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Reverse Bayesianism: Revising Beliefs in Light of 

Unforeseen Events 
 
 

Abstract 
 
Bayesian updating is the dominant theory of learning. However, the theory is silent about how 
individuals react to events that were previously unforeseeable or unforeseen. Building on a 
recently developed axiomatic framework to analyze such situations, we test if subjects update 
their beliefs according to “reverse Bayesianism”, under which the relative likelihoods of prior 
beliefs remain unchanged after an unforeseen event materializes. We develop two experiments 
that entail unforeseen events and find that participants do not systematically deviate from 
reverse Bayesianism. However, we do find well-known violations of Bayesian updating. 
Decision makers seem to be ex ante unaware - they do not expect outcomes that they have not 
yet observed or have not been informed about. At the same time, we find instances of both 
increased and decreased awareness after exposure to unforeseen events. 

JEL-Codes: C110, C910, D830, D840. 
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1 Introduction

We live in a world where scientific progress, human activities, and events outside of our control

constantly lead to discoveries and observations of unforeseen phenomena that fundamentally change

our worldviews and behavior. Examples of such phenomena include global pandemics, political and

economic crises as well as scientific groundbreaking discoveries – of which more specific examples

we offer below.

These scenarios involve, for at least an overwhelming majority, zero probability events where

Bayes rule is silent about decision-makers’ belief updating and subsequent reactions. A number of

theories have been advanced to explain behavior under such circumstances.1 The focus of our study

is an experimental investigation of how individuals act in the face of unforeseeable and unforeseen

events and react after these events materialize. We also investigate the degree to which decision-

makers are aware of the possibility of unforeseen events before and after encountering potentially

unforeseen events.

Karni and Vierø (2013, 2015, 2017) and Karni et al. (2020) propose a framework that axiomatizes

and analyzes growing awareness of unforeseeable and unforeseen events. Their central normative

postulate is reverse Bayesianism (Karni and Vierø, 2013) according to which decision-makers should

react to probability-zero events by proportionately shifting probability mass from the prior non-null

events to the prior null but posterior non-null events. That is, a reverse Bayesian’s construction of

a new universe maintains consistency with the old structure.

In many environments, reverse Bayesianism imposes a rationality constraint on the process of

updating beliefs following null events. Suppose, for example, a decision-maker faces an urn with 50

black marbles and 50 white marbles and this information can be objectively verified. The decision-

maker makes bets on the color of a randomly drawn marble. Consider the scenario where the

decision-maker witnesses some number (known or unknown) of red marbles being unexpectedly

added to the urn. Under this design, the contents of the original urn with two colors are part of

the updated urn with three colors. Thus, a part of the “old world” remains a part of the “new

world”. Hence, irrespective of the number of red marbles added to the urn, a rational updating

rule (that does not dismiss or improperly use any objective information) requires that the decision-

maker’s posterior beliefs put equal probability weight on white and black marbles, which is the

(only) requirement of reverse Bayesianism in this example.

The present paper develops two experiments to determine whether individuals adhere to reverse

Bayesianism and, more generally, to determine formation of beliefs under growing awareness. We

design our experiments so that the new and unexpected environment retains some parts of the old

world which also allows us to address rationality of belief updating. In addition, we test how belief

formation and updating is moderated by the environment of the decision situation. According to

our knowledge, there are no studies of this nature in the received literature. We find that behavior

1Dekel et al. (1998); Modica and Rustichini (1999); Heifetz et al. (2006); Halpern and Rêgo (2008); Kochov (2010);
Ortoleva (2012); Grant and Quiggin (2013); Karni and Vierø (2013); Schipper (2013); Dominiak and Tserenjigmid
(2017); Grant et al. (2017); Dietrich (2018).
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in both experiments is consistent with reverse Bayesianism, despite the fact that the participants

exhibited some commonly observed judgmental biases. Based on our findings, reverse Bayesianism

seems to be a natural updating rule for decision-makers, being compelling both from a normative

and descriptive perspective.

Situations with unforeseen events are abundant and are characterized by being more or less

objectively unforeseeable and entail “unknown unknowns”, a term famously coined by the former US

Secretary of Defense Donald Rumsfeld. Even when we can imagine rough outlines of a phenomenon

or even when we have a rather precise understanding of its characteristics, we often overlook it in

the construction of our universe or include it in the description of the universe but render it as

impossible. That is, some aspects of the choice environment may be unforeseen.

Examples of objectively unforeseeable and unforeseen events are ubiquitous and include scientific

breakthroughs, technological discoveries, and various global events. It is hard to disagree that

the concept of antimatter was unforeseeable before the first particulate theories of matter were

proposed by ancient philosophers Kanada (around 6th century BCE), Leucippus (around 490 BCE)

and Democritus (around 470-380 BCE) and before the word and notion “energy” first appeared in

the works of Aristotle in the 4th century BCE. Even if it was foreseeable to a select few after these

scientific breakthroughs, the possibility of the opposite of normal matter was unforeseen by almost

all until William Hicks and Karl Pearson proposed it between 1880 and 1890.

In some cases, the distinction between unforeseeable and unforeseen is blurred and individual-

specific. As a result of differences in knowledge and cognitive capacity, what is foreseeable for some

people might be unforeseeable to others. A very notable example of an event that was foreseeable

but unforeseen by many is COVID-19. Numerous scientists and observers including Bill Gates have

repeatedly warned us about the possibility of a disastrous pandemic. However, these warnings have

been largely ignored by many policy makers, public health officials, and economic decision-makers.

The financial crisis of 2007 had a similar nature. It was foreseeable but unforeseen by most.

Lehman Brothers assumed in 2005 that the worst-case scenario in the housing market was a tem-

porary price depreciation of 5% over the next three years, followed by a rebound and price increase

of 5% thereafter (Gennaioli and Shleifer, 2018, p. 52). We all know their fate and what happened

to many other financial institutions that discarded the possibility of catastrophic financial and

economic events. The fall of the Berlin Wall was also undoubtedly foreseeable. However, it was

unforeseen by many political leaders and individuals. Witnessed time and time again, unforeseeable

and unforeseen events have large consequences and lead to seismic behavioral changes. Failure to

recognize the possibility of such events, no matter how unlikely they may seem, can impair the

ability to mitigate adverse events and to take advantage of new opportunities.2

All of these examples entail, to a varying degree, unawareness on the part of decision-makers

about various aspects of the choice environment. In some cases, this unawareness may arise because

some states of nature are simply unforeseeable. In others, they are foreseeable but decision-makers

2These scenarios should also be distinguished from those unforeseen events where a decision-maker contemplates
a state of nature but assigns zero probability to that state. In contrast to the first two scenarios, this latter case
corresponds to an aware decision-maker.
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fail to incorporate them in their model of the universe, rendering these states unforeseen.

In the controlled environment of an experiment it is virtually impossible to generate objectively

unforeseeable events. Our experimental designs involve events that are either more unforeseeable

for most of the participants or less. We coin these events as reasonably unforeseeable and reasonably

foreseeable, respectively. Whether an event belongs to one of these categories depends on the amount

of information received by a participant in the experiments. Our empirical procedure reveals that

participants generally do not expect the unknown when it is reasonably unforeseeable. In contrast,

some expect an unknown event when it is reasonably foreseeable. Interestingly, we do not find any

evidence of a relationship between cognitive abilities and formation and updating of beliefs.

In the first experiment, we analyze behavior of participants who face a reasonably unforeseeable

event. Participants observe sufficiently many draws from an urn in the beginning of the experiment

to form a good understanding of the prizes in the urn. In the course of the experiment, we elicit

the beliefs about the content of the urn as well as willingness to sell a gamble that pays according

to a prize randomly drawn from the urn. The experiment has two treatments. In both treatments,

the reasonably unforeseeable event entails introduction of a new urn (with new prize(s)), which was

hidden from the participants, and subsequent addition of its content to the original urn. In one of

the treatments, the participants are forewarned about the possibility that new prizes may be added

while in the other treatment they are not.3 Thus, there is room for the participants to be aware of

such a possibility in the former treatment while it may be “reasonable” for them not to be aware

of it in the latter. In both treatments, the emergence of a new urn may be unforeseen - even if it is

foreseeable, a participant may completely neglect it rendering it unforeseen. We find that prior to

encountering the surprise in the form of a new urn the participants in both treatments on average

place a zero probability on all prizes other those they have previously observed. However, after

witnessing a surprise, the event that something that has not yet been observed may materialize

becomes non-null when decision makers are forewarned about the possibility of new prizes. Even

more importantly, in both treatments we find strong evidence for reverse Bayesianism.

In addition to our test for reverse Bayesianism and awareness that something unexpected may

happen, we investigate how the nature of the surprise affects beliefs and the valuation of prospects.

Two patterns emerge. First, in the treatment with forewarning about new prizes, higher valuations

of prospects are always observed. That is, the possibility of the unknown seems to instill hope,

rather than fear. Second, valuations increase (decrease) after a positive (negative) surprise, showing

that decision makers incorporate the new information.

In the second experiment, the new events are reasonably foreseeable. Participants explore an

urn by sequentially extracting marbles from it. They receive no information on which colors are

possible, so that the new information is represented by so far unobserved colors. Participants

in the second experiment are not systematically biased, and we again find that beliefs tend be

updated in accordance with reverse Bayesianism. This is despite the fact that participants do

reveal well-known violations of Bayesian updating. We also find that participants lower their

3As we clarify below, the main reason behind this differentiation is to avoid any deception of our participants.
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perceived likelihoods of further unknown events as they sample more or observe more unforeseen

events. Nevertheless, beliefs about potentially unforeseen events are very persistent, and about one

third of the participants still expect a yet unobserved color even after 30 draws.

The rest of the paper is organized as follows. In section 2 we provide a theoretical framework

and derive the hypotheses that are tested in both experiments. In section 3 we present the design

and results of experiment 1. Section 4 is dedicated to experiment 2. Section 5 provides a general

discussion of the results and concludes the paper. In the appendix we include the experimental

instructions and some additional analysis for each experiment.

2 Theoretical Background and Hypotheses

Theories of growing awareness about unforeseen events usually belong to one of three branches of

literature: the epistemic approach, the game-theoretic or interactive decision making approach, or

the choice-theoretic approach (Ortoleva, 2012; Karni and Vierø, 2013). In this paper we follow the

approach in Karni and Vierø (2013), which belongs to the third category. Karni and Vierø (2015)

extends this approach from Expected Utility Theory to Probabilistic Sophistication (Machina and

Schmeidler, 1992), which separates preferences from probabilistic beliefs. Karni and Vierø (2017)

further generalizes that framework, while Karni et al. (2020) supplements the model by allowing

states to become null after new discoveries.

Following Karni and Vierø (2017), let A denote a finite, non-empty set of actions and C0 denote

a finite, non-empty set of feasible consequences. It is instructive to use the example presented in

Chambers and Hayashi (2018) to illustrate this framework. In their example, a potential Economics

student decides which school to attend for her PhD degree. The set A is given by the schools, a

and b, she is considering. The set C0 represents the consequences of her choice in terms of either

getting a job at a research university, R, or working in a teaching college, T, after attending either

school a or school b. Let also x = ¬C0 denote an abstract residual consequence, which stands for

“something other than what the decision-maker can describe” – in the example, a third type of

institution our PhD student could find a job at, but she is not aware of.

Then, Ĉ0 = C0 ∪ {x} and A together define the augmented conceivable state space via ĈA
0 :=

{s : A→ Ĉ0}. That is, the augmented conceivable state space takes into account the possibility that

an action may lead to the “everything else” consequence x. Moreover, the space of fully describable

conceivable states is defined as CA
0 := {s : A→ C0}, where the mappings’ image is restricted only

to describable consequences in the set of feasible consequences C0.

The augmented conceivable state space can be expanded by observing a new consequence c′ /∈
C0. Following Chambers and Hayashi (2018)’s example, the student can subsequently realize that,

as a third consequence, she might end up with a job, P, in the private sector. The set of feasible

consequences then expands to C1 = C0∪{c′}. Furthermore, CA
1 and ĈA

1 can be defined analogously

to CA
0 and ĈA

0 , respectively.

