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Abstract 
 
In this paper we use the property that certainty equivalence, as implied by a first-order 
approximation to the solution of stochastic discrete-time models, breaks in its equivalent 
continuous-time version. We study the extent to which a first-order approximated solution built 
by perturbation methods accounts for risk. We show that risk matters economically in a real 
business cycle (RBC) model with habit formation and capital adjustment costs and that 
neglecting risk leads to substantial pricing errors. A first-order approximation in continuous time 
reduces pricing errors by 90 percent relative to the certainty equivalent linear solution. 
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1 Introduction

There is a consensus among economists that uncertainty affects the consumption-saving

decision of individuals. Neglecting the effects of risk in macroeconomics and finance often

generates substantial pricing errors. Hence, recent research is concerned with the ability

of local approximations of non-linear stochastic macroeconomic models to account for

risk, with a particular focus on perturbation methods originally introduced in economics

by Judd and Guu (1993). Although perturbation-based methods only provide local pre-

cision around a particular point, usually the model’s deterministic steady state, many

authors suggest that they can generate high levels of accuracy, comparable to that deliv-

ered by global approximation techniques, as the order of the approximation is increased

(see Judd, 1998; Aruoba et al., 2006; Caldara et al., 2012; Parra-Alvarez, 2018). In many

applications, however, we are interested in the first-order perturbation and the resulting

linear approximation of the equilibrium conditions.

A known limitation of the first-order perturbation around the deterministic steady

state is that the approximate solution in discrete time typically exhibits certainty equiv-

alence (see Simon, 1956; Theil, 1957). In other words, the first-order approximation to

the solution of stochastic economic models with forward-looking agents is identical to

the solution of the same model under perfect foresight. The direct implication is that

the solution becomes invariant to higher-order moments of the underlying shocks. An

open question this paper studies relates to the costs of neglecting the effects of risk.

In particular, what errors do we make when not accounting properly for risk in linear

approximations? How can we interpret these errors in an economically meaningful way?

Certainty equivalence prevails in the classical linear-quadratic optimal control prob-

lem, popularized in economics by Kydland and Prescott (1982) and Anderson et al.

(1996). In the early 1950s the introduction of certainty equivalent stochastic control

problems with quadratic utility and linear constraints aimed at providing a practical so-

lution for decision problems under uncertainty. Even today, if risk is negligible for the

research question at hand, certainty equivalent solutions are still useful. In this case,

one may conclude that “certainty equivalence is a virtue” (see Kimball, 1990a). Con-

versely, when there is a reason to believe that the effects of uncertainty are important,

one notices that “certainty equivalence is a vice”. Put differently, if risk matters, breaking

certainty equivalence is desired in order to account for the effects of risk. As discussed

in Fernandez-Villaverde et al. (2016), the approximated solution of the model under cer-

tainty equivalence (i) makes it difficult to talk about the welfare effects of uncertainty; (ii)

cannot generate any risk premia for assets; and (iii) prevents analyzing the consequences

of changes in volatility.

To break the property of certainty equivalence in the class of perturbation meth-

ods, economists have restored to the computation of higher-order Taylor expansions, the
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underlying apparatus behind any perturbation method, which translate into non-linear

approximations of the model’s solution. Originally proposed in Judd and Guu (1993),

higher-order approximations became popular with the work of Schmitt-Grohe and Uribe

(2004) for second-order approximations, Andreasen (2012) and Ruge-Murcia (2012) for

third-order approximations, and Levintal (2017) for fifth-order approximations. How-

ever, the use of high-order approximations for medium-scale macroeconomic models (i)

is computationally expensive, (ii) often results in explosive solutions, and (iii) requires

computationally demanding non-linear estimation methods, such as the particle filter, for

the estimation of the model’s structural parameters.

In contrast to stochastic discrete-time models, certainty equivalence breaks in the

first-order perturbation when time is assumed to be continuous. This result, originally

mentioned in Judd (1996) and Gaspar and Judd (1997), allows us to account for risk in

a linear world. In discrete time the approximation is built inside the system of expec-

tational equations that summarize the equilibrium of the economy, while in continuous

time it is possible to compute those expectations with the use of stochastic calculus (Itô’s

lemma) before building the perturbation-based approximation.

In this paper we revisit the ability of a first-order approximation to capture the ef-

fects of risk. Using as a benchmark an RBC model with habit formation and capital

adjustment costs á la Jermann (1998), we compare how the effects of uncertainty are

internalized by perturbations built around the model’s deterministic steady state relative

to a more accurate solution obtained by projection methods. First, we build approxi-

mated solutions to the continuous-time model and show that the certainty equivalence

property already breaks in the first order such that the obtained linear approximation

is risk-sensitive. We then calibrate the parameters of the model to values that are stan-

dard in the literature and compare, along different dimensions, the first-order certainty

equivalent (CE) solution to the first- and second-order approximations obtained from

perturbation. We show that each of the approximations converges to different long-run

equilibria or fixed points in the absence of shocks. While the first-order CE converges to

the deterministic steady state, risk-adjusted solutions converge to their respective risky

steady states. This property is reflected in the policy and impulse response functions.

We find that the risk effects captured by the first-order approximation in continuous

time are economically significant. When relying on the linear CE solution the pricing

errors are about 1 dollar for each 100 dollar spent. The risk-adjustment of the first-order

approximation leads to errors of about 10 cents for each 100 dollar spent, reducing pric-

ing errors by about 90%. In the second-order approximation, pricing errors fall further

to about 3 cents. We also find that the continuous-time first-order approximation is

especially useful in situations in which risk matters but nonlinearities are negligible. In

general, its main advantage is that it avoids the above-mentioned shortcomings associated

with CE on the one hand and with non-linear models on the other hand.
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Our work relates to that of Collard and Juillard (2001), Coeurdacier et al. (2011),

de Groot (2013), Meyer-Gohde (2015) and Lopez et al. (2018), who compute first-order

approximations around the model’s risky steady state instead of the deterministic steady

state in order to break certainty equivalence in discrete-time models. Collard and Juil-

lard (2001) consider a bias reduction procedure to compute the approximation around the

risky steady state; Coeurdacier et al. (2011), whose approach is generalized by de Groot

(2013), approximate the risky steady state based on the second-order solution. Meyer-

Gohde (2015) constructs a risk-sensitive linear approximation using policy functions re-

sulting from higher-order perturbations. Lopez et al. (2018) differ from the previous

studies as they consider lognormal affine approximations, often used in macro-finance,

which are shown to be a special case of a first-order perturbation around the risky steady

state. We argue that it is possible to account for risk in an economically meaningful way

using standard first-order (linear) perturbations around the deterministic steady state

when time evolves continuously.

The rest of the paper is organized as follows. In Section 2, we introduce our model

and define the equilibrium conditions used in the perturbation method to approximate

the solution. Section 3 summarizes the perturbation approach and revisits the property

of certainty equivalence in linear models. Section 4 derives the pricing implications of the

approximated solution and introduces a pricing error measure that can be used to evalu-

ate the accuracy of the approximation. Section 5 discusses the main results by comparing

policy functions, impulse-response functions, and pricing errors for different degrees of

approximation. Finally, Section 6 concludes.

2 A prototype RBC model

For illustration, we use a continuous-time version of the real business cycle model (RBC)

introduced in Jermann (1998) with some minor modifications. There is a single good

in the economy that is produced using a constant-returns-to-scale production technol-

ogy that is subject to random shocks in productivity. Changes in the economy’s ag-

gregate capital stock are subject to adjustment costs, and the household preferences

exhibit intertemporal non-separabilities due to internal habit formation in consumption.

A discrete-time version of the model can be found in accompanying web appendix.

Preferences. The economy is inhabited by a large number of identical households that

maximize their expected discounted lifetime utility from consumption, Ct,

U0 ≡ E0

[ˆ ∞
0

e−ρtu (Ct, Xt) dt

]
, (1)

where E0 [·] is the expectation operator conditional on the information available at time

t = 0, ρ ≥ 0 is the household’s subjective discount rate, and u is the instantaneous utility
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function. For simplicity we assume that

u (C,X) =
(C −X)1−γ

1− γ
, (2)

where γ measures the curvature of the utility function (together with the consumption

surplus ratio) so, ceteris paribus, a higher value of γ yields higher risk aversion. In what

follows, we assume that the consumption choice is non-negative, Ct ≥ 0, and does not fall

below a subsistence level of consumption, Ct ≥ Xt, where Xt denotes habits in consump-

tion. Hence, the instantaneous utility in (1) is said to exhibit adjacent complementarity

in consumption (see Ryder and Heal, 1973), where an increase in consumption today

increases the marginal utility of consumption at adjacent dates relative to the marginal

utility of consumption at distant ones. The habit level in consumption is defined endoge-

nously (internal habit) in the model, in contrast to the relative consumption model or

‘catching up with the Joneses’ (external habit), where the habit is aggregate consumption

and thus exogenous to the households. In particular, the habit process is given by

Xt = e−atX0 + b

ˆ t

0

ea(s−t)Csds, X0 ≥ 0,

or equivalently,

dXt = (bCt − aXt)dt. (3)

Hence, Xt is a weighted sum of past consumption, with weights declining exponentially

into the past. The larger is b, the less weight is given to past consumption in determining

Xt and vice versa. The special case b = X0 = 0 corresponds to the case of time-separable

utility with constant relative risk aversion (see Constantinides, 1990). The parameter a

measures the degree of persistence in the habit stock.

