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Abstract 
 
We present analytical and simulation-based evidence that instrumented principal component 
analysis (IPCA) cannot reliably distinguish between whether covariances or characteristics 
explain asset returns because the question has to be answered jointly with the question of how 
many factors have to be modeled. IPCA finds a covariance-based explanation when estimating 
too many factors (“alpha-eating”) and a characteristic-based explanation when estimating too 
few factors (“beta-eating”). Our results therefore call into question the empirical evidence 
recently obtained that stocks (Kelly et al., 2019), options (Büchner and Kelly, 2022), and bonds 
(Kelly et al., 2021) are explained by covariances. 
JEL-Codes: C230, G120, G170. 
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1 Introduction

In his presidential address, Cochrane (2011) summarizes the key findings from the past 40 years

of asset pricing research and highlights two central challenges for future research. First, given the

large number of potential predictors for the cross section of (stock) returns, those that provide

independent information have to be identified. Due to the multidimensionality of the asset pricing

puzzle (Green et al., 2017; Freyberger et al., 2020), new methods beyond portfolio sorts and cross-

sectional regressions are required to tame the “zoo of anomalies”. Second, assuming that a (new)

predictor provides independent information about average returns, the question of what explains

this relationship has to be answered.

Kelly et al. (2019) (KPS hereafter) seek to address the challenges raised by Cochrane (2011)

by proposing instrumented principal component analysis (IPCA), a new factor modeling approach

that finds latent (risk) factors, while estimating factor loadings as a function of a potentially large

number of observed asset characteristics. This reduction in dimensionality from a large number of

characteristics to a smaller number of factor loadings allows IPCA to process considerable infor-

mation while being parsimoniously parameterized. Additionally, IPCA allows for time-variation in

factor loadings due to dynamics in asset characteristics. KPS show that IPCA outperforms other

competing factor models in explaining the covariation in stock returns and Windmüller (2021) ex-

tend this evidence to the international stock market. Büchner and Kelly (2022) and Goyal and

Saretto (2022) find that IPCA also has superior performance in explaining the cross-section of op-

tion returns. Kelly et al. (2021) and Bianchi and Babiak (2022) extend this evidence to corporate

bond and cryptocurrency returns, respectively. Beyond improved explanatory power for returns in

several asset classes, KPS contend that IPCA can help to answer the pervasive question of whether

cross-sectional asset return variation associated with asset characteristics is due to covariances with

common risk factors or due to the characteristics themselves (Daniel and Titman, 1997; Davis et al.,

2000; Daniel et al., 2001). Specifically, if characteristics proxy for systematic risk,1 IPCA identifies

the corresponding latent risk factors and the conditional factor loadings (i.e., betas). If there is

a characteristic story above and beyond factor loadings, IPCA will additionally find a conditional

1According to KPS, the term “risk” refers to statistical covariation in asset returns and is, therefore, not restricted
to shocks to economic fundamentals (e.g., shocks to productive technologies). Thus, the term “risk” also includes
market-wide behavioral shocks (e.g., changes in investor preferences).
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alpha, which represents a return unrelated to risk, i.e., the return is anomalous. KPS fit beta-only

(i.e., only allowing for beta) and alpha-beta (i.e., allowing for alpha and beta) IPCA specifications

to U.S. stock return data and find that a beta-only model with five factors explains the same

amount of variation as the alpha-beta model. The authors present a hypothesis test for testing

the null hypothesis that characteristics do not align with alpha and find that the alpha-beta model

is rejected in favor of the beta-only model if the beta-only model includes at least five factors.

Accordingly, they conclude that characteristics proxy for the covariances to common risk factors

and that there are no “anomalous returns” in the sense that the characteristics themselves drive

the returns. Similarly, Büchner and Kelly (2022) and Kelly et al. (2021) find that beta-only three-

and five-factor models are sufficient for explaining the cross section of option and bond returns,

respectively. These results suggest that not only stock returns but also option and bond returns

are driven by covariances not characteristics.

Although KPS demonstrate that IPCA’s central features, i.e., its low parametrization, utilized

information in the characteristics, and the time-variation in factor loadings, lead to its superior

performance compared to existing factor models, they do not present evidence that IPCA can

truly differentiate between covariances and characteristics. Therefore, the aim of this paper is

to test for the validity of their findings in two ways. First, we present analytical evidence that,

irrespective of whether asset returns are truly driven by covariances or characteristics, IPCA can

always identify an indistinguishable model that fits the other explanation. Second, we simulate

asset return data according to three different data-generating processes (DGPs) that correspond

to (1) the covariance story, (2) the characteristic story, or (3) a mixture of both by creating data

according to a multifactor and/or a characteristic model. For all simulated datasets, we fit three

IPCA versions, one allowing for beta only, one allowing for alpha only, and a third that allows for

both alpha and beta. We then apply the hypothesis test proposed by KPS to assess whether IPCA

can reliably identify the true model.

Our results suggest that the question of whether covariances or characteristics explain asset

returns cannot be answered independently of the question of how many factors must be modeled.

If IPCA estimates more factors than there are in the true model, we observe an “alpha-eating” effect,

that is, factor loadings subsume the return variation that is actually attributable to an anomaly

intercept. The “alpha-eating” effect biases the results such that the hypothesis test proposed by
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KPS fails to reject the null hypothesis of a zero anomaly alpha, resulting in distorted conclusions

when trying to distinguish between the “covariances vs. characteristics” story. Conversely, if IPCA

estimates too few factors, a “beta-eating” effect occurs. That is, alpha subsumes some explanatory

power of the omitted factors. Even if IPCA estimates the true but in reality unknown number

of factors, the alpha- or beta-eating effect causes a correct model to be indistinguishable from an

incorrect model. Thus, given all of these results, we find that IPCA cannot reliably distinguish

between covariances and characteristics because either the “alpha-eating” or the “beta-eating”

effect will distort the results. By the nature of the test specification proposed in KPS, one will

always find that covariances explain returns if a sufficient number of factors is included. Therefore,

IPCA cannot provide an answer to the “characteristics vs. covariances” debate.

This paper is structured as follows. In Section 2, we introduce the general IPCA model and

decompose the model to analytically derive the “beta-eating” and “alpha-eating” effects. Section

3 presents our simulation study. Section 4 summarizes and concludes the paper.

2 A model for the cross section of asset returns

The central IPCA specification presented in KPS assumes that asset (excess) returns are generated

according to a linear multifactor model as described in equation (1):

ri,t+1 = αi,t + βi,tft+1 + εi,t+1 (1)

with ri,t+1 being the (excess) return of asset i at time t + 1, ft+1 being a K × 1 vector of con-

temporaneous (latent) factor realizations, with K denoting the number of factors, βi,t being a

corresponding 1 × K vector of asset-specific (conditional) factor loadings (i.e., betas), αi,t is an

asset-specific (conditional) intercept (i.e., alpha), and εi,t+1 is the residual return of asset i at time

t+1. It is assumed that there is an L×1 vector of asset i’s characteristics zi,t (with L denoting the

number of asset characteristics) at time t that is informative about either the alpha, the betas, or

both. Accordingly, the alpha and the betas are conditional on observed characteristics, as described

in equations (2) and (3), respectively:

αi,t = z
′
i,tΓα + να,i,t (2)
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and

βi,t = z
′
i,tΓβ + νβ,i,t (3)

with Γα and Γβ denoting an L× 1 vector and an L×K matrix of characteristic coefficients for the

alpha and the betas, respectively. The terms να,i,t and νβ,i,t describe errors in the alpha or beta

estimates that are uncorrelated with the asset characteristics. KPS note that if all coefficients of

Γα are zero, this does not imply that there are no alphas in general but that alphas are not linked

to asset characteristics and therefore no “anomalous returns” exist.

Without loss of generality, we can decompose asset (excess) returns as described in equation (1)

into expected returns Et [ri,t+1] and short-term return innovations r̃i,t+1. Specifically, we decompose

the return that is due to the (latent) factors into constant factor premia λ and stochastic factor

innovations f̃t+1. Equation (4) presents the reformulated general IPCA model:

ri,t+1 = αi,t + βi,tλ︸ ︷︷ ︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(4)

where Et [ri,t+1] denotes the conditional expectation in t for the return of asset i at time t+ 1 and

r̃i,t+1 denotes the corresponding (unexpected) return innovation. The conditional alpha and condi-

tional betas are defined as in the equations (2) and (3), respectively. The return innovations r̃i,t+1

can be further decomposed into systematic return innovations βi,tf̃t+1 that explain the (systematic)

covariance matrix across asset returns and idiosyncratic innovations εi,t+1.

The term Et [ri,t+1] is of central interest in asset pricing studies and subject to the question of

whether expected returns are explained by covariances to common risk factors (i.e., βi,t) or charac-

teristics (i.e., αi,t). Note that in what follows, we assume that there are systematic innovations in

returns; otherwise, assets would be cross-sectionally uncorrelated. Thus, there are nonzero betas

on common risk factors; however these factors do not necessarily have nonzero premia λ. Accord-

ing to equation (4), three possible explanations for expected returns can be identified. First, in a

covariance-only world, characteristics do not contribute to expected returns and are therefore fully

described by covariances to common risk factors (i.e., Γα = 0 and λ 6= 0). Second, the true DGP

may be a characteristic-only world in which the characteristics themselves explain expected returns

and covariances to common risk factors at most explain short-term return innovations (i.e., Γα 6= 0
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and λ = 0). Last, asset returns may be generated according to a hybrid covariance-characteristic

world, in which both covariances and characteristics drive expected returns (i.e., Γα 6= 0 and

λ 6= 0). In the following, we analytically show how IPCA misspecification can bias the results,

leading to erroneous conclusions regarding the “covariances vs. characteristics” story.

2.1 Beta-eating

We begin by assuming that asset returns are described by a covariance-only model, that is, as-

sets earn different returns because of different compensations for bearing systematic risk. In a

covariance-only world, the αi,t from equation (4) vanishes as shown in equation (5):

ri,t+1 = βi,tλ︸ ︷︷ ︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(5)

Inserting equation (3) into (5), the resulting (true) DGP can be written as:

ri,t+1 = z
′
i,tΓβλ+ z

′
i,tΓβf̃t+1 + εi,t+1 (6)

Assume that a researcher misspecifies IPCA and estimates an alpha-only IPCA, that is, an

IPCA that estimates no factors but only a conditional alpha. We denote Γ∗α as the estimate of the

characteristic coefficients for the conditional alpha, obtained from the alpha-only IPCA. Since alpha

has no innovations, the alpha-only IPCA cannot model systematic return innovations βi,tf̃t+1. We

therefore restrict attention to the expected return component, which is of central interest in asset

pricing studies and the subject of the “covariance vs. characteristic” debate. The true DGP process

for expected returns is described as:

Et [ri,t+1] = z
′
i,tΓβλ (7)

Given a set of l = 1, . . . , L asset characteristics and j = 1, . . . ,K risk factors, IPCA finds an
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equivalent alpha-only description of expected returns that satisfies

Et [ri,t+1] = z
′
i,tΓβλ

=̂ z
′
i,tΓ
∗
α

(8)

if there is a solution to the following system of linear equations:

Γβ,1,1λ1 + Γβ,1,2λ2 + . . . + Γβ,1,KλK = Γ∗α,1

Γβ,2,1λ1 + Γβ,2,2λ2 + . . . + Γβ,2,KλK = Γ∗α,2
...