Denote π0 and π1 as probability measures defined on CA
0 and CA

1 , respectively before and after
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a new consequence is observed. Together with the axioms presented in Machina and Schmeidler

(1995), which ensure probabilistic sophistication, their axiom for invariant risk preferences in Karni

and Vierø (2013), and two additional axioms on refinement consistency, the framework yields the

following result for all s, s′ ∈ CA
0 :

π0(s)

π0(s′)
=
π1(s)

π1(s′)
,

That is, this model implies that it is optimal for the decision maker to hold the ratio of probabil-

ity estimates for known outcomes constant after observing an unforeseen outcome. Under classical

Bayesian updating, new information shrinks the state space, for example, by excluding outcomes

that had previously been assigned a positive prior probability. In contrast, this model focuses on

the reverse situation, where new information can expand the state space. Hence, the name “reverse

Bayesianism.”

Once a new consequence is discovered, this also affects the beliefs about further possible out-

comes now captured by x = ¬C1. Observing a new outcome can have either an increasing or

decreasing effect (or none) on the decision maker’s awareness about unforeseen events: On the

one hand, it is possible that the discovery of new consequences decreases the amount of remaining

unforeseen consequences. On the other hand, discovering a new consequence could highlight that

there are still unforeseen consequences to uncover. Accordingly, the model allows for both, either

a decrease or increase in the probability assigned to the residual consequence.

Based on this framework, we will test if the normative reverse Bayesian model outlined above

also matches the actual behavior of participants in an incentivized decision-making experiment.

Decision makers state their beliefs about the likelihood of the different consequences (prizes in

experiment 1 and marble colors in experiment 2) and express their willingness to accept (WTA)

for the prospects in experiment 1, using a standard truth-telling incentivizing procedure.

Furthermore, for experiment 1, the probability of an unknown prize is elicited implicitly by

allowing participants to state probability estimates of the other known prizes not summing up to 1.

The set of fully describable conceivable states is given by different prizes in an urn. For experiment

2, the probability of an unknown event is elicited explicitly by asking participants to state their

belief about “any other possible outcome”. The set of fully describable conceivable states can be

represented by different combinations of colored marbles in an urn. We differentiate between the

original urn (before a new outcome is observed) and the updated urn (after a new outcome is

observed).

In the following we denote the probability estimates of each participant for a given state i with

p̂oi and p̂ui , for the original and the updated urn, respectively. The residual estimate is denoted by

p̂ox and p̂ux. Our two experiments will test the following main hypothesis:

Hypothesis 1. Participants update their beliefs according to reverse Bayesianism. That is, for

any p̂oi , p̂
u
i and any states i, i′ ∈ CA

0 :

p̂oi
p̂oi′

=
p̂ui
p̂ui′
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In the analysis of the two experiments, we will refer to the difference between the ratios before

and after the update obtained from the various tests as ∆R:

∆R =
p̂ui
p̂ui′
− p̂oi
p̂oi′

.

In some of our experimental treatments, we explicitly rule out the possibility of unforeseen

events and inform the participants about this. Thus, if the participants believe this, then {x},
should be empty and Ĉ0 = C0. Specifically, we will test the following:

Hypothesis 2.

(a) In treatments where unforeseen events are ruled out so that {x} is empty and Ĉ0 = C0, the

residual estimate is p̂jx = 0.

(b) In the treatments where unforeseen events are not ruled out, yhe residual estimate is p̂ix > 0

Furthermore, as outlined above, this framework allows for decision makers to increase their

residual in either direction after observing a new, unforeseen event. Accordingly, we test the

following agnostic hypothesis.

Hypothesis 3. Participants will not adjust their residual belief after an unforeseen event:

p̂ux − p̂ox = 0

3 Experiment 1

3.1 Design

Experiment 1 elicits beliefs and valuations of prospects before and after encountering a reasonably

unforeseeable event (we omit the word “reasonably” in this section). We test reverse Bayesianism

under two conditions regarding the unforeseeable event: Information surprise (IS) and Payment

surprise (PS). Each of these two conditions employs either a positive or a negative unforeseeable

event (High prize, Low prize), resulting in a 2 × 2 between-subjects design. Figure 1 provides an

overview of the timing in the experiment. We will provide a rationale for our choice of the four

conditions after we spell out their details. Our reasoning behind the titles Information surprise

and Payment surprise will also become apparent.

Under IS condition, the participants are presented with an urn, called the original urn, and

informed that the urn contains balls with labels representing prizes measured in tokens. Each

earned token is exchanged for e0.05 at the end of the experiment. The participants are told that:

“the urn contains two and only two prizes”. However, they are not told what these two prizes or

their relative proportions are. Furthermore, we do not alert the participants that the composition

of the urn might be changed by adding or removing balls from the urn.
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Figure 1: The timing of the two surprise conditions
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Following the description of the urn, the participants observe a sequence of 20 physical draws

with replacement from the original urn (Do
1 −Do

20 in Figure 1). The original urn contains 24 balls

labeled ‘80’ and 36 balls labeled ‘190’. As we already pointed out, this information is hidden from

the respondents. All of the draws are made by a participant called experimental assistant, who

is randomly selected for this task from the set of all participants. The outcome of each draw is

revealed to all participants by the experimental assistant.4 Thus, everybody in a session observes

the same sample. None of these 20 draws is payment-relevant. The only purpose of these draws is

for the participants to gain information about the composition of the original urn.

After observing these 20 draws from the original urn, the participants are asked to provide

estimates of the probabilities of the prizes they have been observing during these draws (subjective

probabilities po80 and po190) and to state their willingness-to-accept (smallest selling price) for the

prospect to draw a prize from this urn (WTAo). The procedures of eliciting probabilities and

WTAs are described later in this section. The reported estimates of the two probabilities do not

have to add up to 100%. The design does not force the sum of the estimates to be lower or greater

than 100% either. We do not, however, explicitly ask for the respondents’ estimates of observing

a prize that they have not observed during the 20 draws. Thus, our design allows for an implicit

estimation of a residual probability of outcomes that have not yet been observed. This contrasts

with Experiment 2 where we explicitly ask for that probability.

Following the 20 draws and the reports of the two probabilities and WTA, a draw from the

original urn is made by the experimental assistant. The outcome of this draw determines the

4The experimental assistants do not complete any of the tasks that the other participants perform and receive a
fixed payment of e14, which is close to the average earnings in the experiment.
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potential payments for the reports of WTAo. However, the draw is concealed from the participants

when it is made. It is revealed only at the very end of the experiment when the final payment to

the participants is displayed, provided that this decision is selected for payment.

Subsequently, we bring out a new urn to the front of the experimental lab. One ball is then

drawn from the new urn (Dn
1 ), revealing a new prize s to all participants. At this point in the

experiment, the participants are informed that: “This urn contains only the prize you are (about

to be) shown.” The value s of the new prize varies with the prize condition. In the low prize

condition, the new urn contains 15 balls labeled ‘15’, while in the high prize condition, it contains

15 balls labeled ‘375’. Although the participants know the value of all prizes in the new urn, they

are not informed about how many balls are contained in the new urn. After revealing the value of

the prizes in the new urn, we empty its contents into the original urn. We call this combined urn

the updated urn. The participants are then asked to estimate the probabilities of each of the three

prizes (pu80, p
u
190, p

u
s ) and to state their WTA for the prospect to draw a prize from the updated

urn (WTAu). Following these reports, the experimental assistant draws a ball from the updated

urn. This draw is concealed and is only revealed at the very end of the experiment, provided this

decision is selected for payment.

Consider now the PS condition. Similarly to the IS condition, the participants are presented

with the original urn, and are informed that the urn contains balls with labels that represent

prizes. In contrast to IS, the participants are not told about the number of different prizes in the

original urn. Similarly to IS, they are not provided with any information about the proportions

of balls with any specific prize. In the PS condition the respondents are informed that: “at any

point in the study new balls representing different tokens to what you have been observing so far

may be added to this urn”. Thus, one might expect that some participants may incorporate this

piece of information, which is not provided under IS, into their process of arriving at and reporting

probabilities and WTAs. The participants subsequently observe 20 physical draws from the original

urn (Do
1 −Do

20 in Figure 1).

After observing the 20 draws from the original urn, the participants are asked to report their

estimates of the probabilities of the prizes that they have been observing (subjective probabilities

po80 and po190) and to state their willingness-to-accept for the prospect to draw a prize from the urn

(WTAo). We use superscript ‘o’ in our notation to emphasize that these values are elicited before

any changes to the original urn are made. As for IS, the reported estimates of the probabilities are

not restricted to add up to 100% or to be smaller or larger than 100%, allowing for calculation of

an implicit residual probability.

Following the elicitation of these probabilities and WTAo, we bring out a new urn to the front

of the experimental lab. The participants are informed that: “This urn contains new prizes. One

such prize is the one you see. The urn contains no prizes similar to what you have been observing

as a result of random draws from the other urn.” The experimental assistant subsequently draws

one ball from the new urn (Dn
1 ), revealing one new prize s to the participants. We do not reveal

any other information about the contents of the new urn. As before, the value of the new prize

9



s varies with the prize condition of the session. In the low prize condition, the new urn contains

15 balls labeled ‘15’, while in the high prize condition it contains 15 balls labeled ‘375’. We then

proceed to empty the contents of the new urn into the original urn, leading to the updated urn.

The experimental assistant subsequently makes a draw from the updated urn. The outcome of the

draw from the updated urn is used to determine the potential payment for the report of WTAo.

However, the draw is concealed from the participants immediately after it is made. As for IS, it

is revealed only at the very end of the experiment when the final payment to the participants is

displayed, provided that the WTAo report is selected for payment.

The participants are then again asked to estimate the probability of each prize (pu80, p
u
190, p

u
s )

and to state their willingness-to-accept for the prospect to draw a prize from the urn (WTAu).

We use superscript ‘u’ in our notation to emphasize that these values are elicited after the urn is

updated. Following these reports, the experimental assistant draws a ball from the updated urn.

This draw is used to determine the payment to the respondents, provided the WTAu report is

selected for payment at the very end of the experiment. Similarly to IS, this draw is concealed

from the respondents and only revealed at the very end of the experiment if this decision is selected

for payment.

The objective of our study is to induce an unforeseeable event and to examine individuals’

reactions to it. To achieve this, an event should (i) be unannounced and/or ruled out and (ii) have

immediate payment consequences. Ideally, our treatment would have both of these characteristics.

However, such a design could be interpreted as deceiving - we could be accused of explicitly or

implicitly signaling that there would be no new event but then implementing the latter and making

it payment-relevant. Due to this constraint, we designed our experiment to have two conditions,

each of which has one and only one of these characteristics. In other words, we could not kill

two birds with one stone and chose to kill two birds with two stones. In IS, the new event is

unannounced while in PS the new event is payment-relevant because the payment is determined

by the updated urn. Specifically, in contrast to IS, the respondents in PS are forewarned that new

prizes may be added to the urn (thus making the new event less unforeseeable). Moreover, while in

IS the first (potentially) payment-relevant draw is made from the original urn, the corresponding

draw in PS is made from the updated urn. Our approach also allows us to test the robustness of

results regarding reverse Bayesianism across different settings.

In addition to these two differences, the conditions IS and PS differ along two other dimensions.

These two differences were implemented to make the new event in IS as unexpected as possible

and to avoid misleading the respondents in PS as much as possible. These differences pertain

to the information about the compositions of the original and new urns, respectively, under the

two conditions. Unlike in the IS condition, we did not tell the respondents in the PS condition

that the original urn contains two and only two prizes. Otherwise, one could argue that we are

sending a message that contradicts the possibility that the content of the urn may be changed or

that we are trying to mislead the respondents. Even after making 20 draws from the original urn,

the respondents in PS may expect to encounter a prize value that they have not yet observed.
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Thus, the possibility of drawing a new prize is conceivable in PS. Finally, the fourth difference is

consonant with the third. The respondents in IS are told that the new urn contains only balls

with the newly revealed prize. In contrast, under PS the possibility that the new urn may contain

prizes other than the newly revealed prize is not ruled out.

