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Abstract 
 
This paper derives the incidence of a pollution tax in a stylized general equilibrium framework, 
building on previous work by Fullerton and Heutel (2007a). Using the CPI as numeraire, we 
show that tax incidence is a simpler problem than previously thought, and that general insights 
can be derived without the need to restrict the parameter space. In addition, the counterintuitive 
possibility that an increase in the tax could increase the pollution level vanishes. The choice of 
the CPI as numeraire is further justified by the fact that environmental taxes, notably carbon 
taxes, are typically indexed on inflation. 
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1 Introduction

It has been known since the seminal work of Muth (1964), and later confirmed through
the more general results of Heiner (1982) and Braulke (1984), that under fairly general
conditions, the law of input demand holds at the industry level even when the prices of
outputs or other inputs are allowed to adjust in related markets in response to the input
price increase. An interpretation of this law is that an exogenous tax on an industry input
reduces the overall use of that input, even if certain firms end up using more of it. That
is, demand and “derived demand” both slope down in the aggregate. If the taxed input
causes pollution, pollution will unambiguously be reduced by an increase in the tax.1
This simple economic logic lies at the core of environmental taxation (Baumol and Oates,
1988).

While the literature cited above explicitly allows for the presence of markets besides
the one subject to taxation, they rely on partial equilibrium approaches. In seminal
contributions to the analysis of the incidence of environmental policy, Fullerton andHeutel
(2007a) and Fullerton and Heutel (2010b) show that the desirable effects of environmental
taxation on pollution may no longer apply in a general equilibrium context, even in a
closed economy and under the assumption of homogenous spending propensities on the

1The result holds as long as the supply of the dirty input is less than infinitely inelastic. If it is infinitely
inelastic, input use remains constant, but it does not increase.
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demand side.2 That is, an increase in the tax on a polluting input (e.g., carbon) may
in some cases lead to more, not less, pollution. Similarly, in a cap-and-trade system, a
decrease in the cap on a polluting input could lead to a decrease in the permit price.

Fullerton and Heutel (2007a) suggest that the ambiguity regarding the applicability
of the law of input demand to polluting inputs is due to general equilibrium feedback
effects.3 Here, we argue that whenever the law of input demand is violated for pollution,
the equilibrium in their model is unstable in the Marshallian sense.4 The occurrence of
such instability, which may seem tangential to the issue of policy incidence, is in fact
closely related to it as all comparative statics, not simply that on the pollution outcome,
are reversed in this case, notably those pertaining to relative returns to labor and capital.
Thus, the inability to rule out equilibrium instability precludes general conclusions to be
drawn regarding policy incidence.

The present paper offers a solution to this problem. Specifically, we show that the
existence of unstable equilibria is an artefact of the choice of numeraire good. Due
to the non-market nature of pollution, the tax on the polluting input is modeled as a
nominal, rather than ad valorem, tax. As a result, the effects of this nominal tax on goods
provision, resource allocation, and relative prices implicitly depend on which good is
chosen as numeraire, as the tax increases the price of the polluting input relative to that of
the numeraire. Said differently, there are as many varieties of environmental taxes as choices
of numeraire good. Note that the issue is not about the undeterminacy surrounding the
overall magnitude of prices, but, since the model is used to compare equilibria, that an
increase in the nominal tax rate increases the price of pollution relative to the price of
the numeraire, while potentially decreasing it relative to other prices.5 This fundamental

2In earlier work, Mieszkowski (1967) relaxes the assumption of identical spending propensities among
owners of capital and owners of labor and shows that a series of counterintuitive comparative statics may
ensue.

3See, for instance, the discussion in footnote 14 of Fullerton and Heutel (2007a). Note that the numerical
example provided in that footnote violates the negative semidefiniteness property of the substitutionmatrix
in sector Y. For an example of model parameterization leading to the counterintuitive outcome, see
Appendix A.6.

4Put simply, Marshallian instability means that if the demand price of a good exceeds the supply price
of that good, quantity will move further away from its equilibrium value.

5In earlier studies byBovenberg andGoulder (1997) andDeMooĳ andBovenberg (1998) that also consider
a pollution tax, capital, the polluting input, and a final consumption good are supplied to/demanded from
a small economy in an infinitely elastic fashion, with fixed rates of exchange on the world market. As a
result, a tax on the dirty input increases the price of that input relative to that of capital and that of the
consumption good. The only price determined endogenously in the model is the wage rate. A government
budget constraint imposes that a rise in the pollution tax be matched by a decrease in either the tax on
labor or that on capital, giving rise to the possibility of an increase in pollution through an expansion in
output. The mechanism behind the increase in pollution in these earlier models is thus distinct from that in
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dependency of outcomes on numeraire choice is not present when considering taxation of
amarket good, as in that case the tax creates awedge between the equilibriumprices of the
good faced by different “users” (e.g., supply vs. demand prices for a tax on a consumption
good, or prices of a factor across different industries in the case of a partial factor tax as
in Harberger (1962)). While the “users” prices themselves depend on numeraire choice,
their relationship to each other does not, nor do their relationships with the prices of other
goods in the economy. In contrast, a non-market good such as pollution only has a single
“user” and a supply price of zero that does not adjust to changes in numeraire, hence the
dependency of real outcomes on numeraire choice.6

The question then arises as to which good should be chosen as numeraire when
modeling the effects of a tax on a non-market good. An equivalent way to frame that
question is to imagine that instead of being expressed in nominal terms, such tax is
expressed in ad valorem terms relative to the equilibrium value of some market good.
Because the prices of market goods respond to changes in numeraire choice in ways that
preserve their relationships with each other, anchoring the pollution tax to the price of a
market good removes the dependency of real tax outcomes on numeraire choice. Note
that instead of being anchored to the price of a single good, the tax could also be anchored
to a price index reflecting the average level of prices across a set of goods.7 In that sense,
the choice of which variety of environmental taxation to model in general equilibriummay
seem overwhelming.

We argue that a reasonable anchoring price index should be one for which the law of
input demand is satisfied, that is, an increase in the price of the dirty input relative to
the equilibrium value of the index unambiguously leads to a decrease in input use—and
attendant pollution. Such requirement amounts to ruling out equilibria that are unstable
in the Marshallian sense and thus ensures that meaningful comparative statics can be
derived (Samuelson, 1941). With this constraint in mind, we consider two classes of price
indices: those defined over the prices of consumption goods (uses side) and those defined
over factor prices (sources side). Using themodel of Fullerton andHeutel (2007a), we show
that within each class, there exists a unique index that satisfies the stability constraint.
We express each index using underlying parameters of the economy. On the uses side,
the price index is identical to an inflation index, namely the product of the prices of
consumption goods raised to their respective expenditure shares. On the sources side, the

Fullerton and Heutel (2007a) and Fullerton and Heutel (2010b).

6Of course, the polluting input could be used by more than one industry, but the point is that a tax on
that input creates a positive price, that all industries face.

7A similar point is made in Baylis et al. (2014, pg. 63).
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price index is equal to the product of factor prices raised to their respective income shares.
Importantly, none of these indices depend on behavioral parameters such as substitution
elasticities, either in production or consumption.8 Therefore, a government could anchor
the pollution tax to either index without unrealistic informational requirements. For
instance, thepollution tax couldbe tied to theConsumerPrice Index (CPI).With apollution
tax so designed, not only is the effect of a rise in the tax in accordance with the law of input
demand and the intent of environmental taxation, but the tax incidence results discussed
by Fullerton and Heutel (2007a) in the context of specific parameter values are also shown
to hold generally.9 Furthermore, because our analysis does not require focussing on
special cases, we are able to provide general results regarding incidence on the uses side
that were left unexplored in the original study.

Specifically, wemake explicit the conditions under which the pollution tax may lead to
a reduction in the price of the dirty good relative to that of the clean good, a possibility that
has been recognized, but not elucidated, in Fullerton and Heutel (2010b), and overlooked
in much of the literature. Indeed, incidence studies focussing on the uses side generally
take it as a premise that the price of the dirty goodwill rise relative to that of the clean good,
and then compare impacts across groups purchasing these goods in varying proportions
(Grainger and Kolstad, 2010; Cronin et al., 2019; Fullerton and Muehlegger, 2019). But if
the price of the dirty good decreases relative to that of the clean good, the burden will
fall disproportionately on those who purchase relatively less, not more, of the dirty good.
We show that this counterintuitive result can arise if the factor used more intensively by
the clean industry (say capital) is a better substitute for pollution than the other factor
(say labor), and the price of the former rises relative to that of the latter as a result of the
pollution tax.

Although fairly recent, the contribution of Fullerton and Heutel (2007a) has had an
undeniable influence in the environmental economics literature. Their model has been
used in Fullerton and Heutel (2007b), Fullerton and Heutel (2010b), Fullerton and Heutel
(2010a), and Fullerton et al. (2011). It has been modified or extended in further contribu-
tions by Fullerton and Monti (2013), Baylis et al. (2013), Rivers (2013), Baylis et al. (2014),
Rausch and Schwarz (2016), and Goulder et al. (2016). Their analysis has also provided

8Our model assumes homothetic, but not necessarily Cobb-Douglas, consumer preferences.

9The special cases analyzed in Fullerton and Heutel (2007a) and Fullerton and Heutel (2010b) are quite
restrictive. Fullerton and Heutel (2007a) focus on the case where the clean and dirty industries have
equal factor intensities and the case where labor and capital are equally substitutable for pollution in the
dirty industry. In their study of a pollution cap, Fullerton and Heutel (2010b) analyze the special case of
equal factor intensities, along with the case of zero substitution across inputs in the dirty sector (see their
appendix).
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needed clarity on important drivers of the incidence of environmental policy in studies
that involve more complex and realistic models of the economy, e.g., Rausch et al. (2011),
Rausch and Mowers (2014), or Marten et al. (2019), and in policy discussions, e.g., Morris
and Munnings (2013).

Our papermakes four contributions to the literature. First, we show thatwell-designed
pollution taxes need not have ambiguous effects on equilibrium pollution levels in general
equilibrium, and that counterintuitive pollution outcomes identified in previous literature
imply unstable equilibria. Second, we ask whether there exist anchoring prices that avoid
equilibrium instability altogether. We show that the answer is yes, and that, reassuringly
perhaps, the set of candidate indices is limited. On the uses side, the only index satisfying
the stability constraint for all parameter values is equivalent to theCPI.On the sources side,
it is equivalent to a producer price index for primary production factors. Third, using
these indices, we demonstrate that tax incidence results previously derived in special
cases hold in fact quite generally. We also provide new and general results pertaining
to incidence on the uses side. Fourth, we empirically demonstrate that the choice of
numeraire in general equilibrium models influences comparative statics with respect to
nominal taxes on non-market goods like pollution. Notably, using a model calibrated
to the US economy, we show that predicted pollution impacts may differ by up to 40%
depending on the choice of anchoring price, and that this choice acts as an essential driver
of predicted incidence on the uses side. The fact that our model is extremely stylized
suggests that even larger discrepancies could occur in richer models where the number of
candidate numeraire goods is larger.

In terms of policy implications, we note that many recent policy proposals for a U.S.
carbon tax already choose to index the tax to inflation, albeit for reasons likely unrelated to
the results discussed here (Marron et al., 2015; Aldy, 2016; Vail and Burtraw, 2016;Metcalf,
2018; Climate Leadership Council, 2019; H.R. 763, 2019; H.R. 3966, 2019; H.R. 4058, 2019;
S. 1128, 2019; S. 2368, 2018; S. 2284, 2019).10 Furthermore, carbon taxes indexed to inflation
have already been implemented in a number of countries, includingDenmark and Sweden
(Withana et al., 2013), Iceland (PMR, 2017), Norway (Haites et al., 2018), Chile, Colombia,
andMexico (UN, 2019), the Netherlands (Andersen et al., 2007), South Africa (Act No. 15,
2019), and the United Kingdom (National Audit Office, 2007).11 The arguments laid out in
the present paper serve to strengthen the case for such indexation. Our simulation results

10Inflation adjustmentswould be on top of any rampingup of the taxmeant to increase pollution reduction
incentives over time.

11California and Québec operate a cap-and-trade program rather than a carbon tax. Yet, the auction price
floor and price ceiling are both indexed to inflation (ICAP, 2019b,a).
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further suggest that accuratelymodeling the effects of such policies in general equilibrium
requires special attention to the choice of anchoring price.

Although our general equilibrium analysis is of direct relevance to environmental pol-
icy, our findings on the comparative statics of tax incidence do not rely on any assumption
regarding the actual external effects of the “dirty” input on technology or consumer utility;
all that is required for our results is that this input be a non-market good available to the
economy in sufficiently large quantity. As such, the framework conceptually applies to
other settings, for instance per-period restrictions on the extraction of a natural resource
for the purposes of conservation or sustainability.

2 Model and notation

Weborrow the assumptions of Fullerton andHeutel (2007a), which build upon the seminal
model of Harberger (1962). The model is parsimonious and aims to capture the essen-
tial drivers and overall magnitude of environmental tax incidence, rather than provide
accurate predictions for a given economy, as would a more detailed computable general
equilibrium approach. A notable advantage is that it can be solved analytically, providing
a “model of the model” (Fullerton and Heutel, 2010a). Relatedly, Fullerton and Ta (2019)
demonstrate that a stylized and analytically solvable model of the US economy delivers
quantitative predictions on the effects of a carbon tax that are not far from those obtained
from the detailed CGE model developed by Goulder and Hafstead (2018), and can help
in understanding the drivers of these effects.

There are two economic sectors, X and Y, that use labor (L) and capital (K) as inputs.
The dirty sector (Y) also uses a dirty input (Z, pollution). In each sector, production
displays constant returns to scale.12 The economy is endowed with fixed quantities of
labor and capital allocated across the two sectors, and with an unspecified quantity of
dirty input. The use of the dirty input by sector Y causes pollution, which a tax on input
Z aims to reduce. The effect of pollution on utility is left implicit, which means that the
model takes the tax as an exogenous policy parameter without attempting to derive its
socially optimal level. Instead, the purpose of the model is to predict the effect of a change
in the environmental tax on equilibrium prices and quantities.

