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Gravity Models and the Law of Large Numbers 
 
 

Abstract 

 
Modern quantitative theories of international trade rely on the probabilistic representation of 
technology and the assumption of the Law of Large Numbers (LLN), which ensures that when 
the number of traded goods goes to infinity, trade flows can be expressed via a deterministic 
gravity equation that is log-linear in exporter-specific, importer-specific and bilateral trade cost 
components. This paper shows that when the number of traded goods is finite, the gravity 
equation has a structural stochastic component not related to the fundamental gravity forces. It 
provides a novel explanation of the differences in the goodness of fit of gravity models across 
different sectors observed in the data. It also suggests that when the LLN does not hold, the 
welfare gains from trade have a considerable stochastic component and should be characterized 
via distributions rather than point estimates. We use sectoral trade data and Monte Carlo 
simulations to develop a procedure with minimal data requirements that allows estimation of 
intervals for the welfare gains from trade. 
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1 Introduction

The gravity model is, perhaps, the most widely used empirical tool in international economics.

The reasons behind its success include a parsimonious specification, minimal data requirements,

close isomorphic connection to several leading general equilibrium models of international trade,

and good empirical fit. Despite these factors, surprisingly little is known about how much we

can trust the predictions of gravity models and what factors influence the accuracy of their

predictions. This work aims at filling this gap.

In this paper, we show that the goodness of fit of the gravity model is governed by how closely

the true data generating process is approximated by the Law of Large Numbers (LLN). When

the number of internationally traded varieties goes to infinity, the LLN holds and the gravity

equation converges to a deterministic function that is log-linear in the exporter- and importer-

specific economic fundamentals and bilateral trade barriers.1We show, however, that when the

number of traded varieties is finite and the LLN is violated, the gravity equation has a stochastic

component that arises structurally from theory and is not related to mismeasurement of fun-

damental factors that affect trade flows.2 We show that when the number of total varieties is

small, the variance of the stochastic component is large which leads to relatively poor fit of grav-

ity models to data and, more importantly, has implications for the reliability of counterfactual

predictions. Using these insights, we develop a straightforward procedure that characterized

counterfactual predictions as distributions rather than point estimates.

First, we use a discrete version of the gravity model to illustrate that deviations from the LLN

create a purely stochastic component that is not related to the fundamental forces behind the

gravity model of trade. We demonstrate that the size of the stochastic component is decreasing

in the number of traded varieties and disappears under the LLN. We take these predictions to

the data on bilateral trade for 215 countries and 68 narrow sectors as well as 10 broad sectors.

At both sectoral levels, we show that the number of traded varieties is negatively related to the

residual sum of squares and positively related to a measure of the goodness of fit of the gravity

model.3 To the best of our knowledge, this provides one of the first structural explanations of

why the gravity model is successful in fitting trade data in some sectors and unsuccessful in

others.

Second, we construct a series of Monte Carlo simulations that confirm our theoretical predic-

tions and the empirical patterns found in the data. Next, we develop a procedure based on the

simulations that allows us to characterize the distribution of counterfactual predictions of the

gravity model. The intuition behind the procedure relies on the fact that due to the presence of

1This holds in most general equilibrium models of international trade including Eaton and Kortum (2002)
and Melitz (2003). The same holds for most migration and spatial equilibrium models, e.g., see Anderson (2011).

2See Egger and Nigai (2015) and Agnosteva et al. (2019) for discussion of mismeasurement of trade costs in
gravity models.

3We provide details on how we define and measure varieties in Section 3.
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the structural stochastic term, observed trade shares consist of deterministic and random com-

ponents, where the distribution of the latter is governed by the number of traded varieties. From

this perspective, observed trade shares should be viewed as draws from a known distribution.

Hence, methods that rely on using observed trade shares for counterfactual predictions, often

called hat algebra, calculate a single counterfactual outcome out of a distribution of possible out-

comes.4 Our simulation procedure relies on making multiple theory-consistent draws of trade

shares from a multinomial distribution with gravity fundamentals as event probabilities and the

number of traded varieties as the number of trials. The procedure yields a full distribution of

counterfactual results.