The payment for the urn tasks is determined as follows. One item is randomly selected from

the set of all reported probability estimates and the two WTAs. This item is played out and

the resultant payoff is added to a participant’s payment. We incentivize the reported probability

estimates according to the Karni (2009) method.5 The reports of WTA are incentivized using the

BDM procedure (Becker et al., 1964). Both mechanisms induce truth telling and are robust to

varying risk attitudes.

The BDM procedure works as follows: If one of the WTAs is selected to be payment-relevant,

the computer draws a random price for the prospect between the smallest and largest prizes in the

urn.6 If the realization of the random price is such that the reported WTA exceeds the randomly

generated price, the participant keeps the prospect and the payoff is determined by the hidden draw

made during the experiment from the original urn in IS condition for WTAo (see Do
21 in Figure 1);

from the updated urn for WTAu (see Du
1 in Figure 1); and from the updated urn for both WTAo

and WTAu in PS condition (see Du
1 and Du

2 in Figure 1). The Karni mechanism works similarly for

probabilities. A random probability (between 0 and 1) is drawn. If the reported probability estimate

exceeds this randomly drawn probability, the participant is rewarded the relevant prize according

to the reported probability and gets nothing with the complementary probability. Alternatively,

the participant is rewarded the relevant prize according to the randomly drawn probability.

Once the urn task is completed, we elicit risk preferences using an incentivized Eckel and

Grossman (2008) task. In this task, individuals pick one lottery from a set of binary lotteries. The

lotteries in the choice set vary in terms of their expected values and variances with the chosen

lottery revealing a participant’s risk attitude. The lotteries chosen by the participants are “played

out” at the end of the experiment and the earnings for these choices are added to the rest of the

earnings of each participant.

Following the elicitation of risk preferences, the participants complete a short Raven Advanced

Progressive Matrices (APM) test (Raven et al., 1998a,b). Raven’s Progressive Matrices provide an

effective non-verbal avenue to measure reasoning and general cognitive ability. In order to shorten

the duration of this test, we follow Bors and Stokes (1998) in using 12 from the total of 36 matrices

from Set II of the APM. Matrices from Set II of the APM are appropriate for adults and adolescents

of higher average intelligence. Participants are allowed a maximum of 10 minutes. The participants

are informed that two of these 12 matrices are selected at random for payment and that they will

receive e1 for each correct choice. The sessions are concluded with some general demographic

questions and a final screen informing the participants how their total earnings were calculated.

5See the first page of the experimental instructions following the heading “Likelihoods of events – Reporting and
Earnings” for more details on how this was explained to the participants as well as further details on the method
itself.

6Similarly to Isoni et al. (2011), these bounds are not communicated to the participants.
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We include the experimental instructions in the appendix. The design was pre-registered at the

AEA RCT Registry https://www.socialscienceregistry.org/trials/3815.

Implementation

Experiment 1 was conducted at the Alfred-Weber-Institute Experimental Lab at the University

of Heidelberg and the Karlsruhe Decision & Design Lab (KD2Lab) at the Karlsruhe Institute of

Technology. The recruitment of participants took place via SONA systems for Heidelberg and

ORSEE (Greiner, 2015) for Karlsruhe. A total of 344 participants participated in the experimental

sessions.7 The participants earned an average of e18.4, including a show-up fee of e4. The software

used for the entire experiment was z-Tree (Fischbacher, 2007). The ethical approval for this design

was granted by the Humanities and Social Sciences Research Ethics Sub-Co at the University of

Warwick under DRAW Umbrella Approval (Ref: HSS 49/18-19, DR@W submission ID: 485613261).

3.2 Results

3.2.1 Reverse Bayesianism

We start by testing whether belief updating is consistent with reverse Bayesianism. In our frame-

work, reverse Bayesianism requires that the elicited probability ratios of the prizes in the original

urn, namely the prizes of 80 and 190 tokens, remain unchanged after the original urn is updated.

Formally, Hypothesis 1 for this experiment implies:

∆R =
p̂o80

p̂o190

− p̂u80

p̂u190

= 0 (1)

The information provided to the participants in all four treatments unambiguously reveals that

the number of balls worth 80 tokens and the number of balls worth 190 tokens remain unchanged

after the new urn is updated. For (IS, low prize) and (IS, high prize) treatments, we informed the

participants that the new urn contains only the newly revealed prize. For (PS, low prize) and (PS,

high prize) treatments, we told them that the new urn contains no prizes similar to what they have

been observing as a result of random draws from the original urn. Thus, if a participant’s beliefs

are given by a singleton probability distribution, i.e. she is probabilistically sophisticated (Machina

and Schmeidler, 1992), throughout the experiment, then ∆R = 0 as long as that participant forms

her beliefs on all of the information provided in the experimental instructions and as long as she

does not expect that a disproportionate number of balls with prizes worth 80 and 190 tokens may

be added to the urn she is facing.

Table 1 contains the results of Wilcoxon signed-rank test for all four treatments. We fail to

reject the hypothesis in three out of the four treatments, both before and after correcting for

multiple testing. For these three treatments, we indeed find a precisely estimated null effect. Only

7We had 234 participants in the sessions at Heidelberg and 110 participants in the sessions at Karlsruhe. In
Heidelberg, 46 participants were in the (IS, low prize) treatment, 58 in (IS, high prize), 59 in (PS, low prize), and
71 in (IS, high prize). In Karlsruhe, the numbers were 30, 17, 34, and 29, respectively.
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in one treatment, (PS, high prize), we reject the null hypothesis of reverse Bayesianism. Moreover,

looking at the confidence intervals we note that 95% of participants deviate very little from 0, even

in the treatment where we reject the null hypothesis.

It is important to highlight that our data analysis so far fails to reject the null hypothesis

not because of limited power, but because the null is supported by our data. To provide further

evidence in support for the predicted null effect of reverse Bayesianism, we rely on Bayesian inference

statistics.8 Specifically, we implement the JZS test developed by Rouder et al. (2009), which is a

Bayesian alternative to t-tests. Like other Bayesian methods it offers a researcher the possibility to

state whether the data contains evidence in support of the null hypothesis. Crucially, the JZS test

makes assumptions about the prior distributions of the effect size and variance, thus circumventing

the problem of Bayes factors favoring the null hypothesis when a non-informative prior is used for

the alternative.9 The usual rule-of-thumb for interpreting Bayes factors is that a factor of 0 provides

strong evidence for the alternative, 1 is inconclusive (the predictions of the null and the alternative

cannot be disentangled) and values above 3 provide strong evidence for the null hypothesis (here

reverse Bayesianism). The last column in Table 1 reports the Bayes factors.10 These values are

consistently above 3 in all four treatments, thus offering strong evidence in support of reverse

Bayesianism.

Table 1: Average ratio changes before and after the urn is updated.

Obs z-statistic p-value p-value (corr.)

IS, low prize 75 -0.89 0.375 1.000
IS, high prize 75 0.02 0.981 1.000
PS, low prize 93 -0.10 0.918 1.000
PS, high prize 100 2.55 0.011 0.043

95%CI Bayes factor

[−0.06, 0.05] 14.76
[−0.06, 0.14] 6.57
[−0.06, 0.03] 9.72
[−0.04, 0.05] 16.35

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure, confidence interval from one sample

t-test, Bayes factor from JZS test.

The ratio of the probabilities of the prizes observed by the participants may remain unchanged

under two scenarios. First, participants may simply not change their estimate for any of the

previously observed prizes. Table 2, column 7, shows that this is rarely the case in any of the

treatments. Second, participants may change their estimates in a way that keeps the ratios constant.

Notice that this is far from trivial for many constellations of estimates. Although we observe such

instances (column 4), overall this is less prevalent than the instances when participants either

increased or decreased the ratio. Figure 2 also shows the distribution of ratio changes both for

8Bayesian inference statistics is not uncommon in the social sciences (e.g. Bayarri et al., 2016; Dienes, 2011).
9Specifically, the JZS test assumes that the null hypothesis is a point with H0 : δ = 0, while the alternative

effect size δ = µ
σ

follows a Cauchy distribution (which assumes that more extreme values are more unlikely) H1 : δ ∼
Cauchy(r) = 1 (where r is a scaling parameter). The prior for the variance is given by p(σ2) ∝ 1

σ2 . This prior is
deliberately non-informative, as the variance is relevant for both hypotheses.

10Juxtaposing the estimated confidence interval and the Bayes factors for the (PS, high prize) treatment suggests
that the rejection of the null according to the Wilcoxon signed-rank test is possibly driven by a relatively large
proportion of positive changes that are nevertheless of very small magnitude. This is further supported by the
bottom right panel of Figure A3 in Appendix A1.

13



all participants and for all instances where the participants adjusted all their estimates after the

update. The data is pooled over all four treatments.11 Our analysis reveals that the absolute

differences of the ratios tend to be concentrated around zero. That is, the change in the ratio is

relatively small even for those participants who updated their beliefs to a different ratio. However

even when the ratio changes, as we already noted from Table 1, most participants who change their

ratios do so only slightly, and in no systematic direction. That is, the overall null effect in support

of reverse Bayesianism materializes because the changes in the ratio of the probabilities tend to be

very small.

The evidence we have provided so far indicates that on average we observe no changes to the

ratios. It is important to emphasize that this does not mean that the participants are passive and

do not update their estimates after the original urn is updated. In Table 3, we test whether the

estimates for known outcomes are significantly different between the original and updated urn. We

consistently find that the estimates of the known outcomes are significantly higher in the original

urn as compared to the updated urn. This indicates that participants do react to the updating of

the urn when reporting their proportion estimates. Summarizing,

Result 3.1. The participants hold their ratios approximately constant after encountering an unex-

pected event. Thus, they update their beliefs according to reverse Bayesianism (Hypothesis 1).

Moreover, we do not find a statistically significant relation between cognitive ability and the

ratio differences (see Table A1 in Appendix A1). That is, behavior is very similar for higher

and lower cognitive ability participants, and thus unlikely to be due to errors caused by lack of

understanding.

Table 2: Changes of the probability ratios following the update of the urn.

Increased Decreased Const ratio p-value p-value (corr.) Unchanged Est.

IS, low prize 23 29 23 0.488 1.000 1
IS, high prize 32 31 12 1.000 1.000 1
PS, low prize 37 33 23 0.720 1.000 0
PS, high prize 61 29 10 0.001 0.004 4

Matched pairs sign test, p-values corrected by Bonferroni-Holm procedure.

Const ratio denotes participants holding their ratio constant.

3.2.2 Residuals and Valuations

The experiment yields a number of additional interesting findings. First, we focus on the estimates

of residual probabilities provided by the participants and test Hypotheses 2 and 3. Turning to

Hypothesis 2, the participants in the IS condition were informed that the original urn contains

only two possible prizes, and that in the updated urn only one extra prize was added. If the

11See Figure A3 in Appendix A2 for the equivalent distributions for each treatment separately.
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Figure 2: Histograms of the changes in the ratios following the update of the urn.
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Table 3: Changes of known outcome estimates before vs. after observing the update of the urn.

Obs z-statistic p-value p-value (corr.) poi − pui
IS, low prize; 80 76 6.94 0.000 0.000 0.101
IS, low prize; 190 76 6.93 0.000 0.000 0.130
IS, high prize; 80 75 6.68 0.000 0.000 0.102
IS, high prize; 190 75 6.49 0.000 0.000 0.125
PS, low prize; 80 93 8.26 0.000 0.000 0.100
PS, low prize; 190 93 8.22 0.000 0.000 0.136
PS, high prize; 80 100 7.46 0.000 0.000 0.075
PS, high prize; 190 100 8.33 0.000 0.000 0.108

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.
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respondents took this information into account, the set of residual consequences x, as defined in

section 2, would be empty, thus p̂ox 6= 0 and p̂ux 6= 0 would likely materialize only due to individual

idiosyncratic errors. In contrast, since in the PS condition we informed the participants about the

possibility of adding new prizes and we did not state that the updated urn contains only one new

prize, p̂ox > 0 and p̂ux > 0 could occur as a result of an expectation of unknown events. Thus, one

could expect that the respondents in the PS condition are more likely to assign a strictly positive

probability to encountering a prize that they have not seen before.