Γβ,L,1λ1 + Γβ,L,2λ2 + . . . + Γβ,L,KλK = Γ∗α,L

(9)

where the left-hand side represents the true DGP and the right-hand side shows the estimates from

a misspecified alpha-only IPCA setting. The term Γβ,l,j denotes the characteristic coefficient of

the l-th characteristic for the j-th beta, λj denotes the factor premium of the j-th factor, and Γ∗α,l

denotes the IPCA estimate of the alpha characteristic coefficient for the l-th characteristic. The

linear system of equations is uniquely determined if the l-th element of Γ∗α is chosen such that it

equals the product of the l-th row of Γβ and the vector of factor premia λ:

Γ∗α,l =

K∑
j=1

Γβ,l,jλj (10)

Denoting K∗ as the estimated number of factors in an alpha-beta IPCA, the beta-eating effect

in equation (11) can be generalized to any IPCA specification in which the estimated number of

factors is below the true number of factors, i.e., K∗ < K:

Γ∗α,l =

 K∑
j=1

Γβ,l,jλj

−
 K∗∑
j∗=1

Γβ,l,j∗λj∗

 (11)

Accordingly, a true covariance-only world can always be transformed into an equivalent indis-

tinguishable characteristic-only world (or a mixed covariance-characteristic world) if no or too few

factors are considered when estimating the IPCA. As a result, the effect that a characteristic has

on the expected returns is captured, but it is not possible to distinguish whether this effect is due
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to the beta or to the characteristic itself. We refer to this effect as beta-eating.

2.2 Alpha-eating

Next, we assume that asset returns are generated according to a characteristic-only world, but

we note that the derivations equivalently hold for a mixed covariance-characteristic world. We

assume that there may be (latent) factors that drive systematic return innovations, although they

have factor premia of zero, and thus do not explain expected returns. Otherwise, we could not

model (systematic) covariances between assets, which would be an unrealistic assumption since

(systematic) covariations can be observed in real-world data. The true DGP is presented in equation

(12):

ri,t+1 = αi,t︸︷︷︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(12)

Inserting equations (2) and (3) into (12), the resulting (true) DGP can be written as

ri,t+1 = z
′
i,tΓα + z

′
i,tΓβf̃t+1 + εi,t+1 (13)

Denote Γ∗β, λ∗, and f̃∗t+1 as beta-only IPCA estimates of the characteristic coefficients for the betas,

factor premia, and factor innovations, respectively, resulting from a misspecified IPCA setting. A

misspecified beta-only IPCA can find an equivalent description of equation (13) without alpha:

ri,t+1 = z
′
i,tΓ
∗
βλ
∗ + z

′
i,tΓ
∗
βf̃
∗
t+1 + εi,t+1 (14)

if

Γα =̂ Γ∗βλ
∗ (15)

Denote Γα,l as the true characteristic coefficient for the alpha of the l-th characteristic, Γ∗β,l,j

as the estimated characteristic coefficient for the j-th beta of the l-th characteristic, and λ∗j as the

estimated factor premium of factor j. The linear system of equations to obtain a decomposition of
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Γα into Γ∗β and λ∗ can be written as follows:

Γα,1 = Γ∗β,1,1λ
∗
1 + Γ∗β,1,2λ

∗
2 + . . . + Γ∗β,1,Kλ

∗
K

Γα,2 = Γ∗β,2,1λ
∗
1 + Γ∗β,2,2λ

∗
2 + . . . + Γ∗β,2,Kλ

∗
K

...

Γα,L = Γ∗β,L,1λ
∗
1 + Γ∗β,L,2λ

∗
2 + . . . + Γ∗β,L,Kλ

∗
K

(16)

The system of linear equations is characterized by L equations, with L being the number of char-

acteristics. Since we assume that latent factors drive systematic return innovations, the coefficients

Γ∗β are fixed and are therefore no free parameters. Accordingly, the only free parameters are the

K values of the factor premia λ∗, with K denoting the number of factors estimated by IPCA.

Depending on the (unknown) rank r∗ of the true but unknown system of linear equations and

the specification of the IPCA, we can differentiate three cases that produce different outcomes.

First, if the rank of the system exceeds the number of estimated IPCA factors (K < r∗), the

system is underdetermined; hence, no solution exists. Accordingly, IPCA cannot find a full beta-

only description of expected returns. Second, if the number of IPCA factors equals the rank of the

system (K = r∗), there is an exact solution. In this case, we can fully represent the characteristic-

only world by an indistinguishable beta-only model. Third, if the number of factors exceeds the

rank (K > r∗), then the system of equations is overdetermined, and therefore an infinite number

of solutions exists. Thus, we expect an alpha-eating effect if a beta-only IPCA estimates at least

K = r∗ factors, resulting in a covariance-only explanation of expected returns. Note, that a

sufficient but not necessary condition for this is to set the number of factors equal to the number

of characteristics, i.e., K = L. At least under this condition, we will observe the complete “alpha-

eating” effect. In real-world applications, however, one might face a much lower rank, so that the

alpha will already be completely “eaten up” even when fewer factors are estimated.

3 Simulation study

After analytically demonstrating the conditions under which either an alpha-eating or beta-eating

effect can occur when estimating IPCA, we conduct a simulation study to demonstrate these effects.

We describe the creation of the simulation data in Section 3.1, Section 3.2 briefly reviews the
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estimation of IPCA, and Section 3.3 presents the simulation results. We conclude the simulation

study with a discussion of the results and their implications for empirical asset pricing research.

3.1 Simulation data

This section describes our simulation setup in greater detail. To achieve a simulation setting that

resembles real-world applications, we simulate asset return data using empirical data for calibration

purposes. However, we note that the calibration with respect to empirical data serves to work with

realistic values and does not qualitatively affect the results (see the analytical derivation above,

which holds for any arbitrary parameter choice). Specifically, we use the empirical U.S. equity

dataset studied in KPS to calibrate our simulation parameters. We generate asset returns for

N = 4100 assets and T = 1200 observations.2 Additionally, we set the number of true factors

to K = 2 and the number of simulated characteristics to L = 10.3 We obtain some calibration

parameters directly from the empirical data while others are obtained from estimating IPCA with

two factors and alpha on the empirical data; however, the calibration process does not qualitatively

affect our results.

The simulation of asset returns is divided into five steps, i.e., 1) simulation of characteristics

zi,t, 2) simulation of the conditional alpha αi,t and betas βi,t, 3) simulation of factor returns ft+1,

4) simulation of residual returns εi,t+1, and 5) determination of asset (excess) returns ri,t+1 by

combining all components according to equation (4). To establish the easiest and comfortable

simulation for IPCA, we keep the DGPs as simple as possible and do not assume, for example,

(vector) autocorrelated residuals or time-varying factor premia.

3.1.1 Simulation of characteristics

We simulate L = 10 characteristics and assume for ease of interpretation that two of them are

perfect proxies for the true betas on two simulated risk factors. This simplifies verifying whether

2These numbers are based on the empirical sample size of the U.S. equity market. According to Jensen et al.
(2021), the average number of stocks in the U.S. is roughly 4,100 with a maximum history of approximately 1,200
months. In unreported results, we also simulated asset return data that matches the time series and cross section of
other equity markets, i.e., China, Great Britain, and Spain. We choose these markets because of their different sizes
of the time series and/or cross section. However, the results remain qualitatively unchanged.

3Based on a similar setting, Kelly et al. (2020) provide simulation evidence that IPCA’s estimation errors are well-
approximated with a normal distribution, which allows assuming normality for confidence intervals and hypothesis
tests. However, they do not test the ability of the IPCA to distinguish between covariances and characteristics.
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IPCA can replicate the true betas and thus increases interpretability of the simulation results. The

characteristics are assumed to follow a vector autoregressive (VAR) process of order one according

to equation (17):

zi,t = z0,i + Φ1,izi,t−1 + ui,t (17)

The term z0,i is an L × 1 vector of constants for each characteristic, Φ1,i is a L × L matrix of

VAR(1) coefficients, and ui,t is a L × 1 vector of characteristic innovations. To parameterize the

simulation, we assume that the vector of constants is zero and that the characteristics follow a near

unit process determined by Φ1,i, which is a diagonal matrix with all diagonal elements equal to

0.999 for all assets i = 1, . . . , N . Characteristic innovations are drawn from a multivariate normal

distribution with zero mean and covariance matrix Σz:

ui,t ∼ N (0,Σz) (18)

The L × L covariance matrix Σz is obtained by
(
ss
′
)
� Ω with s denoting an L × 1 vector of

the standard deviations of the innovations and � denoting element-wise multiplication. We assume

that the innovations have unit variance, i.e., s = 1. The term Ω denotes an L×L correlation matrix

that we can manipulate to obtain specific properties of our simulated dataset. In our simulation we

assume that characteristics are uncorrelated; therefore, Ω is set to an identity matrix. However, in

unreported results we find that the assumption of correlated characteristics does not qualitatively

affect the results.

After simulating characteristics according to equation (17), we rescale them to match the prop-

erties of the empirical characteristics. Specifically, we calibrate the means and standard deviations

of the first eight simulated characteristics by obtaining the time-series averages of the cross-sectional

means and standard deviations of empirical characteristics.4 Because we assume that character-

istics nine and ten are perfect proxies for the betas on two common factors, we calibrate these

4Specifically, we use those eight empirical characteristics for calibration purposes that have the largest estimated
slopes (in absolute terms) obtained from univariate Fama-MacBeth regressions. The characteristics are (slopes in
parentheses) bid-ask spread (0.0680), short-term reversal (-0.0547), idiosyncratic volatility with respect to the Fama-
French 3-factor model (-0.0338), capital intensity (0.0258), return on assets (0.0099), ratio of change in property,
plants, and equipment to the change in total assets (0.0098), price relative to its 52-week high (0.0091), and interme-
diate momentum (0.0066). We again note that the actual values of the simulation parameters do not qualitatively
affect the results. These values serve to work with realistic values; however, one may choose completely different,
even unrealistic values without obtaining qualitatively different results (see again our analytical derivation).
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characteristics with respect to the estimated betas obtained from a two-factor alpha-beta IPCA

on empirical data.5 We obtain the time-series averages of the cross-sectional means and standard

deviations of these (individual asset) betas and use them for calibration. Table 1 presents the

calibration parameters used for our simulation. The column “Mu” refers to the mean and “Sigma”

is the standard deviation of the characteristics.

Mu Sigma

Z1 0.0574 0.0280

Z2 0.0113 0.1762

Z3 0.0390 0.0217

Z4 0.0451 0.0120

Z5 -0.0309 0.0772

Z6 0.1064 0.1295

Z7 0.6894 0.1693

Z8 0.0577 0.3874

Z9 0.4916 0.1334

Z10 -0.5362 0.1032

Table 1: Target values for simulated characteristics
The table reports the target values used for calibration of the simulated characteristics. The column
“Mu” refers to the means and “Sigma” are the average standard deviations of the characteristics.
The term Zl refers to the l-th characteristic (l = 1, . . . , 10). The first eight characteristics are
calibrated with respect to empirical characteristics and the last two characteristics are calibrated
to the estimated IPCA betas obtained from a two-factor IPCA analysis on empirical U.S. data.
All target values are the same for each simulated data set. In our initial setup, we assume that
characteristics are mutually uncorrelated.

3.1.2 Simulation of alpha and beta

The specification of Γα and Γβ is central to our simulation because it allows us to distinguish

between a covariance-only, characteristic-only, or a covariance-characteristic world. We note that,

even if only characteristics determine expected returns (i.e., a characteristic-only world), we assume

that factor innovations explain systematic return innovations. Otherwise, we could not model a

covariance structure among the assets. Accordingly, in the characteristic-only world, risk factors

do not explain (long-term) expected returns but the (short-term) covariance structure of the asset

returns.
5Note again that we could have also used a beta-only IPCA to calibrate the beta simulation or any other arbitrary

choice without qualitatively affecting our results.
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Table 2 shows the true Γα and Γβ coefficients of all simulated worlds. Assuming a covariance-

only worlds, all entries of Γα are set to zero such that “anomaly returns” do not exist. For the

characteristic-only and covariance-characteristic world, we assume that the Γα coefficients of the

first and second characteristic are nonzero, while those of the other characteristics are always zero.

