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Rules vs. Discretion in Cap-and-Trade Programs: 
Evidence from the EU Emission Trading System 

 
Abstract 

 
Long-term commitment is crucial for the dynamic efficiency of intertemporal cap-and-trade 
programs. Discretionary interventions in such programs could destabilize the market, and 
necessitate subsequent corrective interventions that instigate regulatory instability (Kydland and 
Prescott, 1977). In this work, we provide evidence for this claim from the EU’s cap-and-trade 
program (EU-ETS). We ground our analysis in the theoretical finance literature, and apply a 
mixed method approach (time-varying regression, bubble detection, crash-odds modelling). We 
find that the recent EU-ETS reform triggered market participants into speculation, which likely 
led to an overreaction that destabilized the market. We discuss how the smokescreen politics 
behind the reform, which manifested itself in complex rules, was crucial for this outcome. We 
conclude that rules only ensure long-term commitment when their impact on prices is predictable. 
JEL-Codes: Q480, Q500, Q560. 
Keywords: rules vs. discretion, cap-and-trade, overreaction, allowance pricing. 
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1 Introduction

The dynamic efficiency of intertemporal cap-and-trade programs stands

and falls with long-term commitment. If credible, it can solve the problem

of distorting investment decisions through the ratchet effect, the hold-up

problem, and the problem of inappropriate risk allocation (Hepburn, 2006).

Yet, regulators want to be flexible to cope with future circumstances, which

is why they prefer discretionary intervention to commitment (Hasegawa and

Salant, 2014). This can result in economic instability: Firms may persis-

tently mispredict the intervention’s long-term impact on allowance prices,

which may necessitate further correcting interventions in the future (Kyd-

land and Prescott, 1977). The anticipation of this may create regulatory

uncertainty which, in turn, further distorts allowance prices (Salant and

Henderson, 1978; Salant, 2016). Contrary to their intention, discretionary

interventions in cap-and-trade programs could thus have the perverse effect

of destabilizing the allowance market.

While the theoretical case is clear, empirical evidence is, to the best of

our knowledge, still missing. Several papers have analyzed the effects of

regulatory announcements in the EU Emissions Trading System (EU ETS)

using event studies. They find significant effects on the prices of European

Emission Allowances (EUAs) for many of the considered announcements

(Koch et al., 2016; Deeney et al., 2016). However, due to the nature of the

method, such studies focus on relatively narrow time windows and nothing

can be said about enduring effects on the market. Moreover, all analyzed

announcements were related to relatively minor, cap-neutral reforms, i.e.

they did not affect the total number of allowances. The most recent reform,

enacted in March 2018, revised the market rules for the coming decade and
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Figure 1: EUA price development – nearest December Futures Contract
Source: EEX Leipzig; see Section 3.1 for details.

entails an adjustment of the cap. Around the same time, an unprecedented

price run up occurred as displayed in Figure 1. This price increase is widely

attributed to the reform and it provides us with a unique opportunity to

empirically analyze the impact of a discretionary intervention.

Our work expands the literature in two key ways. First, we study mar-

ket interventions from a different angle. Contrary to previous work, our

focus is on the impact of long-term market stability rather than short-term

price responses. Acknowledging that allowance markets are increasingly

recognized as financial markets (Friedrich et al., 2020), we ground our

analysis in the theoretical finance literature. This literature emphasizes

the important role of speculation and belief formation for market stability.

From it we derive the hypothesis that discretionary interventions constitute

(good) news about fundamentals that could lead to an overreaction of the

market indicated by explosive prices - similar to what is observed during

the inflationary period of bubbles (Diba and Grossman, 1988; Abreu and

Brunnermeier, 2003; Barberis et al., 2018). Second and related, we employ
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a novel mixed-method approach to rigorously investigate the overreaction

hypothesis.

In our first step, we use a flexible time-varying regression approach to

investigate whether the price run-up is accompanied by a parallel develop-

ment in the role of market fundamentals. In a second step, we formally

test for periods of explosive behaviour in allowance prices with the help

of an econometric testing procedure which was proposed by Phillips et al.

(2015). The date stamping approach that is part of this procedure allows

us to examine whether the adoption of the reform coincides with the onset

of the explosive period. In a third step, we predict the crash odds of the

explosive period found in the second step using the novel method of Fries

(2018a). We compare the estimated crash odds to the ex-post evolution of

prices.

We obtain three main results. First, during the price run-up period

demand-side fundamentals have neither gained importance as price deter-

minants nor do they show the same explosive behaviour as allowance prices.

Second, the onset of the explosive period is time-stamped to March 2018,

which is the month in which the reform was adopted. Third, the estimated

crash odds of the explosive period after October 2018 are quite high, sug-

gesting a likely price collapse within a year. All three results suggest that

the reform triggered market participants into speculation about its price

impacts, which likely led to an overreaction that destabilized the market.

We further discuss out-of-sample price development in light of our findings,

and how the smokescreen politics behind the reform was crucial for this

outcome. We conclude that when implementing or adjusting rules in cap-

and-trade programs, it is crucial to consider the beliefs they instill about
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their price impacts. More specifically, our results imply that the better their

effect on prices can be predicted, the lower the risk that they destabilize

the market.

The paper is structured as follows. In Section 2, we provide the policy

background and review the related literature. In Section 3, we introduce

our dataset and describe the empirical strategy. Section 4 analyses the

relationship between allowance prices and its fundamental price drivers.

Subsequently, Section 5 investigates potential explosive behaviour in al-

lowance prices. First, we test for explosive behaviour. Second, based on

the findings which deliver evidence of such behaviour in our series, we model

the explosive period and estimate probabilities of collapse at different time

horizons. Section 6 concludes and discusses the implications.

2 Policy background and related literature

2.1 The recent 2018 EU-ETS reform

Persistently low prices from 2013 on led EU policy makers to initiate a series

of reforms primarily intended, in their own words, to ”reduce the surplus

of emission allowances in the carbon market”.1 The reform process was

concluded with an amendment of the EU ETS directive in March 2018. In

essence, the reform entailed the adoption of two new market rules: (1) From

2019 on, allowances will be transferred to and from the so called Market

Stability Reserve (MSR), depending on the total number of allowances in

circulation in the market and a given intake/outtake threshold. (2) From

2024 on, a certain number of allowances in the MSR will be cancelled,
1https://ec.europa.eu/clima/policies/ets/revision_en
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depending on the number of allowances auctioned in the previous year.

These rules both retroactively changed the functioning of the EU ETS,

and added considerable complexity to the market (Perino, 2018). In fact,

this particular design was chosen deliberately in an act of ”smokescreen

politics” (Wettestad and Jevnaker, 2019). By making the distribution of

costs (from future cancellation) obscure and diffuse, policy makers could

muster sufficient political support to pass the reform. The main drawback

of this political strategy is that market participants can only speculate

about the the price impacts of the new rules.

Surveys and anecdotal evidence suggest that speculations has indeed

been an important price driver. Two recent surveys among market par-

ticipants find that the anticipation of a more stringent market balance

through the MSR and the higher Linear Reduction Factor are seen as im-

portant causes (ZEW, 2019; Thomson Reuters, 2019). However, in both

surveys also speculative buying ranks high as a driver. Furthermore, me-

dia and market intelligence spread the information that much of the price

run-up was due to trading activities from speculative investors, like banks

and hedge funds, in anticipation of the (price) effect of the reform.2 In-

deed, overall trading volumes in 2018 increased by 42% compared to the

previous year (Marcu et al., 2019). However, this does not rule out that

market fundamentals have been an equally important price driver.

In the following, we review the empirical literature on fundamental price

drivers and the literature on speculative bubbles. We briefly treat bubble

formation and mention related papers using bubble testing as well as bubble

modelling.
2https://www.ft.com/content/6e60b6ec-b10b-11e8-99ca-68cf89602132on08.

09.2018.
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2.2 Literature on fundamental and finance related

price drivers

According to environmental economics, market fundamentals such as coal

and gas prices as well as economic activity should have a major effect on

allowance prices. A study of the related literature shows, however, that

empirical evidence is mixed. Previous studies indicate that standard ap-

proaches, such as linear regression models, need to be adapted by splitting

the sample, including breaks or dummy variables in order to improve their

findings. This is discussed in a review of the empirical literature of price

formation in the EU ETS by Friedrich et al. (2020).

Time constant models have frequently been used in this context; for in-

stance, in Hintermann (2010), Koch et al. (2014) and Aatola et al. (2013).

The question whether it might be more appropriate to account for po-

tential time-variation when modelling the relationship between allowance

prices and fundamentals has been raised in Lutz et al. (2013) who consider

potential non-linearities. Using a regime-switching model, they distinguish

two different pricing regimes - one applies during periods of high volatility

and the other during periods of low volatility. By construction, the impact

of explanatory variables on the allowance price can differ among the two

regimes. In both regimes, they find the same set of relevant price drivers.

Coal and gas prices, oil prices and the stock index are statistically signifi-

cant determinants of the EUA price. In Regime 2, which is characterised by

low and constant volatility, all significant price drivers show the anticipated

sign. Regime 1, however, shows a positive impact of the coal price. This

goes against economic considerations that predict, as in the second regime,

a negative effect of the coal price on allowance prices. In a recent contribu-
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tion, Jiménez-Rodŕıguez (2019) apply a time-varying coefficient model to

assess the impact of stock price indices on the allowance price and find a

time-varying effect. This paper differs from our work as it does not include

other price drivers apart from the stock price indices. Moreover, a differ-

ent model and estimation method are used and no confidence intervals are

provided. Both papers, Lutz et al. (2013) and Jiménez-Rodŕıguez (2019),

provide further evidence that the relationship between the allowance price

and its fundamentals might not be constant over time but can be subject

to (structural) changes.

The effect of the coal price on allowance prices causes further disagree-

ment in findings. Similar to the results in the second regime of Lutz et al.

(2013), Rickels et al. (2014) find a positive effect of the coal price on the

allowance price in their single variable analysis. The paper by Rickels et al.

(2014) differentiates itself from previous studies, because the authors inves-

tigate the effect of the choice of data series by performing various regressions

with only one explanatory variable. They consider multiple data series for

the different factors, from different sources and with different sampling fre-

quency (daily and weekly). In their final regression specification, they do

not include the coal price as a separate explanatory factor but as part of

the switching price. Further evidence is found in Aatola et al. (2013) for

the period 2005-2010 who find a negative coefficient of coal, while Hinter-

mann (2010) finds it to be insignificant in Phase I data. In addition, Koch

et al. (2014) look at the entire second Phase II and the first year of Phase

III and find an insignificant coefficient of coal. However, the explicitly cal-

culated fuel switching price is found to have a significant effect. Regarding

the effect of the gas price on allowance prices, there is no ambiguity. All
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studies find a positive and significant coefficient of the gas price indepen-

dent which approach is used. In particular, in Hintermann (2010) it is the

only explanatory variable with a significant effect throughout all considered

specifications.

The finance literature takes a different angle on price formation and is

in particularly interested in situations where prices deviate from fundamen-

tals. Of particular relevance here is the finding that good news – such as

the ETS reform in our case – may trigger a bubble. The underlying mech-

anism could be, for example, price extrapolation (Barberis et al., 2018)

and speculation (Abreu and Brunnermeier, 2003). A primary indicator for

the inflationary period of a bubble is explosive behavior in prices, and re-

cently a new method to detect and timestamp such periods was proposed

by Phillips et al. (2015). This method has subsequently been applied by

Corbet et al. (2018) to Bitcoin prices, by Shi (2017) to the US housing

market, and by Sharma and Escobari (2018) to the energy sector.