The model allows for pre-existing ad valorem taxes on all goods, but since the focus of
our discussion is on environmental taxes (i.e., the tax on input Z), we follow Fullerton and
Heutel (2007a) and ignore them in the discussion. That is, the only exogenous change is

12In sector Y, the constant returns to scale are with respect to all three inputs L, K, and Z.
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a rise in the tax on the dirty input, and all other taxes are assumed to remain constant.
As in Harberger (1962), government is assumed to use additional tax revenue to purchase
the two goods in the same proportion as would households under the initial prices. A
consequence of this assumption is that the change in the relative aggregate demands for
consumption goods only depends on the change in their relative prices. An alternative
set of assumptions would be that tax revenue is redistributed to households, who have
identical homothetic preferences.

We denote by LX (resp. LY) the quantity of labor employed in sector X (resp. sector
Y), KX (resp. KY) the quantity of capital employed in sector X (resp.Y), pX (resp. pY) the
price of good X (resp. good Y), w (resp. r) the price of labor (resp. capital), and pZ the
price of Z (that is, the tax per unit of Z). Small relative changes in equilibrium variables
are denoted with a “hat.” For instance, p̂Y ≡

dpY
pY

.
Themodel is solved bydifferentiating equilibriumconditions pertaining to production,

consumption, and resource availability, yielding the following set of linear equations:13

L̂X + γL L̂Y � 0 (1)

K̂X + γKK̂Y � 0 (2)

X̂ − θXL L̂X − θXKK̂X � 0 (3)

Ŷ − θYL L̂Y − θYKK̂Y − θYZẐ � 0 (4)

p̂X − θXLŵ − θXK r̂ � 0 (5)

p̂Y − θYLŵ − θYK r̂ � θYZ p̂Z (6)

L̂X − K̂X + σX ŵ − σX r̂ � 0 (7)

L̂Y − Ẑ − θYL (eLL − eLZ)ŵ − θYK (eLK − eKZ) r̂ � θYZ (eLZ − eZZ)p̂Z (8)

K̂Y − Ẑ − θYL (eLK − eLZ)ŵ − θYK (eKK − eKZ) r̂ � θYZ (eKZ − eZZ)p̂Z (9)

X̂ − Ŷ + σu p̂X − σu p̂Y � 0 (10)

where γL ≡
LY
LX
> 0 and γK ≡

KY
KX

> 0 denote the resources allocated to sector Y relative
to sector X, θXL ≡

wLX
pX X denotes the cost share of labor in sector X (and similarly for the

parameters θXK , θYL, θYK , and θYZ), σu ≥ 0 is the elasticity of substitution in consumption
between X and Y, σX ≥ 0 is the elasticity of substitution between labor and capital in sector
X, and the parameters ei j , for i , j ∈ {L, K, Z}, represent Allen elasticities of substitution
defined as ei j �

ai j
θY j

, where ai j is the conditional input demand elasticity for input i with
respect to the price of input j in sector Y. Microeconomic theory places restrictions on the

13The formal derivations are shown in Appendix A.2.
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acceptable values of the θX j , θY j , and ei j parameters that are described in Appendix A.1.
Equations (1) and (2) pertain to resource use and imply that a change in a resource

allocated to one sector must be offset by a change in the resource allocated to the other
sector. Equations (3)–(6) are a consequence of profit maximization and constant returns to
scale in each sector: effects on output are directly related to effects on inputs through the
cost shares, for both quantities and prices. Equation (7) relates the change in the ratio of
input demands in sector X to the change in the ratio of input prices using the substitution
elasticity. Equations (8) and (9) represent the generalization of this relationship to the three
inputs in sector Y, and thus feature the Allen substitution elasticities. Finally, Equation
(10) relates the change in the ratio of goods consumed to the change in the ratio of their
prices using the elasticity of substitution in consumption.

Given an exogenous change p̂Z, the system describing equilibrium displacement thus
has 10 equations for 11 unknowns. Choosing a numeraire good adds themissing relation-
ship, but changing the numeraire also changes the nature of the tax increase and therefore
the variety of environmental policy considered. In the next section, we express the tax on
pollution, p̂Z, relative to an explicit price index, thereby eliminating the dependency of
comparative static results on numeraire choice.

3 Anchoring the environmental tax to a price index

Consider the following Cobb-Douglas price index:

P � pαX
X pαY

Y wαL rαK

with positive exponents and αX + αY + αL + αK � 1 due to homogeneity of degree one.
(Since prices are determined up to a multiplicative constant, the price index so defined
is also determined up to the same multiplicative constant.) The relative change in P can
then be expressed as

P̂ � αX p̂X + αY p̂Y + αLŵ + αK r̂ .

If the price index P is used to anchor the pollution tax, then pZ � PτZ, where τZ is
now interpretable as an ad valorem tax relative to P, and therefore

p̂Z � P̂ + τ̂Z .

Note that due to the equilibrium relationship p̂X � θXLŵ + θXK r̂, including pX in
the price index P is redundant. That is, any change in the weight on pX can be exactly
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offset by changes in the weights on w and r, leaving P̂ unchanged. This is not the case
for pY because p̂Y � θYLŵ + θYK r̂ + θYZ τ̂Z, that is, unlike p̂X , p̂Y implicitly includes τ̂Z

independently of ŵ and r̂. Without loss of generality, we can therefore focus on price
indices of the form

P � pβY
(
wαr1−α

)1−β
(11)

where 0 ≤ α, β ≤ 1. If β � 0 then the index reflects an average of factor prices, that is, the
price of a combined labor-capital input. If α � θXL, then due to Equation (5) the index
reflects an average of prices of consumption goods. Note that our specification of the price
index includes as a special case the normalization made by Fullerton and Heutel (2007a),
that is, P � pX (β � 0, α � θXL).14 It also includes as special cases the choices of pY (β � 1),
w (β � 0, α � 1), or r (β � 0, α � 0) as alternative numeraire goods.

In what follows, we focus on price indices that reflect prices either on the uses side
(α � θXL) or the sources side (β � 0). Although we could analyze each case separately,
the price index in Equation (11) allows us to handle both cases within a single framework.
We also focus on price indices that can be constructed from the observation of an initial
equilibrium allocation and do not require knowledge of substitution elasticities, either in
production or consumption. The idea is that since the anchoring price index corresponds
to a particular policy choice, it is desirable for implementability to restrict the search to
indices that can be designed with readily available economic information.

Note that the restriction toprice indices of theCobb-Douglas form ismadeherewithout
loss of generality. Consider for instance a CES price index on the uses side

P �

[
βp

σ−1
σ

X + (1 − β)p
σ−1
σ

Y

] σ
σ−1

where 0 ≤ β ≤ 1 and σ ≥ 0. It is easy to show that

P̂ � Bp̂X + (1 − B)p̂Y

where B ≡
βp

σ−1
σ

X

βp
σ−1
σ

X +(1−β)p
σ−1
σ

Y

. Therefore, a CES index would not meaningfully expand the set

of acceptable indices, as the relative change in the value of the CES index is still reducible
to a convex combination of relative price changes. As such, any restriction on the CES
parameters β and σ to ensure a downward-sloping demand for the polluting input would
necessarily be channelled through the Cobb-Douglas share B.

14Fullerton and Heutel (2007a) choose the normalization p̂X � 0 while setting pZ � τZ (that is, τZ is a
nominal tax), which given the equilibrium condition (5) is equivalent to setting β � 0 and α � θXL.
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Figure 1: The Marshallian adjustment process in the market for the dirty input
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3.1 Stability of the competitive equilibrium with pollution tax

As explained in Samuelson (1941), “the problem of stability of equilibrium is intimately
tied up with the problem of deriving fruitful theorems in comparative statics.” The
concept of equilibrium stability requires a definition of the dynamics of the economy. An
equilibrium is said to be stable (in the small) if for sufficiently small displacements, all
the variables approach their equilibrium values as time goes to infinity. Here we use the
concept of Marshallian stability, as explained for instance in Samuelson (1941) or Plott
and George (1992). Marshallian stability mandates that quantity adjusts to the difference
between the demand and the supply prices of a good.15

We consider the followingMarshallian adjustment process: if at any point in time t, the
quantity of polluting input Zt is such that the demand price for that quantity (expressed
relative to the price index P) exceeds the supply price (that is, the pollution tax τZ), then
the quantity must increase. The opposite holds in the case when the demand price is
less than the supply price. Figure 1 shows a graphical representation of such adjustment
process in the normal case of a downward-sloping derived demand, assuming that in
the initial condition the quantity is less than the equilibrium value. Because the derived
demand for the input slopes down, the equilibrium is stable: the adjustment process
brings quantity closer to its equilibrium value. Had the derived demand sloped up, the

15In contrast, Walrasian stability mandates that price adjusts to excess demand, that is, the difference
between quantity demanded and quantity supplied. In our model with horizontal supply of polluting
input, the quantity of polluting input supplied is not a well-defined function of price, which precludes the
use of Walrasian stability.
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equilibrium would have been Marshallian unstable.
A simple mathematical representation of the Marshallian process posits the following

dynamic relationship:
dZ
dt

� ρZ (Z) − τZ

where ρZ (Z) represents the inverse demand function for the polluting input, expressed
relative to the price index P. Following Samuelson (1941), we can use a first-order
expansion of the function ρZ (Z) around the equilibrium point Z̄ to obtain

dZ
dt

� ρ′Z (Z̄)
(
Z − Z̄

)
where we have made use of ρZ (Z̄) � τZ. The solution to this differential equation,
together with the initial condition Z � Z0, is simply Z(t) � Z̄ + (Z0

− Z̄)eρ
′

Z (Z̄)t , implying
that limt→∞ Z(t) � Z̄ if and only if ρ′Z (Z̄) ≤ 0, that is, the demand for pollution slopes
down. This result establishes the fact that whenever the derived demand for pollution
slopes up, the equilibrium cannot be stable in the Marshallian sense. In what follows,
we characterize price indices P that ensure that the derived demand for pollution slopes
down, that is, the equilibrium is stable in the Marshallian sense.

3.2 Desirable properties of a price index

We are looking for weights α, β on the price index in Equation (11) such that the following
three conditions are satisfied:

Condition 1 The pollution demand elasticity Ẑ
τ̂z

is defined for all parameter values, that is, the
determinant of the equilibrium system is never zero and thus does not change sign.

Condition 2 The weights α and β only depend on the observable parameters γK , γL, θXK , θYK ,
and θYL, or combinations thereof.

Condition 3 The pollution tax has the intended effect for all parameter values, that is, Ẑ
τ̂z
≤ 0.

3.3 Derivation of the price indices

Our main results regarding the existence and uniqueness of price indices that avoid
violations of the law of input demand derive from the following proposition.

Proposition 1 Condition 1 and Condition 2 imply the following restriction:

[
βθYK + (1 − β)(1 − α)

]
θXL (1 + γL) �

[
βθYL + (1 − β)α

]
θXK (1 + γK), (12)
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while Condition 3 is automatically satisfied as long as Condition 1 is.

The formal proof can be found in Appendix A.3.16 There, we show that the choice of
(α, β) affects the elasticity Ẑ

τ̂z
only through its effect on the determinant of the equilibrium

system. Equation (12) is shown to be both necessary and sufficient for this determinant to
have a constant sign for all possible parameter values. Specifically, we show that if σX and
σu are small enough, values of the Allen elasticities of substitution (eLL , eKK , eLK) may lead
to a sign reversal, even when the restrictions from theory are imposed, unless Equation
(12) holds. Importantly, the sign reversal requires labor and capital to be complementary
in the production of good Y (eLK < 0), irrespective of the choice of anchoring price index.
Consequently, there cannot be a sign reversal, and thus a violation of the law of input
demand, in a model with a single clean input, as in that case eLK � 0.17 Note that when
it happens, the reversal in the sign of the determinant of the equilibrium system causes
all comparative static results, not just the effect on pollution, to be reversed relative to the
normal case.

Equation (12) is violated in Fullerton and Heutel (2007a)’s model where β � 0 and
α � θXL, except in the special case of equal factor intensities in the two sectors (γL �

γK). Consequently, there exists a nonempty subset of the parameter space for which all
comparative statics are reversed. Such a subset is depicted in Figure 2 for the special case
where σX � σu � 0, γL � 1, and eLL � −1. In both panels, the set of values of (γK , eKK , eLK)
supporting the sign reversal is shown as the region located above the blue surface and
below the orange surface.18 The choice eLL � −1 is a normalization that only affects the
scale of eKK and eLK . As such, the values of eKK and eLK can be reinterpreted as those of
eKK
|eLL |

and eLK
|eLL |

, respectively. The figure shows that the sign reversal is more likely to happen
with either small values of the capital intensity γK paired with large magnitudes of the
Allen elasticities eKK and eLK relative to eLL (red dot), or large values of γK paired with
small magnitudes of eKK and eLK relative to eLL (brown dot). The blue dot corresponds
to a numerical example given in Appendix A.6, where γK , |eKK |, and |eLK | are all close
to (but different than) one. Similarly shaped violation regions exist for alternative values
of γL. Although the region depicted in Figure 2 assumes σX � σu � 0,19 there also exist

16Equation (12) is similar to Equation (A-17).

17See Appendix B for a formal proof.

18Using the notation of Appendix A.3, this parameter subspace supports ∆ � C3 < 0. Note that when
β � 0 and α � θXL, BL � θXL and BK � θXK . The sign of ∆ is then independent of the values of the cost
shares, conditional on the choices of γL and γK .