Technology. The one good in the economy is produced according to a Cobb-Douglas

production function

Yt = exp(At)K
α
t L

1−α
t , 0 < α < 1, (4)

where Kt is the aggregate capital stock, Lt is the perfectly inelastic labor supply (normal-

ized to one for all t ≥ 0), and At is a stochastic process representing random total factor

productivity (TFP). The aggregate capital stock in the economy increases if effective

investment exceeds depreciation

dKt = (Φ(It/Kt)− δ)Ktdt, K0 > 0, (5)

where δ ≥ 0 is the depreciation rate, and It is aggregate investment. Following Jermann

(1998), the capital adjustment cost function is defined by
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Φ(It/Kt) =
a1

1− 1/ξ
(It/Kt)

1−1/ξ + a2, (6)

where ξ > 0 denotes the elasticity of the investment-to-capital ratio with respect to

Tobin’s q, and a1 ≥ 0 and a2 ≥ 0 are parameters. In line with Boldrin et al. (2001), we

set a1 = δ1/ξ and a2 = δ/(1 − ξ) such that the steady state is invariant to ξ, and hence

the long-run investment-to-capital ratio equals the deprecation rate1. On the other hand,

TFP is assumed to follow an Ornstein-Uhlenbeck process with mean reversion ρA > 0

and variance σA > 0

dAt = −ρAAtdt+ σAdBA,t, (7)

where BA,t is a standard Brownian motion. In equilibrium, the economy satisfies the

aggregate resource constraint

Yt = Ct + It. (8)

Optimality conditions. Consider the problem faced by a social planner who has to

choose the path for consumption that maximizes (1) subject to the dynamic constraints

(3), (5), and (7), and the static constraints (4), (6), and (8)

V (K0, X0, A0) = max
{Ct≥Xt∈R+}∞t=0

U0 s.t. (3)− (8), (9)

in which Ct is the control variable at time t ∈ R+, and V (K0, X0, A0) ≡ V0 is the value

of the optimal plan (value function) from the perspective of time t = 0, i.e., when the

state of the economy is described by the time t = 0 values for the capital stock, K0, the

stock of habits, X0, and the total factor productivity, A0.

As shown in Appendix A, for any t ∈ [0,∞), a necessary condition for optimality is

given by the Hamilton-Jacobi-Bellman (HJB) equation

0 = max
C≥X∈R+

{
(C −X)1−γ

1− γ
+ (Φ((exp(A)Kα − C)/K)K − δK)VK

+ (bC − aX)VX − ρAAVA + 1
2
σ2
AVAA − ρV

}
, (10)

where VK ≡ ∂V (K,X,A)/∂K, VX ≡ ∂V (K,X,A)/∂X and VA ≡ V (K,X,A)/∂A, and

VAA ≡ ∂2V (K,X,A)/∂A2 denote, respectively, the first-order partial derivatives and the

second-order partial derivative of the value function with respect to the states of the

economy2. The first order condition for any interior solution reads

1Given this parameterization it can be shown that in the steady state: Φ(Ī/K̄) = Φ(δ) = δ, Φ′(Ī/K̄) =
Φ′(δ) = 1, and Φ′′(Ī/K̄) = Φ′′(δ) = −1/(ξδ), i.e. the slope of Φ′ depends negatively on ξ and δ.

2A formal introduction and derivation of the dynamic programming equation for continuous-time
problems can be found in Chang (2009). In what follows, we omit the use of the time index given the
recursive structure of the HJB equation.
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(C −X)−γ + bVX = Φ′
(

exp(A)Kα − C
K

)
VK , (11)

making optimal consumption an implicit function of the state variables, C? = C(K,X,A).

The function C (·) maps every possible values of the states of the economy at time t into

the optimal consumption at time t. The maximized HJB equation reads

0 =
(C(K,X,A)−X)1−γ

1− γ
+ (Φ((exp(A)Kα − C(K,X,A))/K)K − δK)VK

+ (bC(K,X,A)− aX)VX − ρAAVA + 1
2
σ2
AVAA − ρV, (12)

which together with the first order condition (11) determine the unknown functions

V (K,X,A) and C(K,X,A) that define the equilibrium in the economy.

Equilibrium dynamics. A solution to the continuum of problems formed by (11) and

(12) can be characterized in the time-space domain by a sequence {VK,t, VX,t, Kt, Xt, At}∞t=0

that solves the boundary value problem (with appropriate transversality conditions) char-

acterized by the system of equilibrium stochastic differential equations (SDEs)

dVK,t = (ρ− Φ((exp(At)K
α
t − Ct)/Kt)− Φ′((exp(At)K

α
t − Ct)/Kt)

×[(α− 1) exp(At)K
α−1
t + Ct/Kt] + δ)VK,tdt+ VKA,tσAdBA,t (13)

dVX,t = ((ρ+ a)VX,t + (Ct −Xt)
−γ)dt+ VXA,tσAdBA,t (14)

dKt = (Φ ((exp(At)K
α
t − Ct) /Kt)Kt − δKt) dt (15)

dXt = (bCt − aXt)dt (16)

dAt = −ρAAtdt+ σAdBA,t, (17)

together with initial conditions K (0) = K0, X (0) = X0, and A (0) = A0 and where Ct

solves the non-linear algebraic equation in (11).

Alternatively, we may eliminate time and shocks from the system of equilibrium SDEs

in (13)-(17) and define the solution to the optimal control problem in the state-space

domain as the triple {VK (K,X,A) , VX (K,X,A) , C (K,X,A)} for admissible values of

the state space (K,X,A) that solves the system of partial differential equations (PDEs)

0 = (ρ− Φ((exp(A)Kα − C)/K)− Φ′((exp(A)Kα − C)/K)((α− 1) exp(A)Kα−1

+C/K) + δ)VK − (Φ((exp(A)Kα − C)/K)K − δK)VKK

−(bC − aX)VXK + ρAAVAK − 1
2
σ2
AVAAK (18)

0 = (ρ+ a)VX + (C −X)−γ − (Φ((exp(A)Kα − C)/K)K − δK)VKX

−(bC − aX)VXX + ρAAVAX − 1
2
σ2
AVAAX (19)

0 = (C −X)−γ + bVX − Φ′((exp(A)Kα − C)/K)VK . (20)
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A complete derivation of both the equilibrium system of SDEs in the time-space domain,

and its PDE representation in the state-space domain can be found in Appendix A.

Deterministic steady state. In the absence of uncertainty (i.e. σA = 0), the economy

converges over time to a fixed point or steady-state equilibrium in which all variables

are idle. Given the assumptions on the capital adjustment cost function in (6), the

deterministic steady state of the model is fully characterized by

A = 0 (21)

K = [α/(ρ+ δ)]
1

1−α (22)

C = K
α − δK (23)

X = (b/a)C (24)

V X = −[1/(ρ+ a)]
(
C −X

)−γ
(25)

V K = [1− b/(ρ+ a)]
(
C −X

)−γ
, (26)

where V X and V K are the deterministic steady state values of the costate variables for

the capital stock and the habit formation. For a detailed derivation of the model’s de-

terministic steady state see Appendix A.

3 Approximate solution

Most dynamic economic models do not admit an analytical solution, so it usually has

to be approximated using numerical methods (see Fernandez-Villaverde et al., 2006).

Perturbation methods are fast and reliable, and provide an approximate solution to the

stochastic optimal control problem in (9) based on the implicit function theorem and the

Taylor’s series expansion theorem. The perturbed solution consists of a polynomial that

approximates the true solution of the problem locally in a neighborhood of an a priori

known solution. In what follows, we build the perturbation solution to the equilibrium

system of PDEs in (18)-(20) around the deterministic steady state given by (21)-(26).

Let η > 0 denote a perturbation parameter that rescales the amount of uncertainty in

the economy. In our prototype model, η controls the absolute magnitude of the variance

of the shocks to TFP (see Judd, 1996; Gaspar and Judd, 1997; Fernandez-Villaverde

et al., 2016). Therefore, the exogenous stochastic processes (7) may be rewritten as

dAt = −ρAAtdt+
√
ησ2

AdBA,t,

where the case η = 0 makes the model deterministic, and η = 1 recovers the true TFP

process in (7)3. Following Judd (1998), the perturbation method can be summarized as

3Note that alternative definitions of the perturbation parameter can be found in the literature (cf.
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follows:

1. Express the problem of interest as a continuum of problems parameterized by the

added perturbation parameter η, with the η = 0 case known.

2. Differentiate the continuum of problems with respect to the state variables and the

perturbation parameter η.

3. Solve the resulting equation for the implicitly defined derivatives at the known

solution of the state variables and η = 0.

4. Compute the desired order of approximation by means of Taylor’s theorem. Set

η = 1 to recover the approximation to the original model.

In what follows, we introduce a general framework for the perturbation method for

continuous-time models. We then provide an illustrative example of the method by using

a simplified version of our prototype model4. Subsequently, we explain why the property

of certainty equivalence that usually results from any first-order perturbation approxima-

tion to discrete-time models breaks in continuous-time models. Finally, we introduce the

notion of the risky steady state, which will become relevant for understanding transition

paths from the model.

3.1 Solving the model: A general framework

In continuous time, the general equilibrium can be represented by the functional equation

H (y,yx,yxx,x; η) = 0, (27)

where y denotes the vector of control variables (or costates), yx and yxx the matrices

of first- and second-order partial derivatives of the control variables with respect to the

vector of state variables x, η is the perturbation parameter, and H is a functional oper-

ator collecting the model’s equilibrium conditions. The state vector x evolves over time

according to the controlled stochastic differential equation

dxt = f (xt,yt) dt+
√
ηG (xt) dBt, (28)

where f (·) is the drift vector, G (·) is a diffusion matrix, potentially dependent on the

current value of the state vector, and Bt is the vector of exogenous shocks.

A solution to the functional equation in (27) takes the form

y = g (x; η) , (29)

Kogan and Uppal, 2001; Chacko and Viceira, 2005; Hansen et al., 2008).
4A summary of the perturbation method for discrete-time models can be found in the accompanying

web appendix and the references therein.
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where g (·) is a vector of policy functions that maps every possible value of x into y.

The deterministic steady state of the model in (27) is defined as the tuple (y,yx,yxx,x)

that satisfies

H (y,yx,yxx,x; 0) = 0. (30)

Accordingly, it follows that in the steady state y = g (x; 0).

A perturbation-based approximation to the solution of the problem in (27) starts

by building a k-th order Taylor series expansion of the unkown policy function g in

(29) around the deterministic steady state obtained from (30). We then substitute the

approximated policy functions into H to obtain the new operator

F (x; η) := H (g (x; η) ,gx (x; η) ,gxx (x; η) ,x; η) = 0, (31)

where gx is the matrix of first-order partial derivatives of the policy function, and gxx is

the matrix of second-order partial derivatives5.

To compute the coefficients of the approximated solution we exploit the fact that if

F (x; η) = 0 for any admissible values of x and η, then its derivatives must also be zero.

That is, Fxk,ηj (x; η) = 0, for all x ∈ x, η, k, j, where Fxk,ηj (x; η) denotes the k-th deriva-

tive of F with respect to the state variable x ∈ x, and with respect to η taken j times,

evaluated at (x; η).

