic neighboring cells. The existence of major road infrastructure 
between locations is key to the relocation of economic activity due to weather events. Without a 
transport network, no spillovers between local economic units exist or are very limited and 
costly. 
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1. Introduction

The economic consequences of global warming have found soaring attention in recent
years. A growing literature surveyed by Cavallo and Noy (2011) investigates the effect
of natural disasters on economic growth. As extreme weather may have economic conse-
quences, it is important to understand potential transmission channels and think about
mitigation and adaptation mechanisms (cf. Fisher et al., 2012; Deschênes and Greenstone,
2012; Burke and Emerick, 2016). But how are the economic effects of weather events
transmitted between locations? And, which role does the interconnection of small eco-
nomic units play? While connectivity within and between countries matters for economic
growth due to more efficient and productive markets (World Bank, 2019), connectivity to
international markets and border efficiency greatly increase the prospects of cooperation
between countries and facilitate trade and economic growth (Buchan et al., 2012).
In this paper, we ask how the economic effects of severe weather transmit between

locations. On a granular level, we examine how the spillover of economic activity is affected
by international borders and by available road infrastructure. As country boundaries
constitute frictions to the diversion of goods, information, financial flows, and people, we
explore how national borders limit local spillovers due to a weather event. As the level of
connectivity of a struck location is likely to be a driver of observed transactions, we use
road infrastructure as a proxy for overall connectivity to explore how this promotes the
relocation of economic activity across small economic units with extreme weather.
Previous studies either use cross-country data (e.g., Felbermayr and Gröschl, 2014)

or focus on very specific regions and episodes (e.g., Strobl, 2011). But weather shocks
are often local events and affect small countries differently than large ones (Noy, 2009).
Mapping them to countries of heterogeneous size may result in measurement error and
attenuation bias.1 Felbermayr et al. (2018) take a granular approach to study the economic
effects of natural disasters on light emissions, a proxy for local economic activity (cf.
Storeygard, 2016; Henderson et al., 2012, 2017). Their analysis of 24,000 geographical
units in 197 countries over 21 years suggest strong evidence for negative local disaster and
transaction effects that phase out quickly over distance.2 But the mechanisms through
which disaster effects propagate across space remain in the dark.
On the country level, Felbermayr and Gröschl (2014) show that trade or financial open-

ness and institutions facilitate mitigation in the case of disasters. Using a quantitative

1Strobl (2011) shows for the U.S. that hurricane effects are netted out at the state level and no effects
are found on national economic growth rates.

2If neighboring areas specialize in the same production as directly affected cells, economic activity
shifts, increasing the (value of) output in adjacent regions (cf. Hsieh and Ossa, 2016).
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model with high-resolution data on agricultural productivity, Costinot et al. (2016) point
out that international trade attenuates the costs of climate change, but only weakly. Like-
minded, Desmet and Rossi-Hansberg (2015) analyze the impact of climate change on the
spatial distribution of economic activity, trade, migration and welfare. They show that
adaptation policies interact with innovation and the spatial pattern of economic activity.
In this context, local geographic connectivity plays a major role in transmitting the ef-
fects from extreme weather. Closely connected locations should find it easier to respond
to weather events by importing more from other areas or by allowing people to escape the
consequences by relocating to less affected nearby places. However, national borders have
been shown to constitute barriers to economic transactions (cf. Anderson and Van Win-
coop, 2004; Chen, 2004). Contrary, road networks provide a potential mediating factor
(cf. Banerjee et al., 2012; Faber, 2014). In a study based on night-time light emissions,
Storeygard (2016) examines how road networks in Africa affect subnational economic
growth due to oil price shocks. Similarly, Amarasinghe et al. (2018) use a network model
to examine how spillovers from changes in mineral prices propagate through African road
networks. Hence, we focus on the role of international borders and road networks for the
transmission of economic effects in response to weather events.
Our findings support that severe weather generally hampers the growth of local eco-

nomic activity. We find that the connectivity of cells is a main driver of economic reloca-
tion caused by weather events. For national borders, results suggest increased localization
and a fragmentation of production across countries. Domestic cells are, on average, the
exclusive sources of diversion for wind and precipitation events. For cold waves, domestic
relocation shows 1.5 times significantly stronger effects than foreign cells. Next, we explore
the impact of the existence of road infrastructure, as connectivity along major transport
routes potentially eases travel time and reduces transport costs. Results indicate that the
availability of at least one major road exclusively drives the diversion of economic activity
for precipitation events. For cold waves, economic relocation effects are 3.5 times as strong
for connected compared to unconnected neighboring cells. Finally, we examine whether
the number of available road connections matters. For precipitation and cold events,
estimates show stronger spillover effects for neighbors with a connectivity index above
the local median connectedness. This confirms that relocation across highly connected
neighbors is stronger than transactions across worse and thus more costly connections.
Overall, our results suggest that international borders contain economic relocation ac-
tivity due to weather events within the local domestic neighborhood. Then again, the
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existence of major road infrastructure between locations is key to economic relocation of
goods or people due to severe weather.
The remainder of the paper is organized as follows: Section 2 describes the data and

the connectivity measures. Section 3 presents the empirical strategy. Section 4 provides
results, followed by robustness checks in Section 5. The final section concludes.

2. Data

This paper combines two data sources: First, we use the Gridded GAME Database on
weather events, including yearly information on global night-light emissions and popu-
lation, as introduced by Felbermayr et al. (2018). Second, to analyze the transmission
of spillover effects triggered by severe weather, we match this information with data on
national borders and major roads. We describe in detail how we extract a grid-cell level
indicator on border and road connectivity and discuss the properties.

2.1. Weather Events and Economic Activity

The Gridded GAME Database on geological and meteorological events, described in de-
tail by Felbermayr et al. (2018), partitions the globe into small economic units along
latitude and longitude, an approach also advocated by Nordhaus and Chen (2009) and
Costinot et al. (2016). The balanced panel comprises 24,184 grid cells with a resolution
of 0.5°×0.5° (approximately 55×55 km at the equator) spread across 197 countries from
1992 to 2013. Along with economic variables, it provides physical intensities of exogenous
events, such as wind speeds, extreme precipitation, or cold waves. Wind speeds combine
the maximum wind from a hurricane wind field model and interpolated information from
weather stations. Extreme precipitation is identified through remotely-sensed precipita-
tion anomalies above the local monthly long-run average. Cold waves use satellite data
on temperature anomalies below the local monthly long-run average. To align with the
temporal resolution of the dependent variable, all monthly weather indicators are aggre-
gated to the yearly level by computing time-weighted averages over a rolling window (cf.
Felbermayr et al., 2018).3