Finally, we use our proposed simulation procedure to build a simple guide for practitioners

on how to put theory-consistent bounds on counterfactual predictions of gravity models with

minimal data requirements. In fact, together with the data on the number of traded varieties

across different sectors that this paper provides, estimating the gravity model with a full set

of origin and destination fixed effects as well as customary proxies for trade costs is sufficient

to inform the simulation procedure. We apply the proposed procedure to the external data for

41 countries and 17 sectors from the World Input-Output Database against the backdrop of a

neoclassical trade model with input-output linkages as in Caliendo and Parro (2015). Using

the proposed procedure, we calculate the distribution of the counterfactual predictions of the

welfare gains from a 10% reduction in bilateral trade costs in all manufacturing sectors. We find

a large degree of heterogeneity in the precision of the counterfactual welfare predictions across

countries. For example, while the medians of 100 simulations of the welfare gains from trade for

Ireland and Portugal are both near 8%, the distribution of the predictions is substantially wider

for the latter. The 5th and 95th percentiles of the distributions of the welfare gains from trade

for the two countries are {6.4%, 10.5%} and {6.4%, 16.6%}, respectively.

This paper is related to several strands of the literature. First, we relate to the literature that

tries to explain the origin of the stochastic error term in the gravity equation. Much of this

literature focuses on mismeasurement of the fundamental forces behind trade gravity. Egger and

Nigai (2015) and Agnosteva, Anderson and Yotov (2019) emphasize how using imperfect proxies

for bilateral trade costs, e.g., bilateral distance, leads to an unobserved residual trade costs.

Bergstrand, Larch and Yotov (2015) look at the measurement and identification of the effects of

trade agreements, borders and distances on trade flows. We also relate to Anderson and Yotov

(2010) and Anderson and Yotov (2012) who test how accurately the multilateral resistance terms

are captured by the exporter- and importer-specific fixed effects in the gravity framework. All

these works point to mismeasurement of fundamental drivers of trade as the main source of the

deviation between theory and data. We, however, argue that even when all fundamentals can

be measured with precision, violation of the LLN leads to a structural stochastic component of

4For illustrations of the hat algebra approach, see Dekle, Eaton and Kortum (2007) and Costinot and
Rodriguez-Clare (2014)
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the gravity equation.

This work is also related to papers that examine the determinants of the welfare gains from trade.

Arkolakis, Costinot and Rodriguez-Clare (2012) show that in many quantiative trade models

the welfare gains from trade (relative to autarky) can be calculated using the trade elasticity

parameter and the share of intra-trade. Ossa (2015) notes that the confidence intervals around

the estimates of the elasticity of trade parameter lead to confidence intervals around the welfare

gains from trade. We, on the other hand, prove that the share of intra-trade also has a stochastic

component whenever the LLN does not hold, which emphasizes a different source of uncertainty

in the predictions of the gains from trade.

We also relate to the literature on discrete gravity. Our benchmark data generating process is

in line with Eaton, Kortum and Sotelo (2012). Our empirical strategy of estimating the gravity

equation and formulating a practitioner’s guide relies on the results derived in Sotelo (2019),

who shows that Multinomial Pseudo Maximum Likelihood (MPML) estimator is equivalent to

Poisson Pseudo Maximum Likelihood (PPML) when the dependant variable is specified in trade

shares and estimation includes a full set of fixed effects. From that perspective, we also relate

to Santos Silva and Tenreyro (2006) who pioneered PPML in gravity models and to Henderson

and Millimet (2008) who advocate for estimating the gravity equation in levels. This work also

relies on the results obtained in Fally (2015) who shows that PPML estimation respects general

equilibrium constraints imposed in quantitative trade theory. Finally, our results are relevant

for a plethora of empirical works that use gravity-type models for counterfactual analysis. For

an overview of this literature refer to Anderson (2011), Costinot and Rodriguez-Clare (2014),

and Head and Mayer (2014).

The rest of the paper is organized as follows. In the next section, we demonstrate how deviations

from the LLN give rise to a stochastic error term in the gravity equation. We demonstrate

empirically that the size of this residual term is negatively related to the number of traded

varieties using data on 215 countries and multiple sectors in Section 3. In Section 4, we conduct

a series of Monte Carlo experiments that confirm the patterns observed in the data and show

how the number of traded varieties is related to the moments of the distribution of the welfare

gains from trade. Section 5 provides a guide to practitioners for calculating the distribution of

the welfare gains from trade that does not require any additional data apart from those provided

in the paper and those typically used in gravity estimation. We provide an example of how to

use this guide against the backdrop of a multi-country multi-sector neoclassical trade model.