The related paper by Creti and Joëts (2017) uses this method to investi-

gate EU ETS prices. The authors find evidence of short explosive episodes

in their sample from 2005 to 2014. The detected periods do not last longer

than a few days – only 2 out of 11 last longer than 5 days, among them one

downward period lasting 12 days and one upward period lasting 9 days.

This finding indirectly supports our presumption that no reform (before

2014 in this case) had an impact on prices similar to the magnitude and

persistence we suspect for the 2018 reform.
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3 Data and methods

In this section, we first present our data set and carefully investigate the

stationarity properties of each time series. This is an important starting

point before applying our proposed methods as some of them require the

data to be stationary. In the final part of this section, we describe our

empirical strategy.

3.1 EUA prices and explanatory variables

We consider weekly data for the period from January 2008 to October

2018 resulting in T = 538 observations. This sample period covers the en-

tire Phase II and a large part of Phase III. As allowance price series, we use

the December futures contract traded on the European Energy Exchange

(EEX). The contract is rolled over to the next contract at the end of Octo-

ber each year. The resulting continuous price series is displayed in Figure 1.

Our sample captures the entire period of rapid increase in allowance prices

which started in mid 2017. It ends with the first point of considerable de-

cline at the end of October 2018. This allows us to investigate the entire

trending period while leaving enough room for out-of-sample prediction of

crash odds in the final step of our empirical approach.

We choose December futures prices like most related papers since they

are frequently traded (e.g. Koch et al., 2014; Lutz et al., 2013; Aatola et al.,

2013). As our main set of explanatory variables, we include natural gas and

coal prices as month-ahead futures from the same platform as well as the

stock index STOXX Europe 50 as an indicator of current and expected

economic activity.3 As an alternative, we use data on a comparable index,
3Other commonly used indicators such as the Industrial Production Index or the
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which is sometimes used in this context, the STOXX Europe 600 index.4

Further, we consider the oil price. In the related literature, there is no

clear agreement on whether its effect is due to being a proxy for economic

activity or if it comes from the (limited) fuel switching from oil to gas

(Hintermann et al., 2016). In addition, we use daily mean temperature

data for seven European cities from the European Climate Assessment &

Dataset (ECA&D) presented in Klein Tank et al. (2002). We transform

the data into a series of weekly temperature averages and we take out the

seasonal component with the help of Fourier terms. Details on the location

of the stations and the Fourier term regression can be found in Appendix

B.4.

The gas price is the settlement price of month-ahead Dutch TTF fu-

tures, denoted in EUR/MWh. TTF stand for Title Transfer Facility and

is a virtual trading point for natural gas in the Netherlands. The TTF fu-

tures contract is a frequently used series for gas prices in the related litera-

ture. Similarly, the coal price we consider is the settlement price of month-

ahead futures based on the API2 index of the ARA region (Amsterdam-

Rotterdam-Antwerp). The contract size is 1,000 metric tonnes of thermal

coal.5 Both are obtained from the EEX. For oil we rely on the historical

futures prices (continuous contract) of Brent crude oil based on data from

the Intercontinental Exchange (ICE), retrieved from Quandl.6 The contract

Economic Sentiment Indicator are measured at a lower frequency such that we do not
consider them here. Another promising indicator could be nighttime light from satellite
observations.

4The stock index data are retrieved on 21.01.2019 from https://quotes.wsj.com/
index/XX/SXXP/historical-prices (STOXX Eur 600) and http://quotes.wsj.com/
index/XX/SX5E/historical-prices (STOXX Eur 50).

5To convert the coal price data into EUR/MWh, one simply has to divide the series
by the conversion factor of 8.14. Since the conversion factor is constant and we consider
first differences, this would not change our results.

6Retrieved from https://www.quandl.com/data/CHRIS/ICE_B1 on 21.01.2019
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Figure 2: Plot of the time series in our data set
Source: For a detailed description of the sources we refer to Section 3.1.
Notes: In Panels (a) to (c), prices are given in EUR, while the coal and
the oil price was transformed from USD into EUR before plotting. Panels
(d) and (e) are given in index values and (f) in degrees Celsius.

size is 1,000 barrels. The coal and the oil prices need to be converted into

EUR, as they are denoted in USD. This is done using USD/EUR exchange

rate data from Tullett Prebon.7
7Retrieved from https://quotes.wsj.com/fx/EURUSD/historical-prices on

21.01.2019
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Various other variables – e.g. data on renewable energy production,

issued Certified Emission Reductions and fuel switching prices – appear

in the literature. Apart from the switching price, these variables are often

found to be insignificant or to have a negligible effect in terms of the magni-

tude of the coefficients. Further limitations arise, since data on wind, solar

or hydro production is only available for specific countries or regions. In

our preliminary regression analysis we consider data on energy supply from

hydro power in Norway from the Norwegian Water Resources and Energy

Directorate as well as data on electricity generation from wind for Germany

obtained from the database of the European Network of Transmission Sys-

tem Operators for Electricity (ENTSO-E). None of the time series showed

a significant effect in our regression analysis.

We also calculate a fuel switching price from our coal and gas price

data. However, since it is a linear combination of the two series, the effect is

already captured with the inclusion of the individual price series. We show

this in Appendix B.3 where we also present the results from the inclusion

of the additional variables hydro and wind power generation. In the main

text, we focus on the set of classical abatement-related price drivers: coal

and gas prices as well as economic activity and temperature. The time

series are plotted in Figure 2. We observe in Panels (b) and (c) that both

the gas and the oil price display a similar upward trend as the allowance

price at the end of our sample period. As both variables influence the

allowance price, their development could be a potential driver of the trend

in allowance prices. However, our further analysis shows that this is not

the case.
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3.2 Stationarity properties

One of the assumptions of the regression analysis we perform in Section 4

is that the data are stationary. Previous research finds that the allowance

price series contains a unit root and therefore, the log return series, calcu-

lated as ryt = ln(yt/yt−1), is used whenever stationarity is needed.8

To investigate the stationarity properties of our data, we use a battery of

unit root tests. Most of them consider a unit root under the null hypothesis

versus stationarity around a linear trend under the alternative. Standard

unit root tests, e.g. the Augmented-Dickey-Fuller test (Said and Dickey,

1984), which have been applied in the previous literature, consider a fixed

mean or a linear trend under the alternative. It has been shown that

this can quite frequently lead to spurious rejections of the unit root null

hypothesis. Working with data in first differences if the data are trend

stationary can substantially change the results. Therefore, it is crucial to

carefully select the alternative hypothesis of unit root tests.

Next to the Augmented-Dickey-Fuller (ADF) test with a linear trend,

we apply the tests by Phillips and Perron (1988), Leybourne et al. (1998)

and Kwiatkowski et al. (1992). While the Phillips-Perron (PP) test has very

similar properties, the test by Leybourne et al. (1998) (LNV) considers a

smoothly varying time trend under the alternative hypothesis. The trend

can undergo one transition and the time point as well as speed of the

transition is determined endogenously by the test. This modification allows

for much more flexibility under the alternative which is suitable for our

complex data series. The KPSS test by Kwiatkowski et al. (1992) is the

only test that considers (trend) stationarity under the null hypothesis and
8In the remainder of the paper we often leave out the term ”log” and use the terms

”log returns” and ”returns” interchangeably.
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a unit root process under the alternative.

Table 1: Unit root tests

ADF test PP test
yt ryt yt ryt

EUA -0.56 -14.13 -0.68 -17.64
Coal -2.24 -12.88 -2.09 -16.49
Gas -2.00 -13.59 -2.11 -18.68
Oil -1.78 -13.88 -1.76 -18.59
Stoxx 50 -3.42 -15.97 -4.34 -19.11
Stoxx 600 -3.45 -15.90 -4.05 -19.87
Temp -13.05 – -15.03 –

Critical values: (-3.13, -3.42, -3.98)

LNV test KPSS test
yt ryt yt ryt

EUA -1.01 -14.34 1.31 0.07
Coal -2.34 -13.05 0.55 0.06
Gas -2.03 13.72 0.57 0.07
Oil -2.033 -13.96 1.13 0.08
Stoxx 50 -3.71 -16.21 0.74 0.10
Stoxx 600 -3.50 -16.30 0.45 0.07
Temp -13.15 – 0.07 –

(-4.55, -4.83, -5.42) (0.12, 0.15, 0.22)

Source: Own calculations.
Notes: Results from four different unit root tests. The test statistics are
given for the data in levels (yt) and in log returns (ryt). Below each test
are the 90%, 95% and 99% critical values in brackets. The critical values
for the ADF and PP tests coincide. The tests were performed with the
Bayesian Information Criterion for lag length selection and a maximum
number of 8 considered lags. The chosen lag length equals 1 in all cases.

The results are presented in Table 1. The ADF test results are presented

in the first two columns. They show that in most cases, the unit root null

hypothesis cannot be rejected at a 1% significance level when we look at

the data in levels. Exceptions are the temperature series and the two stock

14



indices (at a 10% level for STOXX 50 and at a 5% level for STOXX 600).

The return series are all stationary. The PP test which is given in the next

two columns are very similar. The unit root null hypothesis is now also

rejected for the two stock indices at the 1% significance level. Results of

the more flexible LNV are given in the next two columns. Again, all series

but the temperature data contain a unit root. The KPSS test, which is

presented in the last two columns, comes to the same conclusion.

Given these results, we conclude that all fuel prices and stock indices

contain a unit root and the temperature data are stationary.

3.3 Empirical strategy

Our approach consists of combining three statistical methods, which we

apply consecutively to obtain a reliable basis of empirical evidence before

drawing conclusions and policy implications. In this section, we briefly

outline the three different steps and the rationale for choosing them.

In the first step, we revisit the fundamental price drivers. This is an

important step since a tighter link to market fundamentals combined with

the increasing gas prices and economic activity (as observed in Section 3.1)

offers a potential explanation for the upward trend in EUA prices. The pre-

vious literature, which we reviewed in Section 2, does not find a strong link

between allowance prices and market fundamentals overall. The gas price,

however, has the strongest influence on allowance prices across the reviewed

studies. We repeat the linear regression exercise performed by many of the

previous studies to determine if gas prices also have a significant effect in our

longer data set. In addition, higher (expected) scarcity of allowances due to

the reform can lead to a tighter link between allowance prices and market

15



fundamentals which would only be visible in the final parts of the data.

To be able to investigate this properly, we apply a time-varying regression

approach which offers a way to flexibly model relationships between mul-

tiple time series. A technical difficulty lies in obtaining reliable confidence

intervals to judge the significance of the resulting estimates given that our

data is serially correlated and show a time-varying variance. We overcome

this problem by applying a specific bootstrap method, the autoregressive

wild bootstrap, which is robust to serial correlation and heteroskedasticity.

The results indicate that the recent price increase is not picked up by any

of the price drivers and can therefore not be explained by the increase in

economic activity or gas prices. There is also no indication of a tighter

relationship between allowance prices and market fundamentals. The re-

gression model as well as the detailed results are presented in Section 4,

while the technical details of all methods are given in Appendix A.