Economic activity, the dependent variable, is proxied by remotely-sensed data on global
night-light emissions. The data come as yearly composite satellite images from the US
Air Force Defense Meteorological Satellite Program (DMSP). From this, yearly mean light

3This allows each event to affect light emissions for exactly 12 months. The rolling window is calcu-
lated by 1

n

∑n−1
t=0 pmonth−t.
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emissions are extracted as a digital number (DN). To prepare the data for econometric
analysis, we follow Felbermayr et al. (2018). In a nutshell, we crop all off-shore light
pixels, mask misleading light sources like gas-flaring zones (Elvidge et al., 2009) and
active volcanoes, select satellite sources by coverage quality for years in which multiple
satellites are available, and mask pixels from the data for which the number of valid nights
is zero. Finally, we aggregate night-light pixels to mean light intensity at the 0.5°×0.5°
grid cell level. Night-light emission data has widely been used as a proxy for economic
activity in empirical analysis. Henderson et al. (2012) and Storeygard (2016) find a lights-
to-GDP growth elasticity of around 0.3 at the country and the Chinese prefecture level,
respectively. Felbermayr et al. (2018) find strong similarity between the elasticities of
lights-to-population density and of GDP-to-population density, fostering the adequacy of
night-light emissions as a proxy for economic activity.
Grid cell level population is used as a control variable. Information on five-year target

estimates at pixel level stem from the Gridded Population of the World (GPW) project.4

To obtain grid cell population numbers, we sum all pixel values within each cell and fill
the gaps between given five-year periods by exponential interpolation. This assumes no
excessive fluctuations in population within the five-year windows.

2.2. Border Connectivity

To measure whether neighboring economic units belong to the same country, we map cells
to countries along 2011 global country boundaries. National borders are defined in the
high resolution Biogeo World Map Shape File provided by the University of California,
Davis.5 A grid cell coincides with at most four countries. As our empirical strategy
requires an unambiguous mapping between cells and countries, we select the main country
based on the relative size of its land area within a cell, if necessary.

2.3. Road Infrastructure Connectivity

To measure globally consistent road infrastructure connectivity, we feed remote-sensing
information on global road networks into a modified Dijkstra (1959) search algorithm.
The Dijkstra algorithm solves the problem of finding the shortest route between a start
node and a destination node via an arbitrary number of intermediate nodes connected by
paths on a predefined network. Each path holds a non-negative cost weight. In our case,

4The data are based on census inputs collected at the lowest administrative units available, which
are redistributed from their administrative census boundaries to a uniform grid by using aerial weights.

5https://biogeo.ucdavis.edu/projects.html

https://biogeo.ucdavis.edu/projects.html
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nodes represent grid cells within a local neighborhood defined by a constant metric search
radius r. The cell in the center of the neighborhood defines the start node, whereas all
its neighbors serve as either intermediate or destination nodes. Paths represent distances
between all pairs of adjacent nodes connected by roads.
Geographic information on road networks stem from the Environmental Systems Re-

search Institute (Esri, 2016), who provide a globally consistent shape file of important
road connections according to the DeLorme World Base Map.6 It provides a global road
network snapshot based on satellite images collected between 1999 and 2008.7 The data
include 73,325 highways, 78,911 major roads, 3,373 local roads and 399 ferry connections.8

Direct routing is not feasible globally as separate road shapes are not always continuously
connected. Moreover, non-observed smaller road connections between observed major
roads may exist. We address both issues by calculating the number of distinct roads
leading from one cell to an adjacent cell in terms of intersections between road shapes
and cell-border polygons. Each intersection adds one path to the network. Each path is
associated with a distance proxy, our cost weight. This proxy reflects the overall distance
between cells and accounts for intra-cell travel distance.
As a result of global curvature, distances vary across cells due to varying metric corre-

spondence to one degree longitude lon across latitude lat, and because coastal cells are
typically associated with smaller land area a. Hence, we define the distance weight of
a cell by the latitudinal mean and the ratio between this dimension and the land area.
To approximate travel distance between adjacent cells, we take the average of individual
distance weights. Bilateral distance dc for two adjacent cells is

dc =
1

4

2∑
i=1

(
ai km2

lati km
+ lati km

)
. (1)

The search algorithm constructs the shortest-path tree from the start node via all
viable routes within the neighborhood for each local destination. Each iteration picks the
unvisited node within the shortest distance dc and computes the distance through this
node to each unvisited adjacent cell. If the distance along this path is smaller than any
distance found in a previous iteration (or the starting value), the information is updated.

6This map is compiled by Garmin International, Inc. from satellite imagery captured by Landsat 7
(Global Land Surveys 2000 and 2005) and the Shuttle Radar Topography Mission (SRTM).

7Global consistency is a key prerequisite for our approach. Many available road shape files (e.g.,
Open Street Map) are more detailed but have either strong coverage biases for certain world regions or
are not cleaned, such that non-reasonable road patterns emerge in some locations.

8Ferries constitute an important source of connectivity, especially for islands and will be treated as
roads henceforth.
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The algorithm stops once the shortest path from the start cell to destination has been
found. The distance from the centroid cell to destination is thus the sum of bilateral cell
distances over all nodes that jointly define the shortest path, d =

∑
c d

c.
The connection by multiple roads potentially increases the ease of transportation and

communication between cells and allows for diversion if a road is congested or temporarily
non-accessible. Next, we thus construct a measure that reflects the number of roads. We
allow two adjacent cells to be connected by multiple paths, where each path can only be
part of one route for any pair of cells. The connectivity measure is then calculated as a
mean over the distances dk along the k shortest routes. If we identify less than k viable
routes for a connection between a given start and destination pair, we put a constant
penalty distance p for each missing route. 9 The resulting indicator is

C = (1− d̄/p) , (2)

where d̄ = 1
k

∑k
k=1 dk is the mean distance along the k shortest routes and 1/p is the

inverse penalty for missing connections (a scaling factor). Consequently, C is constrained
to the [0, 1[ interval.10 For the baseline specification, we consider the availability of up
to three separate routes, k = 3.11 Finally, note that by confining nodes to cells within a
given search radius, we introduce asymmetries into the connectivity matrix whenever a
potential node that could lead to a shorter path between A and B is located just outside
the search radius around A but within the search radius around B. Since the econometric
strategy requires symmetric weights matrices, asymmetric dyads are resolved by using the
mean of the two deviating connectivity values.