We discuss sensitivity of our results and possible extensions in Section 6. Section 7 provides a

brief conclusion.
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2 Discrete Gravity and the LLN

In this section, we present a version of the gravity equation for describing bilateral trade flows

that is based on discrete numbers of goods where each good is produced with a unique technology.

Most canonical models that provide micro-foundations for the gravity equation, e.g., Eaton and

Kortum (2002) and Chaney (2008), rely on the assumption of the existence of a measure of

goods produced and traded across countries which combined with the LLN lead to log-additive

versions of trade gravity. To emphasize how departures from the LLN affect the gravity equation,

we focus on a discrete data generating process. Our results, however, also apply to continuous

versions of the gravity model.

Consider a world with I countries and S sectors. Let N s denote the total number of different

goods (varieties) in sector s that can be produced and potentially traded across all countries.

This number can also be interpreted as the number of available technologies such that index z

is used to denote both. Each country i ∈ I can produce each good z. The number of goods

that i can produce at prices below level z̄ is distributed according to the Poisson distribution as

follows:

N s
i ∼ Poisson

(
eα ln(F si )−β ln(Csi )−β ln(T sii) z̄

)
, (1)

where F si captures country i productivity fundamentals in sector s, Csi reflects production costs,

and T sii denotes internal trade costs. Parameters α and β measure the relative importance of

the three factors in determining the distribution of N s
i . This specification is in line with Eaton,

Kortum and Sotelo (2012) that specified micro-foundations for the gravity equation based on

the discrete number of technologies available for production.

Country i may also export goods in each sector s to other countries. However, in order to ship

to importer j it must pay trade cost, Tij , such that the number of goods below z̄ that i offers

to j is distributed as follows:

N s
ij ∼ Poisson

(
eα ln(F si )−β ln(Csi )−β ln(T sij) z̄

)
(2)

Given that the total number of goods in sector s consumed in j is N s =
∑

kN
s
kj and by properties

of the Poisson distributions, the conditional distribution of N s
ij is as follows:

N s
ij ∼ Multinomial

(
N s,

eα ln(F si )−β ln(Csi )−β ln(T sij)∑
k e

α ln(F sk )−β ln(Csk)−β ln(T skj)

)
. (3)

Let us define the ratio of realized N s
ij relative to the total number of draws, N s, from the
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Multinomial distribution as:

πsij =
N s
ij

N s
(4)

The LLN states that as N s goes to infinity, realization, πij , converges in probability to the event

probability parameters of the Multinomial distribution such that:

πsij
p→ eα ln(F si )−β ln(Csi )−β ln(T sij)−ln(Ms

j ) , where M s
j =

∑
k

F sk
α(CskT

s
kj)
−β. (5)

However, when N s is finite, πsij deviates from eα ln(F si )−β ln(Csi )−β ln(T sij)−ln(Ms
j ) by the stochastic

term εsij . Hence, when the LLN does not hold, the gravity equation can be specified as follows:

πsij = eα ln(F si )−β ln(Csi )−β ln(T sij)−ln(Ms
j ) + εsij . (6)

Equation 6 suggests two insights. First, observed πsij should be viewed as a draw from a Multi-

nomial distribution with parameters defined by the trade gravity forces and N s. Second, the

absolute value and variance of εsij is finite and decreasing in N s. Note that this specification

provides an exact foundation for estimating the gravity equation in levels as in Santos Silva and

Tenreyro (2006). In the next Section, we show using real data that the size of εsij is governed

by differences in N s across sectors which explains why trade data from certain sectors are more

suitable for gravity-type estimation.

3 Data and Estimation

We start with the 10-digit Harmonized System (HS10) to define a variety belonging to N s.

This classification is the most detailed encompassing system that is generally used to denote

products in export and import data in the US. In our context, one could also interpret each

HS10 as a production technology . We use the list of all recorded HS10 products during 1989

- 2006 from Feenstra, Romalis and Schott (2002). We assign each HS10 to sector s and count

how many products fall within each category. We define sectors according to the second revision

of the Standard International Trade Classification (SITC2) using two aggregation levels. First,

we assign 11,398 HS10 products to 68 narrow sectors defined according to the SITC2 2-digit

classification. Examples of such narrow sectors include {Vegetables and Fruits}, {Paper and

Paper Manufactures}, and {Road Vehicles}. We report the number of varieties within each

narrowly defined sector in the Appendix. Second, we also assign HS10 products to 10 broad

sectors according to the SITC2 1-digit classification. We report these ten broad sectors along

with the corresponding number of narrow sectors and HS10 products within each broad sector
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in Table 1.

