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Abstract 
 
Long-term data show that the dynamic efficiency condition r>g holds when g is represented by 
the average growth rate of real GDP if r is the average real rate of return on equity, E(re), but not 
if r is the risk-free rate, rf. This pattern accords with a simple disaster-risk model calibrated to fit 
observed equity premia. If Ponzi (chain-letter) finance by private agents and the government are 
precluded, the equilibrium can feature rf≤E(g), a result that does not signal dynamic inefficiency. 
In contrast, E(re)>E(g) is required for dynamic efficiency, implied by the model, and consistent 
with the data. The model satisfies Ricardian Equivalence because, without Ponzi finance by the 
government, a rise in safe assets from increased public debt is matched by an increase in the safe 
(that is, certain) present value of liabilities associated with net taxes. 
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 The familiar dynamic efficiency condition is r>g, where r is a real rate of return and g is 

a rate of economic growth, for example, of real GDP.  This condition applies to the steady state 

of the infinite-horizon neoclassical growth model, as developed in Cass (1965) and Koopmans 

(1965) and elaborated in Barro and Sala-i-Martin (2004, Ch. 2).  The condition rules out 

excessive saving and investment; specifically, capital is not accumulated in the long run beyond 

the golden-rule level described in Phelps (1961).  In contrast, r<g is possible in the steady state 

of the overlapping-generations model developed by Diamond (1965), so that reduced saving and 

investment can be Pareto improving.  In this OLG environment, expansions of public debt and 

enlargement of pay-as-you-go social security systems may be welfare enhancing.  The condition 

r>g was highlighted in Abel, et al. (1989), and it arises in many analyses of wealth accumulation 

and public debt, such as the recent studies by Piketty (2011) and Blanchard (2019). 

 Whether r>g applies empirically depends mainly on how one defines r.  The bottom line 

from the available data since 1870 for 14 OECD countries, shown in Table 1, is that the 

condition holds if r is gauged by the average of the realized real rate of return on equity and does 

not hold if r equals the average of the realized real rate of return on short-term government bills.1  

The latter variable likely approximates the average of safe real interest rates.  Since the r>g 

condition holds when r is based on risky returns (on equity) but not when r is based on safe 

returns (approximated by government bills), a key underlying element is the large gap between 

the expected real rate of return on equity and the safe real interest rate; that is, the equity 

premium.  This substantial premium provides a lot of space in which g can fit, so that g can be 

simultaneously below the risky rate and above the safe rate. 

                                                 
1This perspective is consistent with the discussion in Abel, et al. (1989, p.2), who considered estimates of the 
marginal product of capital but did not look at rates of return on equity.  The results accord with the returns data 
presented in Barro and Ursúa (2008, Table 5), which appear in updated form in Table 1.  The underlying numbers 
come mostly from Global Financial Data.  Longer-term patterns are studied in Homer and Sylla (1996) and 
Schmelzing (2020). 
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 The r-g condition depends also on the definition of g, which is typically based on the 

long-run growth rate of real GDP.  In the usual version of the neoclassical growth model, the 

relevant transversality condition involves the growth rate of the level of real macroeconomic 

aggregates, not quantities per capita.  This result emerges from a specification in which 

individuals currently alive are connected as parents to members of future generations; for 

example, through altruistic linkages.  In this case, current households consider the asymptotic 

present value of all future real income, whether growing per capita or because of population 

growth. 

 To be more specific on the long-term empirical patterns, Table 1 shows the means since 

1870 (or a more recent year when earlier data are missing) of real rates of return and growth rates 

for 14 OECD countries with available data.  The returns refer to averages of realized arithmetic 

real rates of return on stocks (based on broad indices such as the S&P 500), short-term bills 

(analogous to Treasury Bills), and government bonds (around 10-year maturity).  The growth 

rates refer to real GDP per capita, real personal consumer expenditure per capita, and population 

(which enables calculations of growth rates of levels of real GDP and consumer expenditure).  

When averaging over the 14 countries, the average annual real rates of return were 7.0% on 

stocks, 1.1% on bills, and 2.6% on bonds.  Averages for annual growth rates were 1.9% for per 

capita GDP, 1.7% for per capita consumer expenditure, and 0.9% for population.  Hence, for 

levels, the average annual growth rates were 2.8% for GDP and 2.6% for consumer expenditure.2  

These numbers show that, over the long term, the growth rates of GDP and consumer 

expenditure were clearly below the real rate of return on equity and above that on bills.  In 

                                                 
2Results are similar if samples start in 1960, rather than 1870.  In the 1960 case, the averages over the 14 countries 
were 7.8% for stock returns, 1.4% for bill returns, 3.5% for bond returns, 2.1% for per capita GDP, 2.0% for per 
capita consumer expenditure, and 0.7% for population. 
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contrast, real rates of return on bonds were close to the growth rates of GDP and consumer 

expenditure. 

 To understand what measure of r-g matters, one needs a theoretical model that can 

explain a large equity premium.  The standard neoclassical growth model is unsatisfactory for 

this purpose because, in its deterministic setting, there is a single real rate of return and no equity 

premium.  A satisfactory framework requires uncertainty that is sufficient to generate a large 

equity premium; that is, to resolve the equity-premium puzzle of Mehra and Prescott (1985).  I 

use a simple representative-agent model with disaster risk, following Barro (2009), which built 

on Rietz (1988) and Barro (2006).  The analysis could also be pursued in alternative frameworks 

that can generate a large equity premium.  Prominent possibilities here are the long-run risks 

framework of Bansal and Yaron (2004)3 and the heterogeneous-consumers model of 

Constantinides and Duffie (1996). 

 

I.  Fruit-tree Model with Stochastic Depreciation 

 I use the simplest representative-agent model I have thought of that has sufficient 

aggregate uncertainty to generate a realistic equity premium and that also determines 

endogenously the rate of economic growth and the investment/saving decision.  The model is an 

“AK” version of the Lucas fruit-tree model: 

(1)     Yt = AKt, 

where Yt is output (of fruit or seeds) and Kt is the capital stock in the form of trees.  The model is 

constructed in discrete time but the length of the period is allowed to approach zero.  The timing 

is specified so that Kt represents the capital stock available at the start of period t and Yt  the 

                                                 
3This model features variations in the mean and volatility of long-run growth rates.  Other models, such as Gabaix 
(2012), allow for volatility of disaster risk. 
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output produced during period t.  The productivity level, A>0, is assumed constant but 

productivity shocks can be introduced.  These shocks would be analogous to the stochastic 

depreciation introduced below.  A simplifying assumption is that the marginal product of capital 

(equal to the average product) does not diminish as capital is accumulated.  This absence of 

diminishing returns seems most plausible when capital stock and capital services are interpreted 

broadly to encompass human capital, household durables, intangible capital, etc. 

During period t, output can be consumed as fruit, Ct, or invested as seed, It, so that 

 (2)    Ct = Yt - It = AKt - It. 

The creation of new trees through planting seeds (that is, gross investment) is assumed to be 

rapid enough so that, as in the conventional one-sector production framework, the fruit price of a 

unit of capital is pegged at a price normalized to one.4  Therefore, in the simplest setting, the 

price, Pt, of equity—in the sense of a claim on all of the trees—always equals Kt. This result 

corresponds to “Tobin’s q” equaling one.  In terms of changes over time, the equity price ratio, 

Pt+1/Pt, would equal the capital-stock ratio, Kt+1/Kt, which equals the output ratio, Yt+1/Yt.  

Therefore, the volatilities of equity prices and output would be the same.  In contrast, empirically 

observed equity prices are far more volatile than output, gauged by real GDP. 