2.4. Descriptives

Next, we examine the properties of the connectivity measure. Figure 1 shows the dis-
tribution of the mean connectivity of each cell within an 80 km radius for the balanced
sample. It indicates substantial heterogeneity across and within countries. Local connec-

9The penalty equals the local neighborhood radius r plus half the neighborhood’s circumference
(p = r + πr). This represents the longest plausible geometric distance between the centroid and a point
180° into the opposite direction. Technically, p also serves as the starting value of each routing iteration.

10By definition, a connectivity of 1 applies only to the connectivity of each cell with itself, where
distance is zero. Note that disentangling local spillover effects requires that a cell by itself must be
excluded from its own set of neighbors. A value of 0 indicates d̄ = p, the longest possible mean distance.

11A smaller k implies that more weight is given to the shortest route. A higher k increases the right-
skew of the connectivity distribution as it raises the likelihood of penalties (see Section 2.4 for details).
For robustness, we consider k = 1 as an alternative case.
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tivity appears higher in industrialized countries, is clustered around economic centers and
shows a natural decay around mountainous, desertified terrain, and islands.

Figure 1: Global Connectivity Distribution
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Note: Sources: Biogeo World Map Shape File (UC Davis), own calculations. Time-constant mean
connectivity index realizations of locations within a local neighborhood (80 km radius) for the balanced
panel. Higher index values imply higher connectivity.

Figure 2a depicts the cross-sectional correlation between cell connectivity and light
emission in 2013. It suggests that light emission tends to cluster in locations that are
well-connected with their local neighbors by road. Note, it also shows that a significant
number of cells (one fifth of the sample) are not connected by important roads but still
exhibit substantial night light.12 Figure 2b compares the distribution of light emission of
unconnected cells (i.e., zero connectivity in Figure 2a) with those that are connected with
at least one neighbor. While both distributions follow a bell-shape, connected cells have
stronger absolute night-light emission than unconnected cells. Figure 2c shows the kernel
densities of mean connectivity by continent. South America and Asia have the highest
frequency of disconnected cells and the lowest proportion of highly-connected cells. In-
terestingly, the proportion of disconnected cells in Africa is lower than in South America,
Asia and North America. This implies that, once a location in Africa is sufficiently active
to be reflected in the night-light data, it has a relatively good road connectivity within its
neighborhood. The density function for North America has two local maxima, represent-
ing the divide between highly connected locations in the East and lowly to intermediately
connected cells in the West. Finally, Europe’s left-skewed density function supports the

12Figure A1 in the Appendix depicts roads connectivity versus light growth. The flat line indicates
that endogeneity is not an issue in the connectivity light context.
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very advanced infrastructure and interconnectedness of the continent. The heterogeneity
in the connectivity distribution across continents suggests that identification should focus
on local rather than global statistics to capture the (relative) connectivity of locations
within their neighborhood rather than systematic differences across the globe.

Figure 2: Connectivity Descriptives
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compute densities.

Figure 3 zooms in on selected locations to visualize the bilateral connectivity of each
surrounding cell with the respective centroid. In the case of Sydney, Australia, the highest
connectivity exists with the cell to the West, to which the city extends to a large part,
and to the South, which contains an economically active land area in its upper left corner
closely connected to the city. The cell to the South-West of Sydney contains the fairly
connected suburban areas around Campbelltown. Connectivity is lower to the North.
These cells mainly cover buildup areas in and beyond the Marramarra, Dharug, Yengo
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Figure 3: Connectivity Examples
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Note: Sources: Esri, Garmin International, Inc., own calculations. Connectivity increases along red-green
spectrum with bright green representing the highest level of the connectivity index. Transparent cells
are excluded from the balanced panel due to lack of night-time light emission data (usually hinterland,
desert or on-sea locations).

and Wollemi National Parks which impose limitations on road access. For Santiago de
Chile, the tightest connections exist with cells in the immediate South including parts of
the city and the connected towns of San Bernardo and Puente Alto. Western cells are also
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well connected, with many small towns and linking Santiago de Chile to the seaside cities
San Antonio, Valparaíso and Viña del Mar. To the East starts the Andean mountain
range, connectivity is thus relatively low. For Denver on the other hand the link to the
Rocky Mountains in the West, an economically important area during the Colorado gold
rush in the 19th century, is much more pronounced than connections leading into the
Great Plains to the East. To provide an example from the Middle East, Teheran is well-
connected to the South, East and West. In the North, it adjoins the Varjin Protected
Area crossed exclusively by Chalus Road (visible in the top middle cell) which connects
Teheran to the Caspian Sea. Finally, Nairobi and Pretoria serve to demonstrate the
vast heterogeneity in terms of connectivity when we compare two African capital cities.
While Pretoria is well connected, especially to the economic center of Johannesburg in
the South, Nairobi features a less developed roads infrastructure and even contains two
cells for which no economic activity is reflected in the night-lights data.
Overall, corner cells tend to show a lower connectivity value than directly adjacent cells

simply due to overall longer average distances along the diagonal. Descriptives indicate
that the connectivity index is capable of generating plausible patterns in line with natural
geographic features. We thus consider it an adequate proxy for the true connectedness of
locations.

3. Empirical Strategy

To study the relation between severe weather and economic growth, we apply a macroe-
conomic growth model following Islam (1995) and Acemoglu et al. (2005). We take a
granular approach and account for the spatial dependence of our data to avoid omitted
variable bias. Hence, we adopt a modified spatial Durbin error model (SDEM) with cell
and year fixed effects13

∆`t = `t−1γ +Dtβ
0 +

k∑
i

(Ci �W r)Dtβ
i +Xtδ

0 +W rXtδ
1 + ν + π + ut (3)

ut = ρW rut + εt

where ∆`t is a proxy for cell economic growth rates, measured by annual changes in
the log of mean night-light emissions ∆`t ≡ ln

(
lightt

)
− ln

(
lightt−1

)
. Dt represents

13See Anselin (2013) and Halleck Vega and Elhorst (2015) for a detailed description of the standard
SDEM.
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weather events and Xt contains controls. ν is a vector of cell fixed effects and controls
for time-constant local unobservables.14 ν takes out the location-specific baseline risk of
unexpected weather events. It also controls for structural determinants of the relationship
between light use and GDP growth, such as political, cultural, historical and geographic
fundamentals. π represents time fixed effects. These capture unobserved global charac-
teristics, such as technological progress and the global business cycles, but also control
for systematic variation in the measurement of light emissions over time, see Henderson
et al. (2012).15