Table 1: Sector classification and number of HS10 products

SITC2 (1-digit sector) # SITC2 (2-digit sector) # HS10

Food and Live Animals 10 1260
Beverages and Tobacco 2 118
Crude Materials, Inedible, Except Fuels 9 796
Mineral Fuels, Lubric. and Related Mtrls 4 106
Animal and Vegetable Oils,Fats and Waxes 3 77
Chemicals and Related Products, N.E.S. 9 1518
Manufactured Goods Classif. By Material 9 2916
Machinery and Transport Equipment 9 3065
Miscellaneous Manufactured Articles 8 1456
Goods not Classif. Elsewhere 5 86

Total 68 11398
Average 7 1140
Standard Deviation 3 1135

Table 1 suggests that on average each broad sector consists of 7 narrow sectors and subsumes over

a thousand different HS10 products. Broad sectors, however, are heterogeneous as indicated

by the standard deviation of 1,135. The same holds for narrow sectors. Hence, at both levels

of aggregation the data seem to offer variation across sectors, which we use to assess how N s

affects the size and variance of the stochastic error term, εsij , in Equation (7).

We next turn to estimating the gravity equation specified in 6 separately for each sector s. As

is customary in the empirical gravity literature, we collect is-specific terms such that ln(Xs
i ) =

α ln(F si )− β ln(Csi ) and the gravity equations is as follows:

πsij = eln(X
s
i )−β ln(T sij)−ln(Ms

j ) + εsij . (7)

It is customary to capture is- and js-specific terms via exporter-sector and importer-sector

fixed effects and specify bilateral frictions as a function of observable bilateral variables related

to geography as well as institutional and cultural similarities. For empirical purposes, we adopt

three common proxies for bilateral trade frictions and parameterize ln(T sij) as follows:

β ln(T sij) = γs ln(distanceij) + µslanguageij + ηscontiguityij , (8)

where languageij and contiguityij are indicator functions that take the value of one whenever i

and j share a common language and border, respectively. The data on distanceij , languageij ,

and contiguityij are from CEPII. Given parameterization of trade costs, we can now estimate

Equation (7).

We estimate the gravity model specified in Equations (7) and (8) using Multinomial Pseudo
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Maximum Likelihood (MPML), which in our context is identical to employing Poisson Pseudo

Maximum Likelihood (PPML) customarily used in the gravity literature. Sotelo (2019) shows

that the two estimators are identical as long as the dependent variable is specified in trade shares

and a full set of importer-specific fixed effects are included. Fally (2015) shows that estimating

Equation (6) using PPML is warranted from the structural perspective. Our focus, however, is

different as we highlight the fact that εsij arises structurally when LLN does not hold and that

the size of εsij depends on how many products exist in a sector.

We employ data on international trade flows for 215 countries from the COMTRADE database

for 2006. We follow the usual practice of using a C.I.F. measure of imports complemented with

F.O.B. observations of exports whenever C.I.F. data are missing. This gives us 215 · (215 − 1)

country pairs in each sector s.5 First, we estimate the gravity model in (7) for 68 narrow sectors

and record two statistics:

RSSs =
∑
i,j

(
πsij − πsij

)2
and PRs = 1−

var(πsij − πsij)
var(πsij)

for i 6= j, (9)

where πsij are fitted values that capture fundamental gravity forces governing trade shares. The

difference between the observed trade shares and the fitted values, then, captures the stochastic

term, εsij .

The first statistics in Equation (9) is the residual sum of squares, RSSs, which captures the

absolute size of the error terms in sector s. The second measure is one minus the share of

variance of the error term in the total variance in that sector, which is interpreted as pseudo-R2.

We present the results obtained from estimating the gravity equation on 68 narrow sectors in

Figure 1. In the left panel, we report RSSs for each of the 68 sectors as well as average results

for 6 quantiles defined according to N s. The results show that the predictions stated in Section

2 hold in the data. The size of the stochastic residual term in the gravity equation is negatively

related to the number of varieties in each sector. When N s is low, realization πsij significantly

deviates from the gravity fundamentals captured in πsij such that the RSSs is high. As N s

increases, the size of the stochastic residual term decreases. In the right panel of Figure 1, we

demonstrate the relationship between N s and the Pseudo-R2 measure based on the share of

variance of εsij in total variance of πsij . The results are also consistent with the predictions in

Section 2 – as the number of varieties increases the share of variance of εsij declines and the

goodness of fit of the gravity equation increases.