19If we allow either σX or σu to be nonzero, we can no longer represent the violation region on a three-
dimensional graph, because the parameters θYL, θYK , σX , and σu also determine the sign of the equilibrium
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Figure 2: Violations of the law of input demand with pX as numeraire

(a) (b)

Note: We set σX � σu � 0, γL � 1, eLL � −1, and assume eLK ≤ 0. Panels (a) and (b) depict the
same region over different parameter ranges. All points located below the blue surface violate the
restrictions from theory (the negative semidefiniteness of the Slutsky matrix implies that
eLLeKK ≥ e2

LK). Within the relevant subspace located above the blue surface, the parameter region
located below the orange surface supports violations of the law of input demand.
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parameter values that lead to a sign reversal when σX > 0 and σu > 0. An example is
given in Appendix A.6. Appendix A.7 depicts the sign reversal region when pY , rather
than pX , is used as the anchoring price.

We may now specialize the restriction in Equation (12) to the case of indices on the
uses side.

Corollary 1 On the uses side (α � θXL), Equation (12) implies that either γL � γK or β �

γLγK
γLγK+γKθYL+γLθYK

�
pYY

pX X+pYY , that is, the desired price index is

P � pθX
X pθY

Y (13)

where θX ≡
pX X

pX X+pYY represents the initial expenditure share on good X and θY � 1 − θX .

No other choice of weights will guarantee that the law of input demand holds for all
parameter values. In particular, neither pX nor pY as choices of anchoring indices would
allow one to rule out upward-sloping demand for the dirty input. Thus, the choice of
numeraire matters when modeling a nominal tax on pollution, as the comparative statics
with respect to p̂Z may have different signs (and different magnitudes) across different
normalizations. This dependency of comparative statics on numeraire choice breaks down
if the pollution tax is anchored to an explicit price or price index. But then the choice
of anchoring price matters, in the same way that the choice of numeraire matters for the
nominal pollution tax.

The following corollary addresses the case of price indices on the sources side.

Corollary 2 On the sources side (β � 0), Equation (12) implies that α �
θXL (1+γL)

θXL (1+γL)+θXK (1+γK ) �

wL̄
wL̄+rK̄ , that is, the price index is

R � wθL rθK (14)

where θL ≡
wL̄

wL̄+rK̄ represents the initial contribution of labor to national income and θK � 1−θL.

Again, these weights are uniquely defined.20

3.4 Equivalence between our price indices and inflation indices

Inflation is typically measured using a price index that reflects the overall cost of a ref-
erence basket of goods under varying prices. Consider that the reference basket is the

system determinant.

20More generally, if one is willing to consider price indices that involve prices on both the uses and sources
side (that is, pX , pY , w, and r), it can be shown that any price index of the form PφR1−φ, with φ ∈ [0, 1], will
also satisfy Equation (12).
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consumption basket before the change in the pollution tax. Our preferred pollution tax is
anchored to the price index P � pθX

X pθY
Y where θX and θY are the reference budget shares.

When prices change in the economy, the change in our price index is:

P̂ � θX p̂X + θY p̂Y

�
pXX

pXX + pYY
dpX

pX
+

pYY
pXX + pYY

dpY

pY

�
XdpX + YdpY

pXX + pYY

�
dCPI
CPI

� ĈPI

whereCPI ≡ pXX+pYY represents the value of the reference basket. Therefore, expressing
the pollution tax as an ad valorem tax anchored to P is equivalent to adjusting a nominal
tax on pollution for inflation as measured by the CPI.

A similar argument can be used to demonstrate that our price index on the sources
side represents a producer price index, where the weights on factor prices correspond to
the reference shares of each primary factor in national income.

4 Simple tax incidence

4.1 Sources side

The followingproposition, proven inAppendixA.4, addresses tax incidence on the sources
side.

Proposition 2 Whenever Equation (12) holds,

sign
{ ŵ − r̂
τ̂Z

}
� sign

{
σu (γK − γL) + γL (1 + γK)eLZ − γK (1 + γL)eKZ

}
.

Which sector bears proportionately more of the tax burden therefore depends on the
consumption elasticity σu , the resource allocation parameters γL and γK , and the partial
substitution elasticities eLZ and eKZ, but not on the cost shares in either sector or the
substitution elasticity in the untaxed sector.21

21The size of ŵ−r̂
τ̂Z

itself depends on the full set of model parameters and the choice of anchoring index,
see Section 5 and Appendix C.
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These few parameters affect the direction of the change in the price of labor relative
to capital in an intuitive yet subtle way. If labor and capital are equally substitutable
for pollution (eLZ � eKZ > 0), then the pollution tax places a disproportionate burden
on capital (i.e., ŵ − r̂ > 0) when the polluting sector is capital intensive (γK > γL) as
long as goods are sufficiently substitutable in consumption (i.e., σu > eLZ � eKZ). If not
(σu < eLZ), then the input substitution effect dominates and the demand for capital in
the capital-intensive polluting sector rises so that the return to capital increases relative
to the wage rate. If both sectors are equally capital-intensive (i.e., γL � γK), then capital
bears disproportionately more of the tax burden if and only if it is less substitutable for
the polluting input than is labor.

These economic insights were already discussed, albeit for specific classes of model
parameterizations, in the original contribution of Fullerton and Heutel (2007a). Indeed,
the authors were prevented from drawing general conclusions by the fact that they could
not sign the main equilibrium system denominator except in special cases, which as we
have shown is a direct consequence of modeling the pollution tax increase relative to the
price of good X.

4.2 Uses side

The following proposition, proven in Appendix A.5, addresses tax incidence on the uses
side.

Proposition 3 Whenever Equation (12) holds,

sign
{

p̂Y − p̂X

τ̂Z

}
� sign

{
σX (1 + γLθXL + γKθXK) +

(
θYLγK (1 + γL) + θYKγL (1 + γK)

)
eLK

+γL (1 + γK)(θXK − θYK)eLZ + γK (1 + γL)(θXL − θYL)eKZ
}
.

As for incidence on the sources side, this expression has an ambiguous sign.22 However,
we show in Appendix A.5 that in the case of equal factor intensities (γL � γK),

p̂Y−p̂X
τ̂Z

> 0,
that is, users of Y share proportionately more tax burden than users of X irrespective of
the values of the substitution elasticities.

22This ambiguity comes in contrast to the effect of a partial factor tax in the standard Harberger model,
which unambiguously leads to a relative increase in the price of the good produced by the taxed sector
(Mieszkowski, 1967). The replacement of the partial factor tax by a tax on a third, non-market input explains
this difference. Note that the ambiguity here is unrelated to the choice of numeraire. Fullerton and Heutel
(2007a) do not discuss it explicitly, because the special cases they analyze (γL � γK and eLK � eLZ � eKZ)
imply unequivocal increases in the price of good Y relative to that of good X.
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Although one may legitimately expect the price of the dirty good to rise relative to
that of the clean good when the pollution tax increases (Rausch et al., 2011; Fullerton
and Muehlegger, 2019), the opposite may happen depending on the patterns of factor
intensity and input substitution in the two industries. For instance, consider the following
parameter values, which lead to p̂Y−p̂X

τ̂Z
< 0: θYL � 0.5, θYK � 0.4, γL � 1, γK � 0.25,

eLK � 1, eLZ � −1.9, eKZ � 6, and σX � 0.5. In that case, capital is a better substitute
for pollution in the dirty industry (eKZ > eLZ). This causes the price of capital to rise
relative to that of labor when the pollution tax increases (r̂ − ŵ > 0). Sector X being
capital-intensive relative to sector Y (γK

γL
� 0.25), and having more limited substitution

possibilities (σX � 0.5 compared to the large magnitudes of eLK , eLZ, and eKZ 23), the price
of good X rises relative to that of good Y (p̂X − p̂Y > 0). Note that demand conditions (σu)
play no role in determining the sign of p̂Y − p̂X , although they play a role in determining
the magnitude of the effect.24 Also note that it is not necessary for one of the cross-price
Allen elasticities of substitution to be negative for the price of good X to rise relative to
that of good Y; for instance, the following set of parameter values generates comparable
effects: θYL � 0.5, θYK � 0.4, γL � 4, γK � 1, eLK � 1, eLZ � 1, eKZ � 8, and σX � 0.5.
In Appendix A.5, we provide additional depictions of the parameter region that supports
p̂Y−p̂X
τ̂Z
≤ 0.

The following proposition, proven in Appendix A.5, generalizes the intuition devel-
oped in the examples above, by stating that instances whereby pY decreases relative to
pX require (i) the factor used more intensively in sector X to be a better substitute for
pollution than the other factor, and (ii) the price of the factor used more intensively in
sector X to increase relative to the price of the other factor. Hence, this proposition makes
an explicit link between incidence on the sources side and incidence on the uses side.25

Proposition 4 If γL > γK , then
p̂Y−p̂X
τ̂Z

< 0⇒
{
eKZ > eLZ and ŵ−r̂

τ̂Z
< 0

}
. Similarly, if γL < γK ,

then p̂Y−p̂X
τ̂Z

< 0⇒
{
eLZ > eKZ and ŵ−r̂

τ̂Z
> 0

}
.

Importantly, Proposition 4 does not imply that incidence on the sources side dictates
incidence on the uses sides, as the implications are unidirectional. For instance, if sector

23The values of eLK , eLZ , and eKZ are not independent due to restrictions pertaining to the negative
semidefiniteness of the Slutsky matrix. However, the overall magnitude of theses elasticities is independent
of that of σX .

24Similarly, substitution possibilities in sector X (σX) play no role in determining the sign of the incidence
on the sources side.

25Although Proposition 4 may seem intuitive, the proof is far from trivial. In Appendix A.5, we actually
show a slightly stronger statement than that reported in the proposition, namely that if γL > γK , then
p̂Y−p̂X
τ̂Z

< 0 ⇒
{
eKZ >

γL (1+γK )
γK (1+γL ) eLZ and ŵ−r̂

τ̂Z
< 0

}
. That latter statement is stronger because γL (1+γK )

γK (1+γL ) > 1 for
γL > γK .
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Table 1: Model parameters

Parameter Value
eLK 1
σu 1
σX 1
γL 0.25
γK 0.25
θXL 0.60
θYL 0.45
θYK 0.30

Note: Once we have set γL, γK , θYL, and θYK , θXL is determined by θXL �
γKθYL

γKθYL+γLθYK
.

Y is labor-intensive, pY may only decrease relative to pX if w decreases relative to r, but
this latter condition alone is not sufficient, even if σX � 0. The proposition does imply,
however, that whenever the price of Y decreases relative to that of X, incidence on the
sources side is entirely determined by the relative factor intensity.

5 Does the choice of anchoring price matter in practice?

In the previous sections, we have formally shown how comparative statics for an ad
valorem pollution tax depend, from an analytical standpoint, on the choice of anchoring
price. Consequently, comparative statics for a nominal tax, as in Fullerton and Heutel
(2007a), depend on the choice of numeraire. Appendix A.6 also provides an example
whereby using pX as anchoring price leads to the prediction that an increase in the
pollution tax increases pollution, whereas the use of our anchoring indices would lead
to a decrease in pollution. Importantly, the signs of the predicted tax incidence on the
sources and uses sides would also be inconsistent for that parameterization between the
two choices of anchoring prices (i.e., pX versus our proposed price indices). Intuitively,
cases whereby a rise in the pollution tax relative to pX (or any other price) lead to reversed
comparative statics precisely correspond to cases whereby the value of the pollution tax
actually decreases relative to our proposed price indices.

Here, we investigate whether the choice of anchoring price index (or, for a nominal tax,
the choice of numeraire) matters in practice, that is, for reasonable model parameteriza-
tions reflecting existing economies. We use the model parameterization of Fullerton and
Heutel (2007a) for the US economy, which is close to that used in Fullerton and Heutel
(2010b). In these papers, the polluting sector is defined by selecting polluting industries
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Table 2: Pollution effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Ẑ

pX (R) pY P w r st. dev.
0.0 0.0 -2.00 -2.67 -2.13 -2.00 -2.00 0.24
0.5 0.0 -3.58 -4.77 -3.81 -3.54 -3.63 0.43
1.0 0.0 -5.10 -6.80 -5.44 -5.00 -5.26 0.62
-0.5 0.5 -2.70 -3.60 -2.88 -2.76 -2.62 0.33
0.0 0.5 -4.38 -5.83 -4.67 -4.42 -4.31 0.54
0.5 0.5 -6.00 -8.00 -6.40 -6.00 -6.00 0.73
1.0 0.5 -7.58 -10.10 -8.08 -7.50 -7.69 0.92
-0.5 1.0 -4.97 -6.63 -5.31 -5.14 -4.75 0.62
0.0 1.0 -6.70 -8.93 -7.15 -6.84 -6.50 0.83
0.5 1.0 -8.38 -11.17 -8.93 -8.46 -8.25 1.02
1.0 1.0 -10.00 -13.33 -10.67 -10.00 -10.00 1.22

Note: Since γL � γK , θXL � θL and therefore the index pX leads to the same results as the index
R. The standard deviation is calculated accounting for both indices.

based on the EPA’s Toxic Release Inventory for 2002. We do not limit our analysis to a
comparison of our price indices P and R to theirs (pX). Instead, we broaden the scope of
the analysis by also considering the following indices: pY , w, r. Other indices could be de-
fined, however we believe that the set of chosen indices affords sufficient insights into the
empirical question. Baseline parameter values are given in Table 1. All parameter values
are fixed, except for the Allen cross-price elasticities eKZ and eLZ which are allowed to take
on the values {−0.5, 0.0, 0.5, 1.0}. We exclude pairs of elasticities that lead to violations of
the negative semidefiniteness of the Slutsky matrix in sector Y. Because it is assumed that
γL � γK , θXL � θL and therefore the index pX leads to the exact same results as the index
R. This assumption is relaxed in additional simulations reported in Appendix C.1.