W r is a time-invariant K ×K dimension spatial weights matrix with binary elements.
As recommended by Conley (2008), it contains all units within a spatial radius r around
a given location.16 To ensure that a neighborhood’s area size does not vary systematically
across latitude, we choose a constant metric radius r. We set r to 80 km, this matches
eight adjacent cells at the equator.17 To test whether spillover effects are transmitted via
a specific connectivity channel, we construct a set of k connectivity matrices Ci, i ∈ k.
Each matrix consists of binary elements assigning a weight of one to all units satisfying a
defined connectivity criterion and zero otherwise.18 We then multiply each connectivity
matrix with W r, such that Ci �W r provides a combined filter which extracts groups
of neighbors within radius r satisfying a common connectivity criterion i. Multiplying
weather events with this filter produces group-specific spatial lags. βi gives the average
local spillover effect of a marginal change in the weather measure in one neighboring cell
that falls into a given group i. Note that the matrix multiplications for spillover terms
produce sums over particular groups. This has two implications: First, identification along
a quasi diff-in-diff specification is econometrically unfeasible as exogenous treatment of
different neighboring groups might jointly affect the outcome of the same observational
unit. We take this into account by explicitly treating different neighboring groups as
separate explanatory factors of the same outcome. Second, the sums over different groups

14It accounts for systematic measurement error in night lights due to aurora, the solar cycle, and stray
light.

15The capacity of satellite sensors varies systematically as they erode over time or are replaced by newer
models. Elvidge et al. (2009, 2014) propose to inter-calibrate the original pixel data by normalizing all
values to a base year for a reference area. Contrary, fixed effects require no assumptions on the stability
of lights in any temporal or spatial window.

16This implies that the same set of neighbors must be used for each cell throughout the analysis, i.e.,
the panel must be balanced.

17Previous research has shown that natural disasters are rather local phenomenon (cf. Strobl, 2011;
Bertinelli and Strobl, 2013; Elliott et al., 2015).

18Each matrix is mutually exclusive and collectively exhaustive relative to the universe of neighboring
cells defined by W r.
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of neighboring cells may follow different distributions. We compute z-scores to compare
magnitudes directly within the vector βi.
Note that entries in the connectivity matrix Ci may be endogenous, e.g., road con-

nectivity. We account for this by using cell fixed effects, which absorb all unobservable
cell-specific links between light emission and connectivity. Moreover, we are interested
not in Ci itself, but in its interaction with the weather event. Nizalova and Murtaza-
shvili (2016) and Beverelli et al. (2018) show that potential endogeneity vanishes upon
interaction with an exogenous variable. As we multiply Ci with physical weather inten-
sities, estimates are consistent if weather events are uncorrelated with the elements of Ci

or potential omitted variables. Finally, ut allows for spatial auto-correlation in residuals.
Hence, we account for spatial clustering and spillovers in unobserved characteristics. Such
patterns potentially result from the fact that superimposed grid cells arbitrarily intersect
true economic units such that adjacent cells share common business cycles or institutions.

4. Results

Next, we explore whether connectivity – measured by national borders and road networks
– acts as a transmission channel of severe weather in small economic units.

4.1. International Borders

Geography plays a significant role in shaping economic outcomes and national borders par-
ticularly influence political, economical and cultural factors. While power usually stays
within sovereign boundaries, institutional differences between countries may have strong
economic implications (Acemoglu et al., 2005). Further, the physical distance between
two observational units reduces the amount of economic transactions between them (Mc-
Callum, 1995; Obstfeld and Rogoff, 2000; Anderson and Van Wincoop, 2003). National
borders thus constitute barriers to the flow of goods, information, finance, and people
(Helliwell, 1997; Helliwell and McKitrick, 1999; Helliwell, 2000; Helliwell and Verdier,
2001; Helliwell, 2002; Anderson and Van Wincoop, 2004; Chen, 2004). They may lead to
the fragmentation of production as the connectivity of international markets and border
efficiency play an important role (World Bank, 2019). While economic ties within nations
are typically stronger than international economic links – even with preceding globaliza-
tion –, national economies have a strong staying power. This in mind, we explore whether
international borders lead to localized spillover effects of weather events in the short-run.
For this purpose, connectivity is defined as

∑k
i C

i = Csame +Cdiff, where Csame assigns
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a weight of one to all cells belonging to the same country while Cdiff assigns a weight of
one to those in a different country.

Table 1: Border Effect

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0048*** −0.0295*** −0.0562***
(0.0009) (0.0069) (0.0133)

Csame �W r · eventt 0.0405*** 0.0071*** 0.0240***
(0.0099) (0.0019) (0.0030)

Cdiff �W r · eventt −0.0006 −0.0005 0.0162***
(0.0100) (0.0016) (0.0034)

ln(popt) 0.0247*** 0.0257*** 0.0243***
(0.0013) (0.0013) (0.0013)

W r · ln(pop)t 0.0109*** 0.0112*** 0.0106***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4387*** −0.4367*** −0.4380***
(0.0011) (0.0011) (0.0011)

Observations 507,864 502,026 506,037

Wald χ2 H0: Spillover from Csame = Spillover from Cdiff

Pr(> χ2) 0.0008*** 0.0004*** 0.0492**

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All
specifications are SDEM and are estimated by Maximum Likelihood.
Standard errors in parentheses. Cell and year fixed effects, and first
temporal lags of weather events included but not reported. Spatial ra-
dius is r=80 km. Yearly disaster intensities reflect time-weighted rolling
averages over 12 subsequent monthly observations. Ci�W r ·eventt terms
represent corresponding z-scores.

Table 1 shows that wind speeds, extreme precipitation and cold waves have negative
local effects on the growth rate of night-light emissions – a proxy of economic activity.
Reported winds lead on average to a 0.5 percentage points reduction in economic growth,
excessive rain anomalies reduce growth in economic activity by 3.0 percentage points and
cold waves by 5.6 percentage points over 12 months following the event.19 Economic
diversion is exclusively driven by domestic cells for wind and precipitation events. For
cold waves, domestic relocation shows significantly stronger effects than foreign cells, with

19We take definitions of the physical intensity of weather events from the GAME database described
in Felbermayr et al. (2018).
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magnitudes about 1.5 times the size.20 Hence, the diversion of economic activity with se-
vere weather happens mostly (if not exclusively) through substitution effects to domestic
neighbors.21 This provides evidence that, at least in the short-run, regional economic
linkages are stronger than international ones. It also supports the fact that domestic link-
ages are more efficient and resilient, while international connectivity is subject to higher
costs, lower speed, and higher uncertainty, see World Bank (2019). Control variables are
as expected. Population size and their neighbors add to the growth of economic activity,
while the lag of light is negatively correlated with the dependent variable.