We obtain calibration parameters for the nonzero entries by running univariate Fama-MacBeth

(FM) regressions (with an intercept) of the returns from the U.S. stocks on the firm characteristics.

We calculate the average slopes and calibrate the Γα coefficients on the first and second characteris-

tic with respect to the two highest (in absolute terms) FM-coefficients, i.e., bid-ask spread (0.0680)

and short-term reversal (-0.0547), respectively. Because we assume that characteristics nine and

ten are perfectly correlated with the first and second beta, respectively, we set the corresponding

Γβ coefficients of these characteristics to one.6 The remaining entries are set to zero. We note that

the Γβ coefficients for all DGPs are the same because in the characteristic-only world, we still allow

betas to describe the covariance of the returns. However, the three worlds differ in the calculation

of the factor returns, which we discuss next.

Covariance-Only Characteristic-Only Covariance-Characteristic

Γα Γβ,1 Γβ,2 Γα Γβ,1 Γβ,2 Γα Γβ,1 Γβ,2

Z1 0.0000 0.0000 0.0000 0.0680 0.0000 0.0000 0.0680 0.0000 0.0000

Z2 0.0000 0.0000 0.0000 -0.0547 0.0000 0.0000 -0.0547 0.0000 0.0000

Z3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Z4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Z5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Z6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Z7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Z8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Z9 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

Z10 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Table 2: Simulation values for Γα and Γβ
The table reports the simulation values of the Γα and Γβ coefficients for each simulated data
set, i.e., covariance-only, characteristic-only, and covariance-characteristic world. Γα denotes the
characteristic coefficients of the anomaly intercept, Γβ,1 are the characteristic coefficients of the
beta on the first factor, and Γβ,2 are the characteristic coefficients of the beta on the second factor.

6This specification of the true Γβ coefficients is in line with the IPCA algorithm because IPCA estimates orthonor-
mal Γβ coefficients, which implies that the columns are scaled to unit length.
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3.1.3 Simulation of factor returns

According to equation (4), factor returns can be divided into a (long-term) factor premium λ and

(short-term) factor innovations f̃t+1. Despite the assumption that a constant factor premia may be

restrictive and oversimplified for modeling financial markets,7 we do not assume time-varying factor

premia. Otherwise, IPCA might not be able to distinguish between time-varying factor premia and

stochastic factor innovations. We assume that the factor innovations have zero mean and do not

follow a time-dependent process. Specifically, we simulate factor returns by drawing them from a

multivariate normal distribution according to equation (19):

ft+1 ∼ N (λ,Σf ) (19)

with ft+1 denoting the K × 1 vector of factor returns, and Σf representing the K ×K covariance

matrix of the factor innovations. In a characteristic-only world that does not allow for priced risk

factors, factor means are set to zero (i.e., λ = 0). Otherwise, we calibrate the factor means with

respect to the estimated premia of the factors obtained from a two-factor IPCA analysis on the

U.S. equity dataset studied in KPS. Specifically, we obtain the time-series averages of the estimated

factors (i.e., 0.0331 and 0.0145) and use these as calibration values for the simulated true factor

premia. We assume that the covariance matrix of factor innovations Σf is a diagonal matrix with

diagonal elements calibrated with respect to the time series standard deviations of the estimated

IPCA factors (i.e., 0.1031 and 0.0653). Assuming that Σf is diagonal implies that the factors are

orthogonal. This assumption is in line with the IPCA algorithm because IPCA always extracts

orthogonal factors. The target values for each simulated dataset are summarized in Table 3. Note

that we consider factor innovations in the characteristic-only world but set the factor premia to

zero.

7For example, Ilmanen et al. (2021) find time-varying risk premia for empirical factors that may be conditional
on macroeconomic state variables. Daniel and Titman (1997) highlight the possibility that the actual premium of a
factor may depend on past factor innovations, thus resulting in time-varying factor premia.
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Covariance-Only Characteristic-Only Covariance-Characteristic

Factor Mu Sigma Mu Sigma Mu Sigma

f1 0.0331 0.1031 0.0000 0.1031 0.0331 0.1031

f2 0.0145 0.0653 0.0000 0.0653 0.0145 0.0653

Table 3: Target values for factor returns
The table reports the target values for the factor returns obtained from a two-factor IPCA with
alpha estimated on the empirical U.S. equity data set. The column “Mu” refers to the average of
the factors (i.e., factor premium) and “Sigma” refers to the standard deviation of the factor returns
(i.e., standard deviation of factor innovations).

3.1.4 Simulation of Idiosyncratic Return Innovations

Idiosyncratic return innovations (i.e., residual returns) εi,t+1 are drawn from a multivariate normal

distribution according to equation (20):

εt+1 ∼ N (µε,Σε) (20)

with εt+1 denoting the N × 1 vector of residual returns. The distribution of εt+1 is characterized

by the N × 1 vector of expected residual returns µε and the N × N covariance matrix Σε. For

simplicity, we assume that all assets have the same expected residual return of zero, i.e., µε = 0.

Σε is a diagonal matrix with diagonal elements σε for all assets, i.e., the residuals are uncorrelated.

We calibrate σε with respect to the results obtained from our IPCA analysis on empirical data.

That is, we obtain fitted (individual) asset returns from IPCA and calculate the cross sectional

average of the standard deviations of the residuals. Thus, we set all diagonal elements of Σε to

0.1629.

After we have simulated characteristics, conditional alphas and betas, factor returns, and resid-

ual returns, we combine all components and determine the respective asset returns as described by

equation (4).
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3.2 Methodology

3.2.1 Estimation

This section briefly reviews the estimation procedure of the latent factors f̂t+1 and the characteristic

coefficients Γ̂α and Γ̂β, as discussed in KPS. Note that we differentiate between simulation parame-

ters and (estimated) IPCA parameters by (̂·). For each simulated dataset (i.e., the covariance-only,

characteristic-only, and covariance-characteristic worlds), we fit 1) a beta-only IPCA that estimates

only betas and no alpha (i.e., Γ̂α = 0, Γ̂β 6= 0), 2) an alpha-only IPCA that estimates alpha but no

betas (i.e., Γ̂α 6= 0, Γ̂β = 0), and 3) an “unrestricted” IPCA that estimates both alpha and betas

(i.e., Γ̂α 6= 0, Γ̂β 6= 0). For specifications that estimate betas and thus factors, we follow KPS

and estimate models with K = 1, . . . , 6 factors. Since the IPCA estimation algorithm as proposed

by KPS starts with a beta-only IPCA, we mainly discuss the procedure for estimating a beta-only

IPCA here and highlight changes for an IPCA with alpha at relevant points.

IPCA finds estimates f̂t+1 and Γ̂β according to a least squares criterion as described in equation

(21):

min
Γβ ,F

T−1∑
t=1

(rt+1 −ZtΓβft+1)
′
(rt+1 −ZtΓβft+1) (21)

with Zt denoting an N × L matrix of asset-level characteristics
(
Zt = [z1,t, . . . ,zN,t]

′
)

, ft+1 is a

K × 1 vector of contemporaneous factor realizations, and F denotes the K × T matrix of stacked

factor realizations. Since there is no closed-form solution to solve equation (21), KPS propose

an alternating least squares algorithm to solve numerically for the model parameters. Given any

arbitrary estimate for the latent factors, estimates for the Γ̂β coefficients are obtained by a pooled

ordinary least squares regression (POLS) of the asset returns on the asset characteristics interacted

with the estimated factors:

vec
(
Γ̂
′
β

)
=

(
T−1∑
t=1

Z
′
tZt ⊗ f̂t+1f̂

′
t+1

)−1(T−1∑
t=1

[
Zt ⊗ f̂t+1

]′
rt+1

)
(22)

with ⊗ denoting the Kronecker product. The estimates Γ̂β are arranged as an (LK) × 1 vector;

therefore, the vector has to be reshaped into an L×K matrix. The estimates for the characteristic

coefficients in an IPCA that additionally allows for alpha are obtained equivalently to equation
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(22) with the difference being that a constant factor is added to f̂t+1. In this case, the estimates

are arranged as an (L(K + 1)) × 1 vector and have to be reshaped into an L × 1 vector and an

L×K matrix of Γ̂α and Γ̂β coefficients, respectively.

Given the Γ̂β estimates, the factors are updated via periodical cross-sectional regressions of the

asset returns on the conditional betas as described in equation (23):

f̂t+1 =
(
Γ̂
′
βZ

′
tZtΓ̂β

)−1 (
Γ̂
′
βZ

′
trt+1

)
∀t (23)

In an IPCA that additionally allows for alpha, the factors are updated via cross-sectional

regressions of the asset returns in excess of the anomaly returns ZtΓ̂α on conditional betas:

f̂t+1 =
(
Γ̂
′
βZ

′
tZtΓ̂β

)−1 (
Γ̂
′
βZ

′
t

(
rt+1 −ZtΓ̂α

))
∀t (24)

KPS show that the entire IPCA algorithm can be written in terms of characteristic-managed

portfolios instead of individual assets. This accelerates the computational performance and helps

to circumvent the problem of missing values in the return and characteristic matrices of the in-

dividual assets. Characteristic-managed portfolios are the asset-level characteristics multiplied by

the corresponding returns as described in equation (25):

xt+1 =
Z
′
trt+1

Nt+1
(25)

with xt+1 denoting an L× 1 vector of characteristic-managed portfolio returns and Nt+1 denoting

the number of nonmissing assets at t+1. The l-th element in xt+1 is the portfolio return at t+1, with

asset weights determined by the l-th characteristic. Note that the characteristic-managed portfolios

are created from those assets that have only nonmissing observations for any characteristic Zt. The

product Z
′
tZt in equations (22) and (23) is invariant during numerical optimization, and therefore

we can define:

Wt =
Z
′
tZt

Nt+1
(26)

with Wt denoting an L × L matrix of cross-products of nonmissing characteristics. Wt replaces

Z
′
tZt in equations (22) and (23), and the returns on characteristic-managed portfolios replace
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Z
′
trt+1 such that equations (22) and (23) can be rewritten as:

vec
(
Γ̂
′
β

)
=

(
T−1∑
t=1

Nt+1

(
Wt ⊗ f̂t+1f̂

′
t+1

))−1(T−1∑
t=1

Nt+1

[
xt+1 ⊗ f̂t+1

])
(27)

and

f̂t+1 =
(
Γ̂
′
βWtΓ̂β

)−1 (
Γ̂βxt+1

)
∀t (28)

Equivalently, we can rewrite equation (24):

f̂t+1 =
(
Γ̂
′
βWtΓ̂β

)−1 (
Γ̂β

(
xt+1 −WtΓ̂α

))
∀t (29)

KPS propose a two-step estimation of the unrestricted alpha-beta IPCA. In the first step, a

beta-only IPCA is estimated to obtain estimates for Γ̂β. In the second step, the estimated Γ̂β

coefficients are used as initial values to estimate an alpha-beta IPCA. If there is a superior alpha-

beta description of asset returns different from the beta-only world, IPCA will estimate a nonzero

anomaly alpha. Thus, IPCA always begins by assuming a covariance-only world and will find this

solution only if a suitable covariance-only representation exists, irrespective of whether it is true.

3.2.2 Validation

The performance evaluation is twofold. First, we compare the performance of the IPCA specifi-

cations on each simulated dataset by using the uncentered R2s as defined in KPS. The R2
total is a

measure of the overall explanatory power for asset returns, i.e., it measures the fraction of return

variation explained by conditional alphas, betas, and contemporaneous factor realizations:

R2
total = 1−

∑
i,t

(
ri,t+1 −

(
α̂i,t + f̂t+1β̂i,t

))2∑
i,t r

2
i,t+1

(30)

with α̂i,t and β̂i,t denoting the estimates of the conditional alpha and the conditional betas as

defined in equations (2) and (3), respectively. A second measure is the R2
pred that quantifies the
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explanatory power for expected returns E [ri,t+1]:

R2
pred = 1−

∑
i,t

(
ri,t+1 −

(
α̂i,t + λ̂β̂i,t

))2∑
i,t r

2
i,t+1

(31)

with λ̂ denoting an estimate for the factor premia (i.e., the time-series average of the factors).

