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Measuring the Economic Risk of COVID-19 
 
 

Abstract 
 
We measure the economic risk of COVID-19 at a geo-spatially detailed resolution. In addition to 
data about the current prevalence of confirmed cases, we use data from 2014-2018 and a 
conceptual disaster risk model to compute measures for exposure, vulnerability, and resilience of 
the local economy to the shock of the epidemic. Using a battery of proxies for these four concepts, 
we calculate the hazard, the principal components of exposure and vulnerability to it, and of the 
economy’s resilience (i.e., its ability of the recover rapidly from the shock). We find that the 
economic risk of this pandemic is particularly high in most of Sub-Saharan Africa, South Asia, 
and Southeast Asia. These results are consistent when comparing an ad-hoc equal weighting 
algorithm for the four components of the index, an algorithm that assumes equal hazard for all 
countries, and one based on estimated weights using previous aggregated Disability-Adjusted Life 
Years losses associated with communicable diseases. 
JEL-Codes: I100. 
Keywords: epidemic, COVID-19, risk measurement, economic impact. 
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1. Defining the Economic Risk 

The economic risk of an epidemic, any epidemic, is very distinct from the its health 
(morbidity and mortality) risk. The basic framework that assesses disaster risk is typically 
constructed around four concepts: hazard, exposure, vulnerability, and resilience, and it is 
the interaction of these four that leads to the economic consequences. The hazard, in these 
frameworks, is the natural trigger. In the present circumstances, it is the SARS-Cov-2 virus 
which causes COVID-19. Since the economic risk is determined not only by the hazard, but 
also exposure, vulnerability, and resilience, this risk has plausibly very different spatial 
variability than the spread of the virus.  

Even with a low case load or mortality associated with it, the epidemic can lead to very 
adverse changes inside and outside an affected economy that can lead to dramatic 
economic effects. In the most extreme cases, the economic risk might be high even if there 
are no confirmed cases of COVID-19 in the country; this is the case, for example, for some of 
the South Pacific Island countries (Doan and Noy, 2020).  

Given the paucity of data on epidemic cases in the recent past (the period for which 
comprehensive economic and demographic records are available), and the unprecedented 
nature of this event, our aim here is not to precisely measure the likely consequence of this 
pandemic, but rather to comparatively evaluate where the economic risk of COVID-19 is 
currently concentrated using several algorithms.  

An alternative approach is to calculate the actual risk for each country using structural 
modelling; see for example an estimate for the likely impact of pandemic influenza in Fan et 
al. (2016) and consequently the expected annual global impact of this influenza risk 
(evaluated therein at US$ 80B). This approach, in our view, cannot yet produce credible 
estimates given the paucity of our understanding of the economic impact of lockdown 
(shelter-in-place) policies and the impact of the rapid de-globalization these lockdowns have 
generated.  

Once we have compared the economic risk across regions and countries, we can then 
identify many potentially important policy interventions and prioritise their implementation. 
For example, it seems to us that multilateral financial assistance should prioritise those 
countries in which the economic risk is higher, rather than the health risk. In contrast, 
funding from the World Health Organisation should target places where the health risk is 
high. 

Our risk measure is premised on the observation that a disaster, including an epidemic, 
occurs when a hazard (in this case the disease) interacts with an exposed population that is 
vulnerable to this hazard, thus causing harm to people. Epidemics always arise out of a 
natural pathogen (very often zoonotic), but the pathogen by itself does not create the 
epidemic and definitely not its economic consequences. For that, the pathogen must 
encounter a society, people and an economy, that is both exposed and vulnerable to it. 
Resilience, in this framework, is conceptualized and quantified as the ability of the economy 
to bounce back given the magnitude of the shock that is generated by the intersection of 
the hazard, exposure, and vulnerability (an alternative term to ‘resilience’ is ‘capacity,’ but 
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we prefer the term ‘resilience’ or ‘socio-economic resilience’ as defined by Hallegatte, 
2014). The degree of resilience in an economy is thus determined by the speed in which the 
recovery process occurs, and when the system reverts back to its pre-shock level (i.e., full 
recovery is achieved). 

2. A Method for Measuring the Economic Risk 

As defined by UNDRR (2017), a disaster is “a serious disruption of the functioning of a 
community or a society at any scale due to hazardous events interacting with conditions of 
exposure, vulnerability and capacity, leading to one or more of the following: human, 
material, economic and environmental losses and impacts. The effect of the disaster can be 
immediate and localized, but is often widespread and could last for a long period of time.”  