5As production data is generally not available for this sample of countries at sectoral levels, we compute trade
shares using total sectoral imports as denominators.

8



Figure 1: Residual Sum of Squares & Pseudo-R2 (SITC2 2-DIGIT)
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Next, we report the results obtained from the data on 10 broad sectors in Figure 2. In the left

panel, we demonstrate the relationship between N s and RSSs. Again, the results are consistent

with the prediction that the number of varieties within a sector is negatively related to the size

of the stochastic error term. The same applies to the predicted positive relationship between

N s and Pseudo-R2 illustrated in the right panel of Figure 2.

Figure 2: Residual Sum of Squares & Pseudo-R2 (SITC2 1-DIGIT)

At both levels of aggregation, the number of HS10 products within each sector seems to be an

important determinant of the goodness of fit of the gravity model. Hence, violation of the LLN

assumption customarily utilized in quantitative trade models offers one of the first explanations

of why certain sectors, such as manufactured goods, are relatively more suitable for gravity

estimation. As we will see, this result will also have important implications for comparative

statics results that rely on the gravity framework.
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4 Monte Carlo Simulations

In this section, we design a Monte Carlo simulation consistent with a quantitative general

equilibrium model of trade with two goals. First, we aim to confirm the empirical results in

Section 3. Second, we use the simulation design to develop a procedure that allows characterizing

the distribution of the welfare gains from trade in comparative statics exercises.

For simplicity let us consider a single-sector version and drop superscript s. As we will see

in the next section, this can be done without loss of generality. We set parameters related to

productivity levels to unity such that α = 1 and Fi = 1. Parameter β is the trade elasticity

parameter, which we set to a customary value of 4. We sample the remaining economic primitives

from the following distributions:

Tij ∼ Normal(3, 0.5); Li ∼ Normal(100, 20), (10)

where Li reflects the population size of country i and though it does not directly enter the

gravity equation in trade shares, it in part determines endogenous variable Ci, which in this

setting we interpret as the wage in country i. Note that our results do not qualitatively depend

on the choice of the distribution family of Tij and Li nor on the moments of the distributions.

Next, given the fundamentals, we solve for the endogenous variables, Ci and Mi using the general

equilibrium constraints. The trade balance condition, which states that total exports must equal

total imports, implicitly determines the values of Ci and Mi as follows:

LiCi =
∑
j

eα ln(Fi)−β ln(Ci)−β ln(Tij)−ln(Mj)(LjCj), where Mj =
∑
k

Fk
α(CkTkj)

−β. (11)

We conduct each simulation in the following steps:

[1] Choose I and N and draw a vector of Li and a matrix of Tij as in Equation (10).

[2] Given fundamentals {α, β, Fi, Li, Tij}, we solve the system in Equation (14)

[3] Specify πij = eα ln(Fi)−β ln(Ci)−β ln(Tij)−ln(Mj). Given πij and N , we draw Nij from the

Multinomial(N , πij) and calculate πij .

For each simulation, we calculate RSS and PR as follows:

RSS =
∑
i,j

(πij − πij)2 and PR = 1− var(πij − πij)
var(πij)

for i 6= j. (12)

We conduct 100 simulations for each value of N = {100, 200, 500, 1000, 3000, 5000} and I =
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{50, 100, 200}. We calculate average RSS and PR across 100 simulations for each {N, I} pair

and present the results in Figure 3.

Figure 3: Simulated Residual Sum of Squares & Pseudo-R2

In the left panel of Figure 3, we present the residual sum of squares for different values of N

and I. Consistent with out findings in Section 3, RSS is decreasing in N . On the other hand,

as the number of countries in the sample increases, note that RSS also tends to increase. In the

right panel of Figure 3, we see that the results obtained using simulated data suggests that the

goodness of fit of the gravity model is increasing in N and decreasing in I. Hence, we conclude

that deviations from the LLN as measured by N alone is sufficient to reproduce the patterns

seen in the data in Section 3.