To further investigate the upward trend, we apply a statistical test for

explosive behaviour in the second step of our analysis. The method of

our choice is taken from Phillips et al. (2015) whose approach is based

on a right-sided unit root test. Their method has gained wide popularity

in the finance literature since its introduction. If the test detects explosive

behaviour, Phillips et al. (2015) propose a datestamping procedure to locate

the start and end point of the explosive episode. Again, to make the results

robust to serial correlation, we apply a bootstrap method as proposed by

Pedersen and Montes Schütte (2017). Our particular interest is to find out

whether such a period can be detected, and if so, to locate the start and

end point. This enables us to compare the onset of the explosive period

with the time of adoption of the reform and we can further investigate if it
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persists until prices have reached their peak value, as theory would suggest.

Finally, having gained statistical evidence for the existence and location

of an explosive period, we model the episode using noncausal processes.

Noncausal autoregressive processes were recently proposed by Gouriéroux

and Zaköıan (2017) to model speculative bubbles in financial markets be-

cause of their ability to mimic locally explosive patterns in time series data.

A rapidly emerging econometric literature has been applying these models

to diverse bubble phenomena appearing for instance in time series of infla-

tion rates (Hecq and Sun, 2019), stock indexes (Gouriéroux and Zaköıan,

2017; Fries, 2018a), cryptocurrency exchange rates (Hencic and Gouriéroux,

2015; Cavaliere et al., 2020), volatilities (Hecq et al., 2016), and commodity

prices (Fries and Zaköıan, 2019; Voisin and Hecq, 2019; Hecq and Voisin,

2019). We leverage the analytical expression of the crash odds of explosive

episodes obtained by Fries (2018a) in the framework of noncausal processes

to propose a quantification of the (un)sustainability of the recent explosive

trend in EU ETS prices.

4 Fundamental price drivers – revisited

If the price run up reflects an increasing scarcity of allowances, fundamen-

tals should have gained importance as price drivers. Accordingly, coeffi-

cients would have increased gradually, which we examine using a linear

regression model with time-varying coefficients. Such models are flexible,

and allow uncovering changes in the relationship without restrictive as-

sumptions regarding the form of the change. We analyse the full time

series and not simply the period of the price run up between 2017 and

2018. In fact, we find significant changes in coefficients in earlier years that
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have not been identified in the previous literature.

The longer time span of our dataset compared to previous studies pro-

vides us with an opportunity for a better understanding of the relationship

between allowance prices and abatement-related price drivers. In addition,

to be able to compare our results to previous findings, we also run a linear

regression model with constant coefficients.

Both approaches, constant and time-varying coefficients, can be cap-

tured using the following linear regression framework. For t = 1, . . . , T , let

rEUA,t = β0,t + β1,tx1,t + β2,tx2,t + · · ·+ βm,txm,t + εt = β′txt + εt (4.1)

be a model for the return on allowance prices rEUA,t, where

βt = (β0,t, β1,t, . . . , βm,t)′ is a vector of coefficients and xt = (1, x1,t, . . . , xm,t)′

is a set of potential (stationary) price drivers. The error term εt may be

correlated and may exhibit changing variance over time. This simple frame-

work allows for constant coefficients by imposing the restrictions βj,t = βj,

for j = 0, . . . ,m and for all t = 1, . . . , T . We estimate this linear regression

specification by ordinary least squares (OLS).

Without restrictions on the coefficients, Equation (4.1) represents a

time-varying coefficient model including a deterministic time trend β0,t

as well as covariates with time-varying coefficient functions βj,t for j =

1, . . . ,m. All coefficients are assumed to be functions of time which need

to follow certain smoothness conditions.9
9The assumptions require that, for instance, the functions are twice continuously

differentiable and bounded. We refer to Cai (2007) for the complete set of assumptions.
In addition, as a necessary step to ensure the consistent estimation of these functions,
they have to be defined on the interval (0, 1). Therefore, we need to map all points to
this interval such that, formally, we have βj,t = βj (t/T ). This is explained, for instance,
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A key advantage of the time-varying coefficient model is that the form

of the coefficient functions does not have to be specified in advance. It lets

the data determine the form of the relationship. Due to this nonparametric

nature the model offers a large degree of flexibility and generality. Estima-

tion of such models is well-established in the econometric literature. We

use the local linear kernel estimator of Cai (2007). The estimator fits a lo-

cally weighted least squares regression to a neighborhood around each time

point in the sample. The weighting function is called the kernel function. It

has been shown that the estimator is known to reduce the boundary effects

which are a concern in nonparametric estimation. For more information on

the estimator and its properties, we refer the interested reader to Fan and

Gijbels (1996) for a general overview, and to Cai (2007) for details on the

estimator in the context of model (4.1).

To be able to judge the significance of our results, we construct 95%

confidence intervals around the nonparametric estimates using a bootstrap

method. We rely on the autoregressive wild bootstrap which offers robust-

ness to serial correlation as well as heteroskedasticity. Using nonparametric

estimation with bootstrapping is a powerful combination which has been

studied in the econometric and statistical literature by e.g. Bühlmann

(1998), Neumann and Polzehl (1998) and Friedrich et al. (2019). Details

on the estimation technique and the bootstrap algorithm are given in the

Technical Appendix. It is particularly suitable for applications in the EU

ETS market as in previous studies the residuals of the model experienced

heteroskedasticity (e.g. Koch et al., 2014; Lutz et al., 2013). An additional

advantage of the method is that it can also be applied when data points

in Robinson (1989).

19



are missing such that there is no need to resort to interpolation techniques

when some data series are incomplete. Although missing data are not a

major concern in our application, it nevertheless occasionally happens that

single data points are missing from some series. In this case, we simply

delete the corresponding data points from our dataset. All empirical re-

sults in this section are obtained using the stationary data as determined

in Section 3.2.

Both model specifications of (4.1) are not designed to explain sudden

jumps in allowance prices. To investigate whether this is a serious issue

in our application, we remove outliers and subsequently re-estimate the

model.10 For this we apply the impulse indicator saturation (IIS) approach

proposed in Santos et al. (2008). With this method, conditioning on our

set of explanatory variables, we find seven outliers in the EUA return series

which are removed. More information on the location of the outliers and

the IIS application can be found in Appendix B.1.

4.1 Linear regression results

To get a first understanding of the data and to be able to compare our

results to the previous literature, we obtain a set of results from Model

(4.1) with constant coefficients. Table 2 displays the results from the corre-

sponding OLS regression. We present the coefficient estimates with corre-

sponding Newey-West standard errors (Newey and West, 1987), which are

robust to mild forms of autocorrelation and heteroskedasticity. We con-

sider three specifications, where we include the oil price, the STOXX 50

index and the STOXX 600 index, respectively. In specification (a), the
10Results for the original data (before the removal of outliers) are very similar and

they can be found in Appendix B.1.
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Table 2: Linear Regression Results

(a) (b)

β̂j seNW p-value β̂j seNW p-value
Coal -0.119 0.094 0.206 -0.061 0.097 0.528
Gas 0.190 0.075 0.012 0.198 0.074 0.007
Oil 0.214 0.069 0.002 – – –
Temp -0.001 0.001 0.572 -0.001 0.001 0.450
Stoxx 50 – – – 0.139 0.103 0.031
Stoxx 600 – – – – – –

(c)

β̂j seNW p-value
Coal -0.07 0.097 0.425
Gas 0.198 0.074 0.008
Oil – – –
Temp -0.001 0.001 0.451
Stoxx 50 – – –
Stoxx 600 0.296 0.110 0.007

Source: Own calculations using R.
Notes: Results obtained using OLS estimation. The dependent variable is
the return on EUAs and the set of (stationary) regressors changes in each
specification. The p-values are based on Newey-West standard errors.

two significant factors are the gas and the oil price. The coal price, as an

important driver, does not show a significant effect on the allowance price

in this initial regression. The estimates are very similar in specifications

(b) and (c) where we include the stock indices.

This does not come as a surprise given the results from previous stud-

ies, as we do not split the data into sub-periods, nor do we include any

dummy variables to take out the effect of major policy announcements. In

all specifications, both significant coefficients are positive and thus show

the anticipated sign. The coefficient of the coal price also shows the sign
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predicted by economic theory, while being insignificant.11

4.2 Time-varying coefficient results

We now apply the nonparametric approach to our data. The results pre-

sented in this section are obtained using the gas, coal and oil price returns

as explanatory variables as well as the temperature series after seasonality

has been removed. As a robustness analysis, we provide additional results

(e.g. from the inclusion of the other variables) in Appendix B.3.

The estimated trend and coefficient curves (blue) together with their

95% confidence intervals (orange) can be found in Figure 3. As with linear

regression, a coefficient is significant if zero (indicated by the gray line) does

not fall within the confidence interval. The main difference to parametric

regression is that there is not merely one coefficient whose estimate and

confidence interval permits a verdict on the question of significance of an

explanatory variable. We have a coefficient estimate and a corresponding

confidence interval for each point of the sample. Thus, there can be pe-

riods of significance and insignificance as well as changes in the sign and

magnitude of a coefficient.

Against this background, we observe in Figure 3 that the significance

of all of the included variables changes over time. For all variables, there

are period with a significant effect as well as periods of insignificance. All

graphs further have in common that the width of the confidence intervals

changes over time and in many cases, become substantially wider at the

beginning and the end of the sample. The widening at the beginning and

the end is common in the application of the bootstrap method and reflects
11In Appendix B.3 we include each stock index in addition to the oil price and show

that they do not have a significant effect.
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Figure 3: Time-varying coefficient estimates
Source: Own calculations.
Notes: Nonparametrically estimated coefficient curves (blue) and 95%
confidence intervals (orange) from a regression of the return on EUA on a
trend and the four main price drivers. For the nonparametric estimation,
we apply the local linear estimator with the Epanechnikov kernel given
by the function K(x) = 3

4(1−x2)1{|x|≤1}. We use a bandwidth parameter
of h = 0.09 which we justify in Appendix B.2. The bootstrap procedure
is applied using 999 replications.

that the first and last estimates can be inaccurate. As the nonparamet-

ric estimator uses a two-sided window for estimation, there are boundary

effects which can distort the first and last 20 estimated points on the coef-
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ficient curves. This contributes to the widening of the confidence intervals

at these points. Widening in the middle of the sample can be an indication

of heteroskedasticity or autocorrelation in the data over this time span. In

such cases, the bootstrap method accounts for these irregularities by mak-

ing the confidence intervals wider such that the nominal confidence level

(in this case of 95%) can be maintained.

In Panel (a), the nonparametric trend fluctuates around zero for most

of the considered time span. However, at the end of the sample, it turns

significantly positive. This shows that the recent price increase in allowance

prices seems to be picked up by the trend component. Panel (b) shows that

the coal price has a significant negative effect for two periods: one ranging

from 2010 to mid 2011 and one from 2013 to mid 2015. Subsequently, the

coefficient becomes positive and significant for a short period in 2016/2017.