Exposure in the UNDRR definition refers to the population and the economic activity that is 
located in areas that are being exposed to the pathogen or that is indirectly exposed to the 
changing behavior that is induced by the presence of this pathogen (e.g., Epstein, 2009). 
Vulnerability, in this case, refers to the ability of the pathogen to adversely affect the 
exposed economy. A higher degree of vulnerability will lead to a more adverse outcome for 
the economy, given the same exposure to the SARS-Cov-2 virus. It is important to note that 
these distinctions are always imperfect, and that is also the case for epidemics. Even the 
basic epidemiological parameter, R0, is a function of the socio-economic environment – see 
Janes et al. (2012). 

Over time, the economic losses will depend on the depth of the shock, and on the 
economy’s resilience (its ability to bounce back). A more resilient economy, in this 
framework, is one that manages to minimize the post-shock cumulative loss of income 
during the recovery process for a given size of the shock (Hallegatte, 2014). As Prager et al. 
(2017) note, resilience policies are often not really plausible to pursue during the rapid 
phase of the spread of the epidemic. What is more plausible is to make up for lost 
production once the epidemic has abated, and potentially prepare the economy for the 
recovery period while the epidemic is still ongoing (as many governments are now trying to 
do). The ability to implement such policies, as determined by both financial and institutional 
capacity, is therefore an important determinant of economic resilience. 

In a previous paper (Noy et al., 2019), we analysed the economic risk of a generic epidemic. 
Here, instead of focusing on a generic emerging infectious disease event, we focus on 
COVID-19 (Figure 1). SARS-Cov-2 fits perfectly the pattern of a zoonotic pathogen emerging 
from the interaction of a wild animal population with a food market that epidemiologists 
have been warning about (e.g. Allen et al., 2017). However, the economic characteristics of 
this unprecedented event are somewhat different. For example, while tourism collapses in 
individual countries had happened before (e.g., West Africa because of Ebola in 2014-2015, 
Korea because of MERS in 2015), the total collapse of all international tourism is unique. We 
therefore modified our risk analysis to fit the new experience with COVID-19.  
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Fig. 1 COVID-19 hazard index map (calculated from the ratio of the number of confirmed cases to population). 
Data updated: 10 June 2020.  

Measured at the level of grid cells, g, we model the risk associated with the economic 
impact of epidemics as a linear combination of hazard plus a local economy’s exposure and 
vulnerability to it, minus its resilience or ability to bounce back: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑔𝑔� =  𝛼𝛼1𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑔𝑔  +  𝛼𝛼2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐻𝐻𝐸𝐸𝑔𝑔  +  𝛼𝛼3𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝐸𝐸𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔  −  𝛼𝛼4𝑅𝑅𝐸𝐸𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝑅𝑅𝐸𝐸𝑔𝑔             (Eq. 1) 

We collect a large group of sub-national and national measures from recent years (2014-
2018) to proxy for exposure, vulnerability, and economic resilience. The selection of 
variables is based on the literature measuring disaster risk, as reviewed in Yonson and Noy 
(2018), and on the current experience of COVID-19. We then use principal component 
analysis (PCA) to compute a standardized index for each exposure, vulnerability, and 
resilience. Using the first component of exposure, vulnerability, and resilience index, in 
addition to the number of confirmed cases of COVID-19, we compute a risk index in relation 
to the economic risk of epidemics. In our simplest specifications, we assume   𝛼𝛼𝑖𝑖  = 𝛼𝛼𝑗𝑗  for 
all i and j; in an alternative algorithms, we assume   𝛼𝛼1  = 0 (the Hazard is equal for all 
countries). 