Table 4 shows that the hypothesis p̂jx = 0 (j is either o for original or u for updated) cannot be

rejected for the IS condition, both for the original and for the updated urn, thus giving support to

Hypothesis 2. Even in the PS condition, the hypothesis p̂jx = 0 cannot be rejected for the original

urn. Moreover, the hypothesis cannot be rejected in the PS condition for the updated urn in the

case of (a perhaps less salient) high prize surprise. The hypothesis that p̂jx = 0 is rejected in the

updated urn in the (PS, low prize) treatment. Moreover, column 5 of Table 4 reveals that in the

PS condition, p̂ux > 0 for a relatively large number of participants. One could expect that when the

participants have only seen the original urn, the event that the urn may be updated is unforeseeable

to them. In contrast, the latter event is unlikely to be unforeseeable after the participants have

witnessed the update of the original urn.

Result 3.2. Overall, the participants do not expect unforeseen events, thus, lending support to

Hypothesis 2a. In treatments where unforeseen events are not explicitly ruled out some participants

do anticipate unforeseen events, thus, offering mixed evidence for Hypothesis 2b.

Table 4: Residuals different from 0.

p-value q-value p̂jx = 0 p̂jx > 0 p̂jx < 0

Original, IS low prize 0.993 1.000 74 1 1
Original, IS high prize 0.314 1.000 71 3 1
Original, PS low prize 0.317 1.000 92 0 1
Original, PS high prize 0.549 1.000 90 6 4
Updated, IS low prize 0.251 1.000 61 10 5
Updated, IS high prize 0.228 1.000 65 7 3
Updated, PS low prize 0.004 0.028 74 16 3
Updated, PS high prize 0.146 1.000 84 11 5

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

We now turn to Hypothesis 3. Following the same reasoning as before, we expect some awareness

for PS but not for IS, and test for changes in the residuals after receiving new information. Table

5 shows that the hypothesis that p̂ox = p̂ux cannot be rejected in the IS treatments. However, there

is again some evidence for p̂ox(PS) 6= p̂ux(PS), when the surprising event entails a low prize.

Result 3.3. The participants do not generally adjust their residual beliefs following an unforeseen

event, thus, supporting Hypothesis 3.
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Table 5: Differences between the residuals before and after the surprise: ∆p̂x = p̂ux − p̂ox.

p-value q-value ∆p̂x = 0 ∆p̂x > 0 ∆p̂x < 0

IS low prize 0.285 1.000 8 40 28
IS high prize 0.560 1.000 15 30 30
PS low prize 0.019 0.075 12 31 50
PS high prize 0.951 1.000 10 40 50

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

Given our design, awareness of encountering an unforeseen event and the way an unforeseen

event is experienced will affect the stated WTAs. It follows from Karni and Vierø (2013, 2017)

that two key factors are at play in the participants’ evaluation of uncertain prospects. The first

characteristic pertains to the participants’ updated beliefs; how much of the probability weight

is shifted from the known prizes to the newly observed and yet unobserved prizes. The second

pertains to the participants’ attitude towards the unknown; whether and how much they like or

dislike the unknown. To determine the relative importance of these channels, we compare the

elicited willingness to accept measures before and after the urns are updated, for both the IS and

the PS conditions and both levels of the new prize. Table 6 reveals that WTAo(PS) > WTAo(IS)

in both high and low prize conditions. As one could expect, the WTAs for the updated urn are

lower for the low prize than for the high prize, and again the PS condition elicits higher valuations;

the latter effect is, however, not significant.

The regression analysis with controls for gender, cognitive ability, degree of risk aversion and the

observed sample, confirms the effect of the PS treatment and of the high prize in the updated urn

WTA (see Tables A2 and A3 in Appendix A1). Overall, it seems that the more uncertain situation

in condition PS elicits higher valuations. That is, in the context of unforeseen events, hope seems

to dominate fear (Viscusi and Chesson, 1999). As a caveat, we note that WTA measurement in the

context of uncertainty and ambiguity has been found to elicit relatively higher valuations for more

uncertain prospects (Trautmann et al., 2011; Trautmann and Schmidt, 2012). The selling-price

context seems to induce decision makers to focus on the potentially forgone benefits from selling a

highly uncertain prospect. This effect re-emerges here.

Result 3.4. The increased uncertainty in condition PS results in higher valuations of the urn: the

participants appear to view the unknown with hope rather than with fear.
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Table 6: WTA for a draw from the urn by treatment.

Original urn: WTAo

IS PS Diff p-value

Low prize 110.39 138.47 -28.08 0.008

High prize 110.48 134.81 -24.33 0.002

Wilcoxon signed-rank test.

Updated urn: WTAu

IS PS Diff p-value

Low prize 86.45 96.70 -10.25 0.074

High prize 153.53 178.25 -24.72 0.160

Wilcoxon signed-rank test.

4 Experiment 2

4.1 Design

Experiment 2 tests how individuals perceive uncertainty and update their beliefs in light of new

events which are foreseeable, but potentially unforeseen.12 Each participant in Experiment 2 indi-

vidually draws a sample of 30 colored marbles from a virtual urn in each of four different tasks. Our

treatments correspond to the order in which the participants faced these tasks. The urns in each

of the four tasks contain a total of 100 virtual marbles, which was known to the participants. No

other information about the composition of the urns is revealed to the participants prior to them

making the draws from the urns. Additionally, the exact colors for each task are randomized at

the participant level. As a result, each participant observed a different sequence of colored marbles

for each task.

Each participant is randomly allocated to one of two treatments. In the two colors treatment,

the urn in the first task contains only two colors. In the four colors treatment, the urn in the first

task contains four colors in total. The purpose of this design is to test if encountering a larger

number of different colors in the first task increases their awareness that further surprises, in the

form of new colors, might be possible in subsequent tasks. The compositions of the urns in the

second, third and fourth tasks are the same across the two treatments. The urn in the second task

contains three colors, the urn in the third task contains two colors and the urn in the fourth task

contains four colors. Table 7 provides information on the exact compositions of the urns in the four

tasks.

12There are two types of potentially unforeseen events in our design. The first type entails encountering a new
color while the second pertains to observing some specific new color. Thus, the union of all possible events of the
second type constitute the first type. In our investigation, we focus on eliciting beliefs about the first type of events.
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Table 7: Numbers of different colors in the tasks.

Task 1 Task 2 Task 3 Task 4
Two colors Four colors

Color 1 55 40 53 75 48
Color 2 45 28 35 25 28
Color 3 20 12 12
Color 4 12 12

The urns with three and four colors contained a comparatively small number of some of the

colors. This ensured that the likelihood of encountering a new and surprising outcome even after

sampling several times was relatively large for these urns.

After each sample draw, the drawn marble is presented on a participant’s screen, both with an

image of a marble of that specific color and the name of the color. In addition, the outcomes of

all previous draws are depicted in a small caption at the bottom of the participants’ screens. This

provides the participants with a full overview of the past draws and mitigates the effects of memory

limitations.

After each draw, the participants are asked to report their estimates of the contents of the urn.

Specifically, they are asked to state their estimate of (i) the number of marbles of the color they

just drew ; (ii) the number of marbles of each other color they have previously drawn in this task;

and (iii) the number of marbles of yet unobserved colors.

The third item provides us with a residual probability assigned by the respondents to any

conceivable color not yet observed during the draws. Thus, in contrast to Experiment 1, the

residual probability is elicited explicitly in Experiment 2. The participants submit their estimates

by entering integer numbers between 0 and 100 into form fields on their screens. We provide them

with one individual form field for each color drawn up to that point, as well as with one form field

for their estimate of the number of marbles of yet unobserved colors. This design allows us to

trace how the respondents’ estimates and ratios of these estimates are adjusted once unforeseen

information becomes available. In addition, we can track how the estimates of likelihoods of yet

unobserved outcomes evolve over the sampling process. To make the submission of estimates easier,

we additionally provide respondents with buttons that allow them to fill in their last estimates for

a color and “plus” and “minus” buttons to increase/decrease these estimates by one per click.

We again use the Karni (2009) method to ensure that the participants are incentivized to submit

their estimates truthfully. At the end of the experiment, for each of the four tasks, one of the 30

sample draws is randomly selected and one item from the set of reported estimates for that draw

is also randomly selected (this could involve an estimate of yet unobserved colors). The payment

mechanism is implemented for that reported estimate. Participants can earn £6 or nothing from

each task depending on the outcome according to the incentivization method.13

13See the third page of the instructions for this experiment under the heading “Getting paid for good predictions”
for more details on how this was explained to the participants as well as further details on the method itself.
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In addition to the hypotheses presented in Section 2, we additionally test the following:

Hypothesis 4.

(a) The probability assigned to yet unobserved outcomes decreases with the draws made from an

urn:

#draws→ 30⇒ p̂x ↓

(b) The probability assigned to yet unobserved outcomes in tasks 2, 3 and 4 decreases faster for the

participants in the two colors treatment than for the participants in the four colors treatment.

Hypothesis 4 tests if the participants learn to expect fewer surprises towards the end of the

sampling process, as well as whether this process might vary in terms of speed across treatment

conditions. Following some recent insights on the link between cognitive ability and rational be-

havior (e.g. Gill and Prowse, 2016; Alaoui and Penta, 2016) we also test two hypotheses related to

cognitive ability.

Hypothesis 5. The participants with higher cognitive ability exhibit fewer deviations from reverse-

Bayesianism.

Hypothesis 6. The participants with higher cognitive ability expect yet unobserved outcomes up to

a later point in the sampling process than the participants with lower cognitive ability.

We include the experimental instructions in the appendix. The design was pre-registered at the

AEA RCT Registry https://www.socialscienceregistry.org/trials/5499.

Implementation

Experiment 2 took place at the Behavioral Science Lab at the University of Warwick. The recruit-

ment was conducted with the DRAW (Decision Research at Warwick) system, based on the SONA

recruitment software. A total of 174 individuals participated in the experiment, 89 in the two colors

treatment and 85 in the four colors treatment. Note that we originally intended to have 150 partici-

pants in each treatment (as specified in our pre-registration). However, due to the unforeseen onset

of the COVID-19 pandemic we were not able to gather additional data. The average payment was

£16.87, including a show-up fee of £3. The software for the experiment was programmed in otree

(Chen et al., 2016). Ethical Approval for this design was granted by the Humanities and Social

Sciences Research Ethics Sub-Co at the University of Warwick under DRAW Umbrella Approval

(Ref: HSSREC 104/19-20, DR@W submission ID: 514470520).

4.2 Results

4.2.1 Reverse Bayesianism

We first test whether behavior is consistent with reverse Bayesianism, which corresponds to Hy-

pothesis 1. We examine the difference in the ratios of previously observed colors directly before
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and directly after observing a new color. The ratios are defined for pairs of colors that have already

been observed and on the basis of the relative magnitudes of the estimated likelihoods of these two

colors immediately before the new event is observed. Specifically, we define p̂oH as the estimate

of the likelihood for the color that is considered by a participant to be more likely and p̂oL as the

estimate for the color that is considered to be less likely. Both of these estimates are for the sample

draw right before the third color is observed for the first time. We also define p̂uH and p̂uL as the

estimates of the likelihoods of these two colors immediately after the third color is first observed.

Specifically, we test:

∆R3 =
p̂uH
p̂uL
− p̂oH

p̂oL
= 0,

For the belief update following the observation of a fourth color (having already seen three

colors), we have three ratios to consider. Define p̂oH , p̂oM and p̂oL as the estimates for the color

considered most likely, second most likely, and least likely, of the three colors that have already

been observed, in the sample draw right before the fourth color is observed for the first time.