Let k = 1. Then, the First-Order approximation around the deterministic steady

state to the policy functions is defined by

g(x; η) ≈ g(x; 0) + gx(x; 0)(x− x) + gη(x; 0), (32)

where gx(x; 0) corresponds to the stable solution to the quadratic matrix-equation that

results from solving Fx (x; 0) = 0 for each state variable x ∈ x. Similarly, gη(x; 0) is

computed by solving Fη (x; 0) = 0. As opposed to perturbation of discrete-time models,

this constant is not necessarily zero (see also Judd, 1996). Therefore, the First-Order

approximation includes a correction term that captures the effects of risk, i.e., is risk-

sensitive, and hence it does not exhibit certainty equivalence. By setting gη(x; 0) = 0 in

(32) we define the corresponding First-Order Certainty Equivalent (CE) approximation.

Now let k = 2. Then, the Second-Order approximation to the unknown policy function

around the deterministic steady state is defined by

5As opposed to discrete-time models, the solution to the type of continuous-time models considered
here does not require the approximation of a policy function for the next period state variables. However,
their values at a given point in time can be recovered, ex-post, by solving the corresponding (controlled)
differential equations in (28).
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g(x; η) ≈ g(x; 0) + gx(x; 0)(x− x) + gη(x; 0)

+ 1
2
gxx(x; 0)(x− x)⊗ (x− x) + gxη(x; 0)(x− x) + 1

2
gηη(x; 0) (33)

where the remaining unknown coefficients are obtained as the solution to the linear sys-

tem of equations formed by Fxixj(x; 0) = 0 for all xi, xj ∈ x, Fxiη(x; 0) = 0 for all

xi ∈ x, and Fηη(x; 0) = 0. In contrast to the discrete-time case, all the coefficients from

the Second-Order approximation are different from zero. Hence, it provides an additional

source of risk corrections beyond that already introduced through gη(x; 0). While the lat-

ter, together with gηη(x; 0), only affect the level of the policy functions, gxη(x; 0) adjusts

their slopes, introducing in this way a time-varying risk correction component already in

a second-order approximation.

3.2 An illustration: The stochastic growth model

To illustrate how the procedure described above works, consider the stochastic neoclas-

sical growth model which results from setting X0 = b = 0 and letting ξ → ∞ in the

prototype model of Section 2. The HJB equation to the planner’s problem is

ρV (K,A; η) = max
C∈R+

{
C1−γ

1− γ
+

1

dt
Et
[
dV (K,A; η)

]}

where the aggregate capital stock and TFP evolve according to:

dKt = (exp(At)K
α
t − Ct − δKt) dt, K0 > 0, (34)

dAt = −ρAAtdt+
√
ησ2

AdBA,t, A0 > 0. (35)

Using Itô’s lemma together with the properties of stochastic integrals, we can write the

HJB equation as

ρV (K,A; η) = max
C∈R+

{
C1−γ

1− γ
+ (exp(A)Kα − C − δK)VK(K,A; η)

− ρAAVA(K,A; η) + 1
2
ησ2

AVAA(K,A; η)

}
. (36)

A complete derivation can be found in Appendix B. The equilibrium of the economy can

be characterized in the time-space domain by the sequence {Ct, Kt, At}∞t=0 that solves the
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system of SDEs formed by the Euler equation for consumption

dCt
Ct

=

[
α exp(At)K

α−1
t − δ − ρ
γ

+
1

2
(1 + γ)

(
CA,t
Ct

)2

ησ2
A

]
dt+

CA,t
Ct

√
ησ2

AdBA,t, (37)

where CA,t ≡ ∂C (Kt, At; η)/∂At, together with (34) and (35). The deterministic steady-

state values of A, K, and C are given by (21), (22), and (23), respectively.

Alternatively, the equilibrium of the economy can be characterized in the state-space

domain by the PDE

(
α exp(A)Kα−1 − δ − ρ

)
C/γ + 1

2
(1 + γ)C (CA/C)2 ησ2

A

− CK (exp(A)Kα − C − δK) + CAρAA− 1
2
CAAησ

2
A = 0, (38)

which defines our functional operator H (C,CK , CA, CKK , CAA, CKA, CAK , K,A; η) = 0,

with unknown solution C = C (K,A; η). Substituting the policy function into (38) yields

the functional equation

F (K,A; η) ≡ H (C (K,A; η) , CK (K,A; η) , CA (K,A; η) , CAA (K,A; η) , K,A; η) = 0,

where we have already used the fact that in equilibrium CKK = CKA = CAK = 0 since

the capital stock is not affected directly by any exogenous shocks.

Let us first consider a first-order perturbation to the unknown policy function around

the deterministic steady state

C (K,A; η) ≈ C + CK

(
K −K

)
+ CA

(
A− A

)
+ Cηη,

where Ci = Ci
(
K,A; 0

)
denotes partial derivatives of the policy function with respect

to i = {K,A, η} evaluated at the deterministic steady state. The constants CK and CA

result from the solution to the quadratic system of equations formed by

CK = 1
2
(α exp(A)K

α−1 − δ)±
[
1
4
(α exp(A)K

α−1 − δ)2 − α (α− 1) exp(A)K
α−2

C/γ
]1
2
,

CA =
(
CK + ρA

)−1 [
CK exp(A)K

α − α exp(A)K
α−1

C/γ
]
.

For the stochastic growth model we pick the positive root, CK > 0, since it is the

one that is consistent with a concave value function (see Parra-Alvarez, 2018). The

remaining constant, Cη, corresponds to the solution of the stochastic component of the

approximation, and is given by

Cη = −
(
CK

)−1 1
2

(1 + γ)C
(
CA/C

)2
σ2
A. (39)

12



Hence, (39) shows that Cη 6= 0, suggesting that a first-order approximation includes a

constant correction for risk. The latter is captured by σA. Note that Cη turns out to be

negative, reflecting that risk averse agents will consume less in the presence of risk due

to precautionary savings. However, certainty equivalence will still hold if the underly-

ing assumptions of the economic model imply such property – e.g. in cases of (i) zero

volatility, σA = 0, and/or (ii) quadratic utility, (1 + γ) = 0 (see Judd, 1996).

3.3 An intuition: Why does certainty equivalence break?

The solution to stochastic economic models is said to be certainty equivalent if the re-

sulting policy functions are invariant to higher order moments of the model’s underlying

exogenous shocks. In other words, the solution of an economic model under uncertainty

is identical to the solution of the same model under certainty.

For discrete-time stochastic models certainty equivalence holds for any first-order

(linear) approximation around the deterministic steady state. In general, the optimal-

ity conditions that characterize economic equilibria in these models can be summarized

by a system of stochastic difference equations, where expectations regarding the future

value of the control variables need to be formed. Given that the policy functions are a

priori unknown, the computation of such expectations can only be done ex-post once the

optimal controls have been approximated. Hence, for a first-order perturbation this is

equivalent to calculating the expected value of a set of linear functions which, accord-

ing to the linearity property of the expectation operator, implies that only first order

moments will enter the approximated solution.

However, as exemplified by equation (39), this is not the case for continuous-time

stochastic models. To illustrate this point consider the non-linear HJB equation in (36),

where the expected continuation value (1/dt)Et [dV ] has been already computed using the

tools from stochastic calculus. Having computed expectations in the HJB, the resulting

Euler equation in (37) includes some features that account for the model’s underlying risk.

In particular, let us consider the quadratic term 1
2
(1+γ) (CA/C)2 ησ2

A, which also appears

in the correction in (39). The first thing to note is that it contains the marginal response of

optimal consumption to changes in the exogenous driving force of the model, CA, which is

closely related to risk aversion. To see this recall that in equilibrium the optimal consump-

tion function, C, is related to the marginal utility of consumption, u′ (C), and thus CA is

related to the first order derivative of the marginal utility, u′′ (C). Also note that it con-

tains the perturbation and the variance parameters which jointly capture the amount of

risk in the model, ησ2
A. Finally, note that the term 1+γ can be shown to be the coefficient

of relative prudence for the case of CRRA utility functions. In contrast, as expected values

cannot be computed a priori for discrete-time models, the Euler equation for consumption

in that case will only include terms related to the marginal utility of consumption, u′(C).

13



Risk effects on: ∂nu/(∂c)n related to:
Cont. Time Discrete Time

1st 2nd 1st 2nd 3rd
— n = 2 risk aversion: −u′′/u′ X X X X X
level of C n = 3 prudence: −u′′′/u′′ X X X X
slope of C n = 4 temperance: u(4) < 0 X X

Table 1. Effects of risk in perturbation solutions. The table indicates the order of the
derivative of the utility function ∂nu/(∂c)n necessary to account for a particular effect of risk
on optimal consumption, as well as the order of approximation needed to capture it both in
continuous-time and discrete-time stochastic models.

How this relates to certainty equivalence becomes clear when taking a closer look at

the precautionary motive, or prudence, that describes the optimal reaction of consump-

tion to risk. Prudence is related to the third derivative of the utility function, u′′′ (C)6,

and its absence leads to certainty equivalence. Hence, a policy function that only con-

tains u′′ (C) will account for risk aversion, i.e., how much an agent dislikes risk, but not

for prudence and, thus, will be certainty equivalent. If in addition, the policy function

involves the fourth derivative of the utility function, u(4) (C) < 0, then it will also account

for temperance, i.e., how the marginal propensity to consume responds to risk. Thus,

while the effects of risk on the level of consumption are captured by u′′′ (C), the effects

on the slope are captured by u(4) (C) (see Kimball, 1990a and Zeldes, 1989).

In terms of the approximation method note that a first-order (linear) perturbation to

the unknown consumption function requires computing the first derivative of the Euler

equation. Since its discrete-time version only contains u′ (C), a first-order approximation

will just include terms up to the second derivative of the utility function and hence it will

account for risk aversion but not for prudence. Therefore, a first-order approximation in

discrete time will be certainty equivalent. In contrast, the continuous-time Euler equation

(37) already includes terms related to u′ (C) and u′′ (C), so its first-order approximation

will account for both risk aversion and prudence. The resulting policy functions in con-

tinuous time will not only depend on the mean of the exogenous shock but also on its

variance – breaking certainty equivalence. To break certainty equivalence in discrete time,

a second-order approximation is needed, which in continuous time already leads to cor-

rection terms in the slopes. Table 1 summarizes the discussion above by indicating which

order of approximation is required in order to account for a given risk effect. Note that

when only the second-order derivative enters the Euler equation (the case n = 2), optimal

consumption will not be affected by risk, i.e., certainty equivalence will prevail.