Results in Table 2 show that the choice of numeraire matters for the calculation of the
predicted effect of the nominal tax on pollution, even if there is no reversal in sign.26 For
a given model parameterization, the standard deviation of predicted pollution impacts
across numeraire choices lies in excess of 10% of the impact estimates obtained with
the CPI (P) or the factor price index (R). The largest discrepancies are found when
comparing the use of the wage rate or the rental on capital to that of the dirty good (good
Y) as numeraires. In such comparisons, predicted pollution effects (Ẑ) differ by up to
about 40%, and the choice of numeraire leads to variations in predictions that are often

26As indicated in Section 3.3, a reversal in sign is precluded by the assumption that eLK > 0, that is, labor
and capital are substitutes in the production of good Y.
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Table 3: Incidence effects of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Sources side: ŵ − r̂ Uses side: p̂Y − p̂X

pX (R) pY P w r st. dev. pX (R) pY P w r st. dev.
0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 2.50 3.33 2.67 2.50 2.50 0.30
0.5 0.0 -0.26 -0.35 -0.28 -0.26 -0.26 0.03 2.50 3.33 2.67 2.47 2.54 0.30
1.0 0.0 -0.51 -0.68 -0.54 -0.50 -0.53 0.06 2.50 3.33 2.67 2.45 2.58 0.30
-0.5 0.5 0.53 0.71 0.56 0.54 0.51 0.07 2.50 3.33 2.67 2.55 2.42 0.31
0.0 0.5 0.26 0.35 0.28 0.26 0.26 0.03 2.50 3.33 2.67 2.53 2.46 0.31
0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.00 2.50 3.33 2.67 2.50 2.50 0.30
1.0 0.5 -0.25 -0.34 -0.27 -0.25 -0.26 0.03 2.50 3.33 2.67 2.48 2.54 0.30
-0.5 1.0 0.79 1.05 0.84 0.81 0.75 0.10 2.50 3.33 2.67 2.58 2.39 0.31
0.0 1.0 0.52 0.69 0.55 0.53 0.50 0.06 2.50 3.33 2.67 2.55 2.43 0.31
0.5 1.0 0.25 0.34 0.27 0.26 0.25 0.03 2.50 3.33 2.67 2.53 2.46 0.31
1.0 1.0 0.00 0.00 0.00 0.00 0.00 0.00 2.50 3.33 2.67 2.50 2.50 0.30

Note: Since γL � γK , θXL � θL and therefore the index pX leads to the same results as the index
R. The standard deviation is calculated accounting for both indices.

comparable to those arising from alternative sets of cross-price elasticities. Predictions
obtained using pX as numeraire are relatively close to those obtained with the index P.

Note that the choice of pY as the anchoring price could seem natural to a modeler.
Indeed,whenmodeling the effects of taxes onmarket goods, e.g., the capital tax considered
in Harberger (1962), the default choice of anchoring price would be the market price of
the good subject to taxation (ad valorem tax on the own price). In the absence of a market
price for the dirty input, one could easily be tempted to anchor the pollution tax to the
price of the dirty good instead. The results of Table 2 caution against such a choice if the
policy being modeled is one that indexes the pollution price on, say, the CPI.

Effects on incidence mirror those on pollution effects, although the size of the effects
themselves is smaller. Still, for some model parameterizations, the incidence of the nomi-
nal tax is shown to differ qualitatively between a model that uses w or r as numeraire and
one that uses pY . For instance, for eKZ � −0.5 and eLZ � 1.0, using r yields a predicted
increase in w

r (resp. pY
pX
) of 0.75% (resp. 2.39%), versus an increase of 1.05% (resp. 3.33%)

when using pY . On the uses side, the largest source of variation in predicted effects is the
choice of numeraire, not the choice of Allen cross-price substitution elasticities.

An intuitive explanation as to why the choice of pY leads to pollution and incidence
effects that are larger in magnitude than those from other prices, notably P, is that the tax
causes pY to rise relative to P (p̂Y > P̂). As a result, a given rise in the ad valorem tax rate
will have larger real effects if the anchoring price is pY rather than P. Mathematically,
with pY as anchoring price the relative change in the pollution price is p̂Z � τ̂Z + p̂Y ,
versus p̂Z � τ̂Z + P̂ with P as anchoring price. Relative to P, the pollution price thus
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rises by τ̂Z + p̂Y − P̂ in the first instance versus τ̂Z + P̂ − P̂ � τ̂Z in the second one. Note,
however, that pY need not rise relative to P, even if it does so for the parameterizations
presented here. As explained in Section 4.2, pY may actually decrease relative to pX with
the pollution tax. Whenever this happens, it is also the case that p̂Y < P̂, because
p̂Y − P̂ � p̂Y −

(
θX p̂X + θY p̂Y

)
� θX

(
p̂Y − p̂X

)
< 0. As a result, effects can be more

pronounced with P than with pY as anchoring price.
In Appendix C.1, we report additional results that hold constant all Allen substitution

elasticities but allow factor intensities, as captured by γK − γL, to vary. Again we follow
the model parameterizations investigated in Fullerton and Heutel (2007a). Our results
confirm the importance of the choice of anchoring price for predictions on pollution
outcomes and tax incidence. Notably, the variation in predictions induced by such choice
is not dwarfed by that arising from the choice of factor intensities, and even exceeds it in
the case of incidence on the uses side.

In Appendix C.2, we report results for a synthetic model that borrows the parameter
values from Table 1, but assumes that pollution taxation is higher in the baseline, perhaps
reflecting more advanced stages of environmental policy. Specifically, we assume that
environmental taxes represent a cost share of 50% instead of 25% in industry Y. We keep
the same relative cost shares for labor and capital, i.e., θYL � 0.3 and θYK � 0.2. For a
given choice of Allen cross-price elasticities, the standard deviation of predicted pollution
impacts across anchoring prices rises above 30% of the impact estimate obtained with the
CPI. A notable insight from these parameterizations is that anchoring the pollution tax to
pX no longer produces comparative statics that are close to those obtained using the CPI,
even if the largest discrepancies are still found with the use of pY . The reasons are that
the magnitude of the change in the relative prices of the two consumption goods is larger
(Table C.4 vs. Table 3), and the expenditure share of good Y, which is inversely related to
the cost shares θYL and θYK for given values of the factor intensities,27 is relatively large
(1

3 vs. 1
4 ), implying a substantial weight on pY in the CPI.

Finally, inAppendixC.3we report results for a calibration of themodel relevant for aUS
carbon tax and adapted from the recent study by Fullerton and Ta (2019). This calibration
also leads to large discrepancies across anchoring indices. Specifically, because the dirty
sector is relatively small in terms of its use of labor and capital, and its expenditure share
on the polluting input is substantial, using pY as the anchoring index gives results very
different from those obtained from the alternative indices.

27Specifically, θY �
γLγK

γLγK+γKθYL+γLθYK
.

21



6 Conclusion

This paper argues that numeraire choice can matter for assessing the general equilibrium
effects of environmental policy on pollution levels and relative prices, both analytically
and numerically. The reason is that pollution is a non-market good, making a pollution
tax a nominal tax with no direct ad valorem equivalent. Anchoring the pollution tax to the
equilibrium prices of other goods, as we have done here, renders the choice of numeraire
innocuous, but comparative statics then depend on the choice of anchoring price, a choice
that reflects different varieties of environmental policy.

We have shown that if one anchors the pollution tax to inflation, then pollution always
decreases with an increase in the tax rate, the resulting equilibrium is always Marshallian
stable, and tax incidence results that have previously been derived for specific model
parameterizations in fact hold quite generally. Further, because indexing the tax on
inflation eliminates the need to focus on special cases, we have derived new and general
incidence results on the uses side that were not fully discussed in prior studies. These
results highlight an interesting possibility, namely that a tax on a polluting inputmay raise
the price of the good produced using that input relative to that of the “clean” good. This
counterintuitive result can arise if the factor used more intensively by the clean industry
is a better substitute for pollution than the other factor, and the price of the former rises
relative to that of the latter as a result of the pollution tax.

Finally, our analysis implies that analytical and numerical models aimed at capturing
the general equilibrium effects of environmental taxes that are actually indexed on infla-
tion should use the relevant inflation index as numeraire, or explicitly anchor these taxes
to inflation, so that comparative static results have the correct sign, and the correct mag-
nitude. The fact that even in the pared-down model we use, the pollution and incidence
outcomes of nominal taxes can vary widely with the choice of numeraire suggests that
the same would be true in larger, more detailed models of the economy with a large set of
candidate numeraire goods.
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Appendices

A Proofs and derivations

A.1 Useful equalities and inequalities implied by theory

Constant returns to scale in sectors X and Y imply that θXL + θXK � 1 and θYL + θYK +

θYZ � 1. Homogeneity of degree one of the conditional input demands implies that
θYLemL + θYKemK + θYZemZ � 0, for m ∈ {L, K, Z}.

Concavity of the indirect cost function and Shephard’s lemma imply that the Jacobian
matrix of the conditional input demands is symmetric and negative semidefinite. These
properties translate to the matrix of Allen substitution elasticities, defined as

E ≡
*...
,

eLL eLK eLZ

eKL eKK eKZ

eZL eZK eZZ

+///
-

.

In particular, eLL , eKK , eZZ ≤ 0, eLLeKK − e2
LK ≥ 0, and similarly for other input pairs. In

addition, v′Ev ≤ 0 for any 3 × 1 vector v. This property also implies that v′ELKv ≤ 0 for
any 2 × 1 vector v, where

ELK ≡ *
,

eLL eLK

eKL eKK

+
-
.

Note that the Allen substitution matrix is singular, and that any triplet of values of substi-
tution elasticities determine the remaining ones through homogeneity. Relatedly, the fact
that ELK be negative semidefinite suffices to ensure that the entire matrix E be negative
semidefinite.

Simple algebra implies that θXLγL
θYL

�
θXKγK
θYK

�
pYY
pX X and we will denote this ratio as δ.

Further note that δ(θYLγK + θYKγL) � γLγK .

A.2 Equilibrium displacement model

Wedenotewith a “hat” the relative differential change in a variable, for example, p̂Y ≡
dpY
pY

.
Resource availability constraints imply that LX + LY � L, therefore dLX + dLY � 0, and

thus dLX
LX

+
LY
LX

dLY
LY

� L̂X + γL L̂Y � 0. Similarly, K̂X + γKK̂Y � 0. These are referred to as
Equations (A-1) and (A-2) below.

Denote by X(LX , KX) the production function in industry X, and further denote XL and
XK its derivatives with respect to labor and capital, respectively. Totally differentiating
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the equality X � X(LX , KX), we obtain dX � XLdLX + XKdXK , which implies X̂ �

XL
X dLX +

XK
X dKX and thus X̂ �

LX XL
X L̂X +

KX XK
X K̂X . But profit maximization implies that

pXXL � w and pXXK � r, so LX XL
X �

wLX
pX X � θXL and KX XK

X �
rKX
pX X � θXK . Therefore, we have

X̂ � θXL L̂X + θXKK̂X (Equation (A-3)). A similar relationship can be derived in industry
Y with respect to the three inputs LY , KY , and Z. That is, Ŷ � θYL L̂Y + θYKK̂Y + θYZẐ
(Equation (A-4)).

Constant returns to scale in industry X imply zero profit, that is, pXX � wLX + rKX .
Totally differentiating this condition, we get

pX dX + XdpX � wdLX + LX dw + rdKX + KX dr.

Dividing through by pXX, we have X̂ + p̂X �
wLX
pX X L̂X +

wLX
pX X ŵ +

rKX
pX X K̂X +

rKX
pX X r̂ � θXL L̂X +

θXKK̂X + θXLŵ + θXK r̂. Using X̂ � θXL L̂X + θXKK̂X , we get p̂X � θXLŵ + θXK r̂ (Equation
(A-5)). Applying the same reasoning in industry Y, we obtain p̂Y � θYLŵ + θYK r̂ + θYZ p̂Z

(Equation (A-6)).
Profit maximization in industry X also implies that XL

XK
�

w
r , an equality that we can

write as rXL − wXK � 0. Totally differentiating and using double subscripts to denote
second-order derivatives, we get

r (XLLdLX + XLKdKX) + XLdr − w (XLKdLX + XKKdKX) − XKdw � 0,

where we have used XKL � XLK . Because is X is 1-homogeneous, both XL and XK are
0-homogeneous, and from Euler’s theorem we have LXXLL + KXXLK � 0 and LXXLK +

KXXKK � 0. Therefore, we can eliminate the two own-price second-order partials in the
previous expression by using the cross-partial, leading to

r
(
−KXXLK L̂X + KXXLKK̂X

)
+ XLdr − w

(
LXXLK L̂X − LXXLKK̂X

)
− XKdw � 0.

Rearranging, we get XLK (wLX + rKX)
(
K̂X − L̂X

)
� wXKŵ − rXL r̂. Dividing through

by pXX and using w � pXXL and r � pXXK , we get XLK
(
K̂X − L̂X

)
�

XLXK
X (ŵ − r̂), or,

remembering that σX �
XLXK
XXLK

since X(LX , KX) is homogeneous of degree one, K̂X − L̂X �

σX (ŵ − r̂) (Equation (A-7)).
Equations describing the relationship between changes in input prices and input quan-

tities in industry Y also need to be derived. Since there are three, rather than two, inputs,
we use the Allen elasticities of substitution to make this connection. The Allen elasticity
of substitution between inputs i and j is defined as ei j �

ai j
θY j

, where ai j is the output-
conditional elasticity of demand for input i with respect to the price of input j. Let us
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denote by LY (w , r, pZ ,Y), KY (w , r, pZ ,Y), and Z(w , r, pZ ,Y) the conditional input de-
mand functions in industry Y. Totally differentiating the equality LY � LY (w , r, pZ ,Y),
we get, using obvious notation,

dLY � LY wdw + LY r dr + LY pZ dpZ +
LY

Y
dY

and, dividing throughby LY , L̂Y �
wLYw

LY
ŵ+

rLYr
LY

r̂+
pZLYpZ

LY
p̂Z+Ŷ, wherewehaveused the fact

that LY is proportional to Y due to constant returns to scale. But wLYw
LY

� aLL by definition,
and similarly rLYr

LY
� aLK and pZLYpZ

LY
� aLZ. Thus, we have L̂Y � aLLŵ + aLK r̂ + aLZ p̂Z + Ŷ,

or, using ai j � θY jei j ,

L̂Y � θYLeLLŵ + θYKeLK r̂ + θYZeLZ p̂Z + Ŷ.