Second, to test whether there is a significant anomaly intercept given a set of K common factors,

we use the statistical test proposed by KPS for testing the null hypothesis that all elements of Γ̂α

equal zero, i.e., alpha does not depend on characteristics. Thus, the null hypothesis assumes that

asset returns are generated according to a covariance-only world and can be formalized as:

H0 : Γα = 0

The alternative hypothesis is:

H1 : Γα 6= 0

which implies that the characteristics themselves drive asset returns, i.e., asset returns are generated

according to either a characteristic-only or a covariance-characteristic world.

KPS first estimate the alpha-beta (i.e., unrestricted) IPCA to obtain estimates for the Γ̂α vector

and calculate the test statistic as the sum of squared elements in Γ̂α:

Wα = Γ̂
′
αΓ̂α (32)

They obtain a distribution of Wα under the null hypothesis using a “residual bootstrap” proce-

dure. Their residual bootstrap is based on resampling characteristic-managed portfolio returns as

described in equation (33):

xbt+1 = WtΓ̂βf̂t+1 + d̃t+1 (33)

with xbt+1 denoting an L× 1 vector of resampled characteristic-managed portfolio returns of boot-

strap b = 1, . . . , 1000. The first part of equation (33) are the fitted returns obtained from a beta-only

IPCA. The second term d̃t+1 is an L × 1 vector of residuals obtained from the alpha-beta IPCA,
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multiplied with a Student t random variable with unit variance and five degrees of freedom.8 Using

the bootstrapped samples, they re-estimate the alpha-beta IPCA and calculate a bootstrapped test

statistic W b
α as described in equation (32). The p-values are calculated as the fraction of boot-

strapped W b
α statistics that exceed the value of Wα from the original dataset. They reject the null

hypothesis if the p-value is below the 1 percent significance level; otherwise, they accept the null

hypothesis.

3.3 Simulation results

This section reports the results for the mixed covariance-characteristic world because this repre-

sents the alternative hypothesis of the statistical test proposed by KPS and is capable of demon-

strating both the alpha- and beta-eating effects. Although, considering the extreme cases, i.e., the

covariance-only and characteristic-only worlds, allows for a more isolated analysis of the beta-eating

and alpha-eating effect, respectively, we save space and do not discuss these results in detail here

because no further insights are gained by considering these two cases. For the interested reader, we

refer to Internet Appendices A and B, respectively. The true DGP in the covariance-characteristic

world can be written as follows:

ri,t+1 = αi,t + βi,tλ︸ ︷︷ ︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(34)

where the true factor premia are λ1 = 0.0331 and λ2 = 0.0145 and the corresponding Γβ coefficients

of Z9 and Z10 are equal to one. Additionally, we calibrate the true Γα coefficients of Z1 and Z2 to

be 0.0680 and −0.0547. According to this DGP, the asset pricing test should identify the two-factor

alpha-beta IPCA as the true model and IPCA should return appropriate estimates of λ, Γβ and Γα.

Note that in reality, the true DGP is unknown, and a researcher will apply different specifications

of the IPCA model without knowing which is the true one.

Panel A and Panel B of Table 4 report the performance evaluation metrics R2
total and R2

pred

as defined in equations (30) and (31) for individual asset returns rt and characteristic-managed

portfolio returns xt, respectively. When estimating an alpha-beta IPCA with the true but in reality

8Multiplying the residuals by a random t variable improves the efficiency of bootstrapping in heteroskedastic data
(Gonçalves and Kilian, 2004; Kelly et al., 2019).

19



unknown number of factors (i.e., K = 2), the IPCA achieves an R2
total of 14.3 (100.0) percent and

an R2
pred of 0.83 (3.51) percent for individual asset (characteristic-managed portfolio) returns. The

results in Panels A and B indicate a “beta-eating” effect when estimating too few factors. Dropping

one factor from the alpha-beta IPCA, the R2
total reduces to 14.0 (99.9) percent, indicating that the

one-factor alpha-beta IPCA cannot fully describe the covariance structure among the asset returns.

However, the R2
preds are not distinguishable from those of the true model. Similarly, removing the

remaining factor from the alpha-beta IPCA and estimating an alpha-only model, the R2
preds remain

at the same level as for the true model. Using the Clark and West (2007) test (unreported), we

find that the two-factor alpha-beta model neither statistically significantly outperforms the alpha-

only (p-value = 50.0 percent) nor the one-factor alpha-beta (p-value = 48.9 percent) model. As

analytically derived in Section 2.1, the conditional alpha compensates for the omitted factor(s), and

hence, both specifications can describe expected returns Et [rt+1] exactly as well as the true model,

although they cannot capture the entire contemporaneous covariation among the assets. This holds

equally if no alpha is included in the true model and asset returns are generated according to a

covariance-only world, as reported in Internet Appendix A. Taking into consideration that such a

world does not assume an anomaly intercept, it highlights the “beta-eating” effect in an even more

isolated way.

The results on the covariance-characteristic world also reveal an “alpha-eating” effect. Not

surprisingly, the one- and two-factor beta-only IPCA models cannot fully describe expected asset

returns because they are misspecified. However, when adding a third factor to the model, both the

R2
total and R2

pred are equal to those of the true model, indicating that IPCA compensates for the

omitted intercept with an additional factor. As the R2
pred is indistinguishable from that of the true

model (Clark and West (2007) test p-value = 39.2 percent), IPCA provides at least four models

that have the same performance in describing expected returns.

Panel C reports the sum of squared Γ̂α coefficients, denoted by Wα, and the corresponding

bootstrapped p-values of the asset pricing test for testing the null hypothesis of an anomaly intercept

equal to zero. Following the asset pricing test, the null hypothesis of a zero conditional alpha beyond

betas is correctly rejected when estimating one or two factors. However, the “alpha-eating” effect

is present not only in the beta-only IPCA, but also in the alpha-beta IPCA, as indicated by the

declining sum of squared elements in Γ̂α with an increasing number of factors. When estimating
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at least three factors, the null hypothesis cannot be rejected at any conventional significance level

(p-value = 29.1 percent). Accordingly, the test concludes that asset returns are driven by the

characteristics themselves when estimating up to two factors, but characteristics are covariances

when estimating at least three risk factors. In real-world applications, a researcher does not know

which test result to trust because the performance of the two-factor alpha-beta and three-factor

beta-only models is indistinguishable. In Internet Appendix B, we demonstrate the alpha-eating

effect in a more isolated way assuming a characteristic-only world. The results hold equally for a

world without priced risk factors, as already shown in Section 2.2.

IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0

Panel A: Individual assets (rt)

R2
total 13.6 14.1 14.3 14.3 14.3 14.4 14.0 14.3 14.3 14.3 14.3 14.4 0.83

R2
pred 0.51 0.75 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

Panel B: Managed portfolios (xt)

R2
total 99.8 99.9 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 3.51

R2
pred 3.43 3.49 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.51

Panel C: Asset pricing test

Wα 0.81 0.71 0.61 0.32 0.32 0.17

p-value 0.00 0.00 29.1 52.5 15.0 49.9

Table 4: IPCA model performance (covariance-characteristic world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt)

and characteristic-managed portfolios (xt), respectively, using a simulated covariance-characteristic
data set. Panel C reports the sum of squared elements in Γ̂α (Wα) (multiplied by 100 for presen-
tation purposes) and bootstrapped p-values in percent for the test of Γ̂α = 0. The column “Beta”
refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with both alpha and beta, and
“Alpha” is an IPCA that only estimates alpha and no betas.

To gain additional insights regarding the estimated parameters, Table 6 reports the estimated

factor premia for the beta-only and alpha-beta IPCAs, respectively. The estimated premia for

the two-factor alpha-beta IPCA are 0.0348 and 0.0157 and therefore close to those assumed in

the true DGP (i.e., λ1 = 0.0331 and λ2 = 0.0145). However, the two-factor beta-only IPCA

considerably overestimates the factor premia (λ̂1 = 0.0768 and λ̂2 = 0.0294), indicating that the

“alpha-eating” effect already occurs when two factors are estimated. This is also reflected in the

corresponding Γ̂β coefficients reported in Table 7. According to the true DGP, we expect coefficients
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on characteristics one through eight to be zero for any beta and coefficients on characteristics nine

and ten equal to one. However, in the beta-only IPCA specification, the coefficients on the first and

second characteristics are nonzero and those on the ninth and tenth characteristics are not equal to

one, suggesting that the beta-only IPCA cannot model the true betas because the latter subsume

some explanatory power of the alpha. The picture becomes similar for the alpha-beta IPCA when

estimating at least three factors. For example, the coefficient of the second characteristic to the

third beta Γ̂β,2,3 is -0.45. This effect is related to the fact that in the IPCA estimation the beta-only

model forms the initial solution for the estimation of the alpha-beta model.

Table 5 reports the estimated Γ̂α coefficients for the alpha-beta and alpha-only IPCA specifi-

cations for the covariance-characteristic world. From Table 4 we find that the alpha-only IPCA

achieves the same explanatory power for expected returns as the true two-factor alpha-beta IPCA.

The alpha-only IPCA estimates for the true Γα coefficients on the first and second characteristics

(i.e., 0.0643 and -0.0549) are very close to the true values reported in Table 2. The coefficients for

characteristics three to eight are not distinguishable from zero, which is also in line with the true

DGP. However, the coefficients on characteristics nine and ten are 0.0334 and 0.0138, respectively,

and therefore very close to the true factor premia of λ1 = 0.0331 and λ2 = 0.0145. These results

reflect the beta-eating effect as discussed in Section 2.1. There, we show that an alpha-only IPCA

can find a full characteristic-only description of a true covariance-only world if the l-th Γ̂α element

is chosen to be equal to the product of the l-th row of Γ̂β and the true factor premia. Since the

true Γβ coefficients of the ninth and tenth characteristics are set to one, IPCA estimates Γ̂α coef-

ficients that simply equal the true factor premia. The Γ̂α,1 and Γ̂α,2 coefficients are also close to

the true values when estimating a one- or two-factor alpha-beta IPCA. However, when estimating

a third factor, the coefficients begin to decline, while we document increasing Γ̂β coefficients on

those characteristics in Table 7. This, again, reflects the “alpha-eating” effect as discussed above.
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K

1 2 3 4 5 6

Panel A: Beta-Only IPCA

λ̂1 0.0192 0.0768 0.0702 0.0811 0.0826 0.0844

λ̂2 0.0294 0.0557 0.0008 0.0000 0.0018

λ̂3 0.0221 0.0267 0.0280 0.0262

λ̂4 0.0348 0.0006 0.0017

λ̂5 0.0300 0.0061

λ̂6 0.0266

Panel B: Alpha-Beta IPCA

λ̂1 0.0226 0.0348 0.0382 0.0661 0.0681 0.0747

λ̂2 0.0157 0.0197 0.0031 0.0027 0.0015

λ̂3 0.0250 0.0163 0.0230 0.0265

λ̂4 0.0271 0.0006 0.0002

λ̂5 0.0154 0.0243

λ̂6 0.0043

Table 6: Estimated factor premia (covariance-characteristic world)
The table reports the estimated factor premia λ̂j , calculated as the time series average of each
factor. If a factor premium significantly differs from zero at the 1 percent level, we print the
premium in bold letters.
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