6Absolute prudence is defined as −u′′′ (C) /u′′ (C), while relative prudence is defined as
−u′′′ (C)C/u′′ (C) (see Kimball, 1990b).
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3.4 Risky steady state

Similar to the concept of the deterministic steady state, we may define the risky or

stochastic steady state as the fixed point to which the dynamic economic system con-

verges to in the absence of shocks, but where σA > 0. As discussed in Coeurdacier et al.

(2011), the risky steady state is of utmost relevance to the extent that it incorporates

relevant information regarding the future risk prospects of risk-averse economic agents.

Unfortunately, the computation of the risky steady state is not straightforward. Fol-

lowing its definition, we require information about how risk, as measured by the variance

of economic shocks, affects the policy functions, g (x; η), which, ex-ante, are also unknown.

However, it is still possible to approximate its value by using the perturbation-based ap-

proximation of the policy functions around the deterministic steady state.

In particular, we define the risky steady state value of the state variables, x̂, as the

solution to the system of (non-linear) equations formed by

f (x̂,g (x̂; η = 1)) = 0, (40)

where f (·) is the drift in (28) that results from (i) replacing the vector of controls y by

its perturbation-based approximation evaluated at the unknown risky steady state; (ii)

setting any future realization of economic shocks to zero, i.e. dBt = 0; and (iii) imposing

the stationarity condition dxt/dt = 0. Once x̂ is computed, it is possible to compute the

risky steady state value for the control vector as ŷ = g (x̂; η = 1).

Since it is already possible to account for risk in continuous time using a first-order

approximation, the approach in (40) can be used to build an approximation to the risky

steady state in a linear framework7. Hence, the first-order approximation of the risky

steady state is given by the solution to

0 = f (x̂,g(x̄; 0) + gx(x̄; 0)(x̂− x̄) + gη(x̄; 0)) (41)

ŷ = g(x̄; 0) + gx(x̄; 0)(x̂− x̄) + gη(x̄; 0). (42)

A similar procedure can be used to build a k-th order approximation of the risky steady

state, for k > 1.

4 Asset pricing

This section investigates the economic implications of the approximated solutions by

measuring the pricing errors made when using the First-Order CE approximation, the

7A similar methodology is available for the case of discrete-time models for perturbations of order 2
and higher (see de Groot, 2013). A summary of this procedure is described in the accompanying web
appendix.
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First-Order approximation, and the Second-Order approximation defined in Section 3.1.

The pricing mismatch is computed relative to a benchmark that is obtained using a global

non-linear projection method based on a Chebyshev polynomial approximation of the

unknown value function (see Parra-Alvarez, 2018; Posch, 2018). This approach delivers

highly accurate solutions but is costly in terms of computational efficiency. By comparing

the different pricing errors we can study how risk matters quantitatively for asset pricing.

4.1 Stochastic discount factor

We define the stochastic discount factor (SDF) as the process ms/mt , such that, for any

security with price Pt, and a single payoff χs at some future date s ≥ t, we obtain

mtPt = Et [msχs] ⇒ 1 = Et [(ms/mt)Rs] , (43)

where Rs ≡ χs/Pt is the security’s return, and mt is the present (discounted) value of

a unit of consumption in period t. Hence, the condition (43) can be used to discount

expected payoffs on any asset with a single payoff to find their equilibrium prices. In

other words, investors will be indifferent between investing into the various assets only if

(43) is satisfied.

From the definition of expected discounted life-time utility (1), the instantaneous

utility function (2), and the first-order condition (11), we obtain the SDF for s > t

following Detemple and Zapatero (1991) as (see Appendix A)

ms/mt = e−ρ(s−t)
(Cs −Xs)

−γ + bVX,s

(Ct −Xt)
−γ + bVX,t

for s > t, (44)

where mt = e−ρt(Ct−Xt)
−γ + bVX,t is the present discounted value of a unit of consump-

tion at instant t ≥ 0.

4.2 Pricing errors

In what follows we define pricing errors as (see Lettau and Ludvigson, 2009)

εi ≡ Et[(ms/mt)Ri,s]− 1, (45)

based on the gross return on any tradable asset i with instantaneous return, Ri,s.

Risk-free asset. Consider a zero-coupon bond with sure payoff χf,t+N = 1 at period

t+N . From (43) we obtain the price of this zero-coupon bond as P
(N)
f,t = Et [(mt+N/mt)]

such that the return of this asset is R
(N)
f,t = 1/P

(N)
f,t , conditional on the information set

at time t. Unfortunately, we do not readily observe an instantaneous risk-free asset for

N → 0 with corresponding yield rft ≡ limN→0R
(N)
f,t . Any equilibrium return from a
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risk-free sovereign bond carries a term premium for a given time-to-maturity N ≡ s− t.
Zero-coupon bonds. To compute the price of a zero-coupon bond for a given time-to-

maturity N we use the partial differential equation (PDE) approach (see Posch, 2018).

Hence, in the absence of arbitrage opportunities, the fundamental price of a zero-coupon

bond with maturity N , P
(N)
f,t , satisfies

Et

(
dP

(N)
f,t

P
(N)
f,t

)
−

(
1

P
(N)
f,t

∂P
(N)
f,t

∂N
+ rft

)
dt = −Et

(
dP

(N)
f,t

P
(N)
f,t

dmt

mt

)
, (46)

with boundary condition P
(0)
f,t = 1, and where the SDF evolves according to

dmt

mt

≡ µm,tdt+ σm,tdBA,t, (47)

where the drift, µm,t, and diffusion, σm,t, terms in (47) are functions of the policy func-

tions. Hence, they depend on the approximation method used (see Appendix A).

Assuming that the market price yields the efficient price under the physical probability

measure P, the fundamental pricing equation can be written as

∂P
(N)
f,t

∂N
=

1

dt
EP
t

(
dmt

mt

)
P

(N)
f,t +

1

dt
EP
t

(
dP

(N)
f,t

)
+

1

dt
EP
t

(
(dP

(N)
f,t )

(
dmt

mt

))
,

where we used the fact that rft = − 1
dt
EP
t [dmt/mt]. The physical probability measure is

defined in terms of the (true) policy function for consumption from the economic model.

In what follows, we assume that the latter is approximated accurately (in a global sense)

by means of projection methods. Note that the covariance of the prices with the SDF on

the right-hand side of (46) gives rise to a term premium.

Since in equilibrium all the time dependence of the zero-coupon bond price with

given time-to-maturity N comes through the state variables that drive the economy, i.e.,

P
(N)
f,t = P

(N)
f (Kt, Xt, At), an application of Itô’s lemma shows that the dynamics of the

bond’s price is given by

dP
(N)
f,t =

∂P
(N)
f,t

∂Kt

dKt +
∂P

(N)
f,t

∂Xt

dXt +
∂P

(N)
f,t

∂At
dAt + 1

2

∂2P
(N)
f,t

∂A2
t

(dAt)
2 . (48)
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Hence, the fundamental pricing equation can now be written as

∂P
(N)
f,t

∂N
= µm,tP

(N)
f,t +

∂P
(N)
f,t

∂Kt

(Φ((exp(At)K
α
t − C(Kt, Xt, At))/Kt)− δ)Kt

+
∂P

(N)
f,t

∂Xt

(bC(Kt, Xt, At)− aXt)− ρAAt
∂P

(N)
f,t

∂At

+1
2

∂2P
(N)
f,t

∂A2
t

σ2
A +

∂P
(N)
f,t

∂At
σAσm,t. (49)

The functional form of the solution to (49) is unknown. We use collocation meth-

ods to approximate the price function with the polynomial P
(N)
f,t ≈ φ(N,Kt, Xt, At)c, in

which c is a vector of unknown coefficients and φ(·) denotes the Chebyshev basis matrix

with associated Chebyshev nodes. We extend the approximated PDE in (49) with the

boundary condition φ(0, Kt, Xt, At)c = 1p, where p denotes the degree of the approxima-

tion. The collocation approach provides accurate results and allows us to avoid tedious

numerical simulations.

Let ε
(N)
f,a represent a measure of ex-ante pricing errors on a zero-coupon bond with

time-to-maturity N , defined as the (absolute) percentage deviation of the price under the

subjective probability measure S relative to the physical probability measure P

ε
(N)
f,a ≡ ES

t [(mN/mt)]/EP
t [(mN/mt)]− 1. (50)

We define S to be the probability measure used by an investor that uses the perturbation

approach to approximate the model’s policy function for consumption instead of the true

solution (i.e. it employs either the First-Order CE, the First-Order, or the Second-Order

approximation) in both the SDF dynamics in (47) and the bond-price PDE in (48). Let

P
(N)
f,a denote the price that solves (49) under the subjective probability measure S.

By using the PDE approach it is possible to shed light on the sources of pricing

errors. First, the risk-free rate is poorly approximated. Second, the covariance of the

price dynamics with the SDF is poorly captured. And third, the approximation to the

consumption function alone is inaccurate. Hence, we can decompose the pricing errors

into misspecification of: (i) the risk-free rate (or drift of the SDF), rft = −µm,t; (ii) the

term premium that arises from the covariance component, (∂P
(N)
f,t /∂At)σAσm,t; and (iii)

the price dynamics Et(dP (N)
f,t )/P

(N)
f,t .

To analyze the different sources of pricing mismatch, we define the ex-post pricing

errors as the (absolute) percentage deviation of the price under the subjective probability

measure S relative to the physical measure P, but where the investor can observe the

correct/true SDF dynamics either partially

ε
(N)
f,b ≡ ES

t

[
(mN/mt)|µS

m,t ≡ µm,t
]
/EP

t [(mN/mt)]− 1, (51)

18



Parameter Value Source / Target
Discounting, ρ 0.0410 Jermann (1998)
Risk aversion, γ 2.0000 Aruoba et al. (2006)
Depreciation rate, δ 0.0963 Jermann (1998)
Capital share in output, α 0.3600 Jermann (1998)
Persistence TFP, ρA 0.2052 Aruoba et al. (2006)
Volatility TFP, σA 0.0307 U.S. real GDP growth volatility
Adjustment cost, ξ 0.3261 Short-term return on government

bonds reported in Jermann (1998)
Habit current cons., b 0.8200 Jermann (1998)
Habit past cons., a 1.0000 Jermann (1998)

Table 2. Parameter values. The parameters of the model are calibrated to an annual
frequency and their values should be interpreted accordingly.

or completely

ε
(N)
f,c ≡ ES

t

[
(mN/mt)|µS

m,t ≡ µm,t, σ
S
m,t ≡ σm,t

]
/EP

t [(mN/mt)]− 1. (52)

Hence, the measures in (51) and (52) focus on the pricing error reduction obtained by

providing further information on the SDF dynamics. For example in (52), the investor

infers the correct SDF from the data, and solves the corresponding PDE

∂P
(N)
f,c

∂N
= µm,tP

(N)
f,c +

1

dt
ES
t

(
dP

(N)
f,c

)
+

(
∂P

(N)
f,c

∂At

)
P

(N)
f,c σAσm,t,

with the approximated price P
(N)
f,c (in the same way we define P

(N)
f,b ). This enables us to

study the hypothetical error an investor would face ex-post when trading the asset at the

subjective (approximated) price instead of true P
(N)
f,t , yet knowing the SDF dynamics.