Applying the same reasoning to the conditional demands for KY and Z, we obtain

K̂Y � θYLeLKŵ+θYKeKK r̂+θYZeKZ p̂Z+Ŷ and Ẑ � θYLeLZŵ+θYKeKZ r̂+θYZeZZ p̂Z+Ŷ.

These three relationships are not independent of the equality Ŷ � θYL L̂Y + θYKK̂Y + θYZẐ
derived previously. (For instance, taken together, they imply that equality given that
θYLemL + θYKemK + θYZemZ � 0, for m ∈ {L, K, Z}.) Therefore, one may drop one of them,
or, equivalently, subtract it from the other two. Following Fullerton and Heutel (2007a),
we subtract the third one from each of the first two, leading to Equations (A-8) and (A-9)
below.

A derivation similar to that leading to Equation (A-7), starting from the optimality
condition UX

UY
�

pX
pY
, leads to X̂ − Ŷ � σu

(
p̂Y − p̂X

)
, since, like X(LX , KX), U (X,Y) is

homogenous of degree one (Equation (A-10) below).
We thus have 10 equations for 11 unknowns. The last equation comes from the choice

of numeraire. Once a price index satisfying one-homogeneity, to which the pollution
tax can be anchored through the relation p̂Z � P̂ + τ̂Z, has been defined, the choice of
numeraire becomes innocuous. That is, identical results on goods provision, resource
allocation, and relative prices will be obtained whether it is assumed that p̂X � 0, ŵ � 0,
etc. Here we choose to set P̂ � 0 (and thus p̂Z � τ̂Z), but our results would be identical if
we chose any other price normalization.

Using the normalization P̂ � 0, the full system of equations describing the change in
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equilibrium values can be written as:

L̂X + γL L̂Y � 0 (A-1)

K̂X + γKK̂Y � 0 (A-2)

X̂ − θXL L̂X − θXKK̂X � 0 (A-3)

Ŷ − θYL L̂Y − θYKK̂Y − θYZẐ � 0 (A-4)

p̂X − θXLŵ − θXK r̂ � 0 (A-5)

p̂Y − θYLŵ − θYK r̂ � θYZ τ̂Z (A-6)

L̂X − K̂X + σX ŵ − σX r̂ � 0 (A-7)

L̂Y − Ẑ − θYL (eLL − eLZ)ŵ − θYK (eLK − eKZ) r̂ � θYZ (eLZ − eZZ)τ̂Z (A-8)

K̂Y − Ẑ − θYL (eLK − eLZ)ŵ − θYK (eKK − eKZ) r̂ � θYZ (eKZ − eZZ)τ̂Z (A-9)

X̂ − Ŷ + σu p̂X − σu p̂Y � 0 (A-10)

βp̂Y + (1 − β)αŵ + (1 − β)(1 − α) r̂ � 0 (A-11)

which is a linear system inwhich τ̂Z is taken as the exogenous variable. We are particularly
interested inderiving the effect Ẑ

τ̂z
(in order to ensure thatCondition 1 holds) and the effects

ŵ
τ̂z

and r̂
τ̂z

(to derive the incidence of the tax increase).

A.3 Derivation of the pollution effect Ẑ
τ̂Z

Condition 1 mandates that the comparative static Ẑ
τ̂z

be defined for all parameter values.
Given that the system describing equilibrium displacement is linear, this implies that the
determinant of the system matrix be nonzero, which, by continuity, implies that it must
be of a determinate sign. We will show that this requirement is met by imposing a simple
functional restriction on the weights of the price index.

Although we could compute the determinant of the system’s matrix directly, follow-
ing Fullerton and Heutel (2007a) it is easier to proceed by substitution to reduce the
dimensionality of the problem. Equations (A-1) and (A-2) imply that L̂X � −γL L̂Y and
K̂X � −γKK̂Y . Using (A-3), we then have X̂ � −θXLγL L̂Y − θXKγKK̂Y which, together with
(A-4), implies that X̂ − Ŷ � −(θXLγL + θYL)L̂Y − (γKθXK + θYK)K̂Y − θYZẐ. Using (A-10)
and defining δ ≡ θXLγL

θYL
�

θXKγK
θYK

, this in turn implies that

θYL (1 + δ)L̂Y + θYK (1 + δ)K̂Y + θYZẐ � σu (p̂X − p̂Y). (A-12)
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Using (A-5) and (A-6), we have

p̂X − p̂Y � (θXL − θYL)ŵ + (θXK − θYK) r̂ − θYZ τ̂Z

which together with (A-12) implies

θYL (1 + δ)L̂Y + θYK (1 + δ)K̂Y + θYZẐ + σu (θYL − θXL)ŵ + σu (θYK − θXK) r̂ � −σuθYZ τ̂Z .

(A-13)
One can then use (A-8) and (A-9) to eliminate L̂Y and K̂Y in Equation (A-13). To alleviate
notation, define

θ̄1
YL ≡ θYL (eLL − eLZ)

θ̄2
YL ≡ θYL (eLK − eLZ)

θ̄1
YK ≡ θYK (eLK − eKZ)

θ̄2
YK ≡ θYK (eKK − eKZ)

θ̄1
YZ ≡ θYZ (eLZ − eZZ)

θ̄2
YZ ≡ θYZ (eKZ − eZZ).

After rearrangement, we obtain:

[
σu (θYL − θXL) + (1 + δ)(θYL θ̄1

YL + θYK θ̄2
YL)

]
ŵ +

[
σu (θYK − θXK) + (1 + δ)(θYL θ̄1

YK + θYK θ̄2
YK)

]
r̂

+ [θYZ + (1 + δ)(θYL + θYK)] Ẑ � −

[
σuθYZ + (1 + δ)(θYL θ̄1

YZ + θYK θ̄2
YZ)

]
τ̂Z . (A-14)

Equation (A-7) implies that −γL L̂Y + γKK̂Y + σX ŵ − σX r̂ � 0, which after eliminating
L̂Y and K̂Y becomes

[
σX − γL θ̄

1
YL + γK θ̄

2
YL

]
ŵ+

[
−σX − γL θ̄

1
YK + γK θ̄

2
YK

]
r̂+

[
γK − γL

]
Ẑ �

[
γL θ̄

1
YZ − γK θ̄

2
YZ

]
τ̂Z .

(A-15)
Finally, (A-6) and (A-11) together imply that

[
βθYL + (1 − β)α

]
ŵ +

[
βθYK + (1 − β)(1 − α)

]
r̂ � −βθYZ τ̂Z . (A-16)

Equations (A-14)-(A-16) constitute a linear system in the three unknowns ŵ, r̂, and Ẑ.
For the comparative static Ẑ

τ̂Z
to be defined for all parameter values, the determinant of
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this system should have a constant sign. We can write this determinant as

∆ ≡

���������

σu (θYL − θXL) + (1 + δ)(θYL θ̄1
YL + θYK θ̄2

YL) σu (θYK − θXK) + (1 + δ)(θYL θ̄1
YK + θYK θ̄2

YK) θYZ + (1 + δ)(θYL + θYK)
σX − γL θ̄1

YL + γK θ̄2
YL −σX − γL θ̄1

YK + γK θ̄2
YK γK − γL

βθYL + (1 − β)α βθYK + (1 − β)(1 − α) 0

���������

and, developing along the third column, we get

∆ � [θYZ + (1 + δ)(θYL + θYK)]
[(
σX − γL θ̄

1
YL + γK θ̄

2
YL

)
BK +

(
σX + γL θ̄

1
YK − γK θ̄

2
YK

)
BL

]

+(γL − γK)
[(
σu (θYL − θXL) + (1 + δ)(θYL θ̄

1
YL + θYK θ̄

2
YL)

)
BK

−

(
σu (θYK − θXK) + (1 + δ)(θYL θ̄

1
YK + θYK θ̄

2
YK)

)
BL

]

where we have defined BL ≡ βθYL + (1 − β)α and BK ≡ βθYK + (1 − β)(1 − α).
Separating the terms in σX and σu , we can write ∆ � C1σX + C2σu + C3, where

C1 ≡ (BL + BK) (1 + δ(θYL + θYK))

C2 ≡ (γL − γK) [BK (θYL − θXL) − BL (θYK − θXK)]

and

C3 ≡ BL
[
(1 + (1 + δ)(θYL + θYK))

(
γL θ̄

1
YK − γK θ̄

2
YK

)
− (1 + δ)(γL − γK)

(
θYL θ̄

1
YK + θYK θ̄

2
YK

)]

+BK
[
(1 + (1 + δ)(θYL + θYK))

(
−γL θ̄

1
YL + γK θ̄

2
YL

)
+ (1 + δ)(γL − γK)

(
θYL θ̄

1
YL + θYK θ̄

2
YL

)]
.

Using the definitions of the terms θ̄1
YL, θ̄

2
YL, θ̄

1
YK , θ̄

2
YK , and using the properties θYZeKZ �

−θYLeLK − θYKeKK and θYZeLZ � −θYLeLL − θYKeLK , we obtain

C3 � −eLLBKθYLγL (1+γK)−eKKBLθYKγK (1+γL)+eLK
[
BKθYLγK (1 + γL) + BLθYKγL (1 + γK)

]
.

It is clear thatC1 > 0, therefore for the signof∆ to be invariant to the choice of parameter
values, which is required for it to always be nonzero, we need both C2 ≥ 0 and C3 ≥ 0.
Let us start by discussing the sign of C3. The first two terms in C3 are clearly non-negative
given that eLL ≤ 0 and eKK ≤ 0. The symmetry and negative semidefiniteness of the
submatrix ELK implies that −eLLv2

1− eKKv2
2 +2eLKv1v2 ≥ 0 for all vectors v � (v1, v2). If we

can write C3 in this form for some well-chosen vector v, we can then conclude that C3 ≥ 0
for all parameter values. A sufficient condition is that BKθYLγK (1+γL) � BLθYKγL (1+γK),
that is, using the fact that γLθXLθYK � γKθXKθYL,

BKθXL (1 + γL) � BLθXK (1 + γK) (A-17)
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which implies that

C3 � BKθYLγK (1 + γL)
(
−eLL

γL (1 + γK)
γK (1 + γL)

− eKK
γK (1 + γL)
γL (1 + γK)

+ 2eLK

)
� −v′ELKv

for v ≡
√

BKθYLγK (1 + γL)
*..
,

√
γL (1+γK )
γK (1+γL)

−

√
γK (1+γL)
γL (1+γK )

+//
-
.

The restriction in (A-17) also turns out to be necessary to guarantee that C3 ≥ 0 for all
parameter values. To see why, first note that BL and BK depend on the cost shares θYK

and θYL and the index weights α and β. Condition 2 further implies that BL and BK may
not depend on the substitution elasticities eLL, eKK , or eLK since α and β are themselves
restricted to be independent of substitution elasticities. This means that values of α and
β that satisfy Conditions 1 and 2 must ensure that C3 ≥ 0 for all possible values of (eLL,
eKK , eLK) satisfying the restrictions from production theory, namely: for all eLL, eKK , and
eLK such that eLL ≤ 0, eKK ≤ 0, and eLLeKK − e2

LK ≥ 0:

−eLLBKθYLγL (1+γK)−eKKBLθYKγK (1+γL)+eLK
[
BKθYLγK (1 + γL) + BLθYKγL (1 + γK)

]
≥ 0

that is,

BKθYL
[
γK (1 + γL)eLK − γL (1 + γK)eLL

]
≥ BLθYK

[
γK (1 + γL)eKK − γL (1 + γK)eLK

]
.