4.2. Road Existence

Whereas distance and geography are fixed, connectivity might be subject to change.
Transport networks, particularly the availability of highways, provide a potential me-
diating factor (Banerjee et al., 2012; Faber, 2014). But, the effective establishment of
economic linkages depends not only on the existence of transport routes but also on
the reliability of road infrastructure (cf. World Bank, 2019). We thus assess the role of
the general availability of roads to examine whether spillovers from neighboring units
connected by road are stronger than those without a connection – the latter being in
general more costly. For about one fifth of our balanced sample the data show no major
roads connection to adjacent cells, even though locations may still exhibit substantial
economic activity, compare Figure 2b. To explore whether the availability of major roads
plays a significant role in the transmission of weather effects22, we define connectivity as∑k

i C
i = Croads+Cno-roads, whereCroads assigns a weight of one to all neighbors connected

by at least one road and Cno-roads captures neighbors that lack a connection.
Table 2 presents results. Control variables and direct effects of weather events show

similar results to the previous analysis, albeit with a loss of statistical significance for
winds. Results on spillovers strongly indicate that the availability of road infrastructure is
a key driver of the diversion of economic activity across space in the case of severe weather.
For wind speeds, we find no statistically significant direct or spillover effects. Estimates

20Wald chi-squared tests suggest that the similarity of spillover effects from domestic and foreign cells
is overwhelmingly rejected for all types of events.

21Over longer periods, country borders may be overcome by international adaption activities. Interna-
tional relocation of activity takes time as cross-border transactions (i.e., international trade or migration)
are subject to bureaucratic and knowledge constraints that do not or to a lesser extent apply to domestic
relocation.

22Even in the absence of observed roads, effects from weather events could be transmitted via roads,
navigable waterways or railways not captured by the data. Unfortunately, the two latter sources of
connectivity are beyond the scope of this paper and left for future research.
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Table 2: Road Existence

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0012 −0.0301*** −0.0338**
(0.0009) (0.0069) (0.0146)

Croads �W r · eventt −0.0125 0.0106*** 0.0280***
(0.0124) (0.0021) (0.0041)

Cno-roads �W r · eventt −0.0086 0.0008 0.0080**
(0.0120) (0.0019) (0.0040)

ln(popt) 0.0249*** 0.0258*** 0.0244***
(0.0013) (0.0013) (0.0013)

W r · ln(pop)t 0.0109*** 0.0113*** 0.0106***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4368*** −0.4380***
(0.0011) (0.0011) (0.0011)

Observations 507,864 502,026 506,037

Wald χ2 H0: Spillover from Croads = Spillover from Cno-roads

Pr(> χ2) 0.7220 0.0000*** 0.0000***

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifi-
cations are SDEM and are estimated by Maximum Likelihood. Standard errors
in parentheses. Cell and year fixed effects, and first temporal lags of weather
events included but not reported. Spatial radius is r=80 km. Yearly disaster
intensities reflect time-weighted rolling averages over 12 subsequent monthly
observations. Ci �W r · eventt terms represent corresponding z-scores.

on extreme precipitation suggest that economic relocation is driven exclusively through
neighboring locations that are connected by roads. For cold waves, both connected and
unconnected cells hold diversion patterns. Therein, connected neighbors account for more
than three times the magnitude of those from unconnected cells. As before, Wald chi-
squared tests reject the similarity of spillover effects from connected and unconnected
cells. Hence, the existence of road infrastructure between locations is key to economic
relocation of goods or people in the case of severe weather. Without a transport network,
diversion between local units does not happen, or is at least limited and rather costly.

4.3. Road Heterogeneity

Next, we explore the role of infrastructure through the quantity and distance of road
connections. We use the distribution of road connectivity to investigate whether a better
connectivity of locations eases the diversion of economic activity upon weather events.
With more infrastructure available, economic ties between locations are likely to be more
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tight, routing of economic exchange is less costly and can be diverted more easily if
one connection is blocked or congested. As described in Section 2.3, the connectivity
measure increases in inverse distance and in the number of up to three independent road
connections.23

We start by classifying neighboring cells into bins along a relative notion of local con-
nectivity. With a global or regional (beyond local) reference value, we run the risk of
capturing regional differences in the spillover estimates due to unobserved characteristics
rather than informing about the role of roads. Cells from highly connected locations
(e.g., Western Europe or the U.S. East Coast) which also stand out due to other char-
acteristics that are potentially correlated with roads infrastructure may effectively be
over-represented in chosen connectivity categories. To circumvent this, we chose connec-
tivity classes such that bins capture adjacent cells by their relative connectivity compared
to cells within the same local neighborhood.24 First, we consider two bins that divide
neighbors into high and low connected cells,

∑k
i C

i = Chigh +C low. The splitting crite-
rion is the median of the local distribution, which ensures that each group is represented
for an observational unit and that both groups are approximately equal in size.25

Table 3 Panel A presents results. Estimates of weather events are negative, statistically
significant and in line with magnitudes obtained from previous specifications. For precip-
itation and cold events, spillover estimates are stronger from highly connected neighbors
compared to those from cells with a connectivity below the local median. We find no sta-
tistically significant effects on relocation effects of connectivity for storms. Again, Wald
Chi-Squared tests show that similarity of spillovers is rejected, see Table A4 in the Ap-
pendix. This confirms that relocation across highly connected neighbors are stronger than
transactions across worse connections, which are much more expensive to implement.
Second, we distinguish high, medium and low connected cells,

∑k
i C

i = Chigh +

Cmedium + C low. These are selected along the thirtiles of the local neighborhoods’ con-
nectivity distributions. Results are presented in Panel B of Table 3. Again, we cannot
distinguish any relocation effects for storms. For remaining weather events, we observe a
mixed spillover pattern. We find a clear hierarchy for extreme precipitation with spillover
magnitudes gradually declining from high to middle to low connectivity neighbors. Re-

23The algorithm searches for the three shortest routes and adds a penalty if less routes exist. Note
that this choice is arbitrary. We relax the criterion in the sensitivity analysis considering only the length
of the single shortest connection.

24A neighboring location which is badly connected overall could still be relatively important for the
spillover mechanism, if other nearby places feature connections that are even worse.