5 Results

5.1 Calibration

To quantitatively evaluate the extent to which the First-Order approximation can ac-

count for the effects of risk we proceed to calibrate the prototype model of Section 2

to an annual frequency. Therefore, all the parameter values should be interpreted ac-

cordingly. Many of the parameter values are chosen to replicate the parameterization to

the U.S. economy used in the discrete-time models of Jermann (1998) and Aruoba et al.

(2006). A complete summary of the model’s calibration is provided in Table 2.

In particular, we set the risk aversion parameter and the share of capital income to γ =

2 and α = 0.36, respectively. The values for the subjective discount rate, the depreciation
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Model version σC/σY σI/σY R
(0.25)
f,t

Pert. Global Pert. Global Pert. Global

Benchmark 0.45 0.44 2.65 2.69 0.37 (4.99) 0.68 (5.17)
No habits, no adj. costs 0.34 0.34 3.00 3.01 4.09 (0.19) 4.11 (0.19)
Habit, no adj. costs 0.13 0.14 3.72 3.72 3.86 (0.26) 4.10 (0.19)
Adj. costs, no habits 1.12 1.11 0.68 0.66 3.77 (0.60) 3.85 (0.61)

U.S. Data (1954-1989) 0.51 2.65 0.80 (5.67)

Table 3. Moments from simulated data. The different moments are computed using
100,000 draws starting at the deterministic steady state. The policy functions are computed
using both a first-order perturbation (Pert.) and a global method (Global). For comparison,
U.S. data moments correspond to those in Jermann (1998). We report the standard deviation
(sd) of quarterly growth rates for output, σY , consumption, σC , and investment, σI after 10

years; and the three-month yield R
(0.25)
f,t with sd in brackets (annualized, percentage terms).

rate and the habit process are set to ρ = 0.041, δ = 0.0963, and a = 1 and b = 0.82, re-

spectively. These parameter values are consistent with steady-state values for the capital-

output ratio, and the consumption and investment shares in aggregate output of around

2.5, and 76% and 24%, respectively. We fix the adjustment cost parameter to ξ = 0.3261

such that the model produces an average real return on short term government bonds close

to that reported in Jermann (1998). Finally, the persistence of TFP is set to ρA = 0.2052

which corresponds to the continuously compounded value of that in Aruoba et al. (2006),

while its volatility is set to σA = 0.0307 to target the relative growth volatilities (relative

standard deviations) of consumption and investment to output, and which is consistent

with the observed volatility of real GDP growth in the U.S. for the period 1954-1989.

Table 3 reports some of the moments implied by different parameterizations of our

RBC model when solved by a first-order perturbation and a global approximation method

based on collocations. Along with the prototype model of Section 2 (Benchmark), we re-

port the moments for the model without habit formation and no capital adjustment cost of

Section 3.2 (No habits, no adj. costs, i.e. b = X0 = 0 and ξ →∞), no capital adjustment

cost (Habit, no adjustment costs, i.e, ξ →∞), and without habits (Adjustment costs, no

habits, i.e., b = X0 = 0). The last row in the table shows the moments reported by Jer-

mann (1998) for U.S. data from 1954-1989. The relative standard deviations for quarterly

consumption and investment growth correspond to averages over 100,000 samples gener-

ated through a Euler-Maruyama discretization scheme with precision ∆ = 0.0125, each

of them consisting of 10 years of simulated data, initialized at the deterministic steady

state. Finally, the table also includes the three-month simulated yield-to-maturity for a

zero-coupon bond and the standard deviation of its simulated distribution.

We confirm that only the model with both habit formation and capital adjustment

costs generates the historical consumption and investment volatility relative to output,

and three-month bond yields with sufficient variability. Hence, in this model risk matters
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Figure 1. Approximated policy function for consumption: First- and second-order
approximations to the policy function for consumption around the deterministic steady state
along the capital stock lattice (left panel) and the habit lattice (right panel), while keeping the
remaining state variables at their corresponding deterministic steady-state values. Values on
the horizontal axis represent deviations from deterministic steady-state values. A circle denotes
the deterministic steady state, a star denotes the first-order approximation to the risky steady
state, and a square denotes the second-order approximation to the risky steady state.

quantitatively and we can use the parameterization in Table 2 to investigate the asset

pricing errors for the different solution methods (at the deterministic steady state).

5.2 Approximated policy functions

Figure 1 shows the first- and second-order perturbation approximations to the policy

function for consumption around the deterministic steady state for our prototype model

using the calibration in Table 2. The left panel shows optimal consumption along the

capital stock lattice for values 15% below and above its deterministic steady state, while

keeping the remaining state variables fixed at their deterministic steady state values.

The right panel plots optimal consumption along the habit formation lattice covering

values that are 15% above and below its deterministic steady state value. The figures also

indicate the deterministic and risky steady state values for consumption, capital stock and

habit. Their values are reported in Table 4, where we have also included a measure of the

risky steady state computed from a global approximation based on projection methods8.

The plot depicts two types of a first-order (linear) approximation to the optimal

consumption function. First, it shows the First-Order (CE) by the dotted line, which

resembles the first-order approximation one would obtain from a discrete-time version of

the model. By construction, this approximation is invariant to the amount of volatil-

8The second-order risky steady-state values for the corresponding discrete-time model approximated
with the approach in de Groot (2013) are very close to the second-order risky-steady state values that
we report in Table 4.
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Variable Deterministic Mean Risky

First-Order Second-Order Global

A 0 0 0 0 0
X 1.0541 1.0533 1.0589 1.0593 1.0592
K 4.5077 4.5662 4.6582 4.6693 4.6655
C 1.2854 1.2847 1.2914 1.2918 1.2917

Table 4. Steady states values. The table reports steady-state values for all the variables in
the model. It includes the exact deterministic steady-state values, the simulated ergodic mean
(global solution), as well as the first- and second-order approximated risky steady-state values.
A global approximation to the risky steady state is included as a benchmark.

ity in the model, and hence is certainty equivalent. Second, the solid line depicts

the First-Order approximation that corresponds to the first-order perturbation solu-

tion that breaks certainty equivalence as it includes the (constant) risk correction term

Cη ≡ Cη
(
K,X,A; 0

)
6= 0. Hence, while still being a linear approximate solution, it is

risk sensitive as its intercept depends on the amount of uncertainty in the model. As

a comparison, we plot the Second-Order approximation (dashed line) to illustrate the

additional risk correction attainable when using higher orders of approximation.

Two things are worth mentioning at this point. First, note that the First-Order (CE)

policy function for consumption, which by construction passes through the deterministic

steady state, lays above the other two alternative approximations. The reason is that the

latter account for the effects of risk, and hence imply lower consumption levels along the

entire state space. In particular, the First-Order approximation is parallel to the First-

Order (CE), and for values of the state space in a neighborhood of the deterministic steady

state, it will imply levels of consumption that are relatively close to those suggested by

the Second-Order, and hence, a non-linear approximation. Second, the risky steady states

computed from the First- and Second-Order approximations command higher values for

the capital stock, habits, and consumption over the long-run, relative to those implied by

the deterministic case. This result can be confirmed by looking at Table 4. The higher

risky steady-state values result from households that consume less and save more in the

short run due to precautionary motives and hence imply higher levels of capital stock

and consumption over the long run.

A detailed summary of the approximated policy function for consumption is presented

in Table 5, where we report the loadings from the first- and second-order perturbations

associated to each of the state variables. Columns 2 and 4 show the coefficients for the

continuous-time model, while columns 3 and 5 do the same for its discrete-time version9.

Comparing the first-order approximations in columns 2 and 3 confirms that we break

certainty equivalence when time is continuous. Following our previous discussion, the

9The first- and second-order approximations to the policy functions that solve the corresponding
discrete-time model are computed using Dynare.
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First-Order Second-Order
Cont. time Disc. time Cont. time Disc. time

C 1.2854 1.2854 1.2854 1.2854
Cη −0.0020 0 −0.0020 0(
K −K

)
0.0315 0.0290 0.0315 0.0290(

X −X
)

0.6680 0.7042 0.6680 0.7042(
A− A

)
0.5370 0.4899 0.5370 0.4899

Cηη - - −0.0000 −0.0025(
K −K

)
× η - - −0.0003 0(

X −X
)
× η - - 0.0020 0(

A− A
)
× η - - −0.0063 0(

K −K
)2

- - −0.0049 −0.0046(
X −X

)2
- - −0.1930 −0.2089(

A− A
)2

- - −0.3119 −0.3663(
K −K

)
×
(
X −X

)
- - 0.0402 0.0389(

K −K
)
×
(
A− A

)
- - −0.0282 −0.0286(

A− A
)
×
(
X −X

)
- - 0.6508 0.6942

Table 5. Loadings of policy function for consumption. The table reports the coef-
ficients from first- and second-order approximations to the policy function for consumption,
C = C (K,X,A; η), around the deterministic steady state

(
C,K,A

)
for the model in Section 2

and its equivalent discrete-time version.

constant risk correction of −0.0020 implied by our calibration, which is otherwise absent

in the solution to the discrete-time model, suggests that a First-Order (CE) approxima-

tion overestimates optimal consumption in the presence of uncertainty along the entire

state space. Note how a similar risk correction of −0.0025 is obtained in a discrete-time

framework when using a second-order, and hence non-linear, approximation. Comparing

columns 4 and 5 reveals that a second-order perturbation in continuous-time includes

not only an additional adjustment in the constant term of the approximation, Cηη 6= 0,

but also in the slopes of the policy function implying a time-varying risk correction.

As suggested in Andreasen (2012), these two additional effects can only be achieved in

discrete-time models by computing third-order approximations (see Table 1).