When the LLN does not hold, the realized trade shares, πij , depend on the gravity forces in πij

and the stochastic error term:

πij = πij + εij . (13)

Meanwhile, the trade balance condition along with the other structural constraints must still

hold. This means that wages, prices, and ultimately welfare also have a random component that

is not driven by economic fundamentals. Let us use Wi and Pi to denote realized wages and

prices. They are determined according to the trade balance condition as follows:

LiWi =
∑
j

πij(LjWj) and Pj =

(∑
k

Fk
α(WkTkj)

−β

)− 1
β

. (14)

We can then measure real income as Wi/Pi.

It is customary to rely on πij in the counterfactual analysis. This method known as the hat

algebra approach has become very popular because in many cases it does not require calibration
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of economic fundamentals such as productivity levels and trade costs but rather relies on ob-

servable data (see Dekle et al., 2007; Caliendo and Parro, 2015; Ossa, 2015). Let a′ denote the

counterfactual value of an arbitrary variable a such that the relative change is â = a′/a. Next,

consider a counterfactual change in trade costs, T̂ij . We can then specify the counterfactual

equilibrium as follows:

YiŴi =
∑
j

π′ijYjŵj and P̂j =

(∑
k

πij(ŴiT̂ij)
−β

)− 1
β

, (15)

where πij and Yi = LiWi are observed in the data. Then, we can specify the gains from the

reduction in trade costs as:

Welfare Gains = 100% ·

(
Ŵi

P̂i
− 1

)
. (16)

The welfare gains from trade are not deterministic as they depend on the realized trade shares,

πij . As we have demonstrated, πij has a structural stochastic component whenever the LLN

does not hold. Hence, to characterize the welfare gains from trade, one has to consider the whole

distribution of πij rather than a single realization.

To illustrate how to derive the distribution of the welfare gains from a 10% reduction in all inter-

national trade costs, let us consider a sample of 50 countries with the gravity forces summarized

in πij as before. Then we take the following steps:

[1] Fix N and solve for πij given fundamentals as in Equation (14)

[2] Draw 100 samples of Nij from the Multinomial(N , πij) and calculate πij =
Nij

N

[3] Solve for the counterfactual equilibrium and calculate the welfare gains from trade for each

realization, πij , as in Equations (15) and (16)

Without loss of generality let us index countries according to the median gains from trade in

100 samples that we draw. In Figure 4, we characterize the distribution of the welfare gains

from trade by reporting the mean, median as well as the 5th and 95th percentiles. We report

the results for N = 100 in the left panel of Figure 4, whereas the right panel illustrates the

distribution of the welfare gains when N = 1000.

12



Figure 4: Welfare Gains from Trade

The results in Figure 4 suggest that the distribution of the welfare gains from trade is wide

when N is small. For example, for a country where the median gains are at 5% the 5th and 95th

percentiles are around 3% in 7%, respectively. However, as N increases and the realized trade

shares are more closely linked to the gravity fundamentals, the distribution of the gains becomes

narrower as illustrated in the right panel of Figure 4 where N = 1000. In the next section, we

describe how to extend the procedure of calculating the distribution of the gains from trade to

real-world data sets.

5 Guide for Practitioners

Implementing the simulation procedure laid out in the previous section to calculate the distri-

bution of the welfare gains from trade under an arbitrary change in fundamentals such as a

reduction of trade costs is straightforward as long as one knows πij and N . In this section,

we provide a guide for practitioners with minimal data requirements on how to obtain the

distribution of the welfare gains from trade based on real-world data.

We use external data from the World Input-Output Database (WIOD) for 2006 where we observe

trade shares, πsij , and total imports, Y s
i . The database includes 40 countries plus the Rest of the

World. We consider 16 manufacturing sectors and 1 sector which captures all service sectors.

We match WIOD sectors to the SITC2 (2-digit) sectors to calculate the number of varieties N s

in each WIOD sector and report the results in Table 2.6 As it is not possible for us to count

the number of traded goods in the service sector we set it to 1,000, which is roughly the average

number across all other sectors.