25Cells that have a connectivity which is exactly equal to the median are classified as highly connected.
If all cells within a neighborhood have a connectivity index of zero, these are defined as low connections.
The robustness section 5.1 provides estimates using the local mean instead.
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Table 3: Road Heterogeneity

Dependent Variable: ∆ ln(lightst)
wind precip. cold

PANEL A: Connectivity Above and Below Median
eventt −0.0025*** −0.0277*** −0.0432***

(0.0009) (0.0069) (0.0141)
Chigh �W r · eventt −0.0051 0.0074*** 0.0213***

(0.0088) (0.0015) (0.0028)
C low �W r · eventt 0.0141 0.0012 0.0102***

(0.0087) (0.0015) (0.0029)

PANEL B: Connectivity Thirtiles
eventt −0.0015* −0.0266*** −0.0350**

(0.0009) (0.0069) (0.0145)
Chigh �W r · eventt −0.0017 0.0057*** 0.0113***

(0.0089) (0.0015) (0.0031)
Cmedium �W r · eventt −0.0072 0.0031** 0.0130***

(0.0090) (0.0015) (0.0032)
C low �W r · eventt −0.0018 0.0005 0.0086***

(0.0090) (0.0015) (0.0030)

Observations 507,864 502,026 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are
SDEM and are estimated by Maximum Likelihood. Standard errors in parentheses. Cell
and year fixed effects, and first temporal lags of weather events included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages
over 12 subsequent monthly observations. Ci�W r · eventt terms represent corresponding
z-scores. Full results are shown in Tables A2 and A3 in the Appendix.

location due to cold waves are weakest for low connected cells, but of similar magnitude
for cells with a high and middle connectivity.26

5. Robustness Analysis

This section performs a number of robustness checks. First, we alter the splitting criterion
to assess the connection of cells. Second, we use the length of the single shortest path.
Finally, we remove observations with insufficient local neighbors.

5.1. The Local Mean as Splitting Criterion

In the baseline, we use the median connectivity within the local neighborhood as a cutoff
criterion to separate the top half of neighboring observations from the bottom half. This

26While the point estimate is larger for units with a medium compared to high connectivity, the
difference is not statistically significant. See Wald Chi-Squared tests in Table A5.
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has the advantage that both neighboring groups are approximately equal in size. To check
whether results are sensitive to the definition of this reference criterion, we replace the
local median by the local arithmetic mean. Table 4 Panel A shows that all estimates
remain qualitatively similar to previous findings. Consequently, estimates are robust to
the exact definition of the connectivity cutoff criterion.

5.2. The Shortest Connection

The baseline indicator accounts for both distance and the number of connections. We
reconsider this choice and use only the distance along the single shortest route. This
potentially affects the position of a cell within the local connectivity distribution and
may thus result in different binning outcomes. Table 4, Panel B and Panel C show that
estimates remain qualitatively similar. In Panel B, magnitudes on weather events show
slightly higher point estimates for transmissions from highly connected cells and smaller
effects for lowly connected neighbors. Hence, the importance of above-median relative to
below-median connections increases if only the shortest route is considered, i.e., distance
is more important than the number of connections. If we distinguish three categories in
Panel C, we find some significant differences for precipitation events. Relocation effects
from intermediately connected cells lose statistical significance, attributing all spillovers
to highly connected neighbors. For cold waves, the highest connected neighbors now show
the strongest effects. Again, results suggest that distance between economic units is more
important than the number of roads connecting the cells.

5.3. Exclude Observations With Less Than Three Neighbors

Further, we explore how the distance and the number of road connections between cells
affect the relocation of economic activity due to severe weather by excluding observations
with less than three neighboring cells. As our approach requires the construction of
multiple bins along the local distribution of road connectivity, the number of adjacent
cells matters. If a cell has only one neighbor and this neighbor has a connectivity of zero,
then it will always fall into the low connectivity group, while the group of highly connected
cells is zero.27 Hence, the sample includes observations for which some groups are zero by
construction, simply because there are no reference cells. To assess whether this feature
entails identification issues, we drop all observations with less than three neighbors from

27Assume that the same neighbor has a non-zero connectivity, the splitting criterion along the local
median will put it into the highly connected category instead.
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the sample.28 These observations account for about 10% of the sample. Table 4 Panel D
provides estimates for groups split along the median, Panel E distinguishes three groups
(high, medium and low). Findings are qualitatively robust. Hence, the inclusion of cells
with a very small number of neighbors does not substantially affect our results.29

6. Conclusion

This paper studies how the economic effects of severe weather transmit between locations.
We are particularly interested in the role of the interconnection of random small economic
units. We ask how the spillover of economic activity is affected by international borders
and by available road infrastructure. To answer this question, we combine grid-cell level
data on the physical intensity of weather and remotely-sensed night-light emissions – a
proxy for local economic activity – with global geographic information on national borders
and major road networks. As the connectivity of economic units is a multi-layer concept,
we first explore how a disruption of connectivity through an international border limits
local spillovers in the case of extreme weather. Country boundaries constitute frictions to
the diversion of goods, information, financial flows, and people and are expected to contain
the economic effects of weather events within regions. Second, we use the transportation
system as a proxy for overall connectivity to explore whether infrastructure promotes
the relocation of economic activity across small economic units with extreme weather.
As spillovers from weather events are likely to be driven by the degree of connectivity
between locations, we expect that available roads strengthen relocation effects.
Our findings support that severe weather generally hampers the growth of local eco-

nomic activity. Results suggest that the connectivity of cells is a main driver of economic
relocation from weather events. For national borders, we find increased localization and
a fragmentation of production across countries. Domestic cells are, on average, the ex-
clusive sources of diversion for wind and precipitation events. For cold waves, domestic
relocation shows 1.5 times stronger effects than foreign cells. Hence, economic diversion
in the case of extreme weather happens mostly (if not exclusively) through substitution
effects to domestic neighbors. This supports that domestic linkages are generally more
efficient and resilient, while international connectivity is subject to higher costs, lower
speed, and higher uncertainty. Further, we explore the impact of the existence of road

28This removes cells for small islands or otherwise remote locations, which are more likely to appear
in less developed countries, see Figure 1.