Note that if eLK ≥ 0, this condition places no restriction on (BL , BK) and thus no restriction
on (α, β). If eLK < 0 however, it constrains the set of acceptable values of (α, β). Consider
the subset of substitution elasticities

(eLL , eKK , eLK) �
(

FγK (1 + γL)
γL (1 + γK)

eLK ,
γL (1 + γK)

FγK (1 + γL)
eLK , eLK

)
where eLK < 0 and F > 0. These elasticities satisfy the theory restrictions. In addition,
γK (1 + γL)eLK − γL (1 + γK)eLL > 0 ⇔ F > 1. Thus, we have that acceptable values of α
and β must satisfy

BK ≥ BL
θYK

[
γK (1 + γL)eKK − γL (1 + γK)eLK

]
θYL

[
γK (1 + γL)eLK − γL (1 + γK)eLL

] � BL
θYKγL (1 + γK)
θYLγK (1 + γL)

*
,

1
F − 1
1 − F

+
-
� BL

θYKγL (1 + γK)
θYLγK (1 + γL)

( 1
F

)
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for all F > 1 while also satisfying

BK ≤ BL
θYK

[
γK (1 + γL)eKK − γL (1 + γK)eLK

]
θYL

[
γK (1 + γL)eLK − γL (1 + γK)eLL

] � BL
θYKγL (1 + γK)
θYLγK (1 + γL)

( 1
F

)
for all F < 1. Taking limits as F → 1, F > 1, and as F → 1, F < 1 yields

BL
θYKγL (1 + γK)
θYLγK (1 + γL)

≤ BK ≤ BL
θYKγL (1 + γK)
θYLγK (1 + γL)

which implies (A-17).
Finally, it is easy to check that (A-17) implies that

BK (θYL − θXL) − BL (θYK − θXK) �
BL (γL − γK)θYK (1 + δ)

γK (1 + γL)
(A-18)

so that C2 ≥ 0 as well.
In order to ensure that Condition 3 is satisfied, we use Cramer’s rule to derive the effect

Ẑ
τ̂Z
. Having shown that the system determinant is positive, we only need to ensure that

the following determinant

∆Z ≡

���������

σu (θYL − θXL) + (1 + δ)(θYL θ̄1
YL + θYK θ̄2

YL) σu (θYK − θXK) + (1 + δ)(θYL θ̄1
YK + θYK θ̄2

YK) −σuθYZ − (1 + δ)(θYL θ̄1
YZ + θYK θ̄2

YZ)
σX − γL θ̄1

YL + γK θ̄2
YL −σX − γL θ̄1

YK + γK θ̄2
YK γL θ̄1

YZ − γK θ̄2
YZ

BL BK −BZ

���������

is non-positive, where we have defined BZ ≡ βθYZ. (Note that BL + BK + BZ � 1.) This
determinant can be written as ∆Z � D1σX + D2σu + D3σXσu + D4, with

D1 ≡ (1 + δ)
[
BZ (θYL θ̄

1
YK + θYK θ̄

2
YK + θYL θ̄

1
YL + θYK θ̄

2
YL) − (BL + BK)(θYL θ̄

1
YZ + θYK θ̄

2
YZ)

]

D2 ≡ (θYL − θXL)
[
BZ (γL θ̄

1
YK − γK θ̄

2
YK) − BK (γL θ̄

1
YZ − γK θ̄

2
YZ)

]

−(θYK − θXK)
[
BZ (γL θ̄

1
YL − γK θ̄

2
YL) − BL (γL θ̄

1
YZ − γK θ̄

2
YZ)

]

+θYZ
[
BK (γL θ̄

1
YL − γK θ̄

2
YL) − BL (γL θ̄

1
YK − γK θ̄

2
YK)

]

D3 ≡ (θYL − θXL + θYK − θXK)BZ − θYZ (BL + BK)

D4 ≡ (1 + δ)
[
BL

(
(θYL θ̄

1
YK + θYK θ̄

2
YK)(γL θ̄

1
YZ − γK θ̄

2
YZ) − (γL θ̄

1
YK − γK θ̄

2
YK)(θYL θ̄

1
YZ + θYK θ̄

2
YZ)

)
−BK

(
(θYL θ̄

1
YL + θYK θ̄

2
YL)(γL θ̄

1
YZ − γK θ̄

2
YZ) − (γL θ̄

1
YL − γK θ̄

2
YL)(θYL θ̄

1
YZ + θYK θ̄

2
YZ)

)
+BZ

(
(θYL θ̄

1
YL + θYK θ̄

2
YL)(γL θ̄

1
YK − γK θ̄

2
YK) − (γL θ̄

1
YL − γK θ̄

2
YL)(θYL θ̄

1
YK + θYK θ̄

2
YK)

)]
.

It turns out that all the Di parameters are non-positive, so that ∆Z ≤ 0. To start with,
note that D3 � −θYZ (BZ + BL + BK) � −θYZ < 0. Let us then show that D1 ≤ 0. First, note
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that

θYL θ̄
1
YZ + θYK θ̄

2
YZ � θYZ [θYL (eLZ − eZZ) + θYK (eKZ − eZZ)]

� θYZ [θYLeZL + θYKeZK − (θYL + θYK)eZZ]

� θYZ [−θYZeZZ − (θYL + θYK)eZZ]

� −θYZeZZ ≥ 0

Second, note that

θYL θ̄
1
YK + θYK θ̄

2
YK + θYL θ̄

1
YL + θYK θ̄

2
YL � θYLθYK (2eLK − eKZ − eLZ) + (θYL)2(eLL − eLZ) + (θYK)2(eKK − eKZ)

� eLL (θYL)2
+ eKK (θYK)2

+ 2eLKθYLθYK − (θYL + θYK)(θYLeLZ + θYK eKZ)

� −(θYL + θYK + θYZ)(θYLeLZ + θYK eKZ)

� θYZ eZZ ≤ 0

Therefore, D1 � (1 + δ)θYZeZZ ≤ 0. Let us now show that D4 ≤ 0. We can rewrite

D4 � (1 + δ)(γLθYK + γKθYL)
[
BL (θ̄2

YK θ̄
1
YZ − θ̄

1
YK θ̄

2
YZ) + BK (θ̄1

YL θ̄
2
YZ − θ̄

2
YL θ̄

1
YZ) + BZ (θ̄2

YL θ̄
1
YK − θ̄

1
YL θ̄

2
YK)

]
.

We will show that the coefficients on BL, BK , and BZ in the square bracket are all non-
positive. Consider for instance the coefficient θ̄1

YL θ̄
2
YZ − θ̄

2
YL θ̄

1
YZ on BK . We have:

θ̄1
YL θ̄

2
YZ − θ̄

2
YL θ̄

1
YZ

θYLθYZ
� (eLL − eLZ)(eKZ − eZZ) − (eLK − eLZ)(eLZ − eZZ)

� −(eLLeZZ − e2
LZ) + eLLeKZ − eLZ eKZ − eLK eLZ + eLK eZZ

� −(eLLeZZ − e2
LZ) + eLLeKZ + eLK eZZ −

eLZ

θYK
(θYK eZK + θYK eLK)

� −(eLLeZZ − e2
LZ) + eLLeKZ + eLK eZZ +

eLZ

θYK
(θYLeZL + θYZ eZZ + θYLeLL + θYZ eLZ)

� −(eLLeZZ − e2
LZ) +

1
θYK

[
eLL (θYK eKZ + θYLeLZ) + eZZ (θYK eLK + θYZ eLZ) + e2

LZ (θYL + θYZ)
]

� −
(eLLeZZ − e2

LZ)
θYK

≤ 0

where we have used the fact that eLLeZZ − e2
LZ ≥ 0. Similarly, the coefficient on BZ has the

same sign as

θ̄2
YL θ̄

1
YK − θ̄

1
YL θ̄

2
YK

θYLθYK
� (eLK − eLZ)(eLK − eKZ) − (eLL − eLZ)(eKK − eKZ)

� −(eLLeKK − e2
LK) + eLLeKZ − eLKeKZ − eLKeLZ + eKKeLZ .

A reasoning similar to that used to sign the coefficient on BK can be used by swapping the
indices K and Z to determine the sign of this expression, and similarly for the coefficient
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on BL. Therefore, D4 ≤ 0. It can further be shown that

D4 � −(γLθYK + γKθYL + γLγK) (θYLeLKeLZ + θYKeLKeKZ + θYZeLZeKZ)

so that D4 is independent of α and β. It remains to be shown that D2 ≤ 0. Rewrite

D2 � BL
[
θYZ (γK θ̄

2
YK − γL θ̄

1
YK) + (θYK − θXK)(γL θ̄

1
YZ − γK θ̄

2
YZ)

]

+BK
[
θYZ (γL θ̄

1
YL − γK θ̄

2
YL) + (θYL − θXL)(γK θ̄

2
YZ − γL θ̄

1
YZ)

]

+BZ
[
(θYL − θXL)(γL θ̄

1
YK − γK θ̄

2
YK) + (θYK − θXK)(γK θ̄

2
YL − γL θ̄

1
YL)

]
.

Using the definitions of the θ̄i
Y j parameters and the relationships θYLemL + θYKemK +

θYZemZ � 0, one can show that the three terms in square brackets are equal to each other,
so that the value of D2 is independent of (α, β) due to BL + BK + BZ � 1. Using the first of
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these bracketed terms, we thus have

D2 � θYZθYK
(
γK (eKK − eKZ) − γL (eLK − eKZ)

)
+ (θYK − θXK)θYZ

(
γL (eLZ − eZZ) − γK (eKZ − eZZ)

)
� eKKθYZθYKγK + eZZ (θYK − θXK)θYZ (γK − γL) + eKZ

(
θYZθYK (γL − γK) − (θYK − θXK)θYZγK

)
−eLKθYZθYKγL + eLZ (θYK − θXK)θYZγL

� eKKθYZθYK

(
γK +

θYKγL

θYL

)
+ eZZθYZ (θYK − θXK)

(
γK − γL −

θYZγL

θYL

)
+eKZ

(
θYZθYK (γL − γK) − (θYK − θXK)θYZγK + θYZθYK

θYZγL

θYL
− (θYK − θXK)θYZ

θYKγL

θYL

)
� eKK

θYZθYKγL

δθYL

(
δγKθYL

γL
+ θYKδ

)
+ eZZ

θYZθYK

γKθYL
(γK − δ)

(
(γK − γL)θYL − γLθYZ

)
+eKZθYZθYK

(
γL − γK − γK

(
1 − δ

γK

)
+
θYZγL

θYL
−

(
1 − δ

γK

)
θYKγL

θYL

)
� eKK

θYZθYKγL

δθYL
(γKθXL + γKθXK) + eZZ

θYZθYK

γKθYL
(γK − δ)(γKθYL + γLθYK − γL)

+eKZθYZθYK

(
γL − 2γK + δ +

θYZ

θYL
γL − (γK − δ)

θYKγL

θYLγK

)
� eKK

θYZθYKγLγK

δθYL
+ eZZ

θYZθYKγL

γKθYLδ
(γK − δ)

(
δγKθYL

γL
+ δθYK − δ

)
+eKZθYZθYK

(
γL − 2γK + δ +

γL

θYL
(1 − θYK − θYL) −

θYKγL

θYL
+ δ

θYKγL

θYLγK

)
� eKK

θYZθYKγK

θXL
+ eZZ

θYZθYK

γKθXL

(
γK − δ

)2
+ eKZθYZθYK

(
−2γK + δ +

δ
θXL
−

2γKθXK

θXL
+
δθXK

θXL

)
� eKK

θYZθYKγK

θXL
+ eZZ

θYZθYK

γKθXL

(
γK − δ

)2
− 2eKZ

θYZθYK

θXL

(
γK − δ

)
�

θYZθYK

θXL
*
,

eKKγK + eZZ

(
γK − δ

)2

γK
− 2eKZ (γK − δ)+

-

which is non-positive from the negative semidefiniteness of the submatrix EKZ.

A.4 Tax incidence: sources side

We apply Cramer’s rule to derive the effect ŵ
τ̂Z
. The effect r̂

τ̂Z
can be obtained using

symmetry. We have that ŵ
τ̂Z

�
∆w
∆
, where

∆w ≡

���������

−σuθYZ − (1 + δ)(θYL θ̄1
YZ + θYK θ̄2

YZ) σu (θYK − θXK) + (1 + δ)(θYL θ̄1
YK + θYK θ̄2

YK) θYZ + (1 + δ)(θYL + θYK)
γL θ̄1

YZ − γK θ̄2
YZ −σX − γL θ̄1

YK + γK θ̄2
YK γK − γL

−BZ BK 0

���������

.
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This determinant can be written as ∆w � F1σX + F2σu + F3, with

F1 � − [θYZ + (1 + δ)(θYL + θYK)] BZ

F2 � (γK − γL) [θYZBK − (θYK − θXK)BZ]

F3 � (1 + δ)(γK − γL)
[
(θYL θ̄

1
YZ + θYK θ̄

2
YZ)BK − (θYL θ̄

1
YK + θYK θ̄

2
YK)BZ

]

+ [θYZ + (1 + δ)(θYL + θYK)]
[
(γL θ̄

1
YZ − γK θ̄

2
YZ)BK − (γL θ̄

1
YK − γK θ̄

2
YK)BZ

]
.

Simplifying, we obtain:

F3 � θYZ
[
(γL θ̄

1
YZ − γK θ̄

2
YZ)BK − (γL θ̄

1
YK − γK θ̄

2
YK)BZ

]

+(1 + δ)(γLθYK + γKθYL)
[
(θ̄1

YZ − θ̄
2
YZ)BK − (θ̄1

YK − θ̄
2
YK)BZ

]

� θYZ
[
(γL θ̄

1
YZ − γK θ̄

2
YZ)BK − (γL θ̄

1
YK − γK θ̄

2
YK)BZ

]

+(1 + δ)(γLθYK + γKθYL) [θYZ (eLZ − eKZ)BK − θYK (eLK − eKK)BZ] .

Using symmetry, we then have that r̂
τ̂Z

�
G1σX+G2σu+G3

∆
with

G1 � F1

G2 � (γK − γL) [−θYZBL + (θYL − θXL)BZ]

and

G3 � θYZ
[
−(γL θ̄

1
YZ − γK θ̄

2
YZ)BL − (γK θ̄

2
YL − γL θ̄

1
YL)BZ

]

+(1 + δ)(γLθYK + γKθYL) [−θYZ (eLZ − eKZ)BL − θYL (eLK − eLL)BZ] .