5.3 Impulse response functions

Having approximated the unknown policy function, we now compute the impulse-response

functions (IRF) in order to compare how the different degrees of approximation capture

the amplification and propagation mechanisms of the prototype economy to a temporary

shock on the level of TFP. The results are presented in Figure 2, where we plot the tran-

sitional dynamics of consumption, capital stock, habits, and output over the course of

60 years after a one-time unexpected increase in TFP equal to σA. Prior to the shock,

all the variables are assumed equal to their respective stationary values. Thus, while the
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First-Order (CE) solution is initially resting at the deterministic steady state, the First-

and Second-Order solutions are resting at their respective (approximate) risky steady

states. Again, the CE solution can be thought of as a proxy for the IRF one would ob-

tain from a first-order perturbation to an equivalent discrete-time model. For comparison

purposes we report the first- and second-order IRFs for the discrete-time model in the

accompanying web appendix.

Note that the IRFs for the First-Order (CE) lay below the risk-sensitive approxi-

mations in Figure 2. Intuitively, since the constant correction term for the First-Order

approximation is negative, Cη < 0, one may expect that the consumption response ap-

proximated by a First-Order will be below the one approximated by First-Order (CE).

However, as shown in Figure 1 and Table 4, the risk-correction reduction in consump-

tion induced by the former will in fact lead to a higher risky steady-state capital stock

and, thereby, a higher risky steady-state level of consumption. Thus, the fact that the

First-Order (CE) is below the First-Order and Second-Order responses is explained by

the differences in their fixed points, or long-run convergence levels, hence cannot readily

interpreted as an indication that certainty equivalent approximations underestimate the

response of macroeconomic variables to aggregate shocks. Furthermore, note that the

additional risk-corrections provided by the Second-Order approximation (and hence non-

linear) have only minor effects on the optimal reaction of consumption to a TFP shock.

In other words, the risk-correction in the first-order perturbation approach provides a

sensible approximation to the effects of risk in continuous-time models.

5.4 Asset pricing implications

In this section we investigate the ability of the different approximations to account for risk

when pricing assets. While others focus on accuracy measures based on the computation

of Euler equation errors (cf. Judd, 1998; Aruoba et al., 2006; Parra-Alvarez, 2018), we are

more interested in the implications that each of the approximations have on the pricing

mismatch incurred by an investor that does not have/use the ‘true’ solution of the model.

In what follows, we use the PDE approach introduced in Section 4 to assess to what

extent our first-order approximation can account for risk. Table 6 reports the absolute

pricing errors of a zero-coupon bond for different time-to-maturities when the economy is

at its deterministic steady state, ε
(N)
f ≡ ε

(N)
f

(
K,X,A

)
. We show the results for risk-free

bonds with a 3-month, 1 year and 5 years time-to-maturity. Column 2 (Global) provides

errors under the true probability measure P as obtained from a global approximation

using collocation methods; columns 3− 5 report errors resulting from First-Order (CE),

First-Order, and Second-Order perturbation. Moreover, for each time-to-maturity, we

report errors for the cases in which the SDF dynamics are (a) not observed as in (50),

(b) partially observed (drift only) as in (51), or (c) fully observed (drift and diffusion) as
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Figure 2. Impulse-Response function to a one s.d. shock in TFP: Responses for the
annual levels of consumption, capital stock, habit formation and output to a one time shock
in TFP equivalent to one standard deviation, σA. All the variables are assumed to be in their
corresponding steady states before the shock. A circle denotes the deterministic steady state, a
star denotes the first-order approximation to the risky steady state, and a square denotes the
second-order approximation to the risky steady state.

in (52). This means that in (a) we approximate the policy function as well as the drift

and diffusion of the SDF, in (b) we approximate the policy function and diffusion of the

SDF, and finally in (c) we only approximate the policy function.

Our results suggest that there are substantial gains from using the (risk-sensitive)

First-Order relative to the First-Order (CE) version. Consider the case of a three-month

zero-coupon bond with effective price of P 0.25
f = 0.9983. An investor relying on the cer-

tainty equivalent linear solution (First-Order (CE)), not just to approximate the policy

function but also the drift and diffusion of the SDF, will incur in pricing errors of about

1 dollar for each 100 dollar spent (ε
(0.25)
f,a = 0.95% in Column 3). If instead the investor

uses the First-Order approximation, the pricing error will be of the order of 10 cents for

each 100 dollars spent (ε
(0.25)
f,a = 0.14% in Column 4). Hence, breaking certainty equiv-

alence reduces the potential price mismatch by nearly 90% while still remaining in the

linear world. The Second-Order approximation further reduces pricing errors which fall
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Global First-Order (CE) First-Order Second-Order

ε
(0.25)
f,a 0.0000 0.0095 0.0014 0.0003

ε
(0.25)
f,b 0.0001 0.0001 0.0000

ε
(0.25)
f,c 0.0001 0.0000 0.0000

ε
(1)
f,a 0.0000 0.0494 0.0065 0.0009

ε
(1)
f,b 0.0017 0.0009 0.0001

ε
(1)
f,c 0.0018 0.0000 0.0000

ε
(5)
f,a 0.0000 0.4269 0.1742 0.0050

ε
(5)
f,b 0.0243 0.0096 0.0069

ε
(5)
f,c 0.0302 0.0017 0.0000

Table 6. Asset pricing implications for zero-coupon bonds. The table reports the
absolute pricing errors induced by different approximation methods on risk-free zero-coupon
bonds with time-to-maturity of three months, one year and five years when the SDF dynamics
are (a) are not observed, (b) partially observed (drift only) and (c) completely observed (drift
and diffusion).

to about 3 cents per 100 dollars (ε
(0.25)
f,a = 0.03% in Column 5). Sizable gains are also

observed for bonds with longer time-to-maturities or from inferring the dynamics of the

SDF (drift and diffusion) from the data.

We find that although pricing errors increase as N increases, they can be substan-

tially reduced if the investor uses the true risk-free rate (or drift of the SDF), which is

case (b). In fact, the pricing error for the First-Order approximation is below 10 cents

(ε
(1)
f,b = 0.09% in Column 4) for the one year ahead zero-coupon bond. Relative to the

First-Order (CE) solution, the risk-adjusted First-Order approximation reduces pricing

errors by about 50 percent for one year maturities when using the true risk-free rate. If

the investor further knows the true diffusion of the SDF, case (c), i.e., when only the pol-

icy functions are approximated, then the First-Order approximation also performs well

for a maturities of 5 years. Here, the error is about 20 cents (ε
(5)
f,c = 0.17% in Column 4),

which is 90% lower than the error from First-Order (CE) (ε
(5)
f,c = 3.02% in Column 3).

Figure 3 confirms our results for the case of ex-ante absolute pricing errors. Investors

using a First-Order (CE) solution, when the true data generating process (DGP) is the

global solution, would accept large and persistent pricing errors (see Lettau and Lud-

vigson, 2009): they range between one to five percent for bonds with time-to-maturities

from a quarter to a year (ε
(0.25)
f,a = 0.95%, ε

(1)
f,a = 4.94%). On the contrary, those using

the First-Order approximation can reduce these pricing errors by more than 85 percent

(ε
(0.25)
f,a = 0.14%, ε

(1)
f,a = 0.65%).

To better understand the sources of the pricing errors, the right panel of Figure 3

decomposes the pricing mismatch made when using the First-Order (CE) solution into:

(i) the error stemming from linearization in the presence of uncertainty; and (ii) the

error stemming from imposing certainty equivalence in the linear world. As (i) is given
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Figure 3. Pricing errors: The left panel plots the absolute pricing errors for different
approximations. The right panel decomposes the pricing error incurred by using the CE solution
into a certainty equivalence component and a linearization component, where the line represents
|(First-Order)/(First-Order (CE))− 1|.

by the error resulting from the First-Order approximation, (ii) results as the (absolute)

difference of the errors from the First-Order and the First-Order (CE) approximation,

and hence provides a measure of pricing error reduction (relative to the true solution)10.

Therefore, the red area measures the pricing error that can be attributed to imposing

certainty equivalence in the First-Order (CE) solution, while the blue area measures the

error that can be attributed to its linearization. As the red area suggests, between 60%

and 100% of the error stemming from the certainty equivalence solution for maturities

below five years can be reduced by the risk adjustment of the First-Order solution. For

a maturity of 1 year, for instance, 86% of the error in the First-Order (CE) solution can

be attributed to the presence of certainty equivalence itself and hence reduced by the

First-Order approximation. The remaining error resulting from the First-Order solution,

as indicated by the blue area, is inevitable in linear models.

Our results shed light on the key source of the weakness of the linear approximation

from perturbation in discrete-time models which results from its certainty equivalence

property rather than linearization. Thus, we can conclude that once the vice of certainty

equivalence is discarded, similar to the First-Order approximation in continuous time, one

may stay with linear models and at the same time account for risk in a reasonable manner.

10The accompanying web appendix presents an alternative decomposition according to which we break
the pricing mismatch into: (i) the error stemming from certainty equivalence in the non-linear world,
which would result from a non-linear certainty equivalent solution; and (ii) the error stemming from
linearization under certainty equivalence. We conclude that the errors induced by certainty equivalence
and those by linearization are similar under both decompositions, which suggests that the entire error
stemming from certainty equivalence is removed by the First-Order approximation.
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6 Conclusions

In this paper we use the fact that certainty equivalence (CE) breaks in continuous-time

stochastic non-linear models when their rational expectation solution is approximated

by first-order perturbations. To this end, we use a production economy with stochas-

tic shocks to productivity, extended with habit formation and capital adjustment costs,

which are known to generate substantial risk effects (see Jermann, 1998). We study

the economic effects of breaking certainty equivalence in the linear approximation to the

continuous-time model and compare them to the associated effects obtained using a CE

solution, which is similar to that obtained using a first-order perturbation to the solution

of discrete-time models. The reason that CE already breaks in first order is that the

continuous-time formulation allows us to compute expectations before building the per-

turbation solution, which is not possible in discrete time. We shed light and illustrate the

differences in the perturbation solution of equivalent models in continuous and discrete

time and find substantial effects of risk.

To quantify the effects economically, we compute the asset pricing implications and

pricing errors for the continuous-time model and show that the first-order already cap-

tures about 90 percent relative to the CE solution which, by construction, neglects the

effects of risk. The correction in slopes from the second-order approximation in contin-

uous time turns out to be small compared to the constant correction obtained in first

order. Therefore, the first-order approximation turns out to be especially useful in this

environment in which risk matters but nonlinearities are negligible.