This is a very interesting finding given that its coefficient was found to

be insignificant in the linear regression analysis. This suggests that the

time variation might have caused the insignificance in the linear regression

results. Moving on to Panel (c), we see the coefficient of the gas price

series. It has the expected positive sign and is significant over long periods

of the sample. This is in line with previous findings as well as the linear

regression results presented in Section 4.1. However, we also find a period

of insignificance in the usually stable gas price coefficient which is located

in 2014. The coefficient of the oil price, as displayed in Panel (d) is positive

and significant over two periods – until 2009 and from 2015 onward. Finally,

from Panel (e) we see that the temperature series shows only two very short

periods of significance and the magnitude of the coefficient estimate is, as

in the linear regression results, negligible.
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Overall, our analysis provides evidence of time variation in the relation-

ship between allowance prices and the considered price drivers. It stresses

the need that the relationship has to be modeled with care. Due to the

various periods of insignificance, our results offer a potential explanation

for insignificant coefficients found with linear regression techniques used in

some of the previous work. In addition, although the method offers great

flexibility in modelling the relationship, the recent upward trend stays in

the trend component. This implies that fundamentals have not gained rel-

evance as drivers during the price run up. We now further examine the

recent price increase using a combination of statistical tests and models

potentially explosive behaviour.

5 Explosive behaviour in allowance prices

In the previous section we saw that the recent upward movement was not

picked up by any of the included price drivers and one might suspect that

the recent trend could represent a period of explosiveness. It is therefore

our goal in this section to further investigate this recent price development.

Our method involves two steps. First, we apply the approach by Phillips

et al. (2015) which provides a refined way to test for periods of explosive

autoregressive behaviour and, in an additional step, to locate them.12 The

test is based on a right-sided unit root test performed on a forward and

backward expanding window. We indeed find a significant explosive period

in the allowance price series which overlaps with the recent price increase.

In a second step, we further analyse the explosive period we found in the
12While explosive autoregressive behaviour is the most accurate way of describing

the phenomenon we test for, we use this terminology interchangeably with explosive
behaviour, explosiveness and sometimes bubble in the remainder of this paper. We elab-
orate further why we have to be careful with the term bubble in Sections 5.2 and 6.
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first step. With the help of a novel class of statistical models we predict

ex-ante probabilities of collapse of the explosive period in allowance prices

which we compare to the out-of-sample price behaviour.

5.1 Testing for explosive episodes

To investigate whether the upward trend in allowance prices constitutes an

episode of explosive behaviour, we apply the testing procedure of Phillips

et al. (2015). Similarly to ordinary unit root tests, it tests the null hy-

pothesis of a unit root in the data. The construction of the test is based

on the ADF test as performed in Section 3.2, but it considers a different

alternative hypothesis. Instead of stationarity, the Phillips et al. (2015)

test considers mildly explosive behaviour under the alternative. An addi-

tional difference is that the test is applied to sub-samples of the data. For

rejection of a unit root in favor of explosive episodes it is sufficient if the

data show such behaviour in a sub-sample. As the name explosive episode

or bubble suggests, this is not a long-term phenomenon. The test applies

an ADF test to various subsamples. Subsequently, the test statistic is con-

structed as the supremum over all ADF test statistics. It is therefore called

Generalised Supremum ADF (GSADF) test. In case of rejection, there

is evidence of explosive behaviour. For such cases, Phillips et al. (2015)

additionally propose a method to locate the beginning and end point of

the episode. Details on the testing procedure and the date stamping are

available in our Technical Appendix.

A bubble is present where prices diverge from fundamentals. In this con-

text, it means that there is evidence for an explosive period when the price

series shows such behaviour but the fundamental drivers do not. Therefore,
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Table 3: GSADF test results

Test statistics Critical values (90%, 95%, 99%)
Variable GSADF simulated bootstrap
EUA 3.998

(1.983, 2.175, 2.608)

(2.270, 2.555, 3.201)
Coal 1.676 (2.487, 2.795, 3.446)
Gas 1.299 (2.383, 2.645, 3.372)
Oil 2.722 (2.200, 2.505, 3.104)
Stoxx 50 0.782 (2.310, 2.668, 3.099)
Stoxx 600 0.953 (2.302, 2.302, 3.170)

Source: Own calculations using Matlab and the R pacakge MultipleBub-
bles.
Notes: The GSADF test statistics with simulated critical values (2000
repetitions) and bootstrapped critical values (4999 repetitions). The test
is applied using a minimum window size of 40 observations, which is
chosen according to the rule r0 = 0.01 + 1.8

√
T suggested by Phillips

et al. (2015). For the selection of the number of lags we use the Bayesian
Information Criterion.

we also apply the tests to the main price drivers. We test coal, gas and

oil prices as well as the two stock indices.13 The test was proposed un-

der the assumption of uncorrelated and homoskedastic error terms. It has

been shown in e.g. Harvey et al. (2016) and Pedersen and Montes Schütte

(2017) that a violation of this assumption leads to overrejection which can

be resolved by a bootstrapping approach. In our application, we rely on

both, the simulated critical values and the bootstrap approach of Pedersen

and Montes Schütte (2017).14

Table 3 presents the results; the left part of the table shows the test

statistics for each considered time series and the right part gives the two
13We do not consider temperature data here given the fact that it is a climatological

time series which due to its natural properties will only experience gradual structural
change rather than explosiveness (this is also confirmed by the plot of the data in Figure
2(f)).

14We thank the authors for kindly providing us with code for the bootstrap test.
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different sets of critical values – the critical values computed by Monte

Carlo simulation as described in Phillips et al. (2015) and the bootstrapped

critical values. For both tests, we would like to use significance levels of

10%, 5% and 1%. As the test is right-sided, this can be achieved by the

90%, 95% and 99% critical values, respectively. Note that, as the bootstrap

results will be conditional on the original sample, we have a slightly different

set of critical values for each series.

Both tests come to the same conclusion. They present evidence of

explosive behaviour not only in the allowance price series but also in the

oil price series. For the coal and gas prices and the stock indices, the

null hypothesis of a unit root is not rejected and hence, these factors are

excluded as possible drivers of the movement. In contrast, the oil price

cannot be excluded. Therefore, for the two cases of rejection we move to the

date stamping procedure, which is determined by the BSADF test sequence

which is short for Backward Supremum ADF test. We again obtain critical

values from simulation and bootstrapping using the same specifications

as for the GSADF test. The results using bootstrapped critical values

are presented in Figure 4. It simultaneously plots the series of critical

values (orange) and the test statistics (blue). Panel (a) gives results for

the allowance price series and Panel (b) for the oil prices. Using simulated

critical values leads to very similar conclusions. The results can be found

in Appendix B.

There is clear evidence for a long period of explosive behaviour in al-

lowance prices, starting at the beginning of 2018. The series of test statistics

starts exceeding the critical value series in early March of 2018 and does

not cross it again until the end of the sample. Before 2018, we can see
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Figure 4: Date stamping of explosive episodes
Source: Own calculations.
Notes: Results from the BSADF test as proposed by Phillips et al. (2015),
applied to the EUA prices in Panel (a) and the oil prices in Panel (b).
Each panel shows the bootstrapped critical value series (orange) and the
test statistics (blue).

several such episodes in Panel (a) with the most pronounced one located

in 2016. Starting in mid January 2016, the BSADF statistic lies above

the critical value sequence for 11 weeks until the beginning of April 2016.

This exceeds the established minimum duration of 7 weeks. Observing the

allowance price development at the time, we see that this period is caused

by a price drop in spring 2016.15 The spikes in the test statistic before 2016
15Some analysts have portrayed the price drop as a potential consequence of the

COP15 outcome. But to the best of our knowledge none of the scientific event studies
on EUA prices has covered this period.
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do not last longer than 3 weeks and therefore, cannot be taken as evidence

for explosive behaviour.

In 2018, the length of the explosive episode clearly exceeds the minimum

duration. Comparing this to the oil price results in Panel (b), we do not

find overlapping explosive behaviour in this series, although the test detects

a potential explosive period and we observe an upward trend in oil prices

at the end of the sample. The period in oil prices which caused the GSADF

test to reject is located in 2014. Starting mid 2014 oil prices fell for a period

of more than 6 months indicating that it was a period of collapse and not

exuberance that is picked up by the test.

Specifically, the period of collapse is first detected by the test in mid

October 2014 where the test statistic lies above the critical values for three

weeks, then drops for one week before it exceeds it again for 11 consecu-

tive weeks. This period lasts from November 2014 until the beginning of

February 2015. This is in line with the findings in Sharma and Escobari

(2018) who investigate several different oil price series. The authors find

a significant period of collapse with similar timing in all investigated oil

prices. In addition, the absence of evidence for periods of exuberance or

collapse in the gas price series is also confirmed by Sharma and Escobari

(2018).16

Combining these results provides statistical evidence that the allowance

price experienced an explosive period which is not accompanied by similar

behaviour in any other series we considered. Although the gas and the oil

price experienced a simultaneous upward trend at the end of our sample

period, the formal test allows us to exclude both factors as potential drivers
16For completeness, we also apply the GSADF test to the fuel switching price. Un-

surprisingly, we do not find evidence for explosive behaviour in this series.
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of the rapid EUA price increase. This is to our knowledge a first empirical

result pointing in the direction of a period of exuberance in EUA prices

which is not driven by abatement-related fundamentals. While this finding

strongly suggests the existence of a price bubble, it should be noted that

there could be other explanations which are in line with these results. For

instance, non-explosive changes in fundamentals could lead to new equi-

librium price levels and the path to the new levels can potentially appear

explosive. This has been pointed out by Harvey et al. (2016). As shown in

Section 4, changes pointing towards an increasing role of fundamentals as

a result of the reform could not yet be found in the data.

5.2 Predicting probabilities of collapse

The statistical evidence points to an explosive episode whose drivers are

not related to fundamentals. Non-fundamental bubbles in prices are often

seen as a result of widely shared exuberant beliefs among market partic-

ipants as explained in the Introduction. Recently, rational expectation

specifications of financial bubbles have been shown to exhibit as particular

solutions so-called noncausal, or non-fundamental, autoregressive time se-

ries models (Gouriéroux et al., 2020), that is, autoregressive processes with

roots located inside the unit circle. These statistical models, compatible

with rational expectation price models, have the ability to parsimoniously

mimic explosive episodes in financial time series data and are increasingly

applied in the economic and statistical literature to analyse time series with

forward-looking components.

Fries (2018a,b) derives analytical expressions for the ex ante crash odds

of bubbles generated by noncausal models driven by extreme, power-law
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distributed shocks, which we exploit here to quantify the (un)sustainability

of the recent explosive episode in the EUA price. We focus on the arguably

simplest noncausal model – the noncausal AR(1) – which mimics bubbles

with an exponentially-shaped inflation phase culminating in a peak before

collapsing to pre-bubble levels. There are two main reasons for this choice:

(i) the obtained exponential fit of the recent upward trend in the EUA

prices appears excellent, (ii) bubbles generated by the noncausal AR(1)

feature a memory-less, or non-aging, property which implies that the crash

date cannot be known with certainty by market participants and indicates

compatibility of the model with a no-arbitrage setting. Further details on

the approach are provided in the Technical Appendix.