In another alternative, we estimate the  𝛼𝛼𝑖𝑖 based on a least-squares regression algorithm 
which estimates, as dependent variable, the Disability Adjusted Life Years (DALY) metric 
available from the Institute for Health Metrics and Evaluation. We calculate the average of 
DALY in the period 2012-2017 from three communicable causes: (i) Diarrhoea and common 
infectious diseases; (ii) Malaria and neglected tropical diseases; and (iii) other 
communicable diseases. We use this aggregate measure of DALY lost as an alternative proxy 
for the risk of epidemics. Since the DALY aggregates are calculated for each country, we 
merge the country-level data into grid cell data. The implied assumptions are that the 
current health situation and an ideal health status are identical in the different grid cells 
within each country. We then estimate the following model by Ordinary Least Squares 
(OLS): 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑔𝑔 =  𝛽𝛽0 + 𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑔𝑔  + 𝛽𝛽2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐻𝐻𝐸𝐸𝑔𝑔  + 𝛽𝛽3𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝐸𝐸𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔 + 𝛽𝛽4𝑅𝑅𝐸𝐸𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝑅𝑅𝐸𝐸𝑔𝑔 + 𝜀𝜀𝑔𝑔   (Eq. 2) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑔𝑔 is the prevalence of COVID-19 in grid g. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐻𝐻𝐸𝐸𝑔𝑔, 𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝐸𝐸𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔, and 
𝑅𝑅𝐸𝐸𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝑅𝑅𝐸𝐸𝑔𝑔 is the first component of principal component analysis for exposure, 
vulnerability, and resilience in grid g. 

3.  Statistical Methods and Data 

To compute a coherent index for exposure, vulnerability, and resilience separately, we use 
principal components analysis (PCA) - an algorithm whose aim is to compress a large set of 
variables while retaining most of the information in the initial larger set (Ringnér, 2008). 
Before going through the dimensionality reduction procedure to find the principal 
components, we standardize all variables.  

Hazard and Exposure indicators 

We use the number of COVID -19 confirmed cases per 1 million people. Data is updated on 
10 June 2020. In terms of economic exposure, we use population and nighttime light density 
to measure human presence and economic activity. Nightlight data is used as a proxy for 
economic wealth; the data is described in Román et al. (2018). Transport density provides 
another relevant indicator for population density. An urban metropolitan area likely has a 
denser network of highways and air links. To get a coherent layer of transportation density, 
we use all types of transport as described in Lloyd et al. (2017). Transport databases from 
Open Street Map (OSM) include: Highway, waterway, railway network, railway station and 
airport. Last, we use the number of net incoming migrants to proxy for external economic 
exposure. Data for each variable to proxy for exposure are collected as raster format with 
higher resolution than data for hazard. Hence, we can plausibly merge with data about 
epidemic into grid 1 degree by 1 degree by WGS84 projection. 

Vulnerability indicators 

Likewise, we use a set of data on economic outcomes, human development, tourism, and 
health quality to measure vulnerability. Drake et al. (2012) argue that the vulnerability to 
infectious disease outbreak is much higher in low- and middle-income countries, especially 
the vulnerability to mortality and morbidity risk. The United Nations’ Human Development 
Index (HDI) and total GDP in each grid cell, are collected from the data described in Kummu 
et al. (2018). Kummu et al. (2018) estimate Gross Grid-Cell Product by multiplying country-
level GDP per capita (PPP) with 30 arc-sec population counts following the method 
pioneered by Nordhaus and Chen (2016). To get sub-national data on HDI, Kummu et al. 
(2018) develop scaling factors to combine sub-national and national data.  

Tatem et al. (2012) survey the need and availability of sub-national detailed demographic 
data that might be useful in understanding disease exposure and vulnerability. They argue 
that for improvement in our understanding of disease transmission and control, we require 
detailed spatially-referenced demographic data (for example, distinguished by cohorts and 
gender). This data is only available in low frequency in countries that conduct a 
comprehensive census. We lack data on health quality at the sub-national level; except for 
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spatially-detailed data on the old population density and infant mortality rate, we use 
country-level measures of healthcare spending and number of hospital beds per 1000 
population. These data are from the World Bank Development Indicators (WDI) and World 
Health Organization (WHO). We merge the country-level data into the grid cell data by 
assigning the same value for all grid-cells within the same country. 

Since the healthcare spending data might not be a perfect proxy for the robustness of the 
public health system, and its ability to prevent the spread of an epidemic, we also use two 
alternative proxies. One is the presence of a robust public-health systems (or lack thereof) – 
this International Health Regulations Score is available from the WHO. Another alternative is 
the Global Health Security Index that is available from Johns Hopkins School of Public 
Health. These results are available in the appendix.  

Resilience indicators 

Hallegatte et al. (2016) argue that early warning systems possibly reduce asset losses. We 
assume information about epidemics is accessed via the internet and mobile phones, so we 
associate higher penetration rates of these with higher resilience. We use data from the 
WDI and the International Telecommunication Union. Next, we assume that the capacity of 
government to implement economic relief policy, and household to access loans are 
positively associated with resilience. Last, we use data about ethnic and linguistic diversity 
to measure socio-cultural disparity (Alesina et al., 2003). We assume that the diversity 
plausibly affects the behaviour of individuals and communities in a hazard event. 