We provide intuition why the first-order perturbation solution in continuous time

accounts for prudence and hence is not certainty equivalent. In fact, the risk effects cap-

tured by continuous-time perturbations materialize with lower orders of approximation

than those required by their (standard) discrete-time counterparts. Most prominent is

that the continuous-time perturbation solution has a constant correction in the first-order

approximation, which appears only in a second-order approximation in the discrete-time

model. Similarly, the correction in slopes appears in second-order approximation in the

continuous-time version, while it only appears in the third-order approximation in the

discrete-time model.

We show that the (constant) risk adjustment in the first-order approximation does

not only reduce pricing errors. First, we illustrate the effects for the resulting policy

functions and compare them to the numerically more costly nonlinear approach. While

the coefficients that are not associated with risk are close in discrete and continuous-time

depending on the order of approximation, the risk corrections differ substantially. Sec-

ond, we show how the risk adjustment affects the IRFs, which also reveals considerable

differences mainly in the levels and for the computation of fixed points.

Our results encourage the use of continuous-time perturbations to account for risk in
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the class of (approximate) linear models. We believe this helps in the computation and

estimation of large-scale macroeconomic models. Given the advantages of the continuous-

time perturbation, future work should make these advantages more accessible by devel-

oping a toolbox that automates perturbation in continuous-time models.
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Appendix

A Stochastic optimal control problem

A.1 The HJB equation and the first-order conditions

The benevolent planner chooses a path for consumption in order to maximize the expected

discounted life-time utility of a representative household. Define the value of the optimal

program as

V (K0, X0, A0) = max
{Ct≥Xt∈R+}∞t=0

U0 s.t. (3)− (8)

in which Ct ≥ Xt ∈ R+ denotes the control variable at instant t ∈ R+.

As a first step, we define the Hamilton-Jacobi-Bellman equation (HJB) for any t ∈
[0,∞)

0 = max
C≥X∈R+

{
(C −X)1−γ

1− γ
+

1

dt
EtdV (K,X,A)− ρV (K,X,A)

}
.

Itô’s lemma imply

dV (K,X,A) = VK(K,X,A)dK + VX(K,X,A)dX

+ VA(K,X,A)dA+ 1
2
VAA(K,X,A)σ2

Adt

where Vi(K,X,A) ≡ ∂Vi(K,X,A)
∂i

, and Vij(K,X,A) ≡ ∂2V (K,X,A)
∂i∂j

for i, j = K,X,A. Using

the martingale difference properties of stochastic integrals, we arrive at

0 = max
C≥X∈R+

{
(C −X)1−γ

1− γ
+

(
Φ

(
exp(A)Kα − C

K

)
− δ

)
KVK(K,X,A)

+ (bC − aX)VX(K,X,A)− ρAAVA(K,X,A)

+ 1
2
σ2
AVAA(K,X,A)− ρV (K,X,A)

}
.

The first-order condition for any interior solution reads

(C −X)−γ + bVX(K,X,A) = Φ′

(
exp(A)Kα − C

K

)
VK(K,X,A), (53)

making optimal consumption an implicit function of the state variables, C = C(K,X,A),
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where Φ′ (·) = a1 (·)−1/ξ. The maximized (concentrated) HJB equation is then

0 =
(C(K,X,A)−X)1−γ

1− γ
+

(
Φ

(
exp(A)Kα − C (K,X,A)

K

)
− δ

)
KVK(K,X,A)

+ (bC(K,X,A)− aX)VX(K,X,A)− ρAAVA(K,X,A)

+ 1
2
σ2
AVAA(K,X,A)− ρV (K,X,A). (54)

A.2 Equilibrium in the time-space domain

Let Vijl ≡ ∂3V (K,X,A)/(∂i∂j∂l) for any i, j, l = K,X,A. Then, using the maximized

HJB equation in (54) together with the envelope theorem we obtain the associated costate

variable with respect to capital, VK,t,

ρVK =
(

Φ((exp(A)Kα − C)/K)K − δK
)
VKK

+
(

Φ((exp(A)Kα − C)/K) + Φ′((exp(A)Kα − C)/K)((α− 1) exp(A)Kα−1

+ C/K)− δ
)
VK +

(
bC − aX

)
VXK − ρAAVAK + 1

2
σ2
AVAAK . (55)

On the other hand, the application of Itô’s Lemma yields the evolution of (off-equilibrium)

VK,t as

dVK =

(
Φ
(

(exp(A)Kα − C)/K)− δ
)
KVKK + (bC − aX)VKX

− ρAAVKA + 1
2
σ2
AVKAA

)
dt+ σAVKAdBA. (56)

Combining equations (55) and (56) we arrive at the following optimal/equilibrium stochas-

tic differential equation (SDE) for VK

dVK =

(
ρ− Φ

(
(exp(A)Kα − C)/K

)
− Φ′

(
(exp(A)Kα − C)/K

)
×
(

(α− 1) exp(A)Kα−1 + C/K
)

+ δ

)
VKdt+ σAVKAdBA. (57)

Similarly, the optimal costate variable with respect to the habit level, VX,t, reads

ρVX = −(C −X)−γ +
(

Φ((exp(A)Kα − C))− δ
)
KVKX,t

+ (bC − aX)VXX − aVX − ρAAVAX + 1
2
σ2
AVAAX . (58)

Using Itô’s Lemma, the evolution of the (off-equilibrium) costate variable with respect

34



to the habit level is given by

dVX =

((
Φ(exp(A)Kα − C/K)− δ

)
KVXK + (bC − aX)VXX

− ρAAVXA + 1
2
σ2
AVXAA

)
dt+ σAVXAdBA. (59)

Combining equations (58) and (59) we arrive at the optimal/equilibrium SDE for VX

dVX =
(

(ρ+ a)VX + (C −X)−γ
)

dt+ σAVXAdBA. (60)

Then, the equilibrium of the economy in the time-space domain can be characterized

by the sequence {VK,t, VX,t, Kt, Xt, At}∞t=0 that solves the following system of SDEs

dVK,t =
(
ρ− Φ((exp(At)K

α − Ct)/Kt)− Φ′((exp(At)K
α
t − Ct)/Kt)

×((α− 1) exp(At)K
α−1
t + Ct/Kt) + δ

)
VK,tdt+ σAVKA,tdBA,t

dVX,t =
(

(ρ+ a)VX,t + (Cv −Xt)
−γ
)

dt+ σAVXA,tdBA,t

dKt =
(

Φ((exp(At)K
α
t − Ct)/Kt)− δ

)
Ktdt

dXt = (bCt − aXt)dt

dAt = −ρAAtdt+ σAdBA,t,

together with initial conditions K (0) = K0, X (0) = X0, and A (0) = A0, and where Ct

is the solution to the non-linear algebraic equation:

(Ct −Xt)
−γ + bVX,t = Φ′

(
exp(At)K

α
t − Ct

Kt

)
VK,t.

A.3 Equilibrium in the state-space domain

Following Posch (2018), the equilibrium can be alternatively defined in the space of states

by simply using the equilibrium partial differential equations (PDEs) for the costate

variables in (55) and (58). Together with the first order condition in (53) they form a

system of non-linear functional equations in the unknown policy functions {VK , VX , C} =

{VK (K,X,A) , VX (K,X,A) , C (K,X,A)}
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0 =

(
ρ− Φ

(
exp(A)Kα − C

K

)
− Φ′

(
exp(A)Kα − C

K

)(
(α− 1) exp(A)Kα−1 + C

K

)
+ δ

)
VK

−

(
Φ

(
exp(A)Kα − C

K

)
− δ

)
KVKK −

(
bC − aX

)
VXK + ρAAVAK − 1

2
σ2
AVAAK

0 = (ρ+ a)VX + (C −X)−γ −

(
Φ

(
exp(A)Kα − C

K

)
− δ

)
KVKX

−(bC − aX)VXX + ρAAVAX − 1
2
σ2
AVAAX

0 = (C −X)−γ + bVX − Φ′

(
exp(A)Kα − C

K

)
VK

where the dynamics of the state variables are given by the controlled SDEs

dKt =
(
Φ
(
(exp(At)K

α
t − Ct (Kt, Xt, At))/Kt

)
− δ
)
Ktdt

dXt = (bCt (Kt, Xt, At)− aXt) dt

dAt = −ρAAtdt+ σAdBA,t

subject to the initial conditions K (0) = K0, X (0) = X0 and A (0) = A0.

A.4 Deterministic steady state

The deterministic steady state of the economy is given by the values
{
C, I, V K , V X , K,X,A

}
that solve the following system of equations

ρ− Φ(I/K)− Φ′(I/K)((α− 1) exp(A)K
α−1

+ C/K) + δ = 0 (61)

(ρ+ a)V X + (C −X)−γ = 0 (62)

Φ
(
I/K

)
− δ = 0 (63)

bC − aX = 0 (64)(
C −X

)−γ
+ bV X − Φ′

(
I/K

)
V K = 0 (65)

I/K − exp(A)K
α − C

K
= 0 (66)

A = 0, (67)

which results from imposing σA = 0 together the idle condition dKt/dt = dXt/dt =

dAt/dt = 0 on the equilibrium PDEs (55) and (58).

The solution to this system of non-linear equations is entirely determined by the

steady state value of the investment-capital ratio, I/K. Given the values of a1 and a2, it
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is possible to show that for any value of ξ

I/K = δ.

Note that for the steady-state value of the investment-capital ratio, Φ(δ) = δ, Φ′(δ) = 1,

and Φ′′(I/K) = Φ′′(δ) = −1/(ξδ). From (61) and (66) we find the steady-state value of

the capital stock as

K =

[
α exp(A)

(ρ+ δ)

] 1
1−α

. (68)

Using (66) we find the steady-state value of consumption

C = exp(A)K
α − δK. (69)

From (64) we pin down the steady-state value of the habit as

X =
b

a
C. (70)

Finally using (62) and (65) we find the steady-state values for the costate variables

V X = − 1

ρ+ a

(
C −X

)−γ
(71)

V K =

(
1− b

ρ+ a

)(
C −X

)−γ
. (72)

A.5 Stochastic discount factor

When the habit is internal the agent takes into account the effect of today’s consumption

decisions on the future levels of habits. Following Detemple and Zapatero (1991),

mt = ke−ρt

{
(Ct −Xt)

−γ − bEt

[ ∞̂

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

]}
, (73)

for some given constant k.