Γ̂β,1,1 0.09 0.39 0.35 0.69 0.72 0.77 -0.04 0.00 0.01 0.57 0.61 0.68

Γ̂β,2,1 -0.12 -0.33 -0.30 -0.29 -0.29 -0.28 -0.01 -0.01 -0.06 -0.08 -0.08 -0.15

Γ̂β,3,1 -0.01 0.00 0.00 -0.11 -0.06 -0.13 -0.02 -0.01 0.08 -0.03 0.03 0.01

Γ̂β,4,1 -0.04 -0.01 -0.01 -0.35 -0.32 -0.24 -0.03 0.02 0.03 -0.51 -0.48 -0.38

Γ̂β,5,1 0.01 0.00 0.00 0.01 -0.01 0.00 0.01 0.01 -0.01 -0.01 -0.04 0.05

Γ̂β,6,1 0.00 -0.00 -0.00 0.03 0.03 0.01 0.00 -0.00 0.01 0.08 0.07 0.13

Γ̂β,7,1 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.01 -0.01 -0.02 0.05

Γ̂β,8,1 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.00 0.00 -0.00 -0.03 -0.03 -0.03

Γ̂β,9,1 0.92 0.85 0.88 0.54 0.53 0.48 0.91 1.00 0.99 0.61 0.60 0.58

Γ̂β,10,1 -0.35 0.11 0.13 0.12 0.12 0.13 -0.41 0.09 0.09 0.13 0.14 0.13

Γ̂β,1,2 0.40 0.60 0.41 0.40 -0.40 0.09 0.10 0.43 0.43 -0.36

Γ̂β,2,2 -0.27 -0.47 0.00 0.01 -0.02 0.00 -0.07 0.02 0.02 -0.03

Γ̂β,3,2 0.03 0.03 -0.13 -0.16 0.19 0.02 0.15 -0.14 -0.16 0.24

Γ̂β,4,2 0.05 -0.01 -0.39 -0.40 0.30 0.09 0.10 -0.43 -0.43 0.49

Γ̂β,5,2 -0.01 -0.02 0.00 0.01 -0.02 0.00 -0.03 0.00 0.01 -0.02

Γ̂β,6,2 -0.01 -0.00 0.04 0.05 -0.03 -0.01 0.01 0.05 0.05 -0.05

Γ̂β,7,2 -0.00 -0.00 0.00 0.00 -0.01 -0.00 -0.02 0.00 0.00 0.00

Γ̂β,8,2 -0.00 -0.00 -0.02 -0.02 0.01 0.00 -0.01 -0.02 -0.02 0.02

Γ̂β,9,2 -0.39 -0.47 -0.81 -0.81 0.84 -0.09 -0.11 -0.78 -0.78 0.75

Γ̂β,10,2 0.78 0.44 0.01 0.00 -0.01 0.99 0.97 0.01 0.01 0.03

Γ̂β,1,3 0.30 0.08 0.28 0.28 0.08 0.03 0.29 0.42

Γ̂β,2,3 -0.32 -0.30 -0.23 -0.21 -0.45 -0.08 -0.09 -0.11

Γ̂β,3,3 -0.00 0.15 0.64 0.50 0.83 0.19 0.74 0.63

Γ̂β,4,3 -0.11 0.39 0.47 0.64 0.07 0.17 0.33 0.44

Γ̂β,5,3 -0.01 -0.02 -0.21 -0.16 -0.18 -0.03 -0.24 -0.12

Γ̂β,6,3 0.01 -0.04 -0.10 -0.13 0.12 0.00 -0.06 0.01

Γ̂β,7,3 0.00 -0.01 -0.05 -0.04 -0.08 -0.02 -0.07 0.04

Γ̂β,8,3 -0.00 0.01 0.01 0.02 -0.05 -0.01 -0.01 0.01

Γ̂β,9,3 -0.11 -0.17 -0.23 -0.22 -0.08 -0.10 -0.17 -0.31

Γ̂β,10,3 -0.88 0.84 0.35 0.36 -0.20 0.96 0.39 0.32

Γ̂β,1,4 0.18 0.18 0.06 0.11 0.17 0.17

Γ̂β,2,4 -0.67 -0.01 -0.03 -0.46 -0.02 -0.02

Γ̂β,3,4 0.21 0.36 0.74 0.81 0.35 0.34

Γ̂β,4,4 0.42 0.00 -0.41 0.01 0.00 -0.00

Γ̂β,5,4 -0.04 -0.15 -0.26 -0.18 -0.14 -0.13

Γ̂β,6,4 -0.04 -0.03 0.06 0.14 -0.02 -0.02

Γ̂β,7,4 -0.00 -0.03 -0.06 -0.07 -0.03 -0.03

Γ̂β,8,4 0.02 -0.00 -0.04 -0.05 -0.01 -0.00

Γ̂β,9,4 -0.16 0.01 -0.00 -0.09 0.01 0.01

Γ̂β,10,4 -0.52 -0.90 -0.45 -0.23 -0.91 -0.92

Γ̂β,1,5 -0.08 0.23 -0.38 -0.04

Γ̂β,2,5 -0.81 -0.09 -0.73 -0.62

Γ̂β,3,5 -0.37 -0.22 0.25 -0.15

Γ̂β,4,5 0.33 0.47 -0.35 0.23

Γ̂β,5,5 0.19 0.05 0.10 0.47

Γ̂β,6,5 0.02 -0.11 0.34 0.45

Γ̂β,7,5 0.06 0.02 -0.02 0.31

Γ̂β,8,5 0.03 0.04 -0.08 -0.00

Γ̂β,9,5 -0.13 -0.03 -0.05 -0.09

Γ̂β,10,5 -0.19 -0.81 0.02 -0.14

Γ̂β,1,6 -0.30 -0.40

Γ̂β,2,6 -0.92 -0.49

Γ̂β,3,6 -0.05 0.44

Γ̂β,4,6 -0.10 -0.52

Γ̂β,5,6 0.12 -0.21

Γ̂β,6,6 0.12 0.11

Γ̂β,7,6 0.04 -0.23

Γ̂β,8,6 -0.01 -0.09

Γ̂β,9,6 -0.11 -0.02

Γ̂β,10,6 -0.03 0.13

Table 7: Γ̂β coefficients (covariance-characteristic world)

The table reports the estimated Γ̂β coefficients for the beta-only and alpha-beta (i.e., unrestricted)

IPCA, respectively, using a simulated covariance-characteristic data set. The term Γ̂β,l,j denotes
the estimated coefficient of the l-th characteristic for the beta on the j-th factor.
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IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.0665 0.0641 0.0609 0.0225 0.0217 0.0067 0.0643

Γ̂α,2 -0.0546 -0.0546 -0.0400 -0.0355 -0.0359 -0.0236 -0.0549

Γ̂α,3 0.0018 0.0013 -0.0258 -0.0217 -0.0215 -0.0151 0.0010

Γ̂α,4 -0.0031 -0.0061 -0.0088 0.0282 0.0281 0.0089 -0.0033

Γ̂α,5 -0.0012 -0.0014 0.0046 0.0055 0.0058 -0.0116 -0.0008

Γ̂α,6 -0.0002 0.0003 -0.0037 -0.0094 -0.0089 -0.0216 0.0001

Γ̂α,7 -0.0002 -0.0001 0.0024 0.0029 0.0030 -0.0119 -0.0003

Γ̂α,8 -0.0001 -0.0001 0.0014 0.0036 0.0035 0.0020 -0.0001

Γ̂α,9 0.0127 -0.0000 -0.0003 -0.0007 -0.0008 -0.0003 0.0334

Γ̂α,10 0.0231 -0.0049 -0.0039 -0.0043 -0.0042 -0.0014 0.0138

Table 5: Γ̂α coefficients (covariance-characteristic world)
The table reports the estimated Γ̂α coefficients for the alpha-beta (i.e., unrestricted) and alpha-only
IPCA, using a simulated covariance-characteristic data set. The term Γ̂α,l denotes the estimated
coefficient of the l-th characteristic for the alpha.

3.4 Discussion

Both analytical evidence and simulation results suggest that IPCA cannot reliably distinguish

between covariances and characteristics. A researcher who applies IPCA faces a joint hypothesis

problem, since one must determine the correct number of factors and whether there is an alpha.

When adding more factors to the model, IPCA will always create a covariance-based explanation

of asset returns for which the asset pricing test cannot reject the null hypothesis of zero alpha.

Therefore, the conclusion drawn by KPS, Büchner and Kelly (2022), and Kelly et al. (2021) that

only covariances explain stock, option, or bond returns may be subject to the alpha-eating effect

and therefore inappropriate.9

From our simulation, we find that the conditional alpha is always sufficient for modeling expected

returns, irrespective of whether the alpha truly drives asset returns. What is striking about the

results in KPS is that the R2
pred is always higher for the unrestricted IPCA. In Internet Appendix

C, we extend Table 1 in KPS by allowing for an alpha-only IPCA. We find that the alpha-only

IPCA achieves the highest R2
pred among all other IPCA specifications presented in KPS, i.e., 0.77

9The joint hypothesis problem cannot even be solved by considering information criteria, which are commonly
used in the literature for model selection. Information criteria account for both the statistical model performance
and its complexity. In unreported results, we find that information criteria, e.g., the Akaike Information Criterion
(AIC), prefer models with alpha, indicating that the model selection based on information criteria is biased by the
beta-eating effect.

25



percent for individual stock returns and 2.67 percent for portfolio returns. Thus, the effect that

alpha is sufficient for modeling expected returns is not only a phenomenon from our simulation but

can also be observed in empirical data.

There is some indication that the empirical results presented in KPS may be biased toward

either the beta-eating or alpha-eating effect. In the simulation, we also find that as soon as the

alpha-eating effect occurs, there are large jumps in the R2
preds for the beta-only IPCA that close

the gap between the R2
preds of the beta-only and alpha-beta IPCA. For example, in the covariance-

characteristic world (Table 4), the R2
preds are 0.51 percent for the one-factor, 0.75 percent for the

two-factor, and 0.83 percent for the three-factor models, respectively. Such jumps can also be

observed in the results presented in KPS. When increasing the number of factors from four to

five, the R2
pred increases from 0.41 to 0.69 percent for individual assets. For characteristic-managed

portfolio returns, there is also a large difference between the four- and five-factor specifications, i.e.,

2.13 percent for the four-factor and 2.41 percent for the five-factor model.10 From our simulation, we

can provide two possible explanations for these jumps. First, the alpha-beta (or alpha-only) IPCA

has superior explanatory power for returns in low-dimensional factor models because the alpha

“eats” the beta. Thus, estimating the fifth factor eliminates the beta-eating effect, and IPCA

identifies the true covariance-only model. Second, a low-factor characteristic-only or covariance-

characteristic model is the true model, and five factors in KPS are sufficient to capture the entire

explanatory power of the omitted alpha (i.e., alpha-eating explanation). However, both the alpha-

eating and the beta-eating effect make it impossible for IPCA to distinguish between covariances

and characteristics; therefore, the question of whether covariances, characteristics, or both drive

asset returns remains unanswered. Although IPCA cannot distinguish between characteristics and

covariances, IPCA always finds a model with explanatory power for returns that is equivalent to

that of the true model, making it a powerful tool for return estimation and asset allocation.

4 Conclusion

KPS propose IPCA, a new factor modeling approach, that finds latent risk factors and estimates

factor loadings as a function of observable asset characteristics. By achieving a dimensionality

10In Büchner and Kelly (2022), such a jump can also be observed for individual option returns, when increasing
the number of factors from three (R2

pred = 5.85) to four (R2
pred = 6.19).
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reduction from a potentially large number of asset characteristics to a smaller number of conditional

factor loadings, IPCA allows modeling returns as a function of many characteristics while being

parsimoniously parameterized. There is a growing strand of literature suggesting that IPCA does

not only outperform previously studied factor models in modeling stock returns (Kelly et al., 2019;

Windmüller, 2021), but also contributes to other asset classes. Büchner and Kelly (2022) and

Goyal and Saretto (2022) document IPCA’s superiority in explaining delta-hedged option returns

and Kelly et al. (2021) and Bianchi and Babiak (2022) extend this evidence to corporate bond

and cryptocurrency returns, respectively. However, KPS claim that IPCA not only has superior

explanatory power for returns, but can also distinguish between covariances and characteristics.