We have ŵ−r̂
τ̂Z

�
σX (F1−G1)+σu (F2−G2)+F3−G3

∆
. It is easy to see that F2 − G2 � (γK − γL)θYZ. In

addition, we have

F3 − G3 � θYZ
[
(BL + BK)(γL θ̄

1
YZ − γK θ̄

2
YZ) + BZ

(
γK θ̄

2
YL − γL θ̄

1
YL − γL θ̄

1
YK + γK θ̄

2
YK

)]

+(1 + δ)(γLθYK + γKθYL) [θYZ (eLZ − eKZ)(BL + BK) + (θYL (eLK − eLL) − θYK (eLK − eKK)) BZ]

� eZZ (θYZ)2(BL + BK)(γK − γL)

+eLZ
[
(θYZ)2(BL + BK)γL + θYZθYLBZ (γL − γK) + (1 + δ)(γLθYK + γKθYL)θYZ (BL + BK)

]

+eKZ
[
−(θYZ)2(BL + BK)γK + θYZθYKBZ (γL − γK) − (1 + δ)(γLθYK + γKθYL)θYZ (BL + BK)

]

+eLL
[
−θYZθYLBZγL − (1 + δ)(γLθYK + γKθYL)θYLBZ

]
+eLK

[
θYZBZ

(
γKθYL − γLθYK

)
+ (1 + δ)(γLθYK + γKθYL)(θYL − θYK)BZ

]
+eKK

[
θYZθYKBZγK + (1 + δ)(γLθYK + γKθYL)θYKBZ

]
.
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Using θYLeLL � −θYKeLK−θYZeLZ and θYKeKK � −θYLeLK−θYZeKZ and BL+BK � 1−BZ,
we get

F3 − G3 � eZZ (θYZ)2(1 − BZ)(γK − γL)

+eLZ
[
(θYZ)2γL + θYZθYLBZ (γL − γK) + (1 + δ)(γLθYK + γKθYL)θYZ (1 − BZ)

]

+eKZ
[
−(θYZ)2γK + θYZθYKBZ (γL − γK) − (1 + δ)(γLθYK + γKθYL)θYZ (1 − BZ)

]

−eLL (1 + δ)(γLθYK + γKθYL)θYLBZ

+eLK (1 + δ)(γLθYK + γKθYL)(θYL − θYK)BZ

+eKK (1 + δ)(γLθYK + γKθYL)θYKBZ .

Now using θYZeZZ + θYLeLZ + θYKeKZ � 0, we get

F3 − G3 � eZZ (θYZ)2(γK − γL)

+eLZ
[
(θYZ)2γL + (1 + δ)(γLθYK + γKθYL)θYZ (1 − BZ)

]

+eKZ
[
−(θYZ)2γK − (1 + δ)(γLθYK + γKθYL)θYZ (1 − BZ)

]

−eLL (1 + δ)(γLθYK + γKθYL)θYLBZ

+eLK (1 + δ)(γLθYK + γKθYL)(θYL − θYK)BZ

+eKK (1 + δ)(γLθYK + γKθYL)θYKBZ

� eZZ (θYZ)2(γK − γL)

+eLZ
[
(θYZ)2γL + (1 + δ)(γLθYK + γKθYL)θYZ

]

+eKZ
[
−(θYZ)2γK − (1 + δ)(γLθYK + γKθYL)θYZ

]

� eLZθYZ
[
−θYL (γK − γL) + θYZγL + (1 + δ)(γLθYK + γKθYL)

]
+eKZθYZ

[
−θYK (γK − γL) − θYZγK − (1 + δ)(γLθYK + γKθYL)

]
� eLZθYZ

[
γL + δ(γLθYK + γKθYL)

]
− eKZθYZ

[
γK + δ(γLθYK + γKθYL)

]
� eLZθYZγL (1 + γK) − eKZθYZγK (1 + γL).

Therefore, we have

ŵ − r̂
τ̂Z

�
θYZ

[
σu (γK − γL) + γL (1 + γK)eLZ − γK (1 + γL)eKZ

]
∆

.

Note that variations in the choices for α and β affect incidence on the sources side only
through the denominator ∆.
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A.5 Tax incidence: uses side

Using the equalities p̂Y � θYLŵ + θYK r̂ + θYZ τ̂Z and p̂X � θXLŵ + θXK r̂ together with the
expressions for ŵ

τ̂Z
and r̂

τ̂Z
, one can derive the following expression for the incidence of the

pollution tax on the uses side:

p̂Y − p̂X

τ̂Z
�

θYZ

∆

[
σX

(
1 + γLθXL + γKθXK

)
+

(
θYLγK (1 + γL) + θYKγL (1 + γK)

)
eLK

+γL (1 + γK)(θXK − θYK)eLZ + γK (1 + γL)(θXL − θYL)eKZ
]
.

Note that variations in the choices for α and β affect incidence on the uses side only through
the denominator∆. In addition, the price of Y could increase or decrease relative to X. But
note that, as in Fullerton and Heutel (2007a), the ambiguity is resolved when γL � γK ≡ γ.
Indeed, we can then write θXL − θYL � θXL − θYL (θXL + θXK) � θXL (1 − θYL − θYK) �

θXLθYZ, and similarly θXK − θYK � θXKθYZ, which yields

p̂Y − p̂X

τ̂Z
�

θYZ (1 + γ)
∆

[
σX + γ ((θYL + θYK)eLK + θXKθYZeLZ + θXLθYZeKZ)

]
�

θYZ (1 + γ)
∆

[
σX + γ ((θXKθYL + θXLθYK)eLK − θXKθYLeLL − θXLθYKeKK)

]
which is positive given the negative semidefiniteness of ELK and the fact that θXLθYK �

θXKθYL.

A.5.1 Depiction of cases where p̂Y−p̂X
τ̂Z
≤ 0

Figure A.1 provides depictions of the parameter region that supports p̂Y−p̂X
τ̂Z
≤ 0. In order

to reduce the dimensionality of the problem, we assume σX � 0 (larger values of σX always
make the occurrence of p̂Y−p̂X

τ̂Z
≤ 0 less likely, ceteris paribus), γL � 1, and γK � 0.20. (It is

necessary that γL , γK in order for p̂Y−p̂X
τ̂Z

to be negative, thus we assume that sector Y is
labor-intensive relative to sector X.) We further assume that θYZ � 0.10. Because σX � 0,
the sign of the effect only depends on the relative magnitudes of the Allen cross-price
elasticities of substitution, thus without loss of generality we set |eLK | � 1 and consider
the three-dimensional space spanned by the values of (eLZ , eKZ , θYK). Note that θXL

(and thus θXK) are determined by the values of γL, γK , θYZ, and θYK . We impose the
restrictions pertaining to the negative semidefiniteness of the Slutsky matrix. Panel (a)
of Figure A.1 considers the case where eLK > 0. In that case, either eLZ or eKZ may be
negative, although the relativemagnitudes of the Allen elasticities are then constrained by
the negative semidefiniteness of the Slutsky matrix. Panel (b) considers the case eLK < 0.
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Figure A.1: Depictions of cases where p̂Y−p̂X
τ̂Z

< 0

(a) eLK � 1 (b) eLK � −1

Note: We set σX � 0, γL � 1, γK � 0.20, θYZ � 0.10, and |eLK | � 1. The colored region represents
the parameter space supporting p̂Y−p̂X

τ̂Z
< 0.

In that case both eLZ or eKZ must be positive (and sufficiently so to ensure that eLL and eKK

are nonpositive). Overall, Figure A.1 confirms that p̂Y−p̂X
τ̂Z
≤ 0 occurs for a non-negligible

set of values of the model parameters.

A.5.2 Proof of Proposition 4

Without loss of generality, assume that γL > γK . We will show that ŵ−r̂
τ̂Z
≥ 0⇒ p̂Y−p̂X

τ̂Z
≥ 0,

which is the contrapositive of the statement that p̂Y−p̂X
τ̂Z

< 0⇒ ŵ−r̂
τ̂Z

< 0.
Suppose that ŵ−r̂

τ̂Z
≥ 0. Given Proposition 2 and the fact that σu ≥ 0, it must be that

γL (1+ γK)eLZ ≥ γK (1+ γL)eKZ. Note that we would have arrived at a similar conclusion if
we had assumed that eKZ ≤ eLZ, given that γL > γK ; therefore, the fact that we will show
that p̂Y−p̂X

τ̂Z
≥ 0 also serves to show that we must have eKZ > eLZ.

Given that σX ≥ 0, in order to show that p̂Y−p̂X
τ̂Z
≥ 0 it suffices to show that

(
θYLγK (1 + γL) + θYKγL (1 + γK)

)
eLK +γL (1+γK)(θXK −θYK)eLZ +γK (1+γL)(θXL −θYL)eKZ ≥ 0.

Using the fact that θXL − θYL � θYK + θYZ − θXK , we can rewrite the left-hand side of this
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inequality as

[
γL (1 + γK)eLZ − γK (1 + γL)eKZ

]
(θXK −θYK)+γL (1+γK)θYK eLK +γK (1+γL) (θYZeKZ + θYLeLK) .

(A-19)
Because θXK − θYK > 0 (a consequence of γL > γK) and θYZeKZ + θYLeLK � −θYKeKK ≥ 0,
whenever eLK ≥ 0 the expression in (A-19) is clearly nonnegative. Let us thus focus on
the case where eLK < 0, in which case we must have eLZ ≥ 0 and eKZ ≥ 0. If eLZ � 0,
then from γL (1 + γK)eLZ ≥ γK (1 + γL)eKZ we must also have eKZ � 0, and therefore also
θYKeKK + θYLeLK � 0. But this is impossible since eKK ≤ 0 and we have assumed eLK < 0.
Therefore, we must have eLZ > 0, and also eKZ > 0.

The negative semidefiniteness ofELK implies that eLLeKK−e2
LK ≥ 0, and, using θYLeLL �

−θYKeLK − θYZeLZ and θYKeKK � −θYLeLK − θYZeKZ, that

θYKeLKeKZ + θYLeLKeLZ + θYZeLZeKZ ≥ 0. (A-20)

Given that eLZ > 0, Equation (A-20) implies that θYZeKZ+θYLeLK ≥ −θYK
eLK eKZ

eLZ
. Therefore,

the expression in (A-19) is larger than or equal to

[
γL (1 + γK)eLZ − γK (1 + γL)eKZ

]
(θXK−θYK)+θYK

[
γL (1 + γK)eLK − γK (1 + γL)

eLKeKZ

eLZ

]
,

that is, [
γL (1 + γK)eLZ − γK (1 + γL)eKZ

] (
θXK − θYK +

θYKeLK

eLZ

)
.

Given that γL (1+γK)eLZ ≥ γK (1+γL)eKZ, it remains tobe shown thatθXK−θYK+
θYK eLK

eLZ
≥ 0,

that is, using θXK �
γLθYK

γKθYL+γLθYK
, that

γL

γKθYL + γLθYK
− 1 +

eLK

eLZ
≥ 0. (A-21)

The inequality in (A-20) implies that θYZeLZ ≥ −θYKeLK − θYL
eLK eLZ

eKZ
, and, using γL (1 +

γK)eLZ ≥ γK (1 + γL)eKZ again, that

eLZ ≥ −
θYK

θYZ
eLK −

θYLγK (1 + γL)
θYZγL (1 + γK)

eLK �

[
θYKγL (1 + γK) + θYLγK (1 + γL)

θYZγL (1 + γK)

]
(−eLK),

leading to
eLK

eLZ
≥ −

θYZγL (1 + γK)
θYKγL (1 + γK) + θYLγK (1 + γL)

.

Plugging this lower bound into Equation (A-21) and simplifying yields a lower bound
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equal to
θYL

(
γL − γK

) (
θYKγL + θYLγK + γLγK

)(
γKθYL + γLθYK

) (
θYKγL (1 + γK) + θYLγK (1 + γL)

) ,
which is positive given that γL > γK . Q.E.D.

A.6 Example of pollution-enhancing tax in Fullerton andHeutel (2007a)

In the modeling approach of Fullerton and Heutel (2007a) (β � 0, α � θXL), an increase in
the tax on the polluting input may lead to increased pollution. For instance, the following
set of parameter values leads to the counterintuitive outcome: σu � σX � 0, θYL �

1
8 ,

θYK �
1
2 , γL � 1, γK �

12
13 , eLL � −1, eKK � −1.1005, eZZ � −3. The remaining parameters

can be deduced using the relationships γLθXL
θYL

�
γKθXK
θYK

, which determines θXL � 0.1875,
as well as the three equalities θYLemL + θYKemK + θYZemZ � 0, for m ∈ {L, K, Z}, which
jointly determine the three cross-price Allen elasticities, eLK � −1.049, eLZ � 1.732, and
eKZ � 1.817. One can check that the resulting substitution matrix satisfies negative
semidefiniteness. With these parameters, we obtain Ẑ � 0.96τ̂Z, that is, a positive elasticity
of pollution with respect to the pollution tax. Not surprisingly, in that case the value of
the pollution tax actually decreases relative to the value of our preferred price indices.
Indeed, denoting θX �

pX X
pX X+pYY and θY � 1−θX , we obtain p̂Z−

(
θX p̂X + θY p̂Y

)
� −0.8τ̂Z.

Denoting θL �
wL̄

wL̄+rK̄ and θK � 1 − θL, we obtain p̂Z − (θLŵ + θK r̂) � −1.0τ̂Z.
Note that the assumption that σu � σX � 0 is not necessary for the sign reversal to

occur. For instance, it happens for the following set of parameter values: σu � 0.25,
σX � 0.25, θYL � 0.51, θYK � 0.22, γL � 1, γK � 0.128, eLL � −11, eKK � −396, and
eLZ � −65.9989.

Finally, note that the numerical example given in Fullerton and Heutel (2007a), foot-
note 14, to illustrate the counterintuitive outcome violates the negative semidefiniteness
property of the substitution matrix in sector Y. This is easily seen by computing the

determinant of the submatrix *
,

eLL eLZ

eLZ eZZ

+
-
, which turns out to be negative rather than

non-negative for their choice of substitution elasticities. Since their example assumes
eLK > 0, the value of the equilibrium system determinant (∆) has the right (positive) sign.
In their example, the sign reversal is due to the numerator (∆Z) having the wrong (posi-
tive) sign. We have shown in Appendix A.3 that this numerator is in fact non-positive for
all admissible values of the Allen substitution elasticities.
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Figure A.2: Violations of the law of input demand with pY as numeraire

Note: We set σX � σu � 0, γL � 1, eLL � −1, and assume eLK ≤ 0. All points located below the
blue surface violate the restrictions from theory (the negative semidefiniteness of the Slutsky
matrix implies that eLLeKK ≥ e2

LK). Within the relevant subspace located above the blue surface,
the parameter region located below the orange surface supports violations of the law of input
demand.