29Appendix Tables A8 and A9 provide additional estimates for a sample excluding observations with
less than two neighbors. Results are robust.
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infrastructure, as connectivity along major transport routes potentially eases travel time
and reduces transport costs. Results indicate that the availability of at least one major
road exclusively drives the diversion of economic activity for extreme precipitation events.
For cold waves, economic relocation effects are 3.5 times as strong for connected compared
to unconnected neighboring cells. Finally, with more available infrastructure, economic
ties between locations are likely to be more tight and routing of economic exchange can
be diverted more easily if a connection is blocked or congested. For precipitation and cold
events, estimates confirm that relocation across highly connected neighbors are stronger
than transactions across worse and thus more costly connections.
Overall, our findings suggest that international borders contain economic relocation

activity due to weather events within the local domestic neighborhood. Then again, the
existence of major road infrastructure between locations is key to economic relocation of
goods or people under extreme weather. Without a transport network, spillovers between
local economic units do, on average, not exist or are at least very limited and much more
costly to implement. Yet, the ability to divert economic activity helps to mitigate the
effects of extreme weather events and build resilience against potential future events.
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Table 4: Robustness

Dependent Variable: ∆ ln(lightst)
wind precip. cold

PANEL A: Connectivity along Local Mean
eventt −0.0025*** −0.0276*** −0.0471***

(0.0009) (0.0069) (0.0143)
Chigh �W r · eventt −0.0056 0.0069*** 0.0201***

(0.0090) (0.0015) (0.0029)
C low �W r · eventt 0.0145 0.0020 0.0143***

(0.0089) (0.0015) (0.0030)

PANEL B: Shortest Road Connection (Median)
eventt −0.0025*** −0.0280*** −0.0410***

(0.0009) (0.0069) (0.0141)
Chigh �W r · eventt −0.0039 0.0082*** 0.0221***

(0.0090) (0.0015) (0.0029)
C low �W r · eventt 0.0128 0.0006 0.0091***

(0.0088) (0.0015) (0.0029)

PANEL C: Shortest Road Connection (Thirtiles)
eventt −0.0016* −0.0275*** −0.0355**

(0.0009) (0.0070) (0.0144)
Chigh �W r · eventt −0.0060 0.0064*** 0.0150***

(0.0104) (0.0017) (0.0036)
Cmedium �W r · eventt 0.0006 0.0021 0.0082**

(0.0105) (0.0017) (0.0038)
C low �W r · eventt −0.0015 0.0006 0.0085***

(0.0090) (0.0015) (0.0030)

PANEL D: Exclude Cells with <3 Neighbors (Median)
eventt −0.0025** −0.0211*** −0.0738***

(0.0011) (0.0080) (0.0184)
Chigh �W r · eventt −0.0078 0.0060*** 0.0241***

(0.0089) (0.0015) (0.0030)
C low �W r · eventt 0.0099 0.0006 0.0134***

(0.0088) (0.0016) (0.0030)

PANEL E: Exclude Cells with <3 Neighbors (Thirtiles)
eventt −0.0009 −0.0211*** −0.0583***

(0.0011) (0.0080) (0.0189)
Chigh �W r · eventt −0.0071 0.0045*** 0.0121***

(0.0087) (0.0015) (0.0031)
Cmedium �W r · eventt −0.0095 0.0029* 0.0155***

(0.0088) (0.0015) (0.0032)
C low �W r · eventt −0.0085 0.0002 0.0110***

(0.0093) (0.0016) (0.0033)

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All
specifications are SDEM and are estimated by Maximum Likelihood.
Standard errors in parentheses. Cell and year fixed effects, and first
temporal lags of weather events included but not reported. Spatial ra-
dius is r=80 km. Yearly disaster intensities reflect time-weighted rolling
averages over 12 subsequent monthly observations. Full results are shown
in Tables A6 and A7 in the Appendix.
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A. Appendix

Table A1: Summary Statistics

statistic n mean st. dev. min max

∆ ln(lights) 507,864 0.045 0.392 −8.246 8.217
ln(lights) 507,864 0.264 1.724 −7.090 4.142
ln(popt) 507,864 10.639 2.165 −14.390 16.822

Physical Intensities
storm 507,864 20.766 4.486 5.478 46.528
precip. 502,026 0.385 0.151 0.000 1.697
cold 506,037 0.412 0.089 0.000 1.271

Roads Connectivity Index (cross-section)
bilat. connectivity (3 routes) 169,626 0.326 0.230 0.000 0.913
mean connectivity (3 routes) 24,184 0.301 0.233 0.000 0.873
bilat. connectivity (1 route) 169,626 0.526 0.357 0.000 0.916
mean connectivity (1 route) 24,184 0.501 0.293 0.000 0.914

Note: Physical intensities represent time-weighted rolling averages over 12 subsequent
months. Time-constant connectivity measures are reported for one year. 21 yearly
periods included in the data.

Figure A1: Connectivity vs. Activity
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Note: Plotted lights growth represent absolute growth values in 2013.
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Table A2: Roads Connectivity Above And Below Median

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0025*** −0.0277*** −0.0432***
(0.0009) (0.0069) (0.0141)

Chigh �W r · eventt −0.0051 0.0074*** 0.0213***
(0.0088) (0.0015) (0.0028)

C low �W r · eventt 0.0141 0.0012 0.0102***
(0.0087) (0.0015) (0.0029)

ln(popt) 0.0249*** 0.0258*** 0.0244***
(0.0013) (0.0013) (0.0013)

W r · ln(pop)t 0.0109*** 0.0113*** 0.0106***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4380***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level.
All specifications are SDEM and are estimated by Maximum Like-
lihood. Standard errors in parentheses. Cell and year fixed effects,
and first temporal lags of weather events included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-
weighted rolling averages over 12 subsequent monthly observations.
Ci �W r · eventt terms represent corresponding z-scores.
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Table A3: Roads Connectivity Thirtiles

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0015* −0.0266*** −0.0350**
(0.0009) (0.0069) (0.0145)

Chigh �W r · eventt −0.0017 0.0057*** 0.0113***
(0.0089) (0.0015) (0.0031)

Cmiddle �W r · eventt −0.0072 0.0031** 0.0130***
(0.0090) (0.0015) (0.0032)

C low �W r · eventt −0.0018 0.0005 0.0086***
(0.0090) (0.0015) (0.0030)

ln(popt) 0.0249*** 0.0258*** 0.0244***
(0.0013) (0.0013) (0.0013)

W r · ln(pop)t 0.0109*** 0.0113*** 0.0106***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4380***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All
specifications are SDEM and are estimated by Maximum Likelihood.
Standard errors in parentheses. Cell and year fixed effects, and first
temporal lags of weather events included but not reported. Spatial
radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations. Ci �W r ·
eventt terms represent corresponding z-scores.