4. The Measured Risk Index 

Figure 2 shows descriptive information and PCA results of all variables we use to measure 
exposure, vulnerability, and resilience. The principal component index is the output of linear 
combination of the original variables. We use the first principal component for each 
exposure, vulnerability, and resilience index. As the first component accounts for most 
variation in the data and contribute the most explanation in the combining procedure. The 
proportion of eigenvalues indicates the explanatory importance of the factor, which are 4.0, 
3.4, and 2.8 for exposure, vulnerability and resilience respectively. Economic activities, 
demographic measures, and infrastructure density all positively explain exposure. High 
income areas with better healthcare quality (as measured by lower infant mortality, health 
spending, hospital infrastructure) are related to less vulnerable areas. Tourism areas and 
high numbers of the elder are associated with higher vulnerability. For resilience, areas with 
higher social, and cultural disparity have a lower index. Countries having lower ratio of 
government debt and higher expenditure are more resilient.  

We normalize all exposure, vulnerability, and resilience indices. Figure 3 presents the 
cumulative distribution of main results for: Hazard, exposure, vulnerability, resilience, and 
economic risk. For hazard, we use the number of confirmed cases of COVID-19 per 1 million 
people from the worldometer website, which has the most frequently updated data. We 
calculate the economic risk by an equal-weight linear combination of the four indices.  

 



7 
 

Fig. 2 Descriptive data and principal component analysis (PCA) results. The lower and upper caps represent 
standard errors of each variable in the first component. 

 
Fig.3 The cumulative distribution of the indices 
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We find that the economic risk of epidemics is especially high in much of Sub-Saharan 
Africa, South Asia, Iran, Afghanistan and much of Southeast Asia (Figure 4). Fundamentally, 
areas of the greatest vulnerability align with the high economic risk. The economic risk is 
high in Africa and Southeast Asia, as these are the most vulnerable areas with low income 
and healthcare quality. Resilience, intentionally or otherwise, plays a role in reducing the 
economic risk from epidemics. For example, in Southern Cone countries (Argentina and 
Chile) the resilience is higher than neighbourhood countries due to less fractionalized socio-
cultural characteristics (lower ethnic and linguistic disparity) and higher incomes. Oil 
exporting countries face a vulnerability to global oil prices (which have collapsed in the first 
few months of the pandemic), while other commodity exporters have faced less volatility in 
the prices of their exports. 

In Figure 5, we assume that the hazard (the presence of the virus) is identical to all 
countries. This can be motivated either by the expectation that eventually, the spread of the 
virus will reach epidemic levels in all countries, or because of the widely held view that 
differences in the testing regimes account for a lot of the differences in the number of 
confirmed cases (probably especially relevant for low-income countries). As such, the 
assessment of the economic risk that is caused by this virus should not be based on the 
present known spread of the virus, but on its global potential. Besides some expected 
differences, however, the results presented in Figure 5 (uniform spread of the virus) and 
Figure 4 (hazard based on the current spread of the virus) are very similar. The only slight 
difference is that the United States and the countries of Northern Europe that have very 
high official infection rates per population (e.g., Sweden and Iceland) are assessed to be a 
comparably lesser risk in Figure 5 (when we assume a uniform level of the hazard).  

 
Fig. 4 Economic Risk of COVID-19 using equation (1) with equal weights.  



9 
 

 
Fig. 5 Economic Risk of COVID-19 using a modified equation (1) with hazard calibrated so all countries have an 
equal hazard (all are susceptible to COVID-19). 

A less ad-hoc weighting scheme, instead of equal-weights to the exposure, vulnerability and 
resilience indices - as in Figures 4 and 5, relies on the Disability-Adjusted Life Years (DALY) 
measure of overall disease burden. Since previous DALYs associated with communicable 
disease is the outcome of previous events, it could be a good source for understanding the 
interactions between the (mostly zoonotic) hazard and exposure, vulnerability, and 
resilience to it. DALYs are the sum of years lost due to ill-health, disability or premature 
death from communicable diseases. Weights for each of the four components are derived 
by Ordinary Least Squares regression with the country-level DALYs as the dependent 
variable, as in Eq. 2 (we assign the same DALY value for all grid cells within each country).  