We also let p̂uH , p̂uM p̂uL denote the respective estimates for these three colors in the sample draw

immediately after the fourth color is first observed. We test three relationships:

∆R4
1 =

p̂uH
p̂uM
− p̂oH

p̂oM
= 0, ∆R4

2 =
p̂uM
p̂uL
− p̂oM

p̂oL
= 0, ∆R4

3 =
p̂uH
p̂uL
− p̂oH

p̂oL
= 0.

Table 8 shows that for all nine tests that we conduct, there is no significant change in the ratios

after controlling for multiple tests.14 Even when not controlling for multiple testing, the ratio does

not exhibit a statistically significant change in seven of the nine instances. Finally, from the 95%

confidence intervals in column 5, we notice that the ratios do not change substantially. This is

especially manifest when the participants have to keep only one ratio constant, denoted as ∆R3

(when only a 3rd color is observed) in the table. Similarly to the analysis we report in Experiment

1, we also include the Bayes factors in the last column of Table 8. Except for two cases, the Bayes

factors are above 3, thus providing strong evidence in support of reverse Bayesianism.

As noted in the analysis for Experiment 1, the finding that the ratios do not significantly change

in aggregate may derive from (i) participants holding their estimates unchanged, (ii) participants

holding the ratios constant, or (iii) some participants increasing while some decreasing their ratios,

with the effects canceling each other out on average. Table 9 indicates that, in contrast to Experi-

ment 1, a large number of participants hold their estimates unchanged. A possible explanation for

the participants in Experiment 2 not changing their estimates is the provision of a button to fill-in

their previous estimate to simplify the dynamic task for the participants. However, there is also

a substantial number of participants who hold their ratio constant, while adjusting the separate

probability estimates. Again, holding the ratio constant while adjusting the separate estimates, es-

pecially after the fourth color is observed, is far from trivial. It indicates that participants actively

aim to keep their ratios constant even when changing their separate estimates. At the same time, a

14The urn in task 3 contains only two colors. Hence, the third outcome surprise is not possible and, consequently,
we do not analyze it in this case.
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Table 8: Average ratio changes before vs. after observing a new color.

Obs z-statistic p-value p-value (corr.)

Task 1 ∆R3 85 -1.37 0.172 1.000
Task 1 ∆R4

1 84 -0.55 0.584 1.000
Task 1 ∆R4

2 84 -2.13 0.033 0.296
Task 1 ∆R4

3 84 -1.00 0.315 1.000
Task 2 ∆R3 169 -2.63 0.008 0.076
Task 4 ∆R3 173 -0.65 0.517 1.000
Task 4 ∆R4

1 164 -0.05 0.962 1.000
Task 4 ∆R4

2 163 -0.07 0.946 1.000
Task 4 ∆R4

3 163 -0.15 0.883 1.000

95%CI Bayes factor

[−0.10, 0.29] 5.32
[−0.79, 0.22] 4.44
[−1.27, 0.04] 1.58
[−0.52, 0.33] 7.52
[−0.31, 0.01] 2.26
[−0.26, 0.06] 5.71
[−0.07, 0.25] 6.05
[−0.19, 0.69] 6.09
[−0.14, 0.27] 9.46

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure, confidence interval from one sample

t-test, Bayes factor from JZS test.

substantial share of the participants change their ratios, but there is no systematic effect in the way

they do it: after correcting for multiple testing, there are no significant differences in the deviations

from constant ratios in the increasing or decreasing directions; seven of the nine uncorrected tests

support constant average ratios.

Table 9: Changes of the ratios before vs. after observing a new outcome.

Increased Decreased Const ratio p-value p-value (corr.) Unchanged Est.

Task 1 ∆R3 16 29 40 0.072 0.652 26
Task 1 ∆R4

1 19 21 44 0.875 1.000 31
Task 1 ∆R4

2 16 31 37 0.040 0.360 32
Task 1 ∆R4

3 16 23 45 0.337 1.000 35
Task 2 ∆R3 35 59 75 0.017 0.155 46
Task 4 ∆R3 45 50 78 0.682 1.000 44
Task 4 ∆R4

1 50 57 57 0.562 1.000 36
Task 4 ∆R4

2 54 60 49 0.640 1.000 33
Task 4 ∆R4

3 43 47 73 0.752 1.000 37

Matched pairs sign test, p-values corrected by Bonferroni-Holm procedure.

Const ratio denotes participants holding their ratio constant.

In Table 10, we test whether the participants update their estimates of known outcomes after

observing a new color. Similarly to Experiment 1, even though the ratios are on average constant,

the individual estimates of known outcomes are updated downwards as new colors are observed.

Figure 3 illustrates that, as in Experiment 1, the ratio changes were closely concentrated around

zero. This holds again for both, all participants in the experiment, and for those instances where

all estimates were changed after observing a new color.

Result 4.1. The participants update their beliefs according to reverse Bayesianism, thus, providing

support for Hypothesis 1.
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Once more, cognitive ability does not have a significant effect on the ratio deviations (Table

A4 in Appendix A2). Thus, there is no empirical evidence supporting Hypothesis 5. Importantly,

the absolute changes in the ratios are also unaffected by the participants’ expectations of further

surprises, that is, whether they hold non-zero residual probabilities or not (Table A5 in Appendix

A2).

Result 4.2. Cognitive ability has no mediating effect on deviations from reverse Bayesianism, thus,

we reject Hypothesis 5.

Table 10: Changes of known outcome estimates before vs. after observing a new color.

Obs z-statistic p-value p-value (corr.) poi − pui
Task 1 First Outcome after Third 85 6.32 0.000 0.000 0.057
Task 1 Second Outcome after Third 85 5.52 0.000 0.000 0.041
Task 1 First Outcome after Fourth 84 4.79 0.000 0.000 0.039
Task 1 Second Outcome after Fourth 84 3.51 0.000 0.005 0.016
Task 1 Third Outcome after Fourth 84 3.51 0.000 0.005 0.023
Task 2 First Outcome after Third 169 9.27 0.000 0.000 0.068
Task 2 Second Outcome after Third 169 7.57 0.000 0.000 0.050
Task 4 First Outcome after Third 174 8.43 0.000 0.000 0.070
Task 4 Second Outcome after Third 174 8.43 0.000 0.000 0.065
Task 4 First Outcome after Fourth 164 8.33 0.000 0.000 0.046
Task 4 Second Outcome after Fourth 164 6.24 0.000 0.000 0.030
Task 4 Third Outcome after Fourth 164 6.24 0.000 0.000 0.026

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

Figure 3: Histograms of the changes in the ratios following the update of the urn.
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4.2.2 Analysis of the Residuals and Dynamics of the Beliefs

We now turn to the estimates of the residual probabilities. Figure 4 depicts the evolution of the

average residual p̂x over the 30 sample draws for each task and for both treatments. We find that

for both treatments the average residual starts at a relatively high level and decreases quickly as

more draws are made. Note how even after the 30th sample draw the average residual is well above

0. In Figure A4 in Appendix A2, we present the distribution of these residuals; about one third of

the participants expect further colors even after the 30th sample draw.

Result 4.3. The participants on average anticipate unforeseen events, p̂ix > 0, thus, providing

support for Hypothesis 2.

Figure 4: Dynamics of the residuals over the sampling process.
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Note: The orange line depicts the residuals of two outcomes treatment while the blue line depicts the residuals of
four outcomes treatment.

For the sake of exposition we postpone the analysis of Hypothesis 3, and consider Hypothesis

4 first. It was already noted that the residuals on average monotonically decrease with sample

draws (Figure 4). Simple correlations (across the whole set of participants) between the number of

marbles already drawn from the virtual urn and the stated residuals are negative for all tasks and

across both treatments (ρ < −0.311, Pearson correlation coefficient), and thus support the first

part of Hypothesis 4. However, there are no significant differences between the two treatments in

the overall shape of the curve (Kolmogorov-Smirnov test, all p−values ≥ 0.994), thus rejecting the

second part of Hypothesis 4 (differences in awareness of unexpected events). This indicates that

participants do not adapt their estimation of residuals in later tasks in response to encountering
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more possible outcomes in the first task. This finding is intriguing. On the one hand, encountering

more possible outcomes in the first task could raise the participants’ awareness that the urns might

contain more outcomes than initially expected, which was our prediction. On the other hand, as

the participants have no information ex ante and as task 1 does not provide direct information on

subsequent tasks, the null effect that we find might be perfectly rational.

Result 4.4. The residual probabilities decrease with the draws made from the urn, thus, supporting

Hypothesis 4a. There is no difference in this trend between the two and four colors treatments,

thus, we reject Hypothesis 4b.

Turning to Hypothesis 3 (that the residual probability changes after observing new events),

there is a negative correlation between the number of colors already observed by the participants

and their residual probabilities (rs < −0.272, Spearman correlation coefficient). That is, the more

surprises the participants observe the fewer future surprises they anticipate. Examining the residual

directly before and after a new color is observed, we note a significant drop in the subjective residual

probability in 8 out of 9 instances – see Table 11.

Table 11: Changes of the residuals before vs. after observing a new color.

Increased Decreased Constant p-value p-value (corrected)

Task 1 - p̂2
x 9 144 21 0.000 0.000

Task 1 - p̂3
x 16 56 13 0.000 0.000

Task 1 - p̂4
x 25 38 21 0.130 1.000

Task 2 - p̂2
x 3 149 22 0.000 0.000

Task 2 - p̂3
x 26 84 59 0.000 0.000

Task 3 - p̂2
x 3 149 22 0.000 0.000

Task 4 - p̂2
x 6 143 25 0.000 0.000

Task 4 - p̂3
x 27 94 53 0.000 0.000

Task 4 - p̂4
x 27 57 80 0.001 0.013

Matched pairs sign test, p-values corrected by Bonferroni-Holm procedure.

To summarize our findings pertaining to the residual probabilities reported up to this point:

(1) drawing a larger sample decreases the residual as more precise information on already observed

colors is available; (2) observing more colors, ceteris paribus, decreases the residual probability,

perhaps because participants feel that the space of so far unobserved events shrinks with the

number of observed colors.

In order to better understand to which degree these two factors impact the residual, we estimate

a random effects model of the residual on the number of draws and the number of observed colors,

controlling for different demographic factors and the task. Table 12 presents the results of this

analysis. Both factors independently have a negative and significant impact on the size of the

residual. The impact of the number of outcomes is roughly 11 times stronger than the effect of the

sample draws. It is interesting to note that a higher cognitive ability leads to a smaller residual,
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in contradiction to Hypothesis 6. However, since it is not obvious what “optimal” residual an

individual participant should have in this experiment, it is not possible to assess whether it is

reasonable to observe this relationship. Finally, we run two robustness checks of the estimations

presented in Table 12. First, the results pertaining to the coefficients and their significance remain

robust when a fixed-effects instead of a random-effects model is used (Table A6 in Appendix A2).

Second, conducting the random effects panel analysis solely upon the latter half of the sampling

process (only for observations after sampling round 15), leads to a smaller yet still significant

negative coefficient for the number of draws (Table A7 in Appendix A2). The coefficient for the

number of colors observed becomes insignificant, possibly due to lower power with a relatively small

number of new colors being observed in later rounds of the sampling process. Taken together, these

results indicate that even in the later stages of the sampling process, participants on average reduce

their residuals with every additional draw.

Result 4.5. The participants consistently update their residual probabilities downwards, thus, re-

jecting Hypothesis 3.

Result 4.6. The participants of higher cognitive ability report smaller residual probabilities, thus,

rejecting Hypothesis 6.

Table 12: Random Effects Estimator: relation between the sample draws and residuals

Size of the residuals Panel GLS

Num. draws -0.746**
(0.048)

Num. colours observed -8.402**
(0.537)

Cognitive ability -2.624**
(0.547)

Four colours first -0.914
(2.509)

Constant 77.907**
(11.212)

Observations 19,800
Subjects 165

* p < 0.05; ** p < 0.01

Clustered standard errors in parentheses

4.2.3 Bayesian and Reverse Bayesian Rationality

As shown in subsection 4.2.1, the participants’ behavior is consistent with reverse Bayesian reason-

ing. Does this mean that our participants are in general very rational Bayesian updaters? In order
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to test this, we study how observing a new color affects the sum of the new residual probability

and the estimate of the new color. Technically, before actually observing a new color, its estimate

should be included in the estimate of the event any other color. Observing a new color can be

viewed as unpacking the estimate of the likelihood of yet unobserved colors into two new estimates,

an estimate for the new color and another estimate for the yet unobserved colors. That is, the sum

of the estimate of the new color and the new residual should equal the previous residual. Tversky

and Koehler (1994) and Sonnemann et al. (2013) find that the sum of such two unpacked estimates

violates this principle; the estimate of the new color and the new estimate of any yet unobserved

color, often exceeds the ‘packed’ estimate.