By applying IPCA to stock return data, they conclude that returns are determined by covariances

with common risk factors and no “anomalous returns” driven by the characteristics themselves

exist. These findings are a response to the ongoing “covariance vs. characteristic” debate that has

been extensively discussed in the literature over the past thirty years.

By presenting analytical evidence, we show that IPCA cannot reliably distinguish between

covariances and characteristics because the results may be subject to a beta-eating or alpha-eating

effect. We find supporting evidence for this using simulation data. Specifically, we find that a

researcher who applies IPCA faces a joint hypothesis problem, as the question of whether returns

are driven by covariances or characteristics cannot be answered without addressing the question

of how many factors have to be estimated. We find that a correctly specified IPCA, that is, an

IPCA that estimates the correct number of factors and estimates either alpha or betas or both,

can identify the true model parameters. As a result, the asset pricing test proposed by KPS can

correctly differentiate between covariances and characteristics as long as the true model is known

in advance. However, the true number is not known in reality. If the IPCA is misspecified, then it

will find a model that has the same performance as the true model, but the interpretation becomes

more difficult or potentially incorrect inferences are drawn. Omitting factors and allowing for an

anomaly alpha results in a beta-eating effect, meaning that alpha subsumes the explanatory power

of returns that is actually attributable to betas. For example, an alpha-only IPCA identifies the

true factor premia and the true anomaly returns associated with the respective characteristics but

cannot distinguish between covariances or characteristics because it treats both as alpha. If IPCA

estimates more factors than exist in the true model and there are anomaly returns in the true
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model, there is an alpha-eating effect, i.e., beta subsumes the returns associated with conditional

alphas. This in turn makes anomaly returns resemble factor premia, resulting in the rejection of the

characteristic story. KPS do not address the question of how many factors are necessary to model

asset prices. Instead, they add factors to the model until the covariance-story is true, although the

performance evaluation shows that the alpha-beta IPCA has comparable or even superior model

performance. This simulation study shows that one can always generate a model that fits the

covariance story that also has similar performance as the possibly true characteristic model.
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Internet Appendices: Are Characteristics Covariances? A Comment on

Instrumented Principal Component Analysis

A Covariance-only world

In our simulation presented in Section 3.3, we generated data according to a mixed covariance-

characteristic world that represents the alternative hypothesis of the asset pricing test proposed

by KPS. In this section, we analyze the beta-eating effect in greater detail by generating data

according to a covariance-only world. Specifically, we assume that asset returns are fully described

by covariances with (two) priced risk factors and no anomaly alpha exists. The data-generating

process can be written as follows:

ri,t+1 = βi,tλ︸ ︷︷ ︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(35)

As shown in Table 3, the true factor premia are λ1 = 0.0331 and λ2 = 0.0145, and the corresponding

Γβ coefficients of Z9 and Z10 equal 1. All Γα coefficients are zero. Accordingly, the asset pricing

test should identify the beta-only IPCA as the true model and IPCA should return appropriate

estimates of the factor premia, Γα, and Γβ coefficients.

In Table 8 we report the performance evaluation metrics as defined in equations (30) and (31) for

individual asset returns rt (Panel A) and characteristic-managed portfolio returns xt (Panel B). We

also report the sum of squared Γ̂α coefficients, denoted as Wα, and the corresponding bootstrapped

p-values of the asset pricing test for testing the null hypothesis of an anomaly intercept equal to

zero (Panel C). The results of the asset pricing test in Panel C suggest that the null hypothesis

cannot be rejected at the one percent level if IPCA estimates at least two factors (p-value = 23.0

percent), suggesting that the test correctly identifies the true model if IPCA estimates at least as

many factors as there are in the true model.

However, the asset pricing test suggests that there is a significant anomaly alpha if IPCA

estimates only one factor (p-value = 0.00 percent), indicating a beta-eating effect as analytically

shown in Section 2.1. This effect is also reflected in the performance measures presented in Panels

A and B. The correctly specified two-factor beta-only IPCA achieves an R2
total of 13.9 percent and
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an R2
pred of 0.31 percent at the asset level. Not surprisingly, the one-factor beta-only IPCA has

weaker performance, as a result of the omitted factor. However, estimating only one factor and

additionally allowing for an alpha increases the R2
pred to 0.31 percent, which equals that of the true

model. By compensating for the omitted factor with a conditional alpha, the one-factor alpha-

beta IPCA can describe expected returns Et [ri,t+1] exactly as well as the true model, although it

cannot capture the entire contemporaneous covariation among the assets as indicated by the lower

R2
total of 13.6 percent. Even when estimating an alpha-only IPCA that does not allow for any

factors, IPCA achieves the same R2
pred suggesting that alpha is sufficient for describing expected

returns. These findings are in line with the analytical analysis in Section 2.1 and those obtained

for a covariance-characteristic world in Table 4.

IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0

Panel A: Individual assets (rt)

R2
total 13.6 13.9 13.9 14.0 14.0 14.0 13.6 13.9 13.9 14.0 14.0 14.0 0.31

R2
pred 0.27 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Panel B: Managed portfolios (xt)

R2
total 99.9 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 1.84

R2
pred 1.83 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84

Panel C: Asset pricing test

Wα 0.07 0.01 0.00 0.00 0.00 0.00

p-value 0.00 23.0 50.4 71.5 33.1 95.8

Table 8: IPCA model performance (covariance-only world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt)

and characteristic-managed portfolios (xt), respectively, using a simulated covariance-only data
set. Panel C reports the sum of squared elements in Γ̂α (Wα) (multiplied by 100 for presentation
purposes) and bootstrapped p-values in percent for testing the null hypothesis of Γ̂α = 0. The
column “Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with both alpha
and beta, and “Alpha” is an IPCA that only estimates alpha and no betas.

To gain additional insights from the estimated IPCA specifications, Table 9 reports the esti-

mated factor premia (i.e., the time-series averages of the estimated factors) and Table 10 reports

the corresponding Γ̂β coefficients. If a factor premium significantly differs from zero at the one

percent level, we report the respective premium in bold. In the two-factor beta-only IPCA, the

estimated factor premia are λ̂1 = 0.0333 and λ̂2 = 0.0124, which are close to the true factor premia
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of λ1 = 0.0331 and λ2 = 0.0145, respectively (see Table 3). As assumed in the underlying DGP, the

corresponding Γ̂β coefficients (i.e., Γ̂β,9,1 and Γ̂β,10,1) are close to one, which confirms the finding

that the IPCA identifies the true model, if it is correctly specified.

K

1 2 3 4 5 6

Panel A: Beta-Only IPCA

λ̂1 0.0138 0.0333 0.0262 0.0064 0.0051 0.0045

λ̂2 0.0124 0.0200 0.0323 0.0188 0.0125

λ̂3 0.0126 0.0125 0.0267 0.0302

λ̂4 0.0005 0.0123 0.0121

λ̂5 0.0001 0.0017

λ̂6 0.0006

Panel B: Alpha-Beta IPCA

λ̂1 0.0236 0.0319 0.0237 0.0028 0.0022 0.0022

λ̂2 0.0122 0.0225 0.0329 0.0168 0.0118

λ̂3 0.0128 0.0125 0.0285 0.0309

λ̂4 0.0009 0.0121 0.0122

λ̂5 0.0011 0.0019

λ̂6 0.0003

Table 9: Estimated factor premia (covariance-only world)
The table reports the estimated factor premia of the beta-only and alpha-beta IPCA specifications,
assuming a covariance-only world. If the factor premium significantly differs from zero at the 1
percent level, we report the respective premium in bold letters.

The results in Table 8 suggest that a one-factor alpha-beta IPCA and an alpha-only IPCA

have the same explanatory power for expected returns as the true two-factor beta-only IPCA. In

Section 2.1, we show that this is the case if the l-th element in Γ̂α is chosen such that it equals

the product of the l-th row of the true Γβ and the vector of true factor premia λ that is not

explained by the estimated betas and factor premia. Since we assume that the true Γβ coefficients

of both characteristics are one, we expect for the alpha-only IPCA that the Γ̂α coefficients of

characteristics nine and ten equal the true factor premia. Table 11 presents the estimated Γ̂α

coefficients for the alpha-beta and alpha-only ICPA. As expected for the alpha-only IPCA, the

Γ̂α coefficients on these characteristics are very close to the calibrated factor premia presented

in Table 3. Specifically, the Γ̂α coefficient of characteristic nine is 0.0336 and the coefficient of

characteristic ten is 0.0138. Therefore, the alpha-only IPCA identifies the true factor premia but

assigns them to alpha. By doing this, an alpha-only IPCA can fully describe expected returns but
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

Γ̂β,1,1 -0.02 -0.00 -0.12 -0.20 -0.18 -0.16 -0.02 -0.00 -0.11 -0.20 -0.18 -0.16

Γ̂β,2,1 0.01 0.01 0.02 -0.04 -0.04 -0.03 0.01 0.01 0.02 -0.04 -0.04 -0.03

Γ̂β,3,1 -0.00 0.01 0.16 0.08 0.39 0.35 -0.00 0.01 0.15 0.08 0.39 0.36

Γ̂β,4,1 -0.11 -0.13 -0.61 -0.95 -0.89 -0.91 -0.12 -0.16 -0.59 -0.95 -0.89 -0.90

Γ̂β,5,1 -0.02 -0.01 -0.15 -0.09 -0.06 -0.06 -0.02 -0.01 -0.14 -0.09 -0.07 -0.06

Γ̂β,6,1 -0.01 -0.01 -0.01 -0.01 0.00 0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01