Using the (linear) equilibrium SDE for VX in (60) we may write

e−(ρ+a)tdVX,t = e−(ρ+a)t
(
(ρ+ a)VX,t + (Ct −Xt)

−γ) dt+ e−(ρ+a)tVXA,tσAdBA,t,

or equivalently

e−(ρ+a)t(dVX,t − (ρ+ a)VX,tdt) = e−(ρ+a)t (Ct −Xt)
−γ dt+ e−(ρ+a)tVXA,tσAdBA,t.
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Note that Itô’s formula yields

d(e−(ρ+a)tVX,t) = −(ρ+ a)e−(ρ+a)tVX,t + e−(ρ+a)tdVX,t

such that

d(e−(ρ+a)tVX,t) = e−(ρ+a)t (Ct −Xt)
−γ dt+ e−(ρ+a)tVXA,tσAdBA,t.

Integrating both sides yields

ˆ T

t

d(e−(ρ+a)sVX,s) =

ˆ T

t

e−(ρ+a)s (Cs −Xs)
−γ ds+

ˆ T

t

e−(ρ+a)sVXA,sσAdBA,s

⇔ VX,t = e−(ρ+a)(T−t)VX,T −
ˆ T

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

−
ˆ T

t

e−(ρ+a)(s−t)VXA,sσAdBA,s.

Applying the expectation operator (assuming existence of the integrals) implies

Et [VX,t] = e−(ρ+a)(T−t)Et [VX,T ]− Et
[ˆ T

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

]
.

Further, by letting limT→∞ e
−(ρ+a)(T−t)E [VX,T ] = 0, we may write

VX,t ≡ lim
T→∞

Et [VX,t] = −Et
[ˆ ∞

t

e−(ρ+a)(s−t) (Cs −Xs)
−γ ds

]
such that (73) can be written as

mt = e−ρt
[

(Ct −Xt)
−γ + bVXt

]
(74)

so that the SDF, as defined in Section 4, is

ms/mt = e−ρ(s−t)
(Cs −Xs)

−γ + bVX,s

(Ct −Xt)
−γ + bVX,t

.

Using Itô’s lemma, the dynamics of mt is given by

dmt

mt

= µm,tdt+ σm,tdBAt , (75)
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where the drift and diffusion coefficients are

µm,t = −ρ− (Ct −Xt)
−γ

(Ct −Xt)
−γ + bVX,t

[
γ (Ct −Xt)

−1
(
µC,t − (bCt − aXt)

)
− b (Ct −Xt)

γ µVX ,t − 1
2
γ (γ + 1) (Ct −Xt)

−2 σ2
C,t

]
(76)

and

σm,t = − (Ct −Xt)
−γ

(Ct −Xt)
−γ + bVX,t

[
γ (Ct −Xt)

−1 σC,t − b (Ct −Xt)
γ σVX ,t

]
. (77)

Note that (76) and (77) depend on the drift and diffusion coefficients of the policy

functions for consumption and the habit costate variable. Using Itô’s lemma we can show

that they are given by

µC,t =
∂Ct
∂Kt

[
Φ

(
exp(At)K

α
t − Ct

Kt

)
− δ
]
Kt +

∂Ct
∂Xt

(bCt − aXt)−
∂Ct
∂At

ρAAt + 1
2

∂2Ct

(∂At)
2σ

2
A

µVX ,t = (ρ+ a)VX,t + (Ct −Xt)
−γ

σC,t =
∂Ct
∂At

σA

σVX ,t =
∂VX,t
∂At

σA.
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B The stochastic growth model

By letting X0 = b = 0 and ξ →∞, the model in Section 2 collapses to

V (K0, A0) = max
{Ct}∞t=0

E0

[ˆ ∞
0

e−ρt
C1−γ
t

1− γ
dt

]
subject to

dKt = (exp(At)K
α
t − Ct − δKt) dt, K0 > 0

dAt = −ρAAtdt+
√
ησ2

AdBA,t, A0 > 0,

where we have included explicitly the perturbation parameter, η, that rescales the amount

of variance in the model. The associated HJB equation reads

ρV (K,A; η) = max
C

{
C1−γ

1− γ
+ (exp(A)Kα − C − δK)VK(K,A; η)

− ρAAVA(K,A; η) + 1
2
ησ2

AVAA(K,A; η)

}
.

The first order condition for an interior solution is

C−γ = VK(K,A; η),

making optimal consumption a function of the state variables and the perturbation pa-

rameter, C? = C (K,A; η). Substituting back, the maximized (concentrated) HJB equa-

tion reads

ρV (K,A; η) =
C(K,A; η)1−γ

1− γ
+ (exp(A)Kα − C(K,A; η)− δK)VK(K,A; η)

− ρAAVA(K,A; η) + 1
2
ησ2

AVAA(K,A; η)

from which we can obtain the costate variable (using the envelope theorem) as

ρVK(K,A; η) = (exp(A)Kα − C(K,A; η)− δK)VKK(K,A; η)

(α exp(A)Kα−1 − δ)VK(K,A; η)− ρAAVAK(K,A; η) + 1
2
ησ2

AVAAK(K,A; η)

such that

(ρ− α exp(A)Kα−1 + δ)VK(K,A; η) = (exp(A)Kα − C(K,A; η)− δK)VKK(K,A; η)

− ρAAVAK(K,A; η) + 1
2
ησ2

AVAAK(K,A; η).
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Using Itô’s Lemma, the evolution of the costate variable is given by

dVK(K,A; η) = VKK(K,A; η)dK + VKA(K,A; η)dA+ 1
2
ησ2

AVKAA(K,A; η)dt

= (ρ− α exp(A)Kα−1 + δ)VK(K,A; η)dt+ VKA(K,A; η)
√
ησ2

AdBA.

Using once again the first-order condition, we may alternatively write

dC−γt = (ρ− α exp(At)K
α−1
t + δ)C−γt dt− γC−γ−1t CA,t

√
ησ2

AdBA,t

or

dCt
Ct

=

[
1

γ

(
α exp(At)K

α−1
t − δ − ρ

)
+ 1

2
(1 + γ)

(
CA,t
Ct

)2

ησ2
A

]
dt+

(
CA,t
Ct

)√
ησ2

AdBA,t,

which is the Euler equation for consumption in (37). Together with (34) and (35), they

define the equilibrium of the economy in the time-space domain.

Alternatively, the equilibrium of this economy can be characterized in the space of

states by eliminating time and stochastic shocks from the previous equilibrium system.

To do so, note that Itô’s lemma implies

dCt = CK,tdKt + CA,tdAt + 1
2
CAA,tησ

2
Adt

= CK,t (exp(At)K
α
t − Ct − δKt) dt

−CA,tρAAtdt+ CA,tησAdBA,t + 1
2
CAA,tησ

2
Adt. (78)

Combining (37) and (78) yields

1

γ

(
α exp(At)K

α−1
t − δ − ρ

)
Ct + 1

2
(1 + γ)Ct

(
CA,t
Ct

)2

ησ2
A

− CK,t (exp(At)K
α
t − Ct − δKt) + CA,tρAAt − 1

2
CAA,tησ

2
A = 0

which corresponds to the functional equation

H (C,CK , CA, CAA, K,A; η) = 0.

Since the policy function C = C (K,A; η) is unknown, we approximate it by means

of a k-th order perturbation around the deterministic steady state. Substituting into the

functional H yield the new functional

F (K,A; η) = H (C (K,A; η) , CK (K,A; η) , CA (K,A; η) , CAA (K,A; η) , K,A; η) = 0.
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Consider the case of k = 1. Hence, optimal consumption is approximated as

C (K,A; η) ≈ C + CK

(
K −K

)
+ CA

(
A− A

)
+ Cηη,

where C is the deterministic steady-state value of consumption.

Let Hj denote the partial derivative of H (·) with respect to its j-th element. Then,

in order to find the yet unknown coefficients CK , CA and Cη we compute

FK (Kt, At; η) = H1CK +H2CKK +H3CAK +H4CAAK +H5 = 0

FA (Kt, At; η) = H1CA +H2CKA +H3CAA +H4CAAA +H6 = 0

Fη (Kt, At; η) = H1Cη +H2CKη +H3CAη +H4CAAη +H7 = 0,

which evaluated at the deterministic steady state reduces to a system of three non-linear

equations in the three unknowns, CK , CA, Cη, that can be solved recursively

FK
(
K,A; 0

)
= H1CK +H5 = 0

FA
(
K,A; 0

)
= H1CA +H6 = 0

Fη
(
K,A; 0

)
= H1Cη +H7 = 0,

where H1, H5, H6 and H7 are also functions of the unknowns. In particular,

FK
(
K,A; 0

)
=
(
α exp(A)K

α−1 − δ − CK

) CK

C
− 1

γ
α (α− 1) exp(A)K

α−2
.

Since this derivative must be zero, we arrive to the quadratic equation

C
2

K −
(
α exp(A)K

α−1 − δ
)
CK +

1

γ
α (α− 1) exp(A)K

α−2
C = 0

with roots

CK =

(
α exp(A)K

α−1 − δ
)

2
±

√√√√(α exp(A)K
α−1 − δ

)2
− 4 1

γ
α (α− 1) exp(A)K

α−2
C

4
.

We pick the positive root since it is the only one that is consistent with a concave value

function V (K,A) in the capital stock. To see why, recall that the first-order condition

u′ (C (K,A)) = VK (K,A) ,

together with the assumptions on the utility function u (C) imposes a necessary condition

for concavity of the value function. A sufficient condition for concavity is given by the
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derivative of the first order condition

u′′ (C (K,A))CK (K,A) = VKK (K,A)

which suggests that VKK (K,A) < 0 if and only if CK (K,A) > 0 given that u′′ (C) < 0.

We now solve for CA from

FA
(
K,A; 0

)
=
α exp(A)K

α−1

γ
C − CK

(
exp(A)K

α − CA

)
+ CAρA.

Since this derivative must be zero, we arrive at the following linear equation

CA =
1(

CK + ρA
) [CK exp(A)K

α − α exp(A)K
α−1

γ
C

]

which can be readily evaluated once CK
(
K̄, Ā; 0

)
is computed from the first step.

Finally, we obtain Cη from

Fη
(
K,A; 0

)
= CηCK + 1

2
(1 + γ)C

(
CA

C

)2

σ2
A,

and since Fη
(
K̄, Ā; 0

)
= 0, we arrive at the linear equation

Cη = −
(
CK

)−1 [1
2

(1 + γ)C

(
CA

C

)2

σ2
A

]
,

which completes the computation of the first-order perturbation to the unknown policy

function for consumption.
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