We replicate this violation of rationality in our data. We define p̂uSum as as the sum of the

new residual and the estimate for the newly observed color C, i.e. p̂uSum = p̂ux + p̂uC . As discussed,

p̂uSum should equal the previous-round residual p̂ox. Table 13 tests if the ratios
p̂uSum
p̂ox

are different

from 1. This is clearly the case for all instances of the updates. Figure 5 illustrates this for the

color observed second.15 There is also a significant positive correlation between the number of

colors observed and the unpacking ratio (Kendall’s τA = 0.667, τB = 0.785, p = 0.0095). That is,

the unpacking effects get more pronounced as more colors are observed. This illustrates that our

participants are indeed prone to violations of rational updating principles in the current context.

This makes the strong evidence for reverse Bayesianism all the more remarkable.

Result 4.7. The participants succumb to the ‘unpacking’ violation of rationality. Thus, behavior

consistent with reverse Bayesianism is not a part of uniform adherence to the principles of Bayesian

updating.

Table 13: Unpacking the residual after observing a new color.

Second colour Third colour Fourth colour

Task 1 1.23*** 1.46*** 2.32***
Task 2 1.29*** 1.65***
Task 3 1.48***
Task 4 1.25*** 2.02*** 2.23***

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

5 Discussion

There is a large literature assessing how decision makers update beliefs about known events in

empirical and experimental decision situations (e.g., Grether, 1992; Charness and Levin, 2005;

Charness et al., 2007; Holt, 2009). We focus on new and more or less unforeseeable events. Differ-

ent strands of the theoretical literature offer varying prescriptions on how to integrate information

15See Figures A6 and A7 in Appendix A2 for an illustration of this when the third and fourth colors are observed.
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Figure 5: Residuals and estimates of a new color before and after observing a new color, second
color.
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about unforeseen events into beliefs. In their seminal work, Karni and Vierø (2013; 2017) axioma-

tize a preference functional of a decision maker who integrates unforeseen events into an updated

probability distribution over an expanded state space so that the ratio of previously observed events

stays unchanged. Our results provide evidence that reverse Bayesianism is also compelling from

a descriptive perspective. This stands in sharp contrast to many studies on Bayesian updating,

which often find behavior in the lab violating theoretical prescriptions (Charness and Levin, 2005;

Charness et al., 2007; Holt, 2009). In other words, our results suggest that reverse Bayesianism

is compelling, both, normatively and descriptively. This holds true both in situations involving

reasonably unforeseeable events (Experiment 1) and in situations with unknown but foreseeable

events (Experiment 2).

These implications are intriguing. The space of possible events is continuously expanding in

many decision environments. Examples like the financial crisis of 2007 and the COVID-19 pandemic

highlight the difficulty to react to novel events appropriately. It is thus important to pay special

attention to the possibility of not knowing relevant events beforehand. While our experiments

can not speak to the optimal reactions towards an objectively unforeseeable event, they show

that decision makers have the capacity to reconcile new information optimally with their existing

beliefs. Notably, this is irrespective of whether participants started with not explicitly expecting a

surprise (Experiment 1) or if they were asked about such a belief and supplied a positive estimate

(Experiment 2). Furthermore, it is noteworthy that participants in Experiment 2 reduced their

residual as more draws were made. This indicates an inclination towards becoming more complacent
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during the experiment, as participants lower their expectations of surprises as fewer new outcomes

are discovered. Testing this tendency in more applied scenarios and studying how it interacts with

precautionary measures could be an interesting extension to our findings.

Our findings for Experiment 1 also indicate that participants exhibit a higher WTA when they

are aware of the possibility of further, unknown surprises. In the interpretation of Viscusi and

Chesson (1999), the respondents in our study seem to be more hopeful rather than fearful towards

unknown future events. This is also interesting in light of the ambiguity literature (Trautmann and

van de Kuilen, 2015). One interpretation is that unforeseen events are assigned small probabilities

(see also Experiment 2), and that the observed behavior is an embodiment of ambiguity seeking.

Indeed, the Trautmann and van de Kuilen (2015) review reports predominantly ambiguity seeking

behavior for low probability gain prospects like the ones used in Experiment 1.

In Experiment 2 (and implicitly in Experiment 1) we used the residual probability estimate as

a catch-all way of encoding the participants’ beliefs about all remaining possible events. This does

not, however, give us a clear description of what exactly participants expect in the future, instead

it is a “(...) Black Box, a residual of unknown content.” (Shackle, 1992, p. 23). For example, a

participant revealing a positive residual could be expecting a surprise in the future. Say she could

be expecting the urn to also contain blue and red marbles. Observing a purple marble could present

her with an unforeseen event. In our design, we do not elicit the precise nature of the unforeseen

event - whether it corresponds to purple or some other specific color. Further studies could try to

elicit an exhaustive list of expected events from the participants or even try to use a completely

non-distributional approach to assess uncertainty (Shackle, 1992).

Furthermore, the surprises in our experiments might still be considered to be easily compre-

hensible. A new urn with new prizes and a new color in a box of colored marbles can be surprising

and unexpected, but it is relatively simple to integrate their materialization into an existing belief

structure after their first occurrence. A natural next step could be to elicit the degree to which the

principle of reverse Bayesianism extends to more complex events, where it is less clear which form

a surprise might take and how to reconcile it with existing beliefs. This could help us to better

understand how belief systems are affected by very rare and novel events.

Finally, our results cannot resolve the question whether participants act as-if they are reverse

Bayesian or if their underlying thought process adheres to the prescriptions of reverse Bayesianism.

On the one hand, some participants did not alter their estimates at all after observing a new

outcome. This could suggest the as-if interpretation. On the other hand, a significant share of the

participants did, and still provided belief ratios that were either constant or deviated little from the

previous ratio. This would be more consistent with decision makers consciously following reverse

Bayesianism. More research is needed to further disentangle these two possibilities.
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Experiment 1 Instructions  
Note: In red are comments that were not visible to participants. Any text highlighted in yellow relates 
to only the IS condition, while any text highlighted in green relates to only the PS condition 

General Information 

Welcome to the experiment.  

Thank you for volunteering your time to participate in this experimental project. The purpose of this 
experiment is to study how people make decisions in a particular situation. The results of this 
experiment will have applications to behavioral economics and economics in general. 

During this experiment, please follow the instructions very carefully.  Please remain silent during the 
session. You will go through various stages where in some instances you will simply observe outcomes 
of draws from an urn and in other cases you will be asked to report your perceived likelihood of an 
event or how much an item is worth to you. These reports, which you will enter on your computer, will 
determine your eventual monetary reward from participating in this experiment. 

You may have heard about experiments in which participants were deceived. This experiment does not 
involve deception by the experimenters. That is, everything the experimenter tells you, and all on-screen 
instructions, are true and accurate.  

Initial Instructions 

It is critical that you read through these instructions carefully as fully understanding them will allow 
you to substantially increase your eventual monetary payoff from this study, where you can earn from 
a minimum of €4.00 to a maximum of €26.00 depending on your decisions. 

During this study you will be asked to observe some outcomes of draws from an urn and will then be 
asked to report how likely certain ‘events’ are and how much some ‘items’ are worth to you. One of 
these choices will be randomly picked to determine your monetary payment for completing this study. 
Depending on your responses you stand to earn a substantial amount of money. Over the next few 
pages we explain how your earnings will be determined. Please read this very carefully. 

Likelihoods of events – Reporting and Earnings 

At different instances during this study, you will be asked to provide us with your perceived likelihood 
of an outcome of a random draw from an urn. The urn will contain prizes of varying monetary value. 
You will have an opportunity to observe multiple random draws out of this urn to gain a good 
understanding of the likelihood of different prizes. 

After observing a sequence of random draws from the urn, you will be asked to report your beliefs 
about the likelihood that the prize drawn from the urn is of particular value.  For example, we may ask 
you to report your perception of the likelihood that the prize drawn out of the urn has a value of €30. 

You will be asked to report a number between 0 and 1. The closer to the true value your reported 
number is the greater would be your expected potential bonus from this decision. 

Your best strategy is to estimate your own perceived likelihood and truthfully report that likelihood.  

Suppose that we ask you to report the likelihood of drawing a ball with prize X. Your reported likelihood 
will be compared to a likelihood randomly generated by the computer. This randomly generated 
likelihood will be a number between 0 and 1 and it will be completely unrelated to your reported 
likelihood. If your reported likelihood is greater than or the same as the randomly generated likelihood, 
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you will be endowed with a lottery that pays you X with a probability equal to the actual proportion of 
prize X in the urn and pay you nothing otherwise. If, instead, your reported likelihood is lower than the 
randomly generated likelihood, you will be endowed with a lottery that pays you X with a probability 
equal to the randomly generated likelihood and pay you nothing otherwise. After these choices are 
made and revealed by the computer, the lottery in your (virtual) possession will be played and payments 
made according to the realization of the lottery.   

Example: Let’s say we ask you to provide your perceived likelihood that a prize of value €30 will be 
randomly drawn from the urn. Let’s further suppose that the true proportion of prize €30 is 0.5 in the 
urn. If your reported likelihood is 0.4 and the randomly generated likelihood is 0.3, you will receive the 
lottery that pays you €30 with probability 0.5 (true proportion of the prize) and pay you nothing 
otherwise. If your reported likelihood is 0.4 and the randomly generated likelihood is 0.6, you will 
receive the lottery that pays you €30 with probability 0.6 (the randomly generated likelihood) and pay 
you nothing otherwise. 

Values of ‘items’ – Reporting and Earnings 

At different instances during this study, you will be asked to provide us with the value at which you 
would be willing to sell an ‘item’. This ‘item’ will be a lottery that would give you some monetary prizes 
with some probabilities. During the tasks that will follow, the prizes that will be possible to earn and 
their likelihoods will not be explicitly stated and so you would need to rely on what you expect. 

For example, if you believe that there is equal likelihood of two prizes of value of 
€20 or €10, then the corresponding lottery would entail a payoff of €20 with 

probability 0.5 or a payoff of €10 with probability 0.5. 

You will be given the lottery and it will be your task to provide us with a value which you would feel 
comfortable to sell us back this lottery. Your decision is essentially to provide us with the certain amount 
that you would be happy to receive instead of playing the lottery at the particular instance. 

As you will see, your best strategy is to provide us with the minimum amount you would be willing 
to receive for selling us the lottery  
 

Your named amount will be compared to a fixed amount. This fixed amount will be randomly generated 
by a computer and will be completely unrelated to your named amount: 

•  If your named amount is less than or the same as the fixed amount, then you get to sell the 
lottery. But, here’s the interesting part. You do not receive the amount you offered. Instead, we 
pay you the fixed amount, i.e. the randomly generated amount which is higher than or equal 
to your offer.  

• If, on the contrary, your named amount is more than the fixed amount then you don’t get to 
sell the lottery and will be paid according to the realization of the lottery. 

Example: if your named amount is €50 and the fixed amount is €60, you get to sell the lottery and receive 
the certain amount of €60. if your named amount is €50 and the fixed amount is €40, you do not get to 
sell the lottery and thus receive payment according to the realization of the lottery. 

You should offer the minimum amount you would be willing to accept in exchange for the lottery you 
own. Your best strategy is to determine your personal value for the item and record that value as your 
offer. It will not be to your advantage to suggest more than this amount, and it will not be to your 
advantage to suggest less. There is not necessarily a “correct” value. Personal values can differ from 
individual to individual. 
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Example of best strategy for deciding valuation 

The following example illustrates how you work out the minimum you are willing to accept for a lottery. 