Modelling the explosive episode in the EUA price as an ongoing re-

alisation of a noncausal AR(1) bubble, the sustainability of the upward

trend can be completely characterised by the given of two parameters: the

growth rate of the exponential inflation phase, and a parameter describing

the likely height of the incoming peak – the tail exponent of the shocks’

power-law distribution. A higher growth rate and a likely lower peak (i.e.

higher tail exponent) entail a less sustainable explosive episode. The growth

rate can be conveniently obtained by fitting an exponential trend on the

recent data – which boils down to a linear regression of the log-prices on

time. To this end, we include all data points post-March 2018 into the

exercise, as this date marks our earliest statistical evidence of explosive

episode based on Phillips et al. (2015) test. For sensitivity analysis, we

also consider the estimate of the growth rate using the data points since

the beginning of the upward trend, mid 2017. The second parameter, the

power-law tail exponent, is more elusive and cannot be easily retrieved
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from the data. We prefer to remain as agnostic as possible regarding the

value of this second parameter, and only presume it lies within the widest

range of reasonable and admissible values under Fries (2018a) framework.17

Table 4 gathers the results and Figure 5 presents the exponential fits

Figure 5: Exponential trend fitted on the EUA prices (left panels)
based on the linear regressions of log-EUA prices on time and intercept
log(EUAt) = at + b (right panels). Upper panels: fit obtained using the
data points post-March 2018 ; Lower panels: fit obtained using the data
points post-June 2017.

of the recent EUA data. The obtained growth rates using either the data

post-March 2018 or post-June 2017 both point to a similar pace of around
17 This range encompasses values of the power-law tail exponent, denoted α, from

α = 0.5 to α arbitrarily close to 2: that is, from very heavy-tailed shocks as extreme
as a Lévy distribution which have even infinite expectation, to much milder shocks
close to have finite variance. Most studies in the financial literature report values from
significantly below one up to four for financial series (Ibragimov and Prokhorov (2016)
and the references therein), with reported values above two furthermore not necessarily
evidence against the infinite variance hypothesis (McCulloch, 1997), which is used in
Fries (2018a,b).
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Based on EUA data
from 03/2018 to 10/2018

Based on EUA data
from 06/2017 to 10/2018

Exponential trend
monthly growth rate â 8.1% 9.5%

Noncausal
AR coefficient ρ̂ 0.92 0.91

Plausible range for
tail exponent α [0.5 – 2] [0.5 – 2]

Odds of crash
within m months Lower est. Upper est. Lower est. Upper est.

m = 1 4.0% 15% 4.6% 17%
3 11% 39% 13% 44%
6 22% 62% 25% 68%
12 39% 86% 44% 90%

Expected explosive
episode duration 7 25 6 22

(in months)
Table 4: Estimated monthly growth rates â of exponential trends fitted on
the EUA log-prices ln(EUAt) = at + b, based on data since March 2018 (left)
and since mid-2017 (right) ; Corresponding noncausal AR(1) coefficients ρ̂ =
exp(−â) ; Uniform prior on power-law tail exponent α ∈ [0.5, 2] ; Corresponding
lower and upper estimates for crash odds withinm = 1, 3, 6, 12 months computed
as 1− (1/2)m/ĥ0.5 , where ĥ0.5 = − ln 2

α ln(ρ̂) is the half-life of an α-stable noncausal
AR(1) bubble with parameters ρ̂ and α ; Expected duration of the explosive
episode computed as 1

1−ρ̂α .

8-9% price growth per month. Moreover, the fits on the log-prices appear

at least adequate on the data post-March 2018 and even excellent on the

data post-June 2017. This comforts the assumption of an exponentially-

shaped bubble à la noncausal AR(1), which appears very much compatible

with the price trajectory. Because we assume a range of possible values for

the tail exponent parameter rather than a specific value (see Footnote 17),

we obtain lower and upper estimates of the odds of a crash occurring at

future horizons. We report these lower and upper estimates for 1, 3, 6 and

12 months horizons beyond the end of our sample. The crash odds that we
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find are relatively important: already at 1 month horizon, the likelihood

of a crash ranges from 4% (lower estimate) up to 17% (upper estimate).

According to our lower estimates, the likelihood of a crash occurring within

12 months are high but nevertheless below 50%, whereas our upper esti-

mates appear to place the 50% chance tipping point much earlier, between

3 and 6 months horizon. Another equivalent measure of sustainability of

an explosive episode (in the framework of the assumed model) is that of

its expected duration. According to our same estimates, the expected du-

ration of the EUA explosive episode should range from 6 (lower est.) to 25

months (upper est.).

A posteriori, in 2020, it is apparent on updated data that the explosive

trend wore out very quickly after the end of our sample. Even though

an abrupt vertical crash down to pre-bubble level did not occur, the ex-

post explosive trend (un)sustainability appears highly compatible with our

estimates. The fact that the exponential trend leveled off and yet the

prices did not collapse could be an indication that the drivers of explosive

growth vanished. It is, however, unclear whether this implies a long-term

stabilization of prices or a postponement of the collapse.

6 Discussion and conclusion

Results of the first two methods clearly suggest that the reform has trig-

gered market participants into speculation about the reform’s price effects.

To begin with, results from the time-varying coefficient model confirm that

the recent upward trend cannot be explained by movements in the consid-

ered price drivers. Instead it is picked up by the trend component, which

implies other price drivers. Furthermore, we find evidence for market over-
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reaction indicated by an explosive period beginning in March 2018 – its

onset thus exactly coincides with the month the reform has been passed

into law. This event did not come as a complete surprise to market partic-

ipants: already in November 2017, the European Council endorsed the re-

form proposal and submitted it to the European Parliament for approval.18

However, our results suggest that the market reacted more strongly to ac-

tual legislation rather than to mere news about it, particularly in terms

of new players deciding whether to enter a market or not (see Section 1).

This suggests that sentiment about the future scarcity of allowances may

have indeed been the decisive driver.

Yet, reform-induced speculation as such does not necessarily imply a

destabilisation of the market. It could potentially reflect the search for

the new equilibrium price induced by the reform, i.e. an adaption process

which, as previously mentioned, can appear explosive (Harvey et al., 2016).

Speculation only destabilises the market if it leads to an overreaction – an

inflated price that exceeds the new long-term equilibrium level. If that

was the case, prices would be bound to collapse in the future. To shed

light on this issue, we employ additional statistical techniques to estimate

the probabilities of collapse for different time horizons, starting in October

2018 when the price increase peaked. The upper estimates for the one year

ahead crash odds are as high as 86%. Looking at how prices evolved after

October 2018, no collapse to rock bottom levels materialized. However,

a (partial) collapse from around 25 EUR/t down to around 15 EUR/t in

November 2018 can be observed. Subsequently, the price rebounded and it
18https://www.consilium.europa.eu/en/press/press-releases/2017/11/22/

reform-of-the-eu-emissions-trading-system-council-endorses-deal-with-
european-parliament/
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is difficult to judge if this drop was a crash or a sign of increasing volatility

around a higher (post-reform) equilibrium level.

Deciding between the two scenarios of fluctuations around a higher equi-

librium price level or a partial collapse becomes even more difficult once we

acknowledge that since the reform, a number of additional announcements

have been made towards higher stringency. Already in November 2018, the

European Commission published a long-term vision for a climate-neutral

economy in 2050.19 Moreover, in the course of 2019, it became clear that

the European Commission would propose more stringent climate targets

for 2030, implying a more stringent cap. In December 2019, it eventually

published the EU Green Deal which proposes a ratcheting up of long term

climate targets.20 This development may have arguably counteracted fur-

ther price drops. Similarly, subsequent changes in market fundamentals

likely had a confounding impact on prices. Analyzing this price impact in

detail is beyond the scope of the paper and left for future research.

Although our empirical results lend themselves to multiple interpreta-

tions, the characteristics of the reform suggest that it has indeed persis-

tently destabilised the market. As pointed out in the introduction, in an

act of ”smokescreen politics” regulators leveraged on regulatory complexity

to push higher ambition (cancellations of allowances) through the backdoor.

The new mechanism to cancel allowances from the MSR is extremely com-

plex, and the volume of allowances that will eventually be canceled from

2024 on is highly difficult to predict. This implies persistent cancellation-

related price uncertainty in the coming years. This is enhanced by a feed-
19https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:

52018DC0773&from=EN
20https://ec.europa.eu/info/publications/communication-european-green-

deal_en
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back effect on prices: anticipation of cancellation affects current prices,

which in turn affects cancellation (Osorio et al., 2020; Quemin, 2020). The

broad range of numerical estimates for the number of allowances that will

be cancelled compiled by Osorio et al. (2020) clearly underlines this.

Finally, we would like to discuss the related policy implications of our

paper. What does this imply for the question of rules vs. discretion? The

2018 reform of the EU ETS defies a clear-cut classification. The actual

mechanisms implemented through the reform, such as MSR intake, outtake

and cancellation, are rule based. They are generally designed to preclude

further discretionary intervention in the future. At the same time, the re-

form itself is discretionary in the sense that policy makers intervened in the

market retrospectively in order to, in their own words, reduce the surplus

of emission allowances in the carbon market. Moreover, the complexity of

the rules – or rather the difficulty of predicting their impact on prices –

tend to increase price uncertainty in the market. This makes it likely that

further interventions will eventually have to follow. In fact, as part of the

original 2018 reform, a review of the MSR and potential subsequent reform

is scheduled for 2021. Hence, regulatory uncertainty inevitably prevails,

conflating the post-reform equilibrium price with the uncertainty of how

the upcoming MSR revision will affect the market.

How can EU policy makers do better in the future? To answer this ques-

tion it needs to be acknowledged that, understandably, governments want

to have the flexibility to cope with future circumstances (Hasegawa and

Salant, 2014). In face of the trade-off between flexibility and commitment,

it is crucial to choose the right time horizon that best balances benefits and

costs (Hepburn, 2006). Other work stresses the role of process, i.e. how

38



policy is executed, revised and reformed: Aldy (2020) proposes the insti-

tutionalization of an act-learn-act approach for a potential US carbon tax

with a view on promoting its adaptability to changing environmental and

economic conditions. Correspondingly, for the Clean Air act, Carlson and

Burtraw (2019) conclude that if the policy change process is well formal-

ized, predictable and transparent, this can enable policy to adapt to new

information while ensuring its durability. While the ETS reform arguably

meets the first and second criteria, the ”smokescreen politics” obviously

failed on the third by implementing mechanisms whose impact on prices is

complex and hard to predict.

Consequently, the key to doing better in the future is to simplify the

rules in terms of minimizing the price uncertainty they induce. The straight-

forward option for this seems to be to adapt the cap. However, concerns

over intertemporal price formation may need to be addressed in addition.

First, policy makers want to contain price volatility, for instance because

they are concerned about the political acceptability of high prices (Boren-

stein et al., 2019). Second, changes in the cap are necessarily long-term

and rely on commitment. If this commitment is not credible to market

participants, then prices will be distorted (Quemin and Trotignon, 2019).

Given these concerns, a price collar could be a helpful complement. It

contains price volatility (Burtraw et al., 2010) and effectively works as a

commitment device (Fuss et al., 2018). It is simple and transparent since it

merely requires defining an upper and lower price path. In summary, cap

adjustments as the main lever to control long-term supply in combination

with a price collar to enhance commitment and to contain volatility seems

to be the right choice – in particular, if suitable adjustment rules can be
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found to make the program sufficiently flexible.
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Fries, S. and Zaköıan, J.-M. (2019). Mixed causal-noncausal ar processes
and the modelling of explosive bubbles. Econometric Theory, 35(6):1234–
1270.

Fuss, S., Flachsland, C., Koch, N., Kornek, U., Knopf, B., and Edenhofer,
O. (2018). A Framework for Assessing the Performance of Cap-and-Trade
Systems: Insights from the European Union Emissions Trading System.
Review of Environmental Economics and Policy, 12(2):220–241.