 In practice, there are many reasons that equity valuations for businesses would depart 

from the reproduction cost of the underlying capital stock.  As an example, the price of goods 

sold might be a variable markup, 1+μt,, of the underlying cost of production, and variations in μt 

would generate fluctuations in Pt independently of those in Kt and Yt.  Another possibility is that 

the cost of shifting between consumables and new capital goods in the production process does 

                                                 
4Irreversibility of investment would affect this result if the constraint that gross investment cannot be negative is 
sometimes binding.  However, in the present model, gross investment is always chosen to be positive. 
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not stay fixed (at unity), and a further idea is that the productivity of old capital might vary 

stochastically relative to that of new capital. 

To capture these types of effects, the price ratio for equity, Pt+1/Pt, is allowed to deviate 

from that for the capital stock by an independent random term, 𝜀𝜀𝑡𝑡+1: 

 (3)    𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

= 𝐾𝐾𝑡𝑡+1
𝐾𝐾𝑡𝑡

+ 𝜀𝜀𝑡𝑡+1. 

The shock 𝜀𝜀𝑡𝑡+1 is assumed to have zero mean, serial independence, and to be distributed 

independently of Kt+1/Kt.  This specification means that an epsilon shock, possibly representing a 

change in markups or a shift in the rate of transformation between consumables and capital on 

the production side, has a permanent effect on the level of the equity price.  For asset-pricing 

purposes, an important condition is that 𝜀𝜀𝑡𝑡+1will be distributed independently of consumption 

growth, 𝐶𝐶𝑡𝑡+1/𝐶𝐶𝑡𝑡 (because 𝜀𝜀𝑡𝑡+1 is assumed to be independent of capital-stock growth, 𝐾𝐾𝑡𝑡+1/𝐾𝐾𝑡𝑡).  

In this case, the epsilon shock will not influence asset pricing in the model’s baseline 

specification but will allow for the equity price to be more volatile than capital stock and output. 

 The model allows for rare disasters by having stochastic depreciation of the capital stock; 

that is, destruction of trees.  The capital stock evolves because of gross investment and 

depreciation, δt+1Kt: 

 (4)    Kt+1 = Kt + It – δt+1Kt. 

The depreciation rate, δt+1, is stochastic and equal to 

 (5)    δt+1 = δ + ut+1 + vt+1, 

where 0<δ<1.  The ut+1 shock, normally distributed with mean 0, variance σ2, and serial 

independence, represents normal economic fluctuations.  This shock has a permanent effect on 

depreciation and, therefore, on the level of the capital stock.  (Since ut+1 can be negative, it is 

possible that δt+1 would be negative.)  The vt+1 shock represents rare disasters, modeled as large-
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scale destruction of trees.  With probability 1-p, vt+1=0, and with probability p, vt+1=-dt+1; that is, 

the fraction dt+1 (0< dt+1<1) of the trees is (permanently) destroyed in a disaster event.  The 

disaster size, dt+1, is subject to a time-invariant probability distribution.  (This disaster shock is 

one-sided because there are no bonanzas associated with the sudden appearance of new trees.)  A 

natural extension, as in Gabaix (2012), would allow for stochastic variations in disaster 

probability, p, or in the distribution of disaster sizes, d. 

 One part of tree output is paid out as dividends, which correspond to consumption of fruit 

by owners.  The other part is retained within the tree business to finance investment in new trees.  

From the standpoint of equity holders, the first part of the return on equity is the dividend yield, 

which equals the ratio of consumption, Ct, to the capital stock, Kt.5  The second part consists of 

equity price appreciation, Pt+1/Pt, given in equation (3).  Therefore, using equation (2), the gross 

one-period return on equity, 𝑅𝑅𝑡𝑡𝑒𝑒, is 

 (6)  𝑅𝑅𝑡𝑡𝑒𝑒 = 𝐶𝐶𝑡𝑡
𝐾𝐾𝑡𝑡

+ 𝐾𝐾𝑡𝑡+1
𝐾𝐾𝑡𝑡

+ 𝜀𝜀𝑡𝑡+1 = 𝐴𝐴 − 𝐼𝐼𝑡𝑡
𝐾𝐾𝑡𝑡

+ 𝐾𝐾𝑡𝑡+1
𝐾𝐾𝑡𝑡

+ 𝜀𝜀𝑡𝑡+1. 

Equations (4) and (5) imply that the growth of the capital stock is given by  

 (7)  𝐾𝐾𝑡𝑡+1
𝐾𝐾𝑡𝑡

= 1 + 𝐼𝐼𝑡𝑡
𝐾𝐾𝑡𝑡
− 𝛿𝛿 − 𝑢𝑢𝑡𝑡+1 − 𝑣𝑣𝑡𝑡+1. 

Substitution of equation (7) into the right-hand side of equation (6) yields: 

 (8)  𝑅𝑅𝑡𝑡𝑒𝑒 = 1 + 𝐴𝐴 − 𝛿𝛿 − 𝑢𝑢𝑡𝑡+1 − 𝜐𝜐𝑡𝑡+1 + 𝜀𝜀𝑡𝑡+1, 

so that the net rate of return, 𝑟𝑟𝑡𝑡𝑒𝑒 = 𝑅𝑅𝑡𝑡𝑒𝑒 − 1, is 

 (9)  𝑟𝑟𝑡𝑡𝑒𝑒 = 𝐴𝐴 − 𝛿𝛿 − 𝑢𝑢𝑡𝑡+1 − 𝜐𝜐𝑡𝑡+1 + 𝜀𝜀𝑡𝑡+1. 

In equation (9), the shocks 𝑢𝑢𝑡𝑡+1 and 𝜀𝜀𝑡𝑡+1 have zero mean, and the disaster shock 𝜐𝜐𝑡𝑡+1 has 

mean 𝑝𝑝 ∙ 𝐸𝐸(𝑑𝑑).  Therefore, the expectation of the one-period net rate of return is 

                                                 
5With a markup ratio 1+μ, the dividend payout in value terms is (1+μ)·Ct and the equity price is (1+μ)·Kt.  
Therefore, a change in μ  does not affect the dividend yield. 
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 (10)   𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) = 𝐴𝐴 − 𝛿𝛿 − 𝑝𝑝 ∙ 𝐸𝐸(𝑑𝑑). 

An assumption is that A>δ+p∙E(d) and, hence, 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) > 0.  Since productivity, A, disaster 

probability, p, and mean disaster size, E(d), are time invariant, 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) is constant over time. 

 The next step concerns the determination of the ratio of gross investment to the capital 

stock, It/Kt.  Gross investment equals gross saving (for a closed economy with no government 

sector) and can be determined from dynamic conditions for consumer optimization. 

 Barro (2009) uses a specification of preferences for the representative consumer based on 

the analysis of Epstein and Zin (1989) and Weil (1990), described as EZW preferences.  This 

specification, corresponding to Barro (2009, equation [10]), features constant values of the rate 

of time preference, ρ, the coefficient of relative risk aversion, γ, and the intertemporal elasticity 

of substitution (IES), 1/θ, where θ=γ holds in the standard power-utility formulation.  The 

condition γ>1 is required for the model to have a chance of generating an equity premium in the 

neighborhood of that observed empirically.  In that case, the standard representation would 

require θ>1 and, hence, IES<1.  Barro (2009) followed Bansal and Yaron (2004) to argue that 

the property IES<1 generates counter-factual predictions regarding equity pricing.  In the present 

analysis, γ>1 is crucial, but θ<1 is less important. 

 In general, EZW preferences do not allow for simple formulas for pricing assets.  