Imagine that I am a seller of a lottery “A”. How do I know the minimum I’d be willing to sell  lottery  “A” 
for? 

Start with 1 penny. Would I be willing to get 1 penny for the item? If NOT, then increase the amount to 
2 pence. If I’m NOT willing to accept 2 pence, then increase further. I keep increasing until I come to an 
amount that makes me indifferent between keeping lottery “A” or  getting a certain amount. 

Example: Would I sell lottery “A”  for €1.00? NO. So I need to consider higher amounts. Would I sell 
lottery “A”  for €2.00? YES. Would I sell lottery “A”  for €1.90? YES, Would I sell lottery “A”  for €1.80, 
YES. Would I sell lottery “A”  for €1.50? I don’t care whether I end up with €1.50 or keep the lottery. 
Then that is the minimum I’d be willing to accept  for lottery “A”. I’ll record that number on the 
computer. 

The key to determining the minimum you’d be willing to accept is remembering that you will not 
necessarily get only the amount you declare. Instead, if you receive anything, you will receive the fixed 
offer. 

Why is my best strategy to declare the minimum I’d be willing to accept? Let’s go back to the example: 

Say that I decide that the minimum I’d be willing to accept for lottery “A” is €1.50. 

What happens if I declare more than €1.50? Say I declare €2. 

If the fixed amount is, say, €1.90, then I don’t sell the lottery. Had I declared €1.50, I would have received 
the amount €1.90 for a lottery that I think is worth €1.50. So  I lose out. 

What happens if I declare less that €1.50? Say I bid €1.00. 

If the fixed offer is €1.20, then I have to accept €1.20 for a lottery that I really think is worth €1.50. I 
lose out. 

Payment procedures 

You will be asked to provide a value for lotteries and likelihood for events at different instances as we 
described in the previous pages. One out of all these decisions will be randomly chosen and payments 
will be made according to that decision and the realisation of the relevant lottery. 

All prizes and lotteries that you will be asked to consider and make decisions about will be expressed in 
tokens. Each token corresponds to €0.05. Thus, a prize of 100 tokens will be equivalent to €5. 
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PART 1 

You will now simply observe random draws of balls out of an urn. This urn contains a number of balls. 
Each ball represents a potential prize in terms of payment in tokens. You will observe 20 consecutive 
random draws with replacement from the urn. Please pay attention to the prizes that will appear and 
their frequencies. For IS conditions: This urn contains two and only two possible prizes. Your earnings 
do not directly depend on the outcome of each random draw in this stage, but understanding the 
composition of the urn may considerably improve your future earnings. For PS conditions: At any point 
in the study new balls representing different tokens to what you have been observing so far may be 
added to this urn. Please click OK when you are ready to proceed. 

 

Belief Screen 1 

We would now like to ask you some questions about the likelihoods of different prizes in the urn you 
have been observing. 

Remember that your most profitable strategy is reporting truthfully your assessment of different 
likelihoods. 

You can remind yourself of the payment procedure and instructions related to the task by referring back 
to the instructions in front of you. 

What is your estimate of the likelihood that prize 80 is drawn from the urn? ______ 

What is your estimate of the likelihood that prize 190 is drawn from the urn? ______ 

WTA Screen 1 

We would like to ask for your value of a lottery. 

Recall that when answering questions about your value of a lottery, your named amount will be 
compared to a fixed amount. If your named amount is greater than or equal to the fixed amount then 
you do not sell the lottery and are thus paid according to the realization of the lottery. Otherwise, if 
your named amount is less than the fixed amount, you get to sell the lottery you have been endowed 
with and receive the fixed amount as a payment. 

Remember that your most profitable strategy is reporting truthfully your valuations, you can remind 
yourself of the payment procedure and instructions related to the task by referring back to the 
instructions in front of you. 

Thinking about the different prizes and the composition of the urn you have just 
observed. 

What is the minimum amount you are willing to accept to sell the lottery that pays 
according to a draw from the urn?  ______ 
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After giving a choice, the following appears on the screen 

Thank you. Your choice has been recorded. 

For IS conditions:  

We will now draw another prize from the urn. 

If the decision you just made is selected by the computer to be the payment relevant 
round, the draw about to take place will be used to determine your payment. 

You will not be shown the prize drawn out of the urn in this instance. Your colleague 
making the draws will make a note of the prize drawn to be used later if necessary. 

We make a draw out of the original urn and the participant making the draws notes 
down the prize drawn. 

At this point we bring the new urn, draw one prize and say: 

On PC Screen: 

This urn contains only the prize you are about to be shown. Please click OK to confirm 
you understand this. 

Now we drop the contents of the original urn into the new urn which together form 
the updated urn. 

 

For PS conditions: 

If the decision you just made is selected by the computer to be the payment relevant 
round, the draw about to take place from the urn in the front will be used to determine 
your payment. 

At this point we bring the new urn, draw one prize and say: 

On PC Screen: 

This urn contains new prizes. The urn contains no prizes similar to what you have been 
observing as a result of random draws from the other urn. Please click OK to confirm 
you understand this. 

Now we drop the contents of the original urn into the new urn which together form 
the updated urn. 

We will now draw a prize from the urn. 

If the decision you just made is selected by the computer to be the payment relevant 
round, this draw will be used to determine your payment. You will not be shown the 
prize drawn out of the urn in this instance. Your colleague making the draws will make 
a note of the prize drawn to be used later if necessary.  

A random draw from the updated urn is made and the participant making the draws 
notes down the prize drawn. 
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Belief Screen 2 

We would now like to ask again some questions about the likelihoods of different prizes in the urn you 
have been observing.  

Remember that your most profitable strategy is reporting truthfully your assessment of different 
likelihoods. 

You can remind yourself of the payment procedure and instructions related to the task by referring back 
to the instructions in front of you. 

What is your estimate of the likelihood that prize 80 is drawn from the urn? ______ 

What is your estimate of the likelihood that prize 190 is drawn from the urn? ______ 

What is your estimate of the likelihood that prize 15/375 is drawn from the urn? ______ 

 

WTA Screen 2 

Remember that your most profitable strategy is reporting truthfully your valuations. 

You can remind yourself of the payment procedure and instructions related to the task by referring back 
to the instructions in front of you. 

Again thinking about the urn in front of you. 

What is the minimum amount you are willing to accept to sell the lottery that pays according to a 
random draw from the urn?  ______ 

After giving a choice, this appears: 

Thank you. Your choice has been recorded 

We will now draw another prize from the urn.  

If the decision you just made is selected by the computer to be the payment relevant 
round, this draw will be used to determine your payment. You will not be shown the 
prize drawn out of the urn in this instance. Your colleague making the draws will make 
a note of the prize drawn to be used later if necessary.  

A random draw from the updated urn is made and the participant making the draws 
notes down the prize drawn. 
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PART 2  

Lottery Choice Task 

On your screen below you see a list of 6 lotteries with the prizes given in terms of tokens. You have to 
make a choice among these 6 lotteries. For each of the listed below lotteries, the chance for either of 
the two payoffs is equal. That is, for lottery 2 for example, you can win 24 tokens with 50% chance and 
36 tokens with 50% chance. Your chosen lottery will be played out and you will be paid according to the 
realization of that lottery. As before, each token corresponds to €0.05 Thus, for a prize of 100 tokens 
the equivalent dollar amount will be €5. 

Lottery X Y 
1 28 28 
2 24 36 
3 20 44 
4 16 52 
5 12 60 
6 2 70 

 

PART 3  

Short Raven Test implemented 

PART 4 

General Demographic Questionnaire 

 
• How old are you? (years) 
• What is your gender? (M/F/Other [Please describe if you wish]/Prefer not to disclose) 
• What is your country of origin? 
• What is your religion? 

o Budhist 
o Christian 
o Hindu 
o Jewish 
o Muslim 
o Sikh 
o No religion 
o Other [Please describe if you wish] 
o Prefer not to disclose 

• What is your field of studies/major? 

• What is your year of study?  

• In high school, what was the highest possible grade? (E.g. A, 100, 20) 
• What was your final grade in high school? 
• In political matters, people talk of “the left” and “the right”. How would you place your views 

on this scale, generally speaking? 
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Experiment 2 Instructions  
Note: In red are comments that were not visible to participants. 

General Instructions 
Thank you for participating in today’s experiment. 

If you have any questions during the experiment, please raise your hand. An experimenter will 

approach your table to answer your question in private.  

You may have heard about experiments in which participants were deceived. This experiment 

does not involve deception by the experimenters. That is, everything the experimenter tells you, 

and all on-screen instructions, are true and accurate. 

The experiment consists of 4 parts. For participating in this experiment you will earn £3 at the 

end of the experiment. In addition you can earn a bonus of £6 in each of the four parts, 

depending on your performance in the experiment and chance. After these four parts you will 

play a pattern game, in which you can earn additionally up to £2. 

In the end follows a short demographic questionnaire.  

 

Sampling Boxes 
The experiment consists of 4 parts. In each part, you draw a random sample of (virtual) marbles 

from a (virtual) box containing exactly 100 colored marbles. Initially, you have no information 

about the contents of each box: you do not know which colors, or how many different colors, 

are in the box. The four parts and four boxes are independent of each other: different boxes are 

used for different parts. 

In each part, you draw 30 marbles with replacement one after another from the box. You draw 

a marble by clicking the button “Draw” (or by pressing enter). Once clicked, the computer 

randomly draws a marble from the box. The result of a draw is shown on-screen with a marble 

of the color and the name of the color. 

The sample draws are conducted with replacement. For example, if you drew a magenta marble 

(this color is not used in the actual experiment) from a box, this marble is placed back in the 

box for the next draw, such that the number of marbles of each color in the box stays the same 

as you sample. All marbles you have sampled (and their colors) are registered at the bottom of 

the screen.  
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Your payoff-relevant task 

After each draw of a new marble, you will be asked to state your expectation about the contents 

of the box, that is, about the distribution of colors in the box. The more precise your prediction 

is, the higher will be your expected payoff from the experiment (details below). After each 

draw, you will be asked to separately indicate:  

(i) Your expected number of marbles in the box for each color that you have already observed 

for the box, and  

(ii) Your expected number of marbles of “any other colors” that you have not yet observed for 

the box, and that may or may not be in the box. 

 

Example 

Suppose you drew a magenta marble in your first draw and a teal marble (this color is also not 

used in the actual experiment) in the second draw. After the first draw you would be asked to 

guess how many magenta marbles are in the box, and how many marbles of any other color, 

not yet observed, are in the box. After the second draw you would be asked how many magenta 

marbles are in the box, how many teal marbles are in the box, and how many marbles of any 

other color, not yet observed, are in the box. 

As the box contains exactly 100 marbles, your estimates of the number of marbles of the already 

observed colors and of any other colors you may think are in the box (but not yet observed) 

must add up to 100. Moreover, if you expect the number of marbles of other colors to be zero, 

you need to explicitly submit an estimate of zero (that is, not just leaving the entry field open).  

After the 30th marble is drawn, you will enter your last prediction for this box. A new button 

“Continue to the next box” will allow you to continue to the next part, with a new box to sample. 

 

Entering estimates in the program 

After each draw, you can enter your estimates by typing them into the entry fields. You can 

also use the “fill previous estimate” buttons to pre-fill your previous round’s estimates for each 

color. At any point before making the next draw, you can adjust the current estimates in the 

entry fields using “+” and “−” buttons next to the entry fields.   
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Getting paid for good predictions 

You may earn a bonus of £6 for each part of the experiment. All of your answers provided for 

all four parts will affect your chances of receiving the bonus. If you want to maximize your 

expected earnings from this experiment, it is in your best interest to estimate the number of 

marbles for each box as accurately as possible, and report them truthfully after each draw. To 

determine whether you will win a bonus, you will draw a marble either from one of the boxes 

in the experiment (called Estimate Box), or from another, newly constructed one (called New 

Box). Importantly, your reported estimates will influence the construction of this new box.  