Table 1: Estimation results for National DALY 
 Hazard 20.956*** (5.371) 
 Exposure 495.018*** (46.726) 
 Vulnerability 169.309*** (5.878) 
 Resilience -97.386*** (4.730) 
 _cons 19.318*** (3.974) 
 Obs. 16654  
 R-squared  0.166  
Robust standard errors are in parenthesis. *** p<0.01, ** p<0.05, * p<0.10.   

Building on the regression results presented in Table 1, the alternative functional form to 
measuring economic risk uses the weights implied in the coefficients described therein. The 
weights are calculated by  �̂�𝛽𝑗𝑗(∑ ��̂�𝛽𝑗𝑗�4

𝑗𝑗=0 )−1, then: 

𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑔𝑔� = 0.02 + 0.03𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑔𝑔 +  0.62𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐻𝐻𝐸𝐸𝑔𝑔  +  0.21𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝐸𝐸𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔  −  0.12𝑅𝑅𝐸𝐸𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸𝑉𝑉𝑅𝑅𝐸𝐸𝑔𝑔      (Eq.3) 

The estimated weights are then plugged into the risk function (i.e., 𝛼𝛼𝑔𝑔 = 𝛽𝛽𝑔𝑔) which now 
places considerably more weight on exposure than on hazard, resilience, and 
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vulnerability. The spatial patterns of the DALY-weighted risk map in Figure 6 are still, 
though, similar to those observed in the unweighted maps (Figures 4 and 5). As before, the 
areas at highest risk of economic losses from epidemics remain Sub-Saharan Africa and 
South and South-East Asia. But, some of Central Europe and East Coast of the United States 
are now considered more risky with this approach as these are densely populated. Besides, 
the Indian subcontinent, area that is both poor and densely populated, is much riskier. 

 
Fig. 6 Economic Risk of COVID-19 using the DALY-weighted index. 

5. Discussion and Conclusions 

We developed a measurement tool to estimate the economic risk of epidemics. This index 
of economic risk is based on pre-epidemic data, so it can readily be used in the initial stages 
of the epidemic. A substantial amount of recent research has already assessed the risk from 
the epidemic to financial markets, since high-frequency data for these markets is readily 
available (e.g., Al-Awadhi et al., 2020; Goodell, 2020; Sharif at al., 2020; and Zhang et al., 
2020). Fewer papers, however, have examined the economic risk, as observed economic 
data for the second quarter of 2020 is not yet available (and even first quarter data is not 
uniformly available or reliable). Using structural macroeconomic modelling (sometimes 
coupled with epidemiological ones) several papers do attempt to qualitatively or 
quantitatively describe the likely economic impact and its determinants (e.g., Céspedes, et 
al., 2020; Ludvigson, et al., 2020; Lewis et al., 2020). Their emphasis is quantifying the risk 
for a specific country, for a specific point in time, and it relies on a significant body of 
assumptions regarding the relevant structural characteristics of the economy that is 
modelled. Our work attempts to compare the risk across countries, rather than evaluate the 
exact magnitude of the risk in a specific country. 

The economic consequences of an epidemic, like any other natural hazard shock, can be 
delineated into damages, direct losses, and indirect losses (Noy, 2016). If measured through 
the standard statistical tools used by governments to evaluate the cost of life (the Value of 
Statistical Life – VSL), the direct costs of COVID-19 due to illness and mortality will probably 
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turn out to be much smaller than the indirect losses. This is, of course, especially true for 
countries in which the epidemic has not yet spread indiscriminately, but that are very 
exposed to the global shock it created (for example, in tourism dependent economies). With 
growing globalisation of information, increasing inter-connectedness among far-flung 
populations and extensively longer supply-chains comes increased exposure to the indirect 
economic losses from epidemics, with potentially dire implications for many economies. 

When we account for the ways an epidemic creates economic losses, we need to measure 
not only the direct reductions in economic activity that are attributable to changes in 
government policy (e.g., mandatory lockdowns), but also measure behavioural changes that 
are caused by changing subjective judgements about the risk of contraction among the still 
healthy population. These behavioural changes may be influenced not only by the 
characteristics of the epidemic contagion process and the disease virulence, but also by its 
media coverage and the fear it might generate. These, of course, are much more difficult to 
quantify than explicit government policies such as those recorded in Petherick et al. (2020). 