6We use two concordances to match SITC2 to WIOD sectors. First we use the concordance between SITC2 and
ISIC2 available at https://wits.worldbank.org/product_concordance.html. Second, we use the concordance
between ISIC2 and ISIC3 available at https://unstats.un.org/unsd/classifications/econ/.
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Table 2: WIOD Sectors and N s

WIOD sector Ns

Agriculture, Hunting, Forestry and Fishing 1,193
Mining and Quarrying 292
Food, Beverages and Tobacco 945
Textiles and Textile Products 749
Leather, Leather and Footwear 337
Wood and Products of Wood and Cork 335
Pulp, Paper, Paper , Printing and Publishing 269
Coke, Refined Petroleum and Nuclear Fuel 78
Chemicals and Chemical Products 1,528
Rubber and Plastics 505
Other Non-Metallic Mineral 1,059
Basic Metals and Fabricated Metal 690
Machinery, Nec 1,061
Electrical and Optical Equipment 1,835
Transport Equipment 1,735
Manufacturing, Nec; Recycling 2,651
Services 1,000

We combine the WIOD data with the data on (log) bilateral distance, common language and

contiguity from CEPII and estimate the gravity equation for each sector s to obtain fitted

values πsij . Given πsij and N s we draw 100 samples of N s
ij and calculate 100 realizations πsij .

We then use the hat algebra approach against the backdrop of a neoclassical multi-sector model

of international trade with input-output linkages as in Caliendo and Parro (2015). We consider

a 10% reduction in bilateral trade costs in all manufacturing sectors and compute the welfare

gains for each country for each draw of πsij . We briefly sketch the model in changes below.

Given the counterfactual change in trade costs, T̂ sij , we first solve for the changes in the unit

cost of production:

Ĉsi = Ŵ
γsi
i

(∏
s′

(P̂ si )ν
s′s
i

)1−γsi
, (17)

where γsi and νs
′s
i are the value added share and input-output share that producers in i in sector

s source from s′, respectively. Both parameters are calculated using data from the WIOD. Next,

we characterize changes in prices:

P̂ sj =

(∑
k

πskj(Ĉ
s
k)−β

s
(T̂ skj)

−βs
)− 1

βs

, (18)

where βs is the sectoral trade elasticity parameter with the values from Caliendo and Parro
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(2015). Next, we calculate the level of counterfactual expenditures:

Y s
i
′ =

∑
s′

νs
′s
i

∑
k

πsik
′Y s
k
′ + αsi (Ŵi(WiLi) +Di), (19)

where αsi is the Cobb-Douglas consumption share calculated from WIOD. Di is the deficit

constant observed in the data and LiWi is total value added from WIOD.7 We also specify the

counterfactual trade shares as:

πsij
′ = πsij

(
ĈskT̂

s
kj

P̂ sj

)−βs
(20)

Finally, we calculate counterfactual changes in wages from the trade balance condition:∑
s

∑
j

πsij
′Y s
j
′ +Di =

∑
s

∑
j

πsji
′Y s
i
′ (21)

Given the calculated values of Ŵi and P̂i we calculate the counterfactual changes in welfare as

in Equation (16).

We characterize the distribution of the welfare gains from trade for all countries in Figure 5 by

reporting the mean as © and median as �. We use 5 to denote the welfare gains from trade

when using unconditional observed data. These are the gains that would be predicted by the

existing hat algebra approach. We also report the interval between the 1st and 99th percentiles

and between the 5th and 95th percentiles.

Figure 5: Distribution of the Welfare Gains from Trade

Figure 5 suggests that the distributions of the gains are generally wider for countries with higher

median gains. There is, however, a substantial degree of heterogeneity. For example, while

Ireland and Portugal have similar median gains of roughly 8%, the 5th and 95th percentiles of

7We keep Di constant to the world GDP in the counterfactual experiments.
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the gains for the two countries are {6.4%, 10.5%} and {6.4%, 16.6%}, respectively. The results

in Figure 5 also show that using unconditional data on πsij to calculate the welfare gains from

trade does not produce unbiased estimates of the average or median gains. While most of the

estimates based on the unconditional data fall inside the intervals between the 1st and 99th

percentiles, some estimates could be considered outliers. For example, the gains based on the

unconditional data for Germany and Bulgaria are 4.4% and 8.4%, respectively. The former is

above the 99th percentile of the gains for Germany and the latter is below the 1st percentile for

Bulgaria. Hence, these two results based on the unconditional data are not theory consistent as

they are not explained by the respective economic fundamentals but rather occur because the

LLN does not hold.

Overall, Figure 5 suggests that accounting for sectoral differences in N s and considering the

distribution of the welfare gains from trade rather than point estimates is important. On the

one hand, for certain countries the distributions of the gains are narrow and centered around the

median such that the counterfactual results based on a single realization of πij are informative.

On the other hand, for a majority of countries that we consider, the distributions of the gains

are sufficiently wide. In this case, the hat algebra approach based only on the observable data

cannot provide the whole picture and using the simulation approach proposed in this paper is

warranted.