Gouriéroux, C., Jasiak, J., and Monfort, A. (2020). Stationary bubble
equilibria in rational expectation models. Forthcoming in Journal of
Econometrics.
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Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Ca-
paldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van
Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razu-
vaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B.,
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Appendix A Technical Appendix

A.1 Time-varying coefficient estimation and confidence
intervals

Given an observed set of data on the response series {yt} and the regressors
{xt}, the coefficient curves βj(·) in (4.1) can be estimated via local linear
nonparametric kernel estimation as in Cai (2007). Underlying this method
is a first-order Taylor approximation of each βj(·), for j = 0, ..., d, at a fixed
time point τ ∈ (0, 1). For t/n in a neighborhood of τ it holds that

βj(t/n) ≈ βj(τ) + β
(1)
j (τ)(t/n− τ). (A.1)

with β
(1)
j (·) denoting the first derivative of the coefficient function βj(·).

If we replace βj,t = βj(t/n) by approximation (A.1) for every j = 0, ..., d,
equation (4.1) can now be rewritten as:

yt ≈ β(τ)′xt + β(1)(τ)′xt(t/n− τ) + zt, (A.2)

where β(1)(τ) =
(
β

(1)
0 (τ), · · · , β(1)

d (τ)
)′

denote the stacked first derivatives
of trend functions evaluated at τ . The local linear estimator of this model
is found by minimizing the following weighted sum of squares with respect
to θ, where x̃t(τ) = (xt,xt(t/n− τ))′:

θ̂(τ) = argminθ

n∑
s=1
{ys − x̃s(τ)′θ}2

K

(
s/n− τ

h

)
, (A.3)

where K(·) is a kernel function and h > 0 is a bandwidth. As n → ∞,
the bandwidth is assumed to satisfy h → 0 while nh → ∞. The solu-
tion to this minimisation problem gives the estimator of (d + 1) coeffi-
cient functions β(·) as well as their (d + 1) first derivatives β(1)(·). Let
θ(τ) = (β(τ),β(1)(τ))′ denote the vector of stacked coefficient functions
and first derivatives. Then, the estimator θ̂(τ) = (β̂(τ), β̂(1)(τ))′ can be
expressed as,

θ̂(τ) =
 Sn,0(τ) S′n,1(τ)

Sn,1(τ) Sn,2(τ)

−1 Tn,0(τ)
Tn,1(τ)

 ≡ S−1
n (τ)Tn(τ), (A.4)
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for τ ∈ (0, 1), where for k = 0, 1, 2,

Sn,k(τ) = 1
nh

n∑
t=1

xtx′t(t/n− τ)kK
(
t/n− τ

h

)
,

Tn,k(τ) = 1
nh

n∑
t=1

xt(t/n− τ)kK
(
t/n− τ

h

)
yt.

This estimator can be seen as a weighted least squares estimator of a model
of the form (A.2). The fitted values are thus obtained by

ŷt = x′tβ̂(t/n), (A.5)

which shows that we are only interested in the estimates of the coefficient
curves, the estimated first derivatives only serve as a by-product of the
specific choice of estimator.

For the construction of confidence intervals, we rely on the autoregres-
sive wild bootstrap as proposed in Friedrich et al. (2019) for a nonpara-
metric trend model. We extend the method to model (4.1) by using the
following bootstrap algorithm:

Algorithm 1 (Autoregressive Wild Bootstrap).

1. Estimate model (4.1) and form a residual series. This means, calcu-
late

ẑt = yt − x′tβ̃(t/n), t = 1, ..., n,

where the estimate β̃(t/n) is obtained by bandwidth h̃ > h.

2. For 0 < γ < 1, generate ν∗1 , . . . , ν∗n as i.i.d. N (0, 1− γ2) and let ξ∗t =
γξ∗t−1 + ν∗t for t = 2, . . . , n. Take ξ∗1 ∼ N (0, 1) to ensure stationarity
of {ξ∗t }.

3. Calculate the bootstrap errors z∗t as z∗t = ξ∗t ẑt and generate the boot-
strap observations by y∗t = x′tβ̃(t/n) + z∗t for t = 1, . . . , n, where
β̃(t/n) is the same estimate as in the first step.

4. Obtain the bootstrap estimator β̂
∗(·) as defined in (A.4) using the

bootstrap series {y∗t }, with the same bandwidth h as used for the orig-
inal estimate β̂(·).
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5. Repeat Steps 2 to 4 B times, and let

q̂j,α(τ) = inf
{
u ∈ R : P∗

[
β̂∗j (τ)− β̃j(τ) ≤ u

]
≥ α

}
denote, for all j = 0, . . . , d, the α-quantile of the B centered bootstrap
statistics β̂∗j (τ) − β̃j(τ). These bootstrap quantiles are then used to
construct confidence bands as described below.

Note that in Step 1 of the above algorithm, a different bandwidth is
used to perform the nonparametric estimation. We follow the practical
implementation in Friedrich et al. (2019) using h̃ = 0.5h5/9. Compared
to the original bandwidth h, this bandwidth is larger and produces an
oversmoothed estimate as starting point for the bootstrap procedure. The
reason for this is the presence of an asymptotic bias whenever local poly-
nomial estimation is applied. The bias contains the second derivatives of
the coefficient functions, which can only be consistently estimated using a
larger bandwidth h̃.

To construct confidence intervals for every βj(·) for a confidence level of
1−α, we use the quantiles as obtained in Step 5 of the bootstrap procedure.
The confidence intervals are given by

I∗j,α(τ) =
[
β̂j(τ)− q̂j,1−α/2, β̂j(τ)− q̂j,α/2

]
. (A.6)

A.2 Testing procedure of the bubble detection test

Phillips et al. (2015) propose a recursive procedure which tests for the
presence of explosive episodes and locates the starting (and potentially
termination) point of such episodes. The pricing equation underlying the
approach can be written as

EUAt =
∞∑
i=0

(
1

1 + rf

)i
Et(Ut+i) +Bt, (A.7)

where rf is the risk-free interest rate, Ut represents the underlying funda-
mentals and Et is the conditional expectation given the information avail-
able at time t. Bt is the bubble component which is assumed to satisfy
Et(Bt+1) = (1 + rf )Bt. When Bt = 0, there is no bubble present in the
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price series and the degree of nonstationarity is determined by the funda-
mentals which are assumed to at most I(1). In the presence of bubbles,
when Bt 6= 0, the price series shows explosive behaviour.

Under the null hypothesis of the test, the bubble component is zero
such that the the price follows and AR(1) process with a drift:

EUAt = dT−η + θEUAt−1 + εt,

where T is the sample size, d is a constant and η > 1
2 controls the magnitude

of the drift component. Following Phillips et al. (2015), we consider the
case where d = η = θ = 1 such that the price process will be I(1).

Since the fundamentals are unobservable, it might be challenging to
estimate this component of equation (A.7). In an ideal application, a widely
used (theoretical) model exists with which one can obtain the fundamental
value of this asset. In this case, the model can be calibrated and parameters
can be estimated based on past data. This is done, for instance, in Shi
(2017). In our application, however, no such model exists. As we have seen
in Section 4.2, the relationship between allowance prices and the abatement-
related fundamental price drivers is not stable over time. Given these
results, we do not explicitly model the fundamental component but look for
simultaneous explosive periods in the most established price drivers. We
do this by applying the testing procedure separately to these series as it is
done, for instance, in Corbet et al. (2018).

As explained in Phillips et al. (2015), in practice, it can also be difficult
to distinguish bubbles from periods of price run ups, caused for instance
by temporary changes in the discount rate. The latter can mimic bubble
behaviour and will therefore also be detected by the test, although it is not
incorporated in the theoretical framework where a constant risk-free rate is
used. This is why Phillips et al. (2015) stress the importance of specifying
in advance a minimum duration for an episode to qualify as bubble.

In general, the recursive testing procedure detects periods of mildly ex-
plosive behaviour and market exuberance in time series, and it is able to
identify the location. The test applies a series of right-tailed ADF tests on
a (backward and) forward expanding sub-sample. The regression model on
which the test is based is closely related to the standard ADF test regres-
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sion. It is a version of the same regression, but on a particular window:

∆EUAt = αr1,r2 + βr1,r2EUAt−1 +
k∑
i=1

ψir1,r2∆EUAt−i + εt, (A.8)

where r1 denotes the start of the window and r2 the end, both expressed
as a fraction of the sample size T . The ADF test is concerned with the
null hypothesis H0 : βr1,r2 = 0 and the statistic will be denoted by ADF r2

r1 .
The minimum window size is r0 and the actual window size is rw = r2− r1.

The above regression is run multiple times on bTrwc observations. The
SADF test, which is the first version of the test, was introduced by Phillips
et al. (2011). The regression is estimated on a forward expanding sample,
starting at r1 = 0, whose length increases such that rw runs from r0 to 1.
The test is the supremum over all ADF statistics, hence named the SADF
test. Formally, it can be written as

SADF (r0) = sup
r2∈[r0,1]

ADF r2
0 . (A.9)

More powerful in the case of multiple bubbles is a variant of the test called
generalised SADF (GSADF) test in which not only the end point of the
window is varied but also the starting point r1. Different windows are
considered, for r1 varying from 0 to (r2 − r0). The test statistic is defined
as

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

ADF r2
r1 . (A.10)

Both tests are right-sided tests. Hence, if the test statistic exceeds the
critical value, there is evidence for the existence of an explosive period.
It does not provide any indication how many such episodes there are and
where they are located. To achieve this, Phillips et al. (2015) develop a
date-stamping strategy based on a third version of the sup ADF statistic,
the backward SADF statistic (BSADF). This test proceeds in a similar
way than the SADF and GSADF tests with the main difference of being
obtained for every point in the sample. Fix a point in the sample as the
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end point of the window, r2, and vary the starting point from 0 to (r2−r0),
then the BSADF test is obtained as

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADF r2
r1 . (A.11)

Applying this test to each point in the sample results in a sequence of test
statistics. To draw conclusions, we need to compare this sequence to a
corresponding sequence of critical values. Before we can identify explosive
episodes, it is important to define the minimum duration of a period to
qualify as evidence for explosive behaviour. If the test statistic lies above
the critical value merely for a few observations, this does not provide suf-
ficient evidence for the existence of a bubble. It is rather a short-lived
blip, as Phillips et al. (2015) call it. They suggest to chose a minimum
duration which is dependent on the sample, such as LT = log T . We can
then identify explosive episodes if we find periods for which the BSADF
statistic exceeds the critical values for at least LT consecutive observations.
In our case the minimum duration according to this formula would be 7
weeks. This procedure can also identify ongoing bubbles and serve as an
early warning system.