A.7 Violation of the law of input demand with pY as numeraire

Figure A.2 depicts the parameter space supporting violations of the law of input demand
when pY is used as the anchoring price index. As in the main text, we set σX � σu � 0,
γL � 1, eLL � −1, and consider eLK ≤ 0. The choice eLL � −1 is a normalization that only
affects the scale of eKK and eLK . As such, the values of eKK and eLK can be reinterpreted as
those of eKK

|eLL |
and eLK

|eLL |
, respectively. Similarly shaped violation regions exist for alternative

values of γL.

B Model with one clean input

Consider an economy with one clean input, labor. We consider price indices of the form
P � pβYp1−β

X . (p̂X � ŵ due to constant returns to scale in sector X.) The displaced
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equilibrium is given by the following set of equations:

L̂X + γL L̂Y � 0

X̂ − L̂X � 0

Ŷ − θYL L̂Y − θYZẐ � 0

p̂Y − θYL p̂X � θYZ τ̂Z

L̂Y − Ẑ + σY p̂X � σY τ̂Z

X̂ − Ŷ + σu p̂X − σu p̂Y � 0

βp̂Y + (1 − β)p̂X � 0.

where the notation is as before and θYL + θYZ � 1. It is easy to show that the determinant
of the system has a constant sign, and that

Ẑ
τ̂Z

� −
σuθYZ + σY (γL + θYL)

(1 + γL)(1 − βθYZ)
< 0.

The result can also be derived directly from the model with two clean inputs, special-
ized to the case where σX � 0, eLK � 0, and γL � γK . (To see why one must have γL � γK ,
consider Equations (A-1) and (A-2). Fixedproportions in industry X imply L̂X � K̂X . Fixed
proportions between labor and capital in industry Y imply L̂Y � K̂Y . Hence γL � γK .) We
thus have ∆ � C3, and since eLK � 0, ∆ > 0 for all acceptable parameter values.

C Additional simulations

C.1 Parameter values considered in Fullerton and Heutel (2007a)

Simulations reported in Tables C.1 and C.2 are performed using the parameter values:
σu � σX � eLK � 1, eLZ � 1, eKZ � −0.5, and θYZ � 0.25. As in Fullerton and Heutel
(2007a), the values of the remaining model parameters are determined by the values
of γK − γL given in the tables and the conditions KX + KY � 0.4, LX + LY � 0.6, and
LY + KY � 0.2.

C.2 Model with higher pollution tax

Tables C.3 and C.4 summarize results for a model with parameters identical to those in
Table 1, except for the expenditure share on the dirty input in industry X, which is doubled
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Table C.1: Pollution effect of a 10% increase in the nominal pollution tax (%)

γK − γL θYK θXK
Ẑ

pX pY P w r R st. dev.
-0.25 0.1515 0.4495 -7.50 -10.10 -8.02 -7.64 -7.35 -7.52 0.95
-0.20 0.1818 0.4394 -7.00 -9.42 -7.48 -7.14 -6.82 -7.01 0.89
-0.15 0.2118 0.4294 -6.49 -8.72 -6.93 -6.65 -6.29 -6.50 0.82
-0.10 0.2416 0.4195 -5.98 -8.03 -6.39 -6.14 -5.77 -5.99 0.76
-0.05 0.2710 0.4097 -5.48 -7.33 -5.85 -5.64 -5.26 -5.48 0.69
0.00 0.3000 0.4000 -4.97 -6.63 -5.31 -5.14 -4.75 -4.97 0.62
0.05 0.3286 0.3905 -4.47 -5.94 -4.77 -4.63 -4.25 -4.47 0.55
0.10 0.3566 0.3811 -3.98 -5.26 -4.24 -4.13 -3.76 -3.97 0.49
0.15 0.3841 0.3720 -3.49 -4.59 -3.71 -3.63 -3.28 -3.48 0.42
0.20 0.4110 0.3630 -3.00 -3.93 -3.19 -3.13 -2.81 -2.99 0.36

Table C.2: Incidence effects of a 10% increase in the nominal pollution tax (%)

γK − γL
Sources side: ŵ − r̂ Uses side: p̂Y − p̂X

pX pY P w r R st. dev. pX pY P w r R st. dev.
-0.25 0.39 0.52 0.41 0.39 0.38 0.39 0.05 2.57 3.46 2.75 2.62 2.52 2.58 0.33
-0.20 0.47 0.63 0.50 0.48 0.45 0.47 0.06 2.57 3.46 2.75 2.62 2.50 2.57 0.33
-0.15 0.55 0.73 0.58 0.56 0.53 0.55 0.07 2.56 3.44 2.74 2.62 2.48 2.56 0.33
-0.10 0.63 0.84 0.67 0.64 0.60 0.63 0.08 2.55 3.42 2.72 2.61 2.46 2.55 0.32
-0.05 0.71 0.94 0.75 0.73 0.68 0.71 0.09 2.53 3.38 2.70 2.60 2.42 2.53 0.32
0.00 0.79 1.05 0.84 0.81 0.75 0.79 0.10 2.50 3.33 2.67 2.58 2.39 2.50 0.31
0.05 0.86 1.15 0.92 0.89 0.82 0.86 0.11 2.47 3.28 2.63 2.56 2.35 2.47 0.31
0.10 0.94 1.25 1.00 0.98 0.89 0.94 0.12 2.43 3.22 2.59 2.52 2.30 2.43 0.30
0.15 1.02 1.34 1.09 1.06 0.96 1.02 0.12 2.39 3.15 2.54 2.49 2.25 2.39 0.29
0.20 1.10 1.44 1.17 1.15 1.03 1.09 0.13 2.35 3.07 2.49 2.45 2.19 2.34 0.28

to θYZ � 0.50. Expenditure shares on labor and capital are reduced to θYL � 0.30 and
θYK � 0.20, preserving their ratio.

A notable consequence of this change is that the use of pX as anchoring index yields
predictions that do not closely approximate those obtained using the CPI.

C.3 Parameter values adapted from Fullerton and Ta (2019)

Fullerton and Ta (2019) calibrate a Cobb-Douglas model of a closed economy to U.S. data
to analyze the effects of a carbon tax on prices, inputs, outputs, and welfare. Their model
specification does not squarely fit the model discussed here because the dirty input (fossil
fuels) is used in the production of both electricity (a good consumed by households) and
a composite consumption good. The consumption good (X) is produced using electricity
and fossil fuels. Because production of the consumption good uses mostly labor and
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Table C.3: Pollution effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Ẑ

pX (R) pY P w r st. dev.
0.0 0.0 -4.00 -8.00 -4.80 -4.00 -4.00 1.46
0.5 0.0 -5.16 -10.32 -6.19 -5.05 -5.33 1.88
1.0 0.0 -6.25 -12.50 -7.50 -6.00 -6.67 2.28
0.0 0.5 -5.76 -11.52 -6.91 -5.89 -5.58 2.11
0.5 0.5 -7.00 -14.00 -8.40 -7.00 -7.00 2.56
1.0 0.5 -8.16 -16.33 -9.80 -8.00 -8.42 2.97
0.0 1.0 -7.45 -14.89 -8.94 -7.78 -7.00 2.74
0.5 1.0 -8.76 -17.53 -10.52 -8.95 -8.50 3.21
1.0 1.0 -10.00 -20.00 -12.00 -10.00 -10.00 3.65

Table C.4: Incidence effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Sources side: ŵ − r̂ Uses side: p̂Y − p̂X

pX (R) pY P w r st. dev. pX (R) pY P w r st. dev.
0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 5.00 10.00 6.00 5.00 5.00 1.83
0.5 0.0 -0.54 -1.08 -0.65 -0.53 -0.56 0.20 5.00 10.00 6.00 4.89 5.17 1.82
1.0 0.0 -1.04 -2.08 -1.25 -1.00 -1.11 0.38 5.00 10.00 6.00 4.80 5.33 1.82
0.0 0.5 0.54 1.09 0.65 0.56 0.53 0.20 5.00 10.00 6.00 5.11 4.84 1.83
0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.00 5.00 10.00 6.00 5.00 5.00 1.83
1.0 0.5 -0.51 -1.02 -0.61 -0.50 -0.53 0.19 5.00 10.00 6.00 4.90 5.16 1.82
0.0 1.0 1.06 2.13 1.28 1.11 1.00 0.39 5.00 10.00 6.00 5.22 4.70 1.84
0.5 1.0 0.52 1.03 0.62 0.53 0.50 0.19 5.00 10.00 6.00 5.11 4.85 1.83
1.0 1.0 0.00 0.00 0.00 0.00 0.00 0.00 5.00 10.00 6.00 5.00 5.00 1.83
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Table C.5: Model parameters adapted from Fullerton and Ta (2019)

Parameter Notation in Fullerton and Ta (2019), Table 1 Value
eLK N/A (Cobb-Douglas) 1
σu N/A (Cobb-Douglas) 1
σX N/A (Cobb-Douglas) 1
γL

L0
E

L0
X

0.012

γK
K0

E
K0

X
0.031

θXL
β
α+β 0.455

θYL ε 0.138
θYK δ 0.415

Note: To ensure internal consistency, once we have set γL, γK , θYL, and θYK we recompute
θXL �

γKθYL
γKθYL+γLθYK

to ensure that the equality γLθXL
θYL

�
γKθXK
θYK

holds exactly.

capital (the cost shares on electricity and fossil fuels are very small), to fit their calibration
data within our framework we assume that production of X rests solely on capital and
labor. Thus sector Y (the dirty sector) is represented by the electricity sector, which uses
a large share of fossil fuels in terms of input costs. Table C.5 summarizes the calibration
data.

Tables C.6 and C.7 summarize results for a set of selected substitution elasticities. We
set eLK � 1 but allow the substitution elasticities eKZ and eLZ to vary. We exclude sets of
substitution elasticities that violate the negative semidefiniteness of the Slutsky matrix.
Note that the choices of pX and R as anchoring indices lead to indistinguishable results
with the level of precision used here, although they are not identical.

The results indicate that choosing pY as the anchoring index leads to predictions very
different from those obtained with other indices. These discrepancies are driven by the
large expenditure share on the polluting input in sector Y and the small shares of labor and
capital used in that sector. To see why, note that differences in predictions are solely due
to differences in ∆, the determinant of the equilibrium system. But ∆ � C1σX +C2σu +C3,
and the expressions for C1, C2, and C3 in Section A.3 make it clear that whenever γL

and γK are small relative to one, which is the case here, the term C1 dominates and thus
determines the magnitude of ∆. (Recall that σX � σu � 1 in the parameterization.) Since
the magnitude of C1 directly depends on BL + BK � 1 − BZ, choices of anchoring indices
leading to very different magnitudes of BZ ≡ βθYZ will lead to very different predictions.
When pY is chosen, β � 1, while for all other choices considered in Tables C.6 and C.7 BZ

is either close to or equal to zero. It is equal to zero whenever β � 0 (choice of pX , w, r, or
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Table C.6: Pollution effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Ẑ

pX pY P w r R st. dev.
1.0 -0.5 -7.88 -14.28 -8.02 -7.85 -7.91 -7.88 2.37
0.0 0.0 -4.36 -7.88 -4.44 -4.38 -4.35 -4.36 1.30
0.5 0.0 -6.48 -11.72 -6.60 -6.49 -6.48 -6.48 1.94
1.0 0.0 -8.59 -15.55 -8.74 -8.57 -8.61 -8.59 2.58
0.0 0.5 -5.06 -9.13 -5.15 -5.09 -5.03 -5.06 1.51
0.5 0.5 -7.18 -12.98 -7.31 -7.20 -7.17 -7.18 2.15
1.0 0.5 -9.30 -16.82 -9.46 -9.28 -9.31 -9.30 2.79
0.0 1.0 -5.75 -10.37 -5.85 -5.79 -5.72 -5.75 1.71
0.5 1.0 -7.88 -14.23 -8.02 -7.91 -7.86 -7.88 2.36
1.0 1.0 -10.00 -18.08 -10.18 -10.00 -10.00 -10.00 3.00

Table C.7: Incidence effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Sources side: ŵ − r̂ Uses side: p̂Y − p̂X

pX pY P w r R st. dev. pX pY P w r R st. dev.
1.0 -0.5 -0.08 -0.15 -0.08 -0.08 -0.08 -0.08 0.02 4.48 8.11 4.56 4.46 4.50 4.48 1.35
0.0 0.0 0.08 0.14 0.08 0.08 0.08 0.08 0.02 4.46 8.05 4.54 4.48 4.44 4.46 1.33
0.5 0.0 0.01 0.02 0.01 0.01 0.01 0.01 0.00 4.47 8.08 4.55 4.47 4.47 4.47 1.34
1.0 0.0 -0.05 -0.10 -0.06 -0.05 -0.05 -0.05 0.02 4.48 8.10 4.56 4.46 4.49 4.48 1.35
0.0 0.5 0.11 0.19 0.11 0.11 0.11 0.11 0.03 4.46 8.04 4.54 4.48 4.44 4.46 1.33
0.5 0.5 0.04 0.07 0.04 0.04 0.04 0.04 0.01 4.47 8.07 4.54 4.48 4.46 4.47 1.34
1.0 0.5 -0.03 -0.05 -0.03 -0.03 -0.03 -0.03 0.01 4.47 8.09 4.55 4.47 4.48 4.47 1.34
0.0 1.0 0.13 0.24 0.14 0.14 0.13 0.13 0.04 4.45 8.03 4.53 4.49 4.43 4.45 1.33
0.5 1.0 0.07 0.12 0.07 0.07 0.07 0.07 0.02 4.46 8.06 4.54 4.48 4.45 4.46 1.33
1.0 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.47 8.08 4.55 4.47 4.47 4.47 1.34
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R) and it is close to zero when P is chosen because θY is small (0.039 for this calibration).
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