Γ̂β,7,1 -0.00 0.00 0.04 0.05 0.04 0.04 0.00 0.00 0.03 0.05 0.04 0.04

Γ̂β,8,1 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01

Γ̂β,9,1 0.92 0.99 0.75 0.19 0.15 0.15 0.91 0.99 0.77 0.20 0.15 0.15

Γ̂β,10,1 -0.37 0.04 0.04 -0.01 0.01 0.01 -0.41 0.03 0.04 -0.01 0.01 0.01

Γ̂β,1,2 0.04 0.17 0.06 -0.05 -0.00 0.04 0.18 0.07 -0.05 -0.00

Γ̂β,2,2 -0.00 -0.02 0.02 -0.02 -0.02 -0.00 -0.02 0.02 -0.02 -0.02

Γ̂β,3,2 0.04 -0.22 -0.02 -0.77 -0.86 0.04 -0.24 -0.02 -0.77 -0.86

Γ̂β,4,2 -0.02 0.66 0.18 -0.22 -0.26 -0.05 0.68 0.18 -0.23 -0.26

Γ̂β,5,2 0.02 0.20 0.03 -0.04 -0.03 0.03 0.21 0.03 -0.04 -0.03

Γ̂β,6,2 -0.00 0.00 -0.01 -0.04 -0.03 -0.00 0.00 -0.01 -0.03 -0.03

Γ̂β,7,2 0.00 -0.05 -0.02 0.02 0.03 0.00 -0.05 -0.02 0.02 0.03

Γ̂β,8,2 0.00 0.01 0.00 -0.00 -0.01 0.00 0.01 0.00 -0.00 -0.01

Γ̂β,9,2 -0.04 0.66 0.98 0.59 0.43 -0.04 0.63 0.98 0.59 0.43

Γ̂β,10,2 1.00 -0.01 0.04 -0.05 -0.05 1.00 -0.01 0.04 -0.05 -0.05

Γ̂β,1,3 0.05 0.03 0.10 0.05 0.05 0.04 0.11 0.04

Γ̂β,2,3 -0.00 0.02 0.03 0.02 -0.00 0.02 0.04 0.02

Γ̂β,3,3 0.02 0.09 0.50 0.35 0.01 0.09 0.49 0.36

Γ̂β,4,3 0.02 -0.02 0.32 0.27 0.02 -0.02 0.32 0.27

Γ̂β,5,3 0.04 -0.02 0.05 0.03 0.05 -0.02 0.06 0.03

Γ̂β,6,3 -0.00 -0.00 0.02 0.00 -0.00 -0.00 0.02 0.00

Γ̂β,7,3 -0.00 0.00 -0.03 -0.03 -0.00 0.00 -0.03 -0.03

Γ̂β,8,3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

Γ̂β,9,3 -0.03 -0.04 0.79 0.89 -0.03 -0.04 0.79 0.89

Γ̂β,10,3 1.00 0.99 0.09 0.07 1.00 0.99 0.08 0.07

Γ̂β,1,4 0.09 0.03 0.09 -0.09 0.03 0.10

Γ̂β,2,4 -0.26 0.00 0.01 0.26 0.01 0.01

Γ̂β,3,4 -0.73 -0.08 -0.06 0.73 -0.08 -0.06

Γ̂β,4,4 -0.13 -0.04 -0.04 0.13 -0.04 -0.04

Γ̂β,5,4 0.60 -0.00 0.02 -0.60 -0.00 0.03

Γ̂β,6,4 -0.00 -0.01 0.00 0.00 -0.01 0.00

Γ̂β,7,4 -0.05 0.01 0.01 0.05 0.01 0.01

Γ̂β,8,4 -0.01 0.00 -0.01 0.01 0.00 -0.01

Γ̂β,9,4 -0.02 -0.04 -0.04 0.02 -0.04 -0.04

Γ̂β,10,4 0.07 0.99 0.99 -0.07 0.99 0.99

Γ̂β,1,5 0.18 -0.80 -0.17 -0.81

Γ̂β,2,5 -0.35 -0.00 0.35 -0.00

Γ̂β,3,5 -0.03 -0.03 0.03 -0.03

Γ̂β,4,5 -0.11 0.17 0.11 0.17

Γ̂β,5,5 0.91 -0.55 -0.91 -0.53

Γ̂β,6,5 0.04 -0.15 -0.03 -0.15

Γ̂β,7,5 -0.10 0.00 0.10 -0.00

Γ̂β,8,5 -0.01 0.10 0.01 0.10

Γ̂β,9,5 -0.01 0.01 0.01 0.01

Γ̂β,10,5 -0.01 0.09 0.01 0.10

Γ̂β,1,6 -0.46 -0.44

Γ̂β,2,6 -0.48 -0.47

Γ̂β,3,6 -0.03 -0.03

Γ̂β,4,6 0.03 0.03

Γ̂β,5,6 0.73 0.74

Γ̂β,6,6 -0.09 -0.08

Γ̂β,7,6 -0.13 -0.13

Γ̂β,8,6 0.08 0.08

Γ̂β,9,6 0.01 0.00

Γ̂β,10,6 0.03 0.03

Table 10: Estimated Γ̂β coefficients (covariance-only world)

The table reports the estimated Γ̂β coefficients for the beta-only and alpha-beta (i.e., unrestricted)

IPCA, respectively, using a simulated covariance-only data set. The term Γ̂β,l,j denotes the esti-
mated coefficient of the l-th characteristic for the beta on the j-th factor.

not the covariance among the assets. Even in the misspecified one-factor unrestricted IPCA, the

4



Γ̂α coefficients of characteristics nine and ten are nonzero (i.e., 0.0114 and 0.0235). Thus, IPCA

assigns components of both true betas to the anomaly intercept that are important for modeling

expected returns but that cannot be explained by a single beta on a common factor.

IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.0010 -0.0000 -0.0018 -0.0018 -0.0018 0.0002 -0.0020

Γ̂α,2 -0.0002 -0.0002 -0.0000 -0.0011 -0.0012 -0.0005 0.0002

Γ̂α,3 0.0007 0.0002 0.0025 -0.0002 0.0001 0.0000 -0.0030

Γ̂α,4 0.0064 0.0092 0.0019 0.0005 0.0004 0.0000 0.0024

Γ̂α,5 0.0001 -0.0004 -0.0025 -0.0003 -0.0000 -0.0002 -0.0007

Γ̂α,6 -0.0006 -0.0005 -0.0006 -0.0006 -0.0006 -0.0002 -0.0007

Γ̂α,7 -0.0004 -0.0004 0.0001 -0.0000 -0.0001 0.0001 -0.0006

Γ̂α,8 0.0003 0.0003 0.0002 0.0002 0.0002 -0.0001 0.0001

Γ̂α,9 0.0114 0.0014 0.0002 0.0001 0.0001 0.0000 0.0336

Γ̂α,10 0.0235 0.0005 0.0002 0.0001 0.0001 -0.0000 0.0138

Table 11: Estimated Γ̂α coefficients (covariance-only world)
The table reports the estimated Γ̂α coefficients for the alpha-beta (i.e., unrestricted) and alpha-only
IPCA, using a simulated covariance-only data set. The term Γ̂α,l denotes the estimated coefficient
of the l-th characteristic for the alpha.
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B Characteristic-only world

Here, we simulate asset returns assuming that the expected returns are fully determined by the

characteristics themselves. The betas only describe systematic covariances among the assets. Ac-

cordingly, the true IPCA model is the alpha-beta IPCA with two factors, where the factor premia

are zero. The true DGP is described by:

ri,t+1 = αi,t︸︷︷︸
Et [ri,t+1]

+βi,tf̃t+1 + εi,t+1︸ ︷︷ ︸
r̃i,t+1

(36)

where all parameters are calibrated as described in Tables 1, 2, and 3. The performance measures

and the results of the asset pricing test are reported in Table 12.11

The asset pricing test in Panel C indicates that there is a significant anomaly alpha after

controlling for one or two factors (p-value = 0.00). However, the magnitude of the Γ̂α coefficients,

measured by the sum of squared elements Wα, declines with every additional factor and the null

hypothesis of an anomaly intercept equal to zero cannot be rejected at the one percent level if IPCA

estimates at least three factors (p-value = 9.40). Thus, the asset pricing test of KPS concludes that

asset returns are determined by covariances, not characteristics, if IPCA estimates at least three

factors. This finding shows that there is an “alpha-eating” effect, which we derived in Section 2.2.

The true IPCA (i.e., two-factor alpha-beta) achieves an R2
total of 13.3 percent and an R2

pred of

0.35 percent for individual assets. Omitting one or even both factors results in a decline in the

R2
total to 13.0 or 0.35 percent, respectively, but does not affect the R2

pred. This is to be expected

because, according to the underlying DGP, the betas should not explain expected returns but only

covariances among the assets. However, the one- or two-factor beta-only IPCA cannot describe

expected returns, as indicated by the relatively low R2
pred of 0.04 and 0.20 percent, respectively,

compared to 0.35 percent achieved by the true alpha-beta IPCA. When including a third factor,

the R2
pred for the beta-only IPCA increases to 0.35 percent, which is equivalent to that of the true

model. Thus, IPCA attributes the explanatory power of the missing alpha to the betas, indicating

an “alpha-eating” effect. This “alpha-eating” effect is evident not only in the beta-only IPCA but

11In unreported results, we also simulate data according to a characteristic-only world, in which no factor innova-
tions exist. The results remain qualitatively unchanged. However, this scenario is unrealistic because we would not
observe covariations among asset returns; therefore, we do not consider this scenario in this paper.
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also in the alpha-beta IPCA, as indicated by the declining sum of squared elements in Γ̂α with an

increasing number of factors.

IPCA Beta Alpha-Beta Alpha

K 1 2 3 4 5 6 1 2 3 4 5 6 0

Panel A: Individual assets (rt)

R2
total 12.7 13.0 13.3 13.4 13.4 13.4 13.0 13.3 13.3 13.4 13.4 13.4 0.35

R2
pred 0.04 0.20 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Panel B: Managed portfolios (xt)

R2
total 99.8 99.9 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 0.35

R2
pred 0.28 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Panel C: Asset pricing test

Wα 0.76 0.76 0.64 0.50 0.40 0.27

p-value 0.00 0.00 9.40 6.60 6.30 45.0

Table 12: IPCA model performance (characteristic-only world)
Panel A and B report the performance evaluation metrics R2

total and R2
pred for individual assets (rt)

and characteristic-managed portfolios (xt), respectively, using a simulated characteristic-only data
set. Panel C reports the sum of squared elements in Γ̂α (Wα) (multiplied by 100 for presentation
purposes) and bootstrapped p-values in percent for testing the null hypothesis of Γ̂α = 0. The
column “Beta” refers to an IPCA without alpha, “Alpha-Beta” refers to an IPCA with both alpha
and beta, and “Alpha” is an IPCA that only estimates alpha and no betas.

Again, we analyze the IPCA results in greater detail by reporting the estimated factor premia

and the Γ̂β and the Γ̂α coefficients. According to the true DGP, we expect factor premia not

distinguishable from zero, Γ̂β coefficients of one for characteristics nine and ten, and Γ̂α coefficients

of 0.0680 and -0.0543 for characteristics one and two. All other Γ̂α,β coefficients should be zero.

Estimating a one-factor IPCA, the estimated factor premium is not significant at the 1 percent level,

neither for the beta-only nor for the alpha-beta specification. However, in the two-factor alpha-beta

IPCA, the factor premium of the second factor in the alpha-beta IPCA is statistically significant

at the 1 percent level but small in magnitude and therefore not economically significant. However,

the picture is different for the beta-only IPCA. The premia of λ̂1 = 0.0390 and λ̂2 = 0.0426 are

statistically significant and large in magnitude, which already indicates the existence of the “alpha-

eating” effect. When estimating three (or more) factors in the alpha-beta IPCA, most factor

premia become distinguishable from zero, indicating that these factors become (more) relevant.

This supports the finding that IPCA constructs a covariance-based explanation for asset returns if
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IPCA estimates more factors than there are in the true model.

K

1 2 3 4 5 6

Panel A: Beta-only IPCA

λ̂1 0.0049 0.0390 0.0008 0.0063 0.0034 0.0263

λ̂2 0.0426 0.0877 0.0835 0.0859 0.0015

λ̂3 0.0091 0.0179 0.0113 0.0824

λ̂4 0.0203 0.0073 0.0089

λ̂5 0.0133 0.0015

λ̂6 0.0129

Panel B: Alpha-Beta IPCA

λ̂1 0.0031 0.0003 0.0016 0.0007 0.0074 0.0229

λ̂2 0.0070 0.0334 0.0446 0.0008 0.0122

λ̂3 0.0107 0.0235 0.0567 0.0604

λ̂4 0.0129 0.0202 0.0198

λ̂5 0.0045 0.0145

λ̂6 0.0063

Table 13: Estimated factor premia (characteristic-only world)
The table reports the estimated factor premia of the beta-only and alpha-beta IPCA specifications,
assuming a characteristic-only world. If the factor premium significantly differs from zero at the 1
percent level, we report the respective premium in bold letters.

Table 15 presents the corresponding Γ̂β coefficients. In the true two-factor alpha-beta IPCA, the

Γ̂β coefficients on characteristics nine and ten are close to one and those on all other characteristics

are close to zero. Even if the factor premium of the second factor (λ2 = 0.0070) is statistically

significant, it is very small and may not be economically significant. Therefore, IPCA correctly

identifies the true model. However, when estimating three factors and alpha, the Γ̂β coefficient of

the first characteristic on the second beta increases (Γ̂β,1,2) and the corresponding factor premium is

large in magnitude (λ2 = 0.0334), suggesting that the relationship between the second characteristic

and returns is described by conditional betas, not by the characteristic itself. This erroneous

conclusion is the result of the “alpha-eating” effect that becomes stronger with additional factors.