We apply the GSADF test and the date-stamping procedure in the
next section using a minimum window size that is set according to the
rule suggested by Phillips et al. (2015), r0 = 0.01 + 1.8

√
T , resulting in 40

observations. For the selection of the number of lags we use the Bayesian
Information Criterion. We apply two versions of the test. Firstly, the test
as originally proposed by Phillips et al. (2015). For this, we obtain critical
values from 2000 replications of their Monte Carlo simulation exercise to
mimic the finite sample distribution given our sample size. The results are
obtained using the R package MultipleBubbles which is accompanying the
Phillips et al. (2015) paper. Secondly, we use a sieve bootstrap approach as
proposed in Pedersen and Montes Schütte (2017). This paper shows that
the GSADF test is critically oversized in the presence of serial correlation
which implies that there is a serious risk of finding false evidence for explo-
sive behaviour. The bootstrap corrects the size but it comes at the cost of
a lower power. This is why we use both tests as complementary and show
that they come to the same conclusion making our results more robust.
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A.3 Modelling bubbles with noncausal α-stable pro-
cesses

The α-stable noncausal AR(1) was introduced and partially studied by
Gouriéroux and Zaköıan (2017) as a candidate model to analyse and fore-
cast bubbles in financial time series, and was studied in details by Fries
(2018a). This bubble-generating process features several surprising proper-
ties sharply contrasting with classical linear time series models; we start by
recalling some of these properties before presenting the results regarding
the prediction of bubble crash odds.
A noncausal AR(1) process is defined as the strictly stationary solution of
the stochastic recurrence equation:

Xt = ρXt+1 + εt,

where 0 < |ρ| < 1, and (εt) is an i.i.d. error sequence. The appellation
noncausal, standard in the literature (as well as anticipative), refers to
the fact that the stationary solution (Xt) of the above equation admits a
moving average representation in terms of «future» error terms as Xt =∑+∞
k=0 ρ

kεt+k. The above process is said to be an α-stable noncausal AR(1)
when εt

i.i.d.∼ S(α, β, σ, µ), where S(α, β, σ, µ) denotes the univariate α-
stable distribution with tail index α ∈ (0, 2), asymmetry β ∈ [−1, 1], scale
σ > 0 and location µ ∈ R, i.e., the distribution with characteristic function:

E[eiuε0 ] = exp
{
− σα|u|α

(
1− iβ sign(u)w(α, u)

)
+ iuµ

}
,

with w(α, s) = tg
(
πα
2

)
, if α 6= 1, and w(1, s) = − 2

π
ln |s| otherwise, for

s ∈ R. The case α = 2 (excluded in the noncausal bubble modelling frame-
work) corresponds to the Gaussian distribution, which is a particular stable
distribution – and the only instance which does not feature heavy-tails. For
α < 2, the case of interest for bubble modelling, α-stable distributions have
power-law decaying tails:

P(|ε0| > x) =
x→∞

O(|x|−α).
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Figure 6: Sample path of an α-stable noncausal AR(1) process with
parameters ρ = 0.95, α = 1.7, β = 1, σ = 0.1, µ = 0.5.

For more details on univariate and multivariate α-stable distributions we re-
fer to the comprehensive monograph by Samorodnitsky and Taqqu (1994).
Figure 6 illustrates a typical sample path of a noncausal AR(1) process
featuring multiple bubbles.

Although seemingly defined in reverse time, (Xt) is actually a Markov
process in the classical sense: Xt+h|Xt, Xt−1, . . .

d= Xt+h|Xt (Cambanis
and Fakhre-Zakeri, 1995). As a linear combination of α-stable errors, Xt

is itself marginally α-stable; it is thus heavy-tailed and admits very few
marginal moments: E[|Xt|s] < +∞ only for s < α. Despite featuring
infinite marginal variance, the conditional distribution of future realisation
of the process, say, Xt+h for some horizon h ≥ 1, given the past history
Xt, Xt−1, . . . admits finite moments at higher orders, namely:

E[|Xt+h|γ|Xt] < +∞, for γ < 2α + 1.

Thus, the predictive distribution of the process always admits a well-defined
conditional expectation, even though marginally E[|Xt|] = +∞ for α ≤ 1,
and can admit up to finite conditional variance, skewness and kurtosis,
provided the tail exponent α is close enough to 2. Gouriéroux and Zaköıan
(2017) obtained closed form expressions for the conditional expectation and
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variance in the special cases of symmetric (β = 0) and Cauchy-distributed
(α = 1, β = 0) errors, highlighting that (Xt) can feature GARCH effects,
and even presents a stationary unit root under special parameterisation
(Cauchy errors and ρ > 0) in the sense that E[Xt+1|Xt] = Xt.

The stationary solution (Xt) admits an infinite forward-looking moving
average representation in terms of the future errors as Xt = ∑∞

k=0 ρ
kεt+k.

By a change of variable in the moving average representation, one can
rewrite Xt as Xt = ∑

τ∈Z ρ
τ−t1τ−tετ , and it can be noticed that the trajec-

tory of the process (Xt) is a linear combination of so-called baseline paths
(Gouriéroux and Zaköıan, 2017; Fries and Zaköıan, 2019): deterministic
functions of time t 7→ ρτ−t1τ−t≥0, which are shifted in time by τ and scaled
by the random error ετ . Due to the heavy-tails of the distribution, real-
isations of the errors εt’s often take extreme values. Intuitively, if ετ0 is
extreme for a particular date τ0, then the trajectory of (Xt) can be locally
approximated by an exponential trend culminating in a peak and ending in
a crash down to pre-bubble levels: Xt ≈ ρτ0−t1τ0≥tετ0 , for t in the vicinity
of τ0.

This intuition is formalised and shown to hold in Fries (2018a,b), and
provides a convenient analytical framework to formulate predictions of
likely future paths for trajectories of noncausal processes. In particular,
it allows a formal quantification of the crash odds at future horizons of
bubbles generated by the noncausal AR(1). Fries (2018a) obtained func-
tional forms for the conditional expectation, variance, skewness and kur-
tosis of Xt+h given Xt = x for any admissible parameterisation and for
the general class of two-sided infinite moving average processes of the form
Xt = ∑

k∈Z akεt+k. Although the conditional moments have a complex
form in general, their expressions drastically simplify when one considers
the important case of interest of explosive episodes. For the noncausal
AR(1) with ρ > 0, it is shown that during explosive episodes (i.e., large
conditioning values Xt = x) the conditional moments of Xt+h given Xt = x

become equivalent to that of a weighted Bernoulli random variable charg-
ing probability ραh to the value ρ−hx, and probability 1 − ραh to 0. In
other words, conditionally on an explosive episode having reached the level
Xt = x, either:

1. with probability ραh, the bubble will survive at least until horizon h
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and follow an exponential trend of growth rate ρ−1: from Xt = x, the
trajectory will grow to ρ−hx.

2. with probability 1− ραh, the bubble will crash at some intermediate
future date before horizon h: from Xt = x, the trajectory will crash
to Xt+h, with Xt+h/Xt ≈ 0.

This asymptotic behaviour of Xt+h|Xt, initially deduced from the form of
first four conditional moments, has been confirmed to hold in distribution
(Fries, 2018b). Surprisingly, it can be noticed that for the α-stable non-
causal AR(1), the survival probability of bubbles at any horizon h, ραh,
does not depend on the conditioning level Xt = x. Since the noncausal
AR(1) is a Markov process, this implies that the survival probabilities of
bubbles generated by the model do not depend at all on their past history:
the bubbles feature a memory-less, or non-aging, property characterised by
a geometric survival probability function. They can thus be fully charac-
terised by their so-called half-life, the duration h0.5 such that their survival
probability at horizon h0.5 is 50%. For the noncausal AR(1) with autore-
gressive parameter ρ and tail index α, the half-life reads:

h0.5 = − ln 2
α ln ρ.

From the latter quantity, the crash odds (CO) at any horizon h ≥ 1 can be
expressed as

CO(h) = 1− (1/2)
h

h0.5 ,

while the expected duration (ED) of an explosive episode reads:

ED(h) = 1
1− ρα .

Appendix B Robustness Analysis

In addition to the final results shown in the paper, we conducted a formal
outlier detection as well as an extensive bandwidth selection procedure,
both serve as a robustness check for our results. In addition, we present
results using additional/alternative data series.
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B.1 Outlier detection

As mentioned in Section 4.2 we look for outliers in the dependent variable
as our methods are not designed to explain sudden jumps in allowance
price returns. The results presented in the main text are the results after
outliers have been removed. We now explain how we detect them and how
the results look without the removal.

We apply the impulse indicator saturation (IIS) approach proposed in
Santos et al. (2008). This approach includes a dummy variable at every
possible time point and performs expanding and contracting multiple block
searches to determine which dummy variables should be retained. It is
applied here to the EUA return series with a nominal significance level of
α = 0.005.
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Figure 7: Summary of impulse indicator saturation results. Figure pro-
duced with R package gets. Top: EUA returns (blue) and fit of dummy
regression (red); middle: standardised residuals after regression on dum-
mies; bottom: retained dummy variables

The IIS method applied to our dependent variable retains 10 dummy
variables corresponding to 10 outliers located at observations 39, 50, 53,
167, 237, 246, 254, 257, 305 and 444. Corresponding to time points in
October 2008, January and February 2009, June 2011, November 2012,
January 2013, March and April 2013, March 2014 and December 2016. If
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we control for the impact of our most important explanatory variables –
coal, gas, oil prices and temperature data – three of these outliers can be
explained (at observation 39, 53 and 167). Figure 7 depicts the results
of this IIS application. With this approach we retain 7 outliers which we
delete from the EUA price series and subsequently repeat our analysis.
The content of Figure 3 was produced with the outlier-corrected data. In
Figure 8 we repeat this figure but the raw data. Comparison of the two
figures shows that there are no major differences. A noteworthy difference
is that the confidence intervals get more narrow over some periods. In
particular, this effect is visible for the gas, coal and oil price coefficient in
the period from end 2012 to the beginning of 2014, where for the original
data the confidence intervals experienced a widening which disappears with
the removal of outliers. This does not change the results in a substantial
way nor does it affect the conclusions drawn regarding the significance of
coefficients.

B.2 Bandwidth selection

A crucial aspect of any local fitting method is the choice of the bandwidth
parameter h. It simultaneously controls the amount of smoothing and the
complexity of the estimation. A small value of the bandwidth stands, on
one hand, for a small approximation error and a resulting small modelling
bias. On the other hand, it means that only a few data points are included
in the local neighborhood and therefore, the variance of the estimator is
large. In addition, the estimated curve is less smooth and the model is
more complex than with a larger bandwidth.

In contrast, a large value of the bandwidth can create a large modelling
bias, but the model is less complex and the amount of smoothing will be
large. For the extreme values h → 0 and h → ∞, the estimate coincides,
respectively, with interpolation of the data points or a parametric linear
regression estimate. Therefore, bandwidth selection controls the complexity
of the model and in addition, there is a bias-variance tradeoff.

Comparing parametric and nonparametric fitting, the bandwidth pa-
rameter can be seen as an additional dimension. Parametric fitting is like
nonparametric fitting, where the choice of the bandwidth parameter is con-
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Figure 8: Nonparametrically estimated coefficient curves and 95% con-
fidence intervals before the removal of outliers

stant and different families of models are considered. Taking a bandwidth
of h → ∞ is unquestioned in all situations of parametric modelling, while
with nonparametrics, the bandwidth is seen as an additional parameter,
which is carefully selected so that the estimation outcome fits the data
well.

A theoretically optimal bandwidth can be obtained but it is infeasible
for practical use as the expression depends on several unobservable quan-
tities, e.g. the second derivative of β(·). We refer the interested reader to
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Fan and Gijbels (1996) for more details. We focus on rules how to select
bandwidths in practice.