Table A4: Wald Chi-Squared Tests: Road Heterogeneity (Two Groups)

H0: Spillover from Chigh = Spillover from C low

wind precip. cold

χ2 3.4094 12.0510 10.6170
Pr(> χ2) 0.06483* 0.0005*** 0.0011***

Note: ***, **, * denote significance at the 1%, 5% and 10%
level. Tests based on regressions presented in Panel A of Table
3.
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Table A5: Wald Chi-Squared Tests: Road Heterogeneity (Three Groups)

wind precip. cold

H0: Spillover from Chigh = Spillover from C low

χ2 0.0000 7.7980 0.5153
Pr(> χ2) 0.9955 0.0052*** 0.4728

H0: Spillover from Chigh = Spillover from Cmedium

χ2 0.1437 1.0921 0.1056
Pr(> χ2) 0.7046 0.2960 0.7452

H0: Spillover from Cmedium = Spillover from C low

χ2 0.2350 1.7678 1.3112
Pr(> χ2) 0.6278 0.1836 0.2522

Note: ***, **, * denote significance at the 1%, 5% and 10% level.
Tests based on regressions presented in Panel B of Table 3.
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Table A6: Leaving Out Cells With Less Than Three Neighbors (2 Groups)

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0025** −0.0211*** −0.0738***
(0.0011) (0.0080) (0.0184)

Chigh �W r · eventt −0.0078 0.0060*** 0.0241***
(0.0089) (0.0015) (0.0030)

C low �W r · eventt 0.0099 0.0006 0.0134***
(0.0088) (0.0016) (0.0030)

ln(popt) 0.0198*** 0.0213*** 0.0195***
(0.0015) (0.0015) (0.0015)

W r · ln(pop)t 0.0097*** 0.0103*** 0.0096***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4431*** −0.4415*** −0.4424***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 459,669 453,831 457,947

Note: ***, **, * denote significance at the 1%, 5% and 10% level.
All specifications are SDEM and are estimated by Maximum Like-
lihood. Standard errors in parentheses. Cell and year fixed effects,
and first temporal lags of weather events included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-
weighted rolling averages over 12 subsequent monthly observations.
Ci �W r · eventt terms represent corresponding z-scores.
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Table A7: Leaving Out Cells With Less Than Three Neighbors (3 Groups)

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0009 −0.0211*** −0.0583***
(0.0011) (0.0080) (0.0189)

Chigh �W r · eventt −0.0071 0.0045*** 0.0121***
(0.0087) (0.0015) (0.0031)

Cmedium �W r · eventt −0.0095 0.0029* 0.0155***
(0.0088) (0.0015) (0.0032)

C low �W r · eventt −0.0085 0.0002 0.0110***
(0.0093) (0.0016) (0.0033)

ln(popt) 0.0198*** 0.0213*** 0.0196***
(0.0015) (0.0015) (0.0015)

W r · ln(pop)t 0.0097*** 0.0103*** 0.0096***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4431*** −0.4415*** −0.4424***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 459,669 453,831 457,947

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All
specifications are SDEM and are estimated by Maximum Likelihood.
Standard errors in parentheses. Cell and year fixed effects, and first
temporal lags of weather events included but not reported. Spatial
radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations. Ci �W r ·
eventt terms represent corresponding z-scores.
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Table A8: Leaving Out Cells With Less Than Two Neighbors (2 Groups)

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0023** −0.0256*** −0.0753***
(0.0010) (0.0075) (0.0161)

Chigh �W r · eventt −0.0079 0.0070*** 0.0246***
(0.0089) (0.0015) (0.0029)

C low �W r · eventt 0.0116 0.0009 0.0145***
(0.0088) (0.0015) (0.0030)

ln(popt) 0.0248*** 0.0257*** 0.0242***
(0.0014) (0.0014) (0.0014)

W r · ln(pop)t 0.0105*** 0.0110*** 0.0104***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4418*** −0.4401*** −0.4414***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 488,670 482,790 486,990

Note: ***, **, * denote significance at the 1%, 5% and 10% level.
All specifications are SDEM and are estimated by Maximum Like-
lihood. Standard errors in parentheses. Cell and year fixed effects,
and first temporal lags of weather events included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-
weighted rolling averages over 12 subsequent monthly observations.
Ci �W r · eventt terms represent corresponding z-scores.
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Table A9: Leaving Out Cells With Less Than Two Neighbors (3 Groups)

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0010 −0.0255*** −0.0638***
(0.0010) (0.0075) (0.0165)

Chigh �W r · eventt −0.0058 0.0059*** 0.0134***
(0.0088) (0.0015) (0.0031)

Cmedium �W r · eventt −0.0086 0.0026* 0.0151***
(0.0089) (0.0015) (0.0032)

C low �W r · eventt −0.0056 0.0005 0.0125***
(0.0092) (0.0015) (0.0032)

ln(popt) 0.0248*** 0.0257*** 0.0243***
(0.0014) (0.0014) (0.0014)

W r · ln(pop)t 0.0105*** 0.0110*** 0.0104***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4418*** −0.4401*** −0.4413***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 488,670 482,790 486,990

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All
specifications are SDEM and are estimated by Maximum Likelihood.
Standard errors in parentheses. Cell and year fixed effects, and first
temporal lags of weather events included but not reported. Spatial
radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations. Ci �W r ·
eventt terms represent corresponding z-scores.
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Table A10: Consider Only Shortest Connection (2 Groups)

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0025*** −0.0280*** −0.0410***
(0.0009) (0.0069) (0.0141)

Chigh �W r · eventt −0.0039 0.0082*** 0.0221***
(0.0090) (0.0015) (0.0029)

C low �W r · eventt 0.0128 0.0006 0.0091***
(0.0088) (0.0015) (0.0029)

ln(popt) 0.0249*** 0.0258*** 0.0244***
(0.0013) (0.0013) (0.0013)

W r · ln(pop)t 0.0109*** 0.0113*** 0.0106***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4380***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level.
All specifications are SDEM and are estimated by Maximum Like-
lihood. Standard errors in parentheses. Cell and year fixed effects,
and first temporal lags of weather events included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-
weighted rolling averages over 12 subsequent monthly observations.
Ci �W r · eventt terms represent corresponding z-scores.
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Table A11: Consider Only Shortest Connection (3 Groups)

Dependent Variable: ∆ ln(lightst)
wind precip. cold

eventt −0.0016* −0.0275*** −0.0355**
(0.0009) (0.0070) (0.0144)

Chigh �W r · eventt −0.0060 0.0064*** 0.0150***
(0.0104) (0.0017) (0.0036)

Cmedium �W r · eventt 0.0006 0.0021 0.0082**
(0.0105) (0.0017) (0.0038)

C low �W r · eventt −0.0015 0.0006 0.0085***
(0.0090) (0.0015) (0.0030)

ln(popt) 0.0249*** 0.0258*** 0.0244***
(0.0013) (0.0013) (0.0013)

W r · ln(pop)t 0.0109*** 0.0113*** 0.0106***
(0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4367*** −0.4380***
(0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0672***
(0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All
specifications are SDEM and are estimated by Maximum Likelihood.
Standard errors in parentheses. Cell and year fixed effects, and first
temporal lags of weather events included but not reported. Spatial
radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations. Ci �W r ·
eventt terms represent corresponding z-scores.
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