The “alpha-eating” effect already appears in the two-factor beta-only IPCA. Here, the coeffi-

cients of both the first and second characteristics to the first (i.e., Γ̂β,1,1 = 0.27 and Γ̂β,2,1 = -0.21)

and second beta (i.e., Γ̂β,1,2 = 0.50 and Γ̂β,2,2 = -0.45) are large, while the coefficient of characteris-

tic ten for the second beta (i.e., Γ̂β,10,2 = -0.70) is smaller than assumed in the true DGP, suggesting

that IPCA fails to identify the true betas because the betas eat the alpha. However, two factors
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are not enough to eat up all the alpha, as indicated by the relatively low R2
pred reported in Table

12. As described in Section 2.2, this is because the system of equations is underdetermined with

L = 10 equations and only two optimizable parameters. However, when estimating three factors,

IPCA can provide a full covariance-only description of asset returns.

Table 14 reports the Γ̂α coefficients for the alpha-beta and alpha-only IPCA. We note that

the true coefficients for the first and second characteristics are 0.0680 and -0.0547, respectively,

while those for the other characteristics are zero (see Table 2). When estimating an alpha-only

or unrestricted IPCA with up to two factors, the estimated coefficients are very close to the true

coefficients, suggesting that IPCA identifies the true model. However, there is large decrease in the

magnitude of the Γ̂α coefficient of the first characteristic when including a third factor.12 This is in

line with the findings from Table 15 that reports increasing Γ̂β coefficients on the first characteristic

when increasing the number of IPCA factors.

IPCA Alpha-Beta Alpha

K 1 2 3 4 5 6 0

Γ̂α,1 0.0680 0.0675 0.0493 0.0324 0.0155 -0.0006 0.0673

Γ̂α,2 -0.0543 -0.0543 -0.0540 -0.0528 -0.0530 -0.0508 -0.0542

Γ̂α,3 -0.0049 -0.0047 -0.0302 -0.0060 -0.0015 -0.0003 -0.0058

Γ̂α,4 0.0065 0.0063 -0.0033 -0.0234 0.0018 -0.0021 0.0068

Γ̂α,5 -0.0001 -0.0000 -0.0105 -0.0224 -0.0283 0.0008 -0.0000

Γ̂α,6 0.0006 0.0006 -0.0023 0.0044 0.0092 0.0024 0.0005

Γ̂α,7 -0.0000 0.0000 -0.0003 0.0005 0.0035 0.0104 0.0001

Γ̂α,8 -0.0000 -0.0000 0.0016 0.0026 0.0018 -0.0030 -0.0000

Γ̂α,9 0.0017 -0.0002 -0.0006 -0.0005 -0.0003 -0.0004 -0.0009

Γ̂α,10 -0.0020 -0.0069 -0.0051 -0.0024 -0.0015 0.0003 -0.0006

Table 14: Γ̂α coefficients (characteristic-only world)
The table reports the estimated Γ̂α coefficients for the alpha-beta (i.e., unrestricted) and alpha-
only IPCA, using a simulated characteristic-only data set. The term Γ̂α,l denotes the estimated
coefficient of the l-th characteristic for the alpha.

12Furthermore, the coefficient on the third characteristic increases in magnitude to -0.0302. However, the average
correlation of the first and third characteristics is only 0.0052. Accordingly, we can rule out the possibility that the
third characteristic subsumes the explanatory power of the first characteristic.
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IPCA Beta Alpha-Beta

K 1 2 3 4 5 6 1 2 3 4 5 6

Γ̂β,1,1 0.01 0.27 0.01 0.07 0.04 0.44 0.04 0.01 0.02 0.02 0.25 0.18

Γ̂β,2,1 -0.04 -0.21 -0.01 -0.03 -0.01 -0.10 0.01 -0.01 0.00 0.01 0.02 -0.04

Γ̂β,3,1 -0.01 -0.01 -0.01 0.05 0.08 0.58 0.00 -0.01 0.05 0.08 0.57 -0.40

Γ̂β,4,1 -0.02 0.05 -0.01 0.02 0.01 -0.67 0.02 -0.01 0.02 0.01 -0.78 0.89

Γ̂β,5,1 0.01 -0.00 0.00 0.02 0.01 0.05 -0.00 0.00 0.01 0.01 0.03 -0.03

Γ̂β,6,1 0.01 -0.00 0.00 0.00 0.01 0.05 -0.01 0.00 -0.00 0.01 0.04 -0.01

Γ̂β,7,1 0.00 -0.00 0.00 -0.00 -0.00 -0.05 -0.00 0.00 -0.00 -0.00 -0.04 -0.01

Γ̂β,8,1 -0.00 0.00 -0.00 0.00 0.00 0.02 0.00 -0.00 0.00 0.00 0.02 -0.01

Γ̂β,9,1 0.93 -0.94 1.00 -0.99 -0.99 0.03 -0.93 1.00 -1.00 -0.99 0.04 -0.04

Γ̂β,10,1 -0.38 0.03 0.07 -0.05 -0.05 -0.02 0.37 0.07 -0.06 -0.06 -0.04 0.06

Γ̂β,1,2 0.50 0.78 0.81 0.82 0.02 0.10 0.51 0.63 0.01 0.19

Γ̂β,2,2 -0.45 -0.61 -0.51 -0.52 -0.00 0.00 -0.01 -0.02 0.01 -0.00

Γ̂β,3,2 -0.04 -0.06 0.17 0.03 0.06 -0.01 0.64 0.40 0.07 0.15

Γ̂β,4,2 0.05 0.10 0.13 0.16 0.03 0.03 0.26 0.43 0.01 -0.01

Γ̂β,5,2 0.01 0.00 0.09 0.10 0.01 -0.00 0.26 0.36 0.01 0.02

Γ̂β,6,2 0.02 0.00 0.03 -0.00 0.00 -0.02 0.07 0.00 0.00 0.01

Γ̂β,7,2 0.00 -0.00 0.00 -0.00 0.00 -0.01 0.01 -0.00 -0.00 -0.02

Γ̂β,8,2 0.00 -0.00 -0.01 -0.01 0.00 -0.00 -0.04 -0.05 0.00 0.00

Γ̂β,9,2 0.22 -0.02 0.07 0.04 -1.00 -0.07 0.03 0.03 -1.00 -0.97

Γ̂β,10,2 -0.70 0.10 0.14 0.11 -0.05 0.99 0.44 0.37 -0.06 -0.04

Γ̂β,1,3 0.04 0.07 -0.01 0.73 0.17 0.23 0.79 0.89

Γ̂β,2,3 -0.11 -0.23 -0.11 -0.52 -0.01 -0.02 -0.02 -0.03

Γ̂β,3,3 -0.00 -0.20 -0.93 -0.24 0.36 -0.85 0.07 0.35

Γ̂β,4,3 -0.02 -0.04 0.09 0.35 0.11 0.38 0.31 -0.02

Γ̂β,5,3 0.01 -0.07 -0.02 0.09 0.15 0.18 0.44 0.08

Γ̂β,6,3 0.02 -0.00 -0.17 -0.04 0.05 -0.19 -0.09 0.03

Γ̂β,7,3 0.01 0.00 -0.02 0.01 0.01 -0.03 -0.03 -0.11

Γ̂β,8,3 0.00 0.01 0.02 -0.02 -0.02 -0.01 -0.04 0.02

Γ̂β,9,3 0.07 0.05 -0.06 0.00 0.08 -0.06 0.01 0.23

Γ̂β,10,3 -0.99 -0.95 -0.29 0.10 -0.89 -0.09 0.27 0.10

Γ̂β,1,4 -0.04 0.06 0.05 0.19 0.28 0.26

Γ̂β,2,4 -0.35 -0.09 -0.10 -0.01 -0.01 -0.02

Γ̂β,3,4 -0.83 0.29 -0.40 0.24 -0.45 -0.48

Γ̂β,4,4 -0.09 -0.05 -0.28 0.15 -0.20 -0.22

Γ̂β,5,4 -0.30 0.01 -0.03 0.17 0.17 0.02

Γ̂β,6,4 -0.09 0.07 -0.08 0.03 -0.14 -0.12

Γ̂β,7,4 -0.02 0.01 -0.03 0.01 -0.05 -0.08

Γ̂β,8,4 0.05 -0.00 0.02 -0.02 0.01 0.03

Γ̂β,9,4 -0.06 0.08 0.02 0.08 0.01 0.01

Γ̂β,10,4 0.28 -0.94 -0.86 -0.92 -0.79 -0.79

Γ̂β,1,5 -0.20 -0.02 0.07 0.20

Γ̂β,2,5 -0.56 -0.02 0.00 -0.00

Γ̂β,3,5 -0.00 0.63 -0.65 -0.65

Γ̂β,4,5 -0.43 0.56 -0.49 -0.37

Γ̂β,5,5 -0.65 0.09 -0.05 0.00

Γ̂β,6,5 0.16 0.16 -0.17 -0.18

Γ̂β,7,5 0.01 0.08 -0.07 -0.07

Γ̂β,8,5 0.08 -0.05 0.04 0.03

Γ̂β,9,5 -0.01 0.08 -0.08 -0.09

Γ̂β,10,5 0.06 -0.49 0.54 0.60

Γ̂β,1,6 -0.29 0.06

Γ̂β,2,6 -0.62 -0.04

Γ̂β,3,6 0.09 0.00

Γ̂β,4,6 -0.06 -0.05

Γ̂β,5,6 -0.68 -0.95

Γ̂β,6,6 0.22 0.22

Γ̂β,7,6 0.05 -0.16

Γ̂β,8,6 0.06 0.14

Γ̂β,9,6 -0.00 -0.00

Γ̂β,10,6 0.03 -0.00

Table 15: Γ̂β coefficients (characteristic-only world)

The table reports the estimated Γ̂β coefficients for the beta-only and alpha-beta (i.e., unrestricted)

IPCA, respectively, using a simulated characteristic-only data set. The term Γ̂β,l,j denotes the
estimated coefficient of the l-th characteristic for the beta on the j-th factor.
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C Empirical results

This appendix replicates Table 1 in KPS and extends it by including results for the alpha-only

IPCA (i.e., K = 0). The results suggest that the estimation of a conditional alpha leads to a

better description of the conditional expected returns for both individual stock and characteristic-

managed portfolio returns. The alpha-only IPCA that estimates no factors but only a conditional

alpha achieves the highest R2
pred among all models, with is in line with our simulation results.

K

0 1 2 3 4 5 6

Panel A: Individual stocks (rt)

R2
total Γα = 0 14.8 16.4 17.4 18.0 18.6 18.9

Γα 6= 0 0.77 15.2 16.8 17.7 18.4 18.7 19.0

R2
pred Γα = 0 0.35 0.34 0.41 0.42 0.69 0.68

Γα 6= 0 0.77 0.76 0.75 0.75 0.74 0.74 0.72

Panel B: Managed portfolios (xt)

R2
total Γα = 0 90.3 95.3 97.1 98.0 98.4 98.8

Γα 6= 0 2.67 90.8 95.7 97.3 98.2 98.6 98.9

R2
pred Γα = 0 2.01 2.00 2.10 2.13 2.41 2.39

Γα 6= 0 2.67 2.61 2.56 2.54 2.51 2.50 2.46

Table 16: IPCA model performance (in-sample)
Panel A and B report R2

total and R2
pred in percent for the beta-only Γα = 0 and alpha-beta Γα 6= 0

IPCA model using the same U.S. equity data set as in KPS. We include a special case, that is, an
alpha-only IPCA that includes no common factors (i.e., K = 0).
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