Many data-driven methods for bandwidth selection are based on the
principle of cross validation (CV). The basic idea is to find the value of
the bandwidth that provides the best fit in terms of minimizing the sum of
squared residuals without overfitting. Simply finding h that minimises the
sum of squared residuals creates a problem of overfitting, since for h→ 0 a
perfect fit is obtained in the limit. The result of this obviously problematic
procedure would the smallest considered bandwidth in all cases. The leave-
one-out estimator provides a way to circumvent overfitting. The first step
is to construct the leave-one-out estimator by leaving out the observation
t that receives the highest weight in the local estimation. The second step
in the least-squares CV approach is to look at the weighted average of the
leave-one-out squared residuals and minimise them with respect to h.

Table 5: Bandwidth selection

Bandwidth Reference
Cross Validation 0.0874 e.g. Fan and Gijbels (1996)
Generalised CV 0.0800 Zhou and Wu (2010)
AIC 0.0866 Cai (2007)
LLO CV 0.0894 Chu and Marron (1991)
Average 0.0859

Source: Own calculations using R.
Notes: Optimal bandwidth chosen by different methods. The leave-(2l+
1)-out CV approach is applied with l = 4.

Cross validation, however, was originally designed for independent data
and can therefore potentially lead to problems in time series applications.
Chu and Marron (1991) show that cross validation systematically chooses
bandwidths that are too small (too large) in the presence of positive (neg-
ative) autocorrelation. They propose a modification of the criterion called
modified cross validation and show that it works well in time series appli-
cations. It follows the same general principle as CV, but it is based on a
different estimator. Chu and Marron (1991) use a leave-(2l+1)-out version
of the leave-one-out estimator.
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Figure 9: The four different data-driven bandwidth selection criteria:
(a) Cross validation, (b) Generalised cross validation, (c) Leave-(2l+ 1)-
out CV, (d) Akaike-based bandwidth selection criterion

In addition to cross validation and modified cross validation, we follow
the suggestions in Cai (2007) as well as Zhou and Wu (2010) and make use
of two additional bandwidth selection methods. Cai (2007) considers an
approach based on the Akaike information criterion (AIC) while Zhou and
Wu (2010) use generalised cross validation (GCV) originally proposed by
Craven and Wahba (1978).

The chosen bandwidths are presented in Table 5 while the criteria are
plotted in Figure 9. All bandwidths are in a similar range, with the GCV
criterion selecting the smallest and the leave-(2l + 1)-out CV the largest
bandwidth. In the main text we decide to use a bandwidth of 0.09 which
corresponds to the average. We also run the analysis with a smaller and a
larger bandwidth, h = 0.07 and h = 0.11. We observe that the results do
not change much. For illustration, we plot the gas price coefficient obtained
with the three different bandwidths in Figure 10. The results for the other
estimates can be obtained from the authors upon request.
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Figure 10: Three different estimates of the gas price coefficient, using
h = 0.07, 0.09, 0.11

B.3 Additional explanatory variables

This section is two-fold. First, we replace the oil price as indicator of eco-
nomic activity by the two stock indices in our data set – Euro STOXX
Europe 50 and STOXX Europe 600. Second, we include several other vari-
ables (among them the fuel switching price) in the time-varying coefficient
model which we did not include in the final results presented in the main
paper. The effect of the fuel switching price is already captured in our
model and the remaining additional variables did not show a period of sig-
nificance. Excluding them from the regression does not alter the shape of
the remaining coefficient curves.

Starting with the first point, we plot in Figure 11 the estimated param-
eter curves for the two stock indices. They were entered separately into
the nonparametric regression, replacing the oil price. We give here only
the coefficient of the replaced data series and not the entire set of regres-
sors. Switching from the oil price to either one of the stock indices does
not change the parameter estimates for the remaining regressors. Their
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coefficient curves are almost identical to Figure 3. For the sake of brevity
we do not plot them again. They can be obtained from the authors upon
request.

Figure 11 reveals that the two stock indices produce very similar coef-
ficient estimates. Given the shape of the two series (cf. Figure 2) this does
not come as a surprise, as both indices show a comparable development
over our sample period. Comparing the shape of the two curves in Figure
11 with the oil price coefficient plotted in Figure 3(d) shows that there are
also some similarities. All three parameter estimates are positive and show
some periods of significance which are longest for the oil price coefficient.
While the oil price coefficient becomes significant at the end of 2014 and
stays significant until the end of the sample (disregarding the boundary
effect), the stock indices have a significant coefficient only from the end
of 2014 to the beginning of 2015 and the STOXX 600 index in 2012 for
a very short period. The period of significance is therefore overall shorter
than for the oil price. Adding the two indices in addition to the oil price
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Figure 11: Nonparametrically estimated coefficient curves and 95% con-
fidence intervals for the two stock indices

to the linear regression yields the results presented in Table 6. Neither of
the indices has a significant effect on allowance prices when the oil price is
already accounted for.

In the second and final part of this section, we add two additional ex-
planatory variables to our nonparametric regression and we replace coal
and gas prices by the fuel switching price. We obtain data on energy sup-
ply from hydro power in Norway from the Norwegian Water Resources
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Table 6: Linear Regression Results

(d) (e)

β̂j seNW p-value β̂j seNW p-value
Coal -0.143 0.094 0.127 -0.124 0.109 0.255
Gas 0.176 0.078 0.024 0.213 0.074 0.004
Oil 0.206 0.068 0.003 0.175 0.088 0.048
Stoxx 50 – – – 0.07 0.158 0.671
Stoxx 600 – – – – – –

(f)

β̂j seNW p-value
Coal -0.145 0.097 0.136
Gas 0.177 0.077 0.022
Oil 0.178 0.086 0.040
Stoxx 50 – – –
Stoxx 600 0.112 0.165 0.498

Source: Own calculations using R.
Notes: Extension of Table 2. Results obtained using OLS estimation.
The dependent variable is the return on EUAs and the set of (station-
ary) regressors changes in each specification. The p-values are based on
Newey-West standard errors.

and Energy Directorate21 as well as data on electricity generation from
wind for Germany obtained from the database of the European Network
of Transmission System Operators for Electricity (ENTSO-E). Both vari-
ables should have a negative effect on allowance prices, as generation from
renewable energy sources reduces emissions and therefore the demand for
allowances. The hydro power data are weekly data which contain a strong
seasonal component which is removed with the help of Fourier terms. This
approach is also applied to the temperature data and it is explained in
Section B.4 below. The wind generation data is only available until the
end of May 2018 which reduces our sample size for this regression exercise
compared to the main analysis. The sample comprises now 517 instead
of 538 weekly observations. Added to the nonparametric regression, both
new regressors have a coefficient estimate which is extremely low in mag-

21Data retrieved from https://www.nve.no on 21.01.2019.

65

https://www.nve.no


nitude for the whole sample. Both estimated coefficient curves are plotted
in Figure 12. From panel (a) we see that hydro power is significant over a
very brief period in 2016. Panel (b) shows a period of significance for wind
at the beginning of the sample until 2010. Although this period is quite
long, given the small magnitude of the coefficient (in the order of 10−5), we
consider this effect as negligible.
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Figure 12: Nonparametrically estimated coefficient curves and 95% con-
fidence intervals for wind and hydro power generation

We calculate the fuel switching price for the switch from coal to gas for
electricity generation. The switching price can be obtained from the coal
and gas price series together with some additional values: the efficiency of
coal and gas plants as well as the respective GHG emission factors. The
emission factors are obtained from Juhrich (2016). The switching price is
defined as follows

switcht = ηcoalpgas − ηgaspcoal
ηgasfcoal − ηcoalfgas

, (B.1)

where ηi, fi and pi are the plant efficiency, emission factor and fuel prices
for i = coal, gas, respectively. For details on this we refer to the review
by Delarue et al. (2008). Figure 13 plots the resulting switching price as
well as the estimated coefficient curve when replacing the gas and coal
price series by the switching price. The switching price displayed in Panel
(a) is obtained using our coal and gas price data as well as ηgas = 0.47,
ηcoal = 0.36, fgas = 0.202 and fcoal = 0.338. Note that the gas and the coal
price must both be denoted in EUR/MWh. This is why we need to divide
our coal price by the conversion factor 8.14.
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Figure 13: Fuel switching price (Panel (a)) and nonparametrically esti-
mated coefficient curves and 95% confidence intervals for the fuel switch-
ing price (Panel (b))

The general development of the switching price is similar to the gas
price as plotted in Figure 2(b). There is a visible upward trend at the
end of the sample, which could again be seen as a potential cause of the
explosive period in allowance prices. In Section 5, we already excluded the
coal and the gas price as drivers of this behaviour. Therefore, we do not
expect the results for the switching price to be different. For completeness,
we obtain the GSADF statistic, which lies with 0.9647 below the critical
values indicating no evidence for explosive periods in the switching price.

From (B.1) we can see that the switching price is a linear combina-
tion of the gas and the coal price. Hence, we include it in place of the
two price series in our regression. The result is presented in Panel (b) of
Figure 13. The shape of the estimated coefficient curve closely resembles
the coefficient of the gas price which is not surprising given the stronger
effect of the gas price on allowance prices compared to the coal price. The
estimated coefficient is, however, smaller and the second period of signifi-
cance vanishes. Including the gas and the coal price separately and not as
a linear combination is less restrictive and we therefore do not consider the
switching price in our main model.

B.4 Temperature data

The temperature data were obtained from the European Climate Assess-
ment & Dataset (ECA&D) which provides surface air temperature for 199
measurement stations in Europe. It is provided by The Royal Netherlands
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Meteorological Institute (KNMI). We refer to Klein Tank et al. (2002) for
more details on the temperature series and measurement stations.

We obtain daily mean temperature series for seven cities, located in
seven different countries. They are spread out over Europe: Berlin, Bu-
dapest, De Bilt, Dublin, Lyon, Madrid and Stockholm. All series do not
contain any missing observations and all were updated until the end of
2018. We take the average over the cities as our temperature series. It
is displayed in Figure 14(a). We aggregate the data to weekly means in
order to match our sample frequency. In addition, we remove seasonality
by fitting a Fourier regression and subsequently, working with the residual
series from this regression. This removes the seasonal component with the
help of sine and cosine functions. More specifically, we fit the following
regression

Tempt = α1 cos(2πt) + α2 sin(2πt) + εt (B.2)

and continue to work with the residuals from this regression which are
plotted in Figure 14(c). The remaining part (b) of Figure 14 plots the
daily mean temperature (gray circles) together with the fitted Fourier terms
(blue). We can see that the seasonal component is well captured by this
method.

B.5 Additional BSADF results

Figure 15 presents the results from the date-stamping of explosive periods
using the BSADF test. Compared to Figure 4 which is the bootstrap
version, Figure 15 plots the series of BSADF test statistics (blue) and the
critical value series (orange) obtained by Monte Carlo simulation. Panel
(a) presents results from an application on the allowance price series and
panel (b) on the oil price series. For both series, the conclusions are the
same as presented in the main paper. The only difference lies in the starting
point of the explosive period in allowance prices; while it was March 2018 in
Figure 4 it is February in Figure 15. This minor difference is not surprising
given the fact that the bootstrapped critical values are larger due to the
size correction.
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Figure 14: Temperature data before and after the removal of the sea-
sonal component.
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Figure 15: Results from the BSADF test applied to the EUA prices (a)
and the oil prices (b). Each panel shows the critical value series (orange)
and the test statistics (blue)
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