As public health systems have improved over the past century, this pandemic’s health 
impacts are unlikely to be of the magnitude of the 1918-19 Influenza pandemic, though it 
still will be of catastrophic scale (more than any other sudden-onset disaster in the past 
century). However, what remains equally salient is the pandemic’s economic consequences. 
The exposure, vulnerability, and resilience to these economic consequences were not 
ameliorated as much when public health systems developed throughout the last century. In 
contrast, plausibly, globalisation of trade, increased tourism and labour flows, the advent of 
social media, and loss of trust in traditional sources of information (especially the ‘old’ 
media and government) are all likely to have amplified the economic losses, by creating 
additional vulnerabilities, and amplifying behavioural responses.  

An example of the extensive behavioural reaction is the SARS crisis in 2003 (Shields and Noy, 
2019). It could be typified as a high prevalence-elasticity response to a disease outbreak - 
i.e., when the public response to an epidemic results in large behavioural changes 
(Brahmbhatt and Dutta, 2008). The SARS case fits with the argument of Philipson (2000), 
that when private behaviour is strongly prevalence-elastic, the main economic cost of a 
disease outbreak is likely to arise out of preventative actions rather than directly from 
infections. This appears to be true for COVID-19, compared to previous epidemics, for 
reasons we are yet to fully understand. It is equally clear that with somewhat different basic 
parameters of the disease, this behaviour-prevalence elasticity could have been even 
higher. A similar virus that would have had high mortality associated with the younger than 
5, rather than the older than 80, would have generated an even stronger behaviour reaction 
(from both governments and individuals). 

A study by Perrings et al. (2014) highlights the importance of government intervention 
which targets the private costs and benefits of disease avoidance so that they induce 
individual behavioural responses which align with the overall interests of the wider society. 
This concerns the trade-off that individuals make regarding their respective costs and 
benefits from, for example, social distancing, in an epidemic situation, and internalises any 
externalities that are generated by either the prevention action or the infection itself.  
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If the benefits of social interactions for an individual are high (e.g., these are necessary to 
earn the income required to meet daily subsistence costs) then this could result in 
continued interaction during an epidemic and, while reducing the economic impact, can 
potentially increase the disease reproduction rate. This can also work in the opposite 
direction; if the individual costs of public avoidance are very low and benefits very high, 
then mass public avoidance in an epidemic, where the mortality and contagiousness are not 
significant enough to warrant such a response, will lead to unnecessarily large economic and 
welfare losses. Improved understanding of the dynamics of individual trade-offs could help 
to prioritise public health interventions beyond what is suggested from our measure of 
economic risk. 

To summarise, what is most apparent from our analysis is that the economic risk from 
COVID-19 is not located in Italy or the United States, where much of the media and global 
public attention was concentrated. Rather, the most dire economic risks are in countries 
and regions that do not get much global attention in normal times (e.g. Sub-Saharan Africa) 
and get even less in the midst of the frantic reporting from what was, for a while, the 
immediate frontlines of the pandemic’s spread in Bergamo or New York City. This lack of 
attention was further compounded by the inability of the press to move around globally. 
This is unfortunate, as the ultimately, the economic costs will be borne in places with little 
global media exposure, away from global public scrutiny and assistance. 

These observations, and the description of the spatial distribution of the risk, should 
generate several conclusions about mitigation and prevention policy – focusing on 
mitigating the economic damage and loss, rather than that of the disease spread itself. We 
argue that since the economic and public health risks are distinct, evaluation and the design 
of policies to ameliorate these risks should be pursued separately. And using information 
from studies, such as ours, one can design better policies that specifically target the areas 
where the risk is higher. 

In the long term, the main insight we gain from this analysis is that while it seems our public 
health systems have been caught by surprise, that is even more true for our social and 
economic policy institutions. There has been almost no economic analysis that has been 
devoted to understanding the economic risk of epidemics, before the COVID-19 crisis. This 
pandemic is not going to be the last one to hit us, even if we improve our public health 
institutions. We need to make sure that our economic policymaking mechanisms, including 
the Bretton Woods institutions and other international bodies, are prepared for the 
economic risk of future pandemics. 