However, when the underlying shocks are i.i.d., as in the present model, the analysis simplifies 

dramatically.  Specifically, Barro (2009, equations [12] and [13]) used results from Giovannini 

and Weil (1989, appendix) to show that a standard-looking asset-pricing condition applies:   

 (11)   )()
*1

1( 1
γγ

ρ
−
+

− ⋅⋅
+

= tttt CREC ,       

where Rt is the gross return on any asset between dates t and t+1.  Two features that differ from 

those in the standard power-utility model (where γ=θ) are worth noting.  First, the exponents on 
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Ct and Ct+1 in equation (11) involve γ, the coefficient of relative risk aversion, not θ, which is the 

reciprocal of the IES.  Second, the effective rate of time preference, ρ*, differs from ρ when γ 

and θ diverge.  The formula for ρ* is, if γ≠1, 

   (12)   𝜌𝜌 ∗= 𝜌𝜌 − (𝛾𝛾 − 𝜃𝜃) ∙ �𝐸𝐸(𝑔𝑔𝑡𝑡) − �1
2
� ∙ 𝛾𝛾𝜎𝜎2 − � 𝑝𝑝

𝛾𝛾−1
� ∙ [𝐸𝐸(1 − 𝑑𝑑)1−𝛾𝛾 − 1 − (𝛾𝛾 − 1) ∙ 𝐸𝐸𝐸𝐸�. 

The term E(gt) is the economy’s expected growth rate and is derived below. 

 Because the shocks ut+1 and vt+1 are i.i.d. (permanent to the levels of capital stock and 

output), the ratio of gross saving to the capital stock will be optimally chosen as a constant, 

denoted by ν.  The value of ν can be determined by applying the consumption-based asset-

pricing formula in equation (11) to the gross return on equity, given in equation (8).  The result 

(applying as the length of the period approaches zero) is:6 

(13)    𝜐𝜐 = 𝛿𝛿 + (1
𝜃𝜃

) �𝐴𝐴 − 𝛿𝛿 − 𝜌𝜌 − �1
2
� 𝛾𝛾(1 − 𝜃𝜃) ∙ 𝜎𝜎2 − 𝑝𝑝 ∙ �1−𝜃𝜃

𝛾𝛾−1
� [𝐸𝐸(1 − 𝑑𝑑)1−𝛾𝛾 − 1]�. 

Equation (13) implies that, if γ>0, the sign of the effect of uncertainty (σ, p, or the 

distribution of d) on the gross saving ratio, ν, depends on the IES, 1/θ, not the degree of risk 

aversion, γ.  If θ<1, so that the IES exceeds 1, the “substitution effect” dominates, and more 

uncertainty (higher σ or p or an outward shift of the d-distribution) decreases ν.  For the 

parameter values used subsequently to calibrate the model (in Table 2), the main effect from 

uncertainty on the saving ratio comes from disaster risk—the term involving p on the far right of 

equation (13).  The term involving σ2 in this calibration is quantitatively unimportant. 

                                                 
6For equation (13) to be valid, the associated level of consumption has to be positive, corresponding to υ<A.  
Equation (13) implies that the condition υ<A can be expressed as: 

𝜌𝜌 > (1 − 𝜃𝜃) �𝐴𝐴 − 𝛿𝛿 − �1
2
� 𝛾𝛾𝜎𝜎2 − ( 𝑝𝑝

𝛾𝛾−1
)[𝐸𝐸(1 − 𝑑𝑑)1−𝛾𝛾 − 1]�. 

If this inequality does not hold, the optimization problem is not well defined because the attainable expected utility 
is unbounded.  The inequality is satisfied for the parameter values assumed later.  (An analogous inequality 
condition applies in the standard deterministic neoclassical growth model, where σ2 and p equal zero.) 
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In the present model, the growth rates of the macroeconomic variables—capital stock, 

output, and consumption—are always the same.  This common growth rate, denoted by gt,  is 

given from equation (7) as 

(14)  𝑔𝑔𝑡𝑡 = 𝐾𝐾𝑡𝑡+1
𝐾𝐾𝑡𝑡

− 1 = 𝜐𝜐 − 𝛿𝛿 − 𝑢𝑢𝑡𝑡+1 − 𝑣𝑣𝑡𝑡+1, 

where recall that ut+1 is the normal shock and vt+1 is the disaster shock.  A higher gross saving 

ratio, ν, in equation (13) implies a higher growth rate in equation (14). 

The expected growth rate is constant and given from equation (14) by 

 (15)   𝐸𝐸(𝑔𝑔𝑡𝑡) = 𝜐𝜐 − 𝛿𝛿 − 𝑝𝑝 ∙ 𝐸𝐸(𝑑𝑑). 

An assumption is that the parameters imply 𝐸𝐸(𝑔𝑔𝑡𝑡)>0, given that υ-δ is determined from 

equation (13). 

The relationship between the expected rate of return on equity, 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) from equation (10),    

and the expected growth rate, 𝐸𝐸(𝑔𝑔𝑡𝑡) from equation (15), is given by 

(16)   𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) −  𝐸𝐸(𝑔𝑔𝑡𝑡) = 𝐴𝐴 − 𝜐𝜐. 

Therefore, if A>υ—meaning that output exceeds gross investment and, hence, that consumption 

is positive (see n. 6)—the expected rate of return on equity exceeds the expected growth rate of 

the economy.7  In other words, the r>g condition holds in the model when the r applies to the 

expected rate of return on equity. 

 Consider now the risk-free real interest rate, denoted by rf.  In the model, risk-free claims 

are internal instruments, effectively private bonds that correspond to loans from one agent to 

                                                 
7The condition A>υ corresponds to the criterion for dynamic efficiency proposed in Abel, et al. (1989, p.2): “ … an 
economy is dynamically efficient if it invests less than the return to capital …”  In the present model, A equals the 
marginal (and average) product of capital and, therefore, corresponds to the gross return on capital. 
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another.8  The aggregate of risk-free assets always equals zero; that is, these assets are in zero net 

supply.  A later section considers government bonds, which may be in positive net supply. 

Although the aggregate quantity of risk-free assets will be zero, the model still 

determines a shadow real interest rate, rf, applying to these assets.  The value of rf, which is 

constant, can be determined from the asset-pricing condition in equation (11) along with the 

result that Ct+1/Ct equals the value gt given in equation (14).  The solution is 

 (17)   𝑟𝑟𝑓𝑓 = 𝐴𝐴 − 𝛿𝛿 − 𝛾𝛾𝜎𝜎2 − 𝑝𝑝 ∙ 𝐸𝐸[𝑑𝑑 ∙ (1 − 𝑑𝑑)−𝛾𝛾]. 

More uncertainty—higher σ or p or an outward shift of the d-distribution—decreases rf.9  For the 

parameter values used to calibrate the model (in Table 2), the main effect from uncertainty on rf 

comes from the disaster term, which involves p on the far right of equation (17).  With these 

parameter values, including γ=3.5, and for the observed histogram of disaster sizes, the term 

𝐸𝐸[𝑑𝑑 ∙ (1 − 𝑑𝑑)−𝛾𝛾] equals 1.7, implying that a (once-and-for-all) rise in disaster probability, p, by 

0.010 per year lowers 𝑟𝑟𝑓𝑓by a substantial 0.017 per year.  The effect associated with the normal 

shock, which involves σ2, is quantitatively unimportant.  Reasonable parameter values accord 

with a value of rf close to or below zero in equation (17).  For the values specified in Table 2, the 

equilibrium rf implied by equation (17) is 0.001, essentially zero.10  By comparison, long-term 

averages for OECD countries of realized real rates of return on government bills, as shown in 

Table 1, are around 0.01 per year. 

                                                 
8The assumption is that there do not exist storable goods or other real assets that yield a risk-free real rate of return 
above the equilibrium rf that arises in the model. 
9Since the model has i.i.d. shocks, the term structure of risk-free rates is flat; that is, rf is the short-term and long-
term risk-free rate. 
10This low value of rf reflects the fatness of the disaster tail, not the skewness, which arises from the exclusion of 
bonanzas.  Skewness would not apply if there were a bonanza probability, q, that equaled p and if the distribution of 
bonanza sizes were the same as that for disasters.  In this case, in turns out that the calibrated model’s equilibrium 
value of rf becomes 0.005, rather than 0.001.  To put it another way, with a small rise in p=q, which turns out to be 
from 0.040 to 0.042, the equilibrium rf would still be 0.001, despite the lack of skewness.  Skewness is unimportant 
because, with the substantial “diminishing marginal utility” implied by γ=3.5, the positive tail from bonanzas counts 
little for the equilibrium rf. 
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 The equity premium is given from equations (10) and (17) by 

 (18)  𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) − 𝑟𝑟𝑓𝑓 = 𝛾𝛾𝜎𝜎2 + 𝑝𝑝 ∙ 𝐸𝐸{𝑑𝑑 ∙ [(1 − 𝑑𝑑)−𝛾𝛾 − 1]}. 

For the parameter values specified in Table 2 (which include γ=3.5), the predicted equity 

premium from equation (18) is around 0.06 per year.  This result accords with measured equity 

premia, gauged by the gap shown in Table 1 between long-run averages of realized real rates of 

return on equity and short-term government bills.  (The observed stock returns can be adjusted to 

account for leverage associated with bond financing.)  The dominant part of the equity premium 

in the model reflects disaster risk, which appears in the term in equation (18) that contains the 

disaster probability, p.  The other part, 𝛾𝛾𝜎𝜎2, is quantitatively unimportant, as in the related 

analysis of the equity-premium puzzle in Mehra and Prescott (1985).  Note that, in the model, the 

positive effect of disaster risk on the equity premium reflects the negative impact on rf in 

equation (17), not an effect on the expected rate of return on equity, 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒), in equation (10).11 

 The relation between rf and the expected growth rate, 𝐸𝐸(𝑔𝑔𝑡𝑡), is given from equations (17) 

and (15) by 

 (19)  𝑟𝑟𝑓𝑓 −  𝐸𝐸(𝑔𝑔𝑡𝑡) = 𝐴𝐴 − 𝜐𝜐 − 𝛾𝛾𝜎𝜎2 − 𝑝𝑝 ∙ 𝐸𝐸{𝑑𝑑 ∙ [(1 − 𝑑𝑑)−𝛾𝛾 − 1]}.    

The parameter values considered below suggest that the gap in the model between rf and 𝐸𝐸(𝑔𝑔𝑡𝑡) 

is likely to be negative.  This result accords with the result that the model’s predicted value for rf 

in equation (17) is likely to be close to zero.  In any event, the model does not require the r>g 

condition to hold when the r refers to the risk-free rate.  Thus, there is no conflict between the 

theory and the empirical observation that this condition fails to hold when r is measured by the 

average real rate of return on government bills. 

                                                 
11Equation (10) implies a small negative effect from the disaster probability, p, on 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒).  This effect would not 
arise if bonanzas were treated symmetrically with disasters, as in n. 10. 



13 
 

 In terms of portfolio allocation, the representative agent in period t holds claims on all of 

the capital stock, Kt, at price, Pt, and holds a zero net position in risk-free assets.  That is, in the 

equilibrium—for the distribution of 𝑟𝑟𝑡𝑡𝑒𝑒 implied by equation (9) and for the value of 𝑟𝑟𝑓𝑓given in 

equation (17)—each agent is willing at all points in time to hold 100% of assets in risky capital 

and 0% in risk-free claims. 

 Because the representative agent ends up with a zero net position in risk-free assets, the 

equilibrium results would be the same if risk-free assets did not exist.  However, the existence of 

these assets would matter if households were heterogeneous; differing, for example, by 

coefficients of relative risk aversion, γ.  In that case, agents with relatively high γ would tend to 

be net positive in safe assets, thereby lending funds on a risk-free basis to those with relatively 

low γ. 

 

II.  Illustrative Calibration of the Model 

 Table 2 shows how the model works quantitatively for a reasonable set of parameter 

values.  The most important settings in the calibration relate to disaster probability and size 

distribution.  The values for disaster probability, p, and the distribution of disaster sizes, d, come 

from an updated version of the numbers in Barro and Ursúa (2008).  Specifically, peak-to-trough 

disaster events of size 10% or more for per capita GDP were isolated for 185 cases, 

corresponding to data for 40 countries going back as far as 1870 and up to 2012.12  This sample 

shows an average proportionate disaster size, E(d), of 0.21.  Taking account of the duration of 

each disaster event, the implied disaster probability, p (the chance of entering into a disaster 

state), is 0.04 per year.  The objects E(1-d)-γ, E(1-d)1-γ, and E[d((1-d)-γ] equal 4.0, 2.3, and 1.7, 
                                                 
12Colombia is the only one of the 40 countries to experience no GDP-based contractions of size 10% or more.  
Malaysia and Singapore, which have long-term GDP data, were excluded from the calculations because of the large 
gaps in data around World War II. 
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respectively, for a coefficient of relative risk aversion, γ, of 3.5 and for the observed histogram of 

disaster sizes.13  This value of γ, when used in equation (17) (along with the value of p and the 

size distribution of d), generates an equity premium that accords with empirically observed 

values around 0.06 per year.14  The variance of the normal shock, σ2, is set at 0.0004 per year to 

accord with the observed annual volatility of real GDP growth.  However, in the relevant range, 

the results on the equity premium and other outcomes are insensitive to the value of σ2. 

The deterministic part of the depreciation rate, δ, is set at 0.05 per year, the average BEA 

number from 1948 to 2018 for fixed assets (including government assets but excluding consumer 

durables other than residential housing).  The value set for A, 0.12 per year, is chosen to generate 

realistic levels of the real rates of return, which turn out to be 0.062 per year for E(re) and 0.001 

per year for rf.  The values of ρ=0.04 per year and θ=0.5 determine the gross saving and 

investment ratio, υ, to be 0.090 per year15 and the expected growth rate, E(g), to be 0.032 per 

year (the long-run average U.S. growth rate of real GDP). 

The implied ratio of gross investment to GDP is υ/A=0.75.  An interpretation of this high 

ratio is that, as mentioned before, the underlying AK production function should be interpreted in 

terms of a broad definition of what constitutes capital and investment. 

 

 

 

                                                 
13An alternative approach, pursued in Barro and Jin (2011), assumes that disaster sizes follow a power-law 
distribution.  The results are similar to those based on the observed histogram. 
14This calculation views each disaster event as permanent for the level of real per capita GDP.  Barro, Nakamura, 
Steinsson, and Ursúa (2013) and Barro and Jin (2020) assume, instead, that disasters are only partly permanent.  The 
estimated eventual recovery fraction is about 50% of the initial contraction.  An allowance for the partly temporary 
nature of macroeconomic disasters raises the value of γ required to match the observed equity premium. 
15The values of ρ and θ both contribute to υ and E(g).  The value of θ would also affect the sensitivity of the gross 
saving rate to dimensions of uncertainty—p, the size distribution of d, and σ2.  However, in the present analysis, 
these uncertainty parameters are fixed.  Therefore, the results shown for outcome variables in Table 2 could be 
generated with alternative combinations of ρ and θ. 
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III.  The r-g Conditions 

 This section elaborates on the r-g conditions for equity and safe assets.  A key issue is 

whether 𝑟𝑟𝑓𝑓 ≤  𝐸𝐸(𝑔𝑔𝑡𝑡) violates a transversality condition because it may allow an individual to 

borrow and roll over debt in perpetuity, so that an individual’s consumption could be increased 

without limit (an outcome that cannot apply in equilibrium). 

 

 A.  r-g for Equity 

 Equation (16) implies that the expected rate of return on equity exceeds the expected 

growth rate, 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) >  𝐸𝐸(𝑔𝑔𝑡𝑡).  To get perspective on this result, suppose that Pt is the price of 

equity (claims on trees) and Ct (fruit) is the flow of dividends on this equity.  (This discussion 

neglects the εt+1 term in the specification for the change in the equity price in equation [3].)   The 

net rate of return on equity between periods t and t+1 is 

 (20)    𝑟𝑟𝑡𝑡𝑒𝑒 = 𝐶𝐶𝑡𝑡
𝑃𝑃𝑡𝑡

+ 𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

− 1. 

Suppose, as before, that the equilibrium involves equality between the expected growth 

rate of the equity price, 𝑃𝑃𝑡𝑡+1
𝑃𝑃𝑡𝑡

− 1, and the expected growth rate of the capital stock, 𝑔𝑔𝑡𝑡 = 𝐾𝐾𝑡𝑡+1
𝐾𝐾𝑡𝑡

− 1, 

which equals the expected growth rate of consumption, 𝐶𝐶𝑡𝑡+1
𝐶𝐶𝑡𝑡

− 1.  In this case, the expected net 

rate of return on equity is 

 (21)    𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) = 𝐶𝐶𝑡𝑡
𝑃𝑃𝑡𝑡

+ 𝐸𝐸(𝑔𝑔𝑡𝑡). 

Rearranging this condition, assuming 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) ≠ 𝐸𝐸(𝑔𝑔𝑡𝑡), yields a formula for the price-dividend 

ratio of an equity claim: 

 (22)    𝑃𝑃𝑡𝑡
𝐶𝐶𝑡𝑡

= 1
𝐸𝐸(𝑟𝑟𝑡𝑡

𝑒𝑒)−𝐸𝐸(𝑔𝑔𝑡𝑡)
 . 
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Equation (22) is usually called the “Gordon growth formula.”16  This formula relates the price-

dividend ratio for equity to the reciprocal of the difference between the expected net rate of 

return on equity and the expected growth rate (of dividends; that is, of Ct in the present model).  

Equation (22) implies that Pt/Ct will be positive and finite only if 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) > 𝐸𝐸(𝑔𝑔𝑡𝑡),  as already 

noted in equation (16). 

Another way to think about the result is that claims on capital give the owners the rights 

to a stream of dividends (fruit) that is expected to rise at the rate 𝐸𝐸(𝑔𝑔𝑡𝑡).  If this expected growth 

rate were at least as high as the discount rate—which corresponds to the expected rate of return 

on the asset, 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒)—then the present value of the claim would be infinite.  This result is 

inconsistent with an equilibrium in which consumption is chosen optimally over time.  However, 

this inconsistency does not arise if 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒) > 𝐸𝐸(𝑔𝑔𝑡𝑡). 

 

 B.  r-g for Safe Assets 

 In contrast to equity shares, risk-free assets are internal claims that are in zero net supply.  

In the model, the representative agent ends up with a zero net position in these assets.  Hence, 

there is no condition analogous to the Gordon growth formula in equation (22) that would 

require 𝑟𝑟𝑓𝑓 >  𝐸𝐸(𝑔𝑔𝑡𝑡). 

 It is possible in the model that 𝑟𝑟𝑓𝑓 >  𝐸𝐸(𝑔𝑔𝑡𝑡) would hold.  For example, if there is no 

uncertainty, so that p=σ2=0, then 𝑟𝑟𝑓𝑓would equal 𝐸𝐸(𝑟𝑟𝑡𝑡𝑒𝑒), and both returns would exceed the 

expected growth rate, 𝐸𝐸(𝑔𝑔𝑡𝑡).17  However, for realistic parameter values, as in Table 2, the 

condition 𝑟𝑟𝑓𝑓 <  𝐸𝐸(𝑔𝑔𝑡𝑡) is likely to hold, and this result is consistent with the data in Table 1. 

                                                 
16See Campbell (2018, p. 130).  The reference to Gordon refers to Gordon and Shapiro (1956, equation [7]). 
17This result requires consumption to be positive, which corresponds, in the absence of uncertainty, to 𝜌𝜌 >
(1-𝜃𝜃)(𝐴𝐴 − 𝛿𝛿). 
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 Another way to think about the result is to consider the position of the representative 

agent, who, in the equilibrium, holds all assets as risky equity with a zero net position in safe 

assets.  Suppose that this agent in period t perturbs his or her position by issuing one unit of safe 

bonds (borrowing one unit) and using the proceeds to raise Ct by one unit.  Suppose further that 

the agent plans never to repay this debt; that is, the debt is rolled over in perpetuity, so that the 

stock of debt grows at the risk-free rate, 𝑟𝑟𝑓𝑓.  All other parts of the plan for consumption and 

portfolio allocation subsequent to date t are assumed to be unchanged (and the time paths of 𝑟𝑟𝑡𝑡𝑒𝑒 

and rr are unaffected by an individual’s perturbation).  If this new plan were feasible, the agent’s 

expected overall utility would rise, corresponding to the increase in Ct and unchanged values of 

Ct+1, …  That is, the agent would not actually have been optimizing, and the proposed 

equilibrium would be invalid; in effect, a transversality condition would be violated. 

Suppose that, in assessing the feasibility of this kind of perturbation, the key issue is 

whether an individual’s debt can ever exceed the value of the individual’s assets.  That is, the 

assets represent collateral, and an excess of debt over collateral is assumed to trigger default, so 

that the debt issued at time t cannot actually be safe.  In the proposed perturbation from the initial 

plan, the agent’s assets held as claims on capital grow at rate gt.  Therefore, if 𝑟𝑟𝑓𝑓 ≤ 𝐸𝐸(𝑔𝑔𝑡𝑡),18 the 

expectation is that the ratio of the debt to these assets will not rise over time, so that collateral 

would tend to rise (or stay constant) relative to debt.  This result might suggest that the 

perturbation is feasible; however, the argument is invalid because gt is subject to uncertainty, 

                                                 
18This argument can be extended to various forms of derivatives, which offer an array of expected rates of return in 
equilibrium.  For example, far-out-of-the-money put options on equity shares would have a particularly low 
expected rate of return because of the protection offered against disaster outcomes.  The high expected rate of return 
from writing these put options has to be weighed against the high risk—involving a reliance on expected growth to 
outweigh the cumulated obligation in the long run. 
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particularly from disaster risk, and this uncertainty cumulates into the future.19  Specifically, for 

any ε>0, there is a non-zero probability that income from capital will fall below ε and stay there 

forever; hence, there is a chance that the debt will, at some point, exceed the value of assets held 

as claims on capital, and this breach of collateral triggers default.  If the cost of default is large 

enough, individuals will be deterred from issuing debt that they plan to roll over forever.  In this 

case, the equilibrium features a zero net position for each individual’s holdings of safe assets, 

and the risk-free real interest rate, 𝑟𝑟𝑓𝑓, is the one given in equation (17). 

The argument, consistent with that in Abel, et al. (1989, p. 14), is analogous to the one 

constructed by Samuelson (1969) to counter the view that long-horizon investors would place a 

particularly large share of assets into risky form—equity rather than safe assets in the present 

context.  The fallacious reasoning is that E(re)>rf  implies that assets held as equity, rather than 

risk-free bonds, are almost surely worth more at horizon T when T is very long.  The problem is 

that the uncertainty associated with long-term asset values cumulates in parallel with T (as in 

n. 19), and the tradeoff between risk and expected return does not depend on T (in the type of 

i.i.d. model under consideration).  In the language of Campbell (2018, p. 270), the model 

satisfies the conditions for myopic portfolio choice. 

The key condition needed to validate the equilibrium is the exclusion of a form of Ponzi 

or chain-letter finance in which an individual borrows more at the risk-free rate and then fully 

rolls over the added debt in perpetuity.20  Individuals can consider an array of perturbations to 

the equilibrium in which they change the amount consumed in any period t and then change the 

amount consumed in any other period, such as t+1, while shifting correspondingly the amounts 

                                                 
19For example, the variance of the cumulated shocks is proportional to the future date T for the normal and disaster 
terms in equation (7). 
20If this type of Ponzi finance is feasible, then all agents would engage in this practice.  In the end, since safe assets 
are in zero net supply, the representative agent has to end up with a zero net position in these assets.  However, the 
features of the equilibrium with Ponzi finance are unclear. 
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held in risk-free form during the two periods.  That is, shifts in the timing of consumption 

associated with the rate rf are allowed among any periods within a finite horizon.  These 

perturbations away from the equilibrium are not optimal for the individual because equation (17) 

guarantees that the first-order conditions for intertemporal choices of consumption (associated 

with rf ) are all satisfied. 

 

IV.  Government Bonds 

 Let Bt be the real quantity of government bonds outstanding at the start of period t.  These 

bonds are assumed to be analogous to the safe short-term bonds that private agents were able to 

issue.  The real interest rate applicable to government bonds is assumed to be rf, the same rate as 

that for private bonds.  This assumption of equal interest rates is not far from reality for the 

United States if one identifies private bonds with prime corporate obligations.  For example, 

from 1920 (which has the first data on securities comparable to U.S. Treasury Bills) to 2019, the 

average of annual nominal yields was 0.034 for 3-month Treasury Bills and 0.041 for 90-day 

commercial paper; that is, the spread was only 0.007.  The average annual real rate of return on 

10-year U.S. government bonds over this period was 0.029, whereas that on Moody’s AAA 

corporate bonds was 0.036, again a spread of 0.007. 

 The government collects real taxes net of transfers of Tt during period t.  The quantity Tt 

is treated as a random variable.  Neglecting government purchases of goods and services 

(government consumption and investment), the government’s budget constraint is: 

 (23)   𝐵𝐵𝑡𝑡+1 − 𝐵𝐵𝑡𝑡 = 𝑟𝑟𝑓𝑓 ∙ 𝐵𝐵𝑡𝑡 − 𝑇𝑇𝑡𝑡. 

Hence, the budget deficit equals the excess of spending (for interest and transfers) over revenue 

(from taxes).  The real interest rate 𝑟𝑟𝑓𝑓is assumed to be constant and known in period t, as in the 
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model worked out before without a government sector.  Net taxes, Tt+j, in each future 

period (j≥1) are stochastic from the perspective of period t, and the evolution of these net taxes 

determines the future quantities of government bonds, 𝐵𝐵𝑡𝑡+2,𝐵𝐵𝑡𝑡+3, …  These quantities are random 

from the perspective of period t, but the realizations of these quantities is linked to the 

realizations of net taxes from the government’s budget constraint in equation (23). 

 A key object for the equilibrium is the present value of future net taxes, computed using 

as a discount rate the safe real interest rate, 𝑟𝑟𝑓𝑓.  Iterating equation (23) into the future for N≥1 

periods yields an intertemporal budget constraint for the government: 

 (24)  ∑ [𝑇𝑇𝑡𝑡+𝑗𝑗−1/(1 + 𝑟𝑟𝑓𝑓)𝑗𝑗]𝑁𝑁
𝑗𝑗=1 = 𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑡𝑡+𝑁𝑁/(1 + 𝑟𝑟𝑓𝑓)𝑁𝑁. 

Therefore, aside from the final term on the right-hand side, the present value of future net taxes, 

computed as of period t, is non-stochastic and pinned down to equal the stock of government 

bonds, 𝐵𝐵𝑡𝑡, at the start of period t. 

 The previous infinite-horizon model corresponds to N tending to infinity.  A key issue is 

how the final term on the right-hand side of equation (24),  𝐵𝐵𝑡𝑡+𝑁𝑁/(1 + 𝑟𝑟𝑓𝑓)𝑁𝑁, behaves as N 

approaches infinity.  The usual perspective is that, asymptotically, 𝐵𝐵𝑡𝑡+𝑁𝑁 cannot growth at a rate 

higher than E(gt), the expected growth rate of real GDP, so that the ratio of public debt to GDP, 

𝐵𝐵𝑡𝑡+𝑁𝑁/𝑌𝑌𝑡𝑡+𝑁𝑁, does not rise in the long run.  In that case, the condition 𝑟𝑟𝑓𝑓> E(gt) would ensure 

𝐵𝐵𝑡𝑡+𝑁𝑁
 �1+ 𝑟𝑟𝑓𝑓�

𝑁𝑁 →0 as N → ∞.  However, the previous analysis found that 𝑟𝑟𝑓𝑓≤ E(gt) could apply 

asymptotically. 

 The asymptotic behavior of the term 𝐵𝐵𝑡𝑡+𝑁𝑁/(1 + 𝑟𝑟𝑓𝑓)𝑁𝑁 is analogous to the Ponzi-type 

borrowing considered for an individual agent in the model without government.  That is, the 

question is whether the government can borrow an additional unit at date t and then allow the 

debt to roll over forever at the rate 𝑟𝑟𝑓𝑓without ever repaying principal or interest.  In the earlier 
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setting, this possibility was ruled out, even when 𝑟𝑟𝑓𝑓≤ E(gt), because of the uncertainty in the 

evolution of real GDP and, hence, in the value of an individual agent’s assets (collateral) held as 

claims on capital.  That is, there was a positive probability that the amount owed would 

eventually exceed an agent’s collateral, thereby triggering default. 

In the context of the government, the collateral relates to taxing capacity, which, in a 

richer model, would depend on the economy’s real GDP.  Uncertainty in the evolution of GDP 

implies that the rolling over forever of the government’s debt generates a positive probability 

that the debt would eventually exceed the government’s collateral, thereby triggering sovereign 

default.  In this case, Ponzi borrowing in risk-free form by the government can be ruled out, and 

equation (24) becomes, when expressed over an infinite horizon: 

(25)   ∑ [𝑇𝑇𝑡𝑡+𝑗𝑗−1/(1 + 𝑟𝑟𝑓𝑓)𝑗𝑗]∞
𝑗𝑗=1 = 𝐵𝐵𝑡𝑡. 

Equation (25) says that the government can choose the timing of tax collections (and, therefore, 

budget deficits), but the present value of taxes is pinned down to equal the starting amount of 

public debt. 

 The model described before still applies for private agents.  The only new elements are 

that the representative agent holds the initial stock of government bonds, 𝐵𝐵𝑡𝑡, and has to pay the 

stream of (lump-sum) net taxes, 𝑇𝑇𝑡𝑡,𝑇𝑇𝑡𝑡+1, …  However, the present value of the latter over an 

infinite horizon (evaluated at the rate 𝑟𝑟𝑓𝑓) is pinned down from equation (25) to equal 𝐵𝐵𝑡𝑡.  

Therefore, the net wealth of an individual agent is unaffected by the level of 𝐵𝐵𝑡𝑡 or the timing of 

taxes and budget deficits.  It follows that the model satisfies Ricardian Equivalence—the 

equilibrium with respect to real rates of return, investment, and economic growth is invariant 

with choices related to public debt. 
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 Another way to look at the results is in terms of quantities of safe assets.  Government 

bonds, 𝐵𝐵𝑡𝑡, are a form of safe asset, which pays the safe real interest rate, 𝑟𝑟𝑓𝑓.  However, net taxes 

owed to the government amount to a safe (that is, certain) liability—although the timing of taxes 

is uncertain, the overall obligation has a fixed present value when evaluated using the rate rf.  

Equation (25) implies that the net of the asset and liability is nil, implying no change in the 

economy’s net quantity of safe assets.  In this sense, the introduction of public debt does not 

mean that safe assets are in positive net supply. 

 The model can be extended to allow for a path of government purchases, Gt.  Future 

values Gt+1, Gt+2, … are stochastic from the perspective of period t.  These choices might reflect 

war and peace, changing preferences for public programs, and so on.  If Ponzi finance by the 

government is still ruled out, the government’s intertemporal budget constraint over an infinite 

horizon in equation (25) becomes: 

(26)  ∑ [𝑇𝑇𝑡𝑡+𝑗𝑗−1/(1 + 𝑟𝑟𝑓𝑓)𝑗𝑗]∞
𝑗𝑗=1 = 𝐵𝐵𝑡𝑡 + ∑ [𝐺𝐺𝑡𝑡+𝑗𝑗−1/(1 + 𝑟𝑟𝑓𝑓)𝑗𝑗]∞

𝑗𝑗=1 . 

Equation (26) implies that the present value of taxes is no longer pegged to equal 𝐵𝐵𝑡𝑡.   Instead, as 

time evolves, the changing present value of taxes (above 𝐵𝐵𝑡𝑡) reflects randomness in the present 

value of government purchases. 

 The equilibrium of the economy depends on the realization of Gt, the stochastic process 

that generates future values Gt+1, Gt+2, … and the ways that government purchases affect 

household utility or production.  The equilibrium also takes into account that Gt adds to Ct and It 

as a use of current output, Yt.  However, Ricardian Equivalence concerns effects from changes in 

public debt and taxes for a given behavior of government purchases.  That is, the issue is how the 

economy responds to variations in 𝐵𝐵𝑡𝑡 and the path of taxes (and budget deficits), for a given path 

of Gt, Gt+1, … In equation (26), the probability distribution of the present value ∑ [𝐺𝐺𝑡𝑡+𝑗𝑗−1/∞
𝑗𝑗=1
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(1 + 𝑟𝑟𝑓𝑓)𝑗𝑗] is held fixed in this experiment, and the changes related to public debt still have no 

impact on the net of 𝐵𝐵𝑡𝑡 over the present value of taxes, ∑ [𝑇𝑇𝑡𝑡+𝑗𝑗−1/(1 + 𝑟𝑟𝑓𝑓)𝑗𝑗]∞
𝑗𝑗=1  (although this 

net term is now random and does not equal zero).  Therefore, as in the model that excluded 

government purchases, these fiscal changes have no effect on the net wealth of the representative 

agent, and Ricardian Equivalence holds. 

 

V.  Summary Observations 

 The empirical pattern for several OECD countries back as far as 1870 indicates that the 

familiar dynamic efficient condition r>g holds when g is the average growth rate of real GDP if 

r is the average real rate of return on equity, re.  The condition does not hold if r is the risk-free 

rate, rf, proxied by the average real rate of return on Treasury Bills.  This pattern accords with a 

simple disaster-risk model calibrated to fit observed equity premia.  The model features 

stochastic depreciation of capital, with the potential for disaster events in which large portions of 

capital are destroyed.  Alternative versions of this model that could be considered feature 

productivity shocks, shifts in the relative cost of producing new capital goods, changes in the 

value (productivity) of old capital, and variations in markup ratios. 

As long as Ponzi-type finance for private agents and the government are precluded, the 

equilibrium can feature a risk-free rate, rf, below the expected growth rate, E(g), and possibly 

close to zero.  (The model assumes that there do not exist real assets that deliver a positive, safe 

real rate of return.)  The result rf≤E(g) does not signal dynamic inefficiency.  In contrast, the 

inequality E(re)>E(g) is required for dynamic efficiency, implied by the model, and consistent 

with the data.  The model satisfies Ricardian Equivalence for public debt because, with Ponzi 

finance by the government excluded, a rise in safe assets from increased government bonds is 



24 
 

matched by an increase in the safe (that is, certain) present value of liabilities associated with net 

taxes. 
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Table 1 

Long-Term Rates of Return and Growth Rates for 14 OECD Countries 

Country Stock 
return 

Bill 
return 

Govt. bond 
return 

Growth rate of: 

    GDP per 
capita 

C per 
capita 

Population 

Australia 0.087 0.012 0.033 0.016 0.015 
(1902) 

0.018 

Canada 0.075 0.013 
(1900) 

0.034 0.020 
(1871) 

0.018 
(1872) 

0.016 
 

Denmark 0.058 
(1874) 

0.029 0.040 0.018 0.015 0.007 

France 0.065 
 

-0.008 0.008 0.018 0.015 0.004 

Germany 0.053 
 

-0.012 0.015* 0.021 0.018 0.005 

Italy 0.061 
(1925) 

0.003 0.016 0.019 0.016 0.005 

Japan 0.082 
(1886) 

0.004 
(1883) 

0.023 
(1871) 

0.026 
(1871) 

0.024 
(1875) 

0.009 

Netherlands 0.069 
(1900) 

0.011 0.028 0.018 0.018 0.011 

New Zealand 0.076 0.023 
(1923) 

0.033 0.014 0.012 
(1879) 

0.016 

Norway 0.061** 
(1915) 

0.016 0.030 0.021 0.018 0.007 

Sweden 0.080 
(1871) 

0.023 0.028 0.022 0.020 0.006 

Switzerland 0.068 
(1914) 

0.010 
(1895) 

0.020 
(1900) 

0.014 0.014 0.008 

United Kingdom 0.065 
 

0.016 0.026 0.015 0.014 0.005 

United States 0.083 
 

0.012 0.028 0.021 0.018 0.014 

Means 0.070 0.011 0.026 0.019 0.017 0.009 
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Notes to Table 1 
 
Stock return refers to broad stock-market indexes and includes dividends.  Bill return refers to 
short-term securities analogous to 3-month Treasury Bills.  Bond return refers to government 
bonds, typically with maturity around ten years.  C refers to personal consumer expenditure. 
 
Sample periods are 1870-2019 for annual real rates of return, 1870-2017 for annual growth rates 
of per capita GDP and consumer expenditure, and 1880-2019 for population growth, unless a 
different starting date for a variable is indicated in parentheses.  Rates of return are calculated 
arithmetically from nominal total returns divided by consumer price indexes.  Data on total 
nominal returns (including dividends paid on stocks) and consumer price indexes are mostly 
from Global Financial Data.  See the discussion of an earlier version of these data in Barro and 
Ursúa (2008, Table 5).  The long-term data on macroeconomic variables are updated versions of 
those described in Barro and Ursúa (2008), available at scholar.harvard.edu/barro. 
 
The samples are based on availability of long-term data for rates of return and macroeconomic 
variables.  Countries with long-term information that could not be used include Belgium and 
Finland (missing information on consumer price indexes), Portugal (missing data on stock 
returns and consumer price indexes), and Spain (missing data on stock returns, government bond 
returns, and consumer price indexes). 
 
For U.K. consols, the average real rate of return for 1870-2015 was 0.035.  For U.S. high-grade 
corporate bonds, the average real rate of return for 1870-2019 was 0.038.  These results are 
based on information in Global Financial Data. 
 
*Excludes 1923. 
**Based on stock-market index and estimated dividend yield, rather than a total-return index.  
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Table 2 

Baseline Calibration of Model 

 

Parameter Value 
Coefficient of relative risk aversion, γ 3.5 
Reciprocal of IES, θ 0.5 
Rate of time preference, ρ (per year) 0.04 
Productivity, A (per year) 0.12 
Depreciation rate, δ (per year) 0.05 
E(d) (mean of disaster size for depreciation) 0.21 
E(1-d)-γ (based on observed histogram of disaster sizes) 4.0 
E(1-d)1-γ (based on observed histogram of disaster sizes) 2.3 
E[d((1-d)-γ] (based on observed histogram of disaster sizes) 1.7 
p (disaster probability for depreciation, per year) 0.04 
σ2 (variance of normal shock to depreciation, per year) 0.0004 
Implied outcome variables in model  
E(re) (expected unlevered rate of return on equity, per year) 0.062 
rf  (risk-free real interest rate, per year) 0.001 
υ (gross saving ratio, I/K, per year)  0.090 
E(g) (expected growth rate, per year) 0.032 

 

Notes: 

The disaster probability, p, and the distribution of disaster sizes, d, come from an updated 
version of the numbers in Barro and Ursúa (2008).  Peak-to-trough contractions of real per capita 
GDP of 10% or more were isolated for 185 cases, corresponding to data for 40 countries going 
back as far as 1870 and up to 2012.  For this sample, the average proportionate disaster size, 
E(d), is 0.21 and the disaster probability, p (the chance of entering into a disaster state), is 0.040 
per year.  The objects E(1-d)-γ, E(1-d)1-γ, and E[d((1-d)-γ] equal 4.0, 2.3, and 1.7, respectively, 
based on the histogram for observed disaster sizes and for a coefficient of relative risk aversion, 
γ, of 3.5.  This value of γ generates an equity premium of 0.061 per year, close to that observed 
empirically.  The variance of the normal shock, σ2, is set at 0.0004 per year to accord with the 
observed annual volatility of real GDP growth.  The deterministic part of the depreciation rate, δ, 
equals 0.05 per year, the average BEA number for the depreciation rate from 1948 to 2018 for 
fixed assets (including government assets but excluding consumer durables other than residential 
housing).  The value for A, 0.12 per year, generates realistic levels of real rates of return, 0.062 
per year for E(re) and 0.001 per year for rf.  The values ρ=0.04 per year and θ=0.5 determine the 
gross saving and investment ratio, υ, to be 0.090 per year and the expected growth rate, E(g), to 
be 0.032 per year (the long-run average growth rate of U.S. real GDP). 
  



28 
 

References 
 
Abel, Andrew B., N. Gregory Mankiw, Lawrence H. Summers, and Richard J. Zeckhauser  

(1989).  “Assessing Dynamic Efficiency: Theory and Evidence,” Review of Economic  
Studies 56 (January), 1-19. 

 
Bansal, Ravi and Amir Yaron.  2004.  “Risks for the Long Run:  A Potential Resolution of  

Asset-Pricing Puzzles.” Journal of Finance, 59 (August), 1481-1509. 
 

Barro, Robert J. (2006).  “Rare Disasters and Asset Markets in the Twentieth Century.”  
 Quarterly Journal of Economics, 121 (August), 823-866. 
 
Barro, Robert J. (2009).  “Rare Disasters, Asset Prices, and Welfare Costs.”  American Economic  

Review 99 (March), 243-264. 
 
Barro, Robert J. and Tao Jin (2011).  “On the Size Distribution of Macroeconomic Disasters,”  

Econometrica 79 (September), 1567-1589. 
 
Barro, Robert J. and Tao Jin (2020).  “Rare Events and Long-Run Risks,” forthcoming, Review  

of Economic Dynamics. 
 
Barro, Robert J. and Xavier Sala-i-Martin (2004).  Economic Growth, 2nd ed., Cambridge MA,  

MIT Press. 
 
Barro, Robert J. and Jose F. Ursúa. 2008. “Macroeconomic Crises since 1870.” Brookings  

Papers on Economic Activity, Spring, 255-350. 
 
Blanchard, Olivier (2019).  “Public Debt and Low Interest Rates,” American Economic Review  

109 (April), 1197-1229. 
 
Campbell, John Y. (2018).  Financial Decisions and Markets, Princeton NJ, Princeton  

University Press. 
 
Cass, David. 1965. “Optimum Growth in an Aggregative Model of Capital Accumulation.”  

Review of Economic Studies, 32, 233-240. 
 
Constantinides, George M. and Darrell Duffie (1996).  “Asset Pricing with Heterogeneous  

Consumers.”  Journal of Political Economy 104 (April), 219-240. 
 
Diamond, Peter (1965).  “National Debt in a Neoclassical Growth Model.”  American Economic  

Review 55 (December), 1126-1150. 
 
Epstein, Larry G. and Stanley E. Zin. (1989).  “Substitution, Risk Aversion, and the Temporal  

Behavior of Consumption and Asset Returns:  A Theoretical Framework.” Econometrica,  
57 (July), 937-969. 

 



29 
 

Gabaix, Xavier (2012). “Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles  
in Macro-Finance,” Quarterly Journal of Economics, 127 (May), 645–700. 

 
Giovannini, Alberto and Philippe Weil. (1989).  “Risk Aversion and Intertemporal Substitution  

in the Capital Asset Pricing Model.” National Bureau of Economic Research Working  
Paper 2824 (January). 
 

Gordon, Myron J. and Eli Shapiro (1956).  “Capital Equipment Analysis:  The Required Rate of  
Profit,” Management Science 3 (October), 102-110. 

 
Homer, Sidney and Richard Sylla.  (1996).  A History of Interest Rates, 3rd ed., New Brunswick  

NJ, Rutgers University Press. 
 
Koopmans, Tjalling C. 1965. “On the Concept of Optimal Economic Growth,” in The Pontifical 

Academy of Sciences, The Econometric Approach to Development Planning, 
Amsterdam, North Holland. 
 

Mehra, Rajnish and Edward C. Prescott. (1985).   “The Equity Premium: A Puzzle.” Journal of  
Monetary Economics, 15 (March), 145-161. 

 
Nakamura, Emi, Jon Steinsson, Robert J. Barro, and Jose F. Ursúa (2013). “Crises and  

Recoveries in an Empirical Model of Consumption Disasters,” American Economic  
Journal: Macroeconomics, 5 (July), 35–74. 

 
Phelps, Edmund S. (1961).  “The Golden Rule of Accumulation: A Fable for Growthmen,”  

American Economic Review 51 (September), 638-643. 
 
Piketty, Thomas (2011).  “On the Long-Run Evolution of Inheritance: France 1820-2050.”  

Quarterly Journal of Economics 126 (August), 1071-1131. 
 
Rietz, Thomas A. (1988).  “The Equity Risk Premium: A Solution.” Journal of Monetary  

Economics, 22 (July), 117-131. 
 
Samuelson, Paul A. (1969).  “Lifetime Portfolio Selection by Dynamic Stochastic  

Programming.” Review of Economics & Statistics, 51 (August), 239-246. 
 
Schmelzing, Paul (2020).  “Eight Centuries of Global Real Interest Rates, R-G, and the  

‘Suprasecular’ Decline, 1311-2018.”  Bank of England, staff working paper no. 845,  
January. 

 
Weil, Philippe. (1990).  “Nonexpected Utility in Macroeconomics.” Quarterly Journal of  
 Economics, 105 (February), 29-42. 
 


	8661abstract.pdf
	Abstract