If you report your estimates accurately and truthfully, this will be best for you in terms of your 

expected payment from the experiment. Below we will explain the payment procedure, and 

provide the intuition and an example why it is in your best interest to report your estimates as 

correctly as possible after each draw. You are invited to review these explanations. Please note 

that they are not necessary to understand the experiment and can be skipped without any harm 

if you are not interested. You can request a hard copy of these details at any point of the 

experiment in case of doubt.  

  

Payment procedure (click to expand): 

The below was hidden and only visible if the participants chose to expand the information: 

After you finished sampling from all four boxes, for each of the four parts you may earn a bonus 

of £6 as follows: 

Estimate box: The computer randomly selects one of the 30 draw rounds, and then randomly 

selects one color estimate you made for this round (this is the selected color for this task). This 

can be an estimate for some color you have observed, or alternatively an estimate for the number 

of not yet observed colors at some point, that is, “any other color”. Note than all of your 

estimates have the same chance to be randomly selected. 

New box: Next, the computer constructs a new box of 100 marbles that contains only two colors, 

black or white. Every possible combination of black and white marbles (the number of white 

marbles = 100 – the number of black marbles) is equally likely. 

Next, the computer compares the number of black marbles in the New Box with the estimate 

you made for the selected color in the experiment (or for “any other color”).  

• If your estimate for the selected color is larger than the number of black marbles in the 

New Box, you will draw one marble from the Estimate Box. If this marble is of the 
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selected color, you will receive £6. If the marble is not of the selected color, you will 

receive £0. 

• If your estimate is smaller than the number of black marbles in the New Box, you will 

draw one marble from the New Box. If this marble is black, you will receive £6. If the 

marble is white, you will receive £0. 

 

Intuition (click to expand): 

The below was hidden and only visible if the participants chose to expand the information: 

You will have the best chance to win the bonus of £6 for each part, by truthfully reporting your 

estimate. For example, if you think there are many magenta marbles in the Estimate Box, you 

will more likely make a draw from this box. This is because in your estimation the number of 

black marbles in the New Box will most likely be smaller than your estimate of magenta 

marbles for the Estimate Box.  

If you think there are only few magenta marbles in the Estimate Box, you will more likely make 

a draw from the New Box. This is because the number of black marbles in the New Box will 

most likely be larger than your estimate of magenta marbles for the Estimate Box.  

Thus, as long as you report your estimate for each color in each draw and each box accurately 

and truthfully, the mechanism makes sure that you get the box with the highest chance of 

winning the bonus. 

Note that your winning chance in the case of making the payoff-relevant draw from the Estimate 

Box depends only on the true number of marbles of that color in the box. Similarly, in the case 

of making the payoff-relevant draw from New Box, the chance depends only on the number of 

black marbles in the box. Your estimate of colors for the boxes in the experiment is only 

relevant for determining the best boxes for you during the payment procedure. Thus, better 

estimates give you better chances to win. 

 

Example (click to expand): 

The below was hidden and only visible if the participants chose to expand the information: 

Example - Part 1 

For part 1, the computer selected the round 16 draw. In this round you provided estimates of 

the number of magenta marbles, teal marbles, and the number of marbles of “any other color”. 

44



The computer further selected magenta as the payoff-relevant color estimate. Suppose your 

estimate of the number of magenta marbles in box 1 in round 16 was 42 marbles. 

Suppose the computer randomly generated a New Box that contained 35 black and 65 white 

marbles. Because 35 black winning marbles in New Box is less than your estimate of 42 

magenta winning marbles in Estimate Box 1, your bonus would be determined by Estimate Box 

1. Note that your true chance to win the bonus of £6 would depend on the true number of 

magenta marbles in box 1. Suppose you drew a teal marble from Estimate Box 1. Your bonus 

for part 1 would be £0. 

Example - Part 2 

For part 2 box, the computer selected the round 2 draw. In this round you provided estimates 

of the number of magenta marbles, and the number of marbles of “any other color”. The 

computer further selected “any other color” as the payoff-relevant color estimate. Suppose your 

estimate for the number of “any other color” marbles in box 2 in round 2 was 50 marbles. 

Suppose the computer randomly generated another New Box that contained 7 black and 93 

white marbles. Because 7 black winning marbles in New Box is less than 50 winning marbles 

of “any other color” in Estimate Box 2, your bonus would be determined by a draw from 

Estimate Box 2. Note that your true chance to win the bonus of £6would depend on the true 

number of - marbles in box 2 that are not magenta. Suppose you drew a teal marble from box 

2. Your bonus for part 2 would be £6. 

Example - Part 3 

For part 3 box, the computer selected the round 30 draw. In this round you provided estimates 

for the number of magenta marbles, the number of teal marbles, and the number of marbles of 

“any other color”. The computer further selected teal as the payoff-relevant color estimate. 

Suppose your estimate for the number of teal marbles in box 3 in round 30 was 20 marbles. 

Suppose the computer randomly generated another New Box that contains 87 black and 13 

white marbles. Because 87 black winning marbles in New Box is more than 20 twinning 

marbles of teal color in Estimate Box 3, your bonus would be determined by New Box 3. 

Suppose you drew a black marble from box 3. Your bonus for part 3 would be £6. 

Example - Part 4 

For part 4 box, the computer selected the round 7 draw. In this round you provided estimates 

for the number of magenta marbles, the number of teal marbles, and the number of marbles of 

“any other color”. The computer further selected “any other color” as the payoff-relevant color 
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estimate. Suppose your estimate for the number of “any other color” marbles in box 4 in round 

7 was 33 marbles. 

The computer randomly generated another New Box that contains 27 black and 73 white 

marbles. Because 27 black winning marbles in New Box 4 is less than 33 winning marbles of 

“any other color” in Estimate Box 4, your bonus would be determined by a random draw from 

Estimate Box 4. Note that your true chance to win the bonus of £6would depend on the true 

number of marbles in box 4 that were neither magenta nor teal. Suppose you drew a teal marble 

from box 4. Your bonus for part 4 would be £0. 

 

Pattern game 
You will now play a pattern game, where you are asked to solve some puzzles 

On the screen, you will see a set of abstract pictures with one of the pictures missing. You need 

to choose a picture from the choices below to complete the pattern. 

You will have a total of 8 minutes to complete 12 such puzzles. 

During these 8 minutes you will be able to move forwards and backwards and change your 

answers using the buttons and tabs on your screen. 

At the end of the experiment, the computer will randomly draw two of the puzzles from the 

pattern game. Each puzzle has the same probability to be chosen. For each of the two puzzles 

that you solved correctly, you will earn an additional £1. 

Once the 8 minutes have passed, the pattern game will be automatically submitted and you will 

proceed to the results. You can submit all your answers and wait for the others to finish once 

you reach the last puzzle by clicking on the button that will appear and be labelled "Finish and 

go to results". 
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A1 Additional analysis for Experiment 1

Figure A1: Distr. of the residual in the original urn(p̂ox = 1− p̂o80 − p̂0
190)
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Figure A2: Distr. of the residual in the updated urn (p̂ux = 1− p̂u80 − p̂u190 − p̂us )
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Table A1: Relation between the ratio differences and cognitive ability; OLS regression.

Ratio differences

Cognitive ability -0.008
(0.006)

Constant 0.221*
(0.099)

Observations 343

* p < 0.05; ** p < 0.01

Standard errors in parentheses

Note: The estimation additionally controls for High Prize, Age, Female, Econ and Risk aversion but the coefficients

are not reported.
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Table A2: Relation between WTA and possible moderators, original urn; OLS regression.

WTA All treatments Low prize High prize

PS 25.952** 27.519** 25.723**
(6.444) (10.318) (8.231)

# prizes 80 observed -2.051 -2.761 -0.529
(1.590) (2.213) (2.643)

Cog Ability 1.257 2.789 -0.583
(1.535) (2.614) (1.899)

Age -1.552* -1.109 -2.017
(0.777) (1.129) (1.102)

Female -21.280** -24.020* -19.538*
(6.726) (11.010) (8.507)

Econ -0.129 3.421 -3.594
(7.396) (11.508) (9.831)

Risk aversion -2.405 -0.364 -5.963
(2.854) (4.309) (3.914)

Constant 165.233** 147.893** 179.885**
(27.026) (41.607) (37.750)

Observations 344 169 175

* p < 0.05; ** p < 0.01

Standard errors in parentheses
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Table A3: Relation between WTA and possible moderators, updated urn; OLS regression.

WTA All treatments Low prize High prize

PS 18.902* 7.711 30.895**
(7.693) (7.192) (10.705)

# prizes 80 observed -2.911 -2.344 7.686*
(1.898) (1.542) (3.438)

Cog Ability 1.452 4.141* 0.565
(1.832) (1.822) (2.470)

Age -0.839 0.758 -1.883
(0.927) (0.787) (1.433)

Female -10.237 -2.589 -26.857*
(8.030) (7.674) (11.064)

Econ -0.687 14.916 -1.634
(8.829) (8.021) (12.786)

Risk aversion -7.957* -3.862 -11.221*
(3.407) (3.004) (5.090)

Constant 164.431** 58.955* 152.956**
(32.263) (29.001) (49.096)

Observations 344 169 175

* p < 0.05; ** p < 0.01

Standard errors in parentheses
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Figure A3: Histograms of the change in the ratios before vs. after the urn is updated, by treatment.
Histogram in blue, box plot in orange, outliers (circles) and mean (diamond) in black.
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A2 Additional analysis for Experiment 2

Figure A4: Residuals p̂x after observing the last sample draw.
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The orange boxes show the residuals of two colors treatment while the the blue boxes show the residuals of four
colors treatment.

Table A4: Relation between the ratio differences and cognitive ability.

Ratio differences Panel GLS

Cognitive ability 0.028
(0.026)

Num. draws 0.022*
(0.010)

Num. colours observed -0.066
(0.123)

Constant -0.314
(0.651)

Observations 1,119
Subjects

* p < 0.05; ** p < 0.01

Standard errors in parentheses

Note: The estimation additionally controls for Age, Female, Econ and Risk aversion but the coefficients are not

reported.
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Figure A5: Histograms of the changes in the ratios before vs. after the urn is updated, by treatment.
Histogram in blue, box plot in orange, outliers (circles) and mean (diamond) in black.
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Figure A6: Residuals and estimates of a new color before and after observing a new color, third
color.
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Table A5: Differences in the ratio changes, depending on whether participants expected a surprise
(p̂x>0).

Didn’t expect surprise Expect surprise z-statistic p-value p-value (corrected)

Task 1 ∆R3 5 80 0.43 0.664 1.000
Task 1 ∆R4

1 5 79 -0.10 0.919 1.000
Task 1 ∆R4

2 5 79 1.28 0.202 1.000
Task 1 ∆R4

3 5 79 0.73 0.466 1.000
Task 2 ∆R3 54 115 0.39 0.698 1.000
Task 4 ∆R3 38 135 1.66 0.096 0.865
Task 4 ∆R4

1 33 131 0.97 0.330 1.000
Task 4 ∆R4

2 33 130 0.79 0.430 1.000
Task 4 ∆R4

3 33 130 0.95 0.343 1.000

Wilcoxon rank-sum test, p-values corrected by Bonferroni-Holm procedure.

Table A6: Regression: relation between the number of sampled marbles and the residuals, fixed
effects.

Size of the residuals Panel GLS

Num. draws -0.735**
(0.046)

Num. colours observed -8.495**
(0.532)

Constant 52.451**
(1.868)

Observations 20,880
Subjects 174

* p < 0.05; ** p < 0.01

Clustered standard errors in parentheses
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Table A7: Regression: relation between the number of sampled marbles and the residuals after
sample round 15, random effects.

Size of the residuals Panel GLS

Num. draws -0.349**
(0.051)

Num. colours observed 0.852
(0.795)

Cognitive ability -2.299**
(0.517)

Four colours first -2.800
(2.250)

Constant 35.562**
(11.238)

Observations 9,900
Subjects 165

* p < 0.05; ** p < 0.01

Clustered standard errors in parentheses

Figure A7: Residual and estimates of a new color before and after observing a new color, fourth
color.
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