6 Discussion and Extensions

So far, we have used a discrete version of the gravity equation to illustrate how deviations from

the LLN affect the goodness of fit and what implications it has for comparative statics analysis.

It should be clear, however, that the main mechanisms highlighted in this paper apply to models

that lead to continuous gravity equations and that the proposed simulation procedure to derive

the distribution of the welfare gains from trade remains valid.

For example, consider the gravity equation produced by a trade model based on perfect compe-

tition as in Eaton and Kortum (2002):

πij = eα ln(Fi)−β ln(Ci)−β ln(Tij)−ln(Mj) + εij , (22)

where α ln(Fi) is now interpreted as the scale parameter of the Fréchet productivity distribution

in exporter i and β – as the shape parameter of the Fréchet distribution common to all countries.

In this case, we interpret N as the number of draws from the Fréchet distribution in each country

such that under the LLN the stochastic term, εij , converges to zero. Violations of the LLN would

mean that the number of the productivity draws is finite and entail the same implication that

we have considered in the discrete case.
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A similar logic can applied to models based on monopolistic competition such as Krugman (1980)

and Melitz (2003) if the productivity distribution in the latter is Pareto as in Chaney (2008).

In this case, the structural gravity equation above would still hold though the interpretation of

the exporter- and importer-specific terms would change. We would interpret N as the number

of firms and the LLN would be violated whenever the number of firms is finite. As is customary

in the literature, one would have to assume that each firm produces a single unique product.

In this paper, we have considered deviations from the LLN to be the only source of the stochastic

term εij . However, there are also other potential sources of the stochastic term. For example,

if the gravity fundamentals are measured with error the total error term would consist of two

components:

εij = εij + ξij , (23)

where εij is the term due to deviations from the LLN and ξij is the measurement error asso-

ciated with the gravity fundamentals. However, the measurement error, ξij , has no structural

interpretation and should not be related to N . As we have seen in Section 3, the total sum of

squares of εij is largely explained by N . This suggests that even if ξij exists its quantitative role

in explaining total error εij is likely smaller than εij . One could also potentially address such

a measurement error by including more proxies for trade costs and employing panel data with

bilateral fixed effects (see Egger and Nigai, 2015), which is not the case for the component due

to violations of the LLN.

7 Conclusion

This paper offers a novel explanation of why the goodness of fit of the gravity model of inter-

national trade is heterogeneous across different sectors. We show that when the LLN does not

hold and the number of traded varieties is finite, the gravity model has a structural stochastic

component that is unrelated to the forces underlying the gravity model of trade. When the

number of traded varieties is small, the share of the variance of this stochastic component is

high relative to the total variance. We confirmed this prediction empirically by using trade data

for 215 countries and multiple sectors.

We show that violations of the LLN observed in the data have important implications for calcu-

lating the welfare gains from trade within the gravity frameworks. In cases when the LLN does

not hold, it is important to characterize the distribution of the welfare gains from trade. We

have developed a procedure based on simulations that allows for obtaining such distributions

with minimal data requirements. We have also demonstrated the advantages and simplicity of

the procedure by applying it to the external data for 40 countries and 17 sectors sectors against

the backdrop of a neoclassical model of trade with input-output linkages.
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In this work, we have focused on characterizing and dealing with the uncertainty in the estimates

of the welfare gains from trade stemming from violations of the LLN. It will be potentially fruitful

to combine this source of uncertainty with the uncertainty in the estimates of the gravity forces

such as the elasticity of trade. We leave this for future research.
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Appendix

Table 3: SITC2 (2-digit) & N s

SITC2 (2-digit) Ns SITC2 (2-digit) Ns SITC2 (2-digit) Ns SITC2 (2-digit) Ns

00 27 26 81 57 10 76 185
01 152 27 100 58 129 77 771
02 39 28 108 59 150 78 171
03 295 29 187 61 187 79 133
04 135 32 11 62 119 81 22
05 376 33 81 63 159 82 44
06 34 34 13 64 295 83 15
07 70 35 1 65 884 84 419
08 60 41 14 66 253 85 60
09 72 42 47 67 434 87 221
11 42 43 16 68 215 88 175
12 76 51 643 69 370 89 500
21 71 52 252 71 187 93 18
22 38 53 70 72 553 94 12
23 21 54 197 73 249 95 45
24 166 55 66 74 634 96 1
25 24 56 1 75 182 97 10
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