The framework of analysis we use also suggests that attempts to reduce the economic risk 
of epidemics should focus on reducing the exposure and vulnerability of our economies to 
this risk, and on increasing their resilience. Obviously, there will be many other co-benefits 
from pursing that as a goal, as these will also reduce other risks, and provide other social 
benefits. 
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Table 3: Details of variables 

 Variable name Description Unit of 
measurement 

Kind of 
indicators 

Spatial 
availability 
 

Year 
released/ 
updated 

Data 
coverage 
by grid 

Source 

1 COVID-19 Number of confirmed cases per 1 
million people 

Number of 
people 

Hazard Country-
level 

10 June 
2020 

100% Worldometer 

2 Population 
density 

Number of persons per square 
kilometre in 2015 

Number of 
people per km2 

Exposure Resolution: 
0.5’ (1 km) 

2017 100% (CIESIN, 2018) 

3 Night-time lights Night-time light intensity in 2016 
 

Index Exposure Resolution: 
1.5’ (3 km) 

2017 100% Román et al. 
(2018) 

4 Urban built-up Human impact on land by 
urbanization activity 

Index Exposure Resolution: 
0.5’ (1 km) 

2014 100% Tuanmu and 
Jetz (2014) 

5 Transport 
networks in 2016 

Highway density  Index Exposure Resolution: 
<1 km 

2016 100% Lloyd et al. 
(2017) Airport density 

Waterway density 
Railway network 
Rail station density 

6 Net migration Number of in-migrants minus out-
migrants 

Number of 
people 

Exposure Resolution: 
0.5’ (1 km) 

2015 100% de Sherbinin et 
al. (2015) 

7 GDP Gross Domestic Product (PPP) per grid 
in 2015 (constant 2011 USD). 

USD Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% Kummu et al. 
(2018) 

8 GDP per capita Gross Domestic Product per capita 
(PPP) per grid in 2015 (constant 2011 
USD). 

USD Vulnerability Resolution: 
5’ (10 km) 

2018 98% World Bank 
(WDI) 

9 HDI Human Development Index 
[0-1] 

Index Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% Kummu et al. 
(2018) 

10 Tourism 
 

Share of travel and tourism to GDP Percent Vulnerability  Country 
level 

2018 94% World Bank 
(WDI) 

11 Old population 
density 

Number of female/male aged 70 or 
more per square kilometre in 2020  

Number of 
people per km2 

Vulnerability Resolution: 
0.5’ (1 km) 

2017 100% WorldPop and 
CIESIN (2018) 
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12 Infant mortality 
rate 

The number of children who die 
before their first birthday per 1,000 
births in 2017 

Proportion Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% (CIESIN, 2019) 

13 Hospital beds 
 

The number of hospital beds per 1,000 
population  

Number of beds Vulnerability Country level 2015 95% World Health 
Organization 
(WHO) 

14 Out-of-pocket Share of Out-of-Pocket Expenditure on 
Healthcare 

Percent Vulnerability Country level 2014 96% World Bank 
(WDI) 

15 Health spending  Total health care expenditure as GDP   Percent Vulnerability Country level 2014 96% World Bank 
(WDI) 

17 Internet access Share of population using the Internet Percent Resilience Country level 2017 99% World Bank 
(WDI) 

18 Cellular user Mobile cellular subscriptions per 100 
people 

Numeric Resilience Country level 2017 99% International 
Telecommunicat
ion Union (ITU) 

19 Public and 
private debt 

Ratio of central government debt to 
GDP 

Percent Resilience Country level 2018 98% IMF and WDI 

Ratio of domestic credit to private 
sectors to GDP 

20 Government 
expenditure 

Ratio of government expenditure to 
GDP 

Percent Resilience Country level 2018 98% World Bank 
(WDI) 

21 Socio - Cultural 
disparity 

Ethnic disparity [0-1] Index Resilience Country level 2016 99% Alesina et al. 
(2003) Linguistic disparity [0-1]  
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Appendix 
Figure A1. Map of Exposure, Vulnerability, and Resilience 

 

 

  



18 
 

Figure A2. Global Health Security Score  

 

 

Instead of the ratio of health spending to GDP, we use the global health security score 2019 
developed by Center for Health Security of John Hopkins university.  Global health security 
score, ranged from 0 to 100, measures how prepared a country is for infectious disease 
outbreaks (higher score is more prepared). The global health security score is significantly 
correlated to the total healthcare spending. Using the global health security score as a proxy 
for vulnerability component index, the global economic risk is consistent to our main 
findings. 
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Figure A3. International Health Regulations Score  

 

 

An alternative proxy is the international health regulations score from World Health 
Organization. The international health regulations score is the average of 13 core health 
capacities. The first capacity is about legislation, policy (e.g. universal health coverage), 
financing. The score is also significantly associated to the healthcare spending. 
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