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Abstract 
 
There are two important problems in welfare benefit programs: the prevalence of welfare fraud, 
in which ineligible people receive welfare benefits, and incomplete take-up, whereby eligible 
poor people are reluctant to claim welfare benefits. This study investigates both of these 
opposing phenomena using simple replicator models of statistical discrimination and the tax-
payer resentment view welfare stigma suggested by Besley and Coate (1992). We find multiple 
stable equilibria in the long run, one of which entails low welfare fraud and 100% incomplete 
take-up and the other of which entails high welfare fraud and complete take-up in either model, 
and, moreover, that an interior stationary equilibrium that allows for the coexistence of welfare 
fraud and incomplete take-up is unstable in the model of statistical discrimination view welfare 
stigma, but it is stable in the model of the tax-payer resentment view welfare stigma. This 
difference arises from the different nature of stigma cost functions in these two models. 
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1 Introduction

There are two important problems in welfare benefit programs: the preva-
lence of welfare fraud and incomplete take-up, whereby eligible poor people
are reluctant to claim welfare benefits. This study investigates both problems
in a simple framework of replicator dynamics with respect to heterogenous
populations. In particular, we focus on how welfare stigma forms over time in
terms of population dynamics. Although welfare stigma is important in un-
derstanding the emergence of welfare fraud and incomplete take-up, we find
that the dynamic interaction between both eligible claimants and non-eligible
claimants also matters in determining welfare stigma.
Table 1 shows take-up rates in Japan, the UK, the US, and Germany.

The table reports that take-up rates are less than 1, indicating incomplete
take-up.

Data Take up rate
Tachibanaki and Urakawa (2006)[JPN] SIR 16.3∼19.7%
Duclos (1995)[UK] FES 80%
Blank and Ruggles (1996)[US] SIPP 60∼67%
Riphahn (2001)[GER] EVS 37%

Table 1 (Adapted from Tachibanaki and Urakawa; 2006).

Several empirical studies, on the other hand, find the existence of stigma
in welfare programs. Moffitt (1983) examines the existence of welfare stigma
in the Aid to Families with Dependent Children (AFDC) program using
both a theoretical model and empirical analysis and finds significant welfare
stigma in participants of the program. Bharagava and Manoli (2015) conduct
a field experiment with the International Revenue Service Earned Income Tax
Credit (EITC) program and investigate the sources of incomplete take-up.
They conclude that welfare stigma has a statistically significant impact on
the take-up rates of welfare benefits, although the effect is not so strong.
Their findings are consistent with high take-up rate in the US, as seen in
Table 1.
The existence of welfare stigma means that some people choose not to

receive public assistance despite satisfying the eligibility criteria. As Table 1
indicates, eligible recipients make such a decision because they fear negative
labels, disapproval, or public shaming if they participate in a public assistance
program. Given the negative perception of claiming public assistance, it is
not surprising that this lifeline was been viewed favorably, even when the
social security system was established in Japan. Though the public assistance
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system is designed to complement the social insurance system, the low take-
up rate of public assistance due to welfare stigma is problematic in that
it creates inefficiency because it prevents the social security system from
functioning as expected. This outcome implies that the social security system
is incomplete unless the public assistance system works properly. Hence, not
only has welfare stigma been of academic interest in sociology and economics
for the past several decades, but its reduction is also considered to be one of
the major policy issues in welfare programs.
On theoretical grounds, Moffitt (1983), Besley and Coate (1992), Yaniv

(1997), and Blumkin et al. (2015) analyze a welfare stigma model focusing
on welfare fraud. They find that stigma could be an alternative to law
enforcement for suppressing welfare fraud. However, incomplete take-up is
beyond the scope of these studies, except for Moffitt (1983), who allows for
endogenous choices on whether or not to take up benefits, but not for welfare
fraud. This study aims to fill this research gap by considering together welfare
fraud and incomplete take-up in a simple replicator dynamics framework.
There are several innovations and findings in this study. First, we in-

troduce endogenous choices of take-up of welfare recipients into Besley and
Coate’s (1992) models of the statistical discrimination view stigma, which
allows for endogenous choices of the only undeserving poor as to whether or
not to become welfare fraud. This extension intends to clarify how incom-
plete take-up (i.e., low take-up rates) emerges endogenously, which Besley
and Coate (1992) and Blumkin et al. (2015) do not address. To do this, we
need to allow for the populations of the deserving poor who qualify for welfare
benefits and the undeserving poor who are not qualified to take up welfare
benefits to simultaneously and endogenously change through time. More
specifically, we employ a replicator dynamics model that endogenously and
jointly determines the populations of welfare fraud and incomplete take-up
through time. Second, Besley and Coate (1992) stipulate that the equilib-
rium level of welfare stigma is determined as a fixed point of their stigma
cost function. More precisely, the level of stigma cost is determined by itself
as a sort of rational expectations equilibria in the sense that all individu-
als can precisely predict the stigma costs in equilibrium. Consequently, no
further revisions to know the precise amount of stigma costs take place at
that equilibrium in a sort of thought experiment. This scenario requires a
great deal of common knowledge and god-like calculation powers in a timeless
world. In addition, a compelling reason or satisfactory motivation for welfare
claimants stick to finding a stationary value (or fixed point) of stigma costs
seems unclear to us. Specifically, the explanatory significance of equilibrium
concepts in general depends on the plausibility of the underlying dynamics
that bring the players to equilibrium. The central role of this equilibrium
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concept in Besley and Coate’s (1992) analysis, that is, their timeless scenario
on how to reach such an equilibrium is not especially convincing to describe
the actual behavior of welfare beneficiaries.
In contrast, applying replicator dynamics allows us to explain how the

level of stigma costs is formed through the population dynamics in terms of
the deserving and undeserving claimants instead of the process of thought
experiments in terms of stigma costs themselves. Moreover, the replicator
dynamics model is more compatible with the model of the statistical discrim-
ination view stigma, although it is intrinsically a static one. This is because
the size of the stigma cost is evidently sensitive to the population profile of
the deserving and undeserving claimants in the sense that higher populations
of the current welfare fraud induces more fraud, thereby increasing stigma
costs.
Third, our replicator dynamics give rise to multiple long-run equilibria,

which Besley and Coate (1992) do not address. The multiplicity of long-run
equilibria are caused by aggregate externalities arising from changes in the
composition of the heterogenous populations of the poor through a stigma
cost function. The existence of multiple equilibria undermines the predictive
power of a comparative static analysis as well as the policy evaluation be-
cause considerably different comparative statics may emerge depending on
the resulting stationary equilibria. Thus, the comparative statics analysis
carried out by Besley and Coate (1992) may lead to misleading predictions
because they focus only on a unique fixed point.
Fourth, and closely related to third point, the replicator dynamics pro-

vide a method to refine the equilibrium, even if multiple equilibria exist. The
stability analysis of the replicator dynamics helps provide a way to refine the
equilibria. Although the stability analysis reduces the number of equilibria
in the statistical discrimination view stigma model to a large extent, that is,
there may exist at most two asymptotically stable stationary equilibria, one
of which entails welfare fraud to some extent, but completely eliminates in-
complete take-up (i.e., all deserving poor individuals take up welfare benefits)
and the other that allows for welfare fraud to some extent and 100% incom-
plete take-up (i.e., no deserving poor individuals take up welfare benefits).
A comparative statics analysis in either boundary stationary equilibrium re-
veals that although the population of deserving claimants is unaffected by
any parameter changes in the long run, that of undeserving claimants rises
in response to increasing welfare benefits, as well as reductions in the degree
of public exposure and wage rates. The most important policy implication
is that since the first equilibrium with full take-up is more socially desirable
compared to the second equilibrium with 100% incomplete take-up, increas-
ing welfare benefits makes it more likely that the society will reach the first
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better equilibrium autonomously in the long run.
Fifth, we construct a replicator dynamic model of tax-payer resentment

view stigma. Although there also exist multiple long-run equilibria, we can
use the stability analysis to pin down a unique stable long-run equilibrium;
that is, an interior stationary point or either of the above-mentioned bound-
ary stationary equilibria. The most important difference is that in the tax-
payer resentment model, an interior stationary equilibrium is stable, which
implies that it is more likely to allow for the coexistence of welfare fraud
and incomplete take-up.
The organization of the paper is as follows. The next section and Section

3 describe the basic model and then characterize the replicator dynamics for
the statistical discrimination view stigma model. Sections 4 and 5 conduct
a stability analysis and a comparative static analysis with respect to the
principal parameters, respectively, to address policy implications. Section 6
performs the same analysis in the replicator dynamic model of the tax-payer
resentment view stigma. Section 5 concludes the paper with a discussion of
our findings and suggestions for future research questions. Some mathemat-
ical proofs are relegated to the appendices.

2 The Model

We consider a society composed of two income classes: the poor and the
rich. We normalize the total population to be equal to 1. The population of
the poor income class is β ∈ (0, 1), while the proportion of the rich income
class is 1− β. People in the rich income class have incomes of y. The poor
income class is further divided into two types: the deserving (needy) poor
and undeserving (non-needy) poor. The deserving poor are unable to work
physically even if they want to work and are the intended targets of welfare
benefits, while the undeserving poor are able to work if they want to do so.
The populations of the deserving and undeserving poor are βγ and β(1−γ),
respectively. For analytical simplicity, we assume that both β and γ are
constant through time.
The government sets the benefit level at an exogenously fixed value of b,

which may be equal to the minimum standard of living. The undeserving
poor can get a fixed wage rate ω if they work, but suffers from disutility θ,
while both the deserving and undeserving poor suffer from stigma costs when
they receive welfare benefits. Taken together, the payoffs to the deserving
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and undeserving poor are

Table 2 Payoffs

where s(p, q) represents the stigma costs suffered when taking up benefits.
In addition, u(·) and v(·) represent the utility functions of the deserving
and undeserving poor in terms of their own consumption, respectively, both
of which are of C2 class, strictly increasing in their own consumption and
concave. Without loss of generality, we assume y > ω > b > 0, where the
second inequality guarantees that the undeserving poor are willing to work
rather than taking up benefits if the disutility arising from labor supply were
to be relatively low.
As in Besley and Coate (1992), we also assume that the degree of the

disutility of work among the undeserving poor is monotonically increasing in
θ over the interval [0, 1] (see Fig. 2 also). Then, we define a threshold value
of θ for the undeserving poor, θ̂, in the decision to work or not, as follows:

v(ω)− θ̂ = v(b)− s.

All individuals in the undeserving poor group who have θ ≥ θ̂ prefer to take
up welfare benefits over working, and vice versa. Thus, the population share
of undeserving poor who want to take up benefits is

Pr(Take-up benefit|Undeserving poor) = Pr(θ ≥ θ̂) = 1− θ̂.

Note that there is an important difference between Besley and Coate’s model
and the present model in that the population of actual or current undeserving
poor welfare claimants (who we may call welfare fraud), denoted by q, is
always equal to 1− θ̂ in their static model, whereas in the present dynamic
model, q evolves over time and is generally different from 1 − θ̂ in every
moment in time (see Fig. 2 also).
Next, we formulate a stigma cost function. We first employ the statistical

discrimination view stigma suggested by Besley and Coate (1992), which is
an increasing function of the discrepancy between the average disutility of
work among all welfare claimants, denoted by θ̄w, and the average disutility of
work among the poor, denoted by θ̄, who consist of deserving and undeserving
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claimants. To obtain closed-form solutions for q and p, we specify the stigma
cost function as a linear function of the difference θ̄w − θ̄:

s(θ̄w − θ̄) = λ[θ̄w − θ̄], (1)

where the constant parameter λ measures the degree of public exposure in
welfare programs (i.e., when λ = 0 in (1), the welfare program is discre-
tionary, while when 0 < λ < 1, public exposure is partial when claiming
welfare benefits and entails stigma costs), and the average disutility of work

among the poor θ̄ is θ̄ =
� 1
0
θdθ = 1/2. The average disutility θ̄w among all

welfare claimants is therefore determined according to

θ̄w = πθ̄d + (1− π)θ̄u, (2)

where
π := Pr[Deserving|Taking-up benefit] =

γp

γp+ (1− γ)q
, (3)

θ̄d := E[θ|Deserving ∩ Taking-up benefit], and

θ̄u : = E[θ|Undeserving ∩Taking-up benefit],

=

� 1

1−q

θdθ

q
=

�
θ2

2q

�1

1−q

= 1−
q

2
, (4)

where θ̄d represents the average disutility of work among the deserving poor
and θ̄u is the average disutility of work among the undeserving claimants,
while p and q represent the populations of actual deserving and undeserving
poor claimants, respectively, both of which evolve over time as state variables
of the replicator dynamics described later.1 For simplicity, we assume not
only that θ̄u > θ̄d (i.e., the disutility of work among the undeserving claimants
is greater than that among the deserving claimants), but also that the average
disutility among the rich is the same as that of the poor, as in Besley and
Coate (1992); consequently, we can set θ̄d = θ̄ = 1/2. Fig. 1 shows that π in
(2) corresponds to the ratio between the upper shaded area (the deserving
claimants) relative to the total shaded area (all welfare claimants).
Using (2), (3) and (4), together with θ̄d = θ̄ = 1/2, we can express the

difference in (1) by

θ̄w − θ̄ = (1− π)

�
θ̄u −

1

2

�
=

1

2

(1− γ)q(1− q)

γp+ (1− γ)q
. (5)

1The variables p and q represent the share of the deserving poor who receive benefits
relative to the total poor population (i.e., (1 − β)γ) and the share of the undeserving
poor who receive benefits relative to the total poor population (i.e., (1 − β)(1 − γ)),
respectively. To avoid an abuse of language, we simply refer to p and q as the populations
of the deserving and undeserving claimants, respectively, in what follows.
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Figure 1: The shaded area represents the population of all welfare claimants

By substituting (5) into (1), we can rewrite the stigma cost function (1)
as follows:

s(p, q) =
λ

2

(1− γ)q(1− q)

γp+ (1− γ)q
. (6)

As (6) makes clear, the stigma cost is affected not only by the parameters
b, ω, λ, and γ, but also by the populations of deserving and undeserving
claimants. Consequently, although the state variables p and q are fixed at
each moment in time, they evolve over time, so the stigma cost level itself is
also changing over time. Note, however, that the point (p, q) = (0, 0) should
not be contained in the domain of (p, q) because s(p, q) is discontinuous at
(0, 0).2

3 Replicator dynamics

To capture the population dynamics of the state variables p and q, we con-
struct the replicator dynamics of p and q as follows:

2It is easy to show this. Consider, for example, a case where q converges to 0 following
q = ap with a being any positive real number. Take the limit of (6):

lim
(p,q)→(0, 0)

s(p, q) = lim
(p,q)→(0, 0)

λ

2

(1− γ) (ap) (1− q)

γp+ (1− γ) (ap)
=
λ

2

(1− γ)a(1− q)

γ + (1− γ)a
.

Depending on the arbitrarily chosen values of a, the limiting value of s(p, q) takes different
values.
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ṗ = p {E[Udeserving poor | Taking-up benefit]−E[Udeserving poor]} , (7)

= p(1− p)[u(b)− s(p, q)],

where

E[Udeserving poor | Taking-up benefit] = q [u(b)− s(p, q)] + (1− q) [u(b)− s(p, q)] ,

= u(b)− s(p, q), and

E[Udeserving poor] = pq [u(b)− s(p, q)] + p(1− q) [u(b)− s(p, q)]

+(1− p)q · 0 + (1− p)(1− q) · 0,

= p [u(b)− s(p, q)] .

Next, the population growth rate of q is

q̇ = q {E[Uundeserving poor | Taking-up benefit]−E[Uundeserving poor]} ,

= q(1− q) [v(b)− s(p, q)− v(ω) + θ] , (8)

where

E[Uundeserving poor | Taking-up benefit]

= p [v(b)− s(p, q)] + (1− p) [v(b)− s(p, q)] = v(b)− s(p, q), and

E[Uundeserving poor] = pq [v(b)− s(p, q))] + (1− p)q [v(b)− s(p, q)]

+p(1− q) [v(ω)− θ] + (1− p)(1− q) [v(ω)− θ] ,

= q [v(b)− s(p, q)] + (1− q) [v(ω)− θ] .

Since θ varies across the undeserving poor; that is, it is uniformly distributed
over the closed interval [0, 1], we must choose an appropriate value for θ to
describe the replicator dynamics of the model. Given q at each instant in
time, there exists an undeserving poor individual who has θ = 1− q (whom
we call a pivotal individual). Moreover, if q is in the position depicted in
Fig. 2, then v(b)− s (p, q) > v(w)− (1− q), giving rise to q̇ > 0 due to (8).
Consequently, the population of undeserving claimants q is rising in time.
In particular, if θ̂ = 1 − q holds, then q̇ = 0 in (8). In economic terms, the
pivotal individual is no longer replaced by other new individuals with further
lower disutility to work so that q ceases to change. Hence, we could view
the resulting long-run equilibrium in the present dynamic model as the static
equilibrium analyzed by Besley and Coate (1992). These considerations lead
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Figure 2: Pivotal person with θ = 1− q

us to set θ equal to 1− q. We again emphasize that such a pivotal individual
with θ = 1−q is continuously replaced during the adjustment process towards
the long-run equilibrium unless θ̂ = 1− q holds.
We are now ready to analyze the behavior of the replicator dynamics in

terms of p and q using a phase diagram method. To this end, we draw the
graphs for the loci of points by setting ṗ = 0 in (7) and q̇ = 0 in (8) within
the unit square [0, 1]× [0, 1] of R2+. That is,

p∗ = 0, p∗ = 1, u(b)− s(p∗, q∗) = 0, (9)

q∗ = 0, q∗ = 1, v(b)− v(ω) + 1− q∗ − s(p∗, q∗) = 0, (10)

where p∗ and q∗ denote the stationary values of the state variables p and q,
respectively. For the reason stated above, we exclude the stationary point
(0, 0).
To simplify the analysis, we make the following assumptions:

Assumption 1 1 > (2u(b)/λ).

Assumption 2 λ < 2.

An immediate consequence of Assumptions 1 and 2 is u(b) < 1.
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To depict the dynamic behavior of p and q, we first solve u(b)−s(p, q) = 0
(i.e., the locus ṗ = 0) for p, together with (6), to obtain

p =
1− γ

γ
q

�
λ(1− q)

2u(b)
− 1

�
,

whose right-hand side is a quadratic function of q. The locus of this quadratic
function is illustrated by the locus ṗ = 0 in the unit square of the (p, q) space
of Figs. 3-5. This graph crosses the origin (p, q) = (0, 0) and the q-axis at
q̃2 = −(2u(b)/λ)+ 1 ∈ (0, 1). Next, we solve v(b)− v(ω)+ 1− q− s(p, q) = 0
(i.e., the locus q̇ = 0) for p, together with (6), to obtain

p =
1− γ

γ
q

�
λ(1− q)

2 [v(b)− v(ω) + 1− q]
− 1

�
,

whose right-hand side is a rational function of q. This rational function is
illustrated by the locus q̇ = 0 in the (p, q) space of Figs. 3-5. This graph
crosses the origin (p, q) = (0, 0) and the q-axis at

q̃ = 2
v(b)− v(ω)

2− λ
+ 1 ∈ (−∞, 1) .

Note that the intercept q̃ may or may not be greater than that of q̃2.
Taken together, we can draw Figs. 3-5. Although varying the values of

parameters such as λ, γ, b, and ω will yield different pictures for the loci
of ṗ = 0 and q̇ = 0, we can depict three typical phase portraits capturing
all possible qualitative movements of p and q. We should note that the loci
u(b) − s(p, q) = 0 and v(b) − v(ω) + 1 − q − s(p, q) = 0 may or may not
intersect within the unit square of the space (p, q)

4 Stability

In this section, we investigate the stability properties of the stationary points
of the system (7) and (8). Although there are many stationary points, we
must focus on only stable stationary points to perform a meaningful compar-
ative statics analysis.
For the stability analysis, we take a linear approximation of (7) and (8)

around the stationary point (p∗, q∗):

�
ṗ
q̇

�
=

�
∂f (p∗, q∗) /∂p ∂f (p∗, q∗) /∂q
∂g (p∗, q∗) /∂p ∂g (p∗, q∗) /∂q

� �
p∗ − p
q∗ − q

�
, (11)
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where the functions f(·) and g(·), respectively, represent the right-hand sides
of (7) and (8), and

∂f (p∗, q∗)

∂p
= (1− 2p∗) [u(b)− s(p∗, q∗)]− p∗(1− p∗)sp(p

∗, q∗),

∂f (p∗, q∗)

∂q
= −p∗(1− p∗)sq(p

∗, q∗),

∂g (p∗, q∗)

∂p
= −q∗(1− q∗)sp(p

∗, q∗), and

∂g (p∗, q∗)

∂q
= (1− 2q∗) [v(b)− v(ω) + 1− q∗ − s(p∗, q∗)]− q∗(1− q∗) [1 + sq(p

∗, q∗)] ,

noting that the stationary equilibrium values of p∗ and q∗ are given by any
combination of (9) and (10) except (0, 0).
Differentiating (6) with respect to p and q, respectively, yields

sp(p, q) ≡
∂s(p, q)

∂p
= −

λ(1− γ)

2

γq(1− q)

[γp+ (1− γ)q]2
< 0, and (12)

sq(p, q) ≡
∂s(p, q)

∂q
=

λ(1− γ)

2

γp(1− 2q)− (1− γ)q2

[γp+ (1− γ)q]2
� 0. (13)

Figs. 3-5 provide the phase portraits for this system depending on the relative
locations of loci ṗ = 0 and q̇ = 0.
On the stability properties of the linearized system (11) around the re-

spective stationary points listed below, we can demonstrate the following
proposition:

Proposition 1 Under the replicator dynamics (7) and (8) coupled with As-
sumptions 1 and 2 for all (p, q) ∈ [0, 1]2 \ (0, 0):

(i) The stationary point (1, q̄) is locally asymptotically stable if u(b) −
s(1, q̄) > 0. Conversely, if u(b)− s(1, q̄) < 0, then it is a saddle.

(ii) The stationary point (0, q̃) is locally asymptotically stable if u(b) −
s(0, q̃) < 0. Conversely, if u(b)− s(0, q̃) > 0, then it is a saddle.

(iii) The interior stationary point (p̂, q̂) is a saddle.

(iv) The stationary point (1, 0) is locally asymptotically stable if v(b) −
v(w) + 1 < 0. Conversely, if v(b) − v(w) + 1 > 0, then it is a sad-
dle.

(v) The stationary point (1, 1) is a saddle and (0, 1) is a source.

(vi) The stationary point (0, q̃2) is not locally asymptotically stable.3

3The stationary point (0, q̃2) could be a saddle; however, even if it is, it is unstable.
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Proof. See Appendix A.4

Notice first that if a stationary point is a saddle, then the trajectories be-
sides the ones starting from an initial condition lying on the one-dimensional
stable manifold can reach that stationary point; thus it is reasonable to con-
clude that it is unstable. Hence, a stationary point that is either a saddle or
a source is unstable. We first consider Fig. 3, in which there is only one sta-
ble stationary equilibrium point (1, q̄). Indeed, since this stationary point is
located above the locus ṗ = 0; that is, ṗ > 0, it implies that u(b)−s(1, q̄) > 0
from (7). According to Claim (i) of Proposition 1, the stationary point (1, q̄)
is locally asymptotically stable. In contrast, since (0, q̃) in Fig. 3 is also lo-
cated above the locus ṗ = 0, ṗ > 0. Since this implies that u(b)− s(0, q̃) > 0
in (7), (0, q̃) is unstable according to Claim (ii) of Proposition 1. All other
stationary points in Fig. 3 are unstable due to Proposition 1.
As Fig. 4 illustrates, on the other hand, there coexist two stable sta-

tionary points, such as (1, q̄) and (0, q̃). Both stationary points are locally
asymptotically stable due to Claims (i) and (ii), respectively.
In Fig. 5, the locations of ṗ = 0 and q̇ = 0 are in reversed positions

relative to Fig. 3. As Fig. 5 shows, there is only one stable stationary point
(0, q̃) due to Claim (ii). According to Claim (iv), the stationary point (1, 0)
could be locally asymptotically stable. Nevertheless, Figs. 3-5 demonstrate
that (1, 0) is always unstable, because v(b)−v(ω)+1 > 0 holds in all figures.
Further, three remarks are in order. First, if there exists only one stable

stationary equilibrium, it is unique and thus globally asymptotically stable.
Hence, the system reaches a unique long-run equilibrium, such as (1, q̄) or
(0, q̃), independently of the initial condition. We call the former one the
Besley and Coate equilibrium (or simply, the B&C equilibrium) and the
latter one the non-take-up equilibrium.
Second, as all figures show, there are multiple stationary equilibria. Nev-

ertheless, the stability analysis can help reduce the set of multiple stationary
equilibria substantially, enabling us to pin down fewer stationary points: that
is, one or two stable stationary equilibria, as we see in Figs. 3-5. In par-
ticular, two stable stationary equilibria emerge in Fig. 4. The emergence of
multiple stable stationary equilibria indicates that, depending on the exoge-
nously given initial values of p and q, the trajectories starting from different
initial conditions could converge to different stationary points in the long
run. This feature entails different comparative statics properties. In other

4It is straightforward to show that the eigenvalues of the Jacobian at every stationary
point for the respective linearized systems are all real numbers and thus the trajecto-
ries never circle around the stationary point, provided that the stationary equilibrium is
hyperbolic.
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words, we should not expect a unique prediction concerning the long-run
comparative statics effects with respect to the structural parameters of the
model or the policy instruments, unlike in Besley and Coate (1992). If the
initial population of p is relatively larger, then the trajectory starting from
such an initial condition is more likely to lead to the Besley and Coate equi-
librium (1, q̄). Intuitively, the stigma cost is relatively lower when p is higher
(recalling (6)), thereby inducing more of the deserving poor to take up wel-
fare benefits. Thus, the population of deserving claimants continues to rise
through time and therefore all deserving poor ultimately end up taking up
welfare benefits in the long run.
Conversely, if the initial population of p is relatively small, then the stigma

cost is higher due to ∂s(0, q̃)/∂p < 0 (recalling (12)), so that the process
above is reversed. Consequently, no deserving claimants ultimately take up
benefits in the long run (i.e., (0, q̃)), which Besley and Coate (1992) do not
examine in their study. Such a knife-edge property stems from the above-
mentioned self-enforcing feature of the statistical discrimination model, which
ultimately leads to one of the extreme boundary stationary equilibria (i.e.,
(0, q̃) or (1, q̄)) rather than the interior stationary equilibrium (p̂, q̂). This self-
enforcing property emerges from the monotonically decreasing stigma cost
function of the population of deserving claimants, p, recalling (12). There-
fore, initially larger values of p are associated with lower stigma costs, which
further raise p, thus reducing stigma costs, and so on. In this way, this
divergent process continues until p reaches the upper limit 1.5 Conversely,
since the effect of changes in q on the stigma cost is ambiguous in general
(recall (13)), the relation between the population of undeserving claimants q
and the stigma cost is not monotonic, and thus the self-enforcing process
in terms of q does not arise. Thus, the long-run population of undeserving
claimants tends to display intermediate values rather than either 0 or 1.
Third, our stability analysis reveals that the interior stationary point,

which allows for the coexistence of welfare fraud and incomplete take-up,
is unstable as a result of the property of cumulative divergence towards ei-
ther of the extreme boundary stationary equilibria such as (0, q̃) or (1, q̄).
This striking and somewhat surprising result indicates that the coexistence
of welfare fraud and incomplete take-up never emerges in the long run of the
statistical discrimination model. However, it seems that this extreme theo-
retical prediction does not align with actual observations, such as in Japan,
Germany, and the like (see Table 1 also).

5If the stigma cost function in (1) is concave in θ̄w − θ̄, then this process becomes
milder, while if the stigma cost function in (1) is convex in θ̄w − θ̄, then this process will
accelerate. In any case, this divergent property remains valid.
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Figure 3: λ = 0.25, u(b) = 0.05, v(b) = 0.25, v(ω) = 0.5, and γ = 0.5.

Figure 4: λ = 0.5, u(b) = 0.05, v(b) = 0.25, v(ω) = 0.5, and γ = 0.5.
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Figure 5: λ = 0.9, u(b) = 0.05, v(b) = 0.25, v(ω) = 0.5, and γ = 0.5.

5 Comparative Statics

Based on the stability results obtained in the previous section, we confine
our attention to only the stable long-run equilibria, such as (0, q̃) or (1, q̄), to
make a meaningful comparative static analysis. These stationary equilibria
(together with θ = 1− q) are characterized by:

q∗ = 1 + v(b)− v(ω)− s(p∗, q∗), (14)

and u(b) � s(p∗, q∗), where (p∗, q∗) = (1, q̄) or (0, q̃).
We first consider the effect of a change in the benefit level, b, on the B&C

equilibrium (1, q̄). Since p is fixed at 1, a change in b can affect only the
population of undeserving claimants, q, in the long run. Taking this condition
into account, we totally differentiate (14) with respect to b to obtain

dq̄

db
=

v
′

(b)

1 + sq(1, q̄)
> 0,

while in the non-take-up equilibrium, (0, q̃), the effect is

dq̃

db
=

v
′

(b)

1 + sq(0, q̃)
> 0,

noting that s (p, q) does not depend directly on b. Moreover, from (A.4) and
(A.6) in Appendix A, it follows that 1 + sq(1, q̄) > 0 and 1 + sq(0, q̃) > 0.
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Setting p = 1, the effect of an increase in the degree of public exposure,
λ, on q̄ in the B&C equilibrium, (1, q̄), is

dq̄

dλ
= −

1

1 + sq(1, q̄)

∂s(1, q̄)

∂λ
< 0,

since ∂s(1,q̄)
∂λ

= 1−γ
2

q̄(1−q̄)
γ+(1−γ)q̄

> 0, while in the non-take-up equilibrium, (0, q̃),
is the effect of

dq̃

dλ
= −

1

1 + sq(0, q̃)

∂s(0, q̃)

∂λ
< 0,

since ∂s(0,q̃)
∂λ

= 1−q̃
2

> 0.
Next, we investigate the effect of increasing the wage rate, ω. In the B&C

equilibrium, (1, q̄), the effect on q̄ is

dq̄

dω
= −

v
′

(ω)

1 + sq(1, q̄)
< 0,

while in the non-take-up equilibrium, (0, q̃), the effect is

dq̃

dω
= −

v
′

(ω)

1 + sq(0, q̃)
< 0,

noting that the function s (p, q) does not depend directly on ω.
Finally, we consider the effect of an increase in the population share of

the deserving poor among the poor, γ. In the B&C equilibrium, (1, q̄), the
effect on q̄ is

dq̄

dγ
= −

1

1 + sq(1, q̄)

∂s(1, q̄)

∂γ
> 0,

since ∂s(1,q̄)
∂γ

= λ
2
−1+q̄[1−(1−q̄)[γ+(1−γ)q̄]]

[γ+(1−γ)q̄]2
< 0, while in the non-take-up equilib-

rium, (0, q̃), it is
dq̃

dγ
= −

1

1 + sq(0, q̃)

∂s(0, q̃)

∂γ
< 0,

since ∂s(0,q̃)
∂γ

= λ
2
1−(1−q)(1−γ)q

(1−γ)2q
> 0.

To sum up,

Proposition 2 Under Assumptions 1 and 2:

(i) An increase in the level of welfare benefits raises the population of un-
deserving claimants in the B&C and non-take-up equilibria.

(ii) An increase in the degree of public exposure reduces the population of
undeserving claimants in the B&C and non-take-np equilibria.
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(iii) An increase in the wage rate reduces the population of undeserving
claimants in the B&C and non-take-up equilibria.

(iv) An increase in the proportion of deserving poor relative to the entire
poor population increases the population of undeserving claimants in the
B&C equilibrium, while it reduces that in the non-take-up equilibria.

(v) No parameter change affects the population of deserving claimants in
the B&C and non-take-up equilibria.

Let us first suppose that in the stable non-take-up equilibrium (0, q̃), the
level of welfare benefits increases by a small amount of∆b > 0. The increased
welfare benefit, b+∆b, induces more of both the deserving and undeserving
poor to take up the benefits because their utilities of receiving the benefits
(i.e., v(b) and u(b)) are higher than it would be otherwise. Although the
population of undeserving claimants q is certainly rising according to (7) over
time, that of deserving claimants p is not. The reason for the latter result
is explained as follows. Since the stable stationary point (0, q̃) is initially
located inside the area where ṗ = p(1− p) [u(b)− s(0, q̃)] < 0 in Figs. 4 and
5, ṗ < 0 continues to hold after the increase in b. In other words, although the
increased u(b) would mitigate the downward pressure on ṗ, ṗ < 0 still holds
as long as the increment of b is arbitrarily small. However, p must stay at 0
in a new stationary point because p initially reached the lower limit of p = 0,
and thus it is impossible to fall further. More intuitively, since the increased
b lowers θ̂ = v(ω) − v(b + ∆b) + s(0, q̃ + ∆q) in the new stationary point
(0, q̃ +∆q) and since s(0, q̃ +∆q) < s(0, q̃) due to ∂s (0, q̃) /∂q < 0 in (13),
more of the undeserving claimants with lower disutility of work are willing
to take up benefits rather than work, so the average disutility of undeserving
claimants θu falls (recalling (4)). Accordingly, θ̄w = πθ̄d + (1 − π)θ̄u =
θu unambiguously falls because p = 0, implying that π = 0. Thus, the
discrepancy θ̄w − θ̄ (i.e., θ̄w − (1/2)) unambiguously falls, as does the stigma
cost. This is consistent with the resulting higher value of q.
Next, consider the stable stationary point (1, q̄). As before, the increase

in b induces more of both the deserving and undeserving poor to take up
benefits. However, although q is certainly rising according to (8), p is not
increasing. Since the stable stationary point (1, q̄) is initially located outside
the area where ṗ = p(1 − p) [u(b)− s(1, q̄)] > 0 in Figs. 3 and 4, ṗ > 0
continues to hold after the small increase in b. Nevertheless, p must stay at
1 in the new stationary point (1, q̄ +∆q) because it is impossible for it to
rise further. More intuitively, the increase in b lowers θ̂ = v(ω)− v(b+∆b)+
s(1, q̄+∆q) in the new stationary point in spite of s(1, q̄+∆q) � s(1, q̄) due

to (13) because the direct effect of increasing b on θ̂ dominates the indirect
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effect of the induced change in q through varying the stigma cost s(1, q̄+∆q).
Consequently, q rises in the new stationary equilibrium.
Consider an increase of λ in the stable non-take-np equilibrium (0, q̃). An

increase in λ directly raises the stigma cost (recall (6)), which discourages
the incentive for the deserving and undeserving poor to take up benefits.
According to (7) and (8), therefore, the populations of deserving claimants p
and undeserving claimants q both tend to fall in time. Although q certainly
falls, p does not decrease. Since the stable stationary point (0, q̃) is initially
located inside the area where ṗ = p(1− p) [u(b)− s(0, q̃)] < 0 in Figs. 4 and
5, ṗ < 0 is further strengthened by the increase in λ and the increased stigma
cost (∂s(0, q̃)/∂q < 0 due to (13)), but it is impossible for q to fall further.
More intuitively, θ̂ = v(ω) − v(b) + s(0, q̃ − ∆q) falls due to the increased
stigma cost. The resulting decreased θ̂ is consistent with higher q in the new
stationary equilibrium. An increase in the wage rate also directly reduces q
according to (8) because higher wage rates induce more of the undeserving
poor to work. The resulting decrease in q raises the stigma cost around (0, q̃),
which in turn further reduces q through (8). As before, on the other hand, p
must stay at 0 in the new stationary equilibrium (0, q̃ −∆q).
In the stable B&C equilibrium (1, q̄) the increase in λ reduces q as before,

but the effect on the stigma cost may be uncertain due to the conflicting
direct and indirect effects of λ. As stated before, the direct negative effect
of λ dominates the indirect effect through varying q, thereby leading to an
increased stigma cost and thus a decreasing q. We can explain the effects of
changes in the wage rate in a manner similar to that in (0, q̃).
Besley and Coate (1992) focus on the comparative statics effects on

the stigma cost rather than the populations of deserving and undeserv-
ing claimants and find that the effect of b on stigma costs is, in general,
ambiguous because a rise in benefits not only raises the fraction of un-
deserving claimants, 1 − π, but also attracts more undeserving claimants
with a lower disutility (i.e., θ̄u falls). Due to these two conflicting effects on
θ̄w = πθ̄d + (1 − π)θ̄u = θu, the net effect on the stigma cost is uncertain.
Although the effect on the stigma cost may be uncertain around (1, q̄) (recall
sq(1, q̄) � 0 due to (13)) even in the present model, we see the dominant
direct effect of changes in parameters such as b and λ on q. Consequently,
we determine the effect on q unambiguously.
There are noteworthy policy implications that differ from those in Besley

and Coate (1992). Besley and Coate (1992) are solely concerned with how to
raise the stigma costs, thereby leading to a reduction in welfare fraud, while
we are chiefly concerned with how to improve lower or non-take up rates. For
this reason, we propose that policymakers should adopt the populations of
deserving and undeserving claimants as policy targets rather than the level of
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stigma costs, unlike Besley and Coate (1992). Since the population of deserv-
ing claimants p remains unaffected in the long run, despite the changes in the
structural parameters of the model or policy reforms, the policy instrument
λ would be socially more desirable than b on the grounds that the increased λ
reduces the population of undeserving claimants (i.e., welfare fraud), but the
increased b would not. However, our replicator dynamic model would pro-
vide further policy implications if the stationary point (1, q̄) is more socially
desirable than (0, q̃) because there is no incomplete take-up in (1, q̄).6 From
this prospective, there is room for government intervention that will make
the long-run equilibrium (1, q̄) more likely to occur. In implementing this
policy prescription, the government has to shift the locus ṗ = 0 downwards
while shifting the locus q̇ = 0 upwards in order to realize Fig. 3 rather than
Fig. 5. To this end, we need to reduce the intercept of the locus ṗ = 0 with
the q-axis, denoted by q∗|ṗ=0, while raising that of the locus ṗ = 0, denoted
by q̃|q̇=0, where

q∗|ṗ=0 = 1− [2u(b)/λ] and q̃|q̇=0 = 1−
2 [v(ω)− v(b)]

2− λ
. (15)

Inspecting (15) reveals that higher levels of b shift the locus q∗|ṗ=0 down-
wards, while shifting the locus q̃|q̇=0 upwards. Hence, we conclude that
raising the level of welfare benefits is a more socially desirable policy than
enhancing the degree of public exposure, either when policy makers are more
concerned with the well-being of the deserving poor or when the social welfare
evaluated at (1, q̄) is higher than that in (0, q̃).

6 Tax-payer Resentment View Stigma

In this section, we introduce an alternative stigma costs function based on
the tax-payer resentment view of welfare stigma suggested by Besley and
Coate (1992) into the present replicator dynamic model. We begin by briefly
outlining their model. Although they postulate not only that the level of
welfare benefits b is exogenously chosen by the government, but also that the
cost of providing the benefits b is financed by the lump-sum taxes, T , borne
only by the rich. Thus, we can express the government’s budget constraint
as:

(1− β)T = bβ [γp+ (1− γ)q] , (16)

6However, since the population of undeserving claimants in (1, q̄) is larger than that
in (0, q̃), it is a trade-off relation between the populations of undeserving and deserving
claimants. Nevertheless, it seems that the problem of non-take-up in (0, q̃) is more serious.
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where the left-hand side represents the total tax revenue and the right-hand
side represents the cost for providing total welfare benefits. Thus, the level
of the lump-sum tax must be equal to

T =
bβ [γp+ (1− γ)q]

1− β
, (17)

with the following properties:

∂T

∂p
=

bβγ

1− β
> 0 and

∂T

∂q
=

bβ(1− γ)

1− β
> 0.

We assume that the rich individual’s income, y, is constant over time, com-
mon across the rich population, and satisfies

Assumption 3 y − T > 0.

Following Besley and Coate (1992), we assume not only that the rich in-
dividuals have different concerns (or degrees of compassion) for the deserving
poor, measured by µ, so that the rich have different preferred benefit levels,
but also that the preferences of the rich are log [y − T ], where y − T repre-
sents their private consumption and P (b) is a measure of poverty or distress
with P ′(b) < 0.7 Each rich individual characterized by a given value of µ
chooses the most preferred benefit level, denoted by b∗(µ; p, q), by maximiz-
ing his/her utility function, as follows:

b∗(µ; p, q) = argmax
{b}

{log [y − T ]− µβγP (b)} ,

= argmax
{b}

�
log

�
y −

bβ [γp+ (1− γ)q]

1− β

�
− µβγP (b)

�
,

where the second equality follows from the fact that the rich can see-through
the government’s budget constraint such that each rich individual chooses b∗

subject to the government’s budget constraint (16).
The first-order condition for maximization with respect to b is

�
y −

β(γp+ (1− γ)q)

1− β
b

�−1
β [γp+ (1− γ)q]

1− β
= −µβγP ′(b). (18)

The left-hand side of (18) represents the marginal utility cost of an increase
in one unit of the tax payment, while the right-hand side represents the

7This assumption implies that rich individuals believe that an increase in welfare ben-
efits mitigates poverty.
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marginal benefit of improving the well-being of the poor. To obtain a closed-
form solution, we further assume P (b) = −ηb + c with a constant η > 0,
whereby (18) simplifies to

γp+ (1− γ)q

(1− β)(y − T )
= µγη. (19)

We solve (19) for b to obtain

b∗(µ; p, q) =
(1− β)y

β [γp+ (1− γ)q]
−

1

βγηµ
. (20)

Recalling that the respective rich individuals (i.e., tax-payers) have dif-
ferent values for µ, there certainly exists an individual having the threshold
weight µ̄ such that his/her most preferred benefit level b∗(µ̄; p, q) precisely
coincides with the benefit level exogenously chosen by the government, b.

b∗(µ̄; p, q) = b. (21)

Consequently, we can decompose the remaining tax-payers into two groups:
those whose µ are larger than µ̄ will regard the prevailing level of welfare
benefits as being too parsimonious, while those whose µ are less than µ̄ view
it as being too generous. Solving (21), coupled with (20), for µ̄ yields

µ̄ =
γp+ (1− γ)q

γη(1− β)(y − T )
. (22)

Let r(·) represent the resentment felt by each rich individual who regards
the welfare benefit as excessive. For analytical simplicity, we also assume
that the function r(·) is a linear and increasing function of the discrepancy
between the actual benefits level b and the level that a rich individual with
µ regards as appropriate or reasonable b∗(µ; p, q):

r(µ; p, q) = λr [b− b∗(µ; p, q)] ,

where the scale parameter of the stigma cost λr takes a constant and common
value among the rich. As in Besley and Coate (1992), we define the stigma
costs function as an increasing function of aggregate tax-payers’ resentment,
such as

sr(p, q) = (1− β)

� µ̄

0

r(µ; p, q)µdµ = (1− β)

� µ̄

0

λr [b− b∗(µ; p, q)]µdµ,
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where we assume that µ is uniformly distributed over the interval [0, 1]. Then,
using the government’s budget constraint (16), we can rewrite the above
stigma cost function as follows:

sr(p, q) = (1− β)λr
�
b

2
µ̄2 −

� µ̄

0

�
(1− β) y

β [γp+ (1− γ)q]
µ−

1

βγη

�
dµ

�
.

Substituting (22) into the above expression and rearranging results in

sr(p, q) =
λr

2βγ2η2
γp+ (1− γ)q

y − T
, (23)

with the property

∂sr(p, q)

∂T
=

λr

2βγ2η2
γp+ (1− γ)q

(y − T )2
> 0. (24)

This feature is economically quite intuitive in the sense that the increased tax
burden borne by the (less generous) rich enhances their resentment, thereby
raising the stigma cost incurred by welfare benefit claimants.

6.1 Stability Properties of the Model of the Tax-payer
Resentment View Stigma

The replicator dynamics is also described by (7) and (8), except that we
replace the stigma cost function s(p, q) by sr(p, q) in (23). As in the previous
model, the loci u(b)− sr(p, q) = 0 and v(b)− v(ω) + 1− q− sr(p, q) = 0 play
a crucial role in drawing the phase portraits of p and q. The following two
lemmas serve in drawing the above two loci.

Lemma 1 The slope of the locus u(b)−sr(p, q) = 0 is larger in absolute value
than that of the locus v(b)− v(ω) + 1− q − sr(p, q) = 0 for (p, q) ∈ [0, 1]2.

Proof. By totally differentiating, we obtain the slope of the locus u(b)−
sr(p, q) = 0:

dq

dp
= −

srp(p, q)

srq(p, q)
.

Similarly, the slope of the locus v(b)− v(ω) + 1− q − sr(p, q) = 0 is:

dq

dp
= −

srp(p, q)

1 + srq(p, q)
,
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where it is straightforward to verify that

srp(p, q) =
λr

2βγη2
1

y − T
+

λr

2γη2
γp+ (1− γ)q

(y − T )2
b

1− β
> 0, and (25)

srq(p, q) =
λr

2βγ2η2
1− γ

y − T
+

λr

2γ2η2
γp+ (1− γ)q

(y − T )2
b(1− γ)

1− β
> 0. (26)

Taken together, we have
srp(p,q)

srq(p,q)
>

srp(p,q)

1+srq(p,q)
.

Lemma 2 The intercept of the locus v(b) − v(ω) + 1 − q − sr(p, q) = 0 on
the vertical axis at 1, denoted by q̄r, is less than 1.

Proof. We can rewrite the locus v(b) − v(ω) + 1 − q − sr(p, q) = 0,
evaluated at the stationary point (1, q̄r), as follows:

v(ω)− v(b) = 1− q̄r − sr(1, q̄r). (27)

Since the left-hand side of (27) is positive, the right-hand side is also positive.
Moreover, since sr(1, q̄r) > 0, q̄r must be less than 1.
We summarize the stability properties of the respective stationary points

as follows:

Proposition 3 Under the replicator dynamics (7) and (8), coupled with As-
sumptions 1, 2, and 3 being replaced by the stigma cost function (23) for all
(p, q) ∈ [0, 1]2:

(i) The interior stationary point (p̂r, q̂r) is locally asymptotically stable.

(ii) The stationary point (1, q̄r) is locally asymptotically stable if u(b) −
sr(1, q̄r) > 0. Conversely, if u(b)− sr(1, q̄r) < 0, then it is a saddle.

(iii) The stationary point (0, q̃r) is locally asymptotically stable if u(b) −
sr(0, q̃r) < 0. Conversely, if u(b)− sr(0, q̃r) > 0, then it is a saddle.

(iv) The stationary point (p̄r2, 1) is a saddle.

(v) The stationary point (p̃r2, 0) is locally asymptotically stable if v(b) −
v(ω) + 1− sr(p̃r2, 0) < 0. Conversely, if v(b)− v(ω) + 1− sr(p̃r2, 0) > 0,
then it is a saddle.

(vi) The stationary point (1, 1) is locally asymptotically stable if u(b) −
sr(1, 1) > 0 and v(b)− v(ω) + sr(1, 1) < 0. Otherwise, it is a source or
a saddle.
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(vii) The stationary point (1, 0) is locally asymptotically stable if u(b) −
sr(1, 0) > 0 and v(b) − v(ω) + 1 − sr(1, 0) < 0. Otherwise, it is a
source or a saddle.

(viii) The stationary point (0, 1) is locally asymptotically stable if u(b) −
sr(0, 1) < 0 and v(b)− v(ω)− sr(0, 1) > 0. Otherwise, it is a source or
a saddle.

(ix) The stationary point (0, 0) is either a saddle or a source.

(x) The stationary points (1, q̄r2), (0, q̃
r
2), and (p̃r, 0) are not locally asymp-

totically stable.

Proof. See Appendix B.8

Based on Lemma 1 and Proposition 3, Figs. 6-9 provide several phase
portraits for the dynamic behavior of p and q. We first consider Fig. 6. The
stationary point (1, q̄r) is located below the locus ṗ = 0 (i.e., ṗ > 0), implying
that u(b) − sr(1, q̄r) > 0, which therefore satisfies Claim (ii) of Proposition
3. Hence, it is locally asymptotically stable. However, the location of the
stationary point (0, q̃r) below the locus ṗ = 0 in Fig. 6 implies that u(b) −
sr(0, q̃r) > 0. Thus, (0, q̃r) is unstable due to Claim (iii). The stationary
point (p̄r2, 1) is also unstable due to Claim (iv). Although the stationary point
(1, q̄r2) is non-hyperbolic (because its determinant is equal to zero), case (x) in
Appendix B shows that there is a trajectory starting from the initial condition
located arbitrarily close to (1, q̄r2) that diverges from (1, q̄r2), implying that it
is unstable. Other stationary points such as (1, 1), (1, 0), (0, 1), and (0, 0)
are all unstable because they do not satisfy Claims (vi)-(ix), respectively.
Taken together, we conclude that the only stationary point (1, q̄r) is locally
(eventually, globally) asymptotically stable in Fig. 6.
Fig. 7, on the other hand, has the interior stationary point (p̂r, q̂r), which

is locally asymptotically stable according to Claim (i), but all non-interior
stationary points are unstable. In Fig. 8, the only stationary point (0, q̃r)
is locally asymptotically stable because it satisfies Claim (iii) (noting that
since it is located above the locus ṗ = 0, u(b) − sr(0, q̃r) < 0 due to (7)),
while the only stationary point (p̃r2, 0) in Fig. 9 is locally asymptotically
stable because it satisfies Claim (v). Similarly, we can verify that all other
stationary points in Figs. 8 and 9 are unstable. Notably, the only stationary
point (1, 0) in Fig. 10 is locally asymptotically stable because it is located

8It is straightforward to show that the eigenvalues of the Jacobian at every stationary
point for the respective linearized systems are real numbers and thus the trajectories never
circle around the stationary point, provided that the stationary equilibrium is hyperbolic.
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below the locus ṗ = 0 (i.e., u(b) − sr(1, 0) > 0) and the locus q̇ = 0 (i.e.,
v(b)− v(ω)− sr(1, 0) < 0); consequently, it satisfies Claim (vii).
Several remarks are in order. First, when there exists an interior sta-

tionary point such as in Fig. 7, it is always locally (i.e., eventually, globally)
asymptotically stable. This feature stands in sharp contrast with the sta-
tistical discrimination view stigma model in which the interior stationary
point (p̂r, q̂r) is always unstable. Intuitively, in the tax-payer resentment
model, if the initial populations of the deserving and undeserving claimants
are too large (i.e., close to the stationary equilibrium (1, 1)), then the rich
have the burden of larger tax payments. Consequently, their resentment
will be greatly intensified, thereby augmenting the stigma cost incurred by
benefits claimants. Therefore, the higher stigma cost in turn discourages
the deserving and undeserving claimants to take up welfare benefits. This
leads to a reduction in their populations and thus prevents their populations
from approaching (1, 1). On the contrary, when their populations are very
much lower (i.e., close to (0, 0)), then so is the stigma cost, thereby inducing
more of the deserving and undeserving poor to take up welfare benefits, and
thus preventing their populations from approaching (0, 0). These features
indicate that there is always a force that leads the deserving and undeserv-
ing claimants to the interior stationary point (p̂r, q̂r), as long as it exists.
Second, if an interior stationary point does not exist, one of the stationary
equilibria (0, 1) and (1, 0) may be stable depending on the relative strength
of the preferences of the deserving and undeserving claimants towards wel-
fare benefits (i.e., the relative magnitude of u(b) and v(b)). More precisely,
if u(b) > sr(1, 0) > v(b) − v(ω) + 1, then the deserving claimants have rel-
atively stronger preferences towards welfare benefits compared to the unde-
serving claimants, and thus the population of deserving claimants increases,
although that of the undeserving claimants tends to fall due to the relatively
large stigma cost. Consequently, (1, 0) will be stable, as illustrated in Fig.
10. Conversely, if u(b) < sr(0, 1) < v(b) − v(ω) + 1, then the undeserving
claimants have relatively stronger preferences towards welfare benefits, and
thus the population of undeserving claimants rises, whereas that of deserving
claimants declines because their utility from receiving benefits is less than
the stigma cost. Thus, (0, 1) will be stable, as stated in Claim (viii).

6.2 Comparative Statics for Taxpayer Resentment View
Stigma Model

This subsection conducts a comparative static analysis of the taxpayer re-
sentment view stigma model. In particular, we analyze four stable stationary
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Figure 6: λr = 0.3, u(b) = 0.3, v(b) = 0.4, v(ω) = 0.5, γ = 0.5, β = 0.1,
y = 1.2, b = 0.5, and η = 4.

Figure 7: λr = 0.5, u(b) = 0.3, v(b) = 0.4, v(ω) = 0.5, γ = 0.5, β = 0.1,
y = 1.2, b = 0.5, and η = 4.
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Figure 8: λr = 1, u(b) = 0.3, v(b) = 0.4, v(ω) = 0.5, γ = 0.4, β = 0.1,
y = 1.2, b = 0.5, and η = 4.

Figure 9: λr = 1.5, u(b) = 0.7, v(b) = 0.4, v(ω) = 0.9, γ = 0.5, β = 0.1,
y = 1.2, b = 0.5, and η = 4.
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Figure 10: λr = 1.5, u(b) = 0.9, v(b) = 0.2, v(ω) = 0.5, γ = 0.5, β = 0.1,
y = 1.2, b = 0.5, and η = 4.

points: (1, q̄r) in Fig. 6, (p̂r, q̂r) in Fig. 7, (0, q̃r) in Fig. 8, and (p̃r2, 0) in Fig.
9 with respect to changes in the parameters b, λr, y, ω, and η, respectively.9

We first investigate the effect of changes in the benefit level, b, on the
interior stationary point (p̂r, q̂r). Since (p̂, q̂) is characterized by

u(b)− sr(p̂r, q̂r) = 0, and (28)

v(b)− v(ω) + 1− q̂r − sr(p̂r, q̂r) = 0, (29)

the above two conditions are reduced to

v(b)− v(ω) + 1− q̂r − u(b) = 0. (30)

Differentiating (30) with respect to b yields

dq̂r

db
= v

′

(b)− u′(b) � 0, (31)

while differentiating (28) with respect to b, coupled with (31), yields

dp̂r

db
=

	
1 + srq(p̂

r, q̂r)


u′(b)− srq(p̂

r, q̂r)v
′

(b)− [∂sr(p̂r, q̂r)/∂b]

srp(p̂
r, q̂r)

� 0,

9The stationary points (1, 0) in Fig. 10 and (0, 1) in Claim (viii) of Proposition 3 are
also locally asymptotically stable. Since these stationary points are unaffected by small
changes in any parameter value, neverthless, we do not conduct a comparative statics
analysis around them.
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where ∂ŝr(p̂r, q̂r)/∂b = [∂sr(p̂r, q̂r)/∂T ] [∂T (p̂r, q̂r)/∂b] > 0 due to ∂sr(p̂r, q̂r)/∂T >
0 from (24) and ∂T (p̂r, q̂r)/∂b = β [γp̂r + (1− γ)q̂r] / (1− β) > 0. In the sta-
tionary equilibrium (1, q̄r), we differentiate (29) with respect to b to obtain

dq̄r

db
=

v
′

(b)− [∂sr(1, q̄r)/∂b]

1 + srq(1, q̄
r)

� 0,

where srq(1, q̄
r) > 0 from (23) and

∂sr(1, q̄r)

∂b
=

∂sr(1, q̄r)

∂T

∂T (1, q̄r)

∂b
=

λr

2βγ2η2
γ + (1− γ)q̄r

(y − T )2� � �
(+)

β [γ + (1− γ)q̄r]

1− β� � �
(+)

> 0.

In the stationary point (0, q̃r), differentiating (29) with respect to b and
evaluating the result at (0, q̃r) yields

dq̃r

db
=

v
′

(b)− [∂sr(0, q̃r)/∂b]

1 + srq(0, q̃
r)

� 0,

where srq(0, q̃
r) > 0 from (23) and

∂sr(0, q̃r)

∂b
=

∂sr(0, q̃r)

∂T

∂T (1, q̄r)

∂b
=

λr

2βγ2η2
(1− γ)q̃r

(y − T )2� � �
(+)

β [(1− γ)q̃r]

1− β� � �
(+)

> 0.

Finally, differentiating (28) with respect to b and evaluating the result at
(p̃r, 0) yields

dp̃r2
db

=
u
′

(b)− [∂sr(p̃r2, 0)/∂b]

srp(p̃
r
2, 0)

� 0,

because u
′

(b)− [∂sr(p̃r2, 0)/∂b] � 0 and

∂sr(p̃r2, 0)

∂b
=

∂sr(p̃r2, 0)

∂T

∂T (p̃r2, 0)

∂b
=

λr

2βγ2η2
γp̃r2

(y − T )2� � �
(+)

βγp̃r2
1− β� � �
(+)

> 0.

Similarly, we can carry out a comparative statics analysis with respect to
the other parameters λr, γ, y, ω, and η. We summarize all of the results as
follows (we provide the detailed mathematical derivations in Appendix C):

Proposition 4 Under Assumptions 3:
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(i) The effect of an increase in the benefit level on the population of un-
deserving claimants is ambiguous in the stationary equilibria (p̂r, q̂r),
(1, q̄r), and (0, q̃r), while that on the population of deserving claimants
is also ambiguous in (p̂r, q̂r) and (p̃r2, 0).

(ii) The effect of an increase in the degree of public exposure on the popula-
tion of undeserving claimants is negative in (1, q̄r) and (0, q̃r) but has
no effect on that of undeserving claimants in (p̂r, q̂r), while the effect
on that of deserving claimants is also negative in (p̂r, q̂r) and (p̃r2, 0).

(iii) The effect of an increase in the income level of the rich on the popula-
tion of undeserving claimants is positive in (1, q̄r) and (0, q̃r) but has
no effect on that of undeserving claimants in (p̂r, q̂r), while the effect
on that of deserving claimants is also positive in (p̂r, q̂r) and (p̃r2, 0).

(iv) The effect of an increase in the wage rate on the population of unde-
serving claimants is negative in (p̂r, q̂r), (1, q̄r), and (0, q̃r), but has
no effect on that of deserving claimants in (p̂r, q̂r) and (p̃r2, 0).

(v) The effects of an increase in the efficacy of social welfare programs on
the populations of deserving and undeserving claimants are positive in
(p̂r, q̂r), (1, q̄r), and (0, q̃r), but there is no effect on that of undeserving
claimants in (p̂r, q̂r), while the effect on that of deserving claimants is
also positive in (p̂r, q̂r) and (p̃r2, 0).

The economic interpretation is as follows. Let us suppose that the level of
welfare benefits increases by a small amount of ∆b in the interior stationary
point (p̂r, q̂r). The increased welfare benefit, b+∆b, causes more of both the
deserving and undeserving poor to take up benefit, which is implied by (7)
and (8). Thus, the total tax burden unambiguously increases, which in turn
strengthens the resentment of the tax-payers (i.e., the rich). Accordingly, the
stigma cost is intensified, which in turn causes the populations of deserving
and undeserving claimants to fall. Due to these conflicting effects on q,
therefore, the net effect is ambiguous. In contrast, an increase in λr directly
raises the stigma cost, thereby reducing the populations of deserving and/or
undeserving claimants over time. The resulting decreased p and q in turn
reduce the stigma cost. Although these two effects counteract each other, the
direct positive effect of higher λr on the stigma cost dominates the indirect
negative effect of the induced decrease in p and q. Consequently, the stigma
cost unambiguously rises, thereby leading to a fall in p and/or q in the long
run. However, since the stigma cost must be equal to u(b) in the interior
stationary point, q is determined solely according to (30), independently of
λr. Hence, q is unaffected by changes in λr in (p̂r, q̂r).
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An increase in the average income level of the rich, y, on the other hand,
makes the rich more generous toward welfare benefits claimants, thereby
depressing the stigma cost. Thus, the populations of deserving and/or un-
deserving claimants rise over time. However, since the stigma cost must be
equal to u(b) in the interior stationary equilibrium, the stationary value of q
is determined solely by (30) as stated above, which is independent of y. In
contrast, an increase in the wage rate, ω, depresses the population growth
rate of the undeserving claimants because its increase induces them to work
more. In the stationary equilibria (p̃r2, 0) and (p̂

r, q̂r), however, the long run
value of p is unaffected by changes in ω because in the stationary equilibrium
the stigma cost s(p̃r2, 0) must be equal to u(b) and (30) does not depend on ω.
Finally, enhancing the efficacy of social welfare programs (i.e., increasing µ)
in general raises the population growth rates of the deserving and/or unde-
serving claimants. This occurs because the enhanced efficacy makes the rich
more generous, which in turn reduces the stigma cost. Thus, the populations
of undeserving and/or deserving claimants tend to rise for the reason stated
above, except in the interior stationary equilibrium.

7 Concluding Remarks

We investigated the case in which welfare fraud and incomplete take-up si-
multaneously emerge, two phenomena of apparently opposite nature, in a
simple setting of replicator dynamics, which allows the heterogeneous popu-
lations of deserving and undeserving claimants to endogenously evolve over
time, unlike the static model of Besley and Coate (1992). This study found
multiple stationary equilibria in the replicator dynamics models of the statistical-
discrimination view stigma as well as the tax-payer resentment view stigma
suggested by Besley and Coate (1992). We applied a stability analysis to
reduce the set (or multiplicity) of possible long-run equilibria substantially,
allowing us to sharpen the predictive power of the comparative statics analy-
sis by ruling out unstable stationary equilibria. Notably, there may coexist
at most two stable stationary equilibria in the statistical discrimination view
stigma model. In this case, depending on the initial proportions of deserving
and undeserving claimants, different long-run outcomes will emerge. More
importantly, different stationary equilibria deliver different policy implica-
tions. In particular, there is no interior stable stationary equilibrium in the
statistical discrimination view stigma model, which implies that welfare fraud
and incomplete take-up never simultaneously emerge in the long run; instead,
one of the boundary stationary equilibria with 100% incomplete take-up and
with 100% take-up exclusively does.
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In contrast, in the tax-payer resentment view stigma model, the interior
stationary equilibrium is globally asymptotically stable, provided it exists.
Hence, irrespective of the initial proportions of deserving and undeserving
claimants, the coexistence of those claimants will be present in the long-run.
In other words, such coexistence is more likely to emerge when stigma costs
arise from the tax-payers’ (or the rich) resentment. This most significant
difference between these two models stems from the different nature of their
stigma cost functions. The stigma cost function assumed in the statistical-
discrimination view stigma model depends critically on the composition
of the deserving and undeserving claimants, whereas the stigma cost
function assumed in the tax-payer resentment view stigma model relies on
the total population of claimants. In the former model, if the welfare
fraud population is large, then the deserving poor who want to receive wel-
fare benefits are discouraged by higher stigma costs. Ultimately, all of the
deserving poor end up giving up benefits in the long run. On the contrary, if
the initial welfare fraud population is small, then all deserving poor end up
taking up benefits in the long run. These extremely long-run outcomes stem
from the cumulative spiral process, which operates such that the deserving
claimants with incomplete take-up tend to enforce themselves, thus leading
to either 100% incomplete or 100% complete take-up in the long run. In other
words, this somewhat destabilizing feature stems from the divergent prop-
erty of the average disutility of welfare claimants. In contrast, the tax-payer
resentment model displays a relatively more stabilizing tendency towards an
interior stationary equilibrium that allows for the coexistence of welfare fraud
and incomplete take-up. This tendency stems from the fact that aggregate
externalities arising from the total population of welfare claimants, rather
than the composition of heterogeneous populations, matters in determining
the size of stigma costs. The latter model produces long-run outcomes that
would better fit actual observations in Japan, Germany, and the like.
The model presented in this paper can be developed further in several

directions. In particular, the results of our analysis rely critically on the re-
strictive structure of the present model. For example, the utility function is
separable in private consumption and the disutility of work, the labor supply
is inelastic, the stigma cost function is linear, as well as the population share
between the deserving and undeserving poor and that between the poor and
the rich are fixed over time. To make the model more realistic and to derive
more robust results, it would be desirable to conduct an analysis under a more
general model. To relax the assumption of the fixed share of populations, we
may introduce stochastic perturbations or random shocks that reflect a ran-
dom switch from the deserving poor to the undeserving poor, or vice versa,
or a random switch from the poor to the rich, or vice versa. We could utilize
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the perturbed replicator dynamic model of Samuelson and Zhang (1992), in
which agents are subject to stochastic perturbations, for such an analysis.
Even in the tax-payer resentment model, the government simply imposes
lump-sum taxes and transfers those tax revenues to welfare claimants. How-
ever, this scheme is obviously unrealistic because such transfers are mainly
financed by distortionary taxes in most countries. Nevertheless, by introduc-
ing distortionary taxes, the government has to face incentive compatibility
constraints to cope with the accompanying asymmetric information problem,
as in Blumkin et al. (2015). An optimal welfare program solution should be
part of non-linear optimal income taxation, as in the Mirrlees (1971) frame-
work, which is augmented to allow for asymmetric information on tax-payers’
earning ability and for the extended margin choices of the undeserving poor.
Alternatively, from the political economy perspective, voters could choose
the policy parameters endogenously, as Lindbeck et al. (1999) suggest. In
this view, it would be quite interesting and important to incorporate the
political aspect of endogenous policy parameter choices into our replicator
dynamics framework.
The analysis in this paper is a first step towards addressing these more

realistic and interesting extensions of a welfare stigma analysis.

Appendices

Appendix A: Stability Analysis

(i) The determinant of the Jacobian for the linearized system (11), which is
in evaluated at the stationary point (1, q̄), is given by

|J |(1,q̄) =

����
−[u(b)− s(1, q̄)] 0
−q̃(1− q̃)sp(1, q̄) −q̄(1− q̄) [1 + sq(1, q̄)]

���� ,

= [u(b)− s(1, q̄)]q̄(1− q̄) [1 + sq(1, q̄)] , (A.1)

where it follows from (13) that

s(1, q̄) =
λ

2

(1− γ)q̄ (1− q̄)

γ + (1− γ)q̄
> 0 and (A.2)

∂s(1, q̄)

∂q
=

λ

2

(1− γ) [γ(1− 2q̄)− (1− γ)q̄2]

[γ + (1− γ)q̄]2
� 0. (A.3)

By substitution of (A3), moreover, it can be confirmed that

1+
∂s(1, q̄)

∂q
=

γ2 + λ
2
(1− γ)γ + (1− γ)q̄(1− λ

2
) [2γ + (1− γ)q̄]

[γ + (1− γ)q̄]2
> 0. (A.4)
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Taken together, it turns out that the sign of the determinant (A.1) is deter-
mined according to that of the term u(b)−s(1, q̄). Hence, if u(b)−s(1, q̄) > 0,
then (A.1) is positive, and the trace is negative. These facts imply that (1, q̃)
is asymptotically locally stable. Conversely, if u(b)− s(1, q̄) < 0 holds, then
(A.1) is negative and thus (1, q̄) is a saddle.

(ii)The determinant evaluated at the stationary point (0, q̃) is given by

|J |(0,q̃) =

����
u(b)− s(0, q̃) 0

−q̃(1− q̃)sp(0, q̃) −q̃(1− q̃) [1 + sq(0, q̃)]

���� ,

= − [u(b)− s(0, q̃)] q̃(1− q̃) [1 + sq(0, q̃)] , (A.5)

where it follows from (6) that s(0, q̃) = (λ/2)(1 − q̃) > 0, while it follows
from (13) that

1 +
∂s(0, q̃)

∂q
= 1 +

λ

2
(1− q̃) > 0. (A.6)

Taken together, if u(b) − s(0, q̃) > 0, then the determinant (A.5) is nega-
tive, which implies that (0, q̃) is a saddle. Conversely, if u(b) − s(0, q̃) < 0,
the determinant is positive and the trace is negative, implying that (0, q̃) is
asymptotically locally stable.

(iii)The determinant evaluated at the interior stationary point (p̂, q̂) is
given by

|J |(p̂,q̂) =

����
−p̂(1− p̂)sp(p̂, q̂) −p̂(1− p̂)sq(p̂, q̂)
−q̂(1− q̂)sp(p̂, q̂) −q̂(1− q̂) [1 + sq(p̂, q̂)]

���� ,

= p̂(1− p̂)q̂(1− q̂)sp(p̂, q̂) < 0,

which implies that it is a saddle.
(iv) The determinants evaluated at the stationary points (1, 1), (0, 1),

and (1, 0) are, respectively, given by

|J |(1,1) =

����
−u(b) 0
0 v(ω)− v(b)

���� = −u(b) [v(ω)− v(b)] < 0, (A.7)

|J |(0,1) =

����
u(b) 0
0 − [v(b)− v(ω)]

���� = u(b) [v(ω)− v(b)] > 0, (A.8)

|J |(1,0) =

����
−u(b) 0
0 v(b)− v(ω) + 1

���� = −u(b) [v(b)− v(ω) + 1] .(A.9)

The determinant (A.7) is negative since v(ω)−v(b) > 0, implying that (1, 1)
is a saddle. Since v(ω) − v(b) > 0, the determinant (A. 8) and the trace
both are positive, which implies that (0, 1) is a saddle. The determinant
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evaluated at the stationary point (1, 0) is ambiguous. If v(b)− v(ω) + 1 < 0,
the determinant (A. 8) is positive and the trace is negative, which together
implies that is locally asymptotically stable. If v(b)− v(ω) + 1 > 0, (A. 9) is
negative, which implies that (1, 0) is a saddle.

(v)The determinant evaluated at the stationary point (0, q̃2) is given by

|J |(0,q̃2) =

������

0 0

−q̃2(1− q̃2)sp(0, q̃2)
(1− 2q̃2) [v(b)− v(ω) + 1− q̃2 − s(0, q̃2)]

+q̃2(1− q̃2) [1 + sp(0, q̃2)]

������
= 0,

which implies that (0, q̃2) is non-hyperbolic; consequently, we cannot apply
the linear approximation technique. Alternatively, consider any trajectory
whose initial condition is located in a sufficiently small neighborhood of (0, q̃2)
but above the curve ṗ = 0. This trajectory entails ṗ > 0 and q̇ > 0 in the
region denoted by Region I in Fig.3 (we consider only Fig. 3 because the
almost parallel argument can be applied to the case of (0, q̃2) in Figs. 4 and
5).10 As a result, this trajectory may cross the locus q̇ = 0 or reach (0, q̄).
Suppose that this trajectory crosses the locus q̇ = 0 at time t∗; hence, it
holds that dq(t∗)/dt = 0. Since it follows from dp(t∗)/dt > 0 in Region I and
(12) that

d2q(t∗)

dt2
= −q(t∗)(1− q(t∗))

∂s(p(t∗), q(t∗))

∂p

dp(t∗)

dt
> 0,

q(t) takes a minimum value at t∗. However, it is impossible because q(t)
always increases in this region. Hence, any trajectory starting from the initial
condition located in the above-mentioned neighborhood of (p̂r, q̂r) remains
forever in this region. Moreover, since p(t) monotonically decreases and q(t)
monotonically increases in this region, p(t) and q(t) converge the upper and
lower limiting points, respectively; thus (pr, qr) converges (0, q̄). As a result,
we conclude that (0, q̄) is not asymptotically locally stable.11

10In Fig. 5 there are two more stationary points. It is straightforward to show that the
determinants evaluated at either stationary point are equal to zero, implying that both
stationary points are non-hyperbolic. In a way similar to (v) we can show that neither
stationary point is locally asymptotically stable.
11The differential equations of (7) and (8) are not defined at (0, 0) because of the

discontinuity of the function s (p, q) at that point. To get a rough idea regarding their
dynamic behavior around a small neighborhood of the stationary point (0, 0), we may
perturb s (p, q) by a sufficiently small ε > 0 such that

s(p, q; ε) =
λ

2

(1− γ)q(1− q)

γp+ (1− γ)q + ε
, with s(0, 0; ε) = 0,
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Appendix B: Proof of Proposition 3

(i) The determinant of the tax resentment-view model evaluated at the in-
terior stationary point (p̂r, q̂r) is given by:

|Jr|(p̂r,q̂r) =

����
−p̂r(1− p̂r)sp(p̂, q̂) −p̂r(1− p̂r)sq(p̂

r, q̂r)
−q̂r(1− q̂r)sp(p̂, q̂) −q̂r(1− q̂r) [1 + sq(p̂

r, q̂r)]

���� ,

= p̂r(1− p̂r)q̂r(1− q̂r)srp(p̂
r, q̂r) > 0,

while the trace is given by−p̂r(1−p̂r)srp(p̂
r, q̂r)−q̂r(1−q̂r)

	
1 + srq(p̂

r, q̂r)


< 0,

which follows from srq(p̂
r, q̂r) > 0 (recall (26)). These facts together imply

that (p̂r, q̂r) is locally asymptotically stable.
(ii) The determinant evaluated at the stationary point (1, q̄r), which is

the intersection between the locus q̇ = 0 and p = 1, is given by:

|Jr|(1,q̄r) =

����
−[u(b)− sr(1, q̄r)] 0
−q̄r(1− q̄r)srp(1, q̄

r) −q̄r(1− q̄r)
	
1 + srq(1, q̄

r)


���� ,

= [u(b)− sr(1, q̄r)]q̄r(1− q̄r)
	
1 + srq(1, q̄

r)


.

Since srq(1, q̄
r) > 0 from (26), the sign of |Jr|(1,q̄r) is determined according to

that of u(b) − sr(1, q̄r). If u(b) − sr(1, q̄r) > 0, |J |(1,q̄r) > 0 and the trace is

given by −[u(b)− sr(1, q̄r)]− q̄r(1− q̄r)
	
1 + srq(1, q̄

r)


< 0. Taken together,

it is locally asymptotically stable. If u(b)− sr(1, q̄r) < 0, the determinant is
negative and thus it is a saddle.

(iii) The determinant evaluated at the stationary point (0, q̃r), which is
the intersection between the locus q̇ = 0 and p = 0, is given by:

sp(0, 0; ε) = −
λ

2

γ(1− γ)q(1− q)

[γp+ (1− γ)q + ε]2

�����
p=q=0

= 0 and
∂s(p, q; ε)

∂q

����
p=q=0

=
λ(1− γ)

2

1

ε
> 0.

In this case, the determinant evaluated at (0, 0) is given by

|J |(0,0) =

������

u(b)− s(0, 0; ε)− 0 · sp(0, 0; ε) 0 · sq(0, 0; ε)

0 · sp(0, 0; ε)
v(b)− v(ω) + 1− s(0, 0; ε)

+0 · [1 + sq(0, 0; ε)]

������
,

= u(b) [v(b)− v(ω) + 1] � 0,

which implies that if v(b)− v(ω) + 1 < 0, (0, 0) is a saddle, while if v(b)− v(ω) + 1 > 0, it
is a source.
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|Jr|(0,q̃r) =

����
u(b)− sr(0, q̃r) 0

−q̃r(1− q̃r)srp(0, q̃
r) −q̃r(1− q̃r)

	
1 + srq(0, q̃

r)


���� ,

= −[u(b)− sr(0, q̃r)]q̃r(1− q̃r)
	
1 + srq(0, q̃

r)


,

while the trace is given by u(b)− sr(0, q̃r)− q̃r(1− q̃r)
	
1 + srq(0, q̃

r)


, where

sr(0, q̃r) > 0 and thus 1 + srq(0, q̃
r) > 0. Hence, if u(b) − sr(0, q̃r) < 0,

then |J |(0,q̃r) > 0 and the trace is negative, thus implying that (0, q̃r) is
locally asymptotically stable. If u(b)− sr(0, q̃r) > 0, then |J |(0,q̃r) < 0, thus
implying that it is a saddle.

(iv) The determinant evaluated at the stationary point (p̄r2, 1), which is
the intersection between the locus ṗ = 0 and q = 1, is given by:

|Jr|(p̄r
2
,1) =

����
−p̄r2(1− p̄r2)s

r
p(p̄

r
2, 1) −p̄r2(1− p̄r2)s

r
q(p̄

r
2, 1)

0 − [v(b)− v(ω)− sr(p̄r2, 1)]

���� ,

= p̄r2(1− p̄r2)s
r
p(p̄

r
2, 1) [v(b)− v(ω)− sr(p̄r2, 1)] < 0,

whose negative sign is due to v(b) < v(ω), which implies that (p̄r2, 1) is a
saddle.

(v) The Jacobian evaluated at the stationary point (p̃r2, 0), which is the
intersection between the locus ṗ = 0 and q = 0, is given by:

|Jr|(p̃r
2
,0) =

����
−p̃r2(1− p̃r2)s

r
p(p̃

r
2, 0) −p̃r2(1− p̃r2)s

r
q(p̃

r
2, 0)

0 v(b)− v(ω) + 1− sr(p̃r2, 0)

���� ,

= −p̃r2(1− p̃r2)s
r
p(p̃

r
2, 0) [v(b)− v(ω) + 1− sr(p̃r2, 0)] � 0,

while the trace is −p̃r2(1 − p̃r2)s
r
p(p̃

r
2, 0) + v(b) − v(ω) + 1 − sr(p̃r2, 0), where

srp(p̃
r
2, 0) > 0 from (26). If v(b)−v(ω)+1−sr(p̃r2, 0) < 0, |Jr|(p̃r

2
,0) > 0 and the

trace is negative, thus implying that (p̃r2, 0) is locally asymptotically stable.
Conversely, if the opposite sign holds, |Jr|(p̃r

2
,0) < 0 and thus it is a saddle.

(vi) The determinant evaluated at the stationary point (1, 1) is given by

|Jr|(1,1) =

����
−[u(b)− sr(1, 1)] 0

0 − [v(b)− v(ω)− sr(1, 1)]

���� ,

= [u(b)− sr(1, 1)][v(b)− v(ω)− sr(1, 1)],

while the trace is given by −[u(b)− sr(1, 1)]− [v(b)− v(ω)− sr(1, 1)], where
sr(1, 1) > 0. As a result, (1, 1) is locally asymptotically stable if u(b) −
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sr(1, 1) > 0 and v(b) − v(ω) − sr(1, 1) > 0. Otherwise, it is a source or a
saddle.

(vii) The determinant evaluated at the stationary point (1, 0) is given
by:

|Jr|(1,0) =

����
−[u(b)− sr(1, 0)] 0

0 v(b)− v(ω) + 1− sr(1, 0)

���� ,

= −[u(b)− sr(1, 0)][v(b)− v(ω) + 1− sr(1, 0)],

while the trace is given by −[u(b)− sr(1, 0)] + v(b)− v(ω) + 1− sr(1, 0). If
u(b) − sr(1, 0) > 0 and v(b) − v(ω) + 1 − sr(1, 0) < 0, |Jr|(1,0) is positive
and the trace is negative, thus implying that (1, 0) is locally asymptotically
stable. Otherwise, it is either a source or a saddle.

(viii) The determinant evaluated at the stationary point (0, 1) is given
by

|Jr|(0,1) =

�
u(b)− sr(0, 1) 0

0 − [v(b)− v(ω) + 1− sr(0, 1]

�
,

= −[u(b)− sr(0, 1)][v(b)− v(ω) + 1− sr(0, 1)] ,

while the trace is given by u(b) − sr(0, 1) − [v(b)− v(ω) + 1− sr(0, 1] with
sr(0, 1) > 0. If u(b)− sr(0, 1) < 0 and v(b)− v(ω) + 1− sr(0, 1) > 0, (0, 1) is
locally asymptotically stable. Otherwise, it is either a saddle or a source.

(ix)The determinant evaluated at (0, 0) is given by:

|Jr|(0,0) =

����
u(b)− sr(0, 0) 0

0 v(b)− v(ω) + 1− sr(0, 0)

���� = u(b) [v(b)− v(ω) + 1] ,

due to sr(0, 0) = 0, while the trace is given by u(b) + v(b) − v(ω) + 1. If
v(b)− v(ω) + 1 > 0, the signs of |Jr|(1,0) and the trace are positive and thus
(0, 0) is a source. Conversely, if the opposite sign holds, it is a saddle.

(x) Since it is immediate that the determinants evaluated at the station-
ary points (1, q̄r2), (0, q̃

r
2) and (p̃

r, 0) are all equal to zero, we cannot apply the
linear approximation technique to either case. Following the same procedure
as in case (v) of Appendix A, we can prove that there exists a sufficiently
small neighborhood of (1, q̄r2) which lies above the locus ṗ = 0 in Figs. 7,
8, and 9 such that if any trajectory starts from the initial condition lying in
this region, it never converges to (0, q̄r2). In a similar fashion, we can prove
nonconvergence to (0, q̃r2) and (p̃r, 0) as well.
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Appendix C: Comparative Statics

Since (30) does not contain the parameter λr at the interior stationary point
(p̂r, q̂r), we have dq̂r/dλr = 0. Using this result, we differentiate (28) with
respect to b to yield

dp̂r

dλr
= −

1

srp(p̂
r, q̂r)

∂sr(p̂r, q̂r)

∂λr
< 0,

since ∂sr(p̂r ,q̂r)
∂λr

= 1
2βγ2η2

γp+(1−γ)q
y−T

> 0. In the other stationary points such as

(1, q̄r), (0, q̃r), and (p̃r2, 0), we have

dq̄r

dλr
= −

1

1 + srq(1, q̄
r)

∂sr(1, q̄r)

∂λr
< 0,

dq̃r

dλr
= −

1

1 + srq(0, q̃
r)

∂sr(0, q̃r)

∂λr
< 0,

and
dp̃r

dλr
= −

1

srq(p̃
r
2, 0)

∂sr(p̃r2, 0)

∂λr
< 0,

since it follows from (23) that ∂sr(·)/∂λr > 0.
Next, since (30) does not depend on the income level of the rich, y, we

have dq̂r/dy = 0, while differentiating (28) with respect to y yields

dp̂r

dy
= −

1

srp(p̂
r, q̂r)

∂sr(p̂r, q̂r)

∂y
> 0,

since ∂sr(p̂r,q̂r)
∂y

= − λr

2βγ2η2
γp+(1−γ)q

(y−T )2
< 0. Similarly, in other stationary points

the effects of changes in y are given by:

dq̄r

dy
= −

1

1 + srq(1, q̄
r)

∂sr(1, q̄r)

∂y
> 0,

dq̃r

dy
= −

1

1 + srq(0, q̃
r)

∂sr(0, q̃r)

∂y
> 0,

and
dp̃r2
dy

= −
1

srp(p̃
r
2, 0)

∂sr(p̃r2, 0)

∂y
> 0.

Differentiating (30) with respect to ω yields dq̂r/dω = −v
′

(ω) < 0, while
differentiating (28) with respect to ω yields dp̂r/dω = 0, because sr(p̂r, q̂r)
in (23) does not depend on the wage rate ω. Similarly, in other stationary
equilibria we have:

dq̄r

dω
= −

v
′

(ω)

1 + srq(1, q̄
r)

< 0,
dq̃r

dω
= −

v
′

(ω)

1 + srq(0, q̃
r)

< 0, and
dp̃r2
dω

= 0,
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where noting that sr(p̂r, q̂r) in (23) does not depend on ω.
Finally, differentiating (23) with respect to η results in

∂sr

∂η
= −

λr

βγ2η3
γp+ (1− γ)q

y − T
< 0.

Since (30) does not contain η, in the interior stationary point (p̂r, q̂r), we
have dq̂r/dη = 0, while differentiating (28) with respect to η yields

dp̂r

dη
= −

1

srp(p̂
r, q̂r)

∂sr(p̂r, q̂r)

∂η
> 0.

Similarly, in the other stationary equilibria we have

dq̄r

dη
= −

1

1 + srq(1, q̄
r)

∂sr(1, q̄r)

∂η
> 0,

dq̃r

dη
= −

1

1 + srq(0, q̃
r)

∂sr(0, q̃r)

∂η
> 0,

and
dp̃r2
dη

= −
1

srp(p̃
r
2, 0)

∂sr(p̃r2, 0)

∂η
> 0,

where it follows from (23) that ∂sr(·)/∂